Sample records for global weather experiment

  1. Atlas of the global distribution of atmospheric heating during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  2. The analysis sensitivity to tropical winds from the Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Paegle, J.; Paegle, J. N.; Baker, W. E.

    1986-01-01

    The global scale divergent and rotational flow components of the Global Weather Experiment (GWE) are diagnosed from three different analyses of the data. The rotational flow shows closer agreement between the analyses than does the divergent flow. Although the major outflow and inflow centers are similarly placed in all analyses, the global kinetic energy of the divergent wind varies by about a factor of 2 between different analyses while the global kinetic energy of the rotational wind varies by only about 10 percent between the analyses. A series of real data assimilation experiments has been performed with the GLA general circulation model using different amounts of tropical wind data during the First Special Observing Period of the Global Weather Experiment. In exeriment 1, all available tropical wind data were used; in the second experiment, tropical wind data were suppressed; while, in the third and fourth experiments, only tropical wind data with westerly and easterly components, respectively, were assimilated. The rotational wind appears to be more sensitive to the presence or absence of tropical wind data than the divergent wind. It appears that the model, given only extratropical observations, generates excessively strong upper tropospheric westerlies. These biases are sufficiently pronounced to amplify the globally integrated rotational flow kinetic energy by about 10 percent and the global divergent flow kinetic energy by about a factor of 2. Including only easterly wind data in the tropics is more effective in controlling the model error than including only westerly wind data. This conclusion is especially noteworthy because approximately twice as many upper tropospheric westerly winds were available in these cases as easterly winds.

  3. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A summary of the proceedings in which the most important findings stemming from the Global Weather Experiment (GWE) are highlighted, additional key results and recommendations are comered, and the presentations and discussion are summarized. Detailed achievements, unresolved problems, and recommendations are included.

  4. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An assessment of the status of research using Global Weather Experiment (GWE) data and of the progress in meeting the objectives of the GWE, i.e., better knowledge and understanding of the atmosphere in order to provide more useful weather prediction services. Volume Two consists of a compilation of the papers presented during the workshop. These cover studies that addressed GWE research objectives and utilized GWE information. The titles in Part 2 of this volume include General Circulation Planetary Waves, Interhemispheric, Cross-Equatorial Exchange, Global Aspects of Monsoons, Midlatitude-Tropical Interactions During Monsoons, Stratosphere, Southern Hemisphere, Parameterization, Design of Observations, Oceanography, Future Possibilities, Research Gaps, with an Appendix.

  5. Development of a Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; hide

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2/3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective- Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.

  6. Introducing GFWED: The Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; hide

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  7. Towards a unified Global Weather-Climate Prediction System

    NASA Astrophysics Data System (ADS)

    Lin, S. J.

    2016-12-01

    The Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions and kilometer scale regional climate simulations within a unified global modeling system. The foundation of this flexible modeling system is the nonhydrostatic Finite-Volume Dynamical Core on the Cubed-Sphere (FV3). A unique aspect of FV3 is that it is "vertically Lagrangian" (Lin 2004), essentially reducing the equation sets to two dimensions, and is the single most important reason why FV3 outperforms other non-hydrostatic cores. Owning to its accuracy, adaptability, and computational efficiency, the FV3 has been selected as the "engine" for NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched grid, a two-way regional-global nested grid, and an optimal combination of the stretched and two-way nests capability, making kilometer-scale regional simulations within a global modeling system feasible. Our main scientific goal is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that, with the FV3, it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornado-like vortices using a global model that was originally designed for climate simulations. The development and tuning strategy between traditional weather and climate models are fundamentally different due to different metrics. We were able to adapt and use traditional "climate" metrics or standards, such as angular momentum conservation, energy conservation, and flux balance at top of the atmosphere, and gain insight into problems of traditional weather prediction model for medium-range weather prediction, and vice versa. Therefore, the

  8. Global economic impacts of severe Space Weather.

    NASA Astrophysics Data System (ADS)

    Schulte In Den Baeumen, Hagen; Cairns, Iver

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events, and could have substantial impacts on electric power transmission and telecommunication grids. Modern society’s heavy reliance on these domestic and international networks increases our susceptibility to such a severe Space Weather event. Using a new high-resolution model of the global economy we simulate the economic impact of large CMEs for 3 different planetary orientations. We account for the economic impacts within the countries directly affected as well as the post-disaster economic shock in partner economies through international trade. For the CMEs modeled the total global economic impacts would range from US 380 billion to US 1 trillion. Of this total economic shock 50 % would be felt in countries outside the zone of direct impact, leading to a loss in global GDP of 0.1 - 1 %. A severe Space Weather event could lead to global economic damages of the same order as other weather disasters, climate change, and extreme financial crisis.

  9. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  10. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks.

    PubMed

    Torres, Mark A; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F; West, A Joshua

    2017-08-15

    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO 2 , we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO 2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO 2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO 2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O 2 Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

  11. Weather extremes in very large, high-resolution ensembles: the weatherathome experiment

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rosier, S.; Massey, N.; Rye, C.; Bowery, A.; Miller, J.; Otto, F.; Jones, R.; Wilson, S.; Mote, P.; Stone, D. A.; Yamazaki, Y. H.; Carrington, D.

    2011-12-01

    Resolution and ensemble size are often seen as alternatives in climate modelling. Models with sufficient resolution to simulate many classes of extreme weather cannot normally be run often enough to assess the statistics of rare events, still less how these statistics may be changing. As a result, assessments of the impact of external forcing on regional climate extremes must be based either on statistical downscaling from relatively coarse-resolution models, or statistical extrapolation from 10-year to 100-year events. Under the weatherathome experiment, part of the climateprediction.net initiative, we have compiled the Met Office Regional Climate Model HadRM3P to run on personal computer volunteered by the general public at 25 and 50km resolution, embedded within the HadAM3P global atmosphere model. With a global network of about 50,000 volunteers, this allows us to run time-slice ensembles of essentially unlimited size, exploring the statistics of extreme weather under a range of scenarios for surface forcing and atmospheric composition, allowing for uncertainty in both boundary conditions and model parameters. Current experiments, developed with the support of Microsoft Research, focus on three regions, the Western USA, Europe and Southern Africa. We initially simulate the period 1959-2010 to establish which variables are realistically simulated by the model and on what scales. Our next experiments are focussing on the Event Attribution problem, exploring how the probability of various types of extreme weather would have been different over the recent past in a world unaffected by human influence, following the design of Pall et al (2011), but extended to a longer period and higher spatial resolution. We will present the first results of the unique, global, participatory experiment and discuss the implications for the attribution of recent weather events to anthropogenic influence on climate.

  12. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks

    PubMed Central

    Torres, Mark A.; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F.

    2017-01-01

    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean–atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation–weathering–carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals. PMID:28760954

  13. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  14. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  15. Introducing the Global Fire WEather Database (GFWED)

    NASA Astrophysics Data System (ADS)

    Field, R. D.

    2015-12-01

    The Canadian Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations beginning in 1980 called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded datasets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC=1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously-identified in MERRA's precipitation and reinforce the need to consider alternative sources of precipitation data. GFWED is being used by researchers around the world for analyzing historical relationships between fire weather and fire activity at large scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models. These applications will be discussed. More information on GFWED can be found at http://data.giss.nasa.gov/impacts/gfwed/

  16. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    NASA Astrophysics Data System (ADS)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  17. Notes on a Vision for the Global Space Weather Enterprise

    NASA Astrophysics Data System (ADS)

    Head, James N.

    2015-07-01

    Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.

  18. Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model

    DTIC Science & Technology

    2016-01-14

    distribution is unlimited. TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH A GLOBAL CLOUD RESOLVING MODEL PI: Tim Li IPRC/SOEST, University of Hawaii at...Project Final Report 3. DATES COVERED (From - To) 1 May 2012 - 30 September 2015 4. TITLE AND SUBTITLE TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH...A GLOBAL CLOUD RESOLVING MODEL 5a. CONTRACT NUMBER 5b. GRANT NUMBER N000141210450 5c. PROGRAM ELEMENT NUMBER ONR Marine Meteorology Program 6

  19. Influence of cirrus clouds on weather and climate processes A global perspective

    NASA Technical Reports Server (NTRS)

    Liou, K.-N.

    1986-01-01

    Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.

  20. Global markets and the differential effects of climate and weather on conflict

    NASA Astrophysics Data System (ADS)

    Meng, K. C.; Hsiang, S. M.; Cane, M. A.

    2011-12-01

    Both climate and weather have been attributed historically as possible drivers for violence. Previous empirical studies have either focused on isolating local idiosyncratic weather variation or have conflated weather with spatially coherent climatic changes. This paper provides the first study of the differential impacts of climate and weather variation by employing methods developed in earlier work linking the El Nino Southern Oscillation (ENSO) with the onset of civil conflicts. By separating the effects of climate from local weather, we are able to test possible mechanisms by which atmospheric changes can cause violence. It is generally difficult to separate the effect of year-to-year climate variations from other global events that might drive conflict. We avoid this problem by examining the set of tropical countries that are strongly teleconnected to ENSO. For this region, the ENSO cycle parallels the common year-to-year pattern of violence. Using ENSO, we isolate the influence of climatic changes from other global determinants of violence and compare it with the effect of local weather variations. We find that while climate affects the onset of civil conflicts in teleconnected countries, local weather has no significant effect. Productivity overall as well as across major sectors is more affected by local weather than by climatic variation. This is particularly evident in the agricultural sector where total value and cereal yield decline much greater from a 1°C increase in local temperature than a 1°C increase in ENSO. However, when examining the effect on food prices, we find that ENSO is associated with a large and statistically significant increase in cereal prices but no effect from hotter local temperatures. Altogether, this evidence points toward the ability of global and regional commodity markets to insure against the effects of local weather variation and their limitations in containing losses from aggregate shocks such as El Nino events. We posit

  1. Atmospheric Test Models and Numerical Experiments for the Simulation of the Global Distributions of Weather Data Transponders III. Horizontal Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molenkamp, C.R.; Grossman, A.

    1999-12-20

    A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show thatmore » reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.« less

  2. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  3. GFDL's unified regional-global weather-climate modeling system with variable resolution capability for severe weather predictions and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Lin, S. J.

    2015-12-01

    The NOAA/Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions (e.g., tornado outbreak events and cat-5 hurricanes) and ultra-high-resolution (1-km) regional climate simulations within a consistent global modeling framework. The fundation of this flexible regional-global modeling system is the non-hydrostatic extension of the vertically Lagrangian dynamical core (Lin 2004, Monthly Weather Review) known in the community as FV3 (finite-volume on the cubed-sphere). Because of its flexability and computational efficiency, the FV3 is one of the final candidates of NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched (single) grid capability, a two-way (regional-global) multiple nested grid capability, and the combination of the stretched and two-way nests, so as to make convection-resolving regional climate simulation within a consistent global modeling system feasible using today's High Performance Computing System. One of our main scientific goals is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornadoes using a global model that was originally designed for century long climate simulations. As a unified weather-climate modeling system, we evaluated the performance of the model with horizontal resolution ranging from 1 km to as low as 200 km. In particular, for downscaling studies, we have developed various tests to ensure that the large-scale circulation within the global varaible resolution system is well simulated while at the same time the small-scale can be accurately captured

  4. Applications of the TIROS-N sounding and cloud motion wind enhancement for the FGGE 'special effort'. [Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Atlas, R.

    1980-01-01

    In January of 1978, a panel of experts recommended that a 'special effort' be made to enhance and edit satellite soundings and cloud tracked winds in data sparse regions. It was felt that these activities would be necessary to obtain maximum benefits from an evaluation of satellite data during the Global Weather Experiment (FGGE). The 'special effort' is being conducted for the two special observing periods of FGGE. More than sixty cases have been selected for enhancement on the basis of meteorological interest. These cases include situations of blocking, cutoff low development, cyclogenesis, and tropical circulations. The sounding data enhancement process consists of supplementing the operational satellite sounding data set with higher resolution soundings in meteorologically active regions, and with new soundings where data voids or soundings of questionable quality exist.

  5. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  6. Global Space Weather Observational Network: Challenges and China's Contribution

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  7. Building resilience of the Global Positioning System to space weather

    NASA Astrophysics Data System (ADS)

    Fisher, Genene; Kunches, Joseph

    2011-12-01

    Almost every aspect of the global economy now depends on GPS. Worldwide, nations are working to create a robust Global Navigation Satellite System (GNSS), which will provide global positioning, navigation, and timing (PNT) services for applications such as aviation, electric power distribution, financial exchange, maritime navigation, and emergency management. The U.S. government is examining the vulnerabilities of GPS, and it is well known that space weather events, such as geomagnetic storms, contribute to errors in single-frequency GPS and are a significant factor for differential GPS. The GPS industry has lately begun to recognize that total electron content (TEC) signal delays, ionospheric scintillation, and solar radio bursts can also interfere with daily operations and that these threats grow with the approach of the next solar maximum, expected to occur in 2013. The key challenges raised by these circumstances are, first, to better understand the vulnerability of GPS technologies and services to space weather and, second, to develop policies that will build resilience and mitigate risk.

  8. The Power of Many: Nanosatellites For Cost Effective Global Weather Data

    NASA Astrophysics Data System (ADS)

    Greenberg, A.; Platzer, P.

    2015-12-01

    While weather processing technology through modeling and simulations has continued to advance, the amount of raw data available for analysis has dwindled. Most raw weather data is collected from satellites that are past their intended decommission date, and the likelihood of a catastrophic failure and diminishing reliability increases with each passing day. A United States government report released this year recognized the potential risk that this creates, citing a few alternatives to our aging satellite technology to at least maintain the level of raw weather data we currently have available. This report also highlighted nanosatellites as one of the most promising solutions, due in no small part to their standard form factor, translating into increased launch capabilities and better resiliency with fewer points of failure, rapidly advancing technology and low capital expenditure. Taking advantage of rapid advancements in sensor technology, these nanosatellites are replaced every two years or less and de-orbit quickly. Each new generation carries an improved payload and offers more network-wide resiliency. A constellation of just ten GPS-RO enabled nanosatellites taking measurements from every point on Earth, coupled with a globally distributed network of ground stations, can provide five times more radio occultation data than the combined efforts of current weather satellites. By the end of this year, Spire Global, Inc. will launch the world's first network of commercial weather satellites using GPS-RO for raw data collection.

  9. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  10. Global Weather Prediction and High-End Computing at NASA

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert; Yeh, Kao-San

    2003-01-01

    We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.

  11. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  12. Assessing the Role of Seafloor Weathering in Global Geochemical Cycling

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2015-12-01

    Low-temperature alteration of the basaltic upper oceanic crust, known as seafloor weathering, has been proposed as a mechanism for long-term climate regulation similar to the continental climate-weathering negative feedback. Despite this potentially far-reaching impact of seafloor weathering on habitable planet evolution, existing modeling frameworks do not include the full scope of alteration reactions or recent findings of convective flow dynamics. We present a coupled fluid dynamic and geochemical numerical model of low-temperature, off-axis hydrothermal activity. This model is designed to explore the the seafloor weathering flux of carbon to the oceanic crust and its responsiveness to climate fluctuations. The model's ability to reproduce the seafloor weathering environment is evaluated by constructing numerical simulations for comparison with two low-temperature hydrothermal systems: A transect east of the Juan de Fuca Ridge and the southern Costa Rica Rift flank. We explore the sensitivity of carbon uptake by seafloor weathering on climate and geology by varying deep ocean temperature, seawater dissolved inorganic carbon, continental weathering inputs, and basaltic host rock in a suite of numerical experiments.

  13. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  14. Influence of extreme weather disasters on global crop production.

    PubMed

    Lesk, Corey; Rowhani, Pedram; Ramankutty, Navin

    2016-01-07

    In recent years, several extreme weather disasters have partially or completely damaged regional crop production. While detailed regional accounts of the effects of extreme weather disasters exist, the global scale effects of droughts, floods and extreme temperature on crop production are yet to be quantified. Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%, whereas our analysis could not identify an effect from floods and extreme cold in the national data. Analysing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields. Furthermore, the results highlight ~7% greater production damage from more recent droughts and 8-11% more damage in developed countries than in developing ones. Our findings may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts.

  15. Mesoscale weather and climate modeling with the global non-hydrostatic Goddard Earth Observing System Model (GEOS-5) at cloud-permitting resolutions

    NASA Astrophysics Data System (ADS)

    Putman, W. M.; Suarez, M.

    2009-12-01

    The Goddard Earth Observing System Model (GEOS-5), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-5 from it's standard 72-level 27-km resolution (~5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (~3.6 billion cells). We will present results from a series of forecast experiments exploring the impact of the non-hydrostatic dynamics at transition resolutions of 14- to 7-km, and the influence of increased horizontal/vertical resolution on convection and physical parameterizations within GEOS-5. Regional and mesoscale features of 5- to 10-day weather forecasts will be presented and compared with satellite observations. Our results will highlight the impact of resolution on the structure of cloud features including tropical convection and tropical cyclone predicability, cloud streets, von Karman vortices, and the marine stratocumulus cloud layer. We will also present experiment design and early results from climate impact experiments for global non-hydrostatic models using GEOS-5. Our climate experiments will focus on support for the Year of Tropical Convection (YOTC). We will also discuss a seasonal climate time-slice experiment design for downscaling coarse resolution century scale climate simulations to global non-hydrostatic resolutions of 14- to 7-km with GEOS-5.

  16. Defining the `negative emission' capacity of global agriculture deployed for enhanced rock weathering

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Lomas, M.; Mueller, C.; Ridgwell, A.; Quegan, S.

    2016-12-01

    Enhanced rock weathering involves application of crushed silicates (e.g. basalt) to the landscape to accelerate their chemical breakdown to release base cations and form bicarbonate that ultimate sequester CO2 in the oceans. Global croplands cover an area of 12 million km2 and might be deployed for long-term removal of anthropogenic CO2 through enhanced rock weathering with a number of co-benefits for food security. This presentation assesses the potential of this strategy to contribute to `negative emissions' as defined by a suite of simulations coupling a detailed model of rock grain weathering by crop root-microbial processes with a managed land dynamic global vegetation model driven by the `business as usual' future climate change scenarios. We calculate potential atmospheric CO2 drawdown over the next century by introducing a strengthened C-sink term into the global carbon cycle model within an intermediate complexity Earth system model. Our simulations indicate agricultural lands deployed in this way constitute a `low tech' biological negative emissions strategy. As part of a wider portfolio of options, this strategy might contribute to limiting future warming to 2oC, subject to economic costs and energy requirements.

  17. Impact of derived global weather data on simulated crop yields

    PubMed Central

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-01-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26–72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12–19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. PMID:23801639

  18. Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1992-05-01

    Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.

  19. Towards a Global Hub and a Network for Collaborative Advancing of Space Weather Predictive Capabilities.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.

    2017-12-01

    The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.

  20. Global disparity in the supply of commercial weather and climate information services

    PubMed Central

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn

    2017-01-01

    Information about weather and climate is vital for many areas of decision-making, particularly under conditions of increasing vulnerability and uncertainty related to climate change. We have quantified the global commercial supply of weather and climate information services. Although government data are sometimes freely available, the interpretation and analysis of those data, alongside additional data collection, are required to formulate responses to specific challenges in areas such as health, agriculture, and the built environment. Using transactional data, we analyzed annual spending by private and public organizations on commercial weather and climate information in more than 180 countries by industrial sector, region, per capita, and percentage of GDP (gross domestic product) and against the country’s climate and extreme weather risk. There are major imbalances regarding access to these essential services between different countries based on region and development status. There is also no relationship between the level of climate and weather risks that a country faces and the level of per capita spending on commercial weather and climate information in that country. At the international level, action is being taken to improve access to information services. With a better understanding of the flows of commercial weather and climate information, as explored in this study, it will be possible to tackle these regional and development-related disparities and thus to increase resilience to climate and weather risks. PMID:28560335

  1. Global warming and ocean acidification through halted weathering feedback during the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.

    2016-12-01

    The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.

  2. First report on Cretaceous paleoweathering rates in western Panthalassa: Evidence of global enhancement of continental weathering during OAE 2

    NASA Astrophysics Data System (ADS)

    Ohta, T.

    2013-12-01

    Mid-Cretaceous is characterized by intensified oceanic anoxia (Oceanic Anoxic Events: OAEs) that raised global deposition of organic black shales. Several models have been proposed to explain the cause of the OAEs in conjunction with Cretaceous global warmth, active volcanism, sea-level changes and others. For example, Weissert et al. (1998) proposed a mechanism called 'weathering hypothesis'. In this model, the cause of the OAEs is explained in a following chain reaction, (1) global warmth and increase in atmospheric CO2 enhanced weathering of continental crust, (2) enhanced land weathering led excessive influx of nutrients from continents to oceans, (3) eutrophication enhanced primary productivity, (4) the excessive primary producers consumed dissolved oceanic oxygen that finally led to the OAEs. Several studies, in fact, revealed a causal relation between enhanced weathering and OAEs in northern Tethys region. However, it is necessary to collect worldwide information to unravel the global response of weathering hypothesis as a cause of OAEs. For such reason, the present contribution conducted measurements of the degree of hinterland paleoweathering during OAEs in northern Japan, for the purpose to provide a first report on the relation between continental weathering and OAEs in open ocean, the western Panthalassa Ocean. Aptian to Campanian forearc basin mudstones (Yezo Group) were analyzed by XRF and the degree of hinterland weathering was evaluated by geochemical weathering index (W index; Ohta and Arai, 2007). The W values obtained for the Yezo Group are 30~50, which is equivalent to the W values of recent soils developed in temperate mid-latitude climate. The W values show a fluctuation pattern that is concordant with the Cretaceous paleotemperature changes. This match indicates that the change in paleotemperature governed the weathering rates of East Asian continental crust. In addition, hinterland weathering rates show instantaneous increase during the OAE

  3. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  4. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    NASA Astrophysics Data System (ADS)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a

  5. Impact of derived global weather data on simulated crop yields.

    PubMed

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-12-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26-72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12-19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. © 2013 John Wiley & Sons Ltd.

  6. ISES Experience in Delivering Space Weather Services

    NASA Astrophysics Data System (ADS)

    Boteler, David

    The International Space Environment Service has over eighty years experience in providing space weather services to meet a wide variety of user needs. This started with broadcast on December 1, 2008 from the Eiffel Tower about radio conditions. The delivery of information about ionospheric effects on high frequency (HF) radio propagation continue to be a major concern in many parts of the world. The movement into space brought requirements for a new set of space weather services, ranging from radiation dangers to man in space, damage to satellites and effects on satellite communication and navigation systems. On the ground magnetic survey, power system and pipeline operators require information about magnetic disturbances that can affect their operations. In the past these services have been delivered by individual Regional Warning Centres. However, the needs of new trans-national users are stimulating the development of new collaborative international space weather services.

  7. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the

  8. Global meteorological data facility for real-time field experiments support and guidance

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Shipley, Scott T.; Trepte, Charles R.

    1988-01-01

    A Global Meteorological Data Facility (GMDF) has been constructed to provide economical real-time meteorological support to atmospheric field experiments. After collection and analysis of meteorological data sets at a central station, tailored meteorological products are transmitted to experiment field sites using conventional ground link or satellite communication techniques. The GMDF supported the Global Tropospheric Experiment Amazon Boundary Layer Experiment (GTE-ABLE II) based in Manaus, Brazil, during July and August 1985; an arctic airborne lidar survey mission for the Polar Stratospheric Clouds (PSC) experiment during January 1986; and the Genesis of Atlantic Lows Experiment (GALE) during January, February and March 1986. GMDF structure is similar to the UNIDATA concept, including meteorological data from the Zephyr Weather Transmission Service, a mode AAA GOES downlink, and dedicated processors for image manipulation, transmission and display. The GMDF improved field experiment operations in general, with the greatest benefits arising from the ability to communicate with field personnel in real time.

  9. Impact of Ozone Radiative Feedbacks on Global Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Ivanova, I.; de Grandpré, J.; Rochon, Y. J.; Sitwell, M.

    2017-12-01

    A coupled Chemical Data Assimilation system for ozone is being developed at Environment and Climate Change Canada (ECCC) with the goals to improve the forecasting of UV index and the forecasting of air quality with the Global Environmental Multi-scale (GEM) Model for Air quality and Chemistry (MACH). Furthermore, this system provides an opportunity to evaluate the benefit of ozone assimilation for improving weather forecasting with the ECCC Global Deterministic Prediction System (GDPS) for Numerical Weather Prediction (NWP). The present UV index forecasting system uses a statistical approach for evaluating the impact of ozone in clear-sky and cloudy conditions, and the use of real-time ozone analysis and ozone forecasts is highly desirable. Improving air quality forecasting with GEM-MACH further necessitates the development of integrated dynamical-chemical assimilation system. Upon its completion, real-time ozone analysis and ozone forecasts will also be available for piloting the regional air quality system, and for the computation of ozone heating rates, in replacement of the monthly mean ozone distribution currently used in the GDPS. Experiments with ozone radiative feedbacks were run with the GDPS at 25km resolution and 84 levels with a lid at 0.1 hPa and were initialized with ozone analysis that has assimilated total ozone column from OMI, OMPS, and GOME satellite instruments. The results show that the use of prognostic ozone for the computation of the heating/cooling rates has a significant impact on the temperature distribution throughout the stratosphere and upper troposphere regions. The impact of ozone assimilation is especially significant in the tropopause region, where ozone heating in the infrared wavelengths is important and ozone lifetime is relatively long. The implementation of the ozone radiative feedback in the GDPS requires addressing various issues related to model biases (temperature and humidity) and biases in equilibrium state (ozone mixing

  10. How severe space weather can disrupt global supply chains

    NASA Astrophysics Data System (ADS)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-10-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space-weather event. Using a new high-resolution model of the global economy, we simulate the economic impact of strong CMEs for three different planetary orientations. We account for the economic impacts within the countries directly affected, as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event, the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock, about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global Gross Domestic Product (GDP) of 3.9 to 5.6%. The global economic damage is of the same order as wars, extreme financial crisis and estimated for future climate change.

  11. How severe Space Weather can disrupt global supply chains

    NASA Astrophysics Data System (ADS)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-06-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space weather event. Using a new high-resolution model of the global economy we simulate the economic impact of strong CMEs for 3 different planetary orientations. We account for the economic impacts within the countries directly affected as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global GDP of 3.9 to 5.6%. The global economic damages are of the same order as wars, extreme financial crisis and estimated for future climate change.

  12. The contribution of weathering of the main Alpine rivers on the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Donnini, Marco; Probst, Jean-Luc; Probst, Anne; Frondini, Francesco; Marchesini, Ivan; Guzzetti, Fausto

    2013-04-01

    classification of Meybeck (1986, 1987). Then for each basin we computed Rsil weighted average considering the surface and the mean precipitation for the surface area of each lithology. Lastly, we estimated the (Ca+Mg) originating from carbonate weathering as the remaining cations after silicate correction. Depending on time-scales of the phenomena (shorter than about 1 million year i.e., correlated to the short term carbon cycle, or longer than about 1 million years i.e., correlated to the long-term carbon cycle), we considered different equations for the quantification of the atmospheric CO2 consumed by weathering (Huh, 2010). The results show the net predominance of carbonate weathering on fixing atmospheric CO2 and that, considering the long-term carbon cycle, the amount of atmospheric CO2 uptake by weathering is about one order of magnitude lower than considering the short-term carbon cycle. Moreover, considering the short-term carbon cycle, the mean CO2 consumed by Alpine basins is of the same order of magnitude of the mean CO2 consumed by weathering by the 60 largest rivers of the world estimated by Gaillardet et al. (1999). References Amiotte-Suchet, P. "Cycle Du Carbone, Érosion Chimique Des Continents Et Transfert Vers Les Océans." Sci. Géol. Mém. Strasbourg 97 (1995): 156. Amiotte-Suchet, P., and J.-L. Probst. "Origins of dissolved inorganic carbon in the Garonne river waters: seasonal and interannual variations." Sci. Géologiques Bull. Strasbourg 49, no. 1-4 (1996): 101-126. Berner, E.K., and R.A. Berner. The Global Water Cycle. Geochemistry and Environment. Prentice Halle. Engelwood Cliffs, NJ, 1987. Drever, J.L. The Geochemistry of Natural Waters. Prentice Hall, 1982. Gaillardet, J., B. Dupré, P. Louvat, and C.J. Allègre. "Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers." Chemical Geology 159 (1999): 3-30. Garrels, R.M., and F.T. Mackenzie. Evolution of Sedimentary Rocks. New York: W.W. Nortonand, 1971. Huh, Y

  13. Global Weather States and Their Properties from Passive and Active Satellite Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William; Zhang, Yuanchong; Konsta, Dimitra

    2013-01-01

    In this study, the authors apply a clustering algorithm to International Satellite Cloud Climatology Project (ISCCP) cloud optical thickness-cloud top pressure histograms in order to derive weather states (WSs) for the global domain. The cloud property distribution within each WS is examined and the geographical variability of each WS is mapped. Once the global WSs are derived, a combination of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cloud structure retrievals is used to derive the vertical distribution of the cloud field within each WS. Finally, the dynamic environment and the radiative signature of the WSs are derived and their variability is examined. The cluster analysis produces a comprehensive description of global atmospheric conditions through the derivation of 11 WSs, each representing a distinct cloud structure characterized by the horizontal distribution of cloud optical depth and cloud top pressure. Matching those distinct WSs with cloud vertical profiles derived from CloudSat and CALIPSO retrievals shows that the ISCCP WSs exhibit unique distributions of vertical layering that correspond well to the horizontal structure of cloud properties. Matching the derived WSs with vertical velocity measurements shows a normal progression in dynamic regime when moving from the most convective to the least convective WS. Time trend analysis of the WSs shows a sharp increase of the fair-weather WS in the 1990s and a flattening of that increase in the 2000s. The fact that the fair-weather WS is the one with the lowest cloud radiative cooling capability implies that this behavior has contributed excess radiative warming to the global radiative budget during the 1990s.

  14. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    DOE R&D Accomplishments Database

    Teller, E.; Leith, C.; Canavan, G.; Wood, L.

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather

  15. Constellation of CubeSats for Realtime Ionospheric E-field Measurements for Global Space Weather

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Swenson, C.; Pilinski, M.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Azeem, I.; Barjatya, A.

    2014-12-01

    Inexpensive and robust space-weather monitoring instruments are needed to fill upcoming gaps in the Nation's ability to meet requirements for space weather specification and forecasting. Foremost among the needed data are electric fields, since they drive global ionospheric and thermospheric behavior, and because there are relatively few ground-based measurements. We envisage a constellation of CubeSats to provide global coverage of the electric field and its variability. The DICE (Dynamic Ionosphere CubeSat Experiment) mission was a step towards this goal, with two identical 1.5U CubeSats, each carrying three space weather instruments: (1) double probe instruments to measure AC and DC electric fields; (2) Langmuir probes to measure ionospheric electron density, and; (3) a magnetometer to measure field-aligned currents. DICE launched in October 2011. DICE was the first CubeSat mission to observe a Storm Enhanced Density event, fulfilling a major goal of the mission. Due to attitude control anomalies encountered in orbit, the DICE electric field booms have not yet been deployed. Important lessons have been learned for the implementation of a spin-stabilized CubeSat, and the design and performance of the Attitude Determination & Control System (ADCS). These lessons are now being applied to the DIME SensorSat, a risk-reduction mission that is capable of deploying flexible electric field booms up to a distance of 10-m tip-to-tip from a 1.5U CubeSat. DIME will measure AC and DC electric fields, and will exceed several IORD-2 threshold requirements. Ion densities, and magnetic fields will also be measured to characterize the performance of the sensor in different plasma environments. We show the utility of a constellation of electric field measurements, describe the DIME SensorSat, and demonstrate how the measurement will meet or exceed IORD requirements. The reduced cost of these sensors will enable constellations that can, for the first time, adequately resolve the

  16. Analyzing Personal Happiness from Global Survey and Weather Data: A Geospatial Approach

    PubMed Central

    Peng, Yi-Fan; Tang, Jia-Hong; Fu, Yang-chih; Fan, I-chun; Hor, Maw-Kae; Chan, Ta-Chien

    2016-01-01

    Past studies have shown that personal subjective happiness is associated with various macro- and micro-level background factors, including environmental conditions, such as weather and the economic situation, and personal health behaviors, such as smoking and exercise. We contribute to this literature of happiness studies by using a geospatial approach to examine both macro and micro links to personal happiness. Our geospatial approach incorporates two major global datasets: representative national survey data from the International Social Survey Program (ISSP) and corresponding world weather data from the National Oceanic and Atmospheric Administration (NOAA). After processing and filtering 55,081 records of ISSP 2011 survey data from 32 countries, we extracted 5,420 records from China and 25,441 records from 28 other countries. Sensitivity analyses of different intervals for average weather variables showed that macro-level conditions, including temperature, wind speed, elevation, and GDP, are positively correlated with happiness. To distinguish the effects of weather conditions on happiness in different seasons, we also adopted climate zone and seasonal variables. The micro-level analysis indicated that better health status and eating more vegetables or fruits are highly associated with happiness. Never engaging in physical activity appears to make people less happy. The findings suggest that weather conditions, economic situations, and personal health behaviors are all correlated with levels of happiness. PMID:27078263

  17. Analyzing Personal Happiness from Global Survey and Weather Data: A Geospatial Approach.

    PubMed

    Peng, Yi-Fan; Tang, Jia-Hong; Fu, Yang-chih; Fan, I-chun; Hor, Maw-Kae; Chan, Ta-Chien

    2016-01-01

    Past studies have shown that personal subjective happiness is associated with various macro- and micro-level background factors, including environmental conditions, such as weather and the economic situation, and personal health behaviors, such as smoking and exercise. We contribute to this literature of happiness studies by using a geospatial approach to examine both macro and micro links to personal happiness. Our geospatial approach incorporates two major global datasets: representative national survey data from the International Social Survey Program (ISSP) and corresponding world weather data from the National Oceanic and Atmospheric Administration (NOAA). After processing and filtering 55,081 records of ISSP 2011 survey data from 32 countries, we extracted 5,420 records from China and 25,441 records from 28 other countries. Sensitivity analyses of different intervals for average weather variables showed that macro-level conditions, including temperature, wind speed, elevation, and GDP, are positively correlated with happiness. To distinguish the effects of weather conditions on happiness in different seasons, we also adopted climate zone and seasonal variables. The micro-level analysis indicated that better health status and eating more vegetables or fruits are highly associated with happiness. Never engaging in physical activity appears to make people less happy. The findings suggest that weather conditions, economic situations, and personal health behaviors are all correlated with levels of happiness.

  18. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach.

    PubMed

    Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J

    2012-02-19

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models.

  19. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    PubMed Central

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  20. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teller, E; Leith, C; Canavan, G

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather

  1. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    NASA Astrophysics Data System (ADS)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2017-04-01

    Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies

  2. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  3. Impact of different fertilizers on carbonate weathering in a typical karst area, Southwest China: a field column experiment

    NASA Astrophysics Data System (ADS)

    Song, Chao; Liu, Changli; Han, Guilin; Liu, Congqiang

    2017-09-01

    Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, is strongly influenced by agricultural fertilization, since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH. Different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as yet not well-known. In this study, a field column experiment was conducted to explore the response of carbonate weathering to the addition of different fertilizers. We compared 11 different treatments, including a control treatment, using three replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of soil-filled columns. The results show that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased carbonate weathering, which was attributed to the nitrification of NH4+. The addition of Ca3(PO4)2, Ca-Mg-P and K2CO3 induced carbonate precipitation due to the common ion effect. The addition of (NH4)3PO4 and NaNO3 had a relatively small impact on carbonate weathering in comparison to those five NH4-based fertilizers above. The results of NaNO3 treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in an overestimation of the impact of N fertilizer on CO2 consumption by carbonate weathering on the regional/global scale if the effects of NO3 and NH4 are not distinguished.

  4. The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations

    PubMed Central

    2016-01-01

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading’s Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550767

  5. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  6. The Impact of Different Complexity on Numerical Weather Predictions within the Coupled Global Online Modeling System

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Grell, G. A.; McKeen, S. A.; Ahmadov, R.

    2017-12-01

    The global Flow-following finite-volume Icosahedra Model (FIM), which was developed in the Global Systems Division of NOAA/ESRL and the Finite-volume cubed-sphere dynamical core (FV3) developed by GFDL, have been coupled online with aerosol and gas-phase chemistry schemes (FIM-Chem and FV3-Chem). Within the aerosol and chemistry modules, the models handle wet and dry deposition, chemical reactions, aerosol direct and semi-direct effect, anthropogenic emissions, biogenic emissions, biomass burning, dust and sea-salt emissions. They are able to provide chemical weather predictions at various spatial resolutions and with different levels of complexity. FIM-Chem is also able to quantify the impact of aerosol on numerical weather predictions (NWP). Currently, three different chemical schemes have been coupled with the FIM model. The simplest aerosol modules are from the GOCART model with its simplified parameterization of sulfur/sulfate chemistry. The photochemical gas-phase mechanism RACM was included to determine the impact of additional complexity on the aerosol and gas simulations. We have also implemented a more sophisticated aerosol scheme that includes secondary organic aerosols (SOA) based on the VBS approach. The model performance has been evaluated by comparing with the ATom-1 observations. FIM-Chem is able to reproduce many observed aerosol and gas features very well. A five-day NWP on 120 km horizontal resolution using FIM-Chem has been done for the end of July, 2016 to quantify the impact of the three different chemical schemes on weather forecasts. Compared to a meteorological run that excludes the model chemical schemes, and is driven only by background AODs from the GFS model, the 5-day forecast results shows significant impact on weather predictions when including the prognostic aerosol schemes. This includes convective precipitation, surface temperature, and 700 hPa air temperature. We also use FIM-Chem to investigate the 2012 South American Biomass

  7. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  8. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    NASA Astrophysics Data System (ADS)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  9. Global perspectives on oxidative weathering of organic carbon in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; Hilton, R. G.; West, A. J.; Horan, K.; Gaillardet, J.

    2016-12-01

    Over geological timescales, the oxidation of organic carbon in sedimentary rocks is major source of carbon dioxide (CO2) to the atmosphere. The global magnitude of this flux remains poorly constrained, but it is likely to be between 40-100 x 1012 g C yr-1, similar to the CO2 emissions from volcanism. The rates of CO2 emission ultimately set the rate of silicate weathering by carbonic acid and new organic carbon burial, which act together to stabilise the climate system. To constrain how the geological carbon cycle operates and modifies Earth's climate over millions of years, we must better understand the controls on the oxidation of sedimentary rock-derived organic carbon (`petrogenic' OC, OCpetro). Here we examine new and published constraints on OCpetro oxidation flux, which come from indirect measurements (e.g. trace element proxies such as rhenium) and direct measurements (e.g. CO2 trapping and 14C). Existing datasets track the gaseous and dissolved products of weathering as well as the solid residues over a range of spatial scales, from soil profiles to large river catchments. Although the datasets are still sparse, they indicate that physical denudation plays a major role in setting OCpetro oxidation flux. These measurements are interrogated in the framework of a catchment-scale numerical model of OCpetro oxidation. By harnessing approaches developed to examine and quantify acid-hydrolysis reactions (i.e. silicate mineral weathering by carbonic acid) the model considers realistic geochemical processes and the links between erosion and weathering. Key parameters emerge, such as the `weathering thickness' which describes a depth to which oxidative waters penetrate. The reaction kinetics of OCpetro remain poorly constrained, but nevertheless, the model predicts that the kinetic limitation of OCpetro oxidation is not reached until physical erosion rates exceed 2 mm yr-1, which is much higher than for CO2 consumption by silicate weathering. These findings mirror

  10. Global Cooperation in the Science of Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Space Weather Initiative (ISWI). The ISWI program is a continuation of the successful International Heliophysical Year (IHY) program. These programs have brought scientists together to tackle the scientific issues behind space weather. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and ISWI activities that promote space weather science via complementary approaches in international scientific collaborations. capacity building. and public outreach.

  11. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason

    2014-01-01

    NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The

  12. weather@home 2: validation of an improved global-regional climate modelling system

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.

    2017-05-01

    Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.

  13. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  14. Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?

    NASA Astrophysics Data System (ADS)

    Maffre, Pierre; Ladant, Jean-Baptiste; Moquet, Jean-Sébastien; Carretier, Sébastien; Labat, David; Goddéris, Yves

    2018-07-01

    The role of mountains in the geological evolution of the carbon cycle has been intensively debated for the last decades. Mountains are thought to increase the local physical erosion, which in turns promotes silicate weathering, organic carbon transport and burial, and release of sulfuric acid by dissolution of sulfides. In this contribution, we explore the impact of mountain ranges on silicate weathering. Mountains modify the global pattern of atmospheric circulation as well as the local erosion conditions. Using an IPCC-class climate model, we first estimate the climatic impact of mountains by comparing the present day climate with the climate when all the continents are assumed to be flat. We then use these climate output to calculate weathering changes when mountains are present or absent, using standard expression for physical erosion and a 1D vertical model for rock weathering. We found that large-scale climate changes and enhanced rock supply by erosion due to mountain uplift have opposite effect, with similar orders of magnitude. A thorough testing of the weathering model parameters by data-model comparison shows that best-fit parameterizations lead to a decrease of weathering rate in the absence of mountain by about 20%. However, we demonstrate that solutions predicting an increase in weathering in the absence of mountain cannot be excluded. A clear discrimination between the solutions predicting an increase or a decrease in global weathering is pending on the improvement of the existing global databases for silicate weathering. Nevertheless, imposing a constant and homogeneous erosion rate for models without relief, we found that weathering decrease becomes unequivocal for very low erosion rates (below 10 t/km2/yr). We conclude that further monitoring of continental silicate weathering should be performed with a spatial distribution allowing to discriminate between the various continental landscapes (mountains, plains …).

  15. Association of global weather changes with acute coronary syndromes: gaining insights from clinical trials data

    NASA Astrophysics Data System (ADS)

    Bakal, Jeffrey A.; Ezekowitz, Justin A.; Westerhout, Cynthia M.; Boersma, Eric; Armstrong, Paul W.

    2013-05-01

    The aim of this study was to develop a method for the identification of global weather parameters and patient characteristics associated with a type of heart attack in which there is a sudden partial blockage of a coronary artery. This type of heart attack does not demonstrate an elevation of the ST segment on an electrocardiogram and is defined as a non-ST elevation acute coronary syndrome (NSTE-ACS). Data from the Global Summary of the Day database was linked with the enrollment and baseline data for a phase III international clinical trial in NSTE-ACS in four 48-h time periods covering the week prior to the clinical event that prompted enrollment in the study. Meteorological events were determined by standardizing the weather data from enrollment dates against an empirical distribution from the month prior. These meteorological events were then linked to the patients' geographic region, demographics and comorbidities to identify potential susceptible populations. After standardization, changes in temperature and humidity demonstrated an association with the enrollment event. Additionally there appeared to be an association with gender, region and a history of stroke. This methodology may provide a useful global insight into assessing the biometeorologic component of diseases from international data.

  16. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    NASA Astrophysics Data System (ADS)

    White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-04-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt.%), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2-3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction

  17. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    USGS Publications Warehouse

    White, Arthur F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-01-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds—Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico—were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt. %), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2 to 3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages.Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of

  18. Analysis on weathering characteristics of volcanic rocks in Dokdo, Korea based on accelerated weatehring experiments

    NASA Astrophysics Data System (ADS)

    Woo, Ik; Song, Won-Kyong; Kim, Bok-Chul; Kang, Jinseok

    2010-05-01

    Dokdo consists of small volcanic islands located in the southern part of the East Sea. Accelerated weathering tests was performed to examine the physico-mechanical characteristics of volcanic rocks in Dokdo. Rock core specimens of trachyandesite, andesitic dyke and ash tuff were prepared, and double soxhlet extractors(DSE) and peristatic pumps were used for accelerating the weathering processes. The DSE was designed to perform cyclic leaching tests for rock core specimen using distilled water at seventy degrees centigrade. The core specimens which are classified according to pre-test weathering grades placed in the lower part of the DSE, and periodically exposed to hot distilled water at every ninety minutes. On the other hand the peristatic pumps were utilized to induce leaching by distilled or brine water at normal temperature. The physico-mechanical property changes including rock surface appearance, microscopic structure and rock strength were analyzed with the results obtained from both experiments performed for 120 days. The conducted research in this study have shown that the methodologies of artificial weathering experiments have strong capability to understand the weathering characteristics of the rocks effectively.

  19. Phased Array Radar Network Experiment for Severe Weather

    NASA Astrophysics Data System (ADS)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.

    2017-12-01

    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  20. Social Experiments in Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities(TOMACS)

    NASA Astrophysics Data System (ADS)

    Tsuyoshi, Nakatani; Nakamura, Isao; MIsumi, Ryohei; Shoji, Yoshinori

    2015-04-01

    Introduction TOMACS research project has been started since 2010 July in order to develop the elementary technologies which are required for the adaptation of societies to future global warming impacts that cannot be avoided by the reduction of greenhouse gases. In collaboration with related government institutions, local governments, private companies, and residents, more than 25 organizations and over 100 people are participated. TOMACS consists of the following three research themes: Theme 1: Studies on extreme weather with dense meteorological observations Theme 2: Development of the extreme weather early detection and prediction system Theme 3: Social experiments on extreme weather resilient cities Theme 1 aims to understand the initiation, development, and dissipation processes of convective precipitation in order to clarify the mechanism of localized heavy rainfall which are potential causes of flooding and landslides. Theme 2 aims to establish the monitoring and prediction system of extreme phenomena which can process real-time data from dense meteorological observation networks, advanced X-band radar network systems and predict localized heavy rainfalls and strong winds. Through social experiments, theme 3 aims to establish a method to use information obtained by the monitoring system of extreme phenomena to disaster prevention operations in order to prevent disasters and reduce damage. Social Experiments Toyo University is the core university for the social experiments accomplishment. And following organizations are participating in this research theme: NIED, the Tokyo Metropolitan Research Institute for Environmental Protection (TMRIEP), University of Tokyo, Tokyo Fire Department (TFD), Edogawa Ward in Tokyo, Yokohama City, Fujisawa City and Minamiashigara City in Kanagawa, East Japan Railway Company, Central Japan Railway Company, Obayashi Corporation, and Certified and Accredited Meteorologists of Japan(CAMJ). The social experiments have carried out

  1. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  2. Counterintuitive roles of experience and weather on migratory performance

    USGS Publications Warehouse

    Rus, Adrian I.; Duerr, Adam E.; Miller, Tricia A.; Belthoff, James R.; Katzner, Todd E.

    2017-01-01

    Migration allows animals to live in resource-rich but seasonally variable environments. Because of the costs of migration, there is selective pressure to capitalize on variation in weather to optimize migratory performance. To test the degree to which migratory performance (defined as speed of migration) of Golden Eagles (Aquila chrysaetos) was determined by age- and season-specific responses to variation in weather, we analyzed 1,863 daily tracks (n = 83 migrant eagles) and 8,047 hourly tracks (n = 83) based on 15 min GPS telemetry data from Golden Eagles and 277 hourly tracks based on 30 s data (n = 37). Spring migrant eagles traveled 139.75 ± 82.19 km day−1 (mean ± SE; n = 57) and 25.59 ± 11.75 km hr−1 (n = 55). Autumn migrant eagles traveled 99.14 ± 59.98 km day−1 (n = 26) and 22.18 ± 9.18 km hr−1 (n = 28). Weather during migration varied by season and by age class. During spring, best-supported daily and hourly models of 15 min data suggested that migratory performance was influenced most strongly by downward solar radiation and that older birds benefited less from flow assistance (tailwinds). During autumn, best-supported daily and hourly models of 15 min data suggested that migratory performance was influenced most strongly by south–north winds and by flow assistance, again less strongly for older birds. In contrast, models for hourly performance based on data collected at 30 s intervals were not well described by a single model, likely reflecting eagles' rapid responses to the many weather conditions they experienced. Although daily speed of travel was similar for all age classes, younger birds traveled at faster hourly speeds than did adults. Our analyses uncovered strong, sometimes counterintuitive, relationships among weather, experience, and migratory flight, and they illustrate the significance of factors other than age in determining migratory performance.

  3. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  4. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  5. A Prototype Nonhydrostatic Regional-to-Global Nested-Grid Atmosphere Model for Medium-range Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Harris, L.; Lin, S. J.; Zhou, L.; Chen, J. H.; Benson, R.; Rees, S.

    2016-12-01

    Limited-area convection-permitting models have proven useful for short-range NWP, but are unable to interact with the larger scales needed for longer lead-time skill. A new global forecast model, fvGFS, has been designed combining a modern nonhydrostatic dynamical core, the GFDL Finite-Volume Cubed-Sphere dynamical core (FV3) with operational GFS physics and initial conditions, and has been shown to provide excellent global skill while improving representation of small-scale phenomena. The nested-grid capability of FV3 allows us to build a regional-to-global variable-resolution model to efficiently refine to 3-km grid spacing over the Continental US. The use of two-way grid nesting allows us to reach these resolutions very efficiently, with the operational requirement easily attainable on current supercomputing systems.Even without a boundary-layer or advanced microphysical scheme appropriate for convection-perrmitting resolutions, the effectiveness of fvGFS can be demonstrated for a variety of weather events. We demonstrate successful proof-of-concept simulations of a variety of phenomena. We show the capability to develop intense hurricanes with realistic fine-scale eyewalls and rainbands. The new model also produces skillful predictions of severe weather outbreaks and of organized mesoscale convective systems. Fine-scale orographic and boundary-layer phenomena are also simulated with excellent fidelity by fvGFS. Further expected improvements are discussed, including the introduction of more sophisticated microphysics and of scale-aware convection schemes.

  6. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  7. Space Solar Patrol data and changes in weather and climate, including global warming

    NASA Astrophysics Data System (ADS)

    Avakyan, S. V.; Baranova, L. A.; Leonov, N. B.; Savinov, E. P.; Voronin, N. A.

    2010-08-01

    In this paper, the results obtained during the execution of several ISTC projects are presented. The general aim of these projects has been the study of global changes in the environment, connected with solar activity. A brief description of the optical apparatus of the Space Solar Patrol (SSP) developed and built in the framework of the ISTC projects 385, 385.2, 1523 and 2500 is given. The SSP is intended for permanent monitoring of spectra and absolute fluxes of soft x-ray and extreme ultraviolet (x-ray/EUV) radiation from the full disk of the Sun which ionizes the upper atmosphere of the Earth. Permanent solar monitoring in the main part of the ionizing radiation spectra 0.8-115 (119) nm does not exist. The apparatus of the SSP was developed in the years 1996-2005 with multiyear experience of developing such apparatus in S I Vavilov State Optical Institute. The basis of this apparatus is the use of unique detectors of ionizing radiation—open secondary electron multipliers, which are 'solar blind' to near UV, visible and IR radiation from the Sun, and new methodology of these solar spectroradiometric absolute measurements. The prospects are discussed of using the SSP data for the investigation and forecast of the influence of solar variability on the weather and climate including global warming and also on the biosphere including human beings (proposal 3878). This article was originally submitted for inclusion with the papers from the 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009), published in the May 2010 issue.

  8. Mars Weather Map, 2008

    NASA Image and Video Library

    2012-08-04

    This global map of Mars was acquired on Oct. 28, 2008, by the Mars Color Imager instrument on NASA MRO. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.

  9. Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution

    NASA Technical Reports Server (NTRS)

    Knipp, Delores J.; Giles, Barbara L.

    2016-01-01

    The Global Positioning System (GPS) has revolutionized the process of getting from point A to point Band so much more. A large fraction of the worlds population relies on GPS (and its counterparts from other nations) for precision timing, location, and navigation. Most GPS users are unaware that the spacecraft providing the signals they rely on are operating in a very harsh space environment the radiation belts where energetic particles trapped in Earths magnetic field dash about at nearly the speed of light. These subatomic particles relentlessly pummel GPS satellites. So by design, every GPS satellite and its sensors are radiation hardened. Each spacecraft carries particle detectors that provide health and status data to system operators. Although these data reveal much about the state of the space radiation environment, heretofore they have been available only to system operators and supporting scientists. Research scientists have long sought a policy shift to allow more general access. With the release of the National Space Weather Strategy and Action Plan organized by the White House Office of Science Technology Policy (OSTP) a sample of these data have been made available to space weather researchers. Los Alamos National Laboratory (LANL) and the National Center for Environmental Information released a months worth of GPS energetic particle data from an interval of heightened space weather activity in early 2014 with the hope of stimulating integration of these data sets into the research arena. Even before the public data release GPS support scientists from LANL showed the extraordinary promise of these data.

  10. World weather program: Plan for fiscal year 1972

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The World Weather Program which is composed of the World Weather Watch, the Global Atmospheric Research Program, and the Systems Design and Technological Development Program is presented. The U.S. effort for improving the national weather services through advances in science, technology and expanded international cooperation during FY 72 are described. The activities of the global Atmospheric Research Program for last year are highlighted and fiscal summary of U.S. programs is included.

  11. American Weather Stories.

    ERIC Educational Resources Information Center

    Hughes, Patrick

    Weather has shaped United States' culture, national character and folklore; at times it has changed the course of history. The seven accounts compiled in this publication highlight some of the nation's weather experiences from the hurricanes that threatened Christopher Columbus to the peculiar run of bad weather that has plagued American…

  12. Supporting Weather Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

  13. The experience of potentially vulnerable people during cold weather: implications for policy and practice.

    PubMed

    Jones, Lorelei; Mays, Nicholas

    2016-08-01

    To examine the experience of potentially vulnerable people during cold weather to inform interventions aimed at improving well-being. Qualitative study. Telephone interviews with 35 individuals who could be considered to be potentially vulnerable during cold weather. Individuals were interviewed on two occasions during the winter of 2012-13, one or two days after a level 3 cold weather alert, as defined by the Cold Weather Plan for England, had been issued. Participants were largely unaware of the health risks associated with low temperatures, especially cardiovascular risk. There was a clear distinction between the thermal experience of people in social housing, which was newer, had efficient heating, was well insulated and well-maintained, and owner occupiers living in older, harder to heat homes. Most participants relied on public transport, and many faced arduous journeys to reach basic facilities. Vulnerability to cold was mediated to a significant extent by practical social support from family members. Resources should be targeted at people in hard to heat homes and those that are socially isolated. The repertoire of initiatives aimed at reducing cold-related mortality and morbidity could usefully be augmented by efforts to reduce social isolation and build community resilience. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  14. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  15. Decision-Making in Flight with Different Convective Weather Information Sources: Preliminary Results from the Langley CoWS Experiment (COnvective Weather Sources)

    NASA Technical Reports Server (NTRS)

    Chamberlain, Jim; Latorella, Kara

    2003-01-01

    This viewgraph presentation provides information on an airborne experiment designed to test the decision making of pilots receiving different sources of meteorological data. The presentation covers the equipment used in the COnvective Weather Sources (CoWS) Experiment), including the information system and display devices available to some of the subjects. It also describes the experiment, which featured teams of general aviation pilots, who were onboard but did not actually fly the aircraft used in the experiment. The presentation includes the results of a survey of the subjects' confidence.

  16. Measuring U-series Disequilibrium in Weathering Rinds to Study the Influence of Environmental Factors to Weathering Rates in Tropical Basse-Terre Island (French Guadeloupe)

    NASA Astrophysics Data System (ADS)

    Guo, J.; Ma, L.; Sak, P. B.; Gaillardet, J.; Chabaux, F. J.; Brantley, S. L.

    2015-12-01

    Chemical weathering is a critical process to global CO2 consumption, river/ocean chemistry, and nutrient import to biosphere. Weathering rinds experience minimal physical erosion and provide a well-constrained system to study the chemical weathering process. Here, we applied U-series disequilibrium dating method to study weathering advance rates on the wet side of Basse-Terre Island, French Guadeloupe, aiming to understand the role of the precipitation in controlling weathering rates and elucidate the behavior and immobilization mechanisms of U-series isotopes during rind formation. Six weathering clasts from 5 watersheds with mean annual precipitation varying from 2000 to 3000 mm/yr were measured for U-series isotope ratios and major element compositions on linear core-to-rind transects. One sample experienced complete core-to-rind transformation, while the rest clasts contain both rinds and unweathered cores. Our results show that the unweathered cores are under U-series secular equilibrium, while all the rind materials show significant U-series disequilibrium. For most rinds, linear core-to-rind increases of (230Th/232Th) activity ratios suggest a simple continuous U addition history. However, (234U/238U) and (238U/232Th) trends in several clasts show evidences of remobilization of Uranium besides the U addition, complicating the use of U-series dating method. The similarity between U/Th ratios and major elements trends like Fe, Al, P in some transects and the ongoing leaching experiments suggest that redox and organic colloids could control the mobilization of U-series isotopes in the rinds. Rind formation ages and weathering advance rate (0.07-0.29mm/kyr) were calculated for those rinds with a simple U-addition history. Our preliminary results show that local precipitation gradient significantly influenced the weathering advance rate, revealing the potential of estimating weathering advance rates at a large spatial scale using the U-series dating method.

  17. Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2014-05-01

    The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the

  18. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.

    PubMed

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-08-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  20. Linking the M&Rfi Weather Generator with Agrometeorological Models

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Trnka, Miroslav

    2015-04-01

    Realistic meteorological inputs (representing the present and/or future climates) for the agrometeorological model simulations are often produced by stochastic weather generators (WGs). This contribution presents some methodological issues and results obtained in our recent experiments. We also address selected questions raised in the synopsis of this session. The input meteorological time series for our experiments are produced by the parametric single site weather generator (WG) Marfi, which is calibrated from the available observational data (or interpolated from surrounding stations). To produce meteorological series representing the future climate, the WG parameters are modified by climate change scenarios, which are prepared by the pattern scaling method: the standardised scenarios derived from Global or Regional Climate Models are multiplied by the change in global mean temperature (ΔTG) determined by the simple climate model MAGICC. The presentation will address following questions: (i) The dependence of the quality of the synthetic weather series and impact results on the WG settings. An emphasis will be put on an effect of conditioning the daily WG on monthly WG (presently being one of our hot topics), which aims at improvement of the reproduction of the low-frequency weather variability. Comparison of results obtained with various WG settings is made in terms of climatic and agroclimatic indices (including extreme temperature and precipitation characteristics and drought indices). (ii) Our methodology accounts for the uncertainties coming from various sources. We will show how the climate change impact results are affected by 1. uncertainty in climate modelling, 2. uncertainty in ΔTG, and 3. uncertainty related to the complexity of the climate change scenario (focusing on an effect of inclusion of changes in variability into the climate change scenarios). Acknowledgements: This study was funded by project "Building up a multidisciplinary scientific

  1. A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.

    2006-12-01

    Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using

  2. Capturing the WUnder: Using weather stations and WeatherUnderground to increase middle school students' understanding and interest in science

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Dunne, P.

    2014-12-01

    New models of elementary- and middle-school level science education are emerging in response to the need for science literacy and the development of the Next Generation Science Standards. One of these models is fostered through the NSF's Graduate Teaching Fellows in K-12 Education (GK-12) program, which pairs a graduate fellow with a science teacher at a local school for an entire school year. In our project, a PhD Earth Sciences student was paired with a local middle school science teacher with the goal of installing a weather station, and incorporating the station data into the 8th grade science curriculum. Here we discuss how we were able to use a school weather station to introduce weather and climate material, engage and involve students in the creative process of science, and motivate students through inquiry-based lessons. In using a weather station as the starting point for material, we were able to make science tangible for students and provide an opportunity for each student to experience the entire process of scientific inquiry. This hands-on approach resulted in a more thorough understanding the system beyond a knowledge of the components, and was particularly effective in challenging prior weather and climate misconceptions. We were also able to expand the reach of the lessons by connecting with other weather stations in our region and even globally, enabling the students to become members of a larger system.

  3. Carbon dioxide efficiency of terrestrial enhanced weathering.

    PubMed

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  4. WMS and WFS Standards Implementation of Weather Data

    NASA Astrophysics Data System (ADS)

    Armstrong, M.

    2005-12-01

    CustomWeather is private weather company that delivers global weather data products. CustomWeather has built a mapping platform according to OGC standards. Currently, both a Web Mapping Service (WMS) and Web Feature Service (WFS) are supported by CustomWeather. Supporting open geospatial standards has lead to number of positive changes internally to the processes of CustomWeather, along with those of the clients accessing the data. Quite a number of challenges surfaced during this process, particularly with respect to combining a wide variety of raw modeling and sensor data into a single delivery platform. Open standards have, however, made the delivery of very different data products rather seamless. The discussion will address the issues faced in building an OGC-based mapping platform along with the limitations encountered. While the availability of these data products through open standards is still very young, there have already been many adopters in the utility and navigation industries. The discussion will take a closer look at the different approach taken by these two industries as they utilize interoperability standards with existing data. Insight will be given in regards to applications already taking advantage of this new technology and how this is affecting decision-making processes. CustomWeather has observed considerable interest and potential benefit in this technology from developing countries. Weather data is a key element in disaster management. Interoperability is literally opening up a world of data and has the potential to quickly enable functionality that would otherwise take considerable time to implement. The discussion will briefly touch on our experience.

  5. Mars Weather Map, Aug. 5

    NASA Image and Video Library

    2012-08-10

    This global map of Mars was acquired on Aug. 5, 2012, by the Mars Color Imager instrument on NASA MRO. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.

  6. Shift in fire-ecosystems and weather changes

    Treesearch

    Bongani Finiza

    2013-01-01

    During recent decades too much focus fell on fire suppression and fire engineering methods. Little attention has been given to understanding the shift in the changing fire weather resulting from the global change in weather patterns. Weather change have gradually changed the way vegetation cover respond to fire occurrence and brought about changes in fire behavior and...

  7. Sometimes You Need a Weatherman to Know Which Way the Wind Blows: The 25-Year Weather Underground Experience

    NASA Astrophysics Data System (ADS)

    Masters, J.

    2014-12-01

    Originally an educational project at the University of Michigan in the early 1990s, the Weather Underground transformed into the highly successful commercial Internet weather web site, wunderground.com, in 1995. I give an overview of the science communication experiences learned during my 25-year experience with the Weather Underground. Some lessons learned: Find your own unique voice. Be entertaining; don't be such a scientist. Tell stories. Earn people's trust. Use colorful graphs, images that show people, historical events, or scenes of local interest to illustrate your message. Be careful with criticism. Allow your audience to participate. Enrich people's experience by turning them on to other groups that offer unique and interesting information. Collaborate with other communicators with the goal of providing the public with simple, clear messages, repeated by a variety of trusted sources.

  8. Weather Fundamentals: Meteorology. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  9. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.

    2015-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  10. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  11. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  12. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  13. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE PAGES

    Winnick, Matthew J.; Maher, Kate

    2018-01-27

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably

  14. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Maher, Kate

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably

  15. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    NASA Astrophysics Data System (ADS)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  16. CubeSat: Colorado Student Space Weather Experiment

    NASA Astrophysics Data System (ADS)

    Li, X.; Palo, S. E.; Turner, D. L.; Gerhardt, D.; Redick, T.; Tao, J.

    2009-12-01

    Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental questions relating to the relationship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and protons in 10-40 MeV. This project is a collaborative effort between the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences at the University of Colorado, which includes the integration of students, faculty, and professional engineers.

  17. GEOSS interoperability for Weather, Ocean and Water

    NASA Astrophysics Data System (ADS)

    Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian

    2013-04-01

    "Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of

  18. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    PubMed Central

    Porada, P.; Lenton, T. M.; Pohl, A.; Weber, B.; Mander, L.; Donnadieu, Y.; Beer, C.; Pöschl, U.; Kleidon, A.

    2016-01-01

    It has been hypothesized that predecessors of today's bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today's global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate. PMID:27385026

  19. Severe Weather Field Experience: An Undergraduate Field Course on Career Enhancement and Severe Convective Storms

    ERIC Educational Resources Information Center

    Godfrey, Christopher M.; Barrett, Bradford S.; Godfrey, Elaine S.

    2011-01-01

    Undergraduate students acquire a deeper understanding of scientific principles through first-hand experience. To enhance the learning environment for atmospheric science majors, the University of North Carolina at Asheville has developed the severe weather field experience. Participants travel to Tornado Alley in the Great Plains to forecast and…

  20. GLACE: The Global Land-Atmosphere Coupling Experiment Part 2: Analysis

    NASA Technical Reports Server (NTRS)

    Guo, Zhichang; Dirmeyer, Paul A.; Koster, Randal D.; Bonan, Gordon; Chan, Edmond; Cox, Peter; Gordon, C. T.; Kanae, Shinjiro; Kowalczyk, Eva; Lawrence, David

    2005-01-01

    The twelve weather and climate models participating in the Global Land-Atmosphere Coupling Experiment (GLACE) show both a wide variation in the strength of land-atmosphere coupling and some intriguing commonalities. In this paper, we address the causes of variations in coupling strength - both the geographic variations within a given model and the model-to-model differences. The ability of soil moisture to affect precipitation is examined in two stages, namely, the ability of the soil moisture to affect evaporation, and the ability of evaporation to affect precipitation. Most of the differences between the models and within a given model are found to be associated with the first stage - an evaporation rate that varies strongly and consistently with soil moisture tends to lead to a higher coupling strength. The first stage differences reflect identifiable differences in model parameterization and model climate. Intermodel differences in the evaporation-precipitation connection, however, also play a key role.

  1. Using 311 Data as a Proxy For Weather Impacts

    NASA Astrophysics Data System (ADS)

    Zou, X.

    2017-12-01

    According to the World Bank, two-thirds of the global population will lives in urban areas by 2050. The impacts of major weather events have sometimes led to huge economic losses in urban areas and impacts are projected to increase as cities grow. Using remote sensing to study weather in urban areas is challenge because urban areas are small relative to the resolutions of many satellite products. In addition, most human activity is indoors and underground, which neither satellites nor other remote sensing instruments can measure. As a substitute for these instruments, there are datasets that can potentially provide information about the local impacts of the weather. Many cities use the U.S. Federal Communications Commision code for non-emergencies (311) as a hotline for residents to report municipal issues. For example, New York City's 311 dataset contains over a 100 million reports, many of which are potentially related to the impacts of weather events. To isolate the impacts, we aggregate over space and time to reduce the noise in the data and normalize the data to account for uneven distributions of people and complaints. We then compare the potentially weather related 311 reports with global monthly summaries of weather observations from the Global Historical Climatology Network (GHCN) to analyze the impact of weather events as reported by the residents of NYC.

  2. Realtime Space Weather Forecasts Via Android Phone App

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Haacke, B.; Reynolds, A.

    2010-12-01

    For the past several years, ASTRA has run a first-principles global 3-D fully coupled thermosphere-ionosphere model in real-time for space weather applications. The model is the Thermosphere-Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM). ASTRA also runs the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) in real-time. Using AMIE to drive the high latitude inputs to the TIMEGCM produces high fidelity simulations of the global thermosphere and ionosphere. These simulations can be viewed on the Android Phone App developed by ASTRA. The SpaceWeather app for the Android operating system is free and can be downloaded from the Google Marketplace. We present the current status of realtime thermosphere-ionosphere space-weather forcasting and discuss the way forward. We explore some of the issues in maintaining real-time simulations with assimilative data feeds in a quasi-operational setting. We also discuss some of the challenges of presenting large amounts of data on a smartphone. The ASTRA SpaceWeather app includes the broadest and most unique range of space weather data yet to be found on a single smartphone app. This is a one-stop-shop for space weather and the only app where you can get access to ASTRA’s real-time predictions of the global thermosphere and ionosphere, high latitude convection and geomagnetic activity. Because of the phone's GPS capability, users can obtain location specific vertical profiles of electron density, temperature, and time-histories of various parameters from the models. The SpaceWeather app has over 9000 downloads, 30 reviews, and a following of active users. It is clear that real-time space weather on smartphones is here to stay, and must be included in planning for any transition to operational space-weather use.

  3. On Becoming a Global Citizen: Transformative Learning Through Global Health Experiences.

    PubMed

    Litzelman, Debra K; Gardner, Adrian; Einterz, Robert M; Owiti, Philip; Wambui, Charity; Huskins, Jordan C; Schmitt-Wendholt, Kathleen M; Stone, Geren S; Ayuo, Paul O; Inui, Thomas S; Umoren, Rachel A

    Globalization has increased the demand for international experiences in medical education. International experiences improve medical knowledge, clinical skills, and self-development; influence career objectives; and provide insights on ethical and societal issues. However, global health rotations can end up being no more than tourism if not structured to foster personal transformation and global citizenship. We conducted a qualitative assessment of trainee-reported critical incidents to more deeply understand the impact of our global health experience on trainees. A cross-sectional survey was administered to trainees who had participated in a 2-month elective in Kenya from January 1989 to May 2013. We report the results of a qualitative assessment of the critical incident reflections participants (n = 137) entered in response to the prompt, "Write about one of your most memorable experiences and explain why you chose to describe this particular one." Qualitative analyses were conducted using thematic analysis and crystallization immersion analytic methods based on the principles of grounded theory, employing a constructivists' research paradigm. Four major themes emerged. These themes were Opening Oneself to a Broader World View; Impact of Suffering and Death; Life-Changing Experiences; and Commitment to Care for the Medically Underserved. Circumstances that learners encounter in the resource-scarce environment in Kenya are eye-opening and life-changing. When exposed to these frame-shifting circumstances, students elaborate on or transform existing points of view. These emotionally disruptive experiences in an international health setting allowed students to enter a transformational learning process with a global mind. Students can see the world as an interdependent society and develop the capacity to advance both their enlightened self-interest and the interest of people elsewhere in the world as they mature as global citizens. Medical schools are encouraged to

  4. Weather, knowledge base and life-style

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2015-04-01

    Why to main-stream curiosity for earth-science topics, thus to appraise these topics as of public interest? Namely, to influence practices how humankind's activities intersect the geosphere. How to main-stream that curiosity for earth-science topics? Namely, by weaving diverse concerns into common threads drawing on a wide range of perspectives: be it beauty or particularity of ordinary or special phenomena, evaluating hazards for or from mundane environments, or connecting the scholarly investigation with concerns of citizens at large; applying for threading traditional or modern media, arts or story-telling. Three examples: First "weather"; weather is a topic of primordial interest for most people: weather impacts on humans lives, be it for settlement, for food, for mobility, for hunting, for fishing, or for battle. It is the single earth-science topic that went "prime-time" since in the early 1950-ties the broadcasting of weather forecasts started and meteorologists present their work to the public, daily. Second "knowledge base"; earth-sciences are a relevant for modern societies' economy and value setting: earth-sciences provide insights into the evolution of live-bearing planets, the functioning of Earth's systems and the impact of humankind's activities on biogeochemical systems on Earth. These insights bear on production of goods, living conditions and individual well-being. Third "life-style"; citizen's urban culture prejudice their experiential connections: earth-sciences related phenomena are witnessed rarely, even most weather phenomena. In the past, traditional rural communities mediated their rich experiences through earth-centric story-telling. In course of the global urbanisation process this culture has given place to society-centric story-telling. Only recently anthropogenic global change triggered discussions on geoengineering, hazard mitigation, demographics, which interwoven with arts, linguistics and cultural histories offer a rich narrative

  5. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  6. Space Weather Needs of an Evolving Customer Base (Invited)

    NASA Astrophysics Data System (ADS)

    Rutledge, B.; Viereck, R. A.; Onsager, T. G.

    2013-12-01

    Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.

  7. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  8. CCMC: bringing space weather awareness to the next generation

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper

  9. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    PubMed

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  10. Growing Diversity in Space Weather and Climate Change Research

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.

    2013-12-01

    Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.

  11. Mars Weather Map, Aug. 2, 2012

    NASA Image and Video Library

    2012-08-04

    This global map of Mars was acquired on Aug. 2, 2012, by the Mars Color Imager instrument on NASA Mars Reconnaissance Orbiter. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity.

  12. Minor scale weather-watch and microbarograph project experiments 8620, 9415, 9416

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J.W.; Church, H.W.

    1986-01-01

    Predictions and measurements of distant airblast propagations were made to identify, control, and document the environmental impact from this large explosion. Special meteorological observations were made to support this as well as other experiments. Rawinsonde balloon upper-air observations were made to about 30 km altitude. Pilot balloons were tracked by optical theodolite to give frequent wind observations to about 3 km above ground. A Tethersonde balloon was operated to give details on atmospheric structure below about 3 km. Rocketsondes were launched to measure temperature and wind conditions at 35- to 65-km heights, for explaining long range airblast propagations that focusmore » near 200 km distance. A meteorological towere was set up at the Admin Park to give continuous records of wind and temperature at three levels to 23 m height. An anemometer was installed near Ground Zero for reference during wind-sensitive helium bag operations. A weather advisory service was established, using WSMR observations as well as national weather data collections, and communicating through a computer terminal at the Stallion Radiosonde Station. Microbarograph (MB) airblast pressure recorders were operated at thirteen locations, from 3 km to 225 km from GZ. During the 10 days preceding MINOR SCALE, 31 ANFO charges, of 250 lb or 2500 lb yields, were fired to document the long range airblast propagation with MB recordings and upper air weather observations.« less

  13. Satellite navigation—Amazing technology but insidious risk: Why everyone needs to understand space weather

    NASA Astrophysics Data System (ADS)

    Hapgood, Mike

    2017-04-01

    Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.

  14. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  15. Modeling the weather impact on aviation in a global air traffic model

    NASA Astrophysics Data System (ADS)

    Himmelsbach, S.; Hauf, T.; Rokitansky, C. H.

    2009-09-01

    Weather has a strong impact on aviation safety and efficiency. For a better understanding of that impact, especially of thunderstorms and similar other severe hazards, we pursued a modeling approach. We used the detailed simulation software (NAVSIM) of worldwide air traffic, developed by Rokitansky [Eurocontrol, 2005] and implemented a specific weather module. NAVSIM models each aircraft with its specific performance characteristics separately along preplanned and prescribed routes. The specific weather module in its current version simulates a thunderstorm as an impenetrable 3D object, which forces an aircraft to circumvent the latter. We refer to that object in general terms as a weather object. The Cb-weather object, as a specific weather object, is a heuristic model of a real thunderstorm, with its characteristics based on actually observed satellite and precipitation radar data. It is comprised of an upper volume, mostly the anvil, and a bottom volume, the up- and downdrafts and the lower outflow area [Tafferner and Forster, 2009; Kober and Tafferner 2009; Zinner et al, 2008]. The Cb-weather object is already implemented in NAVSIM, other weather objects like icing and turbulence will follow. This combination of NAVSIM with a weather object allows a detailed investigation of situations where conflicts exist between planned flight routes and adverse weather. The first objective is to simulate the observed circum-navigation in NAVSIM. Real occurring routes will be compared with simulated ones. Once this has successfully completed, NAVSIM offers a platform to assess existing rules and develop more efficient strategies to cope with adverse weather. An overview will be given over the implementation status of weather objects within NAVSIM and first results will be presented. Cb-object data provision by A. Tafferner, C. Forster, T. Zinner, K. Kober, M. Hagen (DLR Oberpfaffenhofen) is greatly acknowledged. References: Eurocontrol, VDL Mode 2 Capacity Analysis through

  16. Effects of climate on chemical weathering in watersheds

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.

    1995-01-01

    Climatic effects on chemical weathering are evaluated by correlating variations in solute concentrations and fluxes with temperature, precipitation, runoff, and evapotranspiration (ET) for a worldwide distribution of sixty-eight watersheds underlain by granitoid rock types. Stream solute concentrations are strongly correlated with proportional ET loss, and evaporative concentration makes stream solute concentrations an inapprorpiate surrogate for chemical weathering. Chemical fluxes are unaffected by ET, and SiO2 and Na weathering fluxes exhibit systematic increases with precipitation, runoff, and temperature. However, warm and wet watersheds produce anomalously rapid weathering rates. A proposed model that provides an improved prediction of weathering rates over climatic extremes is the product of linear precipitation and Arrhenius temperature functions. The resulting apparent activation energies based on SiO2 and Na fluxes are 59.4 and 62.5 kJ.mol-1, respectively. The coupling between temperature and precipitation emphasizes the importance of tropical regions in global silicate weathering fluxes, and suggests it is not representative to use continental averages for temperature and precipitation in the weathering rate functions of global carbon cycling and climatic change models. Fluxes of K, Ca, and Mg exhibit no climatic correlation, implying that other processes, such as ion exchange, nutrient cycling, and variations in lithology, obscure any climatic signal. -from Authors

  17. The GPS Topex/Poseidon precise orbit determination experiment - Implications for design of GPS global networks

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.

    1993-01-01

    Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.

  18. Weather Fundamentals: Climate & Seasons. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around…

  19. Incremental laser space weathering of Allende reveals non-lunar like space weathering effects

    NASA Astrophysics Data System (ADS)

    Gillis-Davis, Jeffrey J.; Lucey, Paul G.; Bradley, John P.; Ishii, Hope A.; Kaluna, Heather M.; Misra, Anumpam; Connolly, Harold C.

    2017-04-01

    We report findings from a series of laser-simulated space weathering experiments on Allende, a CV3 carbonaceous chondrite. The purpose of these experiments is to understand how spectra of anhydrous C-complex asteroids might vary as a function of micrometeorite bombardment. Four 0.5-gram aliquots of powdered, unpacked Allende meteorite were incrementally laser weathered with 30 mJ pulses while under vacuum. Radiative transfer modeling of the spectra and Scanning Transmission Electron Microscope (STEM) analyses of the samples show lunar-like similarities and differences in response to laser-simulated space weathering. For instance, laser weathered Allende exhibited lunar-like spectral changes. The overall spectra from visible to near infrared (Vis-NIR) redden and darken, and characteristic absorption bands weaken as a function of laser exposure. Unlike lunar weathering, however, the continuum slope between 450-550 nm does not vary monotonically with laser irradiation. Initially, spectra in this region redden with laser irradiation; then, the visible continua become less red and eventually spectrally bluer. STEM analyses of less mature samples confirm submicroscopic iron metal (SMFe) and micron sized sulfides. More mature samples reveal increased dispersal of Fe-Ni sulfides by the laser, which we infer to be the cause for the non-lunar-like changes in spectral behavior. Spectra of laser weathered Allende are a reasonable match to T- or possibly K-type asteroids; though the spectral match with a parent body is not exact. The key take away is, laser weathered Allende looks spectrally different (i.e., darker, and redder or bluer depending on the wavelength region) than its unweathered spectrum. Consequently, connecting meteorites to asteroids using unweathered spectra of meteorites would result in a different parent body than one matched on the basis of weathered spectra. Further, spectra for these laser weathering experiments may provide an explanation for

  20. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  1. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  2. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  3. Generation of Multivariate Surface Weather Series with Use of the Stochastic Weather Generator Linked to Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Farda, A.; Huth, R.

    2012-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms

  4. The Subseasonal Experiment (SubX) to Advance National Weather Service Predictions for Weeks 3-4

    NASA Astrophysics Data System (ADS)

    Mariotti, A.; Barrie, D.; Archambault, H. M.

    2017-12-01

    There is great practical interest in developing skillful predictions of extremes for lead times extending beyond the two-week theoretical predictability skill barrier for weather forecasts to the subseasonal-to-seasonal (S2S) time scale. The processes and phenomena specific to S2S are posited to require a unified approach to science, modeling, and predictions that draws expertise from both the weather and climate/seasonal communities. Based on this premise, in 2016, the NOAA Climate Program Office Modeling, Analysis, Predictions and Projections (MAPP) program, in partnership with the National Weather Service Office of Science and Technology Integration, launched a major research and transition initiative to meet NOAA's emerging research and transition needs for developing skillful S2S predictions. A major component of this initiative is an experiment to test single- and multi-model ensembles for subseasonal prediction, called the Subseasonal Experiment (SubX). SubX, which engages six modeling groups, is producing real time experimental forecasts based on weather, climate, and Earth system models for weeks 3-4. The project investigators are evaluating, testing, and optimizing this system, and the hindcast and real time forecast data are available to the broad community. SubX research is targeted at a number of important decision-making contexts including drought and extremes, as well as the broad variety of phenomena that are meaningful at subseasonal timescales (e.g., MJO, ENSO, stratosphere/troposphere coupling, etc.). This presentation will discuss the design and status of SubX in the broader context of MAPP program S2S prediction research.

  5. Development of an integrated chemical weather prediction system for environmental applications at meso to global scales: NMMB/BSC-CHEM

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Pérez, C.; Karsten, K.; Janjic, Z.; Dabdub, D.; Baldasano, J. M.

    2009-09-01

    This contribution presents the ongoing developments of a new fully on-line chemical weather prediction system for meso to global scale applications. The modeling system consists of a mineral dust module and a gas-phase chemistry module coupled on-line to a unified global-regional atmospheric driver. This approach allows solving small scale processes and their interactions at local to global scales. Its unified environment maintains the consistency of all the physico-chemical processes involved. The atmospheric driver is the NCEP/NMMB numerical weather prediction model (Janjic and Black, 2007) developed at National Centers for Environmental Prediction (NCEP). It represents an evolution of the operational WRF-NMME model extending from meso to global scales. Its unified non-hydrostatic dynamical core supports regional and global simulations. The Barcelona Supercomputing Center is currently designing and implementing a chemistry transport model coupled online with the new global/regional NMMB. The new modeling system is intended to be a powerful tool for research and to provide efficient global and regional chemical weather forecasts at sub-synoptic and mesoscale resolutions. The online coupling of the chemistry follows the approach similar to that of the mineral dust module already coupled to the atmospheric driver, NMMB/BSC-DUST (Pérez et al., 2008). Chemical species are advected and mixed at the corresponding time steps of the meteorological tracers using the same numerical scheme. Advection is eulerian, positive definite and monotone. The chemical mechanism and chemistry solver is based on the Kinetic PreProcessor KPP (Damian et al., 2002) package with the main purpose of maintaining a wide flexibility when configuring the model. Such approach will allow using a simplified chemical mechanism for global applications or a more complete mechanism for high-resolution local or regional studies. Moreover, it will permit the implementation of a specific configuration for

  6. Shifting patterns of mild weather in response to projected radiative forcing

    NASA Astrophysics Data System (ADS)

    van der Wiel, Karin; Kapnick, Sarah; Vecchi, Gabriel

    2017-04-01

    Traditionally, climate change research has focused on changes in mean climate (e.g. global mean temperature, sea level rise, glacier melt) or change in extreme events (e.g. hurricanes, extreme precipitation, droughts, heat waves, wild fires). Though extreme events have the potential to disrupt society, extreme conditions are rare by definition. In contrast, mild weather occurs frequently and many human activities are built around it. Examples of such activities include football games, dog walks, bike rides, and outdoor weddings, but also activities of direct economic impact, e.g. construction work, infrastructure projects, road or rail transportation, air travel, and landscaping projects. Absence of mild weather impacts society in various way, understanding current and future mild weather is therefore of high scientific interest. We present a global analysis of mild weather based on simple and relatable criteria and we explore changes in mild weather occurrence in response to radiative forcing. A high-resolution global climate model, GFDL HiFLOR, is used to allow for investigation of local features and changes. In response to RCP4.5, we find a slight global mean decrease in the annual number of mild days projected both in the near future (-4 d/yr, 2016-2035) and at the end of this century (-10 d/yr, 2081-2100). Projected regional and seasonal redistributions of mild days are substantially greater. Tropical regions are projected to see large decreases, in the mid-latitudes small increases in the number of mild days are projected. Mediterranean climates are projected to see a shift of mild weather away from the local summer to the shoulder seasons. These changes are larger than the interannual variability of mild weather caused by El Niño-Southern Oscillation. Finally, we use reanalysis data to show an observed global decrease in the recent past, and we verify that these observed regional changes in mild weather resemble the projections.

  7. The Global Positioning System constellation as a space weather monitor

    NASA Astrophysics Data System (ADS)

    Morley, S.; Henderson, M. G.; Woodroffe, J. R.; Brito, T. V.

    2016-12-01

    The Global Positioning System (GPS) satellites are distributed across six orbital planes and follow near-circular orbits, with a 12 hour period, at an altitude of approximately 20200 km. The six orbital planes are distributed around the Earth and are nominally inclined at 55 degrees. Energetic particle detectors have been flown on the GPS constellation for more than two decades; by February 2016 there were 23 GPS satellites equipped with energetic particle instrumentation. The Combined X-ray Dosimeter (CXD), which is flown on 21 GPS satellites, has recently been cross-calibrated against electron data from the Van Allen Probes mission, demonstrating its utility for scientific research and radiation environment specification. Recently electron and proton flux data from these instruments, for the month of January 2014, have been publicly released. We will describe the GPS constellation from the perspective of its use as a monitor for space weather, review some of the key scientific results enabled by these instruments and show some recent observations from the constellation, including the 2015 St. Patrick's Day storm. Using data from multiple satellite missions we describe the dynamics of this storm in detail.

  8. Description of the GMAO OSSE for Weather Analysis Software Package: Version 3

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Errico, Ronald M.; Prive, Nikki C.; Carvalho, David; Sienkiewicz, Meta; El Akkraoui, Amal; Guo, Jing; Todling, Ricardo; McCarty, Will; Putman, William M.; hide

    2017-01-01

    The Global Modeling and Assimilation Office (GMAO) at the NASA Goddard Space Flight Center has developed software and products for conducting observing system simulation experiments (OSSEs) for weather analysis applications. Such applications include estimations of potential effects of new observing instruments or data assimilation techniques on improving weather analysis and forecasts. The GMAO software creates simulated observations from nature run (NR) data sets and adds simulated errors to those observations. The algorithms employed are much more sophisticated, adding a much greater degree of realism, compared with OSSE systems currently available elsewhere. The algorithms employed, software designs, and validation procedures are described in this document. Instructions for using the software are also provided.

  9. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.

    PubMed

    Kantola, Ilsa B; Masters, Michael D; Beerling, David J; Long, Stephen P; DeLucia, Evan H

    2017-04-01

    Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils-applying crushed silicate rock as a soil amendment-is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and reduces N 2 O loss through pH buffering. As biofuel use increases, EW in bioenergy crops offers the opportunity to sequester CO 2 while reducing fossil fuel combustion. Uncertainties remain in the long-term effects and global implications of large-scale efforts to directly manipulate Earth's atmospheric CO 2 composition, but EW in agricultural lands is an opportunity to employ these soils to sequester atmospheric C while benefitting crop production and the global climate. © 2017 The Author(s).

  10. Extreme water-related weather events and waterborne disease.

    PubMed

    Cann, K F; Thomas, D Rh; Salmon, R L; Wyn-Jones, A P; Kay, D

    2013-04-01

    Global climate change is expected to affect the frequency, intensity and duration of extreme water-related weather events such as excessive precipitation, floods, and drought. We conducted a systematic review to examine waterborne outbreaks following such events and explored their distribution between the different types of extreme water-related weather events. Four medical and meteorological databases (Medline, Embase, GeoRef, PubMed) and a global electronic reporting system (ProMED) were searched, from 1910 to 2010. Eighty-seven waterborne outbreaks involving extreme water-related weather events were identified and included, alongside 235 ProMED reports. Heavy rainfall and flooding were the most common events preceding outbreaks associated with extreme weather and were reported in 55·2% and 52·9% of accounts, respectively. The most common pathogens reported in these outbreaks were Vibrio spp. (21·6%) and Leptospira spp. (12·7%). Outbreaks following extreme water-related weather events were often the result of contamination of the drinking-water supply (53·7%). Differences in reporting of outbreaks were seen between the scientific literature and ProMED. Extreme water-related weather events represent a risk to public health in both developed and developing countries, but impact will be disproportionate and likely to compound existing health disparities.

  11. The New Space Weather Action Center; the Next Level on Space Weather Education

    NASA Astrophysics Data System (ADS)

    Collado-Vega, Y. M.; Lewis, E. M.; Cline, T. D.; MacDonald, E.

    2016-12-01

    The Space Weather Action Center (SWAC) provides access for students to near real-time space weather data, and a set of easy instructions and well-defined protocols that allow them to correctly interpret such data. It is a student centered approach to teaching science and technology in classrooms, as students are encouraged to act like real scientists by accessing, collecting, analyzing, recording, and communicating space weather forecasts. Integration and implementation of several programs will enhance and provide a rich education experience for students' grades 5-16. We will enhance the existing data and tutorials available using the Integrated Space Weather Analysis (iSWA) tool created by the Community Coordinated Modeling Center (CCMC) at NASA GSFC. iSWA is a flexible, turn-key, customer-configurable, Web-based dissemination system for NASA-relevant space weather information that combines data based on the most advanced space weather models available through the CCMC with concurrent space environment information. This tool provides an additional component by the use of videos and still imagery from different sources as a tool for educators to effectively show what happens during an eruption from the surface of the Sun. We will also update content on the net result of space weather forecasting that the public can experience by including Aurorasaurus, a well established, growing, modern, innovative, interdisciplinary citizen science project centered around the public's visibility of the northern lights with mobile applications via the use of social media connections.

  12. Effects of forest cover changes in European Russia on regional weather conditions: results of numerical experiments with the COSMO-CLM model

    NASA Astrophysics Data System (ADS)

    Olchev, Alexander; Kuzmina, Ekaterina; Rozinkina, Inna; Nikitin, Mikhail; Rivin, Gdaly S.

    2017-04-01

    The forests have a significant effect on the climatic system. They capture CO2 from the atmosphere, regulate the surface evaporation and runoff, and influence the radiation and thermal conditions of the land surface. It is obvious, that their influence depends on many different factors including regional climate conditions, land use and vegetation structure, surface topography, etc. The main goal of the study is to assess the possible influence of forest cover changes (under deforestation and/or afforestation) on regional weather conditions in the central part of European Russia using the results of modeling experiments provided by the meso-scale COSMO-CLM model. The need of the study lies in a lack of the experimental and modeling data characterizing the influence of the forest and land-use changes on regional weather conditions in European part of Russia. The forest ecosystems in the study region play a very important biosphere role that is significantly increased in the last decades due to considerable strengthening of anthropogenic activity in the area of European Russia. The area selected for the study is located in the central part of European Russia between 55 and 59N and 28 and 37E. It comprises several geographical zones including dark-coniferous forests of the South-European taiga in the north, the mixed forests in the central part and the broad-leaved forests in the south. The forests within the study area are very heterogeneous. The total area covered by forests according to recent remote sensing data is about 50%. The numerical experiments were provided using the COSMO-CLM model with the spatial resolution 13.2 km. As initial and boundary conditions for the numerical experiments the global reanalysis ERA Interim (with the 6-hour resolution in time and 0.75° × 0.75° in space) were used. The weather conditions were simulated in a continuous cycle for several months for the entire area of European Russia using the results of global reanalysis on

  13. Negative CO2 emissions via enhanced silicate weathering in coastal environments

    PubMed Central

    Montserrat, Francesc

    2017-01-01

    Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to exploit the natural process of mineral weathering for the removal of CO2 from the atmosphere. Here, we discuss the potential of applying ESW in coastal environments as a climate change mitigation option. By deliberately introducing fast-weathering silicate minerals onto coastal sediments, alkalinity is released into the overlying waters, thus creating a coastal CO2 sink. Compared with other NETs, coastal ESW has the advantage that it counteracts ocean acidification, does not interfere with terrestrial land use and can be directly integrated into existing coastal management programmes with existing (dredging) technology. Yet presently, the concept is still at an early stage, and so two major research challenges relate to the efficiency and environmental impact of ESW. Dedicated experiments are needed (i) to more precisely determine the weathering rate under in situ conditions within the seabed and (ii) to evaluate the ecosystem impacts—both positive and negative—from the released weathering products. PMID:28381634

  14. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  15. Global comparison reveals biogenic weathering as driven by nutrient limitation at ecosystem scale

    NASA Astrophysics Data System (ADS)

    Boy, Jens; Godoy, Roberto; Dechene, Annika; Shibistova, Olga; Amir, Hamid; Iskandar, Issi; Fogliano, Bruno; Boy, Diana; McCulloch, Robert; Andrino, Alberto; Gschwendtner, Silvia; Marin, Cesar; Sauheitl, Leopold; Dultz, Stefan; Mikutta, Robert; Guggenberger, Georg

    2017-04-01

    A substantial contribution of biogenic weathering in ecosystem nutrition, especially by symbiotic microorganisms, has often been proposed, but large-scale in vivo studies are still missing. Here we compare a set of ecosystems spanning from the Antarctic to tropical forests for their potential biogenic weathering and its drivers. To address biogenic weathering rates, we installed mineral mesocosms only accessible for bacteria and fungi for up to 4 years, which contained freshly broken and defined nutrient-baring minerals in soil A horizons of ecosystems along a gradient of soil development differing in climate and plant species communities. Alterations of the buried minerals were analyzed by grid-intersection, confocal lascer scanning microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy on the surface and on thin sections. On selected sites, carbon fluxes were tracked by 13C labeling, and microbial community was identified by DNA sequencing. In young ecosystems (protosoils) biogenic weathering is almost absent and starts after first carbon accumulation by aeolian (later litter) inputs and is mainly performed by bacteria. With ongoing soil development and appearance of symbiotic (mycorrhized) plants, nutrient availability in soil increasingly drove biogenic weathering, and fungi became the far more important players than bacteria. We found a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. We conclude that nutrient limitations at ecosystem scale are generally counteracted by adapted fungal biogenic weathering. The close relation between fungal weathering and plant-available nutrients over a large range of severely contrasting ecosystems points towards a direct energetic support of these weathering processes by the photoautotrophic community, making biogenic weathering a

  16. From local perception to global perspective

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Stocker, Thomas F.

    2015-08-01

    Recent sociological studies show that over short time periods the large day-to-day, month-to-month or year-to-year variations in weather at a specific location can influence and potentially bias our perception of climate change, a more long-term and global phenomenon. By weighting local temperature anomalies with the number of people that experience them and considering longer time periods, we illustrate that the share of the world population exposed to warmer-than-normal temperatures has steadily increased during the past few decades. Therefore, warming is experienced by an increasing number of individuals, counter to what might be simply inferred from global mean temperature anomalies. This behaviour is well-captured by current climate models, offering an opportunity to increase confidence in future projections of climate change irrespective of the personal local perception of weather.

  17. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guohui; Um, Wooyong; Wang, Zheming

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitatedmore » as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.« less

  18. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.

    PubMed

    Wang, Guohui; Um, Wooyong; Wang, Zheming; Reinoso-Maset, Estela; Washton, Nancy M; Mueller, Karl T; Perdrial, Nicolas; O'Day, Peggy A; Chorover, Jon

    2017-10-03

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO 2 )(PO 4 )·3H 2 O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K 2 (UO 2 ) 6 O 4 (OH) 6 ·7H 2 O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10 -12 mol g -1 s -1 . In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10 -10 mol g -1 s -1 . The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  19. Industry and Government Officials Meet for Space Weather Summit

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    2008-10-01

    Commercial airlines, electric power grids, cell phones, handheld Global Positioning Systems: Although the Sun is less active due to solar minimum, the number and types of situations and technologies that can benefit from up-to-date space weather information are growing. To address this, the second annual summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's Space Weather Prediction Center (SWPC) was held on 1 May 2008 during Space Weather Workshop (SWW), in Boulder, Colo.

  20. Integrating Weather in TMC Operations

    DOT National Transportation Integrated Search

    2008-06-30

    This report presents the results of a study of the integration of weather information into Transportation Management Centers (TMCs). Based on an earlier report that examined the nature and extent of weather integration experience across the country a...

  1. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study.

    PubMed

    Colston, Josh M; Ahmed, Tahmeed; Mahopo, Cloupas; Kang, Gagandeep; Kosek, Margaret; de Sousa Junior, Francisco; Shrestha, Prakash Sunder; Svensen, Erling; Turab, Ali; Zaitchik, Benjamin

    2018-04-21

    Longitudinal and time series analyses are needed to characterize the associations between hydrometeorological parameters and health outcomes. Earth Observation (EO) climate data products derived from satellites and global model-based reanalysis have the potential to be used as surrogates in situations and locations where weather-station based observations are inadequate or incomplete. However, these products often lack direct evaluation at specific sites of epidemiological interest. Standard evaluation metrics of correlation, agreement, bias and error were applied to a set of ten hydrometeorological variables extracted from two quasi-global, commonly used climate data products - the Global Land Data Assimilation System (GLDAS) and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) - to evaluate their performance relative to weather-station derived estimates at the specific geographic locations of the eight sites in a multi-site cohort study. These metrics were calculated for both daily estimates and 7-day averages and for a rotavirus-peak-season subset. Then the variables from the two sources were each used as predictors in longitudinal regression models to test their association with rotavirus infection in the cohort after adjusting for covariates. The availability and completeness of station-based validation data varied depending on the variable and study site. The performance of the two gridded climate models varied considerably within the same location and for the same variable across locations, according to different evaluation criteria and for the peak-season compared to the full dataset in ways that showed no obvious pattern. They also differed in the statistical significance of their association with the rotavirus outcome. For some variables, the station-based records showed a strong association while the EO-derived estimates showed none, while for others, the opposite was true. Researchers wishing to utilize publicly available climate data

  2. Possibility of weather and climate change by active experiments

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergey; Voronin, Nikolai; Troitsky, Arkadil; Chernouss, Sergey

    The anonymous remote impact on weather and climatic characteristics permanently discussed in last decade despite the fact that the UN Convention forbid to use the weather as a weapon since the 1970's. For example, Ross N. Hoffman proposed to operate weather conditions by direct flux of microwave radiation from space. This flux could affects on water vapor in the troposphere. The development of an optically thin cirrus cloud is especially promising situation because even the formation of the aeroplane cirrus-track can stimulate disturbance, which is necessary to development of an initial cyclone stage. Our studies confirmed the results of experiments of NIRFI on sporadic appearance of the microwave radiation of ionospheric nature during periods of solar flares and geomagnetic storms, and also during work of the "Sura” ionospheric heating facility. Such microwave radiation also occurs, when precipitation of particles from radiation belts stimulated by work of powerful (˜ 1 MW) navigation transmitters at frequencies ˜ 5 - 22 kHz. This effect was discovered by measurements at the Intercosmos satellite Bulgaria-1300 in 1982, and recently was confirmed by the spacecraft DEMETER measurements Leningrad State University measurements 1990-1991 at altitude about 2100 m proved the impact of microwave radiation from solar radiobursts on the amount of water vapor in the upper troposphere column. 25 - 40% of the vapour are involved into the formation of clusters decreased an atmospheric transparency. Papers of State Optical Institute (2008) proposed to account the electron-stimulated precipitation from the radiation belts over powerful radio transmitters (registered on the spacecraft DEMETER) as an additional source of microwave radiation of the ionosphere. This source can participate in the condensation-cluster mechanism changes of atmospheric transparency by the same way as natural geomagnetic storm. (Grach et al) also recorded stream microwave ionospheric disturbance

  3. Space weather effects measured in atmospheric radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  4. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    NASA Astrophysics Data System (ADS)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  5. ENSO Weather and Coral Bleaching on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish; Theobald, Alison

    2017-10-01

    The most devastating mass coral bleaching has occurred during El Niño events, with bleaching reported to be a direct result of increased sea surface temperatures (SSTs). However, El Niño itself does not cause SSTs to rise in all regions that experience bleaching. Nor is the upper ocean warming trend of 0.11°C per decade since 1971, attributed to global warming, sufficient alone to exceed the thermal tolerance of corals. Here we show that weather patterns during El Niño that result in reduced cloud cover, higher than average air temperatures and higher than average atmospheric pressures, play a crucial role in determining the extent and location of coral bleaching on the world's largest coral reef system, the World Heritage Great Barrier Reef (GBR), Australia. Accordingly, synoptic-scale weather patterns and local atmosphere-ocean feedbacks related to El Niño-Southern Oscillation (ENSO) and not large-scale SST warming due to El Niño alone and/or global warming are often the cause of coral bleaching on the GBR.

  6. Weather Fundamentals: Wind. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…

  7. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  8. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  9. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  10. Benign Weather Modification,

    DTIC Science & Technology

    1997-05-01

    with respect to weather modification. Publicizing these efforts is necessary in order to eliminate all traces of " cloak and dagger " efforts tainting...theater, the Japanese used the weather to conceal their approach to the Hawaiian Islands, enhancing their surprise attack on Pearl Harbor. There... attack is different than previous researcher goals. Therefore, future experiments would have to be tailored for the new objective of hiding military

  11. Pricing Weather Index Insurance Based on Artificial Controlled Experiment - A Case Study of Cold Temperature for Early Rice in Jiangxi, China

    NASA Astrophysics Data System (ADS)

    SUN, Q.; Yang, Z.

    2017-12-01

    The growth of early rice is often threated by a phenomenon known as Grain Buds Cold, a period of anomalously cold temperature that occurs during the booting and flowering stage. Therefore, quantifying the impact of weather on crop yield is a core issue in design of weather index insurance. A high yield loss will lead to an increasing premium rate. In this paper, we explored a new way to investigate the relationship between yield loss rate and cold temperature durations. A two-year artificial controlled experiment was used to build logarithm and linear yield loss model. Moreover, an information diffusion model was applied to calculate the probability of different durations which lasting for 3-20 days. The results show that pure premium rates of logarithm yield loss model had better premium rates performance than that of linear yield loss model. The premium rates of Grain Buds Cold Weather Index Insurance fluctuated between 7.085% and 10.151% in Jiangxi Province. Compared with common statistical methods, the artificial controlled experiment provides an easier and more robust way to determine the relationship between yield and single meteorological factor. Meanwhile, this experiment would be very important for some regions where were lacking in historical yield data and climate data and could help farmers cope with extreme cold weather risks under varying weather conditions.

  12. Sometimes you need a weatherman to tell you which way the wind blows: the Weather Underground Experience

    NASA Astrophysics Data System (ADS)

    Masters, J.

    2012-12-01

    The world greatly needs scientists who are brave enough to go outside their zone of comfort and spend extra time and effort engaging with the public on weather and climate change issues. I'll describe my 20-year long science communication odyssey as a co-founder of the Weather Underground. Originally an educational project at the University of Michigan, the Weather Underground transformed into the highly successful commercial Internet weather web site wunderground.com in 1995. Lessons learned: Find your own unique voice. Be entertaining; don't be such a scientist. Tell stories. Earn people's trust. Use colorful graphs, images that show people, historical events, or scenes of local interest to illustrate your message. Be careful with criticism. Allow your audience to participate. Enrich people's experience by turning them on to other groups that offer unique and interesting information. Collaborate with other communicators with the goal of providing the public with simple, clear messages, repeated by a variety of trusted sources.

  13. EarthNow: Weather and Climate Connections for 3D Spherical Displays

    NASA Astrophysics Data System (ADS)

    Rowley, P.; Ackerman, S. A.; Arkin, P. A.; Pisut, D.; Kohrs, R.; Mooney, M. E.; Schollaert, S. E.

    2012-12-01

    The NOAA Science on a Sphere (SOS) is one of the fastest growing museum and science center exhibits worldwide, with over 80 installations. Rightfully so—few other exhibits captivate and mystify audiences in the way SOS does. Harnessing audience excitement about the science, especially climate change and real-time weather, however, has been challenging for docents. The EarthNow project (http://sphere.ssec.wisc.edu) from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) allows SOS institutions to go beyond the scientific facts to create meaningful visitor experiences about weather and climate connections. CIMSS, in collaboration with the NOAA Environmental Visualization Lab and the Cooperative Institute for Climate and Satellites, regularly updates a blog-style website, providing a central location for SOS facilitators to find timely weather and climate stories to speak about how current events affect and are affected by global change. Along with these stories, the website also provides relevant, visually appealing SOS-formatted datasets and animations with appropriate annotations, leading to easier comprehension by presenters and the public. Along with discussing the logistics and background of the EarthNow project, this presentation will review the results of our front-end and formative evaluations. The evaluation results will not only allow us to showcase how museums and science centers are using EarthNow, but also what museums need to tackle complex and contentious issues like global climate change.;

  14. Space Weather and the State of Cardiovascular System of a Healthy Human Being

    NASA Astrophysics Data System (ADS)

    Samsonov, S. N.; Manykina, V. I.; Krymsky, G. F.; Petrova, P. G.; Palshina, A. M.; Vishnevsky, V. V.

    The term "space weather" characterizes a state of the near-Earth environmental space. An organism of human being represents an open system so the change of conditions in the environment including the near-Earth environmental space influences the health state of a human being.In recent years many works devoted to the effect of space weather on the life on the Earth, and the degree of such effect has been represented from a zero-order up to apocalypse. To reveal a real effect of space weather on the health of human being the international Russian- Ukrainian experiment "Geliomed" is carried out since 2005 (http://geliomed.immsp.kiev.ua) [Vishnevsky et al., 2009]. The analysis of observational set of data has allowed to show a synchronism and globality of such effect (simultaneous manifestation of space weather parameters in a state of cardiovascular system of volunteer groups removed from each other at a distance over 6000 km). The response of volunteer' cardiovascular system to the changes of space weather parameters were observed even at insignificant values of the Earth's geomagnetic field. But even at very considerable disturbances of space weather parameters a human being healthy did not feel painful symptoms though measurements of objective physiological indices showed their changes.

  15. Constraining the role of early land plants in Palaeozoic weathering and global cooling.

    PubMed

    Quirk, Joe; Leake, Jonathan R; Johnson, David A; Taylor, Lyla L; Saccone, Loredana; Beerling, David J

    2015-08-22

    How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9-13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician. © 2015 The Authors.

  16. Investigating Subjective Experience and the Influence of Weather Among Individuals With Fibromyalgia: A Content Analysis of Twitter.

    PubMed

    Delir Haghighi, Pari; Kang, Yong-Bin; Buchbinder, Rachelle; Burstein, Frada; Whittle, Samuel

    2017-01-19

    Little is understood about the determinants of symptom expression in individuals with fibromyalgia syndrome (FMS). While individuals with FMS often report environmental influences, including weather events, on their symptom severity, a consistent effect of specific weather conditions on FMS symptoms has yet to be demonstrated. Content analysis of a large number of messages by individuals with FMS on Twitter can provide valuable insights into variation in the fibromyalgia experience from a first-person perspective. The objective of our study was to use content analysis of tweets to investigate the association between weather conditions and fibromyalgia symptoms among individuals who tweet about fibromyalgia. Our second objective was to gain insight into how Twitter is used as a form of communication and expression by individuals with fibromyalgia and to explore and uncover thematic clusters and communities related to weather. Computerized sentiment analysis was performed to measure the association between negative sentiment scores (indicative of severe symptoms such as pain) and coincident environmental variables. Date, time, and location data for each individual tweet were used to identify corresponding climate data (such as temperature). We used graph analysis to investigate the frequency and distribution of domain-related terms exchanged in Twitter and their association strengths. A community detection algorithm was applied to partition the graph and detect different communities. We analyzed 140,432 tweets related to fibromyalgia from 2008 to 2014. There was a very weak positive correlation between humidity and negative sentiment scores (r=.009, P=.001). There was no significant correlation between other environmental variables and negative sentiment scores. The graph analysis showed that "pain" and "chronicpain" were the most frequently used terms. The Louvain method identified 6 communities. Community 1 was related to feelings and symptoms at the time

  17. The pioneers of weather forecasting

    NASA Astrophysics Data System (ADS)

    Ballard, Susan

    2016-01-01

    In The Weather Experiment author Peter Moore takes us on a compelling journey through the early history of weather forecasting, bringing to life the personalities, lives and achievements of the men who put in place the building blocks required for forecasts to be possible.

  18. The Cubesat Heliospheric Imaging Experiment for Space Weather Prediction

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Howard, T.; Dickinson, J.; Epperly, M.; Kief, C.

    2010-05-01

    Heliospheric imaging data have been shown to improve space weather prediction by an order of magnitude, and heliospheric monitoring by the SMEI and STEREO-HI instruments have proven to be extremely useful for understanding heliospheric conditions near Earth. However, SMEI is approaching end-of-life and the STEREOs are drifting away from favorable Earth-viewing geometry just as the new solar cycle begins. CHIME is an innovative, miniaturized, fully functional space weather heliospheric monitor that fits within the 3U CubeSat envelope and can be flown individually (as a scientific or demonstrator mission) or in a swarm (to attain operational-class reliability) at a small fraction of the cost of a conventional mission. Here we describe the CHIME concept and its use with the automated processing pipeline AICMED to improve space weather prediction.

  19. Enhanced oxidative weathering in glaciated mountain catchments: A stabilising feedback on atmospheric carbon dioxide?

    NASA Astrophysics Data System (ADS)

    Horan, K.; Hilton, R. G.; Burton, K. W.; Selby, D. S.; Ottley, C. J.

    2015-12-01

    Mountain belts act as sources of carbon dioxide (CO2) to the atmosphere if physical erosion and exhumation expose rock-derived organic carbon ('petrogenic' organic carbon, OCpetro) to chemical weathering. Estimates suggest 15x1021g of carbon is stored in rocks globally as OCpetro, ~25,000 times the amount of carbon in the pre-industrial atmosphere. Alongside volcanic and metamorphic degassing, OCpetro weathering is thought to be the main source of CO2 to the atmosphere over geological timescales. Erosion in mountain river catchments has been shown to enhance oxidative weathering and CO2 release. However, we still lack studies which quantify this process. In addition, it is not clear how glaciation may impact OCpetro oxidation. In analogy with silicate weathering, large amounts of fine sediment in glacial catchments may enhance oxidative weathering. Here we quantify oxidative weathering in nine catchments draining OCpetro bearing rocks in the western Southern Alps, New Zealand. Using rhenium (Re) as a tracer of oxidative weathering, we develop techniques to precisely measure Re concentration at sub-ppt levels in river waters. Using [Re]water/[Re]rock as a weathering tracer, we estimate that the weathering efficiency in glacial catchments is >4 times that of non-glacial catchments. Combining this with the OCpetro content of rocks and dissolved Re flux, we estimate the CO2 release by OCpetro oxidation. The analysis suggests that non-glacial catchments in the western Southern Alps release similar amounts of CO2 as catchments in Taiwan where erosion rates are comparable. In this mountain belt, the CO2 release does not negate CO2 drawdown by silicate weathering and by riverine transfer of organic matter. Based on our results, we propose that mountain glaciation may greatly enhance OCpetro oxidation rates. Depending on the global fluxes involved, this provides a feedback to damp low atmospheric CO2 levels and global cooling. During glacial periods (low CO2, low global

  20. Assessing the Potential of Social Networks as a Means for Information Diffusion the Weatherization Experiences (WE) Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Erin M.; Hawkins, Beth A.

    In April 2009, U.S. Department of Energy (DOE) formally tasked Oak Ridge National Laboratory (ORNL) with conducting two impact and process evaluations of DOE’s Weatherization Assistance Program (WAP), known as the retrospective and American Recovery and Reinvestment Act of 2009 (ARRA) period evaluations, respectively. The former focused on WAP Program Year (PY) 2008, which covers the period from April 2008 to June 2009. The latter focused on PY 2010. This report presents in-depth analyses from ORNL’s social network study, the Weatherization Experiences (WE) Project, an exploratory study conducted as part of the ARRA period WAP evaluation. The WE Project exploredmore » the potential for WAP recipients and staff to influence energy savings beyond their homes and day jobs. Several studies conducted through ORNL’s evaluation of WAP found that the program has the ability to profoundly impact the lives of the people it serves (Tonn et al. 2014b). Recipients of WAP provided statements ranging from the newfound ability to pay utility bills and prescription medication to reduced emergency department visits for asthma and medical conditions associated with thermal stress. Through this exploratory research project, the stories of hundreds of weatherization recipients and providers were documented. The WE Project was designed to further investigate whether or not shared experiences with weatherization have the power to stimulate home energy saving action within an individual’s social network.« less

  1. Climate-induced variations in global wildfire danger from 1979 to 2013

    PubMed Central

    Jolly, W. Matt; Cochrane, Mark A.; Freeborn, Patrick H.; Holden, Zachary A.; Brown, Timothy J.; Williamson, Grant J.; Bowman, David M. J. S.

    2015-01-01

    Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate. PMID:26172867

  2. The quiet revolution of numerical weather prediction.

    PubMed

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-03

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  3. Predictability Experiments With the Navy Operational Global Atmospheric Prediction System

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Gelaro, R.; Rosmond, T. E.

    2003-12-01

    There are several areas of research in numerical weather prediction and atmospheric predictability, such as targeted observations and ensemble perturbation generation, where it is desirable to combine information about the uncertainty of the initial state with information about potential rapid perturbation growth. Singular vectors (SVs) provide a framework to accomplish this task in a mathematically rigorous and computationally feasible manner. In this study, SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS). The analysis error variance information produced by the NRL Atmospheric Variational Data Assimilation System is used as the initial-time SV norm. These VAR SVs are compared to SVs for which total energy is both the initial and final time norms (TE SVs). The incorporation of analysis error variance information has a significant impact on the structure and location of the SVs. This in turn has a significant impact on targeted observing applications. The utility and implications of such experiments in assessing the analysis error variance estimates will be explored. Computing support has been provided by the Department of Defense High Performance Computing Center at the Naval Oceanographic Office Major Shared Resource Center at Stennis, Mississippi.

  4. Increasing Diversity in Global Climate Change, Space Weather and Space Technology Research and Education

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Austin, S. A.; Howard, A. M.; Boxe, C.; Jiang, M.; Tulsee, T.; Chow, Y. W.; Zavala-Gutierrez, R.; Barley, R.; Filin, B.; Brathwaite, K.

    2015-12-01

    This presentation describes projects at Medgar Evers College of the City University of New York that contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, space weather and space technology. Specific projects incorporating both undergraduate and high school students include Assessing Parameterizations of Energy Input to Internal Ocean Mixing, Reaction Rate Uncertainty on Mars Atmospheric Ozone, Remote Sensing of Solar Active Regions and Intelligent Software for Nano-satellites. These projects are accompanied by a newly developed Computational Earth and Space Science course to provide additional background on methodologies and tools for scientific data analysis. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium.

  5. Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (NDP-078 and 078A)

    DOE Data Explorer

    Cushman, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), Carbon Dioxide Information Analysis Center, Environmental Sciences Division; Hanson, Paul J. [Oak Ridge National Laboratory, Oak Ridge, TN (USA), Environmental Sciences Division; Todd, Donald E. [Oak Ridge National Laboratory, Oak Ridge, TN (USA), Environmental Sciences Division; Riggs, Jeffery S. [Oak Ridge National Laboratory, Oak Ridge, TN (USA), Instrumentation and Controls Division; Wolfe, Mark E. [Tennessee Valley Authority, Norris, TN (USA); O'Neill, Elizabeth G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), Environmental Sciences Division

    2001-07-01

    This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS(TM) access codes are provided to read the ASCII data files.

  6. Predictable weathering of puparial hydrocarbons of necrophagous flies for determining the postmortem interval: a field experiment using Chrysomya rufifacies.

    PubMed

    Zhu, Guang-Hui; Jia, Zheng-Jun; Yu, Xiao-Jun; Wu, Ku-Sheng; Chen, Lu-Shi; Lv, Jun-Yao; Eric Benbow, M

    2017-05-01

    Preadult development of necrophagous flies is commonly recognized as an accurate method for estimating the minimum postmortem interval (PMImin). However, once the PMImin exceeds the duration of preadult development, the method is less accurate. Recently, fly puparial hydrocarbons were found to significantly change with weathering time in the field, indicating their potential use for PMImin estimates. However, additional studies are required to demonstrate how the weathering varies among species. In this study, the puparia of Chrysomya rufifacies were placed in the field to experience natural weathering to characterize hydrocarbon composition change over time. We found that weathering of the puparial hydrocarbons was regular and highly predictable in the field. For most of the hydrocarbons, the abundance decreased significantly and could be modeled using a modified exponent function. In addition, the weathering rate was significantly correlated with the hydrocarbon classes. The weathering rate of 2-methyl alkanes was significantly lower than that of alkenes and internal methyl alkanes, and alkenes were higher than the other two classes. For mono-methyl alkanes, the rate was significantly and positively associated with carbon chain length and branch position. These results indicate that puparial hydrocarbon weathering is highly predictable and can be used for estimating long-term PMImin.

  7. Global engineering education programs: More than just international experiences

    NASA Astrophysics Data System (ADS)

    McNeill, Nathan J.

    Engineers in both industry and academia recognize the global nature of the profession. This has lead to calls for engineering students to develop knowledge, skills, and attitudes necessary for success within a global profession. Many institutions are developing globally oriented programs specifically for their engineering students and are eager to know if these programs are helping their students to develop attributes that meet their program objectives, accreditation requirements, and the needs and desires of prospective employers. Administrators of such programs currently lack research data to support the learning objectives they are setting for their programs. This study documented the individual experiences and learning outcomes of students involved in three global education programs for engineering students. The first program provided a portfolio of experiences including foreign language instruction, one semester of study abroad, internships in the U.S. and abroad, and a two-semester global team design project. The second program was a one semester study abroad program in China, and the third was a global service project whose purpose was to design an irrigation system for two small farms in Rwanda. The research questions guiding this study were: 1. What specific knowledge, skills, and attitudes are students gaining from participation in their respective global engineering programs? 2. What kinds of experiences are resulting in these learning outcomes? Interviews were used to elicit the experiences and learning outcomes of participants in this study. Program administrators were also interviewed for their perspectives on the experiences and learning outcomes of participants for the purpose of triangulation. The study identified more than 50 outcomes that resulted from students' experiences in these three programs. The most prevalent outcomes across all three programs included knowledge of culture, openness to new experiences and other cultures, and communication

  8. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS)

    DTIC Science & Technology

    2016-09-01

    Laboratory Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS) by JL Cogan...analysis. As expected, accuracy generally tended to decline as the large-scale data aged , but appeared to improve slightly as the age of the large...19 Table 7 Minimum and maximum mean RMDs for each WRF time (or GFS data age ) category. Minimum and

  9. Assessing Space Weather Applications and Understanding: IMF Bz at L1

    NASA Astrophysics Data System (ADS)

    Riley, P.; Savani, N.; Mays, M. L.; Austin, H. J.

    2017-12-01

    The CCMC - International (CCMC-I) is designed as a self-organizing informal forum for facilitating novel global initiatives on space weather research, development, forecasting and education. Here we capitalize on CCMC'AGUs experience in providing highly utilized web-based services, leadership and trusted relationships with space weather model developers. One of the CCMC-I initiatives is the International Forum for Space Weather Capabilities Assessment. As part of this initiative, within the solar and heliosphere domain, we focus our community discussion on forecasting the magnetic structure of interplanetary CMEs and the ambient solar wind. During the International CCMC-LWS Working Meeting in April 2017 the group instigated open communication to agree upon a standardized process by which all current and future models can be compared under an unbiased test. In this poster, we present our initial findings how we expect different models will move forward with validating and forecasting the magnetic vectors of the solar wind at L1. We also present a new IMF Bz Score-board which will be used to assist in the transitioning of research models into more operational settings.

  10. Progress in space weather predictions and applications

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  11. Weather Fundamentals: Rain & Snow. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) gives concise explanations of the various types of precipitation and describes how the water…

  12. Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite…

  13. Weather Safety - NOAA's National Weather Service

    Science.gov Websites

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Safety Weather Safety This page weather safety. StormReady NOAA Weather Radio Emergency Managers Information Network U.S. Hazard Assmt

  14. Mars Weather Map, Aug. 4, 2012

    NASA Image and Video Library

    2012-08-05

    This global map of Mars was acquired on Aug. 4, 2012, by the Mars Color Imager instrument on NASA Mars Reconnaissance Orbiter to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.

  15. Extreme weather events and infectious disease outbreaks.

    PubMed

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  16. Comparison of Selected Weather Translation Products

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    2017-01-01

    Weather is a primary contributor to the air traffic delays within the National Airspace System (NAS). At present, it is the individual decision makers who use weather information and assess its operational impact in creating effective air traffic management solutions. As a result, the estimation of the impact of forecast weather and the quality of ATM response relies on the skill and experience level of the decision maker. FAA Weather-ATM working groups have developed a Weather-ATM integration framework that consists of weather collection, weather translation, ATM impact conversion and ATM decision support. Some weather translation measures have been developed for hypothetical operations such as decentralized free flight, whereas others are meant to be relevant in current operations. This paper does comparative study of two different weather translation products relevant in current operations and finds that these products have strong correlation with each other. Given inaccuracies in prediction of weather, these differences would not be expected to be of significance in statistical study of a large number of decisions made with a look-ahead time of two hours or more.

  17. Weathering in Monsoonal Rivers : The Mekong

    NASA Astrophysics Data System (ADS)

    Relph, K.; Tipper, E.; Bickle, M. J.; Parsons, D. R.; Darby, S. E.; Robinson, R. A. J.

    2017-12-01

    The magnitude of the global total CO2 flux from silicate and carbonate weathering remains uncertain partly because there is a lack of samples from some of the largest rivers in the world. The Mekong is the worlds 12th largest river by discharge [1]. Despite its global significance, published chemical weathering rates are contradictory and isotopic data is sparse. To better constrain the chemical weathering fluxes and rates in the Mekong we sampled tributaries and the Mekong main channel in Laos, Cambodia, Thailand and China in 2014, 2016 and 2017. Here we present 87Sr/86Sr ratios and major cations and anions. This new data and a historic time series collected between 1985 and 2000 by the Mekong River Commission and published data from China [2] are used to characterise 1) the geochemical and hydrological spatial and temporal signatures, 2) the carbonate and silicate weathering rates and 3) the carbon (HCO3-) flux of the Mekong basin. The magnitude of the chemical inputs from rainfall and weathering of silicates, carbonates and evaporates have been calculated using a simple forward model assuming cation ratios of the weathering inputs given by [1]. The upper (Tibet to Northern Thailand), middle (Laos) and lower (Cambodia) regions of the Mekong vary in size, discharge and weathering signatures. 34% of the total carbon flux, 31% of the carbonate, 36% of the silicate carbon fluxes but only 20% of the basin discharge originates in the upper Mekong. The middle Mekong contributes 49% of the discharge, 44% of the carbonate and 32% of the silicate carbon fluxes. The lower Mekong contributes 31% of the discharge, 32% of the silicate carbon flux but only 15% of the carbonate carbon flux. The Mekong transports comparable amounts of CO2, via carbonate weathering, to the Brahmaputra and the Ganges; some of which is likely derived by weathering with sulphuric acid. 87Sr/86Sr isotopic ratios at the river mouth vary from 0.71041 to 0.71083 with a systematic increase during the

  18. The weather-stains of care: interpreting the meaning of bad weather for front-line health care workers in rural long-term care.

    PubMed

    Joseph, Gillian M; Skinner, Mark W; Yantzi, Nicole M

    2013-08-01

    This paper addresses the gap in health services and policy research about the implications of everyday weather for health care work. Building on previous research on the weather-related challenges of caregiving in homes and communities, it examines the experiences of 'seasonal bad weather' for health care workers in long-term care institutions. It features a hermeneutic phenomenology analysis of six transcripts from interviews with nurses and personal support workers from a qualitative study of institutional long-term care work in rural Canada. Focussing on van Manen's existential themes of lived experience (body, relations, space, time), the analysis reveals important contradictions between the lived experiences of health care workers coping with bad weather and long-term care policies and practices that mitigate weather-related risk and vulnerability. The findings contribute to the growing concern for rural health issues particularly the neglected experiences of rural health providers and, in doing so, offer insight into the recent call for greater attention to the geographies of health care work. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  20. Application of dynamical systems theory to global weather phenomena revealed by satellite imagery

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel; Tang, Chung-Muh

    1989-01-01

    Theoretical studies of low frequency and seasonal weather variability; dynamical properties of observational and general circulation model (GCM)-generated records; effects of the hydrologic cycle and latent heat release on extratropical weather; and Earth-system science studies are summarized.

  1. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  2. Chemical weathering and CO₂ consumption in the Lower Mekong River.

    PubMed

    Li, Siyue; Lu, X X; Bush, Richard T

    2014-02-15

    Data on river water quality from 42 monitoring stations in the Lower Mekong Basin obtained during the period 1972-1996 was used to relate solute fluxes with controlling factors such as chemical weathering processes. The total dissolved solid (TDS) concentration of the Lower Mekong varied from 53 mg/L to 198 mg/L, and the median (114 mg/L) was compared to the world spatial median value (127 mg/L). Total cationic exchange capacity (Tz(+)) ranged from 729 to 2,607 μmolc/L, and the mean (1,572 μmolc/L) was 1.4 times higher than the world discharge-weighted average. Calcium and bicarbonate dominated the annual ionic composition, accounting for ~70% of the solute load that equalled 41.2×10(9)kg/y. TDS and major elements varied seasonally and in a predictable way with river runoff. The chemical weathering rate of 37.7t/(km(2)y), with respective carbonate and silicate weathering rates of 27.5t/(km(2) y) (13.8mm/ky) and 10.2t/(km(2) y) (3.8mm/ky), was 1.5 times higher than the global average. The CO2 consumption rate was estimated at 191×10(3)molCO2/(km(2)y) for silicate weathering, and 286×10(3)molCO2/(km(2)y) by carbonate weathering. In total, the Mekong basin consumed 228×10(9)molCO2/y and 152×10(9)molCO2/y by the combined weathering of carbonate and silicate, constituting 1.85% of the global CO2 consumption by carbonate weathering and 1.75% by silicates. This is marginally higher than its contribution to global water discharge ~1.3% and much higher than (more than three-fold) its contribution to world land surface area. Remarkable CO2 consumed by chemical weathering (380×10(9)mol/y) was similar in magnitude to dissolved inorganic carbon as HCO3(-) (370×10(9)mol/y) exported by the Mekong to the South China Sea. In this landscape, atmospheric CO2 consumption by rock chemical weathering represents an important carbon sink with runoff and physical erosion controlling chemical erosion. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  4. Space Weathering in the Thermal Infrared: Lessons from LRO Diviner and Next Steps

    NASA Astrophysics Data System (ADS)

    Greenhagen, B. T.; Lucey, P. G.; Glotch, T. D.; Arnold, J. A.; Bowles, N. E.; Donaldson Hanna, K. L.; Shirley, K. A.

    2018-04-01

    Global data from the LRO Diviner show that the thermal infrared is affected by space weathering. We will present and discuss hypotheses for the unanticipated space weathering dependence and next steps.

  5. A Simple Ensemble Simulation Technique for Assessment of Future Variations in Specific High-Impact Weather Events

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kenji

    2018-04-01

    To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.

  6. Space Weather Activities at SERC for IHY: (1) Local Education, (2) Global Outreach and (3) Data Base Service (P61)

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Magdas/Cpmn Group

    2006-11-01

    arnoldyuki@serc.kyushu-u.ac.jp The Space Environment Research Center (SERC), Kyushu University (KU), conducts everyday space weather “now casting”. There are two main goals in this effort: (1) to train and educate KU students about the complexities of the Sun-Earth system so that they can become space weather forecasters in the future, (2) to globally disseminate space weather information from SERC as a service to the scientific community and the general public. In order to understand the complexities of the Sun-Earth system, KU students analyze the data of four regions: (1) solar surface, (2) solar wind, (3) geospace, and (4) the Earth’s surface. Using real-time public data from SOHO Real Time Movies, Solar Monitor, NASA/GSFC/SDAC, and SEC‘s Anonymous FTP Server, they check each day the Sun Spot Number, locations of active regions and coronal holes, and identify solar flare events: GOES X-Ray Flux, CME: SOHO/ LASCO- C2, 3, and Proton Event: GOES Proton Flux. By analyzing ACE Real Time Data, KU students examine the solar wind (Speed, Density, Temperature) and Interplanetary Magnetic Field (IMF: Bt, Bz, Phi), and identify events of sector boundary, CIR, CME, and Shock/Discontinuity. To understand magnetic circumstances in geospace and on the Earth’s Surface, KU students analyze storms and substorms using Dst index (Kyoto Univ.), Kp index (NOAA), and Magnetic Pulsation Index (Pc 3, 4, and 5: SERC). Every morning KU students create a space weather report and then discuss it with the staff at SERC for local training and education. The report and its details are disseminated on the SERC Home Page (http://www.serc.kyushu-u.ac.jp) to provide "global outreach" for space weather information. MAGDAS (Magnetic Data Acquisition System) data are obtained from the Circum-pan Pacific Magnetometer Network (CPMN) locations during the IHY period (2007-2008). MAGDAS magnetometers are installed at 50 stations along the 210o magnetic meridian and the magnetic dip equator

  7. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  8. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE PAGES

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; ...

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  9. The scientific challenges to forecasting and nowcasting the solar origins of space weather (Invited)

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Title, A. M.

    2013-12-01

    With the full-sphere continuous coverage of the Sun achieved by combining SDO and STEREO imagery comes the realization that solar activity is a manifestation of local processes that respond to long-range if not global influences. Numerical experiments provide insights into these couplings, as well as into the intricacies of destabilizations of field emerging into pre-existing configurations and evolving within the context of their dynamic surroundings. With these capabilities grows an understanding of the difficulties in forecasting of the solar origins of space weather: we need assimilative global non-potential field models, but our observational resources are too limited to meet that need.

  10. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Halverson, Galen P.; Stevenson, Ross K.; Vokaty, Michelle; Poirier, André; Kunzmann, Marcus; Li, Zheng-Xiang; Denyszyn, Steven W.; Strauss, Justin V.; Macdonald, Francis A.

    2016-07-01

    Atmospheric CO2 levels and global climate are regulated on geological timescales by the silicate weathering feedback. However, this thermostat has failed multiple times in Earth's history, most spectacularly during the Cryogenian (c. 720-635 Ma) Snowball Earth episodes. The unique middle Neoproterozoic paleogeography of a rifting, low-latitude, supercontinent likely favored a globally cool climate due to the influence of the silicate weathering feedback and planetary albedo. Under these primed conditions, the emplacement and weathering of extensive continental flood basalt provinces may have provided the final trigger for runaway global glaciation. Weathering of continental flood basalts may have also contributed to the characteristically high carbon isotope ratios (δ13 C) of Neoproterozoic seawater due to their elevated P contents. In order to test these hypotheses, we have compiled new and previously published Neoproterozoic Nd isotope data from mudstones in northern Rodinia (North America, Australia, Svalbard, and South China) and Sr isotope data from carbonate rocks. The Nd isotope data are used to model the mafic detrital input into sedimentary basins in northern Rodinia. The results reveal a dominant contribution from continental flood basalt weathering during the ca. 130 m.y. preceding the onset of Cryogenian glaciation, followed by a precipitous decline afterwards. These data are mirrored by the Sr isotope record, which reflects the importance of chemical weathering of continental flood basalts on solute fluxes to the early-middle Neoproterozoic ocean, including a pulse of unradiogenic Sr input into the oceans just prior to the onset of Cyrogenian glaciation. Hence, our new data support the hypotheses that elevated rates of flood basalt weathering contributed to both the high average δ13 C of seawater in the Neoproterozoic and to the initiation of the first (Sturtian) Snowball Earth.

  11. Evaluating climate models: Should we use weather or climate observations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Robert J; Erickson III, David J

    2009-12-01

    Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their abilitymore » to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.« less

  12. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada)

    NASA Astrophysics Data System (ADS)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  13. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada).

    PubMed

    Hewer, Micah J; Scott, Daniel J; Gough, William A

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  14. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (control group results). [weather forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions. An economic experiment was carried out which will monitor citrus growers' decisions, actions, costs and losses, and meteorological forecasts and actual weather events and will establish the economic benefits of improved temperature forecasts. A summary is given of the economic experiment, the results obtained to date, and the work which still remains to be done. Specifically, the experiment design is described in detail as are the developed data collection methodology and procedures, sampling plan, data reduction techniques, cost and loss models, establishment of frost severity measures, data obtained from citrus growers, National Weather Service, and Federal Crop Insurance Corp., resulting protection costs and crop losses for the control group sample, extrapolation of results of control group to the Florida citrus industry and the method for normalization of these results to a normal or average frost season so that results may be compared with anticipated similar results from test group measurements.

  15. Is This Global Warming? Communicating the Intangibles of Climate Change

    NASA Astrophysics Data System (ADS)

    Warner, L.; Henson, R.

    2004-05-01

    Unlike weather, which is immediate, tangible, and relevant on a daily basis, climate change is long-term, slow to evolve, and often difficult to relate to the public's daily concerns. By explaining global-change research to wide and diverse audiences through a variety of vehicles, including publications, exhibits, Web sites, and television B-roll, UCAR has gained experience and perspective on the challenges involved. This talk will explore some of the lessons learned and some of the key difficulties that face global-change communicators, including: --The lack of definitive findings on regional effects of global change -- The long time frame in which global change plays out, versus the short attention span of media, the public, and policy makers --The use of weather events as news pegs (they pique interest, but they may not be good exemplars of global change and are difficult to relate directly to changes in greenhouse-gas emissions) --The perils of the traditional journalistic technique of point-counterpoint in discussing climate change --The presence of strong personal/political convictions among various interest groups and how these affect the message(s) conveyed

  16. VNIR hyperspectral background characterization methods in adverse weather conditions

    NASA Astrophysics Data System (ADS)

    Romano, João M.; Rosario, Dalton; Roth, Luz

    2009-05-01

    Hyperspectral technology is currently being used by the military to detect regions of interest where potential targets may be located. Weather variability, however, may affect the ability for an algorithm to discriminate possible targets from background clutter. Nonetheless, different background characterization approaches may facilitate the ability for an algorithm to discriminate potential targets over a variety of weather conditions. In a previous paper, we introduced a new autonomous target size invariant background characterization process, the Autonomous Background Characterization (ABC) or also known as the Parallel Random Sampling (PRS) method, features a random sampling stage, a parallel process to mitigate the inclusion by chance of target samples into clutter background classes during random sampling; and a fusion of results at the end. In this paper, we will demonstrate how different background characterization approaches are able to improve performance of algorithms over a variety of challenging weather conditions. By using the Mahalanobis distance as the standard algorithm for this study, we compare the performance of different characterization methods such as: the global information, 2 stage global information, and our proposed method, ABC, using data that was collected under a variety of adverse weather conditions. For this study, we used ARDEC's Hyperspectral VNIR Adverse Weather data collection comprised of heavy, light, and transitional fog, light and heavy rain, and low light conditions.

  17. Satellite Broadcast of Graphical Weather Data Flight Tested

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    2000-01-01

    satellites are the most powerful communications satellites produced to date, allowing users to receive signals using simple, low-cost patch antennas instead of more expensive, beam-steered antenna arrays. Engineers connected an inexpensive, commercially available radio receiver to a laptop computer and an antenna designed and built by Rockwell Collins, enabling them to receive WorldSpace signals from the AfriStar satellite during flight tests. WorldSpace broadcast their composite color graphical weather data files, which were multiplexed with normal audio streams, to the flat patch antenna mounted on a single-engine aircraft. The aircraft was equipped with a modified commercial S-DARS receiver, a Global Positioning Satellite (GPS) receiver, and a laptop computer with color display. Continuous data reception occurred during normal aircraft maneuvers performed throughout takeoff, cruise, and landing operations. In addition, engineers monitored receiver power levels during steep turns and banks. In most instances, the receiver was able to maintain acceptable power levels during all phases of flight and to obtain weather data with little or with the successful completion of ground and flight testing of a receiver and antenna in Johannesburg, South Africa, the team has started to prepare for experiments using highspeed aircraft in areas of the world with limited access to timely weather data. NASA plans to provide a more advanced antenna design and consultation support. This successful test of real-time aviation-related weather data is a positive step toward solving communications-specific issues associated with the dissemination of weather data directly to the cockpit.

  18. Spacebuoy: A University Nanosat Space Weather Mission (III)

    DTIC Science & Technology

    2013-10-11

    ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air Force... ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air...Mission Objectives • Provide critical space weather data for use in ionospheric forecasting efforts, particularly assimilated data used in the GAIM

  19. Integration of Weather Avoidance and Traffic Separation

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  20. GEM-AQ, an On-line Global Multiscale Chemical Weather System: Model Description and Evaluation of Gas Phase Chemistry Processes

    NASA Astrophysics Data System (ADS)

    Neary, L.; Kaminski, J. W.; Struzewska, J.; Ainslie, B.; McConnell, J. C.

    2007-12-01

    Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale model. The integrated model, GEM-AQ, has been developed as a platform to investigate chemical weather at scales from global to urban. On the global scale, the model was exercised for five years (2001-2005) to evaluate its ability to simulate seasonal variations and regional distributions of trace gases such as ozone, nitrogen dioxide and carbon monoxide. The model results are compared with observations from satellites, aircraft measurement campaigns and balloon sondes. The same model has also been evaluated on the regional (~15km resolution) and urban scale (~3km resolution). A simulation of the formation and transport of photooxidants during the European heat wave of 2006 was performed and compared with surface observations throughout central and eastern Europe. The complex topographic region of the Lower Fraser Valley in British Columbia was the focus of another model evaluation during the PACIFIC 2001 field campaign. Comparison of model results with observations during this period will be shown.

  1. NASA's Sentinels Monitoring Weather and Climate: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Herring, David; Gutro, Rob; Huffman, George; Halverson, Jeff

    2002-01-01

    Weatherwise is probably the most popular newstand magazine focusing on the subject of weather. It is published six times per year and includes features on weather, climate, and technology. This article (to appear in the January/February Issue) provides a comprehensive review of NASA s past, present, and future contributions in satellite remote sensing for weather and climate processes. The article spans the historical strides of the TIROS program through the scientific and technological innovation of Earth Observer-3 and Global Precipitation Measurement (GPM). It is one of the most thorough reviews of NASA s weather and climate satellite efforts to appear in the popular literature.

  2. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    NASA Astrophysics Data System (ADS)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  3. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  4. Rainmakers: why bad weather means good productivity.

    PubMed

    Lee, Jooa Julia; Gino, Francesca; Staats, Bradley R

    2014-05-01

    People believe that weather conditions influence their everyday work life, but to date, little is known about how weather affects individual productivity. Contrary to conventional wisdom, we predict and find that bad weather increases individual productivity and that it does so by eliminating potential cognitive distractions resulting from good weather. When the weather is bad, individuals appear to focus more on their work than on alternate outdoor activities. We investigate the proposed relationship between worse weather and higher productivity through 4 studies: (a) field data on employees' productivity from a bank in Japan, (b) 2 studies from an online labor market in the United States, and (c) a laboratory experiment. Our findings suggest that worker productivity is higher on bad-, rather than good-, weather days and that cognitive distractions associated with good weather may explain the relationship. We discuss the theoretical and practical implications of our research. (c) 2014 APA, all rights reserved.

  5. Nutrient inputs via rock weathering point to enhanced CO2 uptake capacity of the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Dass, P.; Houlton, B. Z.; Wang, Y.; Pak, B. C.; Morford, S.

    2016-12-01

    Empirical evidence of widespread scarcity of nitrogen (N) and phosphorus (P) availability in natural land ecosystems constrains the carbon dioxide (CO2) uptake capacity of the global biosphere. Recent studies have pointed to the importance of rock weathering in supplying both N and P to terrestrial soils and vegetation; however, the potential for N and P to rapidly weather from different rocks and thereby alter the global carbon (C) cycle remains an open question, particularly at the global scale. Here, we combine empirical measurements and a new global simulation model to quantify the flux of N and P released from rocks to the terrestrial biosphere. Our model considers the role of tectonic uplift and physical and chemical weathering on rock nutrient cycling by using a probabilistic approach that is anchored in watershed-scale 10Be and Na data from the world's rivers. We use USGS DEM data for relief, monthly averaged MODIS evapotranspiration data and global precipitation datasets. Based on simulations using mean climate data for the past 10 years, we estimate annual values of 11 Tg of N and 6 Tg of P to weather from rocks to the terrestrial biosphere. The rate of N weathering rivals that of atmospheric N deposition in natural ecosystems, and the P weathering flux is approximately 6 times higher than prior estimates based on a modeling approach where the chemical weathering is dependant on lithology and runoff with further factors correcting for soil shielding and temperature. The increase in nutrient inputs we simulate reveals an important role for rock weathering to support new production in terrestrial ecosystems, and thereby allow for additional CO2 uptake in sectors of the biosphere where weathering rates are substantial. Given that current generation of models are yet to consider how short-term weathering of rocks can affect nutrient limited C storage, these results will help to advance the geochemical aspects of carbon-climate feedback this century. Moreover

  6. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Vivit, D.V.; Stonestrom, David A.; Larsen, M.; Murphy, S.F.; Eberl, D.

    1998-01-01

    The pristine Rio Icacos watershed in the Luquillo Mountains in eastern Puerto Rico has the fastest documented weathering rate of silicate rocks on the Earth's surface. A regolith propagation rate of 58 m Ma-1 calculated from iso-volumetric saprolite formation from quartz diorite, is comparable to the estimated denudation rate (25-50 Ma-1) but is an order of magnitude faster than the global average weathering rate (6 Ma-1). Weathering occurs in two distinct environments; plagioclase and hornblende react at the saprock interface and biotite and quartz weather in the overlying thick saprolitic regolith. These environments produce distinctly different water chemistries, with K, Mg, and Si increasing linearly with depth in saprolite porewaters and with stream waters dominated by Ca, Na, and Si. Such differences are atypical of less intense weathering in temperate watersheds. Porewater chemistry in the shallow regolith is controlled by closed-system recycling of inorganic nutrients such as K. Long-term elemental fluxes through the regolith (e.g., Si = 1.7 ?? 10-8 moles m-2 s-1) are calculated from mass losses based on changes in porosity and chemistry between the regolith and bedrock and from the age of the regolith surface (200 Ma). Mass losses attributed to solute fluxes are determined using a step-wise infiltration model which calculates mineral inputs to the shallow and deep saprolite porewaters and to stream water. Pressure heads decrease with depth in the shallow regolith (-2.03 m H2O m-1), indicating that both increasing capillary tension and graviometric potential control porewater infiltration. Interpolation of experimental hydraulic conductivities produces an infiltration rate of 1 m yr-1 at average field moisture saturation which is comparable with LiBr tracer tests and with base discharge from the watershed. Short term weathering fluxes calculated from solute chemistries and infiltration rates (e.g., Si = 1.4 ?? 10-8 moles m-2 s-1) are compared to watershed

  7. Public perceptions of climate change and extreme weather events

    NASA Astrophysics Data System (ADS)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  8. Current gaps in understanding and predicting space weather: An operations perspective

    NASA Astrophysics Data System (ADS)

    Murtagh, W. J.

    2016-12-01

    The NOAA Space Weather Prediction Center (SWPC), one of the nine National Weather Service (NWS) National Centers for Environmental Prediction, is the Nation's official source for space weather alerts and warnings. Space weather effects the technology that forms the backbone of global economic vitality and national security, including satellite and airline operations, communications networks, and the electric power grid. Many of SWPC's over 48,000 subscribers rely on space weather forecasts for critical decision making. But extraordinary gaps still exist in our ability to meet customer needs for accurate and timely space weather forecasts and warnings. The 2015 National Space Weather Strategy recognizes that it is imperative that we improve the fundamental understanding of space weather and increase the accuracy, reliability, and timeliness of space-weather observations and forecasts in support of the growing demands. In this talk we provide a broad perspective of the key challenges that currently limit the forecaster's ability to better understand and predict space weather. We also examine the impact of these limitations on the end-user community.

  9. 2011 Space Weather Workshop to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2011-04-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 26-29 April 2011. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda will include presentations on space weather impacts on the Global Positioning System (GPS), the Solar Terrestrial Relations Observatory's (STEREO) mission milestone of a 360° view of the Sun, the latest from NASA's Solar Dynamics Observatory (SDO), and space weather impacts on emergency response by the Federal Emergency Management Agency (FEMA). Additionally, the vulnerabilities of satellites and the power grid to space weather will be addressed. Additional highlights will include the Commercial Space Weather Interest Group's (CSWIG) roundtable session and a presentation from the Office of the Federal Coordinator for Meteorology (OFCM). The CSWIG roundtable session on the growth of the space weather enterprise will feature distinguished panelists. As always, lively interaction between the audience and the panel is anticipated. The OFCM will present the National Space Weather Program's new strategic plan.

  10. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    NASA Astrophysics Data System (ADS)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  11. Enhanced weathering strategies for cooling the planet and saving coral reefs

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Quirk, J.; Thorley, R.; Kharecha, P. A.; Hansen, J. E.; Ridgwell, A. J.; Lomas, M.; Banwart, S. A.

    2014-12-01

    Acceleration of the chemical weathering sink for atmospheric CO2 via distribution of pulverized silicate rocks across terrestrial landscapes has been proposed as a macro-engineering Carbon Dioxide Removal (CDR) scheme, but its effectiveness and response to ongoing global change is poorly understood. We employ a detailed spatially resolved weathering model driven by two ensemble Representative Concentration Pathway (RCP) projections of 21st Century climate (RCP8.5 and RCP4.5) to assess enhanced weathering and examine feedbacks on atmospheric CO2 and ocean carbonate biogeochemistry. Atmospheric CO2 reduction of ~100-260 ppm by year 2100, the range depending mainly on rock composition, is obtained by spreading 5 kg m-2 yr-1 over 20 Mkm2 tropical weathering 'hotspots'. Ocean acidification is neutralized in RCP4.5 and ameliorated in RCP8.5 due to enhanced land-ocean export of weathered alkalinity products and reduced CO2 forcings, and the aragonite saturation state of surface oceans is raised to >3.5, thus avoiding likely extinction of coral reef ecosystems. We suggest that accelerated weathering has substantial potential to help limit global warming and benefits to marine life not obtained from other CDR approaches, but major issues of cost, social acceptability, and potential unanticipated consequences should encourage urgent efforts to phase down fossil fuel emissions.

  12. Flat world versus real world : where is weathering the most important ?

    NASA Astrophysics Data System (ADS)

    Godderis, Yves; Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-04-01

    Mountain ranges are a key driver of the Earth climates. Acting on a large range of timescales, they modulate the atmospheric and oceanic circulations but also plays a crucial role in regulating the geological carbon cycle through their impacts on erosion and continental weathering. Since the 90's, there is an ongoing debate about the role of the mountain uplift on the long term global cooling of the Earth climate. Mountain ranges are thought to enhance silicate weathering and the associated CO2 consumption. But this has been repeatedly questioned in the recent years. Here we present a new method for modeling the spatial distribution of both physical erosion and coupled chemical weathering. The IPSL ocean-atmosphere model calculates the continental climate, which is used to force the erosion/weathering model. We first compare the global silicate weathering for two geographical configurations: the present-day world with mountain ranges, and a world where all mountains have been removed. Depending on the chosen formalism for silicate weathering and on the climate changes linked to the removal of mountains, it can be higher in the flat world than in the real world, or up to 5 times weaker. In the second part of the talk, we will explore the role of the Hercynian mountain range on the onset and demise of the late Paleozoic ice age, within the context of the Pangea assembly.

  13. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  14. Recent improvement and projected worsening of weather in the United States.

    PubMed

    Egan, Patrick J; Mullin, Megan

    2016-04-21

    As climate change unfolds, weather systems in the United States have been shifting in patterns that vary across regions and seasons. Climate science research typically assesses these changes by examining individual weather indicators, such as temperature or precipitation, in isolation, and averaging their values across the spatial surface. As a result, little is known about population exposure to changes in weather and how people experience and evaluate these changes considered together. Here we show that in the United States from 1974 to 2013, the weather conditions experienced by the vast majority of the population improved. Using previous research on how weather affects local population growth to develop an index of people’s weather preferences, we find that 80% of Americans live in counties that are experiencing more pleasant weather than they did four decades ago. Virtually all Americans are now experiencing the much milder winters that they typically prefer, and these mild winters have not been offset by markedly more uncomfortable summers or other negative changes. Climate change models predict that this trend is temporary, however, because US summers will eventually warm more than winters. Under a scenario in which greenhouse gas emissions proceed at an unabated rate (Representative Concentration Pathway 8.5), we estimate that 88% of the US public will experience weather at the end of the century that is less preferable than weather in the recent past. Our results have implications for the public’s understanding of the climate change problem, which is shaped in part by experiences with local weather. Whereas weather patterns in recent decades have served as a poor source of motivation for Americans to demand a policy response to climate change, public concern may rise once people’s everyday experiences of climate change effects start to become less pleasant.

  15. The National Eclipse Weather Experiment: use and evaluation of a citizen science tool for schools outreach.

    PubMed

    Portas, Antonio M; Barnard, Luke; Scott, Chris; Harrison, R Giles

    2016-09-28

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as 'captivated' or 'inspired' by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  16. Space Weather Workshop 2010 to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2010-03-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 27-30 April 2010. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda include ionospheric storms and their impacts on the Global Navigation Satellite System (GNSS), an update on NASA's recently launched Solar Dynamics Observatory (SDO), and new space weather-related activities in the Federal Emergency Management Agency (FEMA). Also this year, the Commercial Space Weather Interest Group will feature a presentation by former NOAA administrator, Vice Admiral Conrad Lautenbacher, U.S. Navy (Ret.).

  17. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip.

    PubMed

    Zamora, Jane Louie Fresco; Kashihara, Shigeru; Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values.

  18. Vulnerability of Bread-Baskets to Weather Shocks

    NASA Astrophysics Data System (ADS)

    Gerber, J. S.; Ray, D. K.; West, P. C.; Foley, J. A.

    2013-12-01

    Many analyses of food security consider broad trends in food supply (crop production, crop use) and demand (changing diets, population growth.) However, if past shocks to the food system due to weather events (i.e. droughts) were to repeat themselves today, the resulting famines could be far more serious due to increased concentration of grain production in vulnerable bread-baskets, and decreased resilience of global and regional food systems (i.e. lower stocks, dependence on fewer crops). The present research project takes advantage of high-resolution historical weather datasets to assess probabilities of historically observed droughts repeating themselves in one or more of today's bread-basket regions. Using recently developed relationships between weather and crop yield, we consider the likelihood of region-wide crop failures under current conditions, and also under various climate scenarios.

  19. Regulating continent growth and composition by chemical weathering

    PubMed Central

    Lee, Cin-Ty Aeolus; Morton, Douglas M.; Little, Mark G.; Kistler, Ronald; Horodyskyj, Ulyana N.; Leeman, William P.; Agranier, Arnaud

    2008-01-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms. PMID:18362343

  20. Regulating continent growth and composition by chemical weathering

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Little, M.G.; Kistler, R.; Horodyskyj, U.N.; Leeman, W.P.; Agranier, A.

    2008-01-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms. ?? 2008 by The National Academy of Sciences of the USA.

  1. Introduction to Global Urban Climatology

    NASA Astrophysics Data System (ADS)

    Varquez, A. C. G.; Kanda, M.; Kawano, N.; Darmanto, N. S.; Dong, Y.

    2016-12-01

    Urban heat island (UHI) is a widely investigated phenomenon in the field of urban climate characterized by the warming of urban areas relative to its surrounding rural environs. Being able to understand the mechanism behind the UHI formation of a city and distinguish its impact from that of global climate change is indispensable when identifying adaptation and mitigation strategies. However, the lack of UHI studies many cities especially for developing countries makes it difficult to generalize the mechanism for UHI formation. Thus, there is an impending demand for studies that focus on the simultaneous analyses of UHI and its trends throughout the world. Hence, we propose a subfield of urban climatology, called "global urban climatology" (GUC), which mainly focuses on the uniform understanding of urban climates across all cities, globally. By using globally applicable methodologies to quantify and compare urban heat islands of cities with diverse backgrounds, including their geography, climate, socio-demography, and other factors, a universal understanding of the mechanisms underlying the formation of the phenomenon can be established. The implementation of GUC involves the use of globally acquired historical observation networks, gridded meteorological parameters from climate models, global geographic information system datasets; the construction of a distributed urban parameter database; and the development of techniques necessary to model the urban climate. Research under GUC can be categorized into three approaches. The collaborative approach (1st) relies on the collection of data from micro-scale experiments conducted worldwide with the aid or development of professional social networking platforms; the analytical approach (2nd) relies on the use of global weather station datasets and their corresponding objectively analysed global outputs; and the numerical approach (3rd) relies on the global estimation of high-resolution urban-representative parameters as

  2. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  3. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  4. Weather.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1996-01-01

    This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6)…

  5. Using Music to Communicate Weather and Climate

    NASA Astrophysics Data System (ADS)

    Williams, P.; Aplin, K. L.; Brown, S.

    2017-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  6. Using Music to Communicate Weather and Climate

    NASA Astrophysics Data System (ADS)

    Williams, P.; Aplin, K. L.; Brown, S.; Jenkins, K.; Mander, S.; Walsh, C.

    2016-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  7. Space Weathering of Lunar Rocks and Regolith Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.

    2013-01-01

    The exposed surfaces of lunar soil grains and lunar rocks become modified and coated over time with a thin rind of material (patina) through complex interactions with the space environment. These interactions encompass many processes including micrometeorite impacts, vapor and melt deposition, and solar wind implantation/sputtering effects that collectively are referred to as "space weathering". Studies of space weathering effects in lunar soils and rocks provide important clues to understanding the origin and evolution of the lunar regolith as well as aiding in the interpretation of global chemical and mineralogical datasets obtained by remote-sensing missions. The interpretation of reflectance spectra obtained by these missions is complicated because the patina coatings obscure the underlying rock mineralogy and compositions. Much of our understanding of these processes and products comes from decades of work on remote-sensing observations of the Moon, the analysis of lunar samples, and laboratory experiments. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Space weathering effects are largely surface-correlated, concentrated in the fine size fractions, and occur as amorphous rims on individual soil grains. Rims on lunar soil grains are highly complex and span the range between erosional surfaces modified by solar wind irradiation to depositional surfaces modified by the condensation of sputtered ions and impact-generated vapors. The optical effects of space weathering effects are directly linked to the production of nanophase Fe metal in lunar materials]. The size of distribution of nanophase inclusions in the rims directly affect optical properties given that large Fe(sup o) grains (approx 10 nm and larger) darken the sample (lower albedo) while the tiny Fe(sup o) grains (<5nm

  8. What is the weather like today

    NASA Astrophysics Data System (ADS)

    Jovic, Sladjana

    2017-04-01

    Meteorology is the study of all changes in the atmosphere that surround the Earth. In this project, students will design and build some of the instruments that meteorologists use and make two school Weather Stations and placed them in different school yards so that results of weather parameters date can be follow during three months and be compared. Poster will present a procedure and a preparation how to work with weather stations that contain 1. Barometer (Air pressure) 2. Rain Gauge (Precipitation) 3. Thermometer (Temperature ) 4. Wind Vane (Wind Direction) By collecting their own data, the students found out more about weather through a process similar to the one that professional meteorologists used. Finally students compared differences between two school weather station and used these results to presented how different places had different climate and how climate changed during the months in a year. This was opportunity for cooperation between students from different schools and different grades when older students from secondary school helped younger student to make their weather station and shared knowledge and experience while they followed weather condition during the project .

  9. Fifth Space Weather Enterprise Forum Reaches New Heights

    NASA Astrophysics Data System (ADS)

    Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.

    2011-09-01

    As the world's commercial infrastructure grows more dependent on sensitive electronics and space-based technologies, the global economy is becoming increasingly vulnerable to solar storms. Experts from the federal government, academia, and the private sector met to discuss the societal effects of major solar storms and other space weather at the fifth annual Space Weather Enterprise Forum (SWEF), held on 21 June 2011 at the National Press Club in Washington, D. C. More than 200 members of the space weather community attended this year's SWEF, which focused on the consequences of severe space weather for national security, critical infrastructure, and human safety. Participants also addressed the question of how to prepare for and mitigate those consequences as the current solar cycle approaches and reaches its peak, expected in 2013. This year's forum included details of plans for a "Unified National Space Weather Capability," a new interagency initiative which will be implemented over the next two years, designed to improve forecasting, warning, and other services ahead of the coming solar maximum.

  10. Addressing the Influence of Space Weather on Airline Navigation

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  11. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip

    PubMed Central

    Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values. PMID:26421312

  12. A globally calibrated scheme for generating daily meteorology from monthly statistics: Global-WGEN (GWGEN) v1.0

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp S.; Kaplan, Jed O.

    2017-10-01

    While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.

  13. Toward an operational water vapor remote sensing system using the global positioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, S.I.; Chadwick, R.B.; Wolf, d.W.

    1995-04-01

    Water vapor is one of the most important constituents of the free atmosphere since it is the principal mechanism by which moisture and latent heat are transported and cause weather. Recent experiments have demonstrated that data from Global Positioning System (GPS) satellites can be used to monitor precipitable water vapor (PWV) with millimeter accuracy and sub-hourly temporal resolution. Major advantages of GPS-based systems include the following: they work under virtually all weather conditions; individual systems do not have to be calibrated; and, they are relatively inexpensive.

  14. Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Denevi, B. W.

    2018-05-01

    We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?

  15. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  16. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  17. Land-surface influences on weather and climate

    NASA Technical Reports Server (NTRS)

    Baer, F.; Mintz, Y.

    1984-01-01

    Land-surface influences on weather and climate are reviewed. The interrelationship of vegetation, evapotranspiration, atmospheric circulation, and climate is discussed. Global precipitation, soil moisture, the seasonal water cycle, heat transfer, and atmospheric temperature are among the parameters considered in the context of a general biosphere model.

  18. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  19. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation.

    PubMed

    Huang, Kang-Jun; Teng, Fang-Zhen; Shen, Bing; Xiao, Shuhai; Lang, Xianguo; Ma, Hao-Ran; Fu, Yong; Peng, Yongbo

    2016-12-27

    Cryogenian (∼720-635 Ma) global glaciations (the snowball Earth) represent the most extreme ice ages in Earth's history. The termination of these snowball Earth glaciations is marked by the global precipitation of cap carbonates, which are interpreted to have been driven by intense chemical weathering on continents. However, direct geochemical evidence for the intense chemical weathering in the aftermath of snowball glaciations is lacking. Here, we report Mg isotopic data from the terminal Cryogenian or Marinoan-age Nantuo Formation and the overlying cap carbonate of the basal Doushantuo Formation in South China. A positive excursion of extremely high δ 26 Mg values (+0.56 to +0.95)-indicative of an episode of intense chemical weathering-occurs in the top Nantuo Formation, whereas the siliciclastic component of the overlying Doushantuo cap carbonate has significantly lower δ 26 Mg values (<+0.40), suggesting moderate to low intensity of chemical weathering during cap carbonate deposition. These observations suggest that cap carbonate deposition postdates the climax of chemical weathering, probably because of the suppression of carbonate precipitation in an acidified ocean when atmospheric CO 2 concentration was high. Cap carbonate deposition did not occur until chemical weathering had consumed substantial amounts of atmospheric CO 2 and accumulated high levels of oceanic alkalinity. Our finding confirms intense chemical weathering at the onset of deglaciation but indicates that the maximum weathering predated cap carbonate deposition.

  20. Climate-induced variations in global wildfire danger from 1979 to 2013

    Treesearch

    W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman

    2015-01-01

    Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have...

  1. How sea ice could be the cold beating heart of European weather

    NASA Astrophysics Data System (ADS)

    Margrethe Ringgaard, Ida; Yang, Shuting; Hesselbjerg Christensen, Jens; Kaas, Eigil

    2017-04-01

    The possibility that the ongoing rapid demise of Arctic sea ice may instigate abrupt changes is, however, not tackled by current research in general. Ice cores from the Greenland Ice Sheet (GIS) show clear evidence of past abrupt warm events with up to 15 degrees warming in less than a decade, most likely triggered by rapid disappearance of Nordic Seas sea ice. At present, both Arctic Sea ice and the GIS are in strong transformation: Arctic sea-ice cover has been retreating during most of the satellite era and in recent years, Arctic sea ice experienced a dramatic reduction and the summer extent was in 2012 and 2016 only half of the 1979-2000 average. With such dramatic change in the current sea ice coverage as a point of departure, several studies have linked reduction in wintertime sea ice in the Barents-Kara seas to cold weather anomalies over Europe and through large scale tele-connections to regional warming elsewhere. Here we aim to investigate if, and how, Arctic sea ice impacts European weather, i.e. if the Arctic sea ice works as the 'cold heart' of European weather. To understand the effects of the sea ice reduction on the full climate system, a fully-coupled global climate model, EC-Earth, is used. A new energy-conserving method for assimilating sea ice using the sensible heat flux is implemented in the coupled climate model and compared to the traditional, non-conserving, method of assimilating sea ice. Using this new method, experiments are performed with reduced sea ice cover in the Barents-Kara seas under both warm and cold conditions in Europe. These experiments are used to evaluate how the Arctic sea ice modulates European winter weather under present climate conditions with a view towards favouring both relatively cold and warm conditions.

  2. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  3. Homepage for the Global Tropospheric Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Eugene

    1995-01-01

    The objective of my NASA summer research project was to create a homepage to describe and present results from the NASA Global Tropospheric Experiment (GTE). The GTE is a major component of NASA's Tropospheric Chemistry Program and is managed in the Atmospheric Studies Branch, Atmospheric Sciences Division at the NASA Langley Research Center.

  4. Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Sikdar, D. M.

    1984-01-01

    The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.

  5. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  6. Chemical OSSEs in Global Modeling and Assimilation Office (GMAO)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    2008-01-01

    This presentation will summarize ongoing 'chemical observing system simulation experiment (OSSE)' work in the Global Modeling and Assimilation Office (GMAO). Weather OSSEs are being studied in detail, with a 'nature run' based on the European Centre for Medium-Range Weather Forecasts (ECMWF) model that can be sampled by a synthesized suite of satellites that reproduces present-day observations. Chemical OSSEs are based largely on the carbon-cycle project and aim to study (1) how well we can reproduce the observed carbon distribution with the Atmospheric Infrared Sounder (AIRS) and Orbiting Carbon Observatory (OCO) sensors and (2) with what accuracy can we deduce surface sources and sinks of carbon species in an assimilation system.

  7. Weather explains high annual variation in butterfly dispersal

    PubMed Central

    Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter

    2016-01-01

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662

  8. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).

  9. Mahali: Space Weather Monitoring Using Multicore Mobile Devices

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Lind, F. D.; Coster, A. J.; Erickson, P. J.; Semeter, J. L.

    2013-12-01

    Analysis of Total Electron Content (TEC) measurements derived from Global Positioning System (GPS) signals has led to revolutionary new data products for space weather monitoring and ionospheric research. However, the current sensor network is sparse, especially over the oceans and in regions like Africa and Siberia, and the full potential of dense, global, real-time TEC monitoring remains to be realized. The Mahali project will prototype a revolutionary architecture that uses mobile devices, such as phones and tablets, to form a global space weather monitoring network. Mahali exploits the existing GPS infrastructure - more specifically, delays in multi-frequency GPS signals observed at the ground - to acquire a vast set of global TEC projections, with the goal of imaging multi-scale variability in the global ionosphere at unprecedented spatial and temporal resolution. With connectivity available worldwide, mobile devices are excellent candidates to establish crowd sourced global relays that feed multi-frequency GPS sensor data into a cloud processing environment. Once the data is within the cloud, it is relatively straightforward to reconstruct the structure of the space environment, and its dynamic changes. This vision is made possible owing to advances in multicore technology that have transformed mobile devices into parallel computers with several processors on a chip. For example, local data can be pre-processed, validated with other sensors nearby, and aggregated when transmission is temporarily unavailable. Intelligent devices can also autonomously decide the most practical way of transmitting data with in any given context, e.g., over cell networks or Wifi, depending on availability, bandwidth, cost, energy usage, and other constraints. In the long run, Mahali facilitates data collection from remote locations such as deserts or on oceans. For example, mobile devices on ships could collect time-tagged measurements that are transmitted at a later point in

  10. Capacity building for global nursing leaders: challenges and experiences.

    PubMed

    Shin, S; Han, J; Cha, C

    2016-12-01

    The aim of this article is to describe our experience in operating a capacity-building programme, the Korea International Cooperation Project, for global nursing leaders from developing countries, held during the International Council of Nurses (ICN) Conference in 2015 in Seoul, Korea. Globalization points to the importance of global leadership among nursing leaders. In accordance with the theme of 'Global Citizen, Global Nursing' at the ICN conference in 2015, a capacity-building programme for nursing leaders of developing countries was implemented. The global nursing leadership programme shared experiences during the preparation and operation of the conference. To prepare the programme, this paper describes selecting participants, working with invitation lists from 30 countries, and recruiting and training volunteers. The operation of the programme, orientation, organizing tailored programmes for participant groups, addressing unexpected issues and evaluating the programme are described. ICN could implement capacity-building programmes for nursing leaders of developing countries during its ICN conference for the nursing society. A programme tailored for each continent with similar sociocultural backgrounds and health issues would provide chances for collaboration and networking. A policy to compile global nursing indicators should be developed. This would allow nursing leaders to learn about the strengths and weaknesses of global nursing and provide evidence for collaboration. The programme was successful in introducing and broadening global perspectives of participants on health and education as well as building a network among leaders and next-generation leaders in participating countries for future cooperation and collaboration. © 2016 International Council of Nurses.

  11. The Local Ensemble Transform Kalman Filter with the Weather Research and Forecasting Model: Experiments with Real Observations

    NASA Astrophysics Data System (ADS)

    Miyoshi, Takemasa; Kunii, Masaru

    2012-03-01

    The local ensemble transform Kalman filter (LETKF) is implemented with the Weather Research and Forecasting (WRF) model, and real observations are assimilated to assess the newly-developed WRF-LETKF system. The WRF model is a widely-used mesoscale numerical weather prediction model, and the LETKF is an ensemble Kalman filter (EnKF) algorithm particularly efficient in parallel computer architecture. This study aims to provide the basis of future research on mesoscale data assimilation using the WRF-LETKF system, an additional testbed to the existing EnKF systems with the WRF model used in the previous studies. The particular LETKF system adopted in this study is based on the system initially developed in 2004 and has been continuously improved through theoretical studies and wide applications to many kinds of dynamical models including realistic geophysical models. Most recent and important improvements include an adaptive covariance inflation scheme which considers the spatial and temporal inhomogeneity of inflation parameters. Experiments show that the LETKF successfully assimilates real observations and that adaptive inflation is advantageous. Additional experiments with various ensemble sizes show that using more ensemble members improves the analyses consistently.

  12. Carbon Dioxide and Global Warming: A Failed Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  13. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    NASA Technical Reports Server (NTRS)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  14. Observing System Forecast Experiments at the DAO

    NASA Technical Reports Server (NTRS)

    Atlas, Robert

    2001-01-01

    Since the advent of meteorological satellites in the 1960's, numerous experiments have been conducted in order to evaluate the impact of these and other data on atmospheric analysis and prediction. Such studies have included both OSE'S and OSSE's. The OSE's were conducted to evaluate the impact of specific observations or classes of observations on analyses and forecasts. Such experiments have been performed for selected types of conventional data and for various satellite data sets as they became available. (See for example the 1989 ECMWF/EUMETSAT workshop proceedings on "The use of satellite data in operational numerical weather prediction" and the references contained therein.) The ODYSSEY were conducted to evaluate the potential for future observing systems to improve Numerical Weather Prediction NWP and to plan for the Global Weather Experiment and more recently for EVANS (Atlas et al., 1985a; Arnold and Day, 1986; Hoffman et al., 1990). In addition, OSSE's have been run to evaluate trade-offs in the design of observing systems and observing networks (Atlas and Emmitt, 1991; Rohaly and Krishnamurti, 1993), and to test new methodology for data assimilation (Atlas and Bloom, 1989).

  15. Decreasing trend in severe weather occurrence over China during the past 50 years.

    PubMed

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-17

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  16. Decreasing trend in severe weather occurrence over China during the past 50 years

    PubMed Central

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-01-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China. PMID:28211465

  17. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-04-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  18. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  19. Come rain or shine? Public expectation on local weather change and differential effects on climate change attitude.

    PubMed

    Lo, Alex Y; Jim, C Y

    2015-11-01

    Tailored messages are instrumental to climate change communication. Information about the global threat can be 'localised' by demonstrating its linkage with local events. This research ascertains the relationship between climate change attitude and perception of local weather, based on a survey involving 800 Hong Kong citizens. Results indicate that concerns about climate change increase with expectations about the likelihood and impacts of local weather change. Climate change believers attend to all three types of adverse weather events, namely, temperature rises, tropical cyclones and prolonged rains. Climate scepticism, however, is not associated with expectation about prolonged rains. Differential spatial orientations are a possible reason. Global climate change is an unprecedented and distant threat, whereas local rain is a more familiar and localised weather event. Global climate change should be articulated in terms that respect local concerns. Localised framing may be particularly effective for engaging individuals holding positive views about climate change science. © The Author(s) 2014.

  20. Upper-atmospheric Space and Earth Weather eXperiment (USEWX)

    NASA Technical Reports Server (NTRS)

    Wiley, Scott Lee

    2014-01-01

    This presentation is an update from the 2011 and 2012 talks given to Teachers in Space. These slides include some recent space weather issues that are hot topics, including the adding our USEWX and USEWX partners, and information relevant to GSFC researchers.

  1. Weathering and the mobility of phosphorus in the catchments and forefields of the Rhône and Oberaar glaciers, central Switzerland: Implications for the global phosphorus cycle on glacial-interglacial timescales

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl B.; Hosein, Rachel; Arn, Kaspar; Steinmann, Philipp

    2009-04-01

    indentations on grains acting as sites of preferential dissolution. We also measured iron-bound, organic and detrital P concentrations in the chronosequence and show that organic and iron-bound P has almost completely replaced detrital P in the top layers of the YD profiles. Detrital P weathering rates are calculated as 310 and 280 kg km -2 yr -1 for LIA moraines and 10 kg km -2 yr -1 for YD tills. During the first 300 years of glacial sediment exposure P dissolution rates are shown to be approximately 70 times higher than the mean global dissolved P flux from ice-free continents. After 11.6 kyr the flux is 2.5 times the global mean. These data strengthen the argument for substantial changes in the global dissolved P flux on glacial-interglacial timescales. A crude extrapolation from the data described here suggests that the global dissolved P flux may increase by 40-45% during the first few hundred years of a deglaciation phase.

  2. Zircon (U-Th)/He Thermochronometric Constraints on Himalayan Thrust Belt Exhumation, Bedrock Weathering, and Cenozoic Seawater Chemistry

    NASA Astrophysics Data System (ADS)

    Colleps, Cody L.; McKenzie, N. Ryan; Stockli, Daniel F.; Hughes, Nigel C.; Singh, Birendra P.; Webb, A. Alexander G.; Myrow, Paul M.; Planavsky, Noah J.; Horton, Brian K.

    2018-01-01

    Shifts in global seawater 187Os/188Os and 87Sr/86Sr are often utilized as proxies to track global weathering processes responsible for CO2 fluctuations in Earth history, particularly climatic cooling during the Cenozoic. It has been proposed, however, that these isotopic records instead reflect the weathering of chemically distinctive Himalayan lithologies exposed at the surface. We present new zircon (U-Th)/He thermochronometric and detrital zircon U-Pb geochronologic evidence from the Himalaya of northwest India to explore these contrasting interpretations concerning the driving mechanisms responsible for these seawater records. Our data demonstrate in-sequence southward thrust propagation with rapid exhumation of Lesser Himalayan strata enriched in labile 187Os and relatively less in radiogenic 87Sr at ˜16 Ma, which directly corresponds with coeval shifts in seawater 187Os/188Os and 87Sr/86Sr. Results presented here provide substantial evidence that the onset of exhumation of 187Os-enriched Lesser Himalayan strata could have significantly impacted the marine 187Os/188Os record at 16 Ma. These results support the hypothesis that regional weathering of isotopically unique source rocks can drive seawater records independently from shifts in global-scale weathering rates, hindering the utility of these records as reliable proxies to track global weathering processes and climate in deep geologic time.

  3. Impact of bacterial ice nucleating particles on weather predicted by a numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Sahyoun, Maher; Korsholm, Ulrik S.; Sørensen, Jens H.; Šantl-Temkiv, Tina; Finster, Kai; Gosewinkel, Ulrich; Nielsen, Niels W.

    2017-12-01

    Bacterial ice-nucleating particles (INP) have the ability to facilitate ice nucleation from super-cooled cloud droplets at temperatures just below the melting point. Bacterial INP have been detected in cloud water, precipitation, and dry air, hence they may have an impact on weather and climate. In modeling studies, the potential impact of bacteria on ice nucleation and precipitation formation on global scale is still uncertain due to their small concentration compared to other types of INP, i.e. dust. Those earlier studies did not account for the yet undetected high concentration of nanoscale fragments of bacterial INP, which may be found free or attached to soil dust in the atmosphere. In this study, we investigate the sensitivity of modeled cloud ice, precipitation and global solar radiation in different weather scenarios to changes in the fraction of cloud droplets containing bacterial INP, regardless of their size. For this purpose, a module that calculates the probability of ice nucleation as a function of ice nucleation rate and bacterial INP fraction was developed and implemented in a numerical weather prediction model. The threshold value for the fraction of cloud droplets containing bacterial INP needed to produce a 1% increase in cloud ice was determined at 10-5 to 10-4. We also found that increasing this fraction causes a perturbation in the forecast, leading to significant differences in cloud ice and smaller differences in convective and total precipitation and in net solar radiation reaching the surface. These effects were most pronounced in local convective events. Our results show that bacterial INP can be considered as a trigger factor for precipitation, but not an enhancement factor.

  4. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  5. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha−1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha−1 (14.8% of dose, OLIV1) to 2240 kg ha−1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha−1 (29 103 to 269 103 kg km−2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  6. The global need for lived experience leadership.

    PubMed

    Byrne, Louise; Stratford, Anthony; Davidson, Larry

    2018-03-01

    Common challenges and experiences of the lived experience/peer workforce globally are considered, with an emphasis on ensuring that future developments both protect and promote the unique lived experience perspective. In the Western world, rapid growth in lived experience roles has led to an urgent need for training and workforce development. However, research indicates the roles risk being coopted without clear lived experience leadership, which is often not occurring. In developing countries and in many Western contexts, the lived experience role has not yet been accepted within the mental health workforce. The need for lived experience leadership to guide these issues is highlighted. Peer-reviewed research, relevant gray literature, and professional experience in countries where little published material currently exists. A window of opportunity currently exists to maximize lived experience leadership, and that window may be closing fast if broad-based actions are not initiated now. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Utilization of Live Localized Weather Information for Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  8. The role of synoptic weather variability in Greenland ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Radic, V.

    2017-12-01

    Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations

  9. The Role of Musical Experience in Hemispheric Lateralization of Global and Local Auditory Processing.

    PubMed

    Black, Emily; Stevenson, Jennifer L; Bish, Joel P

    2017-08-01

    The global precedence effect is a phenomenon in which global aspects of visual and auditory stimuli are processed before local aspects. Individuals with musical experience perform better on all aspects of auditory tasks compared with individuals with less musical experience. The hemispheric lateralization of this auditory processing is less well-defined. The present study aimed to replicate the global precedence effect with auditory stimuli and to explore the lateralization of global and local auditory processing in individuals with differing levels of musical experience. A total of 38 college students completed an auditory-directed attention task while electroencephalography was recorded. Individuals with low musical experience responded significantly faster and more accurately in global trials than in local trials regardless of condition, and significantly faster and more accurately when pitches traveled in the same direction (compatible condition) than when pitches traveled in two different directions (incompatible condition) consistent with a global precedence effect. In contrast, individuals with high musical experience showed less of a global precedence effect with regards to accuracy, but not in terms of reaction time, suggesting an increased ability to overcome global bias. Further, a difference in P300 latency between hemispheres was observed. These findings provide a preliminary neurological framework for auditory processing of individuals with differing degrees of musical experience.

  10. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  11. Global Sensory Qualities and Aesthetic Experience in Music.

    PubMed

    Brattico, Pauli; Brattico, Elvira; Vuust, Peter

    2017-01-01

    A well-known tradition in the study of visual aesthetics holds that the experience of visual beauty is grounded in global computational or statistical properties of the stimulus, for example, scale-invariant Fourier spectrum or self-similarity. Some approaches rely on neural mechanisms, such as efficient computation, processing fluency, or the responsiveness of the cells in the primary visual cortex. These proposals are united by the fact that the contributing factors are hypothesized to be global (i.e., they concern the percept as a whole), formal or non-conceptual (i.e., they concern form instead of content), computational and/or statistical, and based on relatively low-level sensory properties. Here we consider that the study of aesthetic responses to music could benefit from the same approach. Thus, along with local features such as pitch, tuning, consonance/dissonance, harmony, timbre, or beat, also global sonic properties could be viewed as contributing toward creating an aesthetic musical experience. Several such properties are discussed and their neural implementation is reviewed in the light of recent advances in neuroaesthetics.

  12. Global Sensory Qualities and Aesthetic Experience in Music

    PubMed Central

    Brattico, Pauli; Brattico, Elvira; Vuust, Peter

    2017-01-01

    A well-known tradition in the study of visual aesthetics holds that the experience of visual beauty is grounded in global computational or statistical properties of the stimulus, for example, scale-invariant Fourier spectrum or self-similarity. Some approaches rely on neural mechanisms, such as efficient computation, processing fluency, or the responsiveness of the cells in the primary visual cortex. These proposals are united by the fact that the contributing factors are hypothesized to be global (i.e., they concern the percept as a whole), formal or non-conceptual (i.e., they concern form instead of content), computational and/or statistical, and based on relatively low-level sensory properties. Here we consider that the study of aesthetic responses to music could benefit from the same approach. Thus, along with local features such as pitch, tuning, consonance/dissonance, harmony, timbre, or beat, also global sonic properties could be viewed as contributing toward creating an aesthetic musical experience. Several such properties are discussed and their neural implementation is reviewed in the light of recent advances in neuroaesthetics. PMID:28424573

  13. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    NASA Astrophysics Data System (ADS)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  14. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    NASA Astrophysics Data System (ADS)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  15. Fire weather technology for fire agrometeorology operations

    Treesearch

    Francis Fujioka

    2008-01-01

    Even as the magnitude of wildfire problems increases globally, United Nations agencies are acting to mitigate the risk of wildfire disasters to members. Fire management organizations worldwide may vary considerably in operational scope, depending on the number and type of resources an organization manages. In any case, good fire weather information is vital. This paper...

  16. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  17. Experimental geobiology links evolutionary intensification of rooting systems and weathering

    NASA Astrophysics Data System (ADS)

    Quirk, Joe; Beerling, David; Leake, Jonathan

    2016-04-01

    The evolution of mycorrhizal fungi in partnership with early land plants over 440 million years ago led to the greening of the continents by plants of increasing biomass, rooting depth, nutrient demand and capacity to alter soil minerals, culminating in modern forested ecosystems. The later co-evolution of trees and rooting systems with arbuscular mycorrhizal (AM) fungi, together driving the biogeochemical cycling of elements and weathering of minerals in soil to meet subsequent increased phosphorus demands is thought to constitute one the most important biotic feedbacks on the geochemical carbon cycle to emerge during the Phanerozoic, and fundamentally rests on the intensifying effect of trees and their root-associating mycorrhizal fungal partners on mineral weathering. Here I present experimental and field evidence linking these evolutionary events to a mechanistic framework whereby: (1) as plants evolved in stature, biomass, and rooting depth, their mycorrhizal fungal partnerships received increasing amounts of plant photosynthate; (2) this enabled intensification of plant-driven fungal weathering of rocks to release growth-limiting nutrients; (3) in turn, this increased land-to-ocean export of Ca and P and enhanced ocean carbonate precipitation impacting the global carbon cycle and biosphere-geosphere-ocean-atmosphere interactions over the past 410 Ma. Our findings support an over-arching hypothesis that evolution has selected plant and mycorrhizal partnerships that have intensified mineral weathering and altered global biogeochemical cycles.

  18. The Colorado Student Space Weather Experiment : A CubeSat for Space Physics

    NASA Astrophysics Data System (ADS)

    Palo, Scott; Li, Xinlin; Gerhardt, David; Turner, Drew; Hoxie, V.; Kohnert, Rick; Batiste, Susan

    Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A National Science Foundation supported 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental scientific questions relating to these high energy particles. Of key importance are the relation-ship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, operating in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and pro-tons in 10-40 MeV. The Colorado Student Space Weather Experiment cubesat will be designed, integrated and testing by students at the University of Colorado under the oversight of pro-fessional engineers with the Laboratory of Atmospheric and Space Physics who have extensive space hardware experience. Our design philosophy is to use commercially off the shelf (COTS) parts where available and only engage in detailed designed where COTS parts cannot meet the system needs. The top level science requirements for the mission have driven the system and subsystem level performance requirements and the specific design choices such as a passive magnetic attitude system and instrument design. In this paper we will present details of the CSSWE design and management approach. Specifically we will discuss the top level science requirements for the mission and show that these measurements are novel and will address open questions in the scientific community. The overall system architecture resulting from a flow-down of these requirements will be presented with a focus on the novel aspects of the system including the instrument design. Finally we will discuss how this project is organized and man-aged as part of the Department of

  19. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations

    NASA Astrophysics Data System (ADS)

    Walters, David; Boutle, Ian; Brooks, Malcolm; Melvin, Thomas; Stratton, Rachel; Vosper, Simon; Wells, Helen; Williams, Keith; Wood, Nigel; Allen, Thomas; Bushell, Andrew; Copsey, Dan; Earnshaw, Paul; Edwards, John; Gross, Markus; Hardiman, Steven; Harris, Chris; Heming, Julian; Klingaman, Nicholas; Levine, Richard; Manners, James; Martin, Gill; Milton, Sean; Mittermaier, Marion; Morcrette, Cyril; Riddick, Thomas; Roberts, Malcolm; Sanchez, Claudio; Selwood, Paul; Stirling, Alison; Smith, Chris; Suri, Dan; Tennant, Warren; Vidale, Pier Luigi; Wilkinson, Jonathan; Willett, Martin; Woolnough, Steve; Xavier, Prince

    2017-04-01

    We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.

  20. NOAA SWPC / NASA CCMC Space Weather Modeling Assessment Project: Toward the Validation of Advancements in Heliospheric Space Weather Prediction Within WSA-Enlil

    NASA Astrophysics Data System (ADS)

    Adamson, E. T.; Pizzo, V. J.; Biesecker, D. A.; Mays, M. L.; MacNeice, P. J.; Taktakishvili, A.; Viereck, R. A.

    2017-12-01

    In 2011, NOAA's Space Weather Prediction Center (SWPC) transitioned the world's first operational space weather model into use at the National Weather Service's Weather and Climate Operational Supercomputing System (WCOSS). This operational forecasting tool is comprised of the Wang-Sheeley-Arge (WSA) solar wind model coupled with the Enlil heliospheric MHD model. Relying on daily-updated photospheric magnetograms produced by the National Solar Observatory's Global Oscillation Network Group (GONG), this tool provides critical predictive knowledge of heliospheric dynamics such as high speed streams and coronal mass ejections. With the goal of advancing this predictive model and quantifying progress, SWPC and NASA's Community Coordinated Modeling Center (CCMC) have initiated a collaborative effort to assess improvements in space weather forecasts at Earth by moving from a single daily-updated magnetogram to a sequence of time-dependent magnetograms to drive the ambient inputs for the WSA-Enlil model as well as incorporating the newly developed Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. We will provide a detailed overview of the scope of this effort and discuss preliminary results from the first phase focusing on the impact of time-dependent magnetogram inputs to the WSA-Enlil model.

  1. Mentoring health researchers globally: Diverse experiences, programmes, challenges and responses.

    PubMed

    Cole, Donald C; Johnson, Nancy; Mejia, Raul; McCullough, Hazel; Turcotte-Tremblay, Anne-Marie; Barnoya, Joaquin; Falabella Luco, María Soledad

    2016-10-01

    Mentoring experiences and programmes are becoming increasingly recognised as important by those engaged in capacity strengthening in global health research. Using a primarily qualitative study design, we studied three experiences of mentorship and eight mentorship programmes for early career global health researchers based in high-income and low- and middle-income countries. For the latter, we drew upon programme materials, existing unpublished data and more formal mixed-method evaluations, supplemented by individual email questionnaire responses. Research team members wrote stories, and the team assembled and analysed them for key themes. Across the diverse experiences and programmes, key emergent themes included: great mentors inspire others in an inter-generational cascade, mentorship is transformative in personal and professional development and involves reciprocity, and finding the right balance in mentoring relationships and programmes includes responding creatively to failure. Among the challenges encountered were: struggling for more level playing fields for new health researchers globally, changing mindsets in institutions that do not have a culture of mentorship and building collaboration not competition. Mentoring networks spanning institutions and countries using multiple virtual and face-to-face methods are a potential avenue for fostering organisational cultures supporting quality mentorship in global health research.

  2. A case of the tail wagging the dog? Reverse weathering and Earth's CO2 thermostat.

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.

    2017-12-01

    Feedbacks between climate, the global carbon cycle, and the chemistry of seawater stabilize Earth's surface temperature on geologic timescales and are likely responsible for its habitability over billions of years of Earth history. The most important component of the geologic carbon cycle is the precipitation and burial of carbonate sediments. The amount of carbonate sediment produced depends, in turn, on the alkalinity generated during silicate weathering less the amount consumed during the formation of secondary clay minerals both on the continents and in the ocean. In marine enviroments this process, often referred to as reverse weathering, consumes seawater alkalinity (and cations) via reaction with degraded Al-silicate minerals. Because these reactions constitute a sink of seawater alkalinity, changes in the amount of reverse weathering will lead to imbalances between alkalinity sources and sinks. The net effect is that on timescales greater than the timescale of carbonate compensation (< 10 kyr), changes in reverse weathering will lead to changes in the rate of continental silicate weathering through the dependence of continental silicate weathering on atmospheric CO2 and climate. This mechanism is capable of changing rates of continental silicate weathering without changing either the rate of volcanic outgassing or the rate constant for continental silicate weathering (i.e. through mountain-building or the exposure of different rock types) and as a result represents a unique way of modulating the global carbon cycle and Earth's climate on geologic timescales.

  3. Linking Space Weather Science and Decision Making (Invited)

    NASA Astrophysics Data System (ADS)

    Fisher, G. M.

    2009-12-01

    Linking scientific knowledge to decision making is a challenge for both the science and policy communities. In particular, in the field of space weather, there are unique challenges such as decision makers may not know that space has weather that poses risks to our technologically-dependent economy. Additionally, in an era of limited funds for scientific research, hazards posed by other natural disasters such as flooding and earthquakes are by contrast well known to policy makers, further making the importance of space weather research and monitoring a tough sell. Today, with industries and individuals more dependent on the Global Positioning System, wireless technology, and satellites than ever before, any disruption or inaccuracy can result in severe economic impacts. Therefore, it is highly important to understand how space weather science can most benefit society. The key to connecting research to decision making is to ensure that the information is salient, credible, and legitimate. To achieve this, scientists need to understand the decision makers' perspectives, including their language and culture, and recognize that their needs may evolve. This presentation will take a closer look at the steps required to make space weather research, models, and forecasts useful to decision makers and ultimately, benefit society.

  4. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation

    PubMed Central

    Huang, Kang-Jun; Teng, Fang-Zhen; Shen, Bing; Xiao, Shuhai; Lang, Xianguo; Ma, Hao-Ran; Fu, Yong; Peng, Yongbo

    2016-01-01

    Cryogenian (∼720–635 Ma) global glaciations (the snowball Earth) represent the most extreme ice ages in Earth’s history. The termination of these snowball Earth glaciations is marked by the global precipitation of cap carbonates, which are interpreted to have been driven by intense chemical weathering on continents. However, direct geochemical evidence for the intense chemical weathering in the aftermath of snowball glaciations is lacking. Here, we report Mg isotopic data from the terminal Cryogenian or Marinoan-age Nantuo Formation and the overlying cap carbonate of the basal Doushantuo Formation in South China. A positive excursion of extremely high δ26Mg values (+0.56 to +0.95)—indicative of an episode of intense chemical weathering—occurs in the top Nantuo Formation, whereas the siliciclastic component of the overlying Doushantuo cap carbonate has significantly lower δ26Mg values (<+0.40), suggesting moderate to low intensity of chemical weathering during cap carbonate deposition. These observations suggest that cap carbonate deposition postdates the climax of chemical weathering, probably because of the suppression of carbonate precipitation in an acidified ocean when atmospheric CO2 concentration was high. Cap carbonate deposition did not occur until chemical weathering had consumed substantial amounts of atmospheric CO2 and accumulated high levels of oceanic alkalinity. Our finding confirms intense chemical weathering at the onset of deglaciation but indicates that the maximum weathering predated cap carbonate deposition. PMID:27956606

  5. How seasonality and weather affect perinatal health: Comparing the experiences of indigenous and non-indigenous mothers in Kanungu District, Uganda.

    PubMed

    MacVicar, Sarah; Berrang-Ford, Lea; Harper, Sherilee; Steele, Vivienne; Lwasa, Shuaib; Bambaiha, Didacus Namanya; Twesigomwe, Sabastien; Asaasira, Grace; Ross, Nancy

    2017-08-01

    Maternal and newborn health disparities and the health impacts of climate change present grand challenges for global health equity, and there remain knowledge gaps in our understanding of how these challenges intersect. This study examines the pathways through which mothers are affected by seasonal and meteorological factors in sub-Saharan Africa in general, and Kanungu District (Uganda), in particular. We conducted a community-based study consisting of focus group discussions with mothers and interviews with health care workers in Kanungu District. Using a priori and a posteriori coding, we found a diversity of perspectives on the impacts of seasonal and weather exposures, with reporting of more food available in the rainy season. The rainy season was also identified as the period in which women performed physical labour for longer time periods, while work conditions in the dry season were reported to be more difficult due to heat. The causal pathways through which weather and seasonality may be affecting size at birth as reported by Kanungu mothers were consistent with those most frequently reported in the literature elsewhere, including maternal energy balance (nutritional intake and physical exertion output) and seasonal illness. While both Indigenous and non-Indigenous mothers described similar pathways, however, the severity of these experiences differed. Non-Indigenous mothers frequently relied on livestock assets or opportunities for less taxing physical work than Indigenous women, who had fewer options when facing food shortages or transport costs. Findings point to specific entry points for intervention including increased nutritional support in dry season periods of food scarcity, increased diversification of wage labour opportunities, and increased access to contraception. Interventions should be particularly targeted towards Indigenous mothers as they face greater food insecurity, may have fewer sources of income, and face greater overall deprivation

  6. A Glimpse of Global Learning: Assessing Student Experiences and Institutional Commitments

    ERIC Educational Resources Information Center

    Kinzie, Jillian; Matross Helms, Robin; Cole, James

    2017-01-01

    Colleges and universities must ensure that graduates are equipped to succeed in the global workforce. What do we know about the extent to which institutions are designing international activities, providing students with direct experience of different cultures and courses on global topics, and ensuring that graduates acquire global learning…

  7. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  8. Carbonate Mineral Weathering Contributions to the HCO3- Flux from Headwater Mid-latitude Streams in the Face of Increasing Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Szramek, K.; Ogrinc, N.; Walter, L. M.

    2007-12-01

    As anthropogenic liberated CO2 increases in the atmosphere, landscape level responses of the carbon cycle to perturbations associated with global warming are likely to be observed in carbonate bearing regions. Within physically open weathering environments, carbonate (calcite and dolomite) mineral solubility is proportional to pCO2 and inversely proportional to temperature, with the solubility of dolomite progressively greater than calcite below 25°C. Changes in weathering zone CO2 occur as CO2 drawdown is increased due to CO2 fertilization effects on plant growth, to warmer mean annual temperatures, or to land use changes. The rise in weathering zone CO2 will significantly augment the open system solubility of carbonate minerals and increase the DIC content of surface waters (unconfined groundwaters and rivers). The thermodynamic relationships between calcite and dolomite indicate the further need to examine the role of dolomite on the global riverine DIC budget. On a continental scale, the global weathering budget indicates the importance of northern hemisphere landmasses to riverine fluxes of Ca2+, Mg2+ and DIC as HCO3-. The results of a hydrogeochemical study of carbonate mineral equilibria and weathering fluxes for headwater streams within the Danube, the James and the St. Lawrence River Basins is presented. Available long-term geochemical and discharge data along with detailed catchment geochemical views of surface water and soil weathering zones were determined to examine the historical and current contribution of carbonate weathering to the geochemical fluctuations of the these headwater regions and the ability of these watersheds to maintain current conditions in the facing of increasing CO2. In order to gauge how these streams with variable climates, land use practices, lithologies, and weathering zone thicknesses compare to each other, river runoff and HCO3- concentrations are normalized to catchment area. The resulting carbonate weathering intensity on

  9. Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Kurylo, Michael (Technical Monitor)

    2004-01-01

    We seek funding from NASA for the third year (2005) of the four-year period January 1, 2003 - December 31, 2006 for continued support of the MIT contributions to the multi-national global atmospheric trace species measurement program entitled Advanced Global Atmospheric Gases Experiment (AGAGE). The case for real-time high-frequency measurement networks like AGAGE is very strong and the observations and their interpretation are widely recognized for their importance to ozone depletion and climate change studies and to verification issues arising from the Montreal Protocol (ozone) and Kyoto Protocol (climate). The proposed AGAGE program is distinguished by its capability to measure over the globe at high frequency almost all of the important species in the Montreal Protocol and almost all of the significant non-CO2 gases in the Kyoto Protocol.

  10. Weatherization Works II - Summary of Findings from the ARRA Period Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Carroll, David; Rose, Erin M.

    2015-10-01

    This report presents a summary of the American Recovery and Reinvestment Act of 2009 (ARRA) evaluation of the U.S. Department of Energy s low-income Weatherization Program. This evaluation focused on the WAP Program Year 2010. The ARRA evaluation produced fourteen separate reports, including this summary. Three separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, and large multifamily. Other reports address the environmental emissions benefits attributable to WAP, and characterize the program. Special studies were conducted to: estimate the impacts of weatherization and healthy homes interventions onmore » asthma-related Medicaid claims in a small cohort in Washington State; assess how weatherization recipients communicate their weatherization experiences to those in their social network, and assess processes implemented to defer homes for weatherization. Small studies addressed energy use in refrigerators, WAP as implemented in the U.S. territories for the first time, and weatherization s impacts on air conditioning energy savings. The national occupant survey was mined for additional insights on the impacts of weatherization on household budgets and energy behaviors post-weatherization. Lastly, the results of a survey of weatherization training centers are summarized.« less

  11. Space Weather Around the World: An IHY Education Program

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Ng, C.; Hawkins, I.; Lewis, E.; Cline, T.

    2007-05-01

    Fifty years ago the International Geophysical Year organized a unique and unprecedented program of research that united 60,000 scientists from 66 nations to study global phenomena concerning the Earth and its space environment. In that same spirit, "Space Weather Around the World" is a program to coordinate and facilitate the involvement of NASA heliophysics missions and scientists to inspire and educate a world-wide audience about the International Heliophysical Year (IHY). We will use the popular Sun-Earth Day annual event framework sponsored by the Sun-Earth Connection Education Forum to promote IHY science and the spirit of international collaboration. The theme for the March 2007 Sun-Earth Day: "IHY: Living in the Atmosphere of the Sun" was selected a year ago in anticipation of the IHY celebration. These efforts will be expanded through a series of coordinated programs under the theme "Space Weather Around the World" for Sun-Earth Day 2008. We will produce a live broadcast from China of the total solar eclipse on August 1st 2008 as the central event, highlighting investigations associated with the eclipse by the international heliophysics community. Additional collaborative efforts will include: a Space Weather Media Maker web-tool to allow educators and scientists to create their own multi-media resource to enhance teaching and learning at all levels; Rock-n-Sol, a musical composition by children internationally inspired by space weather and incorporating sonifications of solar data; and Space Weather Action Centers for students to track a solar storm featuring podcasts of multi-cultural perspectives on IHY. The anticipated audience would be millions of people internationally The science and E/PO heliophysics community has an exciting story to tell about IHY, and we look forward to the opportunity to share it globally.

  12. Factoring in weather variation to capture the influence of urban design and built environment on globally recommended levels of moderate to vigorous physical activity in children

    PubMed Central

    Katapally, Tarun Reddy; Muhajarine, Nazeem

    2015-01-01

    Objectives In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures—variation in weather. After factoring in weather variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of globally recommended moderate to vigorous physical activity levels (MVPA) in children. Design This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10–14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with weather data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Results Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in weather variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate

  13. Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments.

    PubMed

    Gibson, Christy; Berry, Timothy D; Wang, Ruzhen; Spencer, Julie A; Johnston, Cliff T; Jiang, Yong; Bird, Jeffrey A; Filley, Timothy R

    2016-02-01

    The addition of pyrogenic organic matter (PyOM), the aromatic carbon-rich product of the incomplete combustion of plant biomass or fossil fuels, to soil can influence the rate of microbial metabolism of native soil carbon. The interaction of soil heterotrophs with PyOM may be governed by the surficial chemical and physical properties of PyOM that evolve with environmental exposure. We present results of a 36-day laboratory incubation investigating the interaction of a common white-rot fungus, Trametes versicolor, with three forms of 13 C-enriched (2.08 atom% 13 C) PyOM derived from Pinus ponderosa (450 °C): one freshly produced, and two artificially weathered (254 nm, UV light-water treatment and water-leaching alone). Analysis (FTIR, XPS) of the UV-weathered PyOM showed increased aliphatic C-H content and oxidation of aromatic carbon relative to both the original and water-leached PyOM. The addition of both weathered forms of PyOM stimulated (positively primed) fungal respiration of the growth media, while the unaltered PyOM mildly inhibited (negatively primed) respiration. Artificial weathering resulted in higher oxidative (laccase and peroxidase) enzyme activity than unaltered PyOM, possibly the result of a diminished capacity to bind reactive substrates and extracellular enzymes after weathering. However, and contrary to expectations, simple water-leached weathering resulted in a relatively higher enzyme activity and respiration than that of UV-weathering. The 13 C content of respired CO 2 indicated negligible fungal oxidation of PyOM for all treatments, demonstrating the overall low microbial reactivity of this high temperature PyOM. The increased enzymatic and positive priming response of T. versicolor to weathered PyOM highlights the importance of weathering-induced chemistry in controlling PyOM-microbe-soil carbon interactions.

  14. East African weathering dynamics controlled by vegetation-climate feedbacks

    USGS Publications Warehouse

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Boehlke, Adam; Lézine, Anne-Marie; Vincens, Annie; Cohen, Andrew S.

    2017-01-01

    Tropical weathering has important linkages to global biogeochemistry and landscape evolution in the East African rift. We disentangle the influences of climate and terrestrial vegetation on chemical weathering intensity and erosion at Lake Malawi using a long sediment record. Fossil pollen, microcharcoal, particle size, and mineralogy data affirm that the detrital clays accumulating in deep water within the lake are controlled by feedbacks between climate and hinterland forest composition. Particle-size patterns are also best explained by vegetation, through feedbacks with lake levels, wildfires, and erosion. We develop a new source-to-sink framework that links lacustrine sedimentation to hinterland vegetation in tropical rifts. Our analysis suggests that climate-vegetation interactions and their coupling to weathering/erosion could threaten future food security and has implications for accurately predicting petroleum play elements in continental rift basins.

  15. Vodcasting Space Weather

    NASA Astrophysics Data System (ADS)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  16. Regional input to joint European space weather service

    NASA Astrophysics Data System (ADS)

    Stanislawska, I.; Belehaki, A.; Jansen, F.; Heynderickx, D.; Lilensten, J.; Candidi, M.

    The basis for elaborating within COST 724 Action Developing the scientific basis for monitoring modeling and predicting Space Weather European space weather service is rich by many national and international activities which provide instruments and tools for global as well as regional monitoring and modeling COST 724 stimulates coordinates and supports Europe s goals of development and global cooperation by providing standards for timely and high quality information and knowledge in space weather Existing local capabilities are taken into account to develop synergies and avoid duplication The enhancement of environment monitoring networks and associated instruments technology yields mutual advantages for European service and regional services specialized for local users needs It structurally increases the integration of limited-area services generates a platform employing the same approach to each task differing mostly in input and output data In doing so it also provides complementary description of the environmental state within issued information A general scheme of regional services concept within COST 724 activity can be the processing chain from measurements trough algorithms to operational knowledge It provides the platform for interaction among the local end users who define what kind of information they need system providers who elaborate tools necessary to obtain required information and local service providers who do the actual processing of data and tailor it to specific user s needs Such initiative creates a unique possibility for small

  17. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  18. Porosity evolution during weathering of Marcellus shale

    NASA Astrophysics Data System (ADS)

    Gu, X.; Brantley, S.

    2017-12-01

    weathering; 2) the pyrite/carbonate ratio is higher in the Marcellus shale than in Rose Hill shale, and thus excess acidity generated through pyrite oxidation enhances the dissolution of silicates. We seek to use these and other observations to develop a global model for shale weathering that incorporates both mineral composition and porosity change.

  19. Relation of tolerance of ambiguity to global and specific paranormal experience.

    PubMed

    Houran, J; Williams, C

    1998-12-01

    We examined the relationship of tolerance of ambiguity to severe global factors and specific types of anomalous or paranormal experience. 107 undergraduate students completed MacDonald's 1970 AT-20 and the Anomalous Experiences Inventory of Kumar, Pekala, and Gallagher. Scores on the five subscales of the Anomalous Experiences Inventory correlated differently with tolerance of ambiguity. Global paranormal beliefs, abilities, experiences, and drug use were positively associated with tolerance of ambiguity, whereas a fear of paranormal experience showed a negative relation. The specific types of anomalous experiences that correlated with tolerance of ambiguity often involved internal or physiological experience, e.g., precognitive dreams, memories of reincarnation, visual apparitions, and vestibular alterations. We generally found no effects of age of sex. These results are consistent with the idea that some paranormal experiences are misattributions of internal experience to external ('paranormal') sources, a process analogous to mechanisms underpinning delusions and hallucinations.

  20. Third Space Weather Summit Held for Industry and Government Agencies

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  1. A Global 1 Degree by 1 Degree Distribution of Atmospheric/Soil CO2 Consumption by Continental Weathering and of Riverine HCO3 Yield (DB1012)

    DOE Data Explorer

    Suchet, Philippe Amiotte [Centre National de la Recherche Scientifique, Center de Geochimie de la Surface, Strasbourg Cedex, France; Probst, Jean-Lue [Centre National de la Recherche Scientifique, Center de Geochimie de la Surface, Strasbourg Cedex, France

    1995-01-01

    The mission of the Centre National de la Recherche Scientifique (CNRS) of Strasbourg Cedex, France is to study "The Global Carbon Cycle and its Perturbation by Man and Climate, the Terrestrial Biosphere". With the support of the Environment Programme of the European Communities, modeling of the spatial distribution of atmospheric-soil CO2 consumption by chemical weathering of continental rocks have been and are being conducted. One of the major results of these studies is a set of global maps which show the distribution of CO2 consumption (FCO2) and the transport of bicarbonate (FHCO3-) from rivers to the ocean, each in moles per kilometer squared per year (mol km2/yr). Continental weathering influences the geologic carbon cycle (Trabalka, 1985). The largest natural exchange fluxes of carbon occur between the atmosphere and the terrestrial biota, and between the atmosphere and the ocean surface waters (Houghton, et. al. 1990). River carbon input to the oceans is a component of the estimate of global air-sea CO2 fluxes (Sarminento and Sundquist 1992). It is estimated that about 0.3 gigatons of carbon per year (GtC/yr) are consumed by the chemical erosion of continental rocks and transferred as HCO3- to the oceans (Berner et. al. 1983; Meybeck 1987; and Probst 1992), while the flux of particulate and dissolved organic carbon transported by rivers to the oceans is estimated to be about 0.4 GtC/yr (Probst 1992). On the whole, about 0.7 GtC/yr are transferred by continental erosion from the soil-biosphere reservoir to the oceans. A model developed by Amiotte Suchet and Probst (1993) calculates the flux of atmospheric-soil CO2 consumed by the chemical erosion of continental rock (i.e., rock weathering) and the bicarbonate river transfer to the ocean. This model is based on a set of empirical relationships between FCO2 and the drainage (runoff) on the major rock types outcropping on the continents. The model assumes that the consumption of atmospheric CO2 by continental

  2. Effects of Weather on Tourism and its Moderation

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  3. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  4. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  5. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  6. Ensemble superparameterization versus stochastic parameterization: A comparison of model uncertainty representation in tropical weather prediction

    NASA Astrophysics Data System (ADS)

    Subramanian, Aneesh C.; Palmer, Tim N.

    2017-06-01

    Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Superparameterization is a promising alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). In this paper, we compare the impact of initial random perturbations in embedded CRMs, within the ECMWF ensemble prediction system, with stochastically perturbed physical tendency (SPPT) scheme as a way to represent model uncertainty in medium-range tropical weather forecasts. We especially focus on forecasts of tropical convection and dynamics during MJO events in October-November 2011. These are well-studied events for MJO dynamics as they were also heavily observed during the DYNAMO field campaign. We show that a multiscale ensemble modeling approach helps improve forecasts of certain aspects of tropical convection during the MJO events, while it also tends to deteriorate certain large-scale dynamic fields with respect to stochastically perturbed physical tendencies approach that is used operationally at ECMWF.Plain Language SummaryProbabilistic <span class="hlt">weather</span> forecasts, especially for tropical <span class="hlt">weather</span>, is still a significant challenge for <span class="hlt">global</span> <span class="hlt">weather</span> forecasting systems. Expressing uncertainty along with <span class="hlt">weather</span> forecasts is important for informed decision making. Hence, we explore the use of a relatively new approach in using super-parameterization, where a cloud resolving model is embedded</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003923','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003923"><span>The Precipitation Characteristics of ISCCP Tropical <span class="hlt">Weather</span> States</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Dongmin; Oreopoulos, Lazaros; Huffman, George J.; Rossow, William B.; Kang, In-Sik</p> <p>2011-01-01</p> <p>We examine the daytime precipitation characteristics of the International Satellite Cloud Climatology Project (ISCCP) <span class="hlt">weather</span> states in the extended tropics (35 deg S to 35 deg N) for a 10-year period. Our main precipitation data set is the TRMM Multisatellite Precipitation Analysis 3B42 data set, but <span class="hlt">Global</span> Precipitation Climatology Project daily data are also used for comparison. We find that the most convective <span class="hlt">weather</span> state (WS1), despite an occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing both the largest mean precipitation rates when present and the largest percent contribution to the total precipitation of the tropical zone of our study; yet, even this <span class="hlt">weather</span> state appears to not precipitate about half the time. WS1 exhibits a modest annual cycle of domain-average precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation rates of the other <span class="hlt">weather</span> states tend to be stronger when occurring before or after WS1. The relative contribution of the various <span class="hlt">weather</span> states to total precipitation is different between ocean and land, with WS1 producing more intense precipitation on average over ocean than land. The results of this study, in addition to advancing our understanding of the current state of tropical precipitation, can serve as a higher order diagnostic test on whether it is distributed realistically among different <span class="hlt">weather</span> states in atmospheric models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5020346','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5020346"><span>Mentoring health researchers <span class="hlt">globally</span>: Diverse <span class="hlt">experiences</span>, programmes, challenges and responses</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cole, Donald C.; Johnson, Nancy; Mejia, Raul; McCullough, Hazel; Turcotte-Tremblay, Anne-Marie; Barnoya, Joaquin; Falabella Luco, (María) Soledad</p> <p>2016-01-01</p> <p>ABSTRACT Mentoring <span class="hlt">experiences</span> and programmes are becoming increasingly recognised as important by those engaged in capacity strengthening in <span class="hlt">global</span> health research. Using a primarily qualitative study design, we studied three <span class="hlt">experiences</span> of mentorship and eight mentorship programmes for early career <span class="hlt">global</span> health researchers based in high-income and low- and middle-income countries. For the latter, we drew upon programme materials, existing unpublished data and more formal mixed-method evaluations, supplemented by individual email questionnaire responses. Research team members wrote stories, and the team assembled and analysed them for key themes. Across the diverse <span class="hlt">experiences</span> and programmes, key emergent themes included: great mentors inspire others in an inter-generational cascade, mentorship is transformative in personal and professional development and involves reciprocity, and finding the right balance in mentoring relationships and programmes includes responding creatively to failure. Among the challenges encountered were: struggling for more level playing fields for new health researchers <span class="hlt">globally</span>, changing mindsets in institutions that do not have a culture of mentorship and building collaboration not competition. Mentoring networks spanning institutions and countries using multiple virtual and face-to-face methods are a potential avenue for fostering organisational cultures supporting quality mentorship in <span class="hlt">global</span> health research. PMID:26234691</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=WEATHER&pg=6&id=EJ747404','ERIC'); return false;" href="https://eric.ed.gov/?q=WEATHER&pg=6&id=EJ747404"><span>Interactive Exercises for an Introductory <span class="hlt">Weather</span> and Climate Course</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carbone, Gregory J.; Power, Helen C.</p> <p>2005-01-01</p> <p>Students learn more from introductory <span class="hlt">weather</span> and climate courses when they can relate theoretical material to personal <span class="hlt">experience</span>. The ubiquity of <span class="hlt">weather</span> should make the link obvious but instructors can foster this connection with a variety of simple methods. Here we describe traditional and web-based techniques that encourage students to…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000649','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000649"><span>Extratropical <span class="hlt">Weather</span> Systems on Mars: Radiatively-Active Water Ice Effects</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.</p> <p>2017-01-01</p> <p>Extratropical, large-scale <span class="hlt">weather</span> disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to <span class="hlt">global</span> circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars <span class="hlt">Global</span> Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling <span class="hlt">weather</span> systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling <span class="hlt">weather</span> systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars <span class="hlt">global</span> climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH12A..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH12A..04G"><span>Mexican Space <span class="hlt">Weather</span> Service (SCIESMEX)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.</p> <p>2015-12-01</p> <p>Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space <span class="hlt">weather</span> phenomena. During the last few years, the UN has promoted international cooperation on Space <span class="hlt">Weather</span> awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space <span class="hlt">Weather</span> Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the <span class="hlt">experience</span> of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space <span class="hlt">Weather</span> (ICTSW) of the Word Meteorological Organization (WMO).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7089P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7089P"><span>The impact of convection in the West African monsoon region on <span class="hlt">global</span> <span class="hlt">weather</span> forecasts - explicit vs. parameterised convection simulations using the ICON model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pante, Gregor; Knippertz, Peter</p> <p>2017-04-01</p> <p>The West African monsoon is the driving element of <span class="hlt">weather</span> and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the <span class="hlt">global</span> model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the <span class="hlt">global</span> model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone <span class="hlt">global</span> simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the <span class="hlt">global</span> model shows clear positive effects when evaluating the output of the <span class="hlt">global</span> domain of the 2-way nesting simulation and the output of the stand-alone <span class="hlt">global</span> model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002cosp...34E.517L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002cosp...34E.517L"><span>The <span class="hlt">Global</span> Ocean Data Assimilation <span class="hlt">Experiment</span> (GODAE)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Traon, P.; Smith, N.</p> <p></p> <p>The <span class="hlt">Global</span> Ocean Data Assimilation <span class="hlt">Experiment</span> (GODAE) will conduct its main demonstration phase from 2003 to 2005. From 2003 to 2005, operational and research institutions from Australia, Japan, United States, United Kingdom, France and Norway will be performing <span class="hlt">global</span> oceanic data assimilation and ocean forecast in order to provide regular and comprehensive descriptions of ocean fields such as temperature, salinity and currents at high temporal and spatial resolution. A central objective of GODAE is to provide an integrated description that combines remote sensing data, in-situ data and models through data assimilation. Climate and seasonal forecasting, navy applications, marine safety, fisheries, the offshore industry and management of shelf/coastal areas are among the expected beneficiaries of GODAE. The integrated description of the ocean that GODAE will provide will also be highly beneficial to the research community. An overview of GODAE will be given; we will detail the GODAE objectives and strategy and the way it is implemented as an international <span class="hlt">experiment</span>. Results from first pre-operational or prototype systems will finally be shown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26594699','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26594699"><span>Impacts of <span class="hlt">weather</span> on long-term patterns of plant richness and diversity vary with location and management.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J</p> <p>2015-09-01</p> <p>Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and <span class="hlt">weather</span> (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and <span class="hlt">weather</span> despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to <span class="hlt">experience</span> further increased variability in growing season precipitation, as well as increased temperatures, due to <span class="hlt">global</span> climate change. We assess the portion of interannual variability of richness and diversity explained by <span class="hlt">weather</span>, how relationships between these metrics and <span class="hlt">weather</span> vary among plant assemblages, and which aspects of <span class="hlt">weather</span> best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori <span class="hlt">weather</span> covariates using six data sets from four grasslands. <span class="hlt">Weather</span> explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific <span class="hlt">weather</span> variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040047196&hterms=GLOBAL+WARNING&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGLOBAL%2BWARNING','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040047196&hterms=GLOBAL+WARNING&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGLOBAL%2BWARNING"><span><span class="hlt">Global</span> Lightning Activity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christian, Hugh J.</p> <p>2004-01-01</p> <p>Our knowledge of the <span class="hlt">global</span> distribution of lightning has improved dramatically since the advent of spacebased lightning observations. Of major importance was the 1995 launch of the Optical Transient Detector (OTD), followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous eight-year record of <span class="hlt">global</span> lightning activity. These lightning observations have provided a new <span class="hlt">global</span> perspective on total lightning activity. For the first time, total lightning activity (cloud-to-ground and intra-cloud) has been observed over large regions with high detection efficiency and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised <span class="hlt">global</span> flash rate estimate (44 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe <span class="hlt">weather</span>. Accurate flash rate estimates are now available over large areas of the earth (+/- 72 deg. latitude). Ocean-land contrasts as a function of season are clearly reveled, as are orographic effects and seasonal and interannual variability. The space-based observations indicate that air mass thunderstorms, not large storm system dominate <span class="hlt">global</span> activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated that this capability could lead to significantly improved severe <span class="hlt">weather</span> warning times and reduced false warning rates. This talk will summarize our space-based lightning measurements, will discuss how lightning observations can be used to monitor severe <span class="hlt">weather</span>, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.544K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.544K"><span>... AND HERE COMES THE <span class="hlt">WEATHER</span> - Austrian TV and radio <span class="hlt">weather</span> news in the eye of the public</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keul, A.; Holzer, A. M.; Wostal, T.</p> <p>2010-09-01</p> <p>Media <span class="hlt">weather</span> reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although <span class="hlt">weather</span> reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-<span class="hlt">weather</span> and a storm situation. It identified the importance of intelligible wording of the <span class="hlt">weather</span> forecast messages for lay people. Without quality control, <span class="hlt">weather</span> information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV <span class="hlt">weather</span>, seems justified. This need for further research was addressed by a second and larger field <span class="hlt">experiment</span> in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio <span class="hlt">weather</span> reports were used and a more realistic listening and viewing situation was created by presenting the latest <span class="hlt">weather</span> forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the <span class="hlt">weather</span> reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The <span class="hlt">weather</span> media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in <span class="hlt">weather</span> forecasts or even meteorological terms, which might also be important for fully understanding the severe <span class="hlt">weather</span> warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV <span class="hlt">weather</span> reports a narrow compromise between general</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC51G..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC51G..01E"><span>Past and future <span class="hlt">weather</span>-induced risk in crop production</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elliott, J. W.; Glotter, M.; Russo, T. A.; Sahoo, S.; Foster, I.; Benton, T.; Mueller, C.</p> <p>2016-12-01</p> <p>Drought-induced agricultural loss is one of the most costly impacts of extreme <span class="hlt">weather</span> and may harm more people than any other consequence of climate change. Improvements in farming practices have dramatically increased crop productivity, but yields today are still tightly linked to climate variation. We report here on a number of recent studies evaluating extreme event risk and impacts under historical and near future conditions, including studies conducted as part of the Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP) and the UK-US Taskforce on Extreme <span class="hlt">Weather</span> and <span class="hlt">Global</span> Food System Resilience.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70154957','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70154957"><span>Extreme <span class="hlt">weather</span> and <span class="hlt">experience</span> influence reproduction in an endangered bird</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reichert, Brian E.; Cattau, Christopher E.; Fletcher, Robert J.; Kendall, William L.; Kitchens, Wiley M.</p> <p>2012-01-01</p> <p>Using a 14-year time series spanning large variation in climatic conditions and the entirety of a population's breeding range, we estimated the effects of extreme <span class="hlt">weather</span> conditions (drought) on the state-specific probabilities of breeding and survival of an endangered bird, the Florida Snail Kite (Rostrhamus sociabilis plumbeus). Our analysis accounted for uncertainty in breeding status assignment, a common source of uncertainty that is often ignored when states are based on field observations. Breeding probabilities in adult kites (>1 year of age) decreased during droughts, whereas the probability of breeding in young kites (1 year of age) tended to increase. Individuals attempting to breed showed no evidence of reduced future survival. Although population viability analyses of this species and other species often implicitly assume that all adults will attempt to breed, we find that breeding probabilities were significantly <1 for all 13 estimable years considered. Our results suggest that <span class="hlt">experience</span> is an important factor determining whether or not individuals attempt to breed during harsh environmental conditions and that reproductive effort may be constrained by an individual's quality and/or despotic behavior among individuals attempting to breed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21381358','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21381358"><span>[Climate change and hygienic assessment of <span class="hlt">weather</span> conditions in Omsk and the Omsk Region].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gudinova, Zh V; Akimova, I S; Klochikhina, A V</p> <p>2010-01-01</p> <p>The paper deals with trends in climate change in the Omsk Region: the increases in average annual air temperatures and rainfall, which are attended by the higher number of abnormal <span class="hlt">weather</span> events, as shown by the data of the Omsk Regional Board, Russian Federal Service for Hydrometeorology and Environmental Monitoring. There is information on <span class="hlt">weather</span> severity in 2008: there was mild <span class="hlt">weather</span> in spring and severe <span class="hlt">weather</span> in winter, in January in particular. A survey of physicians has revealed that medical workers are concerned about climate problems and <span class="hlt">global</span> warming and ascertained <span class="hlt">weather</span> events mostly affecting the population's health. People worry most frequently about a drastic temperature drop or rise (as high as 71%), atmospheric pressure change (53%), and "when it is too hot in summer (47%).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=effect+AND+biodiversity&pg=2&id=EJ502198','ERIC'); return false;" href="https://eric.ed.gov/?q=effect+AND+biodiversity&pg=2&id=EJ502198"><span><span class="hlt">Global</span> Warming: Understanding and Teaching the Forecast.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Andrews, Bill</p> <p>1995-01-01</p> <p>A resource for teaching about the consequences of <span class="hlt">global</span> warming. Discusses feedback from the temperature increase, changes in the <span class="hlt">global</span> precipitation pattern, effects on agriculture, <span class="hlt">weather</span> extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the <span class="hlt">global</span> community cope with <span class="hlt">global</span> warming. (LZ)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4525B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4525B"><span>Toward seamless <span class="hlt">weather</span>-climate and environmental prediction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunet, Gilbert</p> <p>2016-04-01</p> <p>Over the last decade or so, predicting the <span class="hlt">weather</span>, climate and atmospheric composition has emerged as one of the most important areas of scientific endeavor. This is partly because the remarkable increase in skill of current <span class="hlt">weather</span> forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world profoundly, either directly or indirectly. One of the important endeavors of our societies is to remain at the cutting-edge of modelling and predicting the evolution of the fully coupled environmental system: atmosphere (<span class="hlt">weather</span> and composition), oceans, land surface (physical and biological), and cryosphere. This effort will provide an increasingly accurate and reliable service across all the socio-economic sectors that are vulnerable to the effects of adverse <span class="hlt">weather</span> and climatic conditions, whether now or in the future. This emerging challenge was at the center of the World <span class="hlt">Weather</span> Open Science Conference (Montreal, 2014).The outcomes of the conference are described in the World Meteorological Organization (WMO) book: Seamless Prediction of the Earth System: from Minutes to Months, (G. Brunet, S. Jones, P. Ruti Eds., WMO-No. 1156, 2015). It is freely available on line at the WMO website. We will discuss some of the outcomes of the conference for the WMO World <span class="hlt">Weather</span> Research Programme (WWRP) and <span class="hlt">Global</span> Atmospheric Watch (GAW) long term goals and provide examples of seamless modelling and prediction across a range of timescales at convective and sub-kilometer scales for regional coupled forecasting applications at Environment and Climate Change Canada (ECCC).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=WEATHER&id=EJ1162017','ERIC'); return false;" href="https://eric.ed.gov/?q=WEATHER&id=EJ1162017"><span><span class="hlt">Weather</span> Worlding: Learning with the Elements in Early Childhood</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rooney, Tonya</p> <p>2018-01-01</p> <p>In the context of challenges posed by climate change, this paper draws attention to the significance of children's relationship with <span class="hlt">weather</span>. The paper contends that it is time to engage more closely with children's <span class="hlt">weather</span> relations when developing and <span class="hlt">experimenting</span> with new environmental pedagogies. Furthermore, it is argued that there is a need…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP21E..08W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP21E..08W"><span>The null hypothesis: steady rates of erosion, <span class="hlt">weathering</span> and sediment accumulation during Late Cenozoic mountain uplift and glaciation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Willenbring, J. K.; Jerolmack, D. J.</p> <p>2015-12-01</p> <p>At the largest time and space scales, the pace of erosion and chemical <span class="hlt">weathering</span> is determined by tectonic uplift rates. Deviations from this equilibrium condition arise from the transient response of landscape denudation to climatic and tectonic perturbations, and may be long lived. We posit that the constraint of mass balance, however, makes it unlikely that such disequilibrium persists at the <span class="hlt">global</span> scale over millions of years, as has been proposed for late Cenozoic erosion. To support this contention, we synthesize existing data for <span class="hlt">weathering</span> fluxes, <span class="hlt">global</span> sedimentation rates, sediment yields and tectonic motions. The records show a remarkable constancy in the pace of Earth-surface evolution over the last 10 million years. These findings provide strong support for the null hypothesis; that <span class="hlt">global</span> rates of landscape change have remained constant over the last ten million years, despite <span class="hlt">global</span> climate change and massive mountain building events. Two important implications are: (1) <span class="hlt">global</span> climate change may not change <span class="hlt">global</span> denudation rates, because the nature and sign of landscape responses are varied; and (2) tectonic and climatic perturbations are accommodated in the long term by changes in landscape form. This work undermines the hypothesis that increased <span class="hlt">weathering</span> due to late Cenozoic mountain building or climate change was the primary agent for a decrease in <span class="hlt">global</span> temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008cosp...37.1047G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008cosp...37.1047G"><span>Multi-physics simulations of space <span class="hlt">weather</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gombosi, Tamas; Toth, Gabor; Sokolov, Igor; de Zeeuw, Darren; van der Holst, Bart; Cohen, Ofer; Glocer, Alex; Manchester, Ward, IV; Ridley, Aaron</p> <p></p> <p>Presently magnetohydrodynamic (MHD) models represent the "workhorse" technology for simulating the space environment from the solar corona to the ionosphere. While these models are very successful in describing many important phenomena, they are based on a low-order moment approximation of the phase-space distribution function. In the last decade our group at the Center for Space Environment Modeling (CSEM) has developed the Space <span class="hlt">Weather</span> Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the <span class="hlt">global</span> solar corona, the inner heliosphere or the <span class="hlt">global</span> magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on extended magnetohydrodynamics with anisotropic pressures. This talk will show the effects of added physics and compare space <span class="hlt">weather</span> simulation results to "standard" ideal MHD.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28251692','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28251692"><span>All-<span class="hlt">Weather</span> Solar Cells: A Rising Photovoltaic Revolution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Qunwei</p> <p>2017-06-16</p> <p>Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-<span class="hlt">weather</span> solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-<span class="hlt">weather</span> solar cells so that these advanced photovoltaic technologies can be an indication for <span class="hlt">global</span> solar industry in bringing down the cost of energy harvesting. How the all-<span class="hlt">weather</span> solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-<span class="hlt">weather</span> solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21231992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21231992"><span>Twelve testable hypotheses on the geobiology of <span class="hlt">weathering</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brantley, S L; Megonigal, J P; Scatena, F N; Balogh-Brunstad, Z; Barnes, R T; Bruns, M A; Van Cappellen, P; Dontsova, K; Hartnett, H E; Hartshorn, A S; Heimsath, A; Herndon, E; Jin, L; Keller, C K; Leake, J R; McDowell, W H; Meinzer, F C; Mozdzer, T J; Petsch, S; Pett-Ridge, J; Pregitzer, K S; Raymond, P A; Riebe, C S; Shumaker, K; Sutton-Grier, A; Walter, R; Yoo, K</p> <p>2011-03-01</p> <p>Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological <span class="hlt">weathering</span>. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through <span class="hlt">weathering</span>. (3) On landscapes experiencing little erosion, biology drives <span class="hlt">weathering</span> during initial succession, whereas <span class="hlt">weathering</span> drives biology over the long term. (4) In eroding landscapes, <span class="hlt">weathering</span>-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising <span class="hlt">global</span> temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral <span class="hlt">weathering</span> in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated <span class="hlt">weathering</span>. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur. © 2011 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC23D0662D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC23D0662D"><span>Stochastic Hourly <span class="hlt">Weather</span> Generator HOWGH: Validation and its Use in Pest Modelling under Present and Future Climates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubrovsky, M.; Hirschi, M.; Spirig, C.</p> <p>2014-12-01</p> <p>To quantify impact of the climate change on a specific pest (or any <span class="hlt">weather</span>-dependent process) in a specific site, we may use a site-calibrated pest (or other) model and compare its outputs obtained with site-specific <span class="hlt">weather</span> data representing present vs. perturbed climates. The input <span class="hlt">weather</span> data may be produced by the stochastic <span class="hlt">weather</span> generator. Apart from the quality of the pest model, the reliability of the results obtained in such <span class="hlt">experiment</span> depend on an ability of the generator to represent the statistical structure of the real world <span class="hlt">weather</span> series, and on the sensitivity of the pest model to possible imperfections of the generator. This contribution deals with the multivariate HOWGH <span class="hlt">weather</span> generator, which is based on a combination of parametric and non-parametric statistical methods. Here, HOWGH is used to generate synthetic hourly series of three <span class="hlt">weather</span> variables (solar radiation, temperature and precipitation) required by a dynamic pest model SOPRA to simulate the development of codling moth. The contribution presents results of the direct and indirect validation of HOWGH. In the direct validation, the synthetic series generated by HOWGH (various settings of its underlying model are assumed) are validated in terms of multiple climatic characteristics, focusing on the subdaily wet/dry and hot/cold spells. In the indirect validation, we assess the generator in terms of characteristics derived from the outputs of SOPRA model fed by the observed vs. synthetic series. The <span class="hlt">weather</span> generator may be used to produce <span class="hlt">weather</span> series representing present and future climates. In the latter case, the parameters of the generator may be modified by the climate change scenarios based on <span class="hlt">Global</span> or Regional Climate Models. To demonstrate this feature, the results of codling moth simulations for future climate will be shown. Acknowledgements: The <span class="hlt">weather</span> generator is developed and validated within the frame of projects WG4VALUE (project LD12029 sponsored by the Ministry</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970003063','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970003063"><span>Validation of <span class="hlt">Global</span> Climatologies of Trace Gases Using NASA <span class="hlt">Global</span> Tropospheric <span class="hlt">Experiment</span> (GTE) Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Courchaine, Brian; Venable, Jessica C.</p> <p>1995-01-01</p> <p>Methane is an important trace gas because it is a greenhouse gas that affects the oxidative capacity of the atmosphere. It is produced from biological and anthropogenic sources, and is increasing <span class="hlt">globally</span> at a rate of approximately 0.6% per year [Climate Change 1992, IPCC]. By using National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) ground station data, a <span class="hlt">global</span> climatology of methane values was produced. Unfortunately, because the NOAA/CMDL ground stations are so sparse, the <span class="hlt">global</span> climatology is low resolution. In order to compensate for this low resolution data, it was compared to in-situ flight data obtained from the NASA <span class="hlt">Global</span> Tropospheric <span class="hlt">Experiment</span> (GTE). The smoothed ground station data correlated well with the flight data. Thus, for the first time it is shown that the smoothing process used to make <span class="hlt">global</span> contours of methane using the ground stations is a plausible way to approximate <span class="hlt">global</span> atmospheric concentrations of the gas. These verified climatologies can be used for testing large-scale models of chemical production, destruction, and transport. This project develops the groundwork for further research in building <span class="hlt">global</span> climatologies from sparse ground station data and studying the transport and distribution of trace gases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeCoA.170..157S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeCoA.170..157S"><span>Exposure age and climate controls on <span class="hlt">weathering</span> in deglaciated watersheds of western Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scribner, C. A.; Martin, E. E.; Martin, J. B.; Deuerling, K. M.; Collazo, D. F.; Marshall, A. T.</p> <p>2015-12-01</p> <p>Fine-grained sediments deposited by retreating glaciers <span class="hlt">weather</span> faster than the <span class="hlt">global</span> average and this <span class="hlt">weathering</span> can impact the <span class="hlt">global</span> carbon cycle and oceanic fluxes of nutrients and radiogenic isotopes. Much work has focused on subglacial and proglacial <span class="hlt">weathering</span> of continental ice sheets, but little is known about <span class="hlt">weathering</span> and resulting fluxes from deglacial watersheds, which are disconnected from the ice sheets and discharge only annual precipitation and permafrost melt. We investigate the effects of exposure age and precipitation on <span class="hlt">weathering</span> intensity in four deglacial watersheds on Greenland that form a transect from the coast near Sisimiut toward the Greenland Ice Sheet (GrIS) near Kangerlussuaq based on evaluations of major ion compositions, Sr isotope ratios, and mineral saturation states of waters and sediments. The transect is underlain by Archean orthogneiss and is characterized by gradients in moraine ages (∼7.5-8.0 ky inland to ∼10 ky at the coast) and water balance (-150 mm/yr inland to +150 mm/yr at the coast). Anion compositions are generally dominated by HCO3, but SO4 becomes increasingly important toward the coast, reflecting a switch from trace carbonate dissolution to sulfide mineral oxidation. Coastal watersheds have a higher proportion of dissolved silica, higher Na/Cl, Si/Ca, and lower Ca/Sr ratios than inland watersheds, indicating an increase in the relative proportion of silicate <span class="hlt">weathering</span> and an increase in the extent of <span class="hlt">weathering</span> toward the coast. More extensive <span class="hlt">weathering</span> near the coast is also apparent in differences in the 87Sr/86Sr ratios of stream water and bedload (Δ87Sr/86Sr), which decreases from 0.017 inland to 0.005 at the coast, and in increased saturation states relative to amorphous SiO2 and quartz. The steep <span class="hlt">weathering</span> gradient from inland to coastal watersheds reflects enhanced <span class="hlt">weathering</span> compared to that expected from the 2 to 3 ky difference in exposure age caused by elevated coastal precipitation. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11F1935B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11F1935B"><span>An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy <span class="hlt">Global</span> and Mesoscale Numerical <span class="hlt">Weather</span> Prediction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, N. L.; Tsu, J.; Swadley, S. D.</p> <p>2017-12-01</p> <p>We assess the impact of assimilation of CYclone <span class="hlt">Global</span> Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] <span class="hlt">global</span> and COAMPS®[ii] mesoscale numerical <span class="hlt">weather</span> prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System <span class="hlt">Experiments</span> (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC33A1095D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC33A1095D"><span>Construction of Gridded Daily <span class="hlt">Weather</span> Data and its Use in Central-European Agroclimatic Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubrovsky, M.; Trnka, M.; Skalak, P.</p> <p>2013-12-01</p> <p>The regional-scale simulations of <span class="hlt">weather</span>-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface <span class="hlt">weather</span> characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest <span class="hlt">Global</span> and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface <span class="hlt">weather</span>, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the <span class="hlt">weather</span> data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a <span class="hlt">weather</span> generator (WG), which is calibrated using the observed <span class="hlt">weather</span> series, interpolated, and then modified according to the GCM- or RCM-based climate change scenarios. The present contribution, in which the parametric daily <span class="hlt">weather</span> generator M&Rfi is linked to the high-resolution RCM output (ALADIN-Climate/CZ model) and GCM-based climate change scenarios, consists of two parts: The first part focuses on a methodology. Firstly, the gridded WG representing the baseline climate is created by merging information from observations and high resolution RCM outputs. In this procedure, WG is calibrated with RCM-simulated multi-variate <span class="hlt">weather</span> series, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with RCM-simulated <span class="hlt">weather</span> series vs. spatially scarcer observations. To represent the future climate, the WG parameters are modified according to the 'WG-friendly' climate change scenarios. These scenarios are defined in terms of changes in WG parameters and include - apart from changes in the means - changes in WG parameters, which represent the additional characteristics of the <span class="hlt">weather</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020042351','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020042351"><span>The Effects of Aviation <span class="hlt">Weather</span> Information Systems on General Aviation <span class="hlt">Weather</span> Information Systems on General Pilots' Workload</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scerbo, Mark; Coyne, Joseph; Burt, Jennifer L. (Technical Monitor)</p> <p>2002-01-01</p> <p>My work at NASA Langley has focused around Aviation <span class="hlt">Weather</span> Information CAWING displays. The majority of my time at LYRIC has been spent on the Workload and Relative Position (WaRP) Study. The goal of this project is to determine how an AWIN display at various positions within the cockpit affects pilot performance and workload. The project is being conducted in Languages Cessna 206H research aircraft. During the past year the design of the <span class="hlt">experiment</span> was finalized and approved. Despite facing several delays the data collection was completed in early February. Alter the completion of the data collection an extensive data entry task began. This required recording air speed, altitude, course heading, bank angle, and vertical speed information from videos of the primary flight displays. This data was then used to determine root mean square error (RMSE) for each experimental condition. In addition to the performance data (RMSE) taken from flight path deviation, the study also collected data on pilot;s accuracy in reporting <span class="hlt">weather</span> information, and a subjective rating of workload from the pilot. The data for this <span class="hlt">experiment</span> is currently being analyzed. Overall the current <span class="hlt">experiment</span> should help to determine potential costs and benefits associated with AWIN displays. The data will be used to determine if a private pilot can safely fly a general aviation aircraft while operating a <span class="hlt">weather</span> display. Clearly a display that adds to the pilot#s already heavy workload represents a potential problem. The study will compare the use of an AWIN display to conventional means of acquiring <span class="hlt">weather</span> data. The placement of the display within the cockpit (i.e., either on the yoke, kneeboard, or panel) will be also compared in terms of workload, performance, and pilot preference.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/20600','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/20600"><span><span class="hlt">Global</span> energy and water cycle <span class="hlt">experiment</span> (GEWEX) continental-scale international project (GCIP); reference data sets CD-ROM</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rea, Alan; Cederstrand, Joel R.</p> <p>1994-01-01</p> <p>The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the <span class="hlt">global</span>-change research community. The data sets were chosen with input from the <span class="hlt">Global</span> Energy and Water Cycle <span class="hlt">Experiment</span> (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical <span class="hlt">weather</span>-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC41H..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC41H..05C"><span>Advances in Optimizing <span class="hlt">Weather</span> Driven Electric Power Systems.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.</p> <p>2014-12-01</p> <p>The importance of <span class="hlt">weather</span>-driven renewable energies for the United States (and <span class="hlt">global</span>) energy portfolio is growing. The main perceived problems with <span class="hlt">weather</span>-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with <span class="hlt">Weather</span> System Simulator (NEWS) is a mathematical optimization tool that allows the construction of <span class="hlt">weather</span>-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to <span class="hlt">global</span> regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/14086','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/14086"><span>Increasing Cold <span class="hlt">Weather</span> Masonry Construction Productivity</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1997-08-01</p> <p>The thermal protection requirements for cold <span class="hlt">weather</span> masonry, as established in current industry specifications, were evaluated. <span class="hlt">Experiments</span> were conducted to define the most relevant factors in the process of freezing of newly placed mortar. The eff...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA02653.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA02653.html"><span>Mars Daily <span class="hlt">Global</span> Image from April 1999</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-09-08</p> <p>Twelve orbits a day provide NASA Mars <span class="hlt">Global</span> Surveyor MOC wide angle cameras a <span class="hlt">global</span> napshot of <span class="hlt">weather</span> patterns across the planet. Here, bluish-white water ice clouds hang above the Tharsis volcanoes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4493640','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4493640"><span>Anthropogenically enhanced chemical <span class="hlt">weathering</span> and carbon evasion in the Yangtze Basin</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang</p> <p>2015-01-01</p> <p>Chemical <span class="hlt">weathering</span> is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical <span class="hlt">weathering</span> is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the <span class="hlt">weathering</span> rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical <span class="hlt">weathering</span> by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic <span class="hlt">weathering</span>. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical <span class="hlt">weathering</span> but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary <span class="hlt">global</span> biogeochemical budgets. PMID:26150000</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=meteorology&pg=5&id=EJ088446','ERIC'); return false;" href="https://eric.ed.gov/?q=meteorology&pg=5&id=EJ088446"><span><span class="hlt">Weather</span> Watch</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bratt, Herschell Marvin</p> <p>1973-01-01</p> <p>Suggests a number of ways in which Federal Aviation Agency <span class="hlt">weather</span> report printouts can be used in teaching the <span class="hlt">weather</span> section of meteorology. These <span class="hlt">weather</span> sequence reports can be obtained free of charge at most major airports. (JR)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5029815','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5029815"><span>Municipalities' Preparedness for <span class="hlt">Weather</span> Hazards and Response to <span class="hlt">Weather</span> Warnings</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mehiriz, Kaddour; Gosselin, Pierre</p> <p>2016-01-01</p> <p>The study of the management of <span class="hlt">weather</span>-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities’ preparedness for <span class="hlt">weather</span> hazards and response to related <span class="hlt">weather</span> warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for <span class="hlt">weather</span> hazards and undertake measures to protect the population when informed of imminent extreme <span class="hlt">weather</span> events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities’ capacity and population support for <span class="hlt">weather</span>-related disaster management policies. In addition, the risk of <span class="hlt">weather</span>-related disasters increases the preparedness level through its effect on population support. We also found that the response to <span class="hlt">weather</span> warnings depended on the risk of <span class="hlt">weather</span>-related disasters, the preparedness level and the quality of <span class="hlt">weather</span> warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27649547','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27649547"><span>Municipalities' Preparedness for <span class="hlt">Weather</span> Hazards and Response to <span class="hlt">Weather</span> Warnings.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehiriz, Kaddour; Gosselin, Pierre</p> <p>2016-01-01</p> <p>The study of the management of <span class="hlt">weather</span>-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for <span class="hlt">weather</span> hazards and response to related <span class="hlt">weather</span> warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for <span class="hlt">weather</span> hazards and undertake measures to protect the population when informed of imminent extreme <span class="hlt">weather</span> events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for <span class="hlt">weather</span>-related disaster management policies. In addition, the risk of <span class="hlt">weather</span>-related disasters increases the preparedness level through its effect on population support. We also found that the response to <span class="hlt">weather</span> warnings depended on the risk of <span class="hlt">weather</span>-related disasters, the preparedness level and the quality of <span class="hlt">weather</span> warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H41E0914M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H41E0914M"><span>Microbial Mineral <span class="hlt">Weathering</span> for Nutrient Acquisition Releases Arsenic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mailloux, B. J.; Alexandrova, E.; Keimowitz, A.; Wovkulich, K.; Freyer, G.; Stolz, J.; Kenna, T.; Pichler, T.; Polizzotto, M.; Dong, H.; Radloff, K. A.; van Geen, A.</p> <p>2008-12-01</p> <p>Tens of millions of people in Southeast Asia drink groundwater contaminated with naturally occurring arsenic. The process of arsenic release from the sediment to the groundwater remains poorly understood. <span class="hlt">Experiments</span> were performed to determine if microbial mineral <span class="hlt">weathering</span> for nutrient acquisition can serve as a potential mechanism for arsenic mobilization. We performed microcosm <span class="hlt">experiments</span> with Burkholderia fungorum, phosphate free artificial groundwater, and natural apatite. Controls included incubations with no cells and with killed cells. Additionally, samples were treated with two spikes - an arsenic spike, to show that arsenic release is independent of the initial arsenic concentration, and a phosphate spike to determine whether release occurs at field relevant phosphate conditions. We show in laboratory <span class="hlt">experiments</span> that phosphate-limited cells of Burkholderia fungorum mobilize ancillary arsenic from apatite as a by-product of mineral <span class="hlt">weathering</span> for nutrient acquisition. The released arsenic does not undergo a redox transformation but appears to be solubilized from the apatite mineral lattice as arsenate during <span class="hlt">weathering</span>. Apatite has been shown to be commonly present in sediment samples from Bangladesh aquifers. Analysis of apatite purified from the Ganges, Brahamputra, Meghna drainage basin shows 210 mg/kg of arsenic, which is higher than the average crustal level. Finally, we demonstrate the presence of the microbial phenotype that releases arsenic from apatite in Bangladesh sediments. These results suggest that microbial <span class="hlt">weathering</span> for nutrient acquisition could be an important mechanism for arsenic mobilization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002291','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002291"><span>GPS Estimates of Integrated Precipitable Water Aid <span class="hlt">Weather</span> Forecasters</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory</p> <p>2013-01-01</p> <p><span class="hlt">Global</span> Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional <span class="hlt">Weather</span> Service) <span class="hlt">Weather</span> Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme <span class="hlt">weather</span> such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between <span class="hlt">weather</span> model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational <span class="hlt">weather</span> models in the U.S.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6866H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6866H"><span>Large-Scale, Extratropical <span class="hlt">Weather</span> Systems within Mars' Atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hollingsworth, Jeffery L.</p> <p>2013-04-01</p> <p>During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic <span class="hlt">weather</span> systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the <span class="hlt">weather</span> disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The <span class="hlt">weather</span> systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH <span class="hlt">weather</span> systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical <span class="hlt">weather</span> systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full <span class="hlt">global</span> circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling <span class="hlt">weather</span> systems is offered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130010424&hterms=contrast+agent&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcontrast%2Bagent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130010424&hterms=contrast+agent&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcontrast%2Bagent"><span>Large-Scale Extratropical <span class="hlt">Weather</span> Systems in Mars' Atmosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hollingsworth, Jeffery L.</p> <p>2013-01-01</p> <p>During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic <span class="hlt">weather</span> systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the <span class="hlt">weather</span> disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The <span class="hlt">weather</span> systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH <span class="hlt">weather</span> systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical <span class="hlt">weather</span> systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full <span class="hlt">global</span> circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling <span class="hlt">weather</span> systems is offered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615554M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615554M"><span>Extreme <span class="hlt">Weather</span> Risk Assessment: The Case of Jiquilisco, El Salvador</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melendez, Karla; Ceppi, Claudia; Molero, Juanjo; Rios Insua, David</p> <p>2014-05-01</p> <p>All major climate models predict increases in both <span class="hlt">global</span> and regional mean temperatures throughout this century, under different scenarios concerning future trends in population growth or economic and technological development. This consistency of results across models has strengthened the evidence about <span class="hlt">global</span> warming. Despite the convincing facts and findings of climate researchers, there is still a great deal of skepticism around climate change. There is somewhat less consensus about some of the consequences of climate change, for example in reference to extreme <span class="hlt">weather</span> changes, in particular as regards more local scales. However, such changes seem to have already considerable impact in many regions across the world in terms of lives, economic losses, and required changes in lifestyles. This may demand appropriate policy responses both at national and local levels. Our work provides a framework for extreme <span class="hlt">weather</span> multithreat risk management, based on probabilistic risk assessment (PRA). This may be useful in comparing the effectiveness of different actions to manage risks and inform judgment concerning the appropriate resource allocation to mitigate the risks. The methodology has been applied to the case study of the "El Marillo II" community, located in the municipality of Jiquilisco in El Salvador. There, the main problem related with extreme <span class="hlt">weather</span> conditions are the frequent floods caused by rainfall, hurricanes , and water increases in the Lempa river nearby located. However, droughts are also very relevant. Based on several sources like SNET, newspapers, field visits to the region and interviews, we have built a detailed database that comprises extreme <span class="hlt">weather</span> daily data from January 1971 until December 2011. Forecasting models for floods and droughts were built suggesting the need to properly manage the risks. We subsequently obtained the optimal portfolio of countermeasures, given the budget constraints. KEYWORDS: CLIMATE CHANGE, EXTREME <span class="hlt">WEATHER</span>, RISK</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1114001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1114001B"><span>An Overview of Numerical <span class="hlt">Weather</span> Prediction on Various Scales</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bao, J.-W.</p> <p>2009-04-01</p> <p>The increasing public need for detailed <span class="hlt">weather</span> forecasts, along with the advances in computer technology, has motivated many research institutes and national <span class="hlt">weather</span> forecasting centers to develop and run <span class="hlt">global</span> as well as regional numerical <span class="hlt">weather</span> prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for <span class="hlt">global</span> models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution <span class="hlt">global</span> and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSA12A..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSA12A..02T"><span>Space <span class="hlt">Weather</span> Connections to Clouds and Climate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinsley, B. A.</p> <p>2004-12-01</p> <p>There is now a considerable amount of observational data and theoretical work pointing to a link between space <span class="hlt">weather</span> and atmospheric electricity, and then between atmospheric electricity and cloud cover and precipitation, which ultimately affect climate and the biosphere. Studies so far have been largely confined to the Earth, but may be applicable to all planets with clouds in their atmospheres. The current density Jz, that is the return current flowing downward through clouds in the <span class="hlt">global</span> circuit, is modulated by the galactic cosmic ray flux; by solar energetic particles; by the dawn-dusk polar cap potential difference; and by the precipitation of relativistic electrons from the radiation belts. The flow of Jz through clouds generates unipolar space charge, which is positive at cloud tops and negative at cloud base. This charge attaches to aerosol particles, and affects their interaction with other particles and droplets. Ultrafine aerosol particles are formed around ions and are preserved from scavenging on background aerosols, and preserved for growth by vapor deposition, by space charge at the bases and tops of layer clouds. There is electro-preservation of both ultrafines and of existing CCN that leads to increases in CCN concentration, and increases in cloud cover and reduction in both droplet size and precipitation by the `indirect aerosol effect'. For cold clouds and larger aerosol particles that act as ice forming nuclei, the rate of scavenging of the IFN by large supercooled droplets varies with space charge. Changes in space <span class="hlt">weather</span> affect both ion production and Jz in planetary atmospheres. In addition, changes in cosmic ray flux affect conductivity within thunderclouds and may affect the output of the thundercloud generators in the <span class="hlt">global</span> circuit. Thus all four processes, (a) ion-induced nucleation, (b) electro-preservation of leading to increases in CCN concentration and the indirect aerosol effect, (c) contact ice nucleation affecting the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070008093','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070008093"><span>STEREO Space <span class="hlt">Weather</span> and the Space <span class="hlt">Weather</span> Beacon</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.</p> <p>2007-01-01</p> <p>The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space <span class="hlt">weather</span>. The obvious potential for space <span class="hlt">weather</span> applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space <span class="hlt">Weather</span> Beacon. Within the research community there has been considerable interest in conducting space <span class="hlt">weather</span> related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space <span class="hlt">weather</span> and many of the specific research projects proposed to address STEREO space <span class="hlt">weather</span> issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024107','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024107"><span>Determining mineral <span class="hlt">weathering</span> rates based on solid and solute <span class="hlt">weathering</span> gradients and velocities: Application to biotite <span class="hlt">weathering</span> in saprolites</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>White, A.F.</p> <p>2002-01-01</p> <p>Chemical <span class="hlt">weathering</span> gradients are defined by the changes in the measured elemental concentrations in solids and pore waters with depth in soils and regoliths. An increase in the mineral <span class="hlt">weathering</span> rate increases the change in these concentrations with depth while increases in the <span class="hlt">weathering</span> velocity decrease the change. The solid-state <span class="hlt">weathering</span> velocity is the rate at which the <span class="hlt">weathering</span> front propagates through the regolith and the solute <span class="hlt">weathering</span> velocity is equivalent to the rate of pore water infiltration. These relationships provide a unifying approach to calculating both solid and solute <span class="hlt">weathering</span> rates from the respective ratios of the <span class="hlt">weathering</span> velocities and gradients. Contemporary <span class="hlt">weathering</span> rates based on solute residence times can be directly compared to long-term past <span class="hlt">weathering</span> based on changes in regolith composition. Both rates incorporate identical parameters describing mineral abundance, stoichiometry, and surface area. <span class="hlt">Weathering</span> gradients were used to calculate biotite <span class="hlt">weathering</span> rates in saprolitic regoliths in the Piedmont of Northern Georgia, USA and in Luquillo Mountains of Puerto Rico. Solid-state <span class="hlt">weathering</span> gradients for Mg and K at Panola produced reaction rates of 3 to 6 x 10-17 mol m-2 s-1 for biotite. Faster <span class="hlt">weathering</span> rates of 1.8 to 3.6 ?? 10-16 mol m-2 s-1 are calculated based on Mg and K pore water gradients in the Rio Icacos regolith. The relative rates are in agreement with a warmer and wetter tropical climate in Puerto Rico. Both natural rates are three to six orders of magnitude slower than reported experimental rates of biotite <span class="hlt">weathering</span>. ?? 2002 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820021920','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820021920"><span>Applying modeling Results in designing a <span class="hlt">global</span> tropospheric <span class="hlt">experiment</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1982-01-01</p> <p>A set of field <span class="hlt">experiments</span> and advanced modeling studies which provide a strategy for a program of <span class="hlt">global</span> tropospheric <span class="hlt">experiments</span> was identified. An expanded effort to develop space applications for trospheric air quality monitoring and studies was recommended. The tropospheric ozone, carbon, nitrogen, and sulfur cycles are addressed. Stratospheric-tropospheric exchange is discussed. Fast photochemical processes in the free troposphere are considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930007503','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930007503"><span>Pilot <span class="hlt">weather</span> advisor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.</p> <p>1992-01-01</p> <p>The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot <span class="hlt">Weather</span> Advisor cockpit <span class="hlt">weather</span> data system using a broadcast satellite communication system are presented. The Pilot <span class="hlt">Weather</span> Advisor demonstrated that the technical problems involved with transmitting significant amount of <span class="hlt">weather</span> data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot <span class="hlt">Weather</span> Advisor appears to be a viable solution for providing accurate and timely <span class="hlt">weather</span> information for general aviation aircraft.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11O..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11O..01R"><span>A new precipitation and meteorological drought climatology based on <span class="hlt">weather</span> patterns</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.</p> <p>2017-12-01</p> <p><span class="hlt">Weather</span>-pattern, or <span class="hlt">weather</span>-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined <span class="hlt">weather</span> patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. <span class="hlt">Weather</span> pattern definitions and daily occurrences are mapped to the commonly-used Lamb <span class="hlt">Weather</span> Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each <span class="hlt">weather</span> pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly <span class="hlt">weather</span>-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 <span class="hlt">weather</span> patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. <span class="hlt">Weather</span> patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a <span class="hlt">global</span> seasonal forecast model) can predict <span class="hlt">weather</span> pattern occurrences then regional drought outlooks may be derived from the forecasted <span class="hlt">weather</span> patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN23D1795C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN23D1795C"><span>Simulation and Data Analytics for Mobile Road <span class="hlt">Weather</span> Sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chettri, S. R.; Evans, J. D.; Tislin, D.</p> <p>2016-12-01</p> <p>Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based <span class="hlt">weather</span> observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface <span class="hlt">weather</span> parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of <span class="hlt">weather</span> parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects <span class="hlt">weather</span> readings from the National <span class="hlt">Weather</span> Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical <span class="hlt">experiments</span>. The simulator's MoPED-like <span class="hlt">weather</span> data stream enables studies like the following: <span class="hlt">Experimenting</span> with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface <span class="hlt">weather</span> - such as dry lines, sudden changes in humidity that accompany severe <span class="hlt">weather</span> - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUSM.H31A..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUSM.H31A..06M"><span>Monitoring the <span class="hlt">Global</span> Soil Moisture Climatology Using GLDAS/LIS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meng, J.; Mitchell, K.; Wei, H.; Gottschalck, J.</p> <p>2006-05-01</p> <p>Soil moisture plays a crucial role in the terrestrial water cycle through governing the process of partitioning precipitation among infiltration, runoff and evaporation. Accurate assessment of soil moisture and other land states, namely, soil temperature, snowpack, and vegetation, is critical in numerical environmental prediction systems because of their regulation of surface water and energy fluxes between the surface and atmosphere over a variety of spatial and temporal scales. The <span class="hlt">Global</span> Land Data Assimilation System (GLDAS) is developed, jointly by NASA Goddard Space Flight Center (GSFC) and NOAA National Centers for Environmental Prediction (NCEP), to perform high-quality <span class="hlt">global</span> land surface simulation using state-of-art land surface models and further minimizing the errors of simulation by constraining the models with observation- based precipitation, and satellite land data assimilation techniques. The GLDAS-based Land Information System (LIS) infrastructure has been installed on the NCEP supercomputer that serves the operational <span class="hlt">weather</span> and climate prediction systems. In this <span class="hlt">experiment</span>, the Noah land surface model is offline executed within the GLDAS/LIS infrastructure, driven by the NCEP <span class="hlt">Global</span> Reanalysis-2 (GR2) and the CPC Merged Analysis of Precipitation (CMAP). We use the same Noah code that is coupled to the operational NCEP <span class="hlt">Global</span> Forecast System (GFS) for <span class="hlt">weather</span> prediction and test bed versions of the NCEP Climate Forecast System (CFS) for seasonal prediction. For assessment, it is crucial that this uncoupled GLDAS/Noah uses exactly the same Noah code (and soil and vegetation parameters therein), and executes with the same horizontal grid, landmask, terrain field, soil and vegetation types, seasonal cycle of green vegetation fraction and surface albedo as in the coupled GFS/Noah and CFS/Noah. This execution is for the 25-year period of 1980-2005, starting with a pre-execution 10-year spin-up. This 25-year GLDAS/Noah <span class="hlt">global</span> land climatology will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26621516','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26621516"><span>Factoring in <span class="hlt">weather</span> variation to capture the influence of urban design and built environment on <span class="hlt">globally</span> recommended levels of moderate to vigorous physical activity in children.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem</p> <p>2015-11-30</p> <p>In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures-variation in <span class="hlt">weather</span>. After factoring in <span class="hlt">weather</span> variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of <span class="hlt">globally</span> recommended moderate to vigorous physical activity levels (MVPA) in children. This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10-14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with <span class="hlt">weather</span> data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in <span class="hlt">weather</span> variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in <span class="hlt">weather</span> variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate recommended MVPA. The findings</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92..227T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92..227T"><span>Briefing highlights space <span class="hlt">weather</span> risks to GPS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tretkoff, Ernie</p> <p>2011-07-01</p> <p>Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space <span class="hlt">weather</span> can affect the <span class="hlt">Global</span> Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space <span class="hlt">weather</span> forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space <span class="hlt">weather</span>-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space <span class="hlt">weather</span>, she said.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMED14A..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMED14A..04S"><span>The Colorado Student Space <span class="hlt">Weather</span> <span class="hlt">Experiment</span>: A successful student-run scientific spacecraft mission</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.</p> <p>2015-12-01</p> <p>The Colorado Student Space <span class="hlt">Weather</span> <span class="hlt">Experiment</span> is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable <span class="hlt">experience</span> in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036322','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036322"><span>The USGS geomagnetism program and its role in space <span class="hlt">weather</span> monitoring</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, Jeffrey J.; Finn, Carol A.</p> <p>2011-01-01</p> <p>Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of <span class="hlt">global</span> positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space <span class="hlt">weather</span> starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space <span class="hlt">weather</span> are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space <span class="hlt">weather</span> monitoring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.agu.org/pubs/crossref/2011/2011SW000684.shtml','USGSPUBS'); return false;" href="http://www.agu.org/pubs/crossref/2011/2011SW000684.shtml"><span>The USGS Geomagnetism Program and its role in Space-<span class="hlt">Weather</span> Monitoring</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, Jeffrey J.; Finn, Carol A.</p> <p>2011-01-01</p> <p>Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of <span class="hlt">global</span> positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space <span class="hlt">weather</span> starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space <span class="hlt">weather</span> are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space <span class="hlt">weather</span> monitoring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN43C0089M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN43C0089M"><span>Using Space <span class="hlt">Weather</span> for Enhanced, Extreme Terrestrial <span class="hlt">Weather</span> Predictions.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McKenna, M. H.; Lee, T. A., III</p> <p>2017-12-01</p> <p>Considering the complexities of the Sun-Earth system, the impacts of space <span class="hlt">weather</span> to <span class="hlt">weather</span> here on Earth are not fully understood. This study attempts to analyze this interrelationship by providing a theoretical framework for studying the varied modalities of solar inclination and explores the extent to which they contribute, both in formation and intensity, to extreme terrestrial <span class="hlt">weather</span>. Using basic topologic and ontology engineering concepts (TOEC), the transdisciplinary syntaxes of space physics, geophysics, and meteorology are analyzed as a seamless interrelated system. This paper reports this investigation's initial findings and examines the validity of the question "Does space <span class="hlt">weather</span> contribute to extreme <span class="hlt">weather</span> on Earth, and if so, to what degree?"</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160003509','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160003509"><span>Insights Into the Aqueous History of Mars from Acid-Sulfate <span class="hlt">Weathered</span> Phyllosilicates</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.</p> <p>2016-01-01</p> <p>Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this <span class="hlt">global</span> transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been <span class="hlt">weathered</span> by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate <span class="hlt">weathered</span> phyllosilicates in laboratory <span class="hlt">experiments</span>, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1110282.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1110282.pdf"><span>Investigating Causality between <span class="hlt">Global</span> <span class="hlt">Experience</span> and <span class="hlt">Global</span> Competency for Undergraduates in Contemporary China's Higher Education: A Transformative Learning Theory Perspective</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Li, Jian; Xu, Jinhui</p> <p>2016-01-01</p> <p>The purpose of this study is to investigate the causal relationship between <span class="hlt">global</span> <span class="hlt">experience</span> and <span class="hlt">global</span> competency from a transformative learning theory perspective. China society is becoming more and more linguistically and culturally diverse in a <span class="hlt">global</span> context. Moreover, Chinese students should be knowledgeable about the international issues…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030020320&hterms=Information+Systems&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DInformation%2BSystems','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030020320&hterms=Information+Systems&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DInformation%2BSystems"><span>General Aviation Cockpit <span class="hlt">Weather</span> Information System Simulation Studies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McAdaragh, Ray; Novacek, Paul</p> <p>2003-01-01</p> <p>This viewgraph presentation provides information on two <span class="hlt">experiments</span> on the effectiveness of a cockpit <span class="hlt">weather</span> information system on a simulated general aviation flight. The presentation covers the simulation hardware configuration, the display device screen layout, a mission scenario, conclusions, and recommendations. The second <span class="hlt">experiment</span>, with its own scenario and conclusions, is a follow-on <span class="hlt">experiment</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESuD....6..217C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESuD....6..217C"><span>Colluvial deposits as a possible <span class="hlt">weathering</span> reservoir in uplifting mountains</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre</p> <p>2018-03-01</p> <p>The role of mountain uplift in the evolution of the <span class="hlt">global</span> climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate <span class="hlt">weathering</span>, which consumes CO2. Here we present the results of a 3-D model that couples erosion and <span class="hlt">weathering</span> during mountain uplift, in which, for the first time, the <span class="hlt">weathered</span> material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of <span class="hlt">weathering</span> fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate <span class="hlt">weathering</span> fluxes probably represent a maximum, although the predicted silicate <span class="hlt">weathering</span> rates are within the range of silicate and total <span class="hlt">weathering</span> rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the <span class="hlt">weathering</span> rate evolution. This model thus predicts that the <span class="hlt">weathering</span> outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the <span class="hlt">weathering</span> of colluvium appears to sustain the mountain <span class="hlt">weathering</span> flux. The relative <span class="hlt">weathering</span> contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4776821','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4776821"><span>Graduate <span class="hlt">Global</span> Public Health Education: Activities and Outcomes in Relation to Student Prior <span class="hlt">Experience</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jackson, Suzanne F.; Cole, Donald C.</p> <p>2013-01-01</p> <p>The Dalla Lana School of Public Health uses an “add-on” or concentration model of <span class="hlt">global</span> health education. Records of masters’ graduate cohorts across five disciplinary fields from 2006 to 2009 were classified as to prior <span class="hlt">experience</span> at application and completion of <span class="hlt">global</span> health concentration requirements. Alumni from the first two cohorts (2006-08 and 2007-09) were interviewed using a semi-structured interview guide. Prior <span class="hlt">experience</span> was not linked consistently with the number of elective courses, location of practica or completion of requirements. Successful completion of the <span class="hlt">global</span> health requirements depended more on the student’s base disciplinary program. Interviewed alumni with medium prior <span class="hlt">experience</span> reported greater satisfaction with the concentration. Alumni with lower prior <span class="hlt">experience</span> wanted more courses and support with practica. The pros and cons of a concentration model of <span class="hlt">global</span> public health graduate education are discussed. PMID:23618475</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A24A..06X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A24A..06X"><span>Chemical <span class="hlt">weather</span> forecasting for the Yangtze River Delta</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Y.; Xu, J.; Zhou, G.; Chang, L.; Chen, B.</p> <p>2016-12-01</p> <p>Shanghai is one of the largest megacities in the world. With rapid economic growth of the city and its surrounding areas in recent years, air pollution has posed adverse effects on public health and ecosystem. In winter heavy pollution episodes are often associated with PM exceedances under stagnant conditions or transport events, whereas in summer the region frequently <span class="hlt">experiences</span> elevated O3 levels. Chemical <span class="hlt">weather</span> prediction systems with the WRF-Chem and CMAQ models are being developed to support air quality and haze forecasting for Shanghai and the Yangtze River Delta region. We will present main components of the modeling system, forecasting products, as well as evaluation results. Evaluation of the WRF-Chem forecasts show the model has generally good ability to capture the temporal variations of O3 and PM2.5. Substantial regional differences exist, with the best performance in Shanghai. Meanwhile, the forecasts tend to degrade during highly polluted episodes and transitional time periods, which highlights the need to improve model representation of key process (e.g. meteorological fields and formation of secondary pollutants). Recent work includes using the ECMWF <span class="hlt">global</span> model forecasts as chemical boundary conditions for our regional model. We investigate the impact of chemical downscaling, and also compare the results from different models participated in the PANDA (PArtnership with chiNa on space Data) project. Results from ongoing efforts (e.g. chemical <span class="hlt">weather</span> forecasting driven by SMS regional high resolution NWP) will also be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26480035','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26480035"><span>Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot <span class="hlt">Weather</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John</p> <p>2014-04-11</p> <p>This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) <span class="hlt">weather</span>. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT <span class="hlt">weather</span>), pigs only, bedding only, or pigs and bedding. <span class="hlt">Experiment</span> 1 used 51 loads in WARM- and 86 loads in HOT <span class="hlt">weather</span> to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). <span class="hlt">Experiment</span> 2 used 82 loads in WARM- and 54 loads in HOT <span class="hlt">weather</span> to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). <span class="hlt">Experiment</span> 1 found that, in WARM <span class="hlt">weather</span>, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). <span class="hlt">Experiment</span> 2 found that, in WARM and HOT <span class="hlt">weather</span>, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..336a2024S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..336a2024S"><span>Arduino Based <span class="hlt">Weather</span> Monitoring Telemetry System Using NRF24L01+</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sidqi, Rafi; Rio Rynaldo, Bagus; Hadi Suroso, Satya; Firmansyah, Rifqi</p> <p>2018-04-01</p> <p>Abstract-<span class="hlt">Weather</span> is an important part of the natural environment, thus knowing <span class="hlt">weather</span> information is needed before doing activity. The main purpose of this research was to develop a <span class="hlt">weather</span> monitoring system which capable to transmit <span class="hlt">weather</span> data via radio frequency by using nRF24L01+ 2,4GHz radio module. This research implement Arduino UNO as the main controller of the system which send data wirelessly using the radio module and received by a receiver system. Received data then logged and displayed using a Graphical User Interface on a personal computer. Test and <span class="hlt">experiment</span> result show that the system was able to transmit <span class="hlt">weather</span> data via radio wave with maximum transmitting range of 32 meters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040047190','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040047190"><span>The Effect of NEXRAD Image Looping and National Convective <span class="hlt">Weather</span> Forecast Product on Pilot Decision Making in the Use of a Cockpit <span class="hlt">Weather</span> Information Display</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burgess, Malcolm A.; Thomas, Rickey P.</p> <p>2004-01-01</p> <p>This <span class="hlt">experiment</span> investigated improvements to cockpit <span class="hlt">weather</span> displays to better support the hazardous <span class="hlt">weather</span> avoidance decision-making of general aviation pilots. Forty-eight general aviation pilots were divided into three equal groups and presented with a simulated flight scenario involving embedded convective activity. The control group had access to conventional sources of pre-flight and in-flight <span class="hlt">weather</span> products. The two treatment groups were provided with a <span class="hlt">weather</span> display that presented NEXRAD mosaic images, graphic depiction of METARs, and text METARs. One treatment group used a NEXRAD image looping feature and the second group used the National Convective <span class="hlt">Weather</span> Forecast (NCWF) product overlaid on the NEXRAD display. Both of the treatment displays provided a significant increase in situation awareness but, they provided incomplete information required to deal with hazardous convective <span class="hlt">weather</span> conditions, and would require substantial pilot training to permit their safe and effective use.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoRL..27.4049T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoRL..27.4049T"><span>Evaluating space <span class="hlt">weather</span> forecasts of geomagnetic activity from a user perspective</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomson, A. W. P.</p> <p>2000-12-01</p> <p>Decision Theory can be used as a tool for discussing the relative costs of complacency and false alarms with users of space <span class="hlt">weather</span> forecasts. We describe a new metric for the value of space <span class="hlt">weather</span> forecasts, derived from Decision Theory. In particular we give equations for the level of accuracy that a forecast must exceed in order to be useful to a specific customer. The technique is illustrated by simplified example forecasts for <span class="hlt">global</span> geomagnetic activity and for geophysical exploration and power grid management in the British Isles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000492','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000492"><span>Space <span class="hlt">Weathering</span> Rates in Lunar and Itokawa Samples</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keller, L. P.; Berger, E. L.</p> <p>2017-01-01</p> <p>Space <span class="hlt">weathering</span> alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space <span class="hlt">weathering</span> processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space <span class="hlt">weathering</span> processes and their effects, we still know very little about <span class="hlt">weathering</span> rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space <span class="hlt">weathering</span> rates and timescales derived from laboratory <span class="hlt">experiments</span>, analysis of asteroid family spectra and the space <span class="hlt">weathering</span> styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space <span class="hlt">weathering</span> on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space <span class="hlt">weathering</span> timescale of 10(exp 5)-10(exp 6) years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP21C3554K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP21C3554K"><span>Basement Fracturing and <span class="hlt">Weathering</span> On- and Offshore Norway - Genesis, Age, and Landscape Development</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knies, J.; van der Lelij, R.; Faust, J.; Scheiber, T.; Broenner, M.; Fredin, O.; Mueller, A.; Viola, G.</p> <p>2014-12-01</p> <p>Saprolite remnants onshore Scandinavia have been investigated only sporadically. The nature and age of the deeply <span class="hlt">weathered</span> material thus remains only loosely constrained. The type and degree of <span class="hlt">weathering</span> of in situ <span class="hlt">weathered</span> soils are indicative of the environmental conditions during their formation. When external forcing changes, properties related to previous <span class="hlt">weathering</span> conditions are usually preserved, for example in clay mineral assemblages. By constraining the age and rate of <span class="hlt">weathering</span> onshore and by isotopically dating selected faults determined to be intimately linked to <span class="hlt">weathered</span> basement blocks, the influence of climate development, brittle deformation and landscape processes on <span class="hlt">weathering</span> can be quantified. The "BASE" project aims to establish a temporal and conceptual framework for brittle tectonics, <span class="hlt">weathering</span> patterns and landscape evolution affecting the basement onshore and offshore Norway. We will study the formation of saprolite in pre-Quaternary times, the influence of deep <span class="hlt">weathering</span> on landscape development and establish a conceptual structural template of the evolution of the brittle deformational features that are exposed on onshore (<span class="hlt">weathered</span>) basement blocks. Moreover, saprolitic material may have been eroded and preserved along the Norwegian continental margin during Cenozoic times. By studying both the onshore remnants and offshore erosional products deposited during periods of extreme changes of climate and tectonic boundary conditions (e..g Miocene-Pliocene), new inferences on the timing and controlling mechanisms of denudation, and on the relevance of deep <span class="hlt">weathering</span> on Late Cenozoic <span class="hlt">global</span> cooling can be drawn.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40..651F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40..651F"><span>Biogeochemical carbon coupling influences <span class="hlt">global</span> precipitation in geoengineering <span class="hlt">experiments</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fyfe, J. C.; Cole, J. N. S.; Arora, V. K.; Scinocca, J. F.</p> <p>2013-02-01</p> <p><title type="main">Abstract Climate model studies in which CO2-induced <span class="hlt">global</span> warming is offset by engineered decreases of incoming solar radiation are generally robust in their prediction of reduced amounts of <span class="hlt">global</span> precipitation. While this precipitation response has been explained on the basis of changes in net radiation controlling evaporative processes at the surface, there has been relatively little consideration of the relative role of biogeochemical carbon-cycle interactions. To address this issue, we employ an Earth System Model that includes oceanic and terrestrial carbon components to isolate the impact of biogeochemical carbon coupling on the precipitation response in geoengineering <span class="hlt">experiments</span> for two types of solar radiation management. We show that carbon coupling is responsible for a large fraction of the <span class="hlt">global</span> precipitation reduction in such geoengineering <span class="hlt">experiments</span> and that the primary effect comes from reduced transpiration through the leaves of plants and trees in the terrestrial component of the carbon cycle due to elevated CO2. Our results suggest that biogeochemical interactions are as important as changes in net radiation and that climate models that do not account for such carbon coupling may significantly underestimate precipitation reductions in a geoengineered world.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919656F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919656F"><span>Increasing <span class="hlt">weather</span>-related impacts on European population under climate and demographic change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forzieri, Giovanni; Cescatti, Alessandro; Batista e Silva, Filipe; Kovats, Sari R.; Feyen, Luc</p> <p>2017-04-01</p> <p>Over the last three decades the overwhelming majority of disasters have been caused by <span class="hlt">weather</span>-related events. The observed rise in <span class="hlt">weather</span>-related disaster losses has been largely attributed to increased exposure and to a lesser degree to <span class="hlt">global</span> warming. Recent studies suggest an intensification in the climatology of multiple <span class="hlt">weather</span> extremes in Europe over the coming decades in view of climate change, while urbanization continues. In view of these pressures, understanding and quantifying the potential impacts of extreme <span class="hlt">weather</span> events on future societies is imperative in order to identify where and to what extent their livelihoods will be at risk in the future, and develop timely and effective adaptation and disaster risk reduction strategies. Here we show a comprehensive assessment of single- and multi-hazard impacts on the European population until the year 2100. For this purpose, we developed a novel methodology that quantifies the human impacts as a multiplicative function of hazard, exposure and population vulnerability. We focus on seven of the most impacting <span class="hlt">weather</span>-related hazards - including heat and cold waves, wildfires, droughts, river and coastal floods and windstorms - and evaluated their spatial and temporal variations in intensity and frequency under a business-as-usual climate scenario. Long-term demographic dynamics were modelled to assess exposure developments under a corresponding middle-of-the-road scenario. Vulnerability of humans to <span class="hlt">weather</span> extremes was appraised based on more than 2300 records of <span class="hlt">weather</span>-related disasters. The integration of these elements provides a range of plausible estimates of extreme <span class="hlt">weather</span>-related risks for future European generations. Expected impacts on population are quantified in terms of fatalities and number of people exposed. We find a staggering rise in fatalities from extreme <span class="hlt">weather</span> events, with the projected death toll by the end of the century amounting to more than 50 times the present number of people</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5355878','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5355878"><span>Increased chemical <span class="hlt">weathering</span> during the deglacial to mid-Holocene summer monsoon intensification</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson</p> <p>2017-01-01</p> <p>Chemical <span class="hlt">weathering</span> and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the <span class="hlt">weathering</span>-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical <span class="hlt">weathering</span> when a pulse of rapid chemical <span class="hlt">weathering</span> was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical <span class="hlt">weathering</span> responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of <span class="hlt">weathering</span> and 143Nd/144Nd for provenance) reveal an increase in silicate <span class="hlt">weathering</span> with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical <span class="hlt">weathering</span> have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical <span class="hlt">weathering</span> was not a later amplifier but worked in tandem with <span class="hlt">global</span> climate change. PMID:28303943</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...744310M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...744310M"><span>Increased chemical <span class="hlt">weathering</span> during the deglacial to mid-Holocene summer monsoon intensification</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson</p> <p>2017-03-01</p> <p>Chemical <span class="hlt">weathering</span> and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the <span class="hlt">weathering</span>-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical <span class="hlt">weathering</span> when a pulse of rapid chemical <span class="hlt">weathering</span> was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical <span class="hlt">weathering</span> responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of <span class="hlt">weathering</span> and 143Nd/144Nd for provenance) reveal an increase in silicate <span class="hlt">weathering</span> with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical <span class="hlt">weathering</span> have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical <span class="hlt">weathering</span> was not a later amplifier but worked in tandem with <span class="hlt">global</span> climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG41A0115D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG41A0115D"><span>SPAGETTA: a Multi-Purpose Gridded Stochastic <span class="hlt">Weather</span> Generator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.</p> <p>2017-12-01</p> <p>SPAGETTA is a new multisite/gridded multivariate parametric stochastic <span class="hlt">weather</span> generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using <span class="hlt">weather</span> series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the <span class="hlt">weather</span> series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the <span class="hlt">weather</span> variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site <span class="hlt">weather</span> series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact <span class="hlt">experiment</span>, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this <span class="hlt">experiment</span>, the WG is calibrated using the E-OBS gridded daily <span class="hlt">weather</span> data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1099329.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1099329.pdf"><span>Fun with <span class="hlt">Weather</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Yildirim, Rana</p> <p>2007-01-01</p> <p>This three-part <span class="hlt">weather</span>-themed lesson for young learners connects <span class="hlt">weather</span>, clothing, and feelings vocabulary. The target structures covered are: asking about the <span class="hlt">weather</span>; comparing <span class="hlt">weather</span>; using the modal auxiliary, should; and the question word, when. The lessons utilize all four skills and include such activities as going outside, singing,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..531..231S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..531..231S"><span>Hydrologic applications of <span class="hlt">weather</span> radar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat</p> <p>2015-12-01</p> <p>By providing high-resolution quantitative precipitation information (QPI), <span class="hlt">weather</span> radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of <span class="hlt">weather</span> radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, <span class="hlt">experiences</span> gained, and science issues and challenges related to hydrologic applications of <span class="hlt">weather</span> radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3768377','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3768377"><span>Biodegradability of commercial and <span class="hlt">weathered</span> diesel oils</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mariano, Adriano Pinto; Bonotto, Daniel Marcos; de Franceschi de Angelis, Dejanira; Pirôllo, Maria Paula Santos; Contiero, Jonas</p> <p>2008-01-01</p> <p>This work aimed to evaluate the capability of different microorganisms to degrade commercial diesel oil in comparison to a <span class="hlt">weathered</span> diesel oil collected from the groundwater at a petrol station. Two microbiological methods were used for the biodegradability assessment: the technique based on the redox indicator 2,6 -dichlorophenol indophenol (DCPIP) and soil respirometric <span class="hlt">experiments</span> using biometer flasks. In the former we tested the bacterial cultures Staphylococcus hominis, Kocuria palustris, Pseudomonas aeruginosa LBI, Ochrobactrum anthropi and Bacillus cereus, a commercial inoculum, consortia obtained from soil and groundwater contaminated with hydrocarbons and a consortium from an uncontaminated area. In the respirometric <span class="hlt">experiments</span> it was evaluated the capability of the native microorganisms present in the soil from a petrol station to biodegrade the diesel oils. The redox indicator <span class="hlt">experiments</span> showed that only the consortia, even that from an uncontaminated area, were able to biodegrade the <span class="hlt">weathered</span> diesel. In 48 days, the removal of the total petroleum hydrocarbons (TPH) in the respirometric <span class="hlt">experiments</span> was approximately 2.5 times greater when the commercial diesel oil was used. This difference was caused by the consumption of labile hydrocarbons, present in greater quantities in the commercial diesel oil, as demonstrated by gas chromatographic analyses. Thus, results indicate that biodegradability studies that do not consider the <span class="hlt">weathering</span> effect of the pollutants may over estimate biodegradation rates and when the bioaugmentation is necessary, the best strategy would be that one based on injection of consortia, because even cultures with recognised capability of biodegrading hydrocarbons may fail when applied isolated. PMID:24031193</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030111107&hterms=leaching+process&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dleaching%2Bprocess','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030111107&hterms=leaching+process&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dleaching%2Bprocess"><span>Laboratory Hydrothermal Alteration of Basaltic Tephra by Acid Sulfate Solutions: An Analog Process for Martian <span class="hlt">Weathering</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Golden, D. C.; Ming, D. W.; Morris, R. V.</p> <p>2003-01-01</p> <p>The objective of this study is to conduct simulated Mars-like <span class="hlt">weathering</span> <span class="hlt">experiments</span> in the laboratory to determine the <span class="hlt">weathering</span> products that might form during oxidative, acidic <span class="hlt">weathering</span> of Mars analog materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH21A2646O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH21A2646O"><span>Future Missions for Space <span class="hlt">Weather</span> Specifications and Forecasts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onsager, T. G.; Biesecker, D. A.; Anthes, R. A.; Maier, M. W.; Gallagher, F. W., III; St Germain, K.</p> <p>2017-12-01</p> <p>The progress of technology and the <span class="hlt">global</span> integration of our economic and security infrastructures have introduced vulnerabilities to space <span class="hlt">weather</span> that demand a more comprehensive ability to specify and to predict the dynamics of the space environment. This requires a comprehensive network of real-time space-based and ground-based observations with long-term continuity. In order to determine the most cost effective space architectures for NOAA's <span class="hlt">weather</span>, space <span class="hlt">weather</span>, and environmental missions, NOAA conducted the NOAA Satellite Observing System Architecture (NSOSA) study. This presentation will summarize the process used to document the future needs and the relative priorities for NOAA's operational space-based observations. This involves specifying the most important observations, defining the performance attributes at different levels of capability, and assigning priorities for achieving the higher capability levels. The highest priority observations recommended by the Space Platform Requirements Working Group (SPRWG) for improvement above a minimal capability level will be described. Finally, numerous possible satellite architectures have been explored to assess the costs and benefits of various architecture configurations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4519153','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4519153"><span><span class="hlt">Weather</span> Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Campbell, Karen M.; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V.; Halsey, Eric S.; Laguna-Torres, V. Alberto; Yagui, Martín; Morrison, Amy C.; Lin, Chii-Dean; Scott, Thomas W.</p> <p>2015-01-01</p> <p>Background Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and <span class="hlt">globally</span>. <span class="hlt">Weather</span> regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how <span class="hlt">weather</span> impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by <span class="hlt">weather</span>. Methodology/Principal Findings We developed a high-resolution empirical profile of the local <span class="hlt">weather</span>-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional <span class="hlt">weather</span>-space that pairs temperature versus humidity, we mapped local transmission-potential in <span class="hlt">weather</span>-space by week during 1994-2012. A binary classification-tree was developed to test whether <span class="hlt">weather</span> data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of <span class="hlt">weather</span>-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in <span class="hlt">weather</span>-space for temperature</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26222979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26222979"><span><span class="hlt">Weather</span> Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campbell, Karen M; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V; Halsey, Eric S; Laguna-Torres, V Alberto; Yagui, Martín; Morrison, Amy C; Lin, Chii-Dean; Scott, Thomas W</p> <p>2015-01-01</p> <p>Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and <span class="hlt">globally</span>. <span class="hlt">Weather</span> regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how <span class="hlt">weather</span> impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by <span class="hlt">weather</span>. We developed a high-resolution empirical profile of the local <span class="hlt">weather</span>-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional <span class="hlt">weather</span>-space that pairs temperature versus humidity, we mapped local transmission-potential in <span class="hlt">weather</span>-space by week during 1994-2012. A binary classification-tree was developed to test whether <span class="hlt">weather</span> data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of <span class="hlt">weather</span>-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in <span class="hlt">weather</span>-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179706','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179706"><span>Mass-balance modeling of mineral <span class="hlt">weathering</span> rates and CO2 consumption in the forested, metabasaltic Hauver Branch watershed, Catoctin Mountain, Maryland, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rice, Karen; Price, Jason R.; Szymanski, David W.</p> <p>2013-01-01</p> <p>Mineral <span class="hlt">weathering</span> rates and a forest macronutrient uptake stoichiometry were determined for the forested, metabasaltic Hauver Branch watershed in north-central Maryland, USA. Previous studies of Hauver Branch have had an insufficient number of analytes to permit determination of rates of all the minerals involved in chemical <span class="hlt">weathering</span>, including biomass. More equations in the mass-balance matrix were added using existing mineralogic information. The stoichiometry of a deciduous biomass term was determined using multi-year weekly to biweekly stream-water chemistry for a nearby watershed, which drains relatively unreactive quartzite bedrock.At Hauver Branch, calcite hosts ~38 mol% of the calcium ion (Ca2+) contained in <span class="hlt">weathering</span> minerals, but its <span class="hlt">weathering</span> provides ~90% of the stream water Ca2+. This occurs in a landscape with a regolith residence time of more than several Ka (kiloannum). Previous studies indicate that such old regolith does not typically contain dissolving calcite that affects stream Ca2+/Na+ ratios. The relatively high calcite dissolution rate likely reflects dissolution of calcite in fractures of the deep critical zone.Of the carbon dioxide (CO2) consumed by mineral <span class="hlt">weathering</span>, calcite is responsible for approximately 27%, with the silicate <span class="hlt">weathering</span> consumption rate far exceeding that of the <span class="hlt">global</span> average. The chemical <span class="hlt">weathering</span> of mafic terrains in decaying orogens thus may be capable of influencing <span class="hlt">global</span> geochemical cycles, and therefore, climate, on geological timescales. Based on carbon-balance calculations, atmospheric-derived sulfuric acid is responsible for approximately 22% of the mineral <span class="hlt">weathering</span> occurring in the watershed. Our results suggest that rising air temperatures, driven by <span class="hlt">global</span> warming and resulting in higher precipitation, will cause the rate of chemical <span class="hlt">weathering</span> in the Hauver Branch watershed to increase until a threshold temperature is reached. Beyond the threshold temperature, increased recharge would</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=key+AND+intercultural+AND+communication&pg=2&id=EJ1024280','ERIC'); return false;" href="https://eric.ed.gov/?q=key+AND+intercultural+AND+communication&pg=2&id=EJ1024280"><span>Developing Intercultural Competence and <span class="hlt">Global</span> Citizenship through International <span class="hlt">Experiences</span>: Academics' Perceptions</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Trede, Franziska; Bowles, Wendy; Bridges, Donna</p> <p>2013-01-01</p> <p>International education is a key priority for Australian universities, government and employer groups. For students, an international professional <span class="hlt">experience</span> is uniquely placed in providing opportunities for developing intercultural learning, intercultural competence and <span class="hlt">global</span> citizenship. Employers see graduates with international <span class="hlt">experiences</span> as…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26032322','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26032322"><span>Evidence linking rapid Arctic warming to mid-latitude <span class="hlt">weather</span> patterns.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Francis, Jennifer; Skific, Natasa</p> <p>2015-07-13</p> <p>The effects of rapid Arctic warming and ice loss on <span class="hlt">weather</span> patterns in the Northern Hemisphere is a topic of active research, lively scientific debate and high societal impact. The emergence of Arctic amplification--the enhanced sensitivity of high-latitude temperature to <span class="hlt">global</span> warming--in only the last 10-20 years presents a challenge to identifying statistically robust atmospheric responses using observations. Several recent studies have proposed and demonstrated new mechanisms by which the changing Arctic may be affecting <span class="hlt">weather</span> patterns in mid-latitudes, and these linkages differ fundamentally from tropics/jet-stream interactions through the transfer of wave energy. In this study, new metrics and evidence are presented that suggest disproportionate Arctic warming-and resulting weakening of the poleward temperature gradient-is causing the Northern Hemisphere circulation to assume a more meridional character (i.e. wavier), although not uniformly in space or by season, and that highly amplified jet-stream patterns are occurring more frequently. Further analysis based on self-organizing maps supports this finding. These changes in circulation are expected to lead to persistent <span class="hlt">weather</span> patterns that are known to cause extreme <span class="hlt">weather</span> events. As emissions of greenhouse gases continue unabated, therefore, the continued amplification of Arctic warming should favour an increased occurrence of extreme events caused by prolonged <span class="hlt">weather</span> conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25701','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25701"><span>Comparative ratings of 1951 forest fire <span class="hlt">weather</span> in western Oregon.</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Owen P. Cramer; Robert Kirkpatrick</p> <p>1951-01-01</p> <p>The 1951 forest fire <span class="hlt">weather</span> in western Oregon is generally conceded to have been unusually severe. In order to compare this season with others, this report uses a scheme for rating fire seasons recently developed by the Fire Research section of the <span class="hlt">Experiment</span> Station, The rating is based on indices of three <span class="hlt">weather</span> characteristics which generally control burning...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21614869','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21614869"><span>Classification and prediction of pilot <span class="hlt">weather</span> encounters: A discriminant function analysis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Hare, David; Hunter, David R; Martinussen, Monica; Wiggins, Mark</p> <p>2011-05-01</p> <p>Flight into adverse <span class="hlt">weather</span> continues to be a significant hazard for General Aviation (GA) pilots. <span class="hlt">Weather</span>-related crashes have a significantly higher fatality rate than other GA crashes. Previous research has identified lack of situational awareness, risk perception, and risk tolerance as possible explanations for why pilots would continue into adverse <span class="hlt">weather</span>. However, very little is known about the nature of these encounters or the differences between pilots who avoid adverse <span class="hlt">weather</span> and those who do not. Visitors to a web site described an <span class="hlt">experience</span> with adverse <span class="hlt">weather</span> and completed a range of measures of personal characteristics. The resulting data from 364 pilots were carefully screened and subject to a discriminant function analysis. Two significant functions were found. The first, accounting for 69% of the variance, reflected measures of risk awareness and pilot judgment while the second differentiated pilots in terms of their <span class="hlt">experience</span> levels. The variables measured in this study enabled us to correctly discriminate between the three groups of pilots considerably better (53% correct classifications) than would have been possible by chance (33% correct classifications). The implications of these findings for targeting safety interventions are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Geomo..67....1T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Geomo..67....1T"><span><span class="hlt">Weathering</span> and landscape evolution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.</p> <p>2005-04-01</p> <p>In recognition of the fundamental control exerted by <span class="hlt">weathering</span> on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of <span class="hlt">Weathering</span> and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in <span class="hlt">weathering</span> geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into <span class="hlt">weathering</span> and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of <span class="hlt">weathering</span> mantles, <span class="hlt">weathering</span> and relative dating, <span class="hlt">weathering</span> and denudation, <span class="hlt">weathering</span> processes and controls and the 'big picture'.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70154952','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70154952"><span>Impacts of <span class="hlt">weather</span> on long-term patterns of plant richness and diversity vary with location and management</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.</p> <p>2015-01-01</p> <p>Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and <span class="hlt">weather</span> (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and <span class="hlt">weather</span> despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to <span class="hlt">experience</span> further increased variability in growing season precipitation, as well as increased temperatures, due to <span class="hlt">global</span> climate change. We assess 1) the portion of interannual variability of richness and diversity explained by <span class="hlt">weather</span>, 2) how relationships between these metrics and <span class="hlt">weather</span> vary among plant assemblages, and 3) which aspects of <span class="hlt">weather</span> best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori <span class="hlt">weather</span> covariates using six datasets from four grasslands. <span class="hlt">Weather</span> explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific <span class="hlt">weather</span> variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23039447','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23039447"><span>Auditory <span class="hlt">global</span>-local processing: effects of attention and musical <span class="hlt">experience</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ouimet, Tia; Foster, Nicholas E V; Hyde, Krista L</p> <p>2012-10-01</p> <p>In vision, <span class="hlt">global</span> (whole) features are typically processed before local (detail) features ("<span class="hlt">global</span> precedence effect"). However, the distinction between <span class="hlt">global</span> and local processing is less clear in the auditory domain. The aims of the present study were to investigate: (i) the effects of directed versus divided attention, and (ii) the effect musical training on auditory <span class="hlt">global</span>-local processing in 16 adult musicians and 16 non-musicians. Participants were presented with short nine-tone melodies, each comprised of three triplet sequences (three-tone units). In a "directed attention" task, participants were asked to focus on either the <span class="hlt">global</span> or local pitch pattern and had to determine if the pitch pattern went up or down. In a "divided attention" task, participants judged whether the target pattern (up or down) was present or absent. Overall, <span class="hlt">global</span> structure was perceived faster and more accurately than local structure. The <span class="hlt">global</span> precedence effect was observed regardless of whether attention was directed to a specific level or divided between levels. Musicians performed more accurately than non-musicians overall, but non-musicians showed a more pronounced <span class="hlt">global</span> advantage. This study provides evidence for an auditory <span class="hlt">global</span> precedence effect across attention tasks, and for differences in auditory <span class="hlt">global</span>-local processing associated with musical <span class="hlt">experience</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN51D0044N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN51D0044N"><span>Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical <span class="hlt">Weather</span> Prediction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.</p> <p>2017-12-01</p> <p>This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical <span class="hlt">weather</span> prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time <span class="hlt">Global</span> Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National <span class="hlt">Weather</span> Service (NWS) <span class="hlt">Global</span> Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National <span class="hlt">Weather</span> Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact <span class="hlt">weather</span> forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the <span class="hlt">experience</span> with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5..605F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5..605F"><span>Understanding the <span class="hlt">weather</span> signal in national crop-yield variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders</p> <p>2017-06-01</p> <p>Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant <span class="hlt">global</span> price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by <span class="hlt">weather</span> conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of <span class="hlt">weather</span>-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to <span class="hlt">weather</span> by state-of-the-art, process-based crop model simulations. We find that observed <span class="hlt">weather</span> variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, <span class="hlt">weather</span> sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for <span class="hlt">weather</span> influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008TellA..60..216M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008TellA..60..216M"><span>Sensitivity Observing System <span class="hlt">Experiment</span> (SOSE)-a new effective NWP-based tool in designing the <span class="hlt">global</span> observing system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marseille, Gert-Jan; Stoffelen, Ad; Barkmeijer, Jan</p> <p>2008-03-01</p> <p>Lacking an established methodology to test the potential impact of prospective extensions to the <span class="hlt">global</span> observing system (GOS) in real atmospheric cases we developed such a method, called Sensitivity Observing System <span class="hlt">Experiment</span> (SOSE). For example, since the GOS is non uniform it is of interest to investigate the benefit of complementary observing systems filling its gaps. In a SOSE adjoint sensitivity structures are used to define a pseudo true atmospheric state for the simulation of the prospective observing system. Next, the synthetic observations are used together with real observations from the existing GOS in a state-of-the-art Numerical <span class="hlt">Weather</span> Prediction (NWP) model to assess the potential added value of the new observing system. Unlike full observing system simulation <span class="hlt">experiments</span> (OSSE), SOSE can be applied to real extreme events that were badly forecast operationally and only requires the simulation of the new instrument. As such SOSE is an effective tool, for example, to define observation requirements for extensions to the GOS. These observation requirements may serve as input for the design of an operational network of prospective observing systems. In a companion paper we use SOSE to simulate potential future space borne Doppler Wind Lidar (DWL) scenarios and assess their capability to sample meteorologically sensitive areas not well captured by the current GOS, in particular over the Northern Hemisphere oceans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSMIN31A..11H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSMIN31A..11H"><span><span class="hlt">Weathering</span> Grade Classification of Granite Stone Monument Using Reflectance Spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hyun, C.; Roh, T.; Choi, M.; Park, H.</p> <p>2009-05-01</p> <p>Stone monument has been placed in field and exposed to rain and wind. This outdoor environment and air pollution induced <span class="hlt">weathering</span> of stone monument. <span class="hlt">Weathering</span> grade classification is necessary to manage and conserve stone monuments. Visual interpretation by geologist and laboratory <span class="hlt">experiments</span> using specimens fallen off from the monument to avoid damage on the monument have been applied to classify <span class="hlt">weathering</span> grade conventionally. Rocks and minerals absorb some particular wavelength ranges of electromagnetic energy by electronic process and vibrational process of composing elements and these phenomena produce intrinsic diagnostic spectral reflectance curve. Non-destructive technique for <span class="hlt">weathering</span> degree assessment measures those diagnostic absorption features of <span class="hlt">weathering</span> products and converts the depths of features related to abundance of the materials to relative <span class="hlt">weathering</span> degree. We selected granite outcrop to apply conventional six folded <span class="hlt">weathering</span> grade classification method using Schmidt hammer rebound teste. The correlations between Schmidt hammer rebound values and absorption depths of iron oxides such as ferric oxide in the vicinity of 0.9 micrometer wavelength and clay minerals such as illite and kaolinite in the vicinity of 2.2 micrometer wavelength, representative <span class="hlt">weathering</span> products of granite, were analyzed. The Schmidt hammer rebound value decreased according to increase of absorption depths induced from those <span class="hlt">weathering</span> products. <span class="hlt">Weathering</span> grade classification on the granite stone monument was conducted by using absorption depths of <span class="hlt">weathering</span> products This research is supported from National Research Institute of Cultural Heritage and we appreciate for this.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13E..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13E..05P"><span>Interactions between tectonics, silicate <span class="hlt">weathering</span>, and climate explored with carbon cycle modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penman, D. E.; Caves Rugenstein, J. K.; Ibarra, D. E.; Winnick, M.</p> <p>2017-12-01</p> <p>Earth's long-term carbon cycle is thought to benefit from a stabilizing negative feedback in the form of CO2 consumption by the chemical <span class="hlt">weathering</span> of silicate minerals: during periods of elevated atmospheric pCO2, chemical <span class="hlt">weathering</span> rates increase, thus consuming more atmospheric CO2 and cooling <span class="hlt">global</span> climate, whereas during periods of low pCO2, <span class="hlt">weathering</span> rates decrease, allowing buildup of CO2 in the atmosphere and warming. At equilibrium, CO2 consumption by silicate <span class="hlt">weathering</span> balances volcanic CO2 degassing at a specific atmospheric pCO2 dictated by the relationship between total silicate <span class="hlt">weathering</span> rate and pCO2: Earth's "<span class="hlt">weathering</span> curve." We use numerical carbon cycle modeling to demonstrate that the shape and slope of the <span class="hlt">weathering</span> curve is crucial to understanding proposed tectonic controls on pCO2 and climate. First, the shape of the <span class="hlt">weathering</span> curve dictates the equilibrium response of the carbon cycle to changes in the rate of background volcanic/solid Earth CO2 degassing, which has been suggested to vary significantly with plate tectonic reorganizations over geologic timescales. Second, we demonstrate that if tectonic events can significantly change the <span class="hlt">weathering</span> curve, this can act as an effective driver of pCO2 and climate on tectonic timescales by changing the atmospheric pCO2 at which silicate <span class="hlt">weathering</span> balances a constant volcanic/solid Earth degassing rate. Finally, we review the complex interplay of environmental factors that affect modern <span class="hlt">weathering</span> rates in the field and highlight how the resulting uncertainty surrounding the shape of Earth's <span class="hlt">weathering</span> curve significantly hampers our ability to quantitatively predict the response of pCO2 and climate to tectonic forcing, and thus represents a substantial knowledge gap in Earth science. We conclude with strategies for closing this knowledge gap by using precise paleoclimatic reconstructions of intervals with known tectonic forcings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.4248B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.4248B"><span>International Collaboration in Space <span class="hlt">Weather</span> Situational Awareness</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boteler, David; Trichtchenko, Larisa; Danskin, Donald</p> <p></p> <p>Space <span class="hlt">weather</span> is a <span class="hlt">global</span> phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space <span class="hlt">weather</span> forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space <span class="hlt">weather</span> produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space <span class="hlt">weather</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GBioC..26.3017M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GBioC..26.3017M"><span>The importance of the terrestrial <span class="hlt">weathering</span> feedback for multimillennial coral reef habitat recovery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meissner, Katrin J.; McNeil, Ben I.; Eby, Michael; Wiebe, Edward C.</p> <p>2012-09-01</p> <p>Modern-day coral reefs have well defined environmental envelopes for light, sea surface temperature (SST) and seawater aragonite saturation state (Ωarag). We examine the changes in <span class="hlt">global</span> coral reef habitat on multimillennial timescales with regard to SST and Ωaragusing a climate model including a three-dimensional ocean general circulation model, a fully coupled carbon cycle, and six different parameterizations for continental <span class="hlt">weathering</span> (the UVic Earth System Climate Model). The model is forced with emission scenarios ranging from 1,000 Pg C to 5,000 Pg C total emissions. We find that the long-term climate change response is independent of the rate at which CO2 is emitted over the next few centuries. On millennial timescales, the <span class="hlt">weathering</span> feedback introduces a significant uncertainty even for low emission scenarios. <span class="hlt">Weathering</span> parameterizations based on atmospheric CO2 only display a different transient response than <span class="hlt">weathering</span> parameterizations that are dependent on temperature. Although environmental conditions for SST and Ωaragstay <span class="hlt">globally</span> hostile for coral reefs for millennia for our high emission scenarios, some <span class="hlt">weathering</span> parameterizations induce a near-complete recovery of coral reef habitat to current conditions after 10,000 years, while others result in a collapse of coral reef habitat throughout our simulations. We find that the multimillennial response in sea surface temperature (SST) substantially lags the aragonite saturation recovery in all configurations. This implies that if corals can naturally adapt over millennia by selecting thermally tolerant species to match warmer ocean temperatures, prospects for long-term recovery of coral reefs are better since Ωarag recovers more quickly than SST.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170009791','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170009791"><span>UTM <span class="hlt">Weather</span> Presentation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chan, William N.; Kopardekar, Parimal H.; Carmichael, Bruce; Cornman, Larry</p> <p>2017-01-01</p> <p>Presentation highlighting how <span class="hlt">weather</span> affected UAS operations during the UTM field tests. Research to develop UAS <span class="hlt">weather</span> translation models with a description of current and future work for UTM <span class="hlt">weather</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160005208','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160005208"><span>Traveling <span class="hlt">Weather</span> Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hollingsworth, Jeffery L.</p> <p>2016-01-01</p> <p>As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars <span class="hlt">Global</span> Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling <span class="hlt">weather</span> systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical <span class="hlt">weather</span> disturbances are critical components of the <span class="hlt">global</span> circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars <span class="hlt">global</span> climate model (Mars GCM). This <span class="hlt">global</span> circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. <span class="hlt">globally</span> averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period <span class="hlt">weather</span> disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale <span class="hlt">weather</span> disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816543H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816543H"><span>Traveling <span class="hlt">Weather</span> Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hollingsworth, Jeffery L.</p> <p>2016-04-01</p> <p>As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars <span class="hlt">Global</span> Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling <span class="hlt">weather</span> systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical <span class="hlt">weather</span> disturbances are critical components of the <span class="hlt">global</span> circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars <span class="hlt">global</span> climate model (Mars GCM). This <span class="hlt">global</span> circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., <span class="hlt">globally</span> averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period <span class="hlt">weather</span> disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale <span class="hlt">weather</span> disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013443','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013443"><span>Extratropical Cyclogenesis and Frontal Waves on Mars: Influences on Dust, <span class="hlt">Weather</span> and the Planet's climate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hollingsworth, J. L.; Kahre, Melinda A.</p> <p>2012-01-01</p> <p>Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars <span class="hlt">Global</span> Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling <span class="hlt">weather</span> systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical <span class="hlt">weather</span> disturbances are critical components of the <span class="hlt">global</span> circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical <span class="hlt">weather</span> systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010887','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010887"><span>Nonlinear dynamics of <span class="hlt">global</span> atmospheric and Earth system processes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saltzman, Barry</p> <p>1993-01-01</p> <p>During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the <span class="hlt">global</span> <span class="hlt">weather</span> and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in <span class="hlt">global</span> <span class="hlt">weather</span> analysis; (3) studies of planetary waves and low-frequency <span class="hlt">weather</span> variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the <span class="hlt">global</span> earth system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U34A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U34A..02L"><span>How Satellites Have Contributed to Building a <span class="hlt">Weather</span> Ready Nation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lapenta, W.</p> <p>2017-12-01</p> <p> prediction. The purpose of this paper is to highlight the value of the satellite component of the <span class="hlt">global</span> observing system to NWS operational <span class="hlt">weather</span> forecasting and emphasize how these data form a critical component of the NWS ability to protect life and property and ensure economic well-being.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH31D..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH31D..01P"><span>The Social and Economic Impacts of Space <span class="hlt">Weather</span> (US Project)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pulkkinen, A. A.; Bisi, M. M.; Webb, D. F.; Oughton, E. J.; Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.; Basoli, D.; Griot, O.</p> <p>2017-12-01</p> <p>The National Space <span class="hlt">Weather</span> Action Plan calls for new research into the social and economic impacts of space <span class="hlt">weather</span> and for the development of quantitative estimates of potential costs. In response to this call, NOAA's Space <span class="hlt">Weather</span> Prediction Center (SWPC) and Abt Associates are working together to identify, describe, and quantify the impact of space <span class="hlt">weather</span> to U.S. interests. This study covers impacts resulting from both moderate and severe space <span class="hlt">weather</span> events across four technological sectors: Electric power, commercial aviation, satellites, and <span class="hlt">Global</span> Navigation Satellite System (GNSS) users. It captures the full range of potential impacts, identified from an extensive literature review and from additional conversations with more than 50 sector stakeholders of diverse expertise from engineering to operations to end users. We organize and discuss our findings in terms of five broad but interrelated impact categories including Defensive Investments, Mitigating Actions, Asset Damages, Service Interruptions, and Health Effects. We also present simple, tractable estimates of the potential costs where we focused on quantifying a subset of all identified impacts that are apt to be largest and are also most plausible during moderate and more severe space <span class="hlt">weather</span> scenarios. We hope that our systematic exploration of the social and economic impacts provides a foundation for the future work that is critical for designing technologies, developing procedures, and implementing policies that can effectively reduce our known and evolving vulnerabilities to this natural hazard.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1122899.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1122899.pdf"><span><span class="hlt">Globalizing</span> the Undergraduate <span class="hlt">Experience</span> in Agricultural Leadership, Education, Extension, and Communication</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Heinert, Seth B.; Roberts, T. Grady</p> <p>2016-01-01</p> <p>University graduates are entering a workforce where <span class="hlt">global</span> competencies are important; yet, a vast majority graduate with limited international educational <span class="hlt">experience</span>. The purpose of this basic qualitative study was to describe themes of international educational <span class="hlt">experiences</span> currently being offered to students of agricultural leadership,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021258','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021258"><span>Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate <span class="hlt">weathering</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brady, P.V.; Dorn, R.I.; Brazel, A.J.; Clark, J.; Moore, R.B.; Glidewell, T.</p> <p>1999-01-01</p> <p>A key uncertainty in models of the <span class="hlt">global</span> carbonate-silicate cycle and long-term climate is the way that silicates <span class="hlt">weather</span> under different climatologic conditions, and in the presence or absence of organic activity. Digital imaging of basalts in Hawaii resolves the coupling between temperature, rainfall, and <span class="hlt">weathering</span> in the presence and absence of lichens. Activation energies for abiotic dissolution of plagioclase (23.1 ?? 2.5 kcal/mol) and olivine (21.3 ?? 2.7 kcal/mol) are similar to those measured in the laboratory, and are roughly double those measured from samples taken underneath lichen. Abiotic <span class="hlt">weathering</span> rates appear to be proportional to rainfall. Dissolution of plagioclase and olivine underneath lichen is far more sensitive to rainfall.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.nws.noaa.gov/privacy.php','SCIGOVWS'); return false;" href="http://www.nws.noaa.gov/privacy.php"><span>Privacy Policy of NOAA's National <span class="hlt">Weather</span> Service - NOAA's National <span class="hlt">Weather</span></span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Safety <span class="hlt">Weather</span> Radio Hazard Assmt... StormReady / TsunamiReady Skywarn(tm) Education/Outreach <em>Information</em> , and National <span class="hlt">Weather</span> Service <em>information</em> collection practices. This Privacy Policy Statement applies only to National <span class="hlt">Weather</span> Service web sites. Some organizations within NOAA may have other <em>information</em></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SpWea...9.1001F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SpWea...9.1001F"><span>Workshop Builds Strategies to Address <span class="hlt">Global</span> Positioning System Vulnerabilities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, Genene</p> <p>2011-01-01</p> <p>When we examine the impacts of space <span class="hlt">weather</span> on society, do we really understand the risks? Can past <span class="hlt">experiences</span> reliably predict what will happen in the future? As the complexity of technology increases, there is the potential for it to become more fragile, allowing for a single point of failure to bring down the entire system. Take the <span class="hlt">Global</span> Positioning System (GPS) as an example. GPS positioning, navigation, and timing have become an integral part of daily life, supporting transportation and communications systems vital to the aviation, merchant marine, cargo, cellular phone, surveying, and oil exploration industries. Everyday activities such as banking, mobile phone operations, and even the control of power grids are facilitated by the accurate timing provided by GPS. Understanding the risks of space <span class="hlt">weather</span> to GPS and the many economic sectors reliant upon it, as well as how to build resilience, was the focus of a policy workshop organized by the American Meteorological Society (AMS) and held on 13-14 October 2010 in Washington, D. C. The workshop brought together a select group of policy makers, space <span class="hlt">weather</span> scientists, and GPS experts and users.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GBioC..23.4013B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GBioC..23.4013B"><span>Process-based modeling of silicate mineral <span class="hlt">weathering</span> responses to increasing atmospheric CO2 and climate change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banwart, Steven A.; Berg, Astrid; Beerling, David J.</p> <p>2009-12-01</p> <p>A mathematical model describes silicate mineral <span class="hlt">weathering</span> processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate <span class="hlt">weathering</span> rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a <span class="hlt">weathering</span> feedback function of the type generally employed in <span class="hlt">global</span> geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to <span class="hlt">weathering</span>. First, the process model accounts for the alkalinity released by <span class="hlt">weathering</span>, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster <span class="hlt">weathering</span> with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the <span class="hlt">weathering</span> reaction, helping maintain higher pH values thus stabilizing the <span class="hlt">weathering</span> rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and <span class="hlt">weathering</span>. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the <span class="hlt">weathering</span> profile is as important, if not</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22079820','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22079820"><span>An American medical student's <span class="hlt">experience</span> in <span class="hlt">global</span> neurosurgery: both in their infancy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Magarik, Jordan; Kavolus, Joseph; Louis, Robert</p> <p>2012-01-01</p> <p>There are only three fully trained neurosurgeons to care for Tanzania's population of more than 41 million people. Madaktari was founded in 2006 to serve as a physician training partnership to establish more self-sufficient health care through education and training. Medical students play a valuable role in Madaktari as they are primarily responsible for collecting postneurosurgical outcome data on operations performed by Tanzanian physicians trained by our organization. In addition, medical students represent the future of <span class="hlt">global</span> medicine. Thus, it is important to determine the extent that Madaktari has affected student interest in <span class="hlt">global</span> health. Our purpose in this article is to explore one student's <span class="hlt">experience</span> working in <span class="hlt">global</span> neurosurgery while working with Madaktari. In addition we attempted to determine the effect Madaktari may play on the future medical careers of eight medical student volunteers. To determine that effect we conducted a six-question online survey of medical student volunteers. We received responses from four of our eight medical student volunteers, all of whom stated they had a good or excellent <span class="hlt">experience</span> volunteering with Madaktari and that their <span class="hlt">experience</span> further increased their desire to incorporate <span class="hlt">global</span> health into their careers. After working with Madaktari nearly half of the medical student volunteers have pursued or will be pursuing year-long funded <span class="hlt">global</span> health research during their medical school careers. Madaktari is not only pioneering a path toward increased and more independent neurosurgical capabilities in Tanzania, but it is also helping foster increased interest and participation among U.S. medical students in <span class="hlt">global</span> neurosurgery. Copyright © 2012 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890030485&hterms=water+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwater%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890030485&hterms=water+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwater%2Bchange"><span>Water - The key to <span class="hlt">global</span> change. [of <span class="hlt">weather</span> and climate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Soffen, Gerald A.</p> <p>1988-01-01</p> <p>The role of water in processes of <span class="hlt">global</span> change is discussed. The importance of water in <span class="hlt">global</span> warming, the loss of biological diversity, the activity of the El Nino southern oscillation, and the melting of polar ice are examined. Plans for a mission to measure tropical rainfall using a two frequency radar, a visible/IR radiometer and a passive microwave radiometer are noted. The way in which <span class="hlt">global</span> change is affected by changes in patterns of available water is considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7300D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7300D"><span>Linking the <span class="hlt">Weather</span> Generator with Regional Climate Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan</p> <p>2013-04-01</p> <p>One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic <span class="hlt">weather</span> generator with the climate model output. The present contribution, in which the parametric daily surface <span class="hlt">weather</span> generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface <span class="hlt">weather</span> series and compared to those derived from <span class="hlt">weather</span> series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate <span class="hlt">weather</span> series for <span class="hlt">weather</span>-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate <span class="hlt">weather</span> series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM <span class="hlt">weather</span> series and spatially scarcer observations. The quality of the <span class="hlt">weather</span> series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present <span class="hlt">experiment</span> is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.7106E..07N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.7106E..07N"><span><span class="hlt">Global</span> precipitation measurement (GPM) preliminary design</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.</p> <p>2008-10-01</p> <p>The overarching Earth science mission objective of the <span class="hlt">Global</span> Precipitation Measurement (GPM) mission is to develop a scientific understanding of the Earth system and its response to natural and human-induced changes. This will enable improved prediction of climate, <span class="hlt">weather</span>, and natural hazards for present and future generations. The specific scientific objectives of GPM are advancing: Precipitation Measurement through combined use of active and passive remote-sensing techniques, Water/Energy Cycle Variability through improved knowledge of the <span class="hlt">global</span> water/energy cycle and fresh water availability, Climate Prediction through better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release, <span class="hlt">Weather</span> Prediction through improved numerical <span class="hlt">weather</span> prediction (NWP) skills from more accurate and frequent measurements of instantaneous rain rates with better error characterizations and improved assimilation methods, Hydrometeorological Prediction through better temporal sampling and spatial coverage of highresolution precipitation measurements and innovative hydro-meteorological modeling. GPM is a joint initiative with the Japan Aerospace Exploration Agency (JAXA) and other international partners and is the backbone of the Committee on Earth Observation Satellites (CEOS) Precipitation Constellation. It will unify and improve <span class="hlt">global</span> precipitation measurements from a constellation of dedicated and operational active/passive microwave sensors. GPM is completing the Preliminary Design Phase and is advancing towards launch in 2013 and 2014.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023242','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023242"><span>Dynamic <span class="hlt">Weather</span> Routes: A <span class="hlt">Weather</span> Avoidance Concept for Trajectory-Based Operations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McNally, B. David; Love, John</p> <p>2011-01-01</p> <p>The integration of convective <span class="hlt">weather</span> modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved <span class="hlt">weather</span> routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved <span class="hlt">weather</span> reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current <span class="hlt">weather</span> and traffic. In today's operations aircraft fly convective <span class="hlt">weather</span> avoidance routes that were implemented often hours before aircraft approach the <span class="hlt">weather</span> and automation does not exist to automatically monitor traffic to find improved <span class="hlt">weather</span> routes that open up due to changing <span class="hlt">weather</span> conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective <span class="hlt">weather</span> operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with <span class="hlt">weather</span> modeling to determine what savings could be achieved by modifying the direct route such that it avoids <span class="hlt">weather</span> and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective <span class="hlt">weather</span> modeling in real time to identify a reroute that is free of <span class="hlt">weather</span> and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26377857','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26377857"><span>Climate Change, Extreme <span class="hlt">Weather</span> Events, and Human Health Implications in the Asia Pacific Region.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hashim, Jamal Hisham; Hashim, Zailina</p> <p>2016-03-01</p> <p>The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter <span class="hlt">weather</span> patterns on the regional scale, giving rise to extreme <span class="hlt">weather</span> events. The impacts from extreme <span class="hlt">weather</span> events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme <span class="hlt">weather</span> events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. <span class="hlt">Globally</span>, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme <span class="hlt">weather</span> events, with losses of more than US$2.5 trillion in purchasing power parity. © 2015 APJPH.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26PSL.450..381T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26PSL.450..381T"><span>The acid and alkalinity budgets of <span class="hlt">weathering</span> in the Andes-Amazon system: Insights into the erosional control of <span class="hlt">global</span> biogeochemical cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres, Mark A.; West, A. Joshua; Clark, Kathryn E.; Paris, Guillaume; Bouchez, Julien; Ponton, Camilo; Feakins, Sarah J.; Galy, Valier; Adkins, Jess F.</p> <p>2016-09-01</p> <p>The correlation between chemical <span class="hlt">weathering</span> fluxes and denudation rates suggests that tectonic activity can force variations in atmospheric pCO2 by modulating <span class="hlt">weathering</span> fluxes. However, the effect of <span class="hlt">weathering</span> on pCO2 is not solely determined by the total mass flux. Instead, the effect of <span class="hlt">weathering</span> on pCO2 also depends upon the balance between 1) alkalinity generation by carbonate and silicate mineral dissolution and 2) sulfuric acid generation by the oxidation of sulfide minerals. In this study, we explore how the balance between acid and alkalinity generation varies with tectonic uplift to better understand the links between tectonics and the long-term carbon cycle. To trace <span class="hlt">weathering</span> reactions across the transition from the Peruvian Andes to the Amazonian foreland basin, we measured a suite of elemental concentrations (Na, K, Ca, Mg, Sr, Si, Li, SO4, and Cl) and isotopic ratios (87Sr/86Sr and δ34S) on both dissolved and solid phase samples. Using an inverse model, we quantitatively link systematic changes in solute geochemistry with elevation to downstream declines in sulfuric acid <span class="hlt">weathering</span> as well as the proportion of cations sourced from silicates. With a new carbonate-system framework, we show that <span class="hlt">weathering</span> in the Andes Mountains is a CO2 source whereas foreland <span class="hlt">weathering</span> is a CO2 sink. These results are consistent with the theoretical expectation that the ratio of sulfide oxidation to silicate <span class="hlt">weathering</span> increases with increasing erosion. Altogether, our results suggest that the effect of tectonically-enhanced <span class="hlt">weathering</span> on atmospheric pCO2 is strongly modulated by sulfide mineral oxidation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100024519','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100024519"><span>Prediction Activities at NASA's <span class="hlt">Global</span> Modeling and Assimilation Office</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schubert, Siegfried</p> <p>2010-01-01</p> <p>The <span class="hlt">Global</span> Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. <span class="hlt">Global</span> ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the <span class="hlt">weather</span> and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At <span class="hlt">weather</span> time scales the GMAO is developing ultra-high resolution <span class="hlt">global</span> climate models capable of resolving high impact <span class="hlt">weather</span> systems such as hurricanes. The ability to resolve the detailed characteristics of <span class="hlt">weather</span> systems within a <span class="hlt">global</span> framework greatly facilitates addressing fundamental questions concerning the link between <span class="hlt">weather</span> and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than <span class="hlt">weather</span> and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28063282','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28063282"><span>Hypothetical scenario exercises to improve planning and readiness for drinking water quality management during extreme <span class="hlt">weather</span> events.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Cunliffe, David; Khan, Stuart J</p> <p>2017-03-15</p> <p>Two hypothetical scenario exercises were designed and conducted to reflect the increasingly extreme <span class="hlt">weather</span>-related challenges faced by water utilities as the <span class="hlt">global</span> climate changes. The first event was based on an extreme flood scenario. The second scenario involved a combination of <span class="hlt">weather</span> events, including a wild forest fire ('bushfire') followed by runoff due to significant rainfall. For each scenario, a panel of diverse personnel from water utilities and relevant agencies (e.g. health departments) formed a hypothetical water utility and associated regulatory body to manage water quality following the simulated extreme <span class="hlt">weather</span> event. A larger audience participated by asking questions and contributing key insights. Participants were confronted with unanticipated developments as the simulated scenarios unfolded, introduced by a facilitator. Participants were presented with information that may have challenged their conventional <span class="hlt">experiences</span> regarding operational procedures in order to identify limitations in current procedures, assumptions, and readily available information. The process worked toward the identification of a list of specific key lessons for each event. At the conclusion of each simulation a facilitated discussion was used to establish key lessons of value to water utilities in preparing them for similar future extreme events. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910859P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910859P"><span>Development of GNSS PWV information management system for very short-term <span class="hlt">weather</span> forecast in the Korean Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Han-Earl; Yoon, Ha Su; Yoo, Sung-Moon; Cho, Jungho</p> <p>2017-04-01</p> <p>Over the past decade, <span class="hlt">Global</span> Navigation Satellite System (GNSS) was in the spotlight as a meteorological research tool. The Korea Astronomy and Space Science Institute (KASI) developed a GNSS precipitable water vapor (PWV) information management system to apply PWV to practical applications, such as very short-term <span class="hlt">weather</span> forecast. The system consists of a DPR, DRS, and TEV, which are divided functionally. The DPR processes GNSS data using the Bernese GNSS software and then retrieves PWV from zenith total delay (ZTD) with the optimized mean temperature equation for the Korean Peninsula. The DRS collects data from eighty permanent GNSS stations in the southern part of the Korean Peninsula and provides the PWV retrieved from GNSS data to a user. The TEV is in charge of redundancy of the DPR. The whole process is performed in near real-time where the delay is ten minutes. The validity of the GNSS PWV was proved by means of a comparison with radiosonde data. In the <span class="hlt">experiment</span> of numerical <span class="hlt">weather</span> prediction model, the GNSS PWV was utilized as the initial value of the <span class="hlt">Weather</span> Research & Forecasting (WRF) model for heavy rainfall event. As a result, we found that the forecasting capability of the WRF is improved by data assimilation of GNSS PWV.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B31E2035N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B31E2035N"><span>A subsurface Fe-silicate <span class="hlt">weathering</span> microbiome</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Napieralski, S. A.; Buss, H. L.; Roden, E. E.</p> <p>2017-12-01</p> <p> from enrichment cultures provides insight into the role of FeOB in Fe(II)-mineral alteration as well as furthering our understanding of the biotic reactions contributing the <span class="hlt">globally</span> important biogeochemical phenomenon of chemical <span class="hlt">weathering</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003235','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003235"><span>An Introduction to Observing System Simulation <span class="hlt">Experiments</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prive, Nikki C.</p> <p>2017-01-01</p> <p>Observing System Simulation <span class="hlt">Experiments</span> (OSSEs) are used to estimate the potential impact of proposed new instruments and data on numerical <span class="hlt">weather</span> prediction. OSSEs can also be used to help design new observing platforms and to investigate the behavior of data assimilation systems. A basic overview of how to design and perform an OSSE will be given, as well as best practices and pitfalls. Some examples using the OSSE framework developed at the NASA <span class="hlt">Global</span> Modeling and Assimilation Office will be shown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P51H..06N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P51H..06N"><span><span class="hlt">Weathering</span> of Olivine during Interaction of Sulfate Aerosols with Mars Soil under Current Climate Conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niles, P. B.; Golden, D. C.; Michalski, J. R.; Ming, D. W.</p> <p>2017-12-01</p> <p>Sulfur concentrations in the Mars soils are elevated above 1 wt% in nearly every location visited by landed spacecraft. This observation was first made by the Viking landers, and has been confirmed by subsequent missions. The wide distribution of sulfur in martian soils has been attributed to volcanic degassing, formation of sulfate aerosols, and later incorporation into martian soils during gravitational sedimentation. However, later discoveries of more concentrated sulfur bearing sediments by the Opportunity rover has led some to believe that sulfates may instead be a product of evaporation and aeolian redistribution. One question that has not been addressed is whether the modern surface conditions are too cold for <span class="hlt">weathering</span> of volcanic materials by sulfate aerosols. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding <span class="hlt">weathering</span> processes on Mars. Laboratory <span class="hlt">experiments</span> were conducted to simulate <span class="hlt">weathering</span> of olivine under Mars-like conditions. The <span class="hlt">weathering</span> rates measured in this study suggest that fine grained olivine on Mars would <span class="hlt">weather</span> into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40°C. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment for olivine <span class="hlt">weathering</span> despite the very low temperatures. The likelihood of substantial sulfur-rich volcanism on Mars and creation of abundant sulfate aerosols suggests that this process would have been important during formation of martian soils and sediments. Future work modeling sulfur release rates during volcanic eruptions and aerosol distribution over the surface will help understand how well this process</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GGG....11.7007B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GGG....11.7007B"><span>Impact of atmospheric CO2 levels on continental silicate <span class="hlt">weathering</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beaulieu, E.; GoddéRis, Y.; Labat, D.; Roelandt, C.; Oliva, P.; Guerrero, B.</p> <p>2010-07-01</p> <p>Anthropogenic sources are widely accepted as the dominant cause for the increase in atmospheric CO2 concentrations since the beginning of the industrial revolution. Here we use the B-WITCH model to quantify the impact of increased CO2 concentrations on CO2 consumption by <span class="hlt">weathering</span> of continental surfaces. B-WITCH couples a dynamic biogeochemistry model (LPJ) and a process-based numerical model of continental <span class="hlt">weathering</span> (WITCH). It allows simultaneous calculations of the different components of continental <span class="hlt">weathering</span> fluxes, terrestrial vegetation dynamics, and carbon and water fluxes. The CO2 consumption rates are estimated at four different atmospheric CO2 concentrations, from 280 up to 1120 ppmv, for 22 sites characterized by silicate lithologies (basalt, granite, or sandstones). The sensitivity to atmospheric CO2 variations is explored, while temperature and rainfall are held constant. First, we show that under 355 ppmv of atmospheric CO2, B-WITCH is able to reproduce the <span class="hlt">global</span> pattern of <span class="hlt">weathering</span> rates as a function of annual runoff, mean annual temperature, or latitude for silicate lithologies. When atmospheric CO2 increases, evapotranspiration generally decreases due to progressive stomatal closure, and the soil CO2 pressure increases due to enhanced biospheric productivity. As a result, vertical drainage and soil acidity increase, promoting CO2 consumption by mineral <span class="hlt">weathering</span>. We calculate an increase of about 3% of the CO2 consumption through silicate <span class="hlt">weathering</span> (mol ha-1 yr-1) for 100 ppmv rise in CO2. Importantly, the sensitivity of the <span class="hlt">weathering</span> system to the CO2 rise is not uniform and heavily depends on the climatic, lithologic, pedologic, and biospheric settings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=formation+AND+cloud&pg=2&id=EJ164901','ERIC'); return false;" href="https://eric.ed.gov/?q=formation+AND+cloud&pg=2&id=EJ164901"><span>Activities in Teaching <span class="hlt">Weather</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Tonn, Martin</p> <p>1977-01-01</p> <p>Presented is a unit composed of activities for teaching <span class="hlt">weather</span>. Topics include cloud types and formation, simple <span class="hlt">weather</span> instruments, and the <span class="hlt">weather</span> station. Illustrations include a <span class="hlt">weather</span> chart and instruments. A bibliography is given. (MA)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023320','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023320"><span>Space <span class="hlt">Weathering</span> of Rocks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Noble, Sarah</p> <p>2011-01-01</p> <p>Space <span class="hlt">weathering</span> discussions have generally centered around soils but exposed rocks will also incur the effects of <span class="hlt">weathering</span>. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space <span class="hlt">weathered</span> regions we find in remote sensing data. However, our studies of <span class="hlt">weathered</span> Ap 17 rocks 76015 and 76237 show that significant amounts of <span class="hlt">weathering</span> products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the <span class="hlt">weathering</span> process and better assess the relative impo!1ance of various <span class="hlt">weathering</span> components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, <span class="hlt">weathering</span> patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more <span class="hlt">weathered</span> than regions with finer materials. To explore how <span class="hlt">weathering</span> of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space <span class="hlt">weathering</span> by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-<span class="hlt">weathered</span> lunar and the artificially-<span class="hlt">weathered</span> meteorite samples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013DPS....4531320H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013DPS....4531320H"><span>Large-Scale, Synoptic-Period <span class="hlt">Weather</span> Systems in Mars' Atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hollingsworth, Jeffery L.; Kahre, M.</p> <p>2013-10-01</p> <p>During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts associated with its waxing and waning seasonal polar ice caps. The imposition of this strong meridional temperature gradient supports intense eastward-traveling, synoptic-period <span class="hlt">weather</span> systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. These disturbances grow, mature and decay within the east-west varying seasonal-mean middle and high-latitude westerly jet stream (i.e., the polar vortex) on the planet. Near the surface, such <span class="hlt">weather</span> disturbances indicated distinctive, spiraling "comma"-shaped dust cloud structures of large scale, and scimitar-shaped dust fronts, indicative of processes associated with cyclo- and fronto-genesis. The <span class="hlt">weather</span> systems are most intense during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances appear to be significantly more vigorous than their counterparts in the southern hemisphere (SH). Further, the NH <span class="hlt">weather</span> systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). Regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this atmospheric aerosol. A brief background and supporting observations of Mars' extratropical <span class="hlt">weather</span> systems is presented. This is followed by various modeling studies (i.e., ranging from highly simplified, mechanistic and fully complex <span class="hlt">global</span> circulation modeling investigations) that we are pursuing. In particular, transport of scalar quantities (e.g., tracers and high-order dynamically revealing diagnostic fields) are investigated. A discussion of outstanding issues and future modeling pursuits is offered related to Mars' extratropical traveling <span class="hlt">weather</span> systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG33A0181K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG33A0181K"><span>Semi-supervised tracking of extreme <span class="hlt">weather</span> events in <span class="hlt">global</span> spatio-temporal climate datasets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S. K.; Prabhat, M.; Williams, D. N.</p> <p>2017-12-01</p> <p>Deep neural networks have been successfully applied to solve problem to detect extreme <span class="hlt">weather</span> events in large scale climate datasets and attend superior performance that overshadows all previous hand-crafted methods. Recent work has shown that multichannel spatiotemporal encoder-decoder CNN architecture is able to localize events in semi-supervised bounding box. Motivated by this work, we propose new learning metric based on Variational Auto-Encoders (VAE) and Long-Short-Term-Memory (LSTM) to track extreme <span class="hlt">weather</span> events in spatio-temporal dataset. We consider spatio-temporal object tracking problems as learning probabilistic distribution of continuous latent features of auto-encoder using stochastic variational inference. For this, we assume that our datasets are i.i.d and latent features is able to be modeled by Gaussian distribution. In proposed metric, we first train VAE to generate approximate posterior given multichannel climate input with an extreme climate event at fixed time. Then, we predict bounding box, location and class of extreme climate events using convolutional layers given input concatenating three features including embedding, sampled mean and standard deviation. Lastly, we train LSTM with concatenated input to learn timely information of dataset by recurrently feeding output back to next time-step's input of VAE. Our contribution is two-fold. First, we show the first semi-supervised end-to-end architecture based on VAE to track extreme <span class="hlt">weather</span> events which can apply to massive scaled unlabeled climate datasets. Second, the information of timely movement of events is considered for bounding box prediction using LSTM which can improve accuracy of localization. To our knowledge, this technique has not been explored neither in climate community or in Machine Learning community.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160009371','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160009371"><span>Using 3-D Numerical <span class="hlt">Weather</span> Data in Piloted Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daniels, Taumi S.</p> <p>2016-01-01</p> <p>This report describes the process of acquiring and using 3-D numerical model <span class="hlt">weather</span> data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a <span class="hlt">weather</span> phenomenon of interest, the user can download associated numerical <span class="hlt">weather</span> model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D <span class="hlt">weather</span> data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D <span class="hlt">weather</span> data for various RFD <span class="hlt">experiments</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20364547','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20364547"><span>Lived <span class="hlt">experience</span> of economic and political trends related to <span class="hlt">globalization</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cushon, Jennifer A; Muhajarine, Nazeem; Labonte, Ronald</p> <p>2010-01-01</p> <p>A multi-method case study examined how the economic and political processes of <span class="hlt">globalization</span> have influenced the determinants of health among low-income children in Saskatoon, Saskatchewan, Canada. This paper presents the results from the qualitative interview component of the case study. The purpose of the interviews was to uncover the lived <span class="hlt">experience</span> of low-income families and their children in Saskatoon with regards to political and economic trends related to <span class="hlt">globalization</span>, an important addition to the usual <span class="hlt">globalization</span> and health research that relies primarily on cross-country regressions in which the personal impacts remain hidden. In-depth phenomenological interviews with 26 low-income parents of young children (aged zero to five) who were residents of Saskatoon. A combination of volunteer and criterion sampling was used. Interview questions were open-ended and based upon an analytical framework. Analysis proceeded through immersion in the data, a process of open coding, and finally through a process of selective coding. The larger case study and interviews indicate that <span class="hlt">globalization</span> has largely not been benefiting low-income parents with young children. Low-income families with young children were struggling to survive, despite the tremendous economic growth occurring in Saskatchewan and Saskatoon at the time of the interviews. This often led to participants expressing a sense of helplessness, despair, isolation, and/or anger. Respondents' <span class="hlt">experiences</span> suggest that <span class="hlt">globalization</span>-related changes in social conditions and public policies and programs have great potential to negatively affect family health through either psychosocial effects in individuals and/or decreased levels of social cohesion in the community.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4494380','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4494380"><span>Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot <span class="hlt">Weather</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John</p> <p>2014-01-01</p> <p>Simple Summary Transport is an inevitable process in the modern, multi-site swine industry. Pigs do not have efficient physiological means (such as sweating) to cool themselves. Therefore, being transported in hot <span class="hlt">weather</span> can cause heat stress and even death. Sprinkling the pigs and/or bedding may facilitate cooling, thereby improving well-being and survivability of pigs arriving at the plant. Abstract This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) <span class="hlt">weather</span>. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT <span class="hlt">weather</span>), pigs only, bedding only, or pigs and bedding. <span class="hlt">Experiment</span> 1 used 51 loads in WARM- and 86 loads in HOT <span class="hlt">weather</span> to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). <span class="hlt">Experiment</span> 2 used 82 loads in WARM- and 54 loads in HOT <span class="hlt">weather</span> to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). <span class="hlt">Experiment</span> 1 found that, in WARM <span class="hlt">weather</span>, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). <span class="hlt">Experiment</span> 2 found that, in WARM and HOT <span class="hlt">weather</span>, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons. PMID:26480035</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23E0364B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23E0364B"><span>Dynamical Downscaling of <span class="hlt">Global</span> Circulation Models With the <span class="hlt">Weather</span> Research and Forecast Model in the Northern Great Plains</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burtch, D.; Mullendore, G. L.; Kennedy, A. D.; Simms, M.; Kirilenko, A.; Coburn, J.</p> <p>2015-12-01</p> <p>Understanding the impacts of <span class="hlt">global</span> climate change on regional scales is crucial for accurate decision-making by state and local governments. This is especially true in North Dakota, where climate change can have significant consequences on agriculture, its traditionally strongest economic sector. This region of the country shows a high variability in precipitation, especially in the summer months and so the focus of this study is on warm season processes over decadal time scales. The <span class="hlt">Weather</span> Research and Forecast (WRF) model is used to dynamically downscale two <span class="hlt">Global</span> Circulation Models (GCMs) from the CMIP5 ensemble in order to determine the microphysical parameterization and nudging techniques (spectral or analysis) best suited for this region. The downscaled domain includes the entirety of North Dakota at a horizontal resolution of 5 km. In addition, smaller domains of 1 km horizontal resolution are centered over regions of focused hydrological importance. The dynamically downscaled simulations are compared with both gridded observational data and statistically downscaled data to evaluate the performance of the simulations. Preliminary results have shown a marked difference between the two downscaled GCMs in terms of temperature and precipitation bias. Choice of microphysical parameterization has not shown to create any significant differences in the temperature fields. However, the precipitation fields do appear to be most affected by the microphysical parameterization, regardless of the choice of GCM. Implications on the unique water resource challenges faced in this region will also be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.noaanews.noaa.gov/stories2014/20140930_hrrr.html','SCIGOVWS'); return false;" href="http://www.noaanews.noaa.gov/stories2014/20140930_hrrr.html"><span>NOAA's <span class="hlt">weather</span> forecasts go hyper-local with next-generation <span class="hlt">weather</span></span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p><em>model</em></A> NOAA HOME <span class="hlt">WEATHER</span> OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS with next-generation <span class="hlt">weather</span> <em>model</em> New <em>model</em> will help forecasters predict a storm's path, timing and intensity better than ever September 30, 2014 This is a <em>comparison</em> of two <span class="hlt">weather</span> forecast models looking</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://kidshealth.org/en/teens/winter-sports.html','NIH-MEDLINEPLUS'); return false;" href="https://kidshealth.org/en/teens/winter-sports.html"><span>Cold-<span class="hlt">Weather</span> Sports</span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... Videos for Educators Search English Español Cold-<span class="hlt">Weather</span> Sports KidsHealth / For Teens / Cold-<span class="hlt">Weather</span> Sports What's in this article? What to Do? Classes ... <span class="hlt">weather</span>. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13c4010S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13c4010S"><span>Potential and costs of carbon dioxide removal by enhanced <span class="hlt">weathering</span> of rocks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strefler, Jessica; Amann, Thorben; Bauer, Nico; Kriegler, Elmar; Hartmann, Jens</p> <p>2018-03-01</p> <p>The chemical <span class="hlt">weathering</span> of rocks currently absorbs about 1.1 Gt CO2 a-1 being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and <span class="hlt">global</span> and regional carbon removal potential. The crucial parameters defining this potential are the grain size and <span class="hlt">weathering</span> rates. The main uncertainties about the potential relate to <span class="hlt">weathering</span> rates and rock mass that can be integrated into the soil. The discussed results do not specifically address the enhancement of <span class="hlt">weathering</span> through microbial processes, feedback of geogenic nutrient release, and bioturbation. We do not only assess dunite rock, predominantly bearing olivine (in the form of forsterite) as the mineral that has been previously proposed to be best suited for carbon removal, but focus also on basaltic rock to minimize potential negative side effects. Our results show that enhanced <span class="hlt">weathering</span> is an option for carbon dioxide removal that could be competitive already at 60 US  t-1 CO2 removed for dunite, but only at 200 US  t-1 CO2 removed for basalt. The potential carbon removal on cropland areas could be as large as 95 Gt CO2 a-1 for dunite and 4.9 Gt CO2 a-1 for basalt. The best suited locations are warm and humid areas, particularly in India, Brazil, South-East Asia and China, where almost 75% of the <span class="hlt">global</span> potential can be realized. This work presents a techno-economic assessment framework, which also allows for the incorporation of further processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AAS...22013103H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AAS...22013103H"><span>Mcmc Signal Extraction For 21-cm <span class="hlt">Global</span> Signal <span class="hlt">Experiments</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harker, Geraint</p> <p>2012-05-01</p> <p>Measurements of the highly redshifted 21-cm line promise to provide a great deal of information about the dark ages of the Universe, the cosmic dawn and the epoch of reionization. It is generally accepted that strong astrophysical foregrounds are a major obstacle to overcome before this promise is realised, largely because of the way they are filtered through a complicated instrumental response. A great deal of work has therefore been devoted to studying foreground removal for observations with the low-frequency radio arrays which are starting to collect data. The case of so-called '<span class="hlt">global</span> signal' <span class="hlt">experiments</span> has received less attention, however. I will compare the foreground fitting problem in these two types of <span class="hlt">experiments</span>, and describe a foreground fitting methodology which has been developed for a proposed <span class="hlt">global</span> signal <span class="hlt">experiment</span>, the Dark Ages Radio Explorer (DARE), which will make use of the pristine radio-frequency environment over the far side of the Moon. The method, a fully Bayesian technique based on a Markov Chain Monte Carlo code will, however, be applicable more generally to other space- and ground-based <span class="hlt">experiments</span>, including the prototype DARE antenna being deployed in Western Australia. For ground-based <span class="hlt">experiments</span>, we must also contend with effects from the Earth's ionosphere and low-level radio-frequency interference. I will show early results from applying our algorithm to data from the prototype and the EDGES <span class="hlt">experiment</span>. GH is a member of the LUNAR consortium, which is funded by the NASA Lunar Science Institute (via Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18036114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18036114"><span>Contexts, motives and <span class="hlt">experiences</span> of Nigerian overseas nurses: understanding links to <span class="hlt">globalization</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aboderin, Isabella</p> <p>2007-12-01</p> <p>Current understanding of the perspectives and <span class="hlt">experience</span> of overseas trained nurses working in the UK and how these relate to conditions of <span class="hlt">globalization</span>, is limited. This article (i) presents evidence on the contexts, circumstances and perspectives of Nigerian trained nurses working in the UK and (ii) examines their relationships to <span class="hlt">globalization</span> by building on prior analyses that use Bauman's concepts of '<span class="hlt">global</span>' and 'local' perspectives. The evidence derives from an exploratory qualitative investigation in the UK and Nigeria among a small sample of Nigerian trained registered nurses working in the independent nursing home sector in England (n = 25) and registered nurses, nursing tutors and returnee migrants in Nigeria (n = 7). Nurses' migration motives arise from a deterioration in their economic, work and status situation over the past two decades in the context of a macro-economic decline in Nigeria. Their decisive motivation is to gain financially with a view to achieving certain material standards and prospects for self and children in Nigeria. Contrary to their expectations, they <span class="hlt">experience</span> a loss in professional and social status in the UK. In their de facto'<span class="hlt">global</span>' migration, principally for economic reasons, Nigerian nurses hold a decidedly 'local' normative perspective. This is reinforced by their <span class="hlt">experiences</span> of work tensions, which reflect the <span class="hlt">globalization</span> of biographies. Further evidence such as that provided, on the contexts and perspectives of overseas nurses, as also of UK staff, will enable the appropriate management of developing world-UK nursing migration and its host system implications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030014193','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030014193"><span>Tactical Versus Strategic Behavior: General Aviation Piloting in Convective <span class="hlt">Weather</span> Scenarios</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Latorella, Kara A.; Chamberlain, James P.</p> <p>2002-01-01</p> <p>We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to <span class="hlt">weather</span> flying, and evaluates their ratings along a tactical/strategic scale in response to real convective <span class="hlt">weather</span> scenarios experienced during a flight <span class="hlt">experiment</span> with different <span class="hlt">weather</span> information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural <span class="hlt">weather</span> information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical <span class="hlt">Weather</span> Information Systems (GWISs) to support tactical and strategic <span class="hlt">weather</span> flying decisions and concludes with implications for the design and use of GWISs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28004158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28004158"><span>Location-Related Differences in <span class="hlt">Weathering</span> Behaviors and Populations of Culturable Rock-<span class="hlt">Weathering</span> Bacteria Along a Hillside of a Rock Mountain.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Qi; Wang, Rongrong; He, Linyan; Sheng, Xiafang</p> <p>2017-05-01</p> <p>Bacteria play important roles in rock <span class="hlt">weathering</span>, elemental cycling, and soil formation. However, little is known about the <span class="hlt">weathering</span> potential and population of bacteria inhabiting surfaces of rocks. In this study, we isolated bacteria from the top, middle, and bottom rock samples along a hillside of a rock (trachyte) mountain as well as adjacent soils and characterized rock-<span class="hlt">weathering</span> behaviors and populations of the bacteria. Per gram of rock or surface soil, 10 6 -10 7 colony forming units were obtained and total 192 bacteria were isolated. Laboratory rock dissolution <span class="hlt">experiments</span> indicated that the proportions of the highly effective Fe (ranging from 67 to 92 %), Al (ranging from 40 to 48 %), and Cu (ranging from 54 to 81 %) solubilizers were significantly higher in the top rock and soil samples, while the proportion of the highly effective Si (56 %) solubilizers was significantly higher in the middle rock samples. Furthermore, 78, 96, and 6 % of bacteria from the top rocks, soils, and middle rocks, respectively, significantly acidified the culture medium (pH < 4.0) in the rock dissolution process. Most rock-<span class="hlt">weathering</span> bacteria (79 %) from the rocks were different to those from the soils and most of them (species level) have not been previously reported. Furthermore, location-specific rock-<span class="hlt">weathering</span> bacterial populations were found and Bacillus species were the most (66 %) frequently isolated rock-<span class="hlt">weathering</span> bacteria in the rocks based on cultivation methods. Notably, the top rocks and soils had the highest and lowest diversity of rock-<span class="hlt">weathering</span> bacterial populations, respectively. The results suggested location-related differences in element (Si, Al, Fe, and Cu) releasing effectiveness and communities of rock-<span class="hlt">weathering</span> bacteria along the hillside of the rock mountain.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711727H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711727H"><span>Trends in the predictive performance of raw ensemble <span class="hlt">weather</span> forecasts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas</p> <p>2015-04-01</p> <p>Over the last two decades the paradigm in <span class="hlt">weather</span> forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical <span class="hlt">weather</span> prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. <span class="hlt">Global</span> ensemble forecast systems, like the European Centre for Medium-Range <span class="hlt">Weather</span> Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface <span class="hlt">weather</span> parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the <span class="hlt">global</span> ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from <span class="hlt">globally</span> distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASTP.102..329G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASTP.102..329G"><span>GIM-TEC adaptive ionospheric <span class="hlt">weather</span> assessment and forecast system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I.</p> <p>2013-09-01</p> <p>The Ionospheric <span class="hlt">Weather</span> Assessment and Forecast (IWAF) system is a computer software package designed to assess and predict the world-wide representation of 3-D electron density profiles from the <span class="hlt">Global</span> Ionospheric Maps of Total Electron Content (GIM-TEC). The unique system products include daily-hourly numerical <span class="hlt">global</span> maps of the F2 layer critical frequency (foF2) and the peak height (hmF2) generated with the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, upgraded by importing the daily-hourly GIM-TEC as a new model driving parameter. Since GIM-TEC maps are provided with 1- or 2-days latency, the <span class="hlt">global</span> maps forecast for 1 day and 2 days ahead are derived using an harmonic analysis applied to the temporal changes of TEC, foF2 and hmF2 at 5112 grid points of a map encapsulated in IONEX format (-87.5°:2.5°:87.5°N in latitude, -180°:5°:180°E in longitude). The system provides online the ionospheric disturbance warnings in the <span class="hlt">global</span> W-index map establishing categories of the ionospheric <span class="hlt">weather</span> from the quiet state (W=±1) to intense storm (W=±4) according to the thresholds set for instant TEC perturbations regarding quiet reference median for the preceding 7 days. The accuracy of IWAF system predictions of TEC, foF2 and hmF2 maps is superior to the standard persistence model with prediction equal to the most recent ‘true’ map. The paper presents outcomes of the new service expressed by the <span class="hlt">global</span> ionospheric foF2, hmF2 and W-index maps demonstrating the process of origin and propagation of positive and negative ionosphere disturbances in space and time and their forecast under different scenarios.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IJBm...50..275S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IJBm...50..275S"><span>Plant development scores from fixed-date photographs: the influence of <span class="hlt">weather</span> variables and recorder <span class="hlt">experience</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sparks, T. H.; Huber, K.; Croxton, P. J.</p> <p>2006-05-01</p> <p>In 1944, John Willis produced a summary of his meticulous record keeping of <span class="hlt">weather</span> and plants over the 30 years 1913 1942. This publication contains fixed-date, fixed-subject photography taken on the 1st of each month from January to May, using as subjects snowdrop Galanthus nivalis, daffodil Narcissus pseudo-narcissus, horse chestnut Aesculus hippocastanum and beech Fagus sylvatica. We asked 38 colleagues to assess rapidly the plant development in each of these photographs according to a supplied five-point score. The mean scores from this exercise were assessed in relation to mean monthly <span class="hlt">weather</span> variables preceding the date of the photograph and the consistency of scoring was examined according to the <span class="hlt">experience</span> of the recorders. Plant development was more strongly correlated with mean temperature than with minimum or maximum temperatures or sunshine. No significant correlations with rainfall were detected. Whilst mean scores were very similar, botanists were more consistent in their scoring of developmental stages than non-botanists. However, there was no overall pattern for senior staff to be more consistent in scoring than junior staff. These results suggest that scoring of plant development stages on fixed dates could be a viable method of assessing the progress of the season. We discuss whether such recording could be more efficient than traditional phenology, especially in those sites that are not visited regularly and hence are less amenable to frequent or continuous observation to assess when a plant reaches a particular growth stage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49749','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49749"><span>Potential climate change impacts on fire <span class="hlt">weather</span> in the United States</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Warren E. Heilman; Ying Tang; Lifeng Luo; Shiyuan Zhong; Julie Winkler; Xindi. Bian</p> <p>2015-01-01</p> <p>Researchers at Michigan State University and the Forest Service's Northern Research Station worked on a joint study to examine the possible effects of future <span class="hlt">global</span> and regional climate change on the occurrence of fire-<span class="hlt">weather</span> patterns often associated with extreme and erratic wildfire behavior in the United States.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMSA41B..07T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMSA41B..07T"><span>New Space <span class="hlt">Weather</span> Systems Under Development and Their Contribution to Space <span class="hlt">Weather</span> Management</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.</p> <p>2008-12-01</p> <p>There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; <span class="hlt">Global</span> Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space <span class="hlt">weather</span> will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space <span class="hlt">weather</span> management and estimate the unfilled needs as we move beyond specification and prediction efforts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MAP...130..371S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MAP...130..371S"><span>Monitoring a local extreme <span class="hlt">weather</span> event with the scope of hyperspectral sounding</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Satapathy, Jyotirmayee; Jangid, Buddhi Prakash</p> <p>2018-06-01</p> <p>Operational space-based hyperspectral Infrared sounders retrieve atmospheric temperature and humidity profiles from the measured radiances. These sounders like Atmospheric InfraRed Sounder, Infrared Atmospheric Sounding Interferometer as well as INSAT-3D sounders on geostationary orbit have proved to be very successful in providing these retrievals on <span class="hlt">global</span> and regional scales, respectively, with good enough spatio-temporal resolutions and are well competent with that of traditional profiles from radiosondes and models fields. The aim of this work is to show how these new generation hyperspectral Infrared sounders can benefit in real-time <span class="hlt">weather</span> monitoring. We have considered a regional extreme <span class="hlt">weather</span> event to demonstrate how the profiles retrieved from these operational sounders are consistent with the environmental conditions which have led to this severe <span class="hlt">weather</span> event. This work has also made use of data products of Moderate Resolution Imaging Spectroradiometer as well as by radiative transfer simulation of clear and cloudy atmospheric conditions using Numerical <span class="hlt">Weather</span> Prediction profiles in conjunction with INSAT-3D sounder. Our results indicate the potential use of high-quality hyperspectral atmospheric profiles to aid in delineation of real-time <span class="hlt">weather</span> prediction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27904417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27904417"><span><span class="hlt">Global</span> warming and the possible <span class="hlt">globalization</span> of vector-borne diseases: a call for increased awareness and action.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Balogun, Emmanuel O; Nok, Andrew J; Kita, Kiyoshi</p> <p>2016-01-01</p> <p>Human activities such as burning of fossil fuels play a role in upsetting a previously more balanced and harmonious ecosystem. Climate change-a significant variation in the usual pattern of Earth's average <span class="hlt">weather</span> conditions is a product of this ecosystem imbalance, and the rise in the Earth's average temperature (<span class="hlt">global</span> warming) is a prominent evidence. There is a correlation between <span class="hlt">global</span> warming and the ease of transmission of infectious diseases. Therefore, with <span class="hlt">global</span> health in focus, we herein opine a stepping-up of research activities regarding <span class="hlt">global</span> warming and infectious diseases <span class="hlt">globally</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130011259','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130011259"><span>Asteroidal Space <span class="hlt">Weathering</span>: The Major Role of FeS</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keller, L. P.; Rahman, Z.; Hiroi, T.; Sasaki, S.; Noble, S. K.; Horz, F.; Cintala, M. J.</p> <p>2013-01-01</p> <p>Space <span class="hlt">weathering</span> (SW) effects on the lunar surface are reasonably well-understood from sample analyses, remote-sensing data, and <span class="hlt">experiments</span>, yet our knowledge of asteroidal SW effects are far less constrained. While the same SW processes are operating on asteroids and the Moon, namely solar wind irradiation, impact vaporization and condensation, and impact melting, their relative rates and efficiencies are poorly known, as are their effects on such vastly different parent materials. Asteroidal SW models based on remote-sensing data and <span class="hlt">experiments</span> are in wide disagreement over the dominant mechanisms involved and their kinetics. Lunar space <span class="hlt">weathering</span> effects observed in UVVIS-NIR spectra result from surface- and volume-correlated nanophase Fe metal (npFe(sup 0)) particles. In the lunar case, it is the tiny vapor-deposited npFe(sup 0) that provides much of the spectral reddening, while the coarser (largely melt-derived) npFe(sup 0) produce lowered albedos. Nanophase FeS (npFeS) particles are expected to modify reflectance spectra in much the same way as npFe(sup 0) particles. Here we report the results of <span class="hlt">experiments</span> designed to explore the efficiency of npFeS production via the main space <span class="hlt">weathering</span> processes operating in the asteroid belt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011225','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011225"><span>NASA <span class="hlt">Weather</span> Support 2017</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carroll, Matt</p> <p>2017-01-01</p> <p>In the mid to late 1980's, as NASA was studying ways to improve <span class="hlt">weather</span> forecasting capabilities to reduce excessive <span class="hlt">weather</span> launch delays and to reduce excessive <span class="hlt">weather</span> Launch Commit Criteria (LCC) waivers, the Challenger Accident occurred and the AC-67 Mishap occurred.[1] NASA and USAF <span class="hlt">weather</span> personnel had advance knowledge of extremely high levels of <span class="hlt">weather</span> hazards that ultimately caused or contributed to both of these accidents. In both cases, key knowledge of the risks posed by violations of <span class="hlt">weather</span> LCC was not in the possession of final decision makers on the launch teams. In addition to convening the mishap boards for these two lost missions, NASA convened expert meteorological boards focusing on <span class="hlt">weather</span> support. These meteorological boards recommended the development of a dedicated organization with the highest levels of <span class="hlt">weather</span> expertise and influence to support all of American spaceflight. NASA immediately established the <span class="hlt">Weather</span> Support Office (WSO) in the Office of Space Flight (OSF), and in coordination with the United Stated Air Force (USAF), initiated an overhaul of the organization and an improvement in technology used for <span class="hlt">weather</span> support as recommended. Soon after, the USAF established a senior civilian Launch <span class="hlt">Weather</span> Officer (LWO) position to provide meteorological support and continuity of <span class="hlt">weather</span> expertise and knowledge over time. The Applied Meteorology Unit (AMU) was established by NASA, USAF, and the National <span class="hlt">Weather</span> Service to support initiatives to place new tools and methods into an operational status. At the end of the Shuttle Program, after several <span class="hlt">weather</span> office reorganizations, the WSO function had been assigned to a <span class="hlt">weather</span> branch at Kennedy Space Center (KSC). This branch was dismantled in steps due to further reorganization, loss of key personnel, and loss of budget line authority. NASA is facing the loss of sufficient expertise and leadership required to provide current levels of <span class="hlt">weather</span> support. The recommendation proposed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920012260','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920012260"><span>Cockpit <span class="hlt">weather</span> information needs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scanlon, Charles H.</p> <p>1992-01-01</p> <p>The primary objective is to develop an advanced pilot <span class="hlt">weather</span> interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, <span class="hlt">weather</span> situation awareness, and <span class="hlt">weather</span> monitoring. Identical graphical <span class="hlt">weather</span> displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and <span class="hlt">weather</span> alerts, onboard <span class="hlt">weather</span> computing facilities construct graphical displays, historical <span class="hlt">weather</span> displays, color textual displays, and other tools to assist the pilot crew. Since the <span class="hlt">weather</span> data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic <span class="hlt">weather</span> monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new <span class="hlt">weather</span> information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe <span class="hlt">weather</span> notice, AIRMET or SIGMET, is received. The cockpit <span class="hlt">weather</span> display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical <span class="hlt">weather</span> system so pilot review of <span class="hlt">weather</span> along</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950038211&hterms=madison+wisconsin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmadison%2Bwisconsin','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950038211&hterms=madison+wisconsin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmadison%2Bwisconsin"><span>Development and initial test of the University of Wisconsin <span class="hlt">global</span> isentropic-sigma model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zapotocny, Tom H.; Johnson, Donald R.; Reames, Fred M.</p> <p>1994-01-01</p> <p>The description of a <span class="hlt">global</span> version of the University of Wisconsin (UW) hybrid isentropic-sigma (theta-sigma) model and the results from an initial numerical <span class="hlt">weather</span> prediction <span class="hlt">experiment</span> are presented in this paper. The main objectives of this initial test are to (1) discuss theta-sigma model development and computer requirements, (2) demonstrate the ability of the UW theta-sigma model for <span class="hlt">global</span> numerical <span class="hlt">weather</span> prediction using realistic orography and parameterized physical processes, and (3) compare the transport of an inert trace constituent against a nominally 'identical' sigma coordinate model. Initial and verifying data for the 5-day simulations presented in this work were supplied by the Goddard Earth Observing System (GEOS-1) data assimilation system. The time period studied is 1-6 February 1985. This validation <span class="hlt">experiment</span> demonstrates that the <span class="hlt">global</span> UW theta-sigma model produces a realistic 5-day simulation of the mass and momentum distributions when compared to both the identical sigma model and GEOS-1 verification. Root-mean-square errors demonstrate that the theta-sigma model is slightly more accurate than the nominally identical sigma model with respect to standard synoptic variables. Of particular importance, the UW theta-sigma model displays a distinct advantage over the conventional sigma model with respect to the prognostic simulation of inert trace constituent transport in amplifying baroclinic waves of the extratropics. This is especially true in the upper troposphere and stratosphere where the spatial integrity and conservation of an inert trace constituent is severely compromised in the sigma model compared to the theta-sigma model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25995','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25995"><span>Employing Numerical <span class="hlt">Weather</span> Models to Enhance Fire <span class="hlt">Weather</span> and Fire Behavior Predictions</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Joseph J. Charney; Lesley A. Fusina</p> <p>2006-01-01</p> <p>This paper presents an assessment of fire <span class="hlt">weather</span> and fire behavior predictions produced by a numerical <span class="hlt">weather</span> prediction model similar to those used by operational <span class="hlt">weather</span> forecasters when preparing their forecasts. The PSU/NCAR MM5 model is used to simulate the <span class="hlt">weather</span> conditions associated with three fire episodes in June 2005. Extreme fire behavior was reported...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002844','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002844"><span>Sulfate Mineral Formation from Acid-<span class="hlt">Weathered</span> Phyllosilicates: Implications for the Aqueous History of Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.</p> <p>2015-01-01</p> <p>Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this <span class="hlt">global</span> transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been <span class="hlt">weathered</span> by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate <span class="hlt">weathered</span> phyllosilicates in laboratory <span class="hlt">experiments</span>. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930014003','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930014003"><span>Workshop on chemical <span class="hlt">weathering</span> on Mars, part 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burns, Roger (Editor); Banin, Amos (Editor)</p> <p>1992-01-01</p> <p>The third Mars Surface and Atmosphere Through Time (MSATT) Workshop, which was held 10-12 Sep. 1992, at Cocoa Beach/Cape Kennedy, focused on chemical <span class="hlt">weathering</span> of the surface of Mars. The 30 papers presented at the workshop described studies of Martian <span class="hlt">weathering</span> processes based on results from the Viking mission <span class="hlt">experiments</span>, remote sensing spectroscopic measurements, studies of the shergottite, nakhlite, and chassignite (SNC) meteorites, laboratory measurements of surface analog materials, and modeling of reaction pathways. A summary of the technical sessions is presented and a list of workshop participants is included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030062188&hterms=GLOBAL+WARNING&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGLOBAL%2BWARNING','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030062188&hterms=GLOBAL+WARNING&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGLOBAL%2BWARNING"><span><span class="hlt">Global</span> Lightning Activity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christian, Hugh</p> <p>2003-01-01</p> <p>Our knowledge of the <span class="hlt">global</span> distribution of lightning has improved dramatically since the 1995 launch of the Optical Transient Detector (OTD) followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous seven-year record of <span class="hlt">global</span> lightning activity. These lightning observations have provided a new <span class="hlt">global</span> perspective on total lightning activity. For the first time, total lightning activity (CG and IC) has been observed over large regions with high detection efficiencies and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised <span class="hlt">global</span> flash rate estimate (46 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe <span class="hlt">weather</span>. Accurate flash rate estimates are now available for large areas of the earth (+/- 72deg latitude) Ocean-land contrasts as a function of season are clearly revealed, as are orographic effects and seasonal and interannual variability. The data set indicates that air mass thunderstorms, not large storm systems dominate <span class="hlt">global</span> activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated hat this capability could lead to significantly improved severe <span class="hlt">weather</span> warning times and reduced false warning rates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-105_HotJupiters.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-105_HotJupiters.html"><span>ScienceCast 105: Big <span class="hlt">Weather</span> on Hot Jupiters</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-05-24</p> <p>Astronomers using NASA's Spitzer Space Telescope are making <span class="hlt">weather</span> maps of an exotic class of exoplanets called "hot Jupiters." What they're finding is wilder than anything we <span class="hlt">experience</span> here in our own solar system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B54A..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B54A..04W"><span>Thermodynamic Cconstraints on Coupled Carbonate-Pyrite <span class="hlt">Weathering</span> Dynamics and Carbon Fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winnick, M.; Maher, K.</p> <p>2017-12-01</p> <p>Chemical <span class="hlt">weathering</span> within the critical zone regulates <span class="hlt">global</span> biogeochemical cycles, atmospheric composition, and the supply of key nutrients to terrestrial and aquatic ecosystems. Recent studies suggest that thermodynamic limits on solute production act as a first-order control on <span class="hlt">global</span> chemical <span class="hlt">weathering</span> rates; however, few studies have addressed the factors that set these thermodynamic limits in natural systems. In this presentation, we investigate the effects of soil CO2 concentrations and pyrite oxidation rates on carbonate dissolution and associated carbon fluxes in the East River watershed in Colorado, using concentration-discharge relationships and thermodynamic constraints. Within the shallow subsurface, soil respiration rates and moisture content determine the extent of carbonic acid-promoted carbonate dissolution through their modulation of soil pCO2 and the balance of open- v. closed-system <span class="hlt">weathering</span> processes. At greater depths, pyrite oxidation generates sulfuric acid, which alters the approach to equilibrium of infiltrating waters. Through comparisons of concentration-discharge data and reactive transport model simulations, we explore the conditions that determine whether sulfuric acid reacts to dissolve additional carbonate mineral or instead reacts with alkalinity already in solution - the balance of which determines watershed carbon flux budgets. Our study highlights the importance of interactions between the chemical structure of the critical zone and the hydrologic regulation of flowpaths in determining concentration-discharge relationships and overall carbon fluxes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170005631','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170005631"><span>Pulsed-Laser Irradiation Space <span class="hlt">Weathering</span> Of A Carbonaceous Chondrite</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.</p> <p>2017-01-01</p> <p>Grains on the surfaces of airless bodies <span class="hlt">experience</span> irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space <span class="hlt">weathering</span> and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space <span class="hlt">weathering</span> of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space <span class="hlt">weathering</span> processes are quantified through laboratory <span class="hlt">experiments</span>. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999TMOPR.137D...1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999TMOPR.137D...1M"><span>The Mars <span class="hlt">Global</span> Surveyor Ka-Band Link <span class="hlt">Experiment</span> (MGS/KaBLE-II)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morabito, D.; Butman, S.; Shambayati, S.</p> <p>1999-01-01</p> <p>The Mars <span class="hlt">Global</span> Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link <span class="hlt">experiment</span> (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, <span class="hlt">weather</span> conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona <span class="hlt">experiment</span>, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the <span class="hlt">experiments</span> conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.219...22G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.219...22G"><span>Molybdenum, vanadium, and uranium <span class="hlt">weathering</span> in small mountainous rivers and rivers draining high-standing islands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.</p> <p>2017-12-01</p> <p>Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical <span class="hlt">weathering</span> yields, which makes them potentially important contributors to the <span class="hlt">global</span> riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and <span class="hlt">weathering</span> yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the <span class="hlt">global</span> average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the <span class="hlt">global</span> average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. <span class="hlt">Weathering</span> yields of Mo and V in most regions are above the <span class="hlt">global</span> mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical <span class="hlt">weathering</span> of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25564708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25564708"><span>Towards defining interprofessional competencies for <span class="hlt">global</span> health education: drawing on educational frameworks and the <span class="hlt">experience</span> of the UW-Madison <span class="hlt">Global</span> Health Institute.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Lori DiPrete</p> <p>2014-12-01</p> <p>The <span class="hlt">experience</span> and lessons to date from the University of Wisconsin-Madison <span class="hlt">Global</span> Health Institute's <span class="hlt">global</span> health programs, considered together with more recently published competency frameworks related to <span class="hlt">global</span> health practice, can provide important insights into the development of a core set of interprofessional competencies for <span class="hlt">global</span> health that can be used across disciplines and professions. © 2014 American Society of Law, Medicine & Ethics, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMED51A0507D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMED51A0507D"><span>Does the <span class="hlt">weather</span> influence public opinion about climate change?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donner, S. D.; McDaniel, J.</p> <p>2010-12-01</p> <p>Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the <span class="hlt">weather</span> itself. The difference between what we “expect” - the climate - and what we “get” - the <span class="hlt">weather</span> - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate <span class="hlt">global</span> temperatures in 2007 and 2008 may have helped prompt the spread of a “<span class="hlt">global</span> cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the <span class="hlt">weather</span> in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006910','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006910"><span>Integration of <span class="hlt">Weather</span> Data into Airspace and Traffic Operations Simulation (ATOS) for Trajectory- Based Operations Research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peters, Mark; Boisvert, Ben; Escala, Diego</p> <p>2009-01-01</p> <p>Explicit integration of aviation <span class="hlt">weather</span> forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective <span class="hlt">weather</span> impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary <span class="hlt">weather</span>-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective <span class="hlt">weather</span>, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective <span class="hlt">weather</span> impacts. Our operational <span class="hlt">experience</span> at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that <span class="hlt">weather</span>-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users We have discussed key elements of an emerging aviation <span class="hlt">weather</span> research area: the explicit integration of aviation <span class="hlt">weather</span> forecasts with NAS structure to improve the effectiveness and timeliness of <span class="hlt">weather</span> impact mitigation plans. Our insights are based on operational <span class="hlt">experiences</span> with Lincoln Laboratory-developed integrated <span class="hlt">weather</span> sensing and processing systems, and derivative early prototypes of explicit ATM decision support tools such as the RAPT in New York City. The technical components of this effort involve improving meteorological forecast skill, tailoring the forecast outputs to the problem of estimating airspace impacts, developing models to quantify airspace impacts, and prototyping automated tools that assist in the development of objective broad-area ATM strategies, given probabilistic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011720','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011720"><span>Highlights of Space <span class="hlt">Weather</span> Services/Capabilities at NASA/GSFC Space <span class="hlt">Weather</span> Center</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook</p> <p>2012-01-01</p> <p>The importance of space <span class="hlt">weather</span> has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space <span class="hlt">weather</span> effects caused by the Sun's variability. NASA GSFC's Space <span class="hlt">Weather</span> Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space <span class="hlt">weather</span> products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space <span class="hlt">weather</span> science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space <span class="hlt">weather</span> Center, as a sibling organization to CCMC, is poised to address NASA's space <span class="hlt">weather</span> needs (and needs of various partners) and to help enhancing space <span class="hlt">weather</span> forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space <span class="hlt">weather</span> domain, it offers predictive capabilities and a comprehensive view of space <span class="hlt">weather</span> events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space <span class="hlt">weather</span> events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC51D1004P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC51D1004P"><span>Analysis on the Intention to Purchase <span class="hlt">Weather</span> Index Insurance and Development Agenda</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, K.; Jung, J.; Shin, J.; Kim, B.</p> <p>2013-12-01</p> <p>The purpose of this paper is to analyze how to revitalize <span class="hlt">weather</span> insurance. Current state of <span class="hlt">weather</span> insurance market is firstly described, and the necessity of insurance products and intention to purchase are analyzed based on the recognition survey regarding <span class="hlt">weather</span> insurance focusing on the <span class="hlt">weather</span> index insurance. The result of intention to purchase insurance products were examined with Ordered Logit Analysis (OLA), indicating that the amount of damages, the impacts of <span class="hlt">weather</span> change, and <span class="hlt">experience</span> of damage and loss have a positive relationship with the intention to purchase <span class="hlt">weather</span> insurance. In addition, recognition of the amount of acceptable payment for insurance (i.e. willingness to pay) was analyzed for both the group who wants to purchase insurance (Group 1) and the group who does not want to (Group 2). The results demonstrate that Group 1 shows statistically higher significance than Group 2. Based on the results above with the increase in abnormal <span class="hlt">weather</span> phenomena, we could predict that the amount of damages and losses will be rapidly increasing. The portion of <span class="hlt">weather</span> insurance market is also expected to consistently develop and expand. This study could be a cornerstone for drawing a plan to revitalize <span class="hlt">weather</span> insurance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.nws.noaa.gov/education.php','SCIGOVWS'); return false;" href="http://www.nws.noaa.gov/education.php"><span><span class="hlt">Weather</span> Education/Outreach - NOAA's National <span class="hlt">Weather</span> Service</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>select <em>the</em> go button to submit request City, St Go Sign-up <em>for</em> Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links <span class="hlt">weather</span>.gov NOAA logo-Select to go to <em>the</em> NOAA homepage National Oceanic and Atmospheric Administration's Select to go to <em>the</em> NWS homepage National <span class="hlt">Weather</span> Service Site Map News</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.nws.noaa.gov/careers.php','SCIGOVWS'); return false;" href="http://www.nws.noaa.gov/careers.php"><span>Careers in <span class="hlt">Weather</span> - NOAA's National <span class="hlt">Weather</span> Service</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>select <em>the</em> go button to submit request City, St Go Sign-up <em>for</em> Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links <span class="hlt">weather</span>.gov NOAA logo-Select to go to <em>the</em> NOAA homepage National Oceanic and Atmospheric Administration's Select to go to <em>the</em> NWS homepage National <span class="hlt">Weather</span> Service Site Map News</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1817L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1817L"><span>Science Results and Lessons Learned from CubeSat: Colorado Space <span class="hlt">Weather</span> <span class="hlt">Experiment</span> (CSSWE)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xinlin</p> <p></p> <p>The Relativistic Electron and Proton Telescope integrated little <span class="hlt">experiment</span> (REPTile) is a loaded-disc collimated solid-state particle telescope, designed, built, tested, and operated by a team of students at the University of Colorado. It is the only science payload onboard the Colorado Student Space <span class="hlt">Weather</span> <span class="hlt">Experiment</span> (CSSWE), a 3U CubeSat (10cm x 10cm x 30cm) launched into a low-Earth, 480km x 780km, and highly inclined (65 deg) orbit on 13 September 2012. REPTile measures differential fluxes of 0.58 to >3.8 MeV electrons and 9-40 MeV protons. These measurements, by themselves and in conjunction with other larger missions, are critical to understand the dynamics of these energetic particles. Miniaturizing a power- and mass-hungry particle telescope to return clean measurements from a CubeSat platform is challenging. To overcome these challenges, REPTile underwent a rigorous design and testing phase. Despite the limitations inherent with CubeSats, REPTile to date (still in operation) has returned more than 300 days of valuable science data, more than tripling its nominal mission lifetime of 90 days. The data are clean, as REPTile is able to clearly distinguish between particle species. Important science results using REPTile data, some of which have been published in peer-reviewed journals, will be presented in this presentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=feast&pg=5&id=EJ935268','ERIC'); return false;" href="https://eric.ed.gov/?q=feast&pg=5&id=EJ935268"><span><span class="hlt">Global</span> <span class="hlt">Experience</span>: The Development and Preliminary Evaluation of a Programme Designed to Enhance Students' <span class="hlt">Global</span> Engagement</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Feast, Vicki; Collyer-Braham, Sarah; Bretag, Tracey</p> <p>2011-01-01</p> <p>This paper reports on the development and preliminary evaluation of "<span class="hlt">Global</span> <span class="hlt">Experience</span>", an innovative programme at the University of South Australia designed to broaden students' intercultural engagement through a range of international experiential activities. The paper provides the rationale for the establishment of the programme…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013459','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013459"><span>NASA Space <span class="hlt">Weather</span> Center Services: Potential for Space <span class="hlt">Weather</span> Research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.</p> <p>2012-01-01</p> <p>The NASA Space <span class="hlt">Weather</span> Center's primary objective is to provide the latest space <span class="hlt">weather</span> information and forecasting for NASA's robotic missions and its partners and to bring space <span class="hlt">weather</span> knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space <span class="hlt">weather</span> events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=ionosphere&id=EJ284481','ERIC'); return false;" href="https://eric.ed.gov/?q=ionosphere&id=EJ284481"><span>The <span class="hlt">Global</span> Circuit.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lansford, Henry</p> <p>1983-01-01</p> <p>Discusses the nature of and research related to a theory explaining the earth's electric budget. The theory suggests a <span class="hlt">global</span> electric circuit completed by a positive current flowing up into thunderstorm clouds, from clouds to ionosphere, distributed around the globe, and down to earth through the lower atmosphere in fair-<span class="hlt">weather</span> regions. (JN)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987EnGeo...9...85W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987EnGeo...9...85W"><span><span class="hlt">Weathering</span> and <span class="hlt">weathering</span> rates of natural stone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winkler, Erhard M.</p> <p>1987-06-01</p> <p>Physical and chemical <span class="hlt">weathering</span> were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica <span class="hlt">weather</span> by dissolution are dependent on the regional and local climatic environment. The <span class="hlt">weathering</span> of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine <span class="hlt">weathering</span> rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC41D0609C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC41D0609C"><span>Intercontinental difference in extreme <span class="hlt">weather</span> events for the Northern Hemisphere over the past half century</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, A.; Tan, J.; Piao, S.</p> <p>2014-12-01</p> <p><span class="hlt">Weather</span> events that are located in the tails of a <span class="hlt">weather</span> distribution are called <span class="hlt">weather</span> extremes. <span class="hlt">Weather</span> extremes, including severe drought, flooding, heat and cold waves, usually can cause greatest damage to human lives and properties, and have profound implication on ecosystem productivity and carbon cycles. There is mounting evidence suggests that the frequency of temperature and hydrological <span class="hlt">weather</span> extremes have steadily increased over the last decades, largely due to the ongoing climate change. On the other hand, the distribution and trend of <span class="hlt">weather</span> extremes can be regionally heterogeneous, which have not been well understood. Here we investigate the spatial distribution and temporal trend of <span class="hlt">weather</span> extremes in the Northern Hemisphere (NH) over the past half century (1961-2010), with emphasis on the intercontinental comparisons. Our results suggest that warming extremes have increased significantly in East Asia and West Europe; while coldness extremes have decreased <span class="hlt">globally</span>. Heavy precipitation extremes significantly increased in eastern Northern America, boreal Eurasia, and some parts of China; while drought events showed an increasing trend in northern China-southern Mongolia and some parts of western United States. Our results highlight the regional difference in the trend of <span class="hlt">weather</span> extremes, which need to be incorporated in the mitigation measures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Natur.532..223M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Natur.532..223M"><span>Chemical <span class="hlt">weathering</span> as a mechanism for the climatic control of bedrock river incision</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murphy, Brendan P.; Johnson, Joel P. L.; Gasparini, Nicole M.; Sklar, Leonard S.</p> <p>2016-04-01</p> <p>Feedbacks between climate, erosion and tectonics influence the rates of chemical <span class="hlt">weathering</span> reactions, which can consume atmospheric CO2 and modulate <span class="hlt">global</span> climate. However, quantitative predictions for the coupling of these feedbacks are limited because the specific mechanisms by which climate controls erosion are poorly understood. Here we show that climate-dependent chemical <span class="hlt">weathering</span> controls the erodibility of bedrock-floored rivers across a rainfall gradient on the Big Island of Hawai‘i. Field data demonstrate that the physical strength of bedrock in streambeds varies with the degree of chemical <span class="hlt">weathering</span>, which increases systematically with local rainfall rate. We find that incorporating the quantified relationships between local rainfall and erodibility into a commonly used river incision model is necessary to predict the rates and patterns of downcutting of these rivers. In contrast to using only precipitation-dependent river discharge to explain the climatic control of bedrock river incision, the mechanism of chemical <span class="hlt">weathering</span> can explain strong coupling between local climate and river incision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/17402','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/17402"><span>Aviation <span class="hlt">weather</span> : FAA and the National <span class="hlt">Weather</span> Service are considering plans to consolidate <span class="hlt">weather</span> service offices, but face significant challenges.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2009-07-01</p> <p>The National <span class="hlt">Weather</span> Services (NWS) <span class="hlt">weather</span> products are a vital component of the Federal Aviation Administrations (FAA) air traffic control system. In addition to providing aviation <span class="hlt">weather</span> products developed at its own facilities, NWS also pr...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7437','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7437"><span>Effect of processing method on accelerated <span class="hlt">weathering</span> of wood-flour/HDPE composites</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Nicole M. Stark; Laurent M. Matuana; Craig M. Clemons</p> <p>2003-01-01</p> <p>Wood-plastic lumber is promoted as a low maintenance high-durability product. When exposed to accelerated <span class="hlt">weathering</span>, however, wood-plastic composites may <span class="hlt">experience</span> a color change and/or loss in mechanical properties. Different methods of manufacturing wood-plastic composites lead to different surface characteristics, which can influence <span class="hlt">weathering</span>, In this study, 50...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003BAMS...84..934P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003BAMS...84..934P"><span>The USWRP Workshop on the <span class="hlt">Weather</span> Research Needs of the Private Sector.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pielke, Roger A., Jr.; Abraham, Jim; Abrams, Elliot; Block, Jim; Carbone, Richard; Chang, David; Droegemeier, Kelvin; Emanuel, Kerry; Friday, Elbert W. Joe, Jr.; Gall, Robert; Gaynor, John; Getz, Rodger R.; Glickman, Todd; Hoggatt, Bradley; Hooke, William H.; Johnson, Edward R.; Kalnay, Eugenia; Kimpel, James Jeff; Kocin, Paul; Marler, Byron; Morss, Rebecca; Nathan, Ravi; Nelson, Steve; Pielke, Roger, Sr.; Pirone, Maria; Prater, Erwin; Qualley, Warren; Simmons, Kevin; Smith, Michael; Thomson, John; Wilson, Greg</p> <p>2003-07-01</p> <p>Private sector meteorology is a rapidly growing enterprise. It has been estimated that the provision of <span class="hlt">weather</span> information has, by some estimates, a <span class="hlt">global</span> market totaling in the billions of dollars. Further, the decisions based on such information could easily total trillions of dollars in the U.S. economy alone. The private sector clearly plays an important, and growing, role at the interface of <span class="hlt">weather</span> research and the <span class="hlt">weather</span> information needs of society. To date, little information has been paid to the connections of the meteorological research community and the scientific needs of the private sector. Thus, the time is ripe to stimulate a more active dialogue between what is generally considered the "basic" research community of physical and social scientists and those individuals and businesses that provide <span class="hlt">weather</span> information to myriad customers across the U.S. economy. In December 2000, the U.S. <span class="hlt">Weather</span> Research Program (supported by NSF, NOAA, NASA, and the U.S. Navy) sponsored a workshop in Palm Springs, California, to bring together <span class="hlt">weather</span> researchers and representatives of private sector meteorology to discuss needs, wants, opportunities, and challenges and how to enhance the linkages between the two relatively detached communities. The workshop focused on developing a better understanding of the relations of research and private sector meteorology, which ultimately means a better understanding of one of the important connections of research and societal needs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.121..611P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.121..611P"><span>Estimation of <span class="hlt">weathering</span> rates and CO2 drawdown based on solute load: Significance of granulites and gneisses dominated <span class="hlt">weathering</span> in the Kaveri River basin, Southern India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pattanaik, J. K.; Balakrishnan, S.; Bhutani, R.; Singh, P.</p> <p>2013-11-01</p> <p>The solute load of the Kaveri River (South India) and its tributaries draining diverse Precambrian terrains during pre-monsoon and monsoon periods was determined. Using average annual flow, total drainage area and atmospheric input corrected major ion concentrations of these rivers chemical <span class="hlt">weathering</span> rates, annual fluxes of different ionic species to the ocean and CO2 consumption rates were estimated. Bicarbonate is the most dominant ion (27-79% of anion budget) in all the river samples collected during monsoon period followed by Ca2+, whereas, in case of pre-monsoon water samples Na+ is the most dominant ion (in meq/l). Two approaches were adopted to estimate silicate and carbonate <span class="hlt">weathering</span> rates in the drainage basin. At Musuri silicate <span class="hlt">weathering</span> rate (SWR) is 9.44 ± 0.29 tons/km2/a and carbonate <span class="hlt">weathering</span> rate (CWR) is 1.46 ± 0.16 tons/km2/a. More than 90% of the total ionic budget is derived from <span class="hlt">weathering</span> of silicates in the Kaveri basin. CO2 consumption rate in the basin for silicate <span class="hlt">weathering</span> FCO2sil is 3.83 ± 0.12 × 105 mol/km2/a (upper limit), which is comparable with the Himalayan rivers at upper reaches. For carbonate <span class="hlt">weathering</span> (FCO2carb) CO2 consumption rate is 0.15 ± 0.03 × 105 mol/km2/a in the Kaveri basin. The lower limit of CO2 consumption rate corrected for H2SO4 during silicate and carbonate <span class="hlt">weathering</span> is FCO2sil is 3.24 × 1005 mol/km2/a and FCO2carb 0.13 × 105 mol/km2/a respectively. CO2 sequestered due to silicate <span class="hlt">weathering</span> in the Kaveri basin is 25.41 (±0.82) × 109 mol/a which represents 0.21 (±0.01)% of <span class="hlt">global</span> CO2 drawdown. This may be due to tropical climatic condition, high rainfall during both SW and NE monsoon and predominance of silicate rocks in the Kaveri basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24188437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24188437"><span>A <span class="hlt">global</span> service-learning <span class="hlt">experience</span> for nursing students in Tanzania: a model for collaboration.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kreye, Judy; Oetker-Black, Sharon</p> <p>2013-01-01</p> <p>This article addresses a model for creating a short-term <span class="hlt">global</span> service-learning program. The <span class="hlt">Global</span> Standards for the Initial Education of Professional Nurses and Midwives guided the development of a collaborative program involving a school of nursing in the Midwestern United States and one in Tanzania. Evaluation of the school of nursing and subsequent collaborative planning led to development and implementation of a 3-week <span class="hlt">global</span> service-learning <span class="hlt">experience</span> for nursing students. International academic partnerships, developed in accordance with WHO standards, will enhance educational <span class="hlt">experiences</span> for nursing students both in the United States and abroad. © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH21A2626W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH21A2626W"><span>Socio-Economic Impacts of Space <span class="hlt">Weather</span> and User Needs for Space <span class="hlt">Weather</span> Information</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.</p> <p>2017-12-01</p> <p>The 2015 National Space <span class="hlt">Weather</span> Strategy and Space <span class="hlt">Weather</span> Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space <span class="hlt">Weather</span> Ready Nation." NOAA's Space <span class="hlt">Weather</span> Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space <span class="hlt">weather</span>; and (2) outreach to engineers and operators to better understand user requirements for space <span class="hlt">weather</span> products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>