Science.gov

Sample records for globe hosts launch

  1. "From Earth to the Universe" Project Launches Around Globe

    NASA Astrophysics Data System (ADS)

    2009-02-01

    A worldwide exhibition of large-scale astronomical images has launched in the United States under the banner of the International Year of Astronomy 2009 (IYA2009). The "From Earth to the Universe" (FETTU) project is designed to bring the undeniable beauty of astronomy to the general public in a series of free showings across the country, which have begun with a traveling image exhibit now open at Tucson International Airport in Arizona. FETTU (www.fromearthtotheuniverse.org) is a major project of both the US and global efforts for IYA2009. With images taken from both ground- and space-based telescopes, FETTU showcases the incredible variety of astronomical objects that are known to exist - planets, comets, stars, nebulae, galaxies, clusters, and more. The exhibit also shows how some of these objects look different when viewed across the electromagnetic spectrum, from the ultraviolet and visible light to infrared, X-rays and gamma rays. FETTU is being shown in non-traditional public venues such as parks and gardens, shopping malls, metro stations and airports in major cities across the world. The FETTU images have been selected for their stunning beauty to engage members of the general public who might normally ignore or avoid astronomy. With short, but informative captions on each panel, the goal is introduce some basics of the science involved once an individual has been drawn to the image. In the US, FETTU is being sponsored by NASA and will appear in semi- permanent installations in Atlanta and Chicago later this spring. The traveling version of FETTU, with its first stop in Tucson, will then move to Memphis in April. More FETTU locations are being planned across the US and an enhanced schedule is being developed. People Who Read This Also Read... Galaxies Coming of Age in Cosmic Blobs Searching for Primordial Antimatter Action Replay of Powerful Stellar Explosion Jet Power and Black Hole Assortment Revealed in New Chandra Image Several editions of FETTU will

  2. GLOBE Program Teacher's Guide.

    ERIC Educational Resources Information Center

    1997

    The GLOBE Program is a worldwide, hands-on educational program for elementary and secondary school students. GLOBE aims to increase student achievement in mathematics and science, awareness towards the environment, and improve science process skills through network technology. This teacher's guide provides an overview of the GLOBE program and…

  3. The GLOBE Contrail Protocol: Initial Analysis of Results

    NASA Technical Reports Server (NTRS)

    Chambers, Lin; Duda, David

    2004-01-01

    The GLOBE contrail protocol was launched in March 2003 to obtain surface observer reports of contrail occurrence to complement satellite and model studies underway at NASA Langley, among others. During the first year, more than 30,000 ground observations of contrails were submitted to GLOBE. An initial analysis comparing the GLOBE observations to weather prediction model results for relative humidity at flight altitudes is in progress. This paper reports on the findings to date from this effort.

  4. Globe Anemo-radiometer

    NASA Astrophysics Data System (ADS)

    Nakayoshi, Makoto; Kanda, Manabu; de Dear, Richard

    2015-05-01

    We report on a new sensing technology for wind speed and shortwave and longwave radiation fluxes ( and , respectively) known as a "globe anemo-radiometer" (GAR). The GAR is intended for portable use in mobile observations along individual human pathways. The device was carefully designed to be compact, light, and omnidirectional, with low power consumption. The GAR evaluates the heat transfer coefficient , and by solving the simultaneous heat balance equations of three globe thermometers with different surface properties. The optimal combination of the three globe thermometers, namely a black globe thermometer, a white globe thermometer, and a black globe thermometer with a heat source inside the sphere, was determined experimentally. was evaluated using the empirical regression of against , with the relationship between the Nusselt number and Reynolds number experimentally regressed for the conversion from to , and the result compared with previous values from the literature. The performance of the GAR as a stationary sensor was evaluated in both field and wind-tunnel experiments and compared with that of reference meteorological sensors. The accuracy of determining obtained by the GAR was averaged over a 1-min time frame, and that of and , applying a 5-min moving average, 19 and 15 W m respectively. Both the accuracy and response delay of the globe thermometers were possible sources of error.

  5. Measuring Up with GLOBE.

    ERIC Educational Resources Information Center

    LaHart, Valerie

    1998-01-01

    Global Learning and Observations to Benefit the Environment (GLOBE) is an international hands-on environmental science and education program that began on Earth Day in 1995. Students measure environmental parameters for scientists studying weather patterns and environmental change, and discover their connection to Earth's ever-changing systems…

  6. GLOBE Science and GLOBE Education: Convergence or Divergence?

    NASA Astrophysics Data System (ADS)

    McWilliams, H.

    2003-12-01

    The GLOBE Program is a partnership between scientists, classroom teachers, and students collaborating to monitor and study the global environment. GLOBE has trained more than 20,000 teachers. Yet only a small percentage of K-12 teachers who are trained in GLOBE consistently submit data to the program's data base and thereby actively contribute to the science goals of GLOBE. Based on a study of New England GLOBE teachers, this report argues that the goals of GLOBE, including consistent data submission, can be accomplished only when there is a greater congruence between the scientific goals of the program and the educational goals of the classroom. The results are discussed in terms of current educational policies and mandates, specifically the No Child Left Behind legislation. Some ideas are offered regarding how to achieve greater convergence between the goals of GLOBE scientists and the educational goals of classroom teachers.

  7. Callisto Hemispherical Globes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The images used for the base of this globe were chosen from the best image quality and moderate resolution coverage supplied by Galileo SSI and Voyager 1 and 2 (Batson, 1987; Becker and others, 1998; Becker and others, 1999; Becker and others, 2001). The digital map was produced using Integrated Software for Imagers and Spectrometers (ISIS) (Eliason, 1997; Gaddis and others, 1997; Torson and Becker, 1997). The individual images were radiometrically calibrated and photometrically normalized using a Lunar-Lambert function with empirically derived values (McEwen, 1991; Kirk and others, 2000). A linear correction based on the statistics of all overlapping areas was then applied to minimize image brightness variations. The image data were selected on the basis of overall image quality, reasonable original input resolution (from 20 km/pixel for gap fill to as much as 150 m/pixel), and availability of moderate emission/incidence angles for topography. Although consistency was achieved where possible, different filters were included for global image coverage as necessary: clear for Voyager 1 and 2; clear and green (559 nm) for Galileo SSI. Individual images were projected to a Sinusoidal Equal-Area projection at an image resolution of 1.0 kilometer/pixel, and a final global mosaic was constructed in this same projection. The final mosaic was enhanced using commercial software. The global mosaic was then reprojected so that the entire surface of Callisto is portrayed in a manner suitable for the production of a globe. A specialized program was used to create the 'flower petal' appearance of the images; the area of each petal from 0 to 75 degrees latitude is in the Transverse Mercator projection, and the area from 75 to 90 degrees latitude is in the Lambert Azimuthal Equal-Area projection. The projections for adjacent petals overlap by 2 degrees of longitude, so that some features are shown twice. The northern hemisphere is shown on the left, and the southern hemisphere is

  8. Europa Hemispherical Globes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The images used for the base of this globe were chosen from coverage supplied by the Galileo solid-state imaging (SSI) camera and Voyager 1 and 2 spacecraft. The individual images were radiometrically calibrated and photometrically normalized using a Lunar-Lambert function with empirically derived values. A linear correction based on the statistics of all overlapping areas was then applied to minimize image brightness variations. The image data were selected on the basis of overall image quality, reasonable original input resolution (from 20 km/pixel for gap fill to as much as 200 m/pixel), and availability of moderate emission/incidence angles for topography. Although consistency was achieved where possible, different filters were included for global image coverage as necessary: clear/blue for Voyager 1 and 2, and clear, near-IR (757 nm), and green (559 nm) for Galileo SSI. Individual images were projected to a Sinusoidal Equal-Area projection at an image resolution of 500 m/pixel, and a final global mosaic was constructed in this same Sinusoidal projection.

    The global mosaic was then reprojected so that the entire surface of Europa is portrayed in a manner suitable for the production of a globe. A specialized program was used to create the 'flower petal' appearance of the images; the area of each petal from 0 to 75 degrees latitude is in the Transverse Mercator projection, and the area from 75 to 90 degrees latitude is in the Lambert Azimuthal Equal-Area projection. The projections for adjacent petals overlap by 2 degrees of longitude, so that some features are shown twice.

    Names shown on the globe are approved by the International Astronomical Union. The number, size, and placement of text were chosen for a 9-inch globe. A complete list of Europa nomenclature can be found at the Gazetteer of Planetary Nomenclature at http://planetarynames.wr.usgs.gov. The northern hemisphere is shown on the left, and the southern hemisphere is shown on the right.

  9. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  10. Tours in Virtual Globes

    NASA Astrophysics Data System (ADS)

    Treves, R.

    2009-12-01

    The most significant new feature to appear in Google Earth 5.0 in February was the tour feature, it can produce eye catching and appealing animations as was shown by the Apollo 11 Tour which shows a model of the lunar module descending to the surface of the moon. It allows users to record themselves navigating around Google Earth switching elements on and off. The use of the tour functionality goes beyond exciting animations, it has important applications as a way of; introducing users to a larger data set presented in a Virtual Globe, offering an alternative to PowerPoint as a platform to support presentations and as a quick way to produce powerful visualizations for education purposes. In this talk I will explore how best to use to tours to present a range of spatial data and examine how the Google Earth tour compares to similar functionality that is appearing in other Virtual Globes and other 3D environments such as Second Life.

  11. Map and Globe Reading Skills.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of Instructional Services.

    Although the guide was designed to accompany an instructional television series, it contains teacher-developed activities on map and globe skills which can be selected and adapted to the needs of elementary students independent of the series. Geographic concepts include direction, the globe, boundaries, hemispheres, scale, latitude, longitude, and…

  12. Phobos map and Phobos globe

    NASA Astrophysics Data System (ADS)

    Bugaevskii, L. M.; Krasnopevtseva, B. V.; Shingareva, K. B.

    1992-09-01

    A Phobos map with shaded relief (on the 1:100,000 scale) and a Phobos globe (on the 1:85,000 scale) were compiled using the triaxial ellipsoid as the reference surface and modified coordinate systems. To compile the maps for pasting the Phobos globe, two special projections were developed.

  13. The Inverted Snow Globe Shadow

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jair Lúcio Prados

    2015-01-01

    Our high school optics course finishes with an assignment that students usually appreciate. They must take pictures of everyday situations representing optical phenomena such as reflection, refraction, or dispersion, and post them on Instagram.1 When the photos were presented to the class, one student revealed an intriguing photo, similar to Fig. 1, showing a snow globe exposed to sunlight and its inverted shadow. This paper offers an explanation of the problem, which occurs due to light refraction from the globe.

  14. World Wind: NASA's Virtual Globe

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2007-12-01

    Virtual globes have set the standard for information exchange. Once you've experienced the visually rich and highly compelling nature of data delivered via virtual globes with their highly engaging context of 3D, it's hard to go back to a flat 2D world. Just as the sawbones of not-too-long-ago have given way to sophisticated surgical operating theater, today's medium for information exchange is just beginning to leap from the staid chalkboards and remote libraries to fingertip navigable 3D worlds. How we harness this technology to serve a world inundated with information will describe the quality of our future. Our instincts for discovery and entertainment urge us on. There's so much we could know if the world's knowledge was presented to us in its natural context. Virtual globes are almost magical in their ability to reveal natural wonders. Anyone flying along a chain of volcanoes, a mid-ocean ridge or deep ocean trench, while simultaneously seeing the different depths to the history of earthquakes in those areas, will be delighted to sense Earth's dynamic nature in a way that would otherwise take several paragraphs of "boring" text. The sophisticated concepts related to global climate change would be far more comprehensible when experienced via a virtual globe. There is a large universe of public and private geospatial data sets that virtual globes can bring to light. The benefit derived from access to this data within virtual globes represents a significant return on investment for government, industry, the general public, and especially in the realm of education. Data access remains a key issue. Just as the highway infrastructure allows unimpeded access from point A to point B, an open standards-based infrastructure for data access allows virtual globes to exchange data in the most efficient manner possible. This data can be either free or proprietary. The Open Geospatial Consortium is providing the leadership necessary for this open standards-based data access

  15. GLOBE Hydrology Workshop SEIP program

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Matt Krigbaum (left), a teacher at Mitchell Elementary in Ann Arbor, Mich., pours water from the Pearl River into a turbidity tube to measure the river's light penetration. Krigbaum, along with Lois Williams, principal at Elizabeth Courville Elementary in Detroit, Mich.; and Carolyn Martin and Arlene Wittmer, teachers at Elizabeth Courville Elementary; conducted the experiment during a GLOBE (Global Learning and Observations to Benefit the Environment) hydrology workshop. GLOBE is a worldwide, hands-on science education program in which teachers can become certified to implement the program at their schools after taking hydrology, land cover/biology, atmosphere/climate and soil protocol workshops. Twelve teachers from across the country attended the recent weeklong GLOBE training at SSC, offered through its Educator Resource Center and the NASA Explorer Schools program. All workshops are free and offer continuing education units.

  16. The GLOBE Earth Day 2004 Contrail Count-a-Thon

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Cole, Julia

    2004-01-01

    Early in 2004 the GLOBE Science team suggested a contrail count activity to celebrate Earth Day 2004, which was held this year on April 22nd in the United States and some other countries around the world. The GLOBE contrail team embraced this idea and developed a simplified data collection sheet for this special project. Information about the event was shared through the GLOBE site, UCAR and NASA press releases, the NASA portal (http://www.nasa.gov) and the CERES S'COOL Project (http://scool.larc.nasa.gov). On Earth Day, about 120 observations were received through the GLOBE Contrail Count-a-Thon website, about 70 contrail observations were received through regular GLOBE data reporting, and 19 contrail observations were received through regular S'COOL data reporting. Only observations between 11:00 and 13:00 local time were included in the Count-a-Thon. The event was reported in the Boulder Daily Camera beforehand and in the Oregon Register-Guard after the fact. It was also reported on National Public Radio s Day-to-Day show; whose host even submitted an observation. This poster discusses the Count-a-Thon experience and reports the results.

  17. GLOBE at Night in China

    NASA Astrophysics Data System (ADS)

    Guo, Hongfeng

    2015-03-01

    The GLOBE at Night citizen-science campaign was introduced in China in 2010. Observations and works made by students are presented. The students were guided to participate in this meaningful international activity by 1) taking light pollution observations of the night sky at different locations, 2) becoming aware of the severity of the effects of light pollution, and 3) making the whole society aware of the importance to save energy by reducing light pollution.

  18. Light Pollution Awareness through Globe at Night & IYL2015

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2015-01-01

    The International Astronomical Union (IAU) will be coordinating extensive activities to raise awareness of light pollution through running the Cosmic Light theme of the International Year of Light (IYL2015) and by partnering in particular with the popular Globe at Night program.Globe at Night (www.globeatnight.org) is an international campaign to raise public awareness of the impact of light pollution by having people measure night-sky brightness and submit observations in real-time with smart phone or later with a computer. In 2015, Globe at Night will run for 10-nights each month, an hour after sunset til before the Moon rises. Students can use the data to monitor levels of light pollution around the world, as well as understand light pollution's effects on energy consumption, plants, wildlife, human health and our ability to enjoy a starry night sky.Since its inception in 2006, more than 115,000 measurements from 115 countries have been reported. The last 9 years of data can be explored with Globe at Night's interactive world map or with the 'map app' to view a particular area. A spreadsheet of the data is downloadable from any year. One can compare Globe at Night data with a variety of other databases to see, for example, how light pollution affects the foraging habits of bats.To encourage public participation in Globe at Night during IYL2015, each month will target an area of the world that habitually contributes during that time. Special concerns for how light pollution affects that area and solutions will be featured on the Globe at Night website (www.globeatnight.org), through its Facebook page, in its newsletter or in the 365DaysofAstronomy.org podcasts.Twice during IYL there will be a global Flash Mob event, one on Super Pi Day (March 14, 2015) and a second in mid-September, where the public will be invited to take night-sky brightness measurements en masse. In April, the International Dark-Sky Week hosted by the International Dark-Sky Association will be

  19. Mars Digital Image Mosaic Globe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The photomosaic that forms the base for this globe was created by merging two global digital image models (DIM's) of Mars-a medium-resolution monochrome mosaic processed to emphasize topographic features and a lower resolution color mosaic emphasizing color and albedo variations.

    The medium-resolution (1/256 or roughly 231 m/pixel) monochromatic image model was constructed from about 6,000 images having resolutions of 150-350 m/pixel and oblique illumination (Sun 20 o -45 o above the horizon). Radiometric processing was intended to suppress or remove the effects of albedo variations through the use of a high-pass divide filter, followed by photometric normalization so that the contrast of a given topographic slope would be approximately the same in all images.

    The global color mosaic was assembled at 1/64 or roughly 864 m/pixel from about 1,000 red- and green-filter images having 500-1,000 m/pixel resolution. These images were first mosaiced in groups, each taken on a single orbit of the Viking spacecraft. The orbit mosaics were then processed to remove spatially and temporally varying atmospheric haze in the overlap regions. After haze removal, the per-orbit mosaics were photometrically normalized to equalize the contrast of albedo features and mosaiced together with cosmetic seam removal. The medium-resolution DIM was used for geometric control of this color mosaic. A green-filter image was synthesized by weighted averaging of the red- and violet-filter mosaics. Finally, the product seen here was obtained by multiplying each color image by the medium-resolution monochrome image. The color balance selected for images in this map series was designed to be close to natural color for brighter, redder regions, such as Arabia Terra and the Tharsis region, but the data have been stretched so that the relatively dark regions appear darker and less red than they actually are.

    The images are presented in a projection that portrays the entire surface of Mars in a

  20. Average Annual Rainfall over the Globe

    ERIC Educational Resources Information Center

    Agrawal, D. C.

    2013-01-01

    The atmospheric recycling of water is a very important phenomenon on the globe because it not only refreshes the water but it also redistributes it over land and oceans/rivers/lakes throughout the globe. This is made possible by the solar energy intercepted by the Earth. The half of the globe facing the Sun, on the average, intercepts 1.74 ×…

  1. The GLOBE Program: Partnerships in Action

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Kennedy, T.; Lemone, M.; Blurton, C.

    2004-12-01

    The GLOBE Program is a worldwide science and education partnership endeavor designed to increase scientific understanding of Earth as a system, support improved student achievement in science and math, and enhance environmental awareness through inquiry-based learning activities. GLOBE began on the premise that teachers and their students would partner with scientists to collect and analyze environmental data using specific protocols in five study areas - atmosphere, soils, hydrology, land cover, and phenology. As the GLOBE network grew, additional partnerships flourished making GLOBE an unprecedented collaboration of individuals worldwide - primary, secondary, and tertiary students, teachers and teacher educators, scientists, government officials, and others - to improve K-12 education. Since its inception in 1994, more than one million students in over 14,000 schools around the world have taken part in The GLOBE Program. The GLOBE Web site (http://www.globe.gov) is the repository for over 11 million student-collected data measurements easily accessible to students and scientists worldwide. Utilizing the advantages of the Internet for information sharing and communication, GLOBE has created an international community. GLOBE enriches students by giving them the knowledge and skills that they will need to become informed citizens and responsible decision-makers in an increasingly complex world. Understanding that all members of a community must support change if it is to be sustainable, GLOBE actively encourages the development of GLOBE Learning Communities (GLCs) which are designed to get diverse stakeholder groups involved in a local or regional environmental issue. Central to the GLC is the engagement of local schools. GLCs go beyond individual teachers implementing GLOBE in the isolation of their classrooms. Instead, the GLC brings multiple teachers and grade levels together to examine environmental issues encouraging the participation of a broad range of

  2. Scout Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Scout Launch. James Hansen wrote: 'As this sequence of photos demonstrates, the launch of ST-5 on 30 June 1961 went well; however, a failure of the rocket's third stage doomed the payload, a scientific satellite known as S-55 designed for micrometeorite studies in orbit.'

  3. NPP Launch

    NASA Video Gallery

    NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft was launched aboard a Delta II rocket at 5:48 a.m. EDT today, on a mission to measure ...

  4. Globes: A Librarian's Guide to Selection and Purchase.

    ERIC Educational Resources Information Center

    Coombs, James

    1981-01-01

    Provides a guide for librarians to use in selecting globes by discussing how globes are made, types of globes, special and extraterrestrial globes, selecting criteria, and comparing such features as aesthetic appeal, readability, and currency of political information. A list of globe manufacturers and a selected bibliography are provided. (CHC)

  5. Detailed Globes Enhance Education and Recreation

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Orbis World Globes creates inflatable globes-Earthballs-in many sizes that depict Earth as it is seen from space, complete with atmospheric cloud cover. Orbis designs and produces the most visually authentic replicas of Earth ever created, and NASA took notice of Orbis globes and employed a 16-inch diameter EarthBall for an educational film it made aboard the STS-45 shuttle mission. Orbis later collaborated with NASA to create two 16-foot diameter world globes for display at the 2002 Olympic Winter Games in Salt Lake City, using more detailed satellite imagery. The satellite image now printed on all Orbis globes displays 1-kilometer resolution and is 21,600 by 43,200 pixels in size, and Orbis globes are otherwise meteorologically accurate, though the cloud cover has been slightly reduced in order for most of the landforms to be visible. Orbis also developed the exclusive NightGlow Cities feature, enabling EarthBalls to display the world's cities as they appear as the Earth revolves from daylight into night. Orbis inflatable globes are available in sizes from 1 to 100 feet in diameter, with the most common being the standard 16-inch and 1-meter diameter EarthBalls. Applications include educational uses from preschools to universities, games, and for a variety of display purposes at conferences, trade shows, festivals, concerts, and parades. A 16-foot diameter Orbis globe was exhibited at the United Nations' World Urban Forum, in Vancouver, Canada; the Space 2006 conference, in San Jose, California; and the X-Prize Cup Personal Spaceflight Exposition in Las Cruces, New Mexico.

  6. The Process of Digitizing of Old Globe

    NASA Astrophysics Data System (ADS)

    Ambrožová, K.; Havrlanta, J.; Talich, M.; Böhm, O.

    2016-06-01

    This paper describes the process of digitalization of old globes that brings with it the possibility to use globes in their digital form. Created digital models are available to the general public through modern technology in the Internet network. This gives an opportunity to study old globes located in various historical collections, and prevent damage of the originals. Another benefit of digitization is also a possibility of comparing different models both among themselves and with current map data by increasing the transparency of individual layers. Digitization is carried out using special device that allows digitizing globes with a diameter ranging from 5 cm to 120 cm. This device can be easily disassembled, and it is fully mobile therefore the globes can be digitized in the place of its storage. Image data of globe surface are acquired by digital camera firmly fastened to the device. Acquired image data are then georeferenced by using a method of complex adjustment. The last step of digitization is publication of the final models that is realized by two ways. The first option is in the form of 3D model through JavaScript library Cesium or Google Earth plug-in in the Web browser. The second option is as a georeferenced map using Tile Map Service.

  7. The planet and the painted globe

    SciTech Connect

    Rockwell, R.C.

    1994-12-31

    Some years ago a clever cartoonist drew a puzzled astronaut looking down on an Earth painted like a library globe: blocks of pinks, greens, and blues set off the countries, bold lines clearly delineated boundaries, and countries were identified in large letters. Research on human dimensions of global environmental changes would be so much easier if that cartographer`s globe were real. Unfortunately, what the astronauts have actually seen is a planet from which human politics have seemingly disappeared. They see an Earth on which the human creations of countries and their boundaries are veiled by the natural features of the planet-the oceans, seas, rivers, forests, ice fields, plain, and mountains that were mostly here before anyone thought to draw a national boundary or paint a map. This globe without apparent political demarcations is the natural stage on which environmental changes play. It is not, however, the globe on which social science research is conducted. The human-centered globe of the social sciences has places, cities, and nation-states of which social scientists must take account. How to do so in a manner that permits linkages of social and natural science research is problematic. This article discusses the interactions between these two different types of research in looking at global climate change.

  8. Elementary Map and Globe Skills Program.

    ERIC Educational Resources Information Center

    Heebink, William B.

    The document contains sequential lessons on map and global skills for grades K-6. The program relies on three commercial products: Maps Show the Earth and Where and Why (both by A.J. Nystrom) and Level A of the map and globe section from the Wisconsin Design for Reading Skills Development. Kindergarten students examine map representation, position…

  9. Construction of a Low Cost Globe Thermometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An economical self-contained globe thermometer was developed for use in field applications. The instrument uses a miniature integral temperature sensor and datalogger in the place of a separate sensor and external datalogger. The performance of the miniature sensor/logger units was shown to be s...

  10. GLOBE: A Science/Education Partnership Program.

    ERIC Educational Resources Information Center

    Murphy, Anthony P.; Coppola, Ralph K.

    This paper reviews the history of the GLOBE (Global Learning and Observations to Benefit the Environment) Program, an international environmental science education program. The goals of the program are to: enhance the environmental awareness of individuals around the world; contribute to the scientific understanding of the earth; and to help all…

  11. Children Thinking about Models: Analyzing a Globe

    ERIC Educational Resources Information Center

    Gustafson, Brenda J.; Shanahan, Marie-Claire

    2010-01-01

    The purpose of this study was to explore to what extent 87 grade 5 (10-12-year-old) children, supported by instruction about scientific models, could engage in thinking beyond a naive realist level about a globe. A qualitative framework allowed analysis of children's responses to worksheet questions in which they identified analog-target…

  12. Observations of El Niño impacts using in situ GLOBE protocols and satellite data

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. M.; Destaerke, D.

    2015-12-01

    The El Niño phenomenon is a periodic ocean condition that occurs every two to ten years in the central and east-central equatorial Pacific Ocean. It alters the normal patterns of ocean circulation, surface temperature, and evaporation, causing noticeable and often severe changes in weather conditions in many areas of the world. El Niño is the warm phase of the El Niño Southern Oscillation (ENSO), and usually reaches its peak between December and February time period. El Niño and its worldwide consequences are studied by the school network of the GLOBE Program (www.globe.gov) which brings together students, teachers, and scientists in support of student research and validation of international Earth science research projects. Since the start of the GLOBE Program over 20 years ago, GLOBE classrooms utilize carefully developed daily, weekly, or seasonally protocols such as maximum, minimum and current temperatures, rainfall, soil moisture, and others, to measure changes in the environment. The data collected by the students is entered in an online GLOBE database. In addition to the student-contributed data, automated stations also collect and send measurements to the GLOBE database.Students compare their data with global data acquired by satellites to help validate the satellite data. With a potentially historic-level El Niño event thought to be on the horizon--possibly one of the strongest in 50 years—we will propose an emphasis on measurements from GLOBE schools that will support studies and satellite observations of El Niño. We plan to provide the schools with additional satellite data sets such as ocean temperature measurements from Advanced Very High Resolution Radiometer (AVHRR), sea surface elevation measurements from Jason-2 and 3 (after it launches), and others to be identified. We wish to address and support the following educational objectives: - Demonstrate how El Niño affects local precipitation and temperature across the globe, - Link teachers

  13. Time-Lapse: Mobile Launcher Moves to Launch Pad

    NASA Video Gallery

    The mobile launcher that will host NASA's Space Launch System and new Orion spacecraft was moved to Launch Pad 39B at NASA's Kennedy Space Center in Florida to begin two weeks of structural and sys...

  14. Loading of Launch Vehicle when Launching from Floating Launch Platform

    NASA Astrophysics Data System (ADS)

    Agarkov, A. V.; Pyrig, V. A.

    2002-01-01

    equator, which is a most effective way from payload capability standpoint. But mobility of the Launch Platform conditions an increase in LV loading as compared with onground launch. Therefore, to provide efficiency of lounching from LP requires solving certain issues to minimize LV loading at launch processing. The paper at hand describes ways to solve these issues while creating and operating the international space launch system Sea Launch, which provides commercial spacecraft launches onboard Zenit-3SL launch vehicle from the floating launch platform located at the equator in the Pacific. Methods to decrease these loads by selecting the optimum position of LP and by correcting LP trim and heel were described. In order to account for impact of weather changing (i.e. waves and winds) and launch support operations on the launch capability, a system of predicted load calculation was designed. By measuring LP roll and pitch parameters as well as wind speed and direction, the system defines loading at LV root section, compares it with the allowable value and, based on the compavision, forms a conclusion on launch capability. launches by Sea Launch.

  15. The Role of Virtual Globes in Geoscience

    NASA Technical Reports Server (NTRS)

    Bailey, John E.; Chen, Aijun

    2011-01-01

    One of the difficulties faced by Earth scientists of all disciplines is how to effectively communicate their research to both other scientists and the general public. With increased attention paid to the health of the planet, the activities of geoscientists in particular are falling under the spotlight of public interest. In age where the internet availability has brought an expectation of information being instantly visible in a graphically rich format, the development of Virtual Globes --computer-based representations of the real-world--has become a natural progression for how best to view these data. In this special issue we bring together a cross-selection of the many examples of how Virtual Globe technologies are being used for geoscience.

  16. Mars Orbiter Laser Altimiter (MOLA) Globe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The color shaded relief image used as the base for this globe has a resolution of 32 pixels per degree (approximately 1850 m/pixel), and was produced and supplied by the MOLA Science Team (http://ltpwww.gsfc.nasa.gov/tharsis/mola.html). The image is shaded as if illuminated everywhere from the west. The elevations represented in color are with respect to a gravitational equipotential surface whose mean equatorial radius is that of the topography. The Astrogeology Team of the U.S. Geological Survey reprojected the image into the format displayed above.

    The images are presented in a projection that portrays the entire surface of Mars in a manner suitable for the production of a globe; the number, size, and placement of text annotations were chosen for a 12-inch globe. Prominent features are labeled with names approved by the International Astronomical Union. A specialized program was used to create the 'flower petal' appearance of the images; the area of each petal from 0 to 75 degrees latitude is in the Transverse Mercator projection, and the area from 75 to 90 degrees latitude is in the Lambert Azimuthal Equal-Area projection. The northern hemisphere of Mars is shown on the left, and the southern hemisphere on the right.

  17. News Conference: Bloodhound races into history Competition: School launches weather balloon Course: Update weekends inspire teachers Conference: Finland hosts GIREP conference Astronomy: AstroSchools sets up schools network to share astronomy knowledge Teaching: Delegates praise science events in Wales Resources: ELI goes from strength to strength International: South Sudan teachers receive training Workshop: Delegates experience universality

    NASA Astrophysics Data System (ADS)

    2011-11-01

    Conference: Bloodhound races into history Competition: School launches weather balloon Course: Update weekends inspire teachers Conference: Finland hosts GIREP conference Astronomy: AstroSchools sets up schools network to share astronomy knowledge Teaching: Delegates praise science events in Wales Resources: ELI goes from strength to strength International: South Sudan teachers receive training Workshop: Delegates experience universality

  18. Launch summary for 1978

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1978-01-01

    Sounding rocket, satellite, and space probe launchings are presented. Time, date, and location of the launches are provided. The sponsoring countries and the institutions responsible for the launch are listed.

  19. NGSS and Inquiry-Based Learning with The GLOBE Program

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Bydlowski, D.; Seavey, M.; Andersen, T.; Mackaro, J.; Malmberg, J.; Randolph, J. G.; Tessendorf, S. A.

    2012-12-01

    The GLOBE Program (www.globe.gov) engages K-12 students through scientific discovery to learn about the Earth as a system and provides a curricular example for the Next Generation Science Standards (NGSS). A key component of GLOBE is its inquiry-based, hands-on activities, which align with the eight practices found in Dimension 1 of the Standards. GLOBE teachers currently address the crosscutting concepts from Dimension 2 in the Standards by engaging students in data analysis and application through GLOBE Investigations, such as GPS, hydrology and atmosphere. Hands-on activities align to the disciplinary core ideas of Dimension 3 of the Standards through the implementation of protocols in air, water, soil, land cover, and seasons in over 25,000 schools in more than 110 countries worldwide. Integration of technology, engineering, and the application of science have played a central role in The GLOBE Program since its inception in 1995. The GLOBE Program provides a venue for students to report their own scientific investigations to scientists, teachers, and other students through student research reports, as well as a variety of student conference opportunities. This presentation will provide samples of how The GLOBE Program and GLOBE teachers encourage inquiry-based learning for student achievement of the NGSS through the review of student reports. These reports serve as artifacts illustrating the scientific practices, crosscutting concepts, and disciplinary core ideas students engage in while participating in GLOBE. This review will illustrate the extent to which GLOBE protocols and activities support NGSS, indicate gaps or mismatches in scope and sequence, provide recommendations for new materials development, and demonstrate a process that can be repeated by other science education programs to review their own current alignment to NGSS.

  20. Globe At Night: A Dark-skies Awareness Campaign During The International Year Of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Isbell, D.; Pompea, S. M.; Smith, D. A.; Baker, T.

    2009-01-01

    GLOBE at Night is an international citizen-science event encouraging everyone, scientists, non-scientists, students and the general public, to measure local levels of light pollution and contribute the observations online to a world map. This program is a centerpiece of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) as well as the US IYA "Dark Skies are a Universal Resource” theme for 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at the National Optical Astronomy Observatory, the University Corporation for Atmospheric Research and the Environmental Systems Research Institute, along with the Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in each spring, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how” and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more

  1. Fifth FLTSATCOM to be launched

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Launch of the FLTSATOOM-E, into an elliptical orbit by the Atlas Centaur launch vehicle is announced. The launch and relevant launch operations are described. A chart of the launch sequence for FLTSATCOM-E communication satellite is given.

  2. Maps and Globes: An Instructional Unit for Elementary Grades.

    ERIC Educational Resources Information Center

    Duea, Joan; And Others

    This unit of 20 classroom learning episodes is structured to improve students' ability to read and interpret maps and globes. Performance objectives, outlined in part 1, include developing map and globe skills to locate, acquire, organize, interpret, evaluate, and express knowledge and information. Each of the learning episodes in part 2 contains…

  3. Raised Relief Mars Globe Brings the Red Planet Closer

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Mars Globe 20x is the first digitally produced raised relief globe to be sold at retail establishments. The rises and dips of the Martian landscape have been multiplied by 20 to make the shapes more noticeable to human touch and sight. They make this globe, with its over 1 million elevation points, a visually stunning introduction to the planet. Spectrum 3D used the NASA digital land elevation data to aim lasers that then shaped and defined the master globe s surface. Subsequent copies were then made by creating a master globe mold. The molded copies are hand finished by workers who remove errant edges or lines that may appear on the raw globes and then paint the surfaces. The result is a globe that measures in at 18 inches in diameter, roughly 1:15,729,473 scale of the actual planet. The exaggerated raised relief is like having a 3-D digital microscope for planetary shapes. This makes the landmarks easier to learn and understand, as it provides easy visuals for orientation. People have a natural propensity for understanding 3-D shapes more easily than numbers or words. The 3-D globes appeal to both the kinetic and visual learning aspects of the brain, making it easy for people to readily memorize the landmarks and to make a mental model that they will remember for a long time.

  4. Modeling the wet bulb globe temperature using standard meteorological measurements.

    SciTech Connect

    Liljegren, J. C.; Carhart, R. A.; Lawday, P.; Tschopp, S.; Sharp, R.; Decision and Information Sciences

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 C based on comparisons with wet bulb globe temperature measurements at all depots.

  5. Ceremony celebrates 50 years of rocket launches

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  6. IRIS Launch Animation

    NASA Video Gallery

    This animation demonstrates the launch and deployment of NASA's Interface Region Imaging Spectrograph (IRIS) mission satellite via a Pegasus rocket. The launch is scheduled for June 26, 2013 from V...

  7. Space Launch System Animation

    NASA Video Gallery

    NASA is ready to move forward with the development of the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new national capability for human exploration be...

  8. Shuttle Era: Launch Directors

    NASA Video Gallery

    A space shuttle launch director is the leader of the complex choreography that goes into a shuttle liftoff. Ten people have served as shuttle launch directors, making the final decision whether the...

  9. GLOBE Earth Science Education and Public Outreach in Developing Countries GLOBE Earth Science Education and Public Outreach in Developing Countries

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Boger, R. A.

    2005-12-01

    GLOBE is an international hands-on earth science education program that involves scientists, teachers and students in more than 16,000 primary and secondary schools. GLOBE is funded by the National Aeronautics Administration (NASA), the National Science Foundation (NSF) and the U.S. Department of State. GLOBE works with schools (teachers and students) through more than 100 U.S. GLOBE partnerships with universities, state and local school systems, and non-government organizations. Internationally, GLOBE is partnered with 109 countries that include many developing nations throughout the world. In addition to the GLOBE's different areas of investigation e.g. Atmosphere/ Weather, Hydrology, Soils, Land Cover Biology and Phenology ( plant and animal), there are special projects such as the GLOBE Urban Phenology Year Project (GUPY) that engages developing and developed countries ( Finland, United States, Japan, Philippines, Thailand, Jordan, Kyrgystan, Senegal, Poland, Estonia, and the Dominican Republic) in studying the effects of urbanization on vegetation phenology, a sensitive indicator of climate change. Vegetation phenology integrates different components of the Earth system i.e. carbon and geochemical cycling, water cycling and energy cycling and is an excellent way to engage students in collaborative projects. This presentation will highlight the GUPY project and provide additional examples of local initiatives and collaborations with indigenous communities that use GLOBE and an inquiry approach to revise science education in developing countries .

  10. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  11. Launch Summary for 1979

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1980-01-01

    Spacecraft launching for 1979 are identified and listed under the categories of (1) sounding rockets, and (2) artificial Earth satellites and space probes. The sounding rockets section includes a listing of the experiments, index of launch sites and tables of the meanings and codes used in the launch listing.

  12. Globe Teachers Guide and Photographic Data on the Web

    NASA Technical Reports Server (NTRS)

    Kowal, Dan

    2004-01-01

    The task of managing the GLOBE Online Teacher s Guide during this time period focused on transforming the technology behind the delivery system of this document. The web application transformed from a flat file retrieval system to a dynamic database access approach. The new methodology utilizes Java Server Pages (JSP) on the front-end and an Oracle relational database on the backend. This new approach allows users of the web site, mainly teachers, to access content efficiently by grade level and/or by investigation or educational concept area. Moreover, teachers can gain easier access to data sheets and lab and field guides. The new online guide also included updated content for all GLOBE protocols. The GLOBE web management team was given documentation for maintaining the new application. Instructions for modifying the JSP templates and managing database content were included in this document. It was delivered to the team by the end of October, 2003. The National Geophysical Data Center (NGDC) continued to manage the school study site photos on the GLOBE website. 333 study site photo images were added to the GLOBE database and posted on the web during this same time period for 64 schools. Documentation for processing study site photos was also delivered to the new GLOBE web management team. Lastly, assistance was provided in transferring reference applications such as the Cloud and LandSat quizzes and Earth Systems Online Poster from NGDC servers to GLOBE servers along with documentation for maintaining these applications.

  13. Launch summary for 1980

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1981-01-01

    Sounding rockets, artificial Earth satellites, and space probes launched betweeen January 1 and December 31, 1980 are listed. Data tabulated for the rocket launchings show launching site, instruments carried, date of launch, agency rocket identification, sponsoring country, experiment discipline, peak altitude, and the experimenter or institution responsible. Tables for satellites and space probes show COSPAR designation, spacecraft name, country, launch date, epoch date, orbit type, apoapsis, periapsis and inclination period. The functions and responsibilities of the World Data Center and the areas of scientific interest at the seven subcenters are defined. An alphabetical listing of experimenters using the sounding rockets is also provided.

  14. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  15. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  16. Launch operations efficiency

    NASA Technical Reports Server (NTRS)

    Diloreto, Clem; Fischer, Carl; Atkins, Bob

    1988-01-01

    The paper discusses launch operations from a program perspective. Launch operations cost is a significant part of program cost. New approaches to launch operations, integrated with lessons learned, have the potential to increase safety and reliability as well as reduce cost. Operational efficiency must be an initial program goal. Design technology and management philosophy must be implemented early to ensure operational cost goals. Manufacturing cost and launch cost are related to operational efficiency. True program savings can be realized through implementation of launch operations cost saving approaches which do not correspondingly increase cost in other program areas such as manufacturing and software development and maintenance. Launch rate is a key factor in the cost/flight analysis and the determination of launch operations efficiency goals.

  17. iGlobe Interactive Visualization and Analysis of Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2012-01-01

    iGlobe is open-source software built on NASA World Wind virtual globe technology. iGlobe provides a growing set of tools for weather science, climate research, and agricultural analysis. Up until now, these types of sophisticated tools have been developed in isolation by national agencies, academic institutions, and research organizations. By providing an open-source solution to analyze and visualize weather, climate, and agricultural data, the scientific and research communities can more readily advance solutions needed to understand better the dynamics of our home planet, Earth

  18. The GLOBE Program 10 Years On: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Blurton, C.

    2004-12-01

    The initiative for the GLOBE Program, a hands-on primary and secondary school-based Earth science and education program that unites students, teachers and scientists in study and research about the dynamics of the Earth's environment, was first announced on Earth Day, April 22, 1994, by then-Vice President Al Gore. The U.S. National Oceanic and Atmospheric Administration (NOAA) was designated as GLOBE's lead agency. Along with NOAA, the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Environmental Protection Agency (EPA) provided funding, and the Department of State, although not a funding agency, was involved in the development and implementation of the international aspects of the program. The US Agency for International Development (USAID) and the Peace Corps have also provided support to GLOBE in other countries. GLOBE started up with just a few hundred schools and teachers but quickly grew over the years largely through the efforts of the growing number of International Partners and U.S. Partners such as universities, school districts and others. In December 2003, over 25,000 teachers in more than 14,500 schools in 105 countries had been trained to implement GLOBE in their classrooms. Students in those classrooms had contributed over 11,000,000 individual environmental measurements to the GLOBE database. In September 2002, NASA assumed lead U.S. federal agency responsibility for GLOBE and shortly thereafter issued a Cooperative Agreement Notice to solicit proposals to assume responsibility in assisting NASA in the management of the GLOBE Program, including both worldwide implementation and coordination in the U.S. A Cooperative Agreement between NASA and the University Corporation for Atmospheric Research (UCAR) for the Program entitled: Inspiring the Next Generation of Explorers: The GLOBE Program (NCC5-735) was signed June 16, 2003. UCAR's partner in implementing GLOBE is Colorado State University (CSU

  19. GLOBE At Night: Mobilizing The Citizen-scientist

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Newhouse, M.

    2011-01-01

    GLOBE at Night is an annual international citizen-science event encouraging everyone to measure local levels of light pollution in February and March and contribute their observations online to a world map. (See www.globeatnight.org.) The campaign is hosted by the National Optical Astronomy Observatory (NOAO) in partnership with ESRI. In the last three years citizen-scientists from around the world contributed more than 50,000 observations, with nearly 18,000 data points from the 2010 campaign. During the same time, millions of touch-based, GPS-enabled smartphones and tablets have been sold worldwide. Each year NOAO staff has to discard data points due to inaccurate reporting of the location (latitude and longitude). Despite the use of innovative mapping tools on the data reporting web page, it is too easy to mistype numbers or forget a negative sign, spuriously relocating data points. Additionally, there is a time lag between when the data is collected at night and when it is reported later that can allow for additional error. One approach to address these problems would be to create a way to submit the data when it is observed and have a more automated GPS capability for reporting an accurate location. The rise in popularity of GPS-enabled mobile devices provides such a solution. These phones include state-of-the-art browsers that have access to the GPS and other data (date, time). These devices can potentially be used to show an appropriate magnitude/sky chart to the citizen-scientist and submit the data in real time, as the observation is made. NOAO staff is building a web application for mobile devices that will help realize these possibilities and potentially enable the accurate reporting of many more observations this year. Our poster will discuss this effort and describe what we hope to accomplish.

  20. COSMOS Launch Services

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  1. Building the Capacity of HBCU's for Establishing Effective Globe Partnerships

    NASA Technical Reports Server (NTRS)

    Bagayoko, Diola; Ford, Robert L.

    2002-01-01

    The special GLOBE train-the-trainer (TTT) workshop entitled "Building the Capacity of HBCUs For Establishing Effective GLOBE Partnerships" was help for the purpose of expanding GLOBE training capacity on the campuses of Historically Black Colleges and Universities (HBCUs) and community colleges (CCs). The workshop was held March 17-22, 2002 in Washington, D.C. at Howard University. It was designed to establish research and instructional collaboration between and among U.S. universities (HBCUs and CCs) and African countries. Representatives from 13 HBCUs, and two community colleges were represented among trainees, so were representatives from eight African countries who were financially supported by other sources. A total of 38 trainees increased their knowledge of GLOBE protocols through five days of rigorous classroom instruction, field experiences, cultural events, and computer lab sessions.

  2. DigitalGlobe(TM) Incorporated Corporate and System Update

    NASA Technical Reports Server (NTRS)

    Thomassie, Brett

    2007-01-01

    This viewgraph presentation describes a system update of Quickbird, the world's highest resolution commercial imaging satellite, operated by DigitalGlobe (TM) Incorporated. A satellite comparison of Quickbird, WorldView-60, and WorldView-110 is also presented.

  3. INTERIOR VIEW WITH STOCK INCLUDING THESE GATE AND GLOBE VALVES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH STOCK INCLUDING THESE GATE AND GLOBE VALVES FOR THE PULP AND PAPER INDUSTRIES READY FOR SHIPPING - Stockham Pipe & Fittings Company, Warehouse, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. 66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS IN CONSOLE LOCATED CENTRALLY IN SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT IN BACKGROUND: LAUNCH OPERATOR, LAUNCH ANALYST, AND FACILITIES PANELS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Eratosthenes' teachings with a globe in a school yard

    NASA Astrophysics Data System (ADS)

    Božić, Mirjana; Ducloy, Martial

    2008-03-01

    A globe, in a school or university yard, which simulates the Earth's orientation in space, could be a very useful and helpful device for teaching physics, geometry, astronomy and the history of science. It would be very useful for science education to utilize the forthcoming International Year of the Planet Earth 2008 and the International Year of Astronomy 2009 by installing globes in many school and university courtyards.

  6. Reconstruction of the celestial globe of the Ming Dynasty.

    NASA Astrophysics Data System (ADS)

    Xu, Zhengtao; Ling, Rongfu

    1997-09-01

    Four big bronze instruments were made in the seventh year of the Zhengtong reign of the Ming Dynasty (AD 1442). They are the Armillary Sphere, Abridged Armilla, Gnomon and Celestial Globe. The first three ones are well presented in the Purple Mountain Observatory. But the Celestial Globe was destroyed in the early period of the Qing Dynasty. According to the astronomical treatises of the Yuan and Ming Dynasty and related references the authors reconstructed this instrument in original size.

  7. Launch facilities as infrastructure

    NASA Astrophysics Data System (ADS)

    Trial, Mike

    The idea is put forth that launch facilities in the U.S. impose inefficiencies on launch service providers due to the way they have been constructed. Rather than constructing facilities for a specific program, then discarding them when the program is complete, a better use of the facilities investment would be in constructing facilities flexible enough for use by multiple vehicle types over the course of a 25-year design lifetime. The planned National Launch System (NLS) program offers one possible avenue for the federal government to provide a nucleus of launch infrastructure which can improve launch efficiencies. The NLS goals are to develop a new space launch system to meet civil and national needs. The new system will be jointly funded by DOD and NASA but will actively consider commercial space needs. The NLS will improve reliability, responsiveness, and mission performance, and reduce operating costs. The specifics of the infrastructure concept are discussed.

  8. Bilateral Traumatic Globe Luxation with Optic Nerve Transection

    PubMed Central

    Tok, Levent; Tok, Ozlem Yalcin; Argun, Tugba Cakmak; Yilmaz, Omer; Gunes, Alime; Unlu, Elif Nisa; Sezer, Sezgin; Ibisoglu, Seda; Argun, Mehmet

    2014-01-01

    Purpose The purpose of this study was to document clinical findings and management of a patient with bilateral globe luxation and optic nerve transection. Materials and Methods A 25-year-old female patient was admitted to the emergency department with bilateral traumatic globe luxation following a motor vehicle accident. Results Visual acuity testing showed no light perception. The right pupil was dilated and bilaterally did not react to light. The globes were bilaterally intact. A computed tomography scan revealed Le Fort type II fractures, bilateral optic nerve transection and disruption of all extraocular muscles. The globes of the patient were bilaterally reduced into the orbit. However, the patient developed phthisis bulbi in the right eye at month 3. Conclusion Globe luxation presents a dramatic clinical picture, and may lead to the development of severe complications due to the concomitance of complete optic nerve dissection and multiple traumas. Even if the luxated globe is repositioned into the orbit, there is still an increased risk of the development of phthisis due to ischemia. PMID:25606034

  9. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  10. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  11. GPM: Waiting for Launch

    NASA Video Gallery

    The Global Precipitation Measurement mission's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, ...

  12. STS-114: Post Launch Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Dean Acosta, Deputy Assistant Administrator for Public Affairs hosted this post launch press conference. Present were Mike Griffin, NASA Administrator; William Ready, Associate Administrator for Space Operations; Bill Parsons, Space Shuttle Program Manager; Mike Leinbach, NASA Launch Director; and Wayne Hill, Deputy Program Manager for Space Shuttle Program. Each expressed thanks to all of NASA Officials and employees, contractors, vendors and the crew for their hard work the past two and a half years that resulted the successful and pristine launch of Space Shuttle Discovery. The Panel emphasized that through extensive technical analysis, thorough planning and tremendous amount of public support brought them full circle again to return to flight. Flight safety, debris during rocket separation, sensors, observations from the mission control, launch conditions were some of the topics discussed with the News media.

  13. Shedding Light on Light Pollution: Reports from GLOBE at Night

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Pompea, S. M.; Isbell, D.

    2009-05-01

    The citizen-science program on light pollution, GLOBE at Night, has had rich responses during this year's campaign in March 2009. Reporting on some of the highlights, we will hear success stories and lessons learned from educators, students, science centers and astronomy clubs from around the world. Communities will be featured from several cities, such Norman, Oklahoma, Mishawaka, Indiana, Willimantic, Connecticut, and Waynesville, Ohio, which created mini-campaigns that combined local students with public advocates and representatives from local city and county governments. Connecticut kids collaborated with students in Wales, Canada and Romania on GLOBE at Night, and an extensive campaign was planned with the schools near the observatories of north-central Chile. Groups that have received special training in GLOBE at Night and related activities include the "Astronomy from the Ground Up” network of science and nature centers (fostered by the ASP and the NSF), 146 amateur astronomers who are part of the ASP-NASA Night-Sky Network, and the Association of Science-Technology Centers. Special training was given over forums, telecon-powerpoint presentations and blogs, to fit the needs of the communities. Among the more interesting media efforts for the general public, GLOBE at Night was the topic of the March 6 episode of the IYA2009 "Days of Astronomy" podcast. International organizing efforts for GLOBE at Night have been strong in countries like Argentina, Australia, Austria, Brazil, Canada, Chile, Costa Rica, the Czech Republic, Germany, Hungary, Ireland, Poland, Portugal, Romania, Spain and the United Kingdom, to name a few. We will also discuss how cities, such as Tucson, Arizona, combined efforts on GLOBE at Night with involvement in the World Wildlife Fund's Earth Hour event (www.earthhour.org). Earth Hour encouraged everyone to turn out their lights from 8:30-9:30 p.m. local time on Saturday, March 28, the final night of GLOBE at Night 2009.

  14. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  15. Foreign launch competition growing

    NASA Astrophysics Data System (ADS)

    Brodsky, R. F.; Wolfe, M. G.; Pryke, I. W.

    1986-07-01

    A survey is given of progress made by other nations in providing or preparing to provide satellite launch services. The European Space Agency has four generations of Ariane vehicles, with a fifth recently approved; a second launch facility in French Guiana that has become operational has raised the possible Ariane launch rate to 10 per year, although a May failure of an Ariane 2 put launches on hold. The French Hermes spaceplane and the British HOTOL are discussed. Under the auspices of the Italian National Space Plane, the Iris orbital transfer vehicle is developed and China's Long March vehicles and the Soviet Protons and SL-4 vehicles are discussed; the Soviets moreover are apparently developing not only a Saturn V-class heavy lift vehicle with a 150,000-kg capacity (about five times the largest U.S. capacity) but also a space shuttle and a spaceplane. Four Japanese launch vehicles and some vehicles in an Indian program are also ready to provide launch services. In this new, tough market for launch services, the customers barely outnumber the suppliers. The competition develops just as the Challenger and Titan disasters place the U.S. at a disadvantage and underline the hard work ahead to recoup its heretofore leading position in launch services.

  16. NASA launch schedule

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The National Aeronautics and Space Administration (NASA) has a record-setting launch schedule for 1984—10 space shuttle flights (see Table 1), 10 satellite deployments from the space shuttle in orbit and 12 unmanned missions using expendable launch vehicles. Also scheduled is the launch on March 1 for the National Oceanic and Atmospheric Administration of Landsat D‧, the nation's second earth resources satellite.The launch activity will begin February 3 with the launch of shuttle mission 41-B using the orbiter Challenger. Two communications satellites will be deployed from 41-B: Westar-VI, for Western Union, and Palapa B-2 for the government of Indonesia. The 8-day mission will feature the first shuttle landing at Kennedy Space Center in Florida; and the first flight of the Manned Maneuvering Unit, a self-contained, propulsive backpack that will allow astronauts to move about in space without being tethered to the spacecraft.

  17. GLOBE Aerosol Field Campaign - U.S. Pilot Study 2016

    NASA Technical Reports Server (NTRS)

    Pippin, Margaret; Marentette, Christina; Bujosa, Robert; Taylor, Jessica; Lewis, Preston

    2016-01-01

    During the spring of 2016, from April 4 - May 27, sixteen GLOBE schools participated in the GLOBE Aerosol Field Campaign - U.S. Pilot Study. Thirteen teachers from these schools had previously participated in the NASA LEARN program (Long-term Experience in Authentic Research with NASA) where they were GLOBE trained in Atmosphere protocols, and engaged in 1-3 years of research under the mentorship of NASA scientists. Each school was loaned two aerosol instruments for the Campaign duration, either 2 GLOBE sun photometers, 2 Calitoo sun photometers, or 1 of each. This allowed for students to make measurements side-by-side and in the case of the Calitoos, to compare AOT results immediately with each other for better consistency in data collection. Additionally, as part of the Field Campaign evaluation, multiple instruments allow for an assessment of the ease of use of each instrument for grade level of students, whether in middle school or high school. Before the Campaign, all GLOBE and Calitoo instruments were 'checked out' against an AERONET, then checked again upon return after the Campaign. By examining all data, before, during and after the Campaign, this gives an indication of instrument performance and proficiency obtained by the students. Support was provided to each teacher and their students at the level requested, via email, phone or video conferencing.

  18. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Quantification of Posterior Globe Flattening: Methodology Development and Validationc

    NASA Technical Reports Server (NTRS)

    Lumpkins, S. B.; Garcia, K. M.; Sargsyan, A. E.; Hamilton, D. R.; Berggren, M. D.; Antonsen, E.; Ebert, D.

    2011-01-01

    Microgravity exposure affects visual acuity in a subset of astronauts, and mechanisms may include structural changes in the posterior globe and orbit. Particularly, posterior globe flattening has been implicated in several astronauts. This phenomenon is known to affect some terrestrial patient populations, and has been shown to be associated with intracranial hypertension. It is commonly assessed by magnetic resonance imaging (MRI), computed tomography (CT), or B-mode ultrasound (US), without consistent objective criteria. NASA uses a semi-quantitative scale of 0-3 as part of eye/orbit MRI and US analysis for occupational monitoring purposes. The goal of this study was to initiate development of an objective quantification methodology for posterior globe flattening.

  20. Quantification of Posterior Globe Flattening: Methodology Development and Validation

    NASA Technical Reports Server (NTRS)

    Lumpkins, Sarah B.; Garcia, Kathleen M.; Sargsyan, Ashot E.; Hamilton, Douglas R.; Berggren, Michael D.; Ebert, Douglas

    2012-01-01

    Microgravity exposure affects visual acuity in a subset of astronauts and mechanisms may include structural changes in the posterior globe and orbit. Particularly, posterior globe flattening has been implicated in the eyes of several astronauts. This phenomenon is known to affect some terrestrial patient populations and has been shown to be associated with intracranial hypertension. It is commonly assessed by magnetic resonance imaging (MRI), computed tomography (CT) or B-mode Ultrasound (US), without consistent objective criteria. NASA uses a semiquantitative scale of 0-3 as part of eye/orbit MRI and US analysis for occupational monitoring purposes. The goal of this study was ot initiate development of an objective quantification methodology to monitor small changes in posterior globe flattening.

  1. Archaeology management system based on EV-Globe

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Lu, Guo-nian; Pei, An-ping; Niu, Yu-gang; Luo, Tao

    2008-10-01

    Traditionally, cultural relics were recorded in a 2D (2 dimensions) method such as paper maps, pictures, multi-media, micro-models and so on. This paper introduces the archaeology management system based on EV-Globe (Earth View-Globe - spatial information service platform on virtual 3D environment) for the cultural relics along the Eastern Route Project (ERP) of South-to-North Water Diversion (SNWD). Integrate the spatial and attribute data of the cultural relics along ERP of SNWD processed by SuperMap deskpro2005 with the relative basic geological data based on the platform of EV-Globe and develop a series of functions based on the SDK (Software Development Kit), and so the relics can be managed visually, at the same time the system may assist the archaeologists and some researchers in managing and studying the cultural relics. Some conception and conceiving of web and mobile version is put forward for next researching.

  2. Crosscheck of GLoBES Sensitivity Calculations For LBNE

    NASA Astrophysics Data System (ADS)

    Insler, Jonathan

    2012-03-01

    The proposed Long Baseline Neutrino Experiment (LBNE) aims to precisely measure neutrino oscillation parameter θ13, determine neutrino mass hierarchy, and detect possible CP violation in the neutrino sector. We use GLoBES, a software package created to simulate long baseline neutrino experiments, to predict the sensitivity of the proposed 200 kiloton water Cherenkov detector to the above parameters. In particular, we are interested in quantifying the effects of the detector's energy resolution and energy bias on the sensitivity. We have performed an independent crosscheck of GLoBES's sensitivity calculations with an ensemble of toy Monte Carlo data sets to test GLoBES's treatment of systematic uncertainties such as energy resolution and bias.

  3. Situation awareness and virtual globes: Applications for disaster management

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Brian

    2011-01-01

    This paper presents research on the use of virtual globes to support the development of disaster event situation awareness in humans via open source information analysis and visualization. The key technology used for this research is the Context Discovery Application (CDA), which is a geovisual analytic environment designed to integrate implicit geographic information with Google Earth™. A case study of humanitarian disaster management is used to demonstrate the unique abilities of the CDA and Google Earth TM to support situation awareness. The paper provides some of the first empirical evidence on the utility of the virtual globes to support situation awareness for disaster management using implicit geographic information. The evidence presented was derived from evaluations by disaster management practitioners at the United Nations (UN) ReliefWeb project, an extremely relevant, yet difficult group to access for conducting academic disaster management research. Finally, ideas for future research on developing virtual globe applications to support situation awareness are described.

  4. Seeing Stars: A GLOBE at Night Campaign Update

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Pompea, S. M.; Sparks, R. T.; Newhouse, M.

    2012-01-01

    The emphasis in the international citizen-science, star-hunting campaign, GLOBE at Night, is in bringing awareness to the public on issues of light pollution. Light pollution threatens not only observatory sites and our "right to starlight", but can affect energy consumption, wildlife and health. GLOBE at Night has successfully reached a few 100,000 citizen-scientists. What has done in the last year to contribute to its success? • To promote the campaign via popular social media, GLOBE at Night created Facebook and Twitter pages. • Videos have been created for 4 out of 8 Dark Skies Rangers activities. • Sky brightness measurements can be submitted in real time with smart phones or tablets using the new Web application at www.globeatnight.org/webapp/. The location, date and time register automatically. • As a proto-type, an adopt-a-street program had people in Tucson take measurements every mile for the length of the street. Grid measurements canvassed the town, allowing for comparisons of light levels over time. • The increase to 2 campaigns in 2011 re-enforces these studies. In 2012, the campaign will be offered 4 times for 10 days a month: January 14-23, February 12-21, March 13-22 and April 11-20. • A new Web application (www.globeatnight.org/mapapp/) allows for mapping GLOBE at Night data points within a specified distance around a city or area of choice. The resulting maps are bookmarkable and shareable. • NOAO and Arizona Game and Fish Department started a project with GLOBE at Night data and bat telemetry to examine a dark skies corridor in Tucson where endangered bats fly. While providing these updates to the GLOBE at Night program, the presentation will highlight the education and outreach value of the program's resources and outcomes, lessons learned, successes and pitfalls in communicating awareness with the public and attracting young people to study science.

  5. Locally Motivated GLOBE Investigations - A Key to Success

    NASA Astrophysics Data System (ADS)

    Washburne, J. C.; Geery, W.

    2003-12-01

    The GLOBE program was set up to help students make a core set of environmental observations at or near their schools, report their data through the internet to share with other students and scientists, analyze their data both locally and globally, and use this knowledge to form a better understanding of their environment. While the GLOBE program has been successful promoting more meaningful data collection, many of the tools and much of the infrastructure available to schools to synthesize their observations are underused. Schools that integrate GLOBE protocols with locally motivated investigations are more likely to implement the higher-order analysis and synthesis components of the program. Indicators of a successful observational program are things like measurement persistence, high data quality, and regular data. Participation in community forums and student-based research projects are evidence of a successful integrated program. A locally motivated issue allows a school to mold their GLOBE investigations around a multi-faceted question that they have first-hand knowledge of, that is both relevant and engaging to their students, and that can be supported by local expertise. In contrast, many GLOBE investigations are designed around abstract, non-site specific, narrowly focused and externally analyzed questions that limit local involvement and motivation. The main focus of this presentation is a few case histories of successful local investigations that incorporated GLOBE soil and air temperature data-logger measurements. The main example is drawn from Mr. Geery's fifth grade class investigation of why temperature differences exist between a local river bottom area and the school, which is located several kilometers away and 100 meters higher.

  6. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized. PMID:18710252

  7. Using Dry Erasable Globes in Earth and Space Science Classes

    NASA Astrophysics Data System (ADS)

    Stoddard, P. R.; Rogers, D.

    2013-12-01

    Geoscience classes often involve illustrating spatial relations among surface features on Earth and other planetary bodies. Plate boundaries, crater distributions, volcanism, seismicity, etc. may have distinct patterns when plotted on a map. Of course, the basic problem with all maps is that they are merely 2-dimensional representations of 3-dimensional worlds, and as such necessarily distort the very patterns being illustrated. Dry-erasable globes provide a solution to this problem. Presented here are practical classroom applications of two such globes - one of Venus, showing topographic and geomorphic features, and another showing a simple grid. The Venus globe is large (30' diameter), and thus visible in an average-sized classroom and, when mounted on its stand, rotates easily. Topography is shown by color variations, and geomorphic features by shading. Magellan radar data were used for both topography and geomorphology. In the classroom, the globe can be used to demonstrate orbital dynamics. Spinning the globe one can then illustrate how a polar orbit is best used for mapping missions (tracing vertical lines on the surface as the globe spins), or how geostationary orbits must be over the equator (contrary to what Star Trek typically portrays). Interactive exercises can include having students identify various features (impact craters, rifts, coronae, etc.) and then describe their distributions. The gridded globe (and accompanying measuring ring and inserts) can be very useful in introducing spherical coordinates and measurements, and relating two-dimensional representations (i.e., stereonets) to three-dimensional reality, specifically in the case of earthquake focal mechanism plots. The grid allows for easy plotting of points such as seismic recording stations, and the ring allows for easy measurement of azimuth and distance. Using actual earthquake arrival data and plotting first arrivals as compressions or dilatations, then helps the student visual the

  8. GPM Launch Coverage

    NASA Video Gallery

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory aboard, launched from the Tanegashima Space Center in Japan o...

  9. Advanced launch system

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1991-01-01

    The Advanced Launch System (ALS) is presented. The costs, reliability, capabilities, infrastructure are briefly described. Quality approach, failure modes, structural design, technology benefits, and key facilities are outlined. This presentation is represented by viewgraphs.

  10. Expedition 27 Launch

    NASA Video Gallery

    NASA astronaut Ron Garan and Russian cosmonauts Andrey Borisenko and Alexander Samokutyaev launch in their Soyuz TMA-21 spacecraft from the Baikonur Cosmodrome in Kazakhstan on April 4, 2011 (April...

  11. IRVE 3 Launch

    NASA Video Gallery

    The Inflatable Reentry Vehicle Experiment, or IRVE-3, launched on July 23, 2012, from NASA's Wallops Flight Facility. The purpose of the IRVE-3 test was to show that a space capsule can use an infl...

  12. Launch of Juno!

    NASA Video Gallery

    An Atlas V rocket lofted the Juno spacecraft toward Jupiter from Space Launch Complex-41. The 4-ton Juno spacecraft will take five years to reach Jupiter on a mission to study its structure and dec...

  13. Commercial space launches

    NASA Astrophysics Data System (ADS)

    Robb, David W.

    1984-04-01

    While the space shuttle is expected to be the principle Space Transportation System (STS) of the United States, the Reagan Administration is moving ahead with the President's declared space policy of encouraging private sector operation of expendable launch vehicles (ELV's). With the signing of the “Commercial Space Launch Law” on October 30, the administration hopes that it has opened up the door for commercial ventures into space by streamlining regulations and coordinating applications for launches. The administration considers the development and operation of private sector ELV's as an important part of an overall U.S. space policy, complementing the space shuttle and government ELV's. The law follows by nearly a year the creation of the Office of Commercial Space Transportation at the U.S. Department of Transportation (DOT), which will coordinate applications for commercial space launches.

  14. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  15. Hi-C Launch

    NASA Video Gallery

    The High resolution Coronal Imager (Hi-C) was launched on a NASA Black Brant IX two-stage rocket from White Sands Missile Range in New Mexico July 11, 2012. The experiment reached a maximum velocit...

  16. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  17. NASA Now: Glory Launch

    NASA Video Gallery

    In this episode of NASA Now, Dr. Hal Maring joins us to explain why the upcoming launch of the Glory satellite is so important to further our understanding of climate change. He also will speak on ...

  18. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Passing through some of the trailer clouds of an overcast sky which temporarily postponed its launch, the Space Shuttle Discovery heads for its 19th Earth orbital flight. Several kilometers away, astronaut John H. Casper, Jr., who took this picture, was piloting the Shuttle Training Aircraft (STA) from which the launch and landing area weather was being monitored. Onboard Discovery were astronauts Richard N. Richards, L. Blaine Hammond, Jr., Mark C. Lee, Carl J. Meade, Susan J. Helms, and Jerry M. Linenger.

  19. Dynamics Explorer launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Simultaneously launched from the WSMC, two satellites are to be placed into polar, copolar orbit in order to acquire data on the coupling phenomena between Earth's lower thermosphere and the magnetosphere, as part of the Solar-Terrestrial Program. The mission sequence, instruments, and science data processing system are described as well as the characteristics of the Delta 3913 launch vehicle, and payload separation staging.

  20. GLOBE at Night: a Citizen-Science, Dark Skies Awareness Star Hunt during the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    GLOBE at Night is an international citizen-science event encouraging everyone, students, the general public, scientists and non-scientists, to measure local levels of light pollution and contribute observations online to a world map. This program is part of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at UCAR and the National Optical Astronomy Observatory, as well as Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in February or March, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how" and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.

  1. Ethics and Corporal Punishment within the Schools across the Globe

    ERIC Educational Resources Information Center

    Rajdev, Usha

    2012-01-01

    This paper contains cultural anthropological research on various discipline measures used within the classrooms in India, United Kingdom, China, Africa, and the United States. My recent visit to schools in India on study abroad programs prompted my desire to research across the globe different methods of classroom management discipline conducted…

  2. Perspectives on Teaching Economics from around the Globe

    ERIC Educational Resources Information Center

    Round, David K.; Shanahan, Martin

    2005-01-01

    From July 13 to 16, 2004, colleagues from around the world gathered at the University of South Australia to present and discuss their research on economic education. The conference, entitled "What We Teach and How We Teach It: Perspectives on Economics from around the Globe," was presented by The Centre for Regulation and Market Analysis and…

  3. ATRF Earns Three Green Globes, Exceeds NIH Building Standards | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer From project management and energy and water efficiency to emissions and the indoor environment, the Advanced Technology Research Facility (ATRF) was built with sustainability in mind, exceeding the National Institutes of Health’s (NIH’s) building standards and earning three Green Globes from the Green Building Initiative (GBI).

  4. Assessing Place Location Knowledge Using a Virtual Globe

    ERIC Educational Resources Information Center

    Zhu, Liangfeng; Pan, Xin; Gao, Gongcheng

    2016-01-01

    Advances in the Google Earth virtual globe and the concomitant Keyhole Markup Language (KML) are providing educators with a convenient platform to cultivate and assess one's place location knowledge (PLK). This article presents a general framework and associated implementation methods for the online testing of PLK using Google Earth. The proposed…

  5. Google Earth: A Virtual Globe for Elementary Geography

    ERIC Educational Resources Information Center

    Britt, Judy; LaFontaine, Gus

    2009-01-01

    Originally called Earth Viewer in 2004, Google Earth was the first virtual globe easily available to the ordinary user of the Internet. Google Earth, at earth.google.com, is a free, 3-dimensional computer model of Earth, but that means more than just a large collection of pretty pictures. It allows the viewer to "fly" anywhere on Earth "to view…

  6. GLOBE in the Czech Republic: A Program Evaluation

    ERIC Educational Resources Information Center

    Cincera, Jan; Maskova, Veronika

    2011-01-01

    The article presents results of the evaluation of the GLOBE program (Global Learning and Observations to Benefit the Environment) in the Czech Republic. The evaluation explores the implementation of the program in schools and its impact on research skills. Four hundred and sixty six pupils, aged 13, from 28 different schools participated in the…

  7. Evaluation and Strategic Planning for the GLOBE Program

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Williams, V. L.

    2010-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international environmental education program. It unites educators, students and scientists worldwide to collaborate on inquiry based investigations of the environment and Earth system science. Evaluation of the GLOBE program has been challenging because of its broad reach, diffuse models of implementation, and multiple stakeholders. In an effort to guide current evaluation efforts, a logic model was developed that provides a visual display of how the GLOBE program operates. Using standard elements of inputs, activities, outputs, customers and outcomes, this model describes how the program operates to achieve its goals. The template used to develop this particular logic model aligns the GLOBE program operations with its program strategy, thus ensuring that what the program is doing supports the achievement of long-term, intermediate and annual goals. It also provides a foundation for the development of key programmatic metrics that can be used to gauge progress toward the achievement of strategic goals.

  8. Information Graphics at the "Boston Globe": From Concept to Execution.

    ERIC Educational Resources Information Center

    McNaughton, Sean

    1998-01-01

    Shows how the "Boston Globe" brings words, diagrams, illustrations, and photographs together in evocative information packages. Traces the process of discussion and decision making among reporters, editors, art directors, and graphic artists as the team chooses concepts the graphics will illustrate, and produces the graphics themselves. (SR)

  9. Eratosthenes' Teachings with a Globe in a School Yard

    ERIC Educational Resources Information Center

    Bozic, Mirjana; Ducloy, Martial

    2008-01-01

    A globe, in a school or university yard, which simulates the Earth's orientation in space, could be a very useful and helpful device for teaching physics, geometry, astronomy and the history of science. It would be very useful for science education to utilize the forthcoming International Year of the Planet Earth 2008 and the International Year of…

  10. The Globe. Neighbourhood Agenda 21: Going Local in Reading.

    ERIC Educational Resources Information Center

    Welsh, Richard

    1994-01-01

    Reports on the philosophy underlying a project to promote local community involvement in neighborhood plans as a basis for a citywide Local Agenda 21 and the first stages of Go Local on a Better Environment (GLOBE) introduced to give the project a popular identify and communicate the environmental message. (LZ)

  11. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  12. Determining Light Pollution of the Global Sky: GLOBE at Night

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Meymaris, K.; Ward, D.; Walker, C.; Russell, R.; Pompea, S.; Salisbury, D.

    2006-05-01

    GLOBE at Night is an international science event designed to observe and record the visible stars as a means of measuring light pollution in a given location. Increased and robust understanding of our environment requires learning opportunities that take place outside of the conventional K-12 classroom and beyond the confines of the school day. This hands-on learning activity extended the traditional classroom and school day last March with a week of nighttime sky observations involving teachers, students and their families. The quality of the night sky for stellar observations is impacted by several factors including human activities. By observing cloud cover and locating specific constellations in the sky, students from around the world learned how the lights in their community contribute to light pollution, exploring the relationship between science, technology and their society. Students learned that light pollution impacts more than just the visibility of stars at night. Lights at night impact both the biology and ecology of many species in our environment. Students were able to participate in this global scientific campaign by submitting their observations through an online database, allowing for authentic worldwide research and analysis by participating scientists. Students and their families learned how latitude and longitude coordinates provide a location system to map and analyze the observation data submitted from around the globe. The collected data is available online for use by students, teachers and scientists worldwide to assess how the quality of the night sky varies around the world. This session will share how students and scientists across the globe can explore and analyze the results of this exciting campaign. GLOBE at Night is a collaborative effort sponsored by The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS), Windows to the Universe, and ESRI. The GLOBE Program is

  13. News Teaching Support: New schools network launched Competition: Observatory throws open doors to a select few Festival: Granada to host 10th Ciencia en Acción Centenary: Science Museum celebrates 100 years Award: Queen's birthday honour for science communicator Teacher Training: Training goes where it's needed Conference: Physics gets creative in Christchurch Conference: Conference is packed with ideas Poster Campaign: Bus passengers learn about universe Forthcoming events

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Teaching Support: New schools network launched Competition: Observatory throws open doors to a select few Festival: Granada to host 10th Ciencia en Acción Centenary: Science Museum celebrates 100 years Award: Queen's birthday honour for science communicator Teacher Training: Training goes where it's needed Conference: Physics gets creative in Christchurch Conference: Conference is packed with ideas Poster Campaign: Bus passengers learn about universe Forthcoming events

  14. AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, CRIB SUSPENSION SHOCK STRUT, LAUNCH PLATFORM - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX

  15. Globe Watch. Teachers' Guide for Globe Watch IV: Mexico, Canada, Finland, Japan, the Arms Race, the Iran-Iraq War.

    ERIC Educational Resources Information Center

    Turner, Ginny

    To enhance the use of the Globe Watch IV public television series, produced jointly by Hampden-Sydney College (Virginia) and the University of North Carolina Center for Public Television, each lesson in this guide provides: (1) a statement of the objective of the program; (2) a synopsis of the issue discussed; (3) background information; (4) brief…

  16. Filling the launch gap

    NASA Astrophysics Data System (ADS)

    Hoeser, S.

    1986-05-01

    Vehicles proposed to fill the gap in the U.S. space program's space transport needs for the next decade resulting from the January Challenger disaster, are discussed. Prior to the accident, the Air Force planned to purchase a Complementary Expendable Launch Vehicle system consisting of 10 single-use Titan-34D7 rockets. Another heavy lift booster now considered is the Phoenix H. Commercial launch vehicle systems projected to be available in the necessary time frame include the 215,000-pound thrust 4000-pound LEO payload capacity NASA Delta, the 11,300-pound LEO payload capacity Atlas Centaur the first ICBM, and the all-solid propellant expendable 2000-pound LEO payload Conestoga rocket. Also considered is the man-rated fully reusable Phoenix vertical take-off and vertical-landing launch vehicle.

  17. Zvezda Launch Coverage

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Footage shows the Proton Rocket (containing the Zvezda module) ready for launch at the Baikonur Cosmodrome in Kazakhstan, Russia. The interior and exterior of Zvezda are seen during construction. Computerized simulations show the solar arrays deploying on Zvezda in space, the maneuvers of the module as it approaches and connects with the International Space Station (ISS), the installation of the Z1 truss on the ISS and its solar arrays deploying, and the installations of the Destiny Laboratory, Remote Manipulator System, and Kibo Experiment Module. Live footage then shows the successful launch of the Proton Rocket.

  18. Juno II Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1958-01-01

    The modified Jupiter C (sometimes called Juno I), used to launch Explorer I, had minimum payload lifting capabilities. Explorer I weighed slightly less than 31 pounds. Juno II was part of America's effort to increase payload lifting capabilities. Among other achievements, the vehicle successfully launched a Pioneer IV satellite on March 3, 1959, and an Explorer VII satellite on October 13, 1959. Responsibility for Juno II passed from the Army to the Marshall Space Flight Center when the Center was activated on July 1, 1960. On November 3, 1960, a Juno II sent Explorer VIII into a 1,000-mile deep orbit within the ionosphere.

  19. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With a crew of six NASA astronauts aboard, the Space Shuttle Discovery heads for its nineteenth Earth-orbital mission. Launch was delayed because of weather, but all systems were 'go,' and the spacecraft left the launch pad at 6:23 p.m. (EDT) on September 9, 1994. Onboard were astronauts Richard N. Richards, L. Blaine Hammond, Carl J. Meade, Mark C. Lee, Susan J. Helms, and Jerry M. Linenger (051-2); Making a bright reflection in nearby marsh waters, the Space Shuttle Discovery heads for its 19th mission in earth orbit (053).

  20. NASA Launch Services Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has need to procure a variety of launch vehicles and services for its unmanned spacecraft. The Launch Services Program (LSP) provides the Agency with a single focus for the acquisition and management of Expendable Launch Vehicle (ELV) launch services. This presentation will provide an overview of the LSP and its organization, approach, and activities.

  1. Launch Vehicle Description

    NASA Technical Reports Server (NTRS)

    Coffey, E. E.; Geye, R. P.

    1970-01-01

    The Thorad-Agena is a two-stage launch vehicle consisting of a Thorad first-stage and an Agena second-stage, connected by a booster adapter. The composite vehicle, including the shroud and the booster adapter, is about 33 meters (109 ft) long. The total weight at lift-off is approximately 91 625 kilograms (202 000 lbm).

  2. Japan's launch vehicles

    NASA Astrophysics Data System (ADS)

    Kuroda, Y.; Hara, N.

    The development of Japan's Mu series scientific research launch vehicles, and N and H series practical applications vehicles, is described. The three-stage M-3C features a second-stage radio inertial guidance system. The evolution to the M-3S includes a first-stage TVC and Solid Motor Roll Control device, and eight 310-m strap-on boosters (SOB's). The M-3SII developed to launch an interplanetary satellite for the 1986 Halley's Comet apparition, employs two 735-mm SOB's and a microprocessor digitalized flight control system, and can put a 770 kg satellite into low earth orbit. The N-1 is a three-stage radio-guided vehicle using first and second stage liquid engines, a solid motor third stage, three SOB's, and having the capability to launch a 145 kg geostationary satellite. N-II improvements include a 350 kg geostationary payload capacity, nine SOB's, and an inertial guidance system. The H-1 planned for 1987 has a 550 kg geostationary payload capacity and a domestically developed cryogenic engine. The H-II planned for 1992 will be capable of launching a two-ton geostationary satellite, or LOX/LH2 plural satellites simultaneously. It will be powered by a single 95-ton thrust LE-7 main engine.

  3. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  4. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  5. NLS Advanced Development - Launch operations

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.

    1992-01-01

    Attention is given to Autonomous Launch Operations (ALO), one of a number of the USAF's National Launch System (NLS) Launch Operations projects whose aim is to research, develop and apply new technologies and more efficient approaches toward launch operations. The goal of the ALO project is to develop generic control and monitor software for launch operation subsystems. The result is enhanced reliability of system design, and reduced software development and retention of expert knowledge throughout the life-cycle of the system.

  6. Successful launch of SOHO

    NASA Astrophysics Data System (ADS)

    1995-12-01

    "Understanding how the Sun behaves is of crucial importance to all of us on Earth. It affects our everyday lives" said Roger Bonnet, Director of Science at ESA, who witnessed SOHO's spectacular nighttime launch from Cape Canaveral. "When SOHO begins work in four months time, scientists will, for the first time, be able to study this star 24 hours a day, 365 days a year". The 12 instruments on SOHO will probe the Sun inside out, from the star's very centre to the solar wind that blasts its way through the solar system. It will even listen to sounds, like musical notes, deep within the star by recording their vibrations when they reach the surface. SOHO was launched from Cape Canaveral Air Station, Florida, atop an Atlas IIAS rocket, at 09:08 CET on Saturday 2 December 1995. The 1.6 tonne observatory was released into its transfer orbit from the rocket's Centaur upper stage about two hours after launch. It will take four months for the satellite to reach its final position, a unique vantage point, located 1.5 million kilometres from Earth, where the gravitational pull of the Earth and Sun are equal. From here, the Lagrange point, SOHO will have an unobstructed view of the Sun all year round. SOHO's launch was delayed from 23 November because a flaw was discovered in a precision regulator, which throttles the power of the booster engine on the Atlas rocket. The system was replaced and retested before the launch. SOHO is a project of international cooperation between ESA and NASA. The spacecraft was designed and built in Europe, NASA provided the launch and will operate the satellite from its Goddard Space Flight Center, Maryland. European scientists provided eight of the observatory's instruments and US scientists a further three. The spacecraft is part of the international Solar-Terrestrial Science Programme, the next member of which is Cluster, a flotilla of four spacecraft that will study how the Sun affects Earth and surrounding space. Cluster is scheduled for

  7. Scleral mechanics: comparing whole globe inflation and uniaxial testing.

    PubMed

    Lari, David R; Schultz, David S; Wang, Aaron S; Lee, On-Tat; Stewart, Jay M

    2012-01-01

    The purpose of this study was to assess fundamental differences between the mechanics of the posterior sclera in paired eyes using uniaxial and whole globe inflation testing, with an emphasis on the relationship between testing conditions and observed tissue behavior. Twenty porcine eyes, consisting of matched pairs from 10 pigs, were used in this study. Within pairs, one eye was tested with 10 cycles of globe pressurization to 150 mmHg (∼10× normal IOP) while biaxial strains were tracked via an optical system at the posterior sclera. An excised posterior strip from the second eye was subjected to traditional uniaxial testing in which mechanical hysteresis was recorded from 10 cycles to a peak stress of 0.13 MPa (roughly equivalent to the circumferential wall stress produced by an IOP of 150 mmHg under the thin-walled pressure vessel assumption). For approximately equivalent loads, peak strains were more than twice as high in uniaxial tests than in inflation tests. Different trends in the load-deformation plots were seen between the tests, including an extended "toe" region in the uniaxial test, a generally steeper curve in the inflation tests, and reduced variability in the inflation tests. The unique opportunity of being able to mechanically load a whole globe under near physiologic conditions alongside a standard uniaxially tested specimen reveals the effects of testing artifacts relevant to most uniaxially tested soft tissues. Whole globe inflation offers testing conditions that significantly alter load-deformation behavior relative to uniaxial testing; consequently, laboratory studies of interventions or conditions that alter scleral mechanics may greatly benefit from these findings. PMID:22155444

  8. Pediatric open globe injury: A review of the literature

    PubMed Central

    Li, Xintong; Zarbin, Marco A.; Bhagat, Neelakshi

    2015-01-01

    Open globe injury (OGI) is a severe form of eye trauma estimated at 2-3.8/100,000 in the United States. Most pediatric cases occur at home and are the result of sharp object penetration. The aim of this article is to review the epidemiology, diagnosis, management, and prognosis of this condition by conducting a systematic literature search with inclusion of all case series on pediatric OGI published between 1996 and 2015. Diagnosis of OGI is based on patient history and clinical examination supplemented with imaging, especially computed tomography when indicated. Few prospective studies exist for the management of OGI in pediatric patients, but adult recommendations are often followed with success. The main goals of surgical management are to repair the open globe and remove intraocular foreign bodies. Systemic antibiotics are recommended as medical prophylaxis against globe infection, or endophthalmitis. Other complications are similar to those seen in adults, with the added focus of amblyopia therapy in children. Severe vision decline is most likely due to traumatic cataracts. The ocular trauma score, a system devised to predict final visual acuity (VA) in adults, has proven to be of prognostic value in pediatric OGI as well. Factors indicating poor visual prognosis are young age, poor initial VA, posterior eye involvement, long wound length, globe rupture, lens involvement, vitreous hemorrhage, retinal detachment, and endophthalmitis. A thorough understanding of OGI and the key differences in epidemiology, diagnosis, management, and prognosis between adults and children is critical to timely prevention of posttraumatic vision loss early in life. PMID:26604528

  9. 23. DETAIL VIEW OF THE C. 1905 DAYTON GLOBE TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL VIEW OF THE C. 1905 DAYTON GLOBE TURBINE THAT IS STILL EXTANT IN THE SECOND FLUME (COUNTING FROM THE DOWNSTREAM FLUME TOWARDS THE UPSTREAM FLUMES) BENEATH THE GENERATOR FLOOR. THE DYNAMO THIS TURBINE WAS ATTACHED TO IS NO LONGER EXTANT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  10. Anterior chamber gas bubbles in open globe injury.

    PubMed

    Barnard, E B G; Baxter, D; Blanch, R

    2013-01-01

    We present a case of a 40-year-old soldier who was in close proximity to the detonation of an improvised explosive device (IED). Bubbles of gas were visible within the anterior chamber of his left eye. The authors propose that intraocular gas, present acutely after trauma, is diagnostic of open globe injury and is of particular importance in remote military environments. PMID:24079202

  11. Scleral Mechanics: Comparing Whole Globe Inflation and Uniaxial Testing

    PubMed Central

    Lari, David R.; Schultz, David S.; Wang, Aaron S.; Lee, On-Tat; Stewart, Jay M.

    2012-01-01

    The purpose of this study was to assess fundamental differences between the mechanics of the posterior sclera in paired eyes using uniaxial and whole globe inflation testing, with an emphasis on the relationship between testing conditions and observed tissue behavior. Twenty porcine eyes, consisting of matched pairs from 10 pigs, were used in this study. Within pairs, one eye was tested with 10 cycles of globe pressurization to 150 mmHg (~10x normal IOP) while biaxial strains were tracked via an optical system at the posterior sclera. An excised posterior strip from the second eye was subjected to traditional uniaxial testing in which mechanical hysteresis was recorded from 10 cycles to a peak stress of 0.13 MPa (roughly equivalent to the circumferential wall stress produced by an IOP of 150 mmHg under the thin-walled pressure vessel assumption). For approximately equivalent loads, peak strains were more than twice as high in uniaxial tests than in inflation tests. Different trends in the load-deformation plots were seen between the tests, including an extended “toe” region in the uniaxial test, a generally steeper curve in the inflation tests, and reduced variability in the inflation tests. The unique opportunity of being able to mechanically load a whole globe under near physiologic conditions alongside a standard uniaxially tested specimen reveals the effects of testing artifacts relevant to most uniaxially tested soft tissues. Whole globe inflation offers testing conditions that significantly alter load-deformation behavior relative to uniaxial testing; consequently, laboratory studies of interventions or conditions that alter scleral mechanics may greatly benefit from these findings. PMID:22155444

  12. Traumatic ruptured globe eye injuries in a large urban center

    PubMed Central

    Burstein, Eitan S; Lazzaro, Douglas R

    2013-01-01

    Background The purpose of this study was to examine patient characteristics and outcomes in a group of consecutive patients with ruptured globe eye injuries at Kings County Hospital Center, a large, urban, level 1 trauma center. Methods A retrospective chart review was performed to identify all patients with ruptured globe eye injuries seen between January 2009 and October 2011. Thirty-eight patients who sustained ruptured globe eye injuries from all causes were investigated for etiology and final visual outcomes Results Eight eyes in which vision could be assessed were evaluated as having no light perception at presentation and three of these eyes required primary enucleation. Of the 38 eyes, orbit fractures were found in 15 eyes and an intraocular foreign body was found in six eyes. Discussion Our cohort revealed a 37.5% rate of primary enucleation in eyes with no light perception, which we believe to be a reflection of the severity of injury. All three cases were secondary to a gunshot wound. Further, our sample, although small in size, revealed a very high percentage of eyes that were ruptured secondary to violent causes compared with other studies. PMID:23493627

  13. Cassini launch contingency effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; O'Neil, John M.; McGrath, Brian E.; Heyler, Gene A.; Brenza, Pete T.

    2002-01-01

    On 15 October 1997 at 4:43 AM EDT, the Cassini spacecraft was successfully launched on a Titan IVB/Centaur on a mission to explore the Saturnian system. It carried three Radioisotope Thermoelectric Generators (RTGs) and 117 Light Weight Radioisotope Heater Units (LWRHUs). As part of the joint National Aeronautics and Space Administration (NASA)/U.S. Department of Energy (DoE) safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbital reentry. The objective of the plan was to develop procedures to predict, within hours, the Earth impact footprints (EIFs) for the nuclear heat sources released during the atmospheric reentry. The footprint predictions would be used in subsequent notification and recovery efforts. As part of a multi-agency team, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had the responsibility to predict the EIFs of the heat sources after a reentry, given the heat sources' release conditions from the main spacecraft. (No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing.) JHU/APL's other role was to predict the time of reentry from a potential orbital decay. The tools used were a three degree-of-freedom trajectory code, a database of aerodynamic coefficients for the heat sources, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. In the weeks and days prior to launch, all the codes and procedures were exercised. Notional EIFs were derived from hypothetical reentry conditions. EIFs predicted by JHU/APL were compared to those by JPL and US SPACECOM, and were found to be in good agreement. The reentry time from orbital decay for a booster rocket for the Russian Progress M-36 freighter, a cargo ship for the Mir space station, was predicted to within 5 minutes more than two hours before reentry. For the

  14. A Review of Global Learning & Observations to Benefit the Environment (GLOBE)

    ERIC Educational Resources Information Center

    Executive Office of the President, 2010

    2010-01-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide, hands-on, primary and secondary school-based science and education program. GLOBE supports students, teachers, and scientists in collaborations using inquiry-based investigations of the environment and the earth system. GLOBE currently works in close…

  15. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    ERIC Educational Resources Information Center

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  16. Map and Globe Skills: K-8 Teaching Guide. Topics in Geography, No. 7.

    ERIC Educational Resources Information Center

    Winston, Barbara J.

    This publication is intended for those who wish to design or evaluate a map and globe skills program across several grade levels. The introduction discusses general considerations underlying effective map and globe skills instruction. A grade-by-grade outline of a map and globe skills program provides recommendations for the following categories:…

  17. GLoBES: General Long Baseline Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Huber, Patrick; Kopp, Joachim; Lindner, Manfred; Rolinec, Mark; Winter, Walter

    2007-09-01

    GLoBES (General Long Baseline Experiment Simulator) is a flexible software package to simulate neutrino oscillation long baseline and reactor experiments. On the one hand, it contains a comprehensive abstract experiment definition language (AEDL), which allows to describe most classes of long baseline experiments at an abstract level. On the other hand, it provides a C-library to process the experiment information in order to obtain oscillation probabilities, rate vectors, and Δχ-values. Currently, GLoBES is available for GNU/Linux. Since the source code is included, the port to other operating systems is in principle possible. GLoBES is an open source code that has previously been described in Computer Physics Communications 167 (2005) 195 and in Ref. [7]). The source code and a comprehensive User Manual for GLoBES v3.0.8 is now available from the CPC Program Library as described in the Program Summary below. The home of GLobES is http://www.mpi-hd.mpg.de/~globes/. Program summaryProgram title: GLoBES version 3.0.8 Catalogue identifier: ADZI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 145 295 No. of bytes in distributed program, including test data, etc.: 1 811 892 Distribution format: tar.gz Programming language: C Computer: GLoBES builds and installs on 32bit and 64bit Linux systems Operating system: 32bit or 64bit Linux RAM: Typically a few MBs Classification: 11.1, 11.7, 11.10 External routines: GSL—The GNU Scientific Library, www.gnu.org/software/gsl/ Nature of problem: Neutrino oscillations are now established as the leading flavor transition mechanism for neutrinos. In a long history of many experiments, see, e.g., [1], two oscillation frequencies have been identified: The fast atmospheric

  18. A perfect launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Billows of smoke and steam spread across Launch Pad 39A as Space Shuttle Discovery lifts off on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  19. Russian Soyuz in Launch Position

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  20. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  1. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  2. Launch of Zoological Letters.

    PubMed

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal. PMID:26853862

  3. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  4. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Heavy Lift Launch Vehicle Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the Space Shuttle development phase, Marshall plarners concluded a Heavy Lift Launch Vehicle (HLLV) would be needed for successful Space Industrialization. Shown here in this 1976's artist's conception is an early version of the HLLV during launch.

  6. SMAP Launch and Deployment Sequence

    NASA Video Gallery

    This video combines file footage of a Delta II rocket and computer animation to depict the launch and deployment of NASA's Soil Moisture Active Passive satellite. SMAP is scheduled to launch on Nov...

  7. Launch Services Program EMC Issues

    NASA Technical Reports Server (NTRS)

    trout, Dawn

    2004-01-01

    Presentation covers these issues: (1) Vehicles of the Launch Services Program, (2) RF Environment, (3) Common EMC Launch Vehicle Payload Integration Issues, (4) RF Sensitive Missions and (5) Lightning Monitoring,

  8. Launching Garbage-Bag Balloons.

    ERIC Educational Resources Information Center

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  9. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  10. Intelsat satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The launch schedule for Intelsat 5-B, the prime Intelsat satellite to provide communications services between the Americas, Europe, the Middle East, and Africa, is presented. The planned placement of the satellite into an elliptical transfer orbit, and circularization of the orbit at geosynchronous altitude over the equator are described. Characteristics of the Atlas Centaur launch vehicle, AC-56, are given. The launch operation is summarized and the launch sequence presented. The Intelsat team and contractors are listed.

  11. Visualization and dissemination of global crustal models on virtual globes

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Pan, Xin; Sun, Jian-zhong

    2016-05-01

    Global crustal models, such as CRUST 5.1 and its descendants, are very useful in a broad range of geoscience applications. The current method for representing the existing global crustal models relies heavily on dedicated computer programs to read and work with those models. Therefore, it is not suited to visualize and disseminate global crustal information to non-geological users. This shortcoming is becoming obvious as more and more people from both academic and non-academic institutions are interested in understanding the structure and composition of the crust. There is a pressing need to provide a modern, universal and user-friendly method to represent and visualize the existing global crustal models. In this paper, we present a systematic framework to easily visualize and disseminate the global crustal structure on virtual globes. Based on crustal information exported from the existing global crustal models, we first create a variety of KML-formatted crustal models with different levels of detail (LODs). And then the KML-formatted models can be loaded into a virtual globe for 3D visualization and model dissemination. A Keyhole Markup Language (KML) generator (Crust2KML) is developed to automatically convert crustal information obtained from the CRUST 1.0 model into KML-formatted global crustal models, and a web application (VisualCrust) is designed to disseminate and visualize those models over the Internet. The presented framework and associated implementations can be conveniently exported to other applications to support visualizing and analyzing the Earth's internal structure on both regional and global scales in a 3D virtual-globe environment.

  12. Astronomy Meets the Environmental Sciences: Using GLOBE at Night Data

    NASA Astrophysics Data System (ADS)

    Barringer, D.; Walker, C. E.; Pompea, S. M.; Sparks, R. T.

    2011-09-01

    The GLOBE at Night database now contains over 52,000 observations from the five annual two-week campaigns. It can be used as a resource to explore various issues related to light pollution and our environment. Students can compare data over time to look for changes and trends. For example, they can compare the data to population density or with nighttime photography and spectroscopy of lights. The data can be used in a lighting survey, to search for dark sky oases or to monitor ordinance compliance. Students can study effects of light pollution on animals, plants, human health, safety, security, energy consumption, and cost. As an example, we used data from the GLOBE at Night project and telemetry tracking data of lesser long-nosed bats obtained by the Arizona Game and Fish Department to study the effects of light pollution on the flight paths of the bats between their day roosts and night foraging areas around the city of Tucson, AZ. With the visual limiting magnitude data from GLOBE at Night, we ran a compositional analysis with respect to the bats' flight paths to determine whether the bats were selecting for or against flight through regions of particular night sky brightness levels. We found that the bats selected for the regions in which the limiting sky magnitudes fell between the ranges of 2.8-3.0 to 3.6-3.8 and 4.4-4.6 to 5.0-5.2, suggesting that the lesser long-nosed bat can tolerate a fair degree of urbanization. We also compared this result to contour maps created with digital Sky Quality Meter (http://www.unihedron.com) data.

  13. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  14. Zone 3 ruptured globe from a dog bite.

    PubMed

    Erickson, Benjamin P; Cavuoto, Kara; Rachitskaya, Aleksandra

    2015-02-01

    Periocular injuries from dog bites are relatively common in school-age children, but intraocular trauma is exceedingly rare. We present a 7-year-old boy who sustained a zone 3 ruptured globe injury after attack by a Perro de Presa Canario. At presentation, visual acuity in the injured eye was counting fingers. Surgical exploration revealed an inferotemporal corneoscleral laceration extending 15 mm posterior to the limbus, with protrusion of uveal tissue, which was repaired. Visual acuity improved to 20/40 by the first postoperative month. PMID:25727600

  15. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to

  16. Space Shuttle Columbia launch

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Great Blue Heron seems oblivious to the tremendous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia (STS-73) soars skyward from Launch Pad 39B. Columbia's seven member crew's mission included continuing experimentation in the Marshall managed payloads including the United States Microgravity Laboratory 2 (USML-2) and the keel-mounted accelerometer that characterizes the very low frequency acceleration environment of the orbiter payload bay during space flight, known as the Orbital Acceleration Research Experiment (OARE).

  17. STS-39 Launch

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The crew included seven astronauts: Michael L. Coats, commander; L. Blaine Hammond, pilot; Guion S. Buford, Jr., mission specialist 1; Gregory J. Harbaugh, mission specialist 2; Richard J. Hieb, mission specialist 3; Donald R. McMonagle, mission specialist 4; and Charles L. Veach, mission specialist 5. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  18. A Teacher Professional Development Program for an Authentic Citizen-Science Program: GLOBE at Night

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Sparks, R.

    2009-12-01

    nature centers, as well as amateur astronomer associations. From these various experiences, we will discuss success stories and lessons learned as well as future plans for sustainability. This work was supported by a grant from the National Science Foundation (NSF) Astronomy Division. GLOBE at Night is hosted by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with NSF.

  19. STS-86 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis blazes through the night sky to begin the STS-86 mission, slated to be the seventh of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Liftoff on Sept. 25 from Launch Pad 39A was at 10:34:19 p.m. EDT, within seconds of the preferred time, during a six-minute, 45- second launch window. The 10-day flight will include the transfer of the sixth U.S. astronaut to live and work aboard the Mir. After the docking, STS-86 Mission Specialist David A. Wolf will become a member of the Mir 24 crew, replacing astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the remainder of the STS-86 crew. Foale has been on the Russian Space Station since mid-May. Wolf is scheduled to remain there about four months. Besides Wolf (embarking to Mir) and Foale (returning), the STS-86 crew includes Commander James D. Wetherbee, Pilot Michael J. Bloomfield, and Mission Specialists Wendy B. Lawrence, Scott E. Parazynski, Vladimir Georgievich Titov of the Russian Space Agency, and Jean-Loup J.M. Chretien of the French Space Agency, CNES. Other primary objectives of the mission are a spacewalk by Parazynski and Titov, and the exchange of about three-and-a-half tons of science/logistical equipment and supplies between Atlantis and the Mir.

  20. STS-86 Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis blazes through the night sky to begin the STS-86 mission, slated to be the seventh of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Liftoff on September 25 from Launch Pad 39A was at 10:34 p.m. EDT, within seconds of the preferred time, during a six minute, 45 second launch window. The 10 day flight will include the transfer of the sixth U.S. astronaut to live and work aboard the Mir. After the docking, STS-86 Mission Specialist David A. Wolf will become a member of the Mir 24 crew, replacing astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the remainder of the STS-86 crew. Foale has been on the Russian Space Station since mid May. Wolf is scheduled to remain there about four months. Besides Wolf (embarking to Mir) and Foale (returning), the STS-86 crew includes Commander James D. Wetherbee, Pilot Michael J. Bloomfield, and Mission Specialists Wendy B. Lawrence, Scott E. Parazynski, Vladimir Georgievich Titov of the Russian Space Agency, and Jean-Loup J.M. Chretien of the French Space Agency, CNES. Other primary objectives of the mission are a spacewalk by Parazynski and Titov, and the exchange of about 3.5 tons of science/logistical equipment and supplies between Atlantis and the Mir.

  1. New Product Launching Ideas

    NASA Astrophysics Data System (ADS)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  2. Mortar launched surveillance system

    NASA Astrophysics Data System (ADS)

    Lewis, Carl E.; Carlton, Lindley A.

    2001-02-01

    Accurate Automation Corporation has completed the conceptual design of a mortar launched air vehicle system to perform close range or over-the-horizon surveillance missions. Law enforcement and military units require an organic capability to obtain real time intelligence information of time critical targets. Our design will permit law enforcement to detect, classify, locate and track these time critical targets. The surveillance system is a simple, unmanned fixed-winged aircraft deployed via a conventional mortar tube. The aircraft's flight surfaces are deployed following mortar launch to permit maximum range and time over target. The aircraft and sensor system are field retrievable. The aircraft can be configured with an engine to permit extended time over target or range. The aircraft has an integrated surveillance sensor system; a programmable CMOS sensor array. The integrated RF transmitted to capable of down- linking real-time video over line-of-sight distances exceeding 10 kilometers. The major benefit of the modular design is the ability to provide surveillance or tracking quickly at a low cost. Vehicle operational radius and sensor field coverage as well as design trade results of vehicle range and endurance performance and payload capacity at operational range are presented for various mortar configurations.

  3. Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    Jacobs, W. A.

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  4. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Enhancing Science Teacher Training Using Water Resources and GLOBE

    NASA Technical Reports Server (NTRS)

    Falco, James W.

    2002-01-01

    Heritage College, located on the Yakama Indian Reservation in south central Washington state, serves a multicultural, underserved, rural population and trains teachers to staff the disadvantaged school districts on and surrounding the reservation. In-service teachers and pre-service teachers in the area show strength in biology but have weak backgrounds in chemistry and mathematics. We are addressing this problem by providing a 2-year core of courses for 3 groups of 25 students (15 pre-service and 10 in-service teachers) using GLOBE to teach integrated physical science and mathematics. At the conclusion of the program, the students will qualify for science certification by Washington State. Water resources are the focal point of the curriculum because it is central to life in our desert area. The lack or excess of water, its uses, quality and distribution is being studied by using GIS, remote sensing and historical records. Students are learning the methodology to incorporate scientific protocols and data into all aspects of their future teaching curriculum. In addition, in each of the three years of the project, pre-service teachers attended a seminar series during the fall semester with presentations by collaborators from industry, agriculture, education and government agencies. Students used NASA educational materials in the presentations that they gave at the conclusion of the seminar series. All pre- and in-service teachers continue to have support via a local web site for Heritage College GLOBE participants.

  6. On filament structure and propagation within a commercial plasma globe

    SciTech Connect

    Burin, M. J.; Simmons, G. G.; Ceja, H. G.; Zweben, S. J.; Nagy, A.; Brunkhorst, C.

    2015-05-15

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry.

  7. An Important Cause of Blindness in Children: Open Globe Injuries

    PubMed Central

    Yildiz, Meral; Kıvanç, Sertaç Argun; Akova-Budak, Berna; Ozmen, Ahmet Tuncer; Çevik, Sadık Gorkem

    2016-01-01

    Objective. Our aim was to present and evaluate the predictive factors of visual impairment and blindness according to WHO criteria in pediatric open globe injuries. Methods. The medical records of 94 patients younger than 18 years who underwent primary repair surgery were reviewed retrospectively. The initial and final visual acuity, anterior and posterior segment findings, and zone of injury were noted. The patients were classified as blindness in one eye or visual impairment in one eye. Results. Of 412 patients who presented with open globe injury, 94 (23%) were under 18 years old. Fifty-four (16 females, 38 males) children were included. The mean age of the children was 7.1 ± 4.1 years. According to WHO criteria, 19 of 54 patients (35%) had unilateral blindness and 8 had unilateral visual impairment (15%). There was no significant relationship between final visual acuity and gender and injured eye. In visually impaired and blind patients, presence of preoperative hyphema, retinal detachment, and zone 2 and zone 3 injuries was significantly higher. Conclusion. Presence of hyphema and zone 2 and zone 3 injuries and retinal detachment may end up with visual impairment and/or blindness in children. PMID:27247799

  8. JPSS-1 VIIRS pre-launch radiometric performance

    NASA Astrophysics Data System (ADS)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Qiang; Lee, Shihyan; Schwarting, Tom

    2015-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370 and 740 m at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 μm to 12.01 μm]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  9. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  10. LAUNCH_BLTMS.DLL

    Energy Science and Technology Software Center (ESTSC)

    2005-12-14

    Postprocessor for the integration of the BLT-MS (Breach Leach Transport-Multi Species) code with GoldSim{trademark}. The program is intended as a DLL for use with a GoldSim{trademark}. The program is intended as a DLL for use with a GoldSim{trademark} model file. The code executes BTLMS.EXE using a standard BLT-MS input file and allocated parameters to memory for subsequent input of BLTMS.EXE output dat to a GoldSim{trademark} model file. This DLL is used for performing Monte Carlomore » analyses. The software is used as part of a modeling package that consists of BLTMS.EXE, GoldSim{trademark}, Read_BLT.DLL and Launch_BLTMS.DLL. The modeling package is used to run Monte Crlo analyses for performance assessment of Low level Radioactive Waste Repositories.« less

  11. STS-112 Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space Shuttle Orbiter Atlantis hurdles toward space from Launch Pad 39B at Kennedy Space Center in Florida for the STS-112 mission. Liftoff occurred at 3:46pm EDT, October 7, 2002. Atlantis carried the Starboard-1 (S1) Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The S1 was the second truss structure installed on the International Space Station (ISS). It was attached to the S0 truss which was previously installed by the STS-110 mission. The CETA is the first of two human-powered carts that ride along the ISS railway, providing mobile work platforms for future space walking astronauts. The 11 day mission performed three space walks to attach the S1 truss.

  12. STS-92 Discovery Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from across the waters of Banana Creek, clouds of smoke and steam are illuminated by the flames from Space Shuttle Discovery'''s perfect on-time launch at 7:17 p.m. EDT. Discovery carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  13. Payload Launch Lock Mechanism

    NASA Technical Reports Server (NTRS)

    Young, Ken (Inventor); Hindle, Timothy (Inventor)

    2014-01-01

    A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.

  14. STS-118 Launch

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Enroute to the International Space Station (ISS), Space Shuttle Endeavor and its seven member STS-118 crew, blasted off from the launch pad at Kennedy Space Center on August 8, 2007. Construction resumed on the ISS as STS-118 mission specialists and the Expedition 15 crew completed installation of the third Starboard 5 (S-5) truss segment, removed a faulty Control Moment Gyroscope (CMG-3), installed a new CMG into the Z1 truss, relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1, retrieved the P6 transponder, and delivered roughly 5,000 pounds of equipment and supplies.

  15. STS-87 Columbia Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers.

  16. The Launch of an Atlas/Centaur Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  17. KSC Vertical Launch Site Evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, Lynne V.

    2007-01-01

    RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.

  18. Linking the GLOBE Program With NASA and NSF Large-Scale Experiments

    NASA Astrophysics Data System (ADS)

    Filmer, P. E.

    2005-12-01

    NASA and the NSF, the sponsoring Federal agencies for the GLOBE Program, are seeking the participation of science teams who are working at the cutting edge of Earth systems science in large integrated Earth systems science programs. Connecting the GLOBE concept and structure with NASA and NSF's leading Earth systems science programs will give GLOBE schools and students access to top scientists, and expose them to programs that have been designated as scientific priorities. Students, teachers, parents, and their communities will be able to see how scientists of many disciplines work together to learn about the Earth system. The GLOBE solicitation released by the NSF targets partnerships between GLOBE and NSF/NASA-funded integrated Earth systems science programs. This presentation will focus on the goals and requirements of the NSF solicitation. Proponents will be expected to provide ways for the GLOBE community to interact with a group of scientists from their science programs as part of a wider joint Earth systems science educational strategy (the sponsoring agencies', GLOBE's, and the proposing programs'). Teams proposing to this solicitation must demonstrate: - A focus on direct connections with major NSF Geosciences and/or Polar Programs and/or NASA Earth-Sun research programs that are related to Earth systems science; - A demonstrable benefit to GLOBE and to NSF Geosciences and/or Polar Programs or NASA Earth-Sun education goals (providing access to program researchers and data, working with GLOBE in setting up campaigns where possible, using tested GLOBE or non-GLOBE protocols to the greatest extent possible, actively participating in the wider GLOBE community including schools, among other goals); - An international component; - How the existing educational efforts of the large science program will coordinate with GLOBE; - An Earth systems science education focus, rather than a GLOBE protocol-support focus; - A rigorous evaluation and assessment component

  19. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Launch of an unguided suborbital launch vehicle. (a) Applicability. This section applies only to a launch operator conducting a launch of an unguided suborbital launch vehicle. (b) Need for flight safety system. A launch operator must launch an unguided suborbital launch vehicle with a flight safety system...

  20. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Launch of an unguided suborbital launch vehicle. (a) Applicability. This section applies only to a launch operator conducting a launch of an unguided suborbital launch vehicle. (b) Need for flight safety system. A launch operator must launch an unguided suborbital launch vehicle with a flight safety system...

  1. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Launch of an unguided suborbital launch vehicle. (a) Applicability. This section applies only to a launch operator conducting a launch of an unguided suborbital launch vehicle. (b) Need for flight safety system. A launch operator must launch an unguided suborbital launch vehicle with a flight safety system...

  2. Traumatic globe dislocation into the paranasal sinuses: Literature review and treatment guidelines.

    PubMed

    Amaral, Marcio Bruno Figueiredo; Nery, André Cardoso

    2016-05-01

    Traumatic globe dislocation into the paranasal sinuses is rare. Only 24 cases have been reported in the English-language literature indexed in PUBMED. This form of injury frequently occurs as a result of high-energy blunt trauma mainly associated to traffic accidents. Traumatic globe dislocation into the paranasal sinuses can be explained by the mechanism of blowout fracture when strong blunt trauma forces are applied to the globe fracturing the thin orbital walls and displacing the eyeball. Medical and surgical management of severe globe displacement is still controversial. However, the majority of researchers agreed that the globe should be replaced into the orbital cavity as soon as possible. The present study aims to describe a case of traumatic globe dislocation into the maxillary sinus suggesting treatment guidelines based on English-language literature from 1971 to 2015. PMID:26948171

  3. NEUTRALIZATION OF ACIDIC GROUND WATER NEAR GLOBE, ARIZONA.

    USGS Publications Warehouse

    Eychaner, James H.; Stollenwerk, Kenneth G.

    1985-01-01

    Highly acidic contaminated water is moving through a shallow aquifer and interacting with streams near Globe, Arizona. Dissolved concentrations reach 3,000 mg/L iron, 150 mg/L copper, and 16,400 mg/L total dissloved solids; pH is as low as 3. 6. Samples from 16 PVC-cased observation wells include uncontaminated, contaminated, transition, and neutralized waters. Chemical reaction with sediments and mixing with uncontaminated water neutralizes the acidic water. The reactions form a transition zone where gypsum replaces calcite and most metals precipitate. Ferric hydroxide also precipitates if sufficient oxygen is available. Abundant gypsum crystals and ferric hydroxide coatings have been recovered from well cuttings. Large sulfate concentrations produce sulfate complexes with many metals that inhibit removal of metals from solution.

  4. Visualization of Asian Yellow Dust using Virtual Globes

    NASA Astrophysics Data System (ADS)

    Choi, J.; Kim, T.; Yang, Y.; Oh, S.

    2010-12-01

    Virtual Globes are becoming very useful tool for scientists to present their research results nowadays. We developed an application which visualizes movement of the Asian yellow dust using Google Earth in real time fashion. To achieve this, we collected simulated data of the Asian yellow dust using ADAM(Asian Dust Aerosol Model) model from KMA(Korea Meteorological Administration). An interface program was developed to access and extract the information from model data in NetCDF(Network Common Data Format) and to convert them to KLM(Keyhole Mark-up Language) format. And then, we developed the 3 dimensional visualization method of the Asian yellow dust movement on Google Earth using information such as location, time, and dust concentration.

  5. Techniques for Generating KML for Data Visualization in Virtual Globes.

    NASA Astrophysics Data System (ADS)

    Askay, S.; Adams, C.

    2008-12-01

    Keyhole Markup Language (KML) is a standard data format for visualizing geospatial information. It is supported by many geo-visualization packages including popular online mapping tools, professional GIS packages, and "Virtual Globes" such as NASA World Wind, Google Earth, and Microsoft Virtual Earth. KML includes methods for visualizing data in 2, 3 and 4-dimensions, using core elements such as: point, line and polygon features; textured 3D models; and aerial/satellite imagery and photograph overlays. KML has been used by a wide variety of researchers, organizations and businesses to visualize and share their data. We will present an assortment of cutting-edge data visualizations which use KML's core features in creative and performance-conscience ways to display a variety of scientific/geospatial datasets. We will discuss a range of tools and techniques for creating and serving KML, including online applications, spreadsheets, databases, scripting options and GIS servers.

  6. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This wide lux image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station shows the base of the launch pad as well as the orbiter just clearing the gantry. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  7. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  8. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 70mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  9. Peer Review of Launch Environments

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  10. Interactive Volcano Studies and Education Using Virtual Globes

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2006-12-01

    Internet-based virtual globe programs such as Google Earth provide a spatial context for visualization of monitoring and geophysical data sets. At the Alaska Volcano Observatory, Google Earth is being used to integrate satellite imagery, modeling of volcanic eruption clouds and seismic data sets to build new monitoring and reporting tools. However, one of the most useful information sources for environmental monitoring is under utilized. Local populations, who have lived near volcanoes for decades are perhaps one of the best gauges for changes in activity. Much of the history of the volcanoes is only recorded through local legend. By utilizing the high level of internet connectivity in Alaska, and the interest of secondary education in environmental science and monitoring, it is proposed to build a network of observation nodes around local schools in Alaska and along the Aleutian Chain. A series of interactive web pages with observations on a volcano's condition, be it glow at night, puffs of ash, discolored snow, earthquakes, sounds, and even current weather conditions can be recorded, and the users will be able to see their reports in near real time. The database will create a KMZ file on the fly for upload into the virtual globe software. Past observations and legends could be entered to help put a volcano's long-term activity in perspective. Beyond the benefit to researchers and emergency managers, students and teachers in the rural areas will be involved in volcano monitoring, and gain an understanding of the processes and hazard mitigation efforts in their community. K-12 students will be exposed to the science, and encouraged to participate in projects at the university. Infrastructure at the university can be used by local teachers to augment their science programs, hopefully encouraging students to continue their education at the university level.

  11. Participatory Gis: Experimentations for a 3d Social Virtual Globe

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Minghini, M.; Zamboni, G.

    2013-08-01

    The dawn of GeoWeb 2.0, the geographic extension of Web 2.0, has opened new possibilities in terms of online dissemination and sharing of geospatial contents, thus laying the foundations for a fruitful development of Participatory GIS (PGIS). The purpose of the study is to investigate the extension of PGIS applications, which are quite mature in the traditional bi-dimensional framework, up to the third dimension. More in detail, the system should couple a powerful 3D visualization with an increase of public participation by means of a tool allowing data collecting from mobile devices (e.g. smartphones and tablets). The PGIS application, built using the open source NASA World Wind virtual globe, is focussed on the cultural and tourism heritage of Como city, located in Northern Italy. An authentication mechanism was implemented, which allows users to create and manage customized projects through cartographic mash-ups of Web Map Service (WMS) layers. Saved projects populate a catalogue which is available to the entire community. Together with historical maps and the current cartography of the city, the system is also able to manage geo-tagged multimedia data, which come from user field-surveys performed through mobile devices and report POIs (Points Of Interest). Each logged user can then contribute to POIs characterization by adding textual and multimedia information (e.g. images, audios and videos) directly on the globe. All in all, the resulting application allows users to create and share contributions as it usually happens on social platforms, additionally providing a realistic 3D representation enhancing the expressive power of data.

  12. A Renaissance celestial globe as an analogue computer for determination of the coordinates on the heaven

    NASA Astrophysics Data System (ADS)

    Bartha, Lajos

    Around 1480 the Dominican astronomer and instrument maker Hans Dorn in Castle Buda (Budapest) built a copper celestial globe. This globe is a composite instrument, suited to mark the position of celestial bodies - - i.e. comets, planets, etc. - directly on the star-globe, and to locate the stars represented on the globe in the sky. The globe has a diameter of 39.5 cm and gives the fixed stars according to Ptolemy. The main circles are set in for the celestial equator and ecliptic. On the top of the vertical meridian circle (divided into 4 x 90^o) is a planispheric astrolabe on a strong perpendicular axis. On the reverse side of the astrolabe the altitude arcs can be set by a diopter. Two quadrants with arc-scales protrude downward in horseshoe shape, parallel to the globe, from the bottom of the astrolabe. The divided quadrants parallel to the disk of the astrolabe point to the horizontal 'calendar' disk of the globe and can be turned with the astrolabe to indicate the azimuth. When the globe is adjusted to a given instant of time, the position of a celestial body can be determined by turning the astrolabe and the diopter to the object. The quadrant then shows - with the 'calendar' disk and the quadrant's graduation seen parallel to the mater - the position on the globe either for a planet, a comet, or even a fixed star. Both globe and astrolabe enable one to fix the position of the heavenly bodies directly without the necessity of coordinate transformation. Father Dorn (Saxonia, ca.1425 - Vienna, after 1509) built the combined `analogue computer globe' for the court astrologer of the Hungarian King Matthias Corvinus, magister Martinus Olkusz z Bylica (also called Martinus Ilkusz). Today the globe is in the Museum of Collegium Maius at Cracow.

  13. Rocket Launch Trajectory Simulations Mechanism

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul E.; Hauss, Sharon; Voska, N. (Technical Monitor)

    2002-01-01

    The design and development of a Trajectory Simulation Mechanism (TSM) for the Launch Systems Testbed (LST) is outlined. In addition to being one-of-a-kind facility in the world, TSM serves as a platform to study the interaction of rocket launch-induced environments and subsequent dynamic effects on the equipment and structures in the close vicinity of the launch pad. For the first time, researchers and academicians alike will be able to perform tests in a laboratory environment and assess the impact of vibroacoustic behavior of structures in a moving rocket scenario on ground equipment, launch vehicle, and its valuable payload or spacecraft.

  14. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch schedule. 415.121 Section...

  15. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch schedule. 415.121 Section...

  16. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Launch schedule. 415.121 Section...

  17. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch schedule. 415.121 Section...

  18. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Launch plans. 415.119 Section...

  19. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch plans. 415.119 Section...

  20. 7. OVERALL VIEW OF LAUNCH PAD, SHOWING HELIPAD AT LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OVERALL VIEW OF LAUNCH PAD, SHOWING HELIPAD AT LAUNCH AREA, WHEN VIEWED WITH NEGATIVE NO. CA-57-8(BELOW), LOOKING NORTH. BASKETBALL COURT IN BACKGROUND Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  1. STS-82 Discovery Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Discovery cuts a bright swath through the early-morning darkness as it lifts off from Launch Pad 39A on a scheduled 10-day flight to service the Hubble Space Telescope (HST). Liftoff of Mission STS-82 occurred on-time at 3:55:17 a.m. EST, Feb. 11, 1997. Leading the veteran crew is Mission Commander Kenneth D. Bowersox. Scott J. 'Doc' Horowitz is the pilot. Mark C. Lee is the payload commander. Rounding out the seven-member crew are Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. 'Joe' Tanner and Steven A. Hawley. Four of the astronauts will be divided into two teams to perform the scheduled four back-to-back extravehicular activities (EVAs) or spacewalks. Lee and Smith will team up for EVAs 1 and 3 on flight days 4 and 6; Harbaugh and Tanner will perform EVAs 2 and 4 on flight days 5 and 7. Among the tasks will be to replace two outdated scientific instruments with two new instruments the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). This is the second servicing mission for HST, which was originally deployed in 1990 and designed to be serviced on-orbit about every three years. Hubble was first serviced in 1993. STS-82 is the second of eight planned flights in 1997. It is the 22nd flight of Discovery and the 82nd Shuttle mission.

  2. STS-82 launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Discovery cuts a bright swath through the early-morning darkness as it lifts off from Launch Pad 39A on a scheduled 10-day flight to service the Hubble Space Telescope (HST). Liftoff of Mission STS-82 occurred on-time at 3:55:17 a.m. EST, Feb. 11, 1997. Leading the veteran crew is Mission Commander Kenneth D. Bowersox. Scott J. 'Doc' Horowitz is the pilot. Mark C. Lee is the payload commander. Rounding out the seven-member crew are Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. 'Joe' Tanner and Steven A. Hawley. Four of the astronauts will be divided into two teams to perform the scheduled four back-to-back extravehicular activities (EVAs) or spacewalks. Lee and Smith will team up for EVAs 1 and 3 on flight days 4 and 6; Harbaugh and Tanner will perform EVAs 2 and 4 on flight days 5 and 7. Among the tasks will be to replace two outdated scientific instruments with two new instruments - the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). This is the second servicing mission for HST, which was originally deployed in 1990 and designed to be serviced on-orbit about every three years. Hubble was first serviced in 1993. STS-82 is the second of eight planned flights in 1997. It is the 22nd flight of Discovery and the 82nd Shuttle mission.

  3. STS-85 Discovery Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  4. Launch Support Video Site

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2013-01-01

    The goal of this project is to create a website that displays video, countdown clock, and event times to customers during launches, without needing to be connected to the internal operations network. The requirements of this project are to also minimize the delay in the clock and events to be less than two seconds. The two parts of this are the webpage, which will display the data and videos to the user, and a server to send clock and event data to the webpage. The webpage is written in HTML with CSS and JavaScript. The JavaScript is responsible for connecting to the server, receiving new clock data, and updating the webpage. JavaScript is used for this because it can send custom HTTP requests from the webpage, and provides the ability to update parts of the webpage without having to refresh the entire page. The server application will act as a relay between the operations network, and the open internet. On the operations network side, the application receives multicast packets that contain countdown clock and events data. It will then parse the data into current countdown times and events, and create a packet with that information that can be sent to webpages. The other part will accept HTTP requests from the webpage, and respond to them with current data. The server is written in C# with some C++ files used to define the structure of data packets. The videos for the webpage will be shown in an embedded player from UStream.

  5. Delta launch vehicle accident investigation

    NASA Astrophysics Data System (ADS)

    1986-03-01

    The text of the testimony given by several witnesses during the House hearings on the Delta launch vehicle accident of May 3, 1986 is given. Pre-launch procedures, failure analysis, the possibility of sabotage, and design and testing are among the topics discussed.

  6. Launch systems operations cost modeling

    NASA Astrophysics Data System (ADS)

    Jacobs, Mark K.

    1999-01-01

    This paper describes the launch systems operations modeling portion of a larger model development effort, NASA's Space Operations Cost Model (SOCM), led by NASA HQ. The SOCM study team, which includes cost and technical experts from each NASA Field Center and various contractors, has been tasked to model operations costs for all future NASA mission concepts including planetary and Earth orbiting science missions, space facilities, and launch systems. The launch systems operations modeling effort has near term significance for assessing affordability of our next generation launch vehicles and directing technology investments, although it provides only a part of the necessary inputs to assess life cycle costs for all elements that determine affordability for a launch system. Presented here is a methodology to estimate requirements associated with a launch facility infrastructure, or Spaceport, from start-up/initialization into steady-state operation. Included are descriptions of the reference data used, the unique estimating methodology that combines cost lookup tables, parametric relationships, and constructively-developed correlations of cost driver input values to collected reference data, and the output categories that can be used by economic and market models. Also, future plans to improve integration of launch vehicle development cost models, reliability and maintainability models, economic and market models, and this operations model to facilitate overall launch system life cycle performance simulations will be presented.

  7. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  8. Pioneer Launch on Delta Vehicle

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  9. No Launch Before Its Time

    NASA Technical Reports Server (NTRS)

    Townsend, Bill

    2004-01-01

    Aura is an Earth-observing satellite developed to help us study the quality of the air we breathe. It will look at the state of the ozone and the atmospheric composition in regards to the Earth's changing climate. I headed to California on July 5, 2004. The plan was that the satellite would launch on the tenth, but we had a few problems getting it off. This was the fifty-ninth launch of my career, and it was also a little different than most of my previous launches. Most of the time it's weather that postpones a launch; there aren't usually that many technical issues this late in the game. This time. however, we had several problems, equally split between the launch vehicle and the spacecraft. I remember a member of the crew asking me, 'Is this normal?' And in my experience, it wasn't.

  10. STS-51 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Shuttle Discovery takes off from Launch Pad 39B at the Kennedy Space Center, Florida, to begin Mission STS-51 on 12 September 1993. The 57th shuttle mission began at 7:45 a.m. EDT, and lasted 9 days, 20 hours, 11 minutes, 11 seconds, while traveling a total distance of 4,106,411 miles. The Advanced Communications Technology Satellite (ACTS) was one of the projects deployed. This satellite serves as a test bed for advanced experimental communications satellite concepts and technology. Another payload on this mission was the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) telescope mounted on the Shuttle Pallet Satellite (SPAS) payload carrier. ORFEUS was designed to investigate very hot and very cold matter in the universe. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into

  11. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  12. STS-29: Pre-Launch Preparations/Launch and Landing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows the crewmembers of STS-29, Commander Michael L. Coats, Pilot John E. Blaha, and Mission Specialists James P. Bagian, James F. Buchli, and Robert C. Springer, seated in the White Room with the traditional cake. The crew is seen performing various pre-launch activities including suit-up, and walk out to the Astro-van. This early morning launch shows countdown, main engine start, liftoff, booster separation, and various isolated footage of the launch from different cameras. Also presented are footage of the approach, gear touchdown, rollout at Edwards Air Force Base, and various isolated views of the landing.

  13. The Use of Virtual Globes as a Spatial Teaching Tool with Suggestions for Metadata Standards

    ERIC Educational Resources Information Center

    Schultz, Richard B.; Kerski, Joseph J.; Patterson, Todd C.

    2008-01-01

    Virtual Globe software has become extremely popular both inside and outside of educational settings. This software allows users to explore the Earth in three dimensions while streaming satellite imagery, elevation, and other data from the Internet. Virtual Globes, such as Google Earth, NASA World Wind, and ESRI's ArcGIS Explorer can be effectively…

  14. Using GLOBE Plant Phenology Protocols To Meet the "National Science Education Standards."

    ERIC Educational Resources Information Center

    Bombaugh, Ruth; Sparrow, Elena; Mal, Tarun

    2003-01-01

    Describes how high school biology teachers can use the Global Learning and Observations to Benefit the Environment (GLOBE) program protocols and data in their classrooms. Includes background information on plant phenology, an overview of GLOBE phenology protocols and materials, and implications for protocols with both deciduous trees and grasses…

  15. Virtual globes and geospatial health: the potential of new tools in the management and control of vector-borne diseases.

    PubMed

    Stensgaard, Anna-Sofie; Saarnak, Christopher F L; Utzinger, Jürg; Vounatsou, Penelope; Simoonga, Christopher; Mushinge, Gabriel; Rahbek, Carsten; Møhlenberg, Flemming; Kristensen, Thomas K

    2009-05-01

    The rapidly growing field of three-dimensional software modeling of the Earth holds promise for applications in the geospatial health sciences. Easy-to-use, intuitive virtual globe technologies such as Google Earth enable scientists around the world to share their data and research results in a visually attractive and readily understandable fashion without the need for highly sophisticated geographical information systems (GIS) or much technical assistance. This paper discusses the utility of the rapid and simultaneous visualization of how the agents of parasitic diseases are distributed, as well as that of their vectors and/or intermediate hosts together with other spatially-explicit information. The resulting better understanding of the epidemiology of infectious diseases, and the multidimensional environment in which they occur, are highlighted. In particular, the value of Google Earth, and its web-based pendant Google Maps, are reviewed from a public health view point, combining results from literature searches and experiences gained thus far from a multidisciplinary project aimed at optimizing schistosomiasis control and transmission surveillance in sub-Saharan Africa. Although the basic analytical capabilities of virtual globe applications are limited, we conclude that they have considerable potential in the support and promotion of the geospatial health sciences as a userfriendly, straightforward GIS tool for the improvement of data collation, visualization and exploration. The potential of these systems for data sharing and broad dissemination of scientific research and results is emphasized. PMID:19440958

  16. Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Cates, Grant; Cirillo, William

    2009-01-01

    The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability

  17. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  18. STS Derived Exploration Launch Operations

    NASA Technical Reports Server (NTRS)

    Best, Joel; Sorge, L.; Siders, J.; Sias, Dave

    2004-01-01

    A key aspect of the new space exploration programs will be the approach to optimize launch operations. A STS Derived Launch Vehicle (SDLV) Program can provide a cost effective, low risk, and logical step to launch all of the elements of the exploration program. Many benefits can be gained by utilizing the synergy of a common launch site as an exploration spaceport as well as evolving the resources of the current Space Shuttle Program (SSP) to meet the challenges of the Vision for Space Exploration. In particular, the launch operation resources of the SSP can be transitioned to the exploration program and combined with the operations efficiencies of unmanned EELVs to obtain the best of both worlds, resulting in lean launch operations for crew and cargo missions of the exploration program. The SDLV Program would then not only capture the extensive human space flight launch operations knowledge, but also provide for the safe fly-out of the SSP through continuity of system critical skills, manufacturing infrastructure, and ability to maintain and attract critical skill personnel. Thus, a SDLV Program can smoothly transition resources from the SSP and meet the transportation needs to continue the voyage of discovery of the space exploration program.

  19. Eye Globe Abnormalities on MR and CT in Adults: An Anatomical Approach.

    PubMed

    Hallinan, James Thomas Patrick Decourcy; Pillay, Premilla; Koh, Lilian Hui Li; Goh, Kong Yong; Yu, Wai-Yung

    2016-01-01

    Eye globe abnormalities can be readily detected on dedicated and non-dedicated CT and MR studies. A primary understanding of the globe anatomy is key to characterising both traumatic and non-traumatic globe abnormalities. The globe consists of three primary layers: the sclera (outer), uvea (middle), and retina (inner layer). The various pathological processes involving these layers are highlighted using case examples with fundoscopic correlation where appropriate. In the emergent setting, trauma can result in hemorrhage, retinal/choroidal detachment and globe rupture. Neoplasms and inflammatory/infective processes predominantly occur in the vascular middle layer. The radiologist has an important role in primary diagnosis contributing to appropriate ophthalmology referral, thereby preventing devastating consequences such as vision loss. PMID:27587955

  20. Eye Globe Abnormalities on MR and CT in Adults: An Anatomical Approach

    PubMed Central

    Pillay, Premilla; Koh, Lilian Hui Li; Goh, Kong Yong; Yu, Wai-Yung

    2016-01-01

    Eye globe abnormalities can be readily detected on dedicated and non-dedicated CT and MR studies. A primary understanding of the globe anatomy is key to characterising both traumatic and non-traumatic globe abnormalities. The globe consists of three primary layers: the sclera (outer), uvea (middle), and retina (inner layer). The various pathological processes involving these layers are highlighted using case examples with fundoscopic correlation where appropriate. In the emergent setting, trauma can result in hemorrhage, retinal/choroidal detachment and globe rupture. Neoplasms and inflammatory/infective processes predominantly occur in the vascular middle layer. The radiologist has an important role in primary diagnosis contributing to appropriate ophthalmology referral, thereby preventing devastating consequences such as vision loss. PMID:27587955

  1. Do Interactive Globes and Games Help Students Learn Planetary Science?

    NASA Astrophysics Data System (ADS)

    Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer

    2016-01-01

    The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.

  2. Analysis of a 16-inch globe valve with eroded walls

    SciTech Connect

    Nitzel, M.E.

    1992-01-01

    During the course of inspection activities at a commercial nuclear power plant varying degrees of wall tinning were observed in several 16-inch globe valves. The wall thinning was observed at several locations on the bridge and bonnet areas of the valves and was thought to be the result of erosion of the wall material. these valves were routinely subjected to leak rate tests as part of the normal inspection and maintenance activities. Erosion of the valve plug seat sufficient to allow leakage would normally be detected by the leak rate testing. However, the question was raised whether severe erosion in the bridge structure would create the potential for a structural failure that would prevent normal closing and seating of the valve. An analytical assessment or scoping analysis'' of one of the valves was undertaken to assess the potential for stresses exceeding yield and to indicate whether a more extensive analysis of the valve would be desirable. a linear-elastic finite element model including the valve body, bonnet region, seat ring, and inlet and outlet bridge structures was developed. The model was subjected to a combination of internal pressure, valve plug seat force, and piping end moments. The results of the analysis indicate that even with erosion more severe than that observed in the actual valves, stress values did not approach yield. From these results it was concluded that yielding of the valve would not be anticipated with the observed erosion levels and that operability of the valves would not be impaired.

  3. Analysis of a 16-inch globe valve with eroded walls

    SciTech Connect

    Nitzel, M.E.

    1992-08-01

    During the course of inspection activities at a commercial nuclear power plant varying degrees of wall tinning were observed in several 16-inch globe valves. The wall thinning was observed at several locations on the bridge and bonnet areas of the valves and was thought to be the result of erosion of the wall material. these valves were routinely subjected to leak rate tests as part of the normal inspection and maintenance activities. Erosion of the valve plug seat sufficient to allow leakage would normally be detected by the leak rate testing. However, the question was raised whether severe erosion in the bridge structure would create the potential for a structural failure that would prevent normal closing and seating of the valve. An analytical assessment or ``scoping analysis`` of one of the valves was undertaken to assess the potential for stresses exceeding yield and to indicate whether a more extensive analysis of the valve would be desirable. a linear-elastic finite element model including the valve body, bonnet region, seat ring, and inlet and outlet bridge structures was developed. The model was subjected to a combination of internal pressure, valve plug seat force, and piping end moments. The results of the analysis indicate that even with erosion more severe than that observed in the actual valves, stress values did not approach yield. From these results it was concluded that yielding of the valve would not be anticipated with the observed erosion levels and that operability of the valves would not be impaired.

  4. Outer Retinal Structure Following Closed Globe Blunt Ocular Trauma

    PubMed Central

    Flatter, John A.; Cooper, Robert F.; Dubow, Michael J.; Pinhas, Alexander; Singh, Ravi S.; Kapur, Rashmi; Shah, Nishit; Walsh, Ryan D.; Hong, Sang H.; Weinberg, David V.; Stepien, Kimberly E.; Wirostko, William J.; Robison, Scott; Dubra, Alfredo; Rosen, Richard B.; Connor, Thomas B.; Carroll, Joseph

    2014-01-01

    Purpose To evaluate outer retinal structural abnormalities in patients with visual deficits following closed globe blunt ocular trauma (cgBOT). Methods Nine subjects with visual complaints following cgBOT were examined between 1 month post-trauma and 6 years post-trauma. Spectral domain optical coherence tomography (SD-OCT) was used to assess outer retinal architecture, while adaptive optics scanning light ophthalmoscopy (AOSLO) was used to analyze photoreceptor mosaic integrity. Results Visual deficits ranged from central scotomas to decreased visual acuity. SD-OCT defects included focal foveal photoreceptor lesions, variable attenuation of the interdigitation zone, and mottling of the outer segment band, with one subject having normal outer retinal structure. AOSLO revealed disruption of the photoreceptor mosaic in all subjects, variably manifesting as foveal focal discontinuities, perifoveal hyporeflective cones, and paracentral regions of selective cone loss. Conclusions We observe persistent outer retinal disruption in subjects with visual complaints following cgBOT, albeit to a variable degree. AOSLO imaging allows assessment of photoreceptor structure at a level of detail not resolvable using SD-OCT or other current clinical imaging tools. Multimodal imaging appears useful for revealing the cause of visual complaints in patients following cgBOT. Future studies are needed to better understand how photoreceptor structure changes longitudinally in response to various trauma. PMID:24752010

  5. Validating the MODIS snow product with GLOBE student observations

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Spongberg, A.; Struble, J.; Benko, T.; Templin, M.; Ault, T.; Witter, J.

    2003-12-01

    For this project, we validated the Moderate Resolution Imaging Spectroradiometer (MODIS) snow product and cloud masking algorithms using GLOBE student, SATELLITES (a K-12 program developed at the University of Toledo) and National Weather Service (NWS) Cooperative Extension observations. The study area is the lower Great Lakes region that includes the lake effect snowbelt areas to the east of Lakes Michigan and Erie. Student observations were taken during intense field campaigns with the winter of 2001-2002 having very little snow and 2000-2001 and 2002-2003 having significant snow cover. The student observers are able to gather data over a large spatial area that would be difficult to obtain through other means. In addition, the students collected snow as well as cloud data near the satellite overpass time as well as snow water equivalent that is an improvement over the NWS cooperative station data that is just snow depth. Quantitative analysis of the Version 4 MODIS snow algorithm produced an accuracy of 94 percent when compared to student observations. The largest errors were associated with partly cloudy conditions. A qualitative study was performed by a tenth grade student and her teacher at St. Ursula's Academy in Toledo found that the snow product produces errors when there are different levels of clouds in the images.

  6. Micropropagation of globe artichoke (Cynara cardunculus L. var. scolymus).

    PubMed

    Iapichino, Giovanni

    2013-01-01

    The globe artichoke (Cynara cardunculus L. var. scolymus) is a perennial plant cultivated in the Mediterranean region and the Americas for its edible young flower heads. Although vegetative propagation by offshoots or by "ovoli" (underground dormant axillary buds) has been the primary method of propagation, the potential for the diffusion of diseases and the phenotypic variability can be very high. The propagation of this species by axillary shoot proliferation from in vitro-cultured meristems produces systemic pathogen-free plants and a higher multiplication rate as compared to that obtained by conventional agamic multiplication. Axillary shoot proliferation can be induced from excised shoot apices cultured on Murashige and Skoog agar solidified medium supplemented with various concentrations of cytokinins and auxins, depending on genotype. For the production of virus-free plants, meristems, 0.3-0.8 mm long are excised from shoot apices and surface sterilized. The transfer of artichoke microshoots to a medium lacking cytokinins or with low cytokinin concentration is critical for rooting. Adventitious roots develop within 3-5 weeks after transfer to root induction MS medium containing NAA or IAA at various concentrations. However, in vitro rooting frequency rate is dependent on the genotype and the protocol used. Acclimatization of in vitro microshoots having 3-4 roots is successfully accomplished; plantlets develop new roots in ex vitro conditions and continue to grow. PMID:23179714

  7. NASA Webworldwind: Multidimensional Virtual Globe for Geo Big Data Visualization

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Hogan, P.; Prestifilippo, G.; Zamboni, G.

    2016-06-01

    In this paper, we presented a web application created using the NASA WebWorldWind framework. The application is capable of visualizing n-dimensional data using a Voxel model. In this case study, we handled social media data and Call Detailed Records (CDR) of telecommunication networks. These were retrieved from the "BigData Challenge 2015" of Telecom Italia. We focused on the visualization process for a suitable way to show this geo-data in a 3D environment, incorporating more than three dimensions. This engenders an interactive way to browse the data in their real context and understand them quickly. Users will be able to handle several varieties of data, import their dataset using a particular data structure, and then mash them up in the WebWorldWind virtual globe. A broad range of public use this tool for diverse purposes is possible, without much experience in the field, thanks to the intuitive user-interface of this web app.

  8. Windows on Earth - Virtual Globes for Earth Science Education

    NASA Astrophysics Data System (ADS)

    Barstow, D.

    2006-12-01

    Windows on Earth enables museum visitors to explore Earth from space. Under active development and testing (with funding from the National Science Foundation), the exhibit uses a digital globe and a visualization engine to provides an interactive experience, as if looking at the Earth from a large window on the International Space Station. The high-resolution Earth data have been carefully color corrected for accurate representations, and the interface provides tools for creative exploration of Earth's processes, as revealed from this unique perspective. The experience also includes data overlays and hot links to extend the learning. The project also will create a web site, with extended capabilities and a rich simulation of the orbital experience, revealing the awe-inspiring beauty of our home planet, as well as insights into Earth as a dynamic, interconnected system. Windows on Earth builds on cognitive research on how people make meaning of Earth images. The team lead is TERC (an educational R&D non-profit). Partners include GeoFusion (engine), WorldSat (data), JKA (museum design), and Dr. Jay Apt (astronaut). The exhibit will be installed in National Air and Space Museum, Boston Museum of Science, St. Louis Science Center, and Montshire Museum of Science.

  9. Mars Pathfinder Status at Launch

    NASA Technical Reports Server (NTRS)

    Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.

    1996-01-01

    The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.

  10. Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.

    2006-12-01

    Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth

  11. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch plans. 415.119 Section 415.119 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site §...

  12. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch schedule. 415.121 Section 415.121 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site §...

  13. Closed end launch tube (CELT)

    NASA Astrophysics Data System (ADS)

    Lueck, Dale E.; Parrish, Clyde F.

    2001-02-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off-the-shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg vehicle to 270 ms-1. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (Generation 2) vehicles, as well as the proposed Gen 3 vehicle. .

  14. Advanced Launch Development Program status

    NASA Technical Reports Server (NTRS)

    Colgrove, Roger

    1990-01-01

    The Advanced Launch System is a joint NASA - Air Force program originally directed to define the concept for a modular family of launch vehicles, to continue development programs and preliminary design activities focused primarily on low cost to orbit, and to offer maturing technologies to existing systems. The program was restructed in the spring of 1990 as a result of funding reductions and renamed the Advanced Launch Development Program. This paper addresses the program's status following that restructuring and as NASA and the Air Force commence a period of deliberation over future space launch needs and the budgetary resources available to meet those needs. The program is currently poised to protect a full-scale development decision in the mid-1990's through the appropriate application of program resources. These resources are concentrated upon maintaining the phase II system contractor teams, continuing the Space Transportation Engine development activity, and refocusing the Advanced Development Program demonstrated activities.

  15. STS-135 Fused Launch Video

    NASA Video Gallery

    Imaging experts funded by the Space Shuttle Program and located at NASA's Ames Research Center prepared this video of the STS-135 launch by merging images taken by a set of six cameras capturing fi...

  16. Environmentally-Preferable Launch Coatings

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion protecting coatings for launch facilities and ground support equipment (GSE). The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. The project compares coating performance of the selected alternatives to existing coating systems or standards.

  17. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.

    2010-01-01

    The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.

  18. Re-entry Experiment Launch

    NASA Video Gallery

    On August 10, 2009, NASA successfully launched the Inflatable Re-entry Vehicle Experiment (IRVE) and proved that spacecraft can use inflatable heat shields to reduce speed and provide protection du...

  19. Robonaut 2 Readied for Launch

    NASA Video Gallery

    Robonaut 2 is being prepared for its history making launch to the International Space Station on STS-133. The robot, known as R2, will be the first humanoid machine to work in orbit. With a upper t...

  20. Closed End Launch Tube (CELT)

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.; Parrish, Clyde F.; Delgado, H. (Technical Monitor)

    2000-01-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off the shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg. demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg. vehicle to 270 meters per second. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (generation 2) vehicles, as well as the proposed Gen 3 vehicle.

  1. Launch Abort System Pathfinder Arrival

    NASA Video Gallery

    The Orion Launch Abort System, or LAS, pathfinder returned home to NASA Langley on Oct. 18 on its way to NASA's Kennedy Space Center. The hardware was built at Langley and was used in preparation f...

  2. Space Launch System: Future Frontier

    NASA Video Gallery

    Featuring NASA Marshall’s Foundations of Influence, Relationships, Success & Teamwork (FIRST) employees and student interns, "Future Frontier" discusses the new Space Launch System (SLS) heavy-li...

  3. Lighting the Sky: ATREX Launches

    NASA Video Gallery

    NASA successfully launched five suborbital sounding rockets early March 27, 2012 from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was ...

  4. BARREL Team Launching 20 Balloons

    NASA Video Gallery

    A movie made by the NASA-Funded Balloon Array for Radiation belt Relativistic Electron Losses, or BARREL, team on their work launching 20 balloons in Antarctica during the Dec. 2013/Jan. 2014 campa...

  5. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  6. Japan launches mission to Venus

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-06-01

    The Japanese space agency JAXA has launched its first mission to Venus. The Akatsuki craft, which means "dawn" in Japanese, took off last month from the Tanegashima Space Center on the island of Kagoshima, south-west of mainland Japan.

  7. The GLOBE International Scientists Network: Connecting scientists, teachers and students from around the world

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Tessendorf, S. A.; Mackaro, J.

    2011-12-01

    The GLOBE Program invites scientists in all areas of Earth System Science to work with students and teachers around the work on exploring local scientific problems. GLOBE has a rich history of connecting scientists with schools around the world around issues of environmental and relevance. GLOBE is an international science and education program working with students, teachers and scientists in over 110 countries around the world. GLOBE has initiated a focus on climate science during the next two years and we are especially interested in connecting scientists with teachers and students in geographic and disciplinary areas of interest to climate scientists. In addition, GLOBE is revitalizing the technology support for science and communications which will provide an easy mechanism for scientists to connect with GLOBE schools. GLOBE is based on spheres of the Earth system with five investigation areas: Atmosphere, Hydrology, Soils, Land Cover / Biology, and Phenology. Classroom learning activities for each area help guide students in the classroom. Scientific protocols for data collection designed by scientists provide guidance for students to collect scientifically valid, high-quality data that can be used by professional scientists. The GLOBE Student Climate Research Campaign aims to develop a framework for robust scientist participation in the program whereby scientists and GLOBE schools with mutual science interest can connect and develop collaborations. Scientist participation ranges from mentoring students on science investigations to working collaborative on local climate science research problems. Scientists interested in working with GLOBE are encouraged to participate in whatever level of engagement is appropriate to compliment their research program and professional goals. Scientists will become a part of the GLOBE International Scientist Network, which may provide entrée into other avenues of research and funding. The GLOBE Program office, headquartered

  8. New Horizons Launch Contingency Effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald

    2007-01-01

    On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper

  9. CubeSat Launch Initiative

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  10. STS-53 Launch and Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Footage of various stages of the STS-53 Discovery launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing several medical experiments, such as taking a picture of the retina and measuring the pressure on the eyeball. One crewmember demonstrates how to use the rowing machine in an antigravity environment.

  11. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this close-up image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  12. Magnetic Launch Assist Experimental Track

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  13. Mercury-Atlas Test Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A NASA Project Mercury spacecraft was test launched at 11:15 AM EST on April 25, 1961 from Cape Canaveral, Florida, in a test designed to qualify the Mercury Spacecraft and all systems, which must function during orbit and reentry from orbit. The Mercury-Atlas vehicle was destroyed by Range Safety Officer about 40 seconds after liftoff. The spacecraft was recovered and appeared to be in good condition. Atlas was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. NASA first launched Atlas as a space launch vehicle in 1958. Project SCORE, the first communications satellite that transmitted President Eisenhower's pre-recorded Christmas speech around the world, was launched on an Atlas. For all three robotic lunar exploration programs, Atlas was used. Atlas/ Centaur vehicles launched both Mariner and Pioneer planetary probes. The current operational Atlas II family has a 100% mission success rating. For more information about Atlas, please see Chapter 2 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  14. SLI Artist `s Launch Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during launch. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  15. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  16. Reusable launch vehicle technology program

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, R. Eugene

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  17. Mobilizing the GLOBE at Night Citizen-Scientist

    NASA Astrophysics Data System (ADS)

    Newhouse, M. A.; Walker, C. E.; Boss, S. K.; Hennig, A. J.

    2012-12-01

    GLOBE at Night is an international campaign to raise public awareness of the impact of light pollution. Citizen-scientists around the world measure their night sky brightness and submit their observations to a website from a computer. In the last two years a web application (webapp) was developed to enable reporting from mobile devices. Nearly 80,000 data points have been submitted by people in 115 countries during the last 7 years. Our poster will examine the effect of enabling real-time data reporting via mobile devices, and how the Adopt-a-Street pilot project has impacted data collection in two U.S. cities. Recognizing the increasing popularity of smartphones, in late 2010 NOAO staff built a webapp to take advantage of the GPS capabilities built into mobile devices to get an automated and accurate report of the user's location. Refinements to the application have enabled an order of magnitude reduction in the number of erroneous data points due to incorrect location. During the 2011 campaign a pilot program called Adopt-a-Street was created to further take advantage of the ability to report data in real-time via mobile devices. For the 2012 campaign the program continued in Tucson and expanded to Fayetteville, Arkansas. Both of these sub-campaigns encouraged more participation, and resulted in more meaningful results. For example, in prior years Fayetteville averaged three data points in the three years any points were submitted in that area. In 2012, due to the Adopt-a-Street program, there were 98 points submitted, clearly matching the map on their Adopt-a-Street page. Adding support for mobile devices has increased the accuracy and relevance of the data submitted via both mobile devices and desktop computers, as well as enabled new programs. We plan to expand the Adopt-a-Street program next year and find an easier way to accommodate multiple measurements.

  18. Mobilizing the GLOBE at Night Citizen-Scientist

    NASA Astrophysics Data System (ADS)

    Newhouse, M. A.; Walker, C. E.; Boss, S. K.; Hennig, A. J.

    2013-04-01

    GLOBE at Night is an international campaign to raise public awareness of the impact of light pollution. Citizen-scientists around the world measure their night sky brightness and submit their observations to a website from a computer. In the last two years a webapp was developed to enable reporting from mobile devices. Nearly 80,000 data points have been submitted by people in 115 countries during the last 7 years. Our poster will examine the effect of enabling real-time data reporting via mobile devices, and how the Adopt-a-Street pilot project has impacted data collection in two U.S. cities. Recognizing the increasing popularity of smartphones, in late 2010 NOAO staff built a webapp to take advantage of the GPS capabilities built into mobile devices to get an automated and accurate report of the user's location. Refinements to the application have enabled an order of magnitude reduction in the number of erroneous data points due to incorrect location. During the 2011 campaign a pilot program called Adopt-a-Street was created to further take advantage of the ability to report data in real-time via mobile devices. For the 2012 campaign the program continued in Tucson and expanded to Fayetteville, Arkansas. Both of these sub-campaigns encouraged more participation, and resulted in more meaningful results. For example, in prior years Fayetteville averaged three data points in the three years any points were submitted in that area. In 2012, due to the Adopt-a-Street program, there were 98 points submitted, clearly matching the map on their Adopt-a-Street page. Adding support for mobile devices has increased the accuracy and relevance of the data submitted via both mobile devices and desktop computers, as well as enabled new programs. We plan to expand the Adopt-a-Street program next year and find an easier way to accommodate multiple measurements.

  19. NASA and GLOBE Connect K-12 Students to NGSS with Big Data Applications

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Hunt, T.; Chambers, L. H.; Lewis, P. M., Jr.

    2014-12-01

    For students to connect with big data, they must relate it to their own experiences—a pathway provided via GLOBE and NASA. This combination provides students with a multi-faceted background in climate education. The combination of GLOBE(Global Learning and Observations to Benefit the Environment) and NASA provide students with a multi-faceted experience into climate data and education, explicitly connecting NGSS with big data using GLOBE protocols as a mainstay curriculum component. GLOBE, created by the NSF, NASA, NOAA and the U.S. State Department, engages students through environmental data collection and connects them to scientists, and other schools around the world. GLOBE visualizations introduce the concepts of data presentation to capitalize on our natural pattern recognition abilities. The MY NASA DATA project extends students' data collection experiences into the realm of big data and remote sensing, providing curated, interactive animations targeting grades K-12. Correlating GLOBE data to NASA data validates remote sensing concepts. We present a learning progression from graphing of local data, expanding through the mesoscale and global scale. Students are challenged to identify gaps in the GLOBE database, create models to fill the gaps, and to validate their models using NASA data.

  20. Engaging Communities to Understand and Adapt to Environmental Changes with The GLOBE Program

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Malmberg, J. S.; Murphy, T.; Mauriello, H.

    2015-12-01

    During the past twenty years, The GLOBE Program (www.globe.gov) has connected scientists, K-12 students, teachers, and other stakeholders to "co-create" scientific understanding of their local, regional, and global environment in more than 110 countries. Through the support and collaboration of federal agencies- NASA, NSF, and NOAA- the community-driven GLOBE database has more than 130 million Earth science measurements (atmosphere, biosphere, hydrosphere, and pedosphere) that align with the USGCRP's indicators of climate change, such as air and surface temperature (Indicator: Global Surface Temperature), land cover (Indicators: 1) Forest Cover; 2) Grassland, Shrubland, and Pasture Cover), and plant phenology (Indicator: Start of Spring). GLOBE contributes to climate literacy while encouraging community members of all ages to enrich their scientific understanding, define issues of local relevance, and engage in broader action, such as regional and global science campaigns. In this session, we will present case studies of how GLOBE data has been used to inspire "homegrown" research campaigns such as the GLOBE Surface Temperature Campaign and European Aerosols Campaign, as well as solution-based action in response to environmental changes, including the development of a mosquito protocol in Thailand and across Africa and a toad service project in the Czech Republic. We will also discuss some of the initiatives we have led as a program in order to promote and share local and regional community-led efforts with our worldwide GLOBE community, as well as some of the challenges and opportunities presented by supporting climate research.

  1. The GLOBE ONE campaign: a learning community approach for integrated science investigations

    NASA Astrophysics Data System (ADS)

    White, M. A.

    2003-12-01

    The GLOBE program has long faced three interrelated challenges. First, incomplete records, uncertainties in quality assurance and quality control, and failures to enter measurements occur too frequently in the GLOBE data system. Second, while many GLOBE protocols exist with which to characterize elements of the Earth system, most schools implement only one or a few protocols. Third, due to the previous two challenges, the number of peer-reviewed publications resulting from GLOBE measurements does not appear to be commensurate with agency funding support. To address these issues, GLOBE is currently developing a new approach based on the learning community concept. This campaign, termed GLOBE ONE, will focus on: (1) addressing a specific scientific question in a small area; (2) intensive involvement by GLOBE principal investigators; and (3) integration of the local community in measurement and support of the campaign. The campaign, to begin in Spring 2004 and conclude September 2005, will take place in Black Hawk County, Iowa. Science questions will focus on land cover and land use influences on Earth system processes within agricultural, urban, remnant prairie, and restored prairie ecosystems. A wide community consisting of local academic institutions, extension agencies, educators, industry, and naturalists will work together to ensure collection and quality assurance of the multiple required datasets. Organizational, logistical, scientific, and educational challenges and solutions are discussed.

  2. NASA's Space Launch System: Momentum Builds Towards First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  3. Design challenges for tomorrow's manned launch systems

    NASA Astrophysics Data System (ADS)

    Rowell, Lawrence F.

    1993-02-01

    This paper attempts to capture some of the technical and national challenges facing the design of America's next manned launch system (MLS). There are three basic paths for pursuing tomorrow's MLS; each with variations. Some characteristics that will be sought regardless of the concept selected include low development (or front-end) and life-cycle costs, safety, operability, availability, and a host of other 'ilities'. In order to discriminate among the concepts, a robust design environment and a variety of new and improved analysis tools are needed that produce critical metrics in a timely, efficient manner from a large study space. This paper presents some of the challenges in development, integration, and application of optimization, costing, operations modeling, and several engineering disciplinary tools including geometry modeling, structures, aerodynamics/aeroheating, and trajectory/performance.

  4. Spitzer Pre Launch Mission Operations System - The Road to Launch

    NASA Technical Reports Server (NTRS)

    Scott, Charles P.; Wilson, Robert K.

    2006-01-01

    Spitzer Space Telescope was launched on 25 August 2003 into an Earth-trailing solar orbit to acquire infrared observations from space. Development of the Mission Operations System (MOS) portion prior to launch was very different from planetary missions from the stand point that the MOS teams and Ground Data System had to be ready to support all aspects of the mission at launch (i.e., no cruise period for finalizing the implementation). For Spitzer, all mission-critical events post launch happen in hours or days rather than months or years, as is traditional with deep space missions. At the end of 2000 the Project was dealt a major blow when the Mission Operations System (MOS) had an unsuccessful Critical Design Review (CDR). The project made major changes at the beginning of 2001 in an effort to get the MOS (and Project) back on track. The result for the Spitzer Space Telescope was a successful launch of the observatory followed by an extremely successful In Orbit Checkout (IOC) and operations phase. This paper describes how the project was able to recover the MOS to a successful Delta (CDR) by mid 2001, and what changes in philosophies, experiences, and lessons learned followed. It describes how projects must invest early or else invest heavily later in the development phase to achieve a successful operations phase.

  5. Analysis of the Dryden Wet Bulb GLobe Temperature Algorithm for White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    LaQuay, Ryan Matthew

    2011-01-01

    In locations where workforce is exposed to high relative humidity and light winds, heat stress is a significant concern. Such is the case at the White Sands Missile Range in New Mexico. Heat stress is depicted by the wet bulb globe temperature, which is the official measurement used by the American Conference of Governmental Industrial Hygienists. The wet bulb globe temperature is measured by an instrument which was designed to be portable and needing routine maintenance. As an alternative form for measuring the wet bulb globe temperature, algorithms have been created to calculate the wet bulb globe temperature from basic meteorological observations. The algorithms are location dependent; therefore a specific algorithm is usually not suitable for multiple locations. Due to climatology similarities, the algorithm developed for use at the Dryden Flight Research Center was applied to data from the White Sands Missile Range. A study was performed that compared a wet bulb globe instrument to data from two Surface Atmospheric Measurement Systems that was applied to the Dryden wet bulb globe temperature algorithm. The period of study was from June to September of2009, with focus being applied from 0900 to 1800, local time. Analysis showed that the algorithm worked well, with a few exceptions. The algorithm becomes less accurate to the measurement when the dew point temperature is over 10 Celsius. Cloud cover also has a significant effect on the measured wet bulb globe temperature. The algorithm does not show red and black heat stress flags well due to shorter time scales of such events. The results of this study show that it is plausible that the Dryden Flight Research wet bulb globe temperature algorithm is compatible with the White Sands Missile Range, except for when there are increased dew point temperatures and cloud cover or precipitation. During such occasions, the wet bulb globe temperature instrument would be the preferred method of measurement. Out of the 30

  6. Launch site integration for mixed fleet operations

    NASA Technical Reports Server (NTRS)

    Scott, L. P.

    1990-01-01

    Launch site impacts and integration planning issues are presented to support launch operations for a mixed vehicle fleet (manned and cargo). Proposed ground systems and launch site configurations are described. Prelaunch processing scenarios and schedules are developed for candidate launch vehicles. Earth-to-orbit (ETO) vehicle architectures are presented to meet future launch requirements, including the Space Exploration Initiative (SEI). Flight vehicle design recommendations to enhance launch processing are discussed. The significance of operational designs for future launch vehicles is shown to be a critical factor in planning for mixed fleet launch site operations.

  7. Dark Skies Awareness through the GLOBE at Night Citizen-Science Campaign

    NASA Astrophysics Data System (ADS)

    Walker, C. E.

    2011-10-01

    The emphasis in the international citizen-science, star-hunting campaign, GLOBE at Night, is in bringing awareness to the public on issues of light pollution. Light pollution threatens not only observatory sites and our "right to starlight", but can affect energy consumption, wildlife and health. GLOBE at Night has successfully reached a few hundred thousand citizen-scientists during the annual 2-week campaign over the past 6 years. Provided is an overview, update and discussion of what steps can be taken to improve programs like GLOBE at Night.

  8. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, Robert J.; Loughin, Stephen

    1997-01-10

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  9. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    NASA Astrophysics Data System (ADS)

    Rosko, Robert J.; Loughin, Stephen

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  10. Implementing GLOBE in the New York City Metropolitan Area: Trials, Errors, and Successes

    NASA Astrophysics Data System (ADS)

    Ludman, A.; Schmidt, P.; Borman, G.

    2003-12-01

    The Queens College GLOBE NY Metro Partnership was created to introduce GLOBE to more than 1.5 million students in southern NY State and provide continuing support for their teachers. In our first 18 months, we have trained 185 teachers from 82 schools and will triple these numbers this year. Teachers and administrators are attracted to GLOBE by its scientific rigor, the authentic research it offers students, and its fit with NYS standards. They are also eager to interact with our science faculty. Early difficulties included problems with the "standard" 5-day GLOBE training format and misconceptions that protocols are not suitable for urban settings and that preparing for the NYS Regents exams leaves no room for GLOBE. We held information meetings for school districts and for Queens high schools before our first workshop. These identified the most committed schools, energetic teachers, and potential implementation problems. Creative participants at these meetings countered the misconceptions and suggested solutions to the problems better than any outsider could, and generated an atmosphere leading to nearly 100% recruitment. The following stratagems have worked well: a close working relationship with the NYC Dept of Education, BOCES, and other environmental educators; affiliations with government agencies and community environmental groups; two bribes (giving a GLOBE instrument kit and GPS unit to each school that we train and awarding graduate or professional development credits for GLOBE training); a user-friendly training format (an initial 3-day workshop followed by two optional days for hydrology and land use); lending seldom-used items (e.g. soil auger) when needed; building a sense of GLOBE community with a graduation "ceremony", local website (www.qc.edu/qcglobe) and newsletter, phone and email helplines, and annual pedagogy and student research conferences. We also urge that three teachers be trained from each school in order to build local GLOBE support

  11. Apollo 11 Facts Project [Pre-Launch Activities and Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The crewmembers of Apollo 11, Commander Neil A. Armstrong, Command Module Pilot Michael Collins, and Lunar Module Pilot Edwin E. Aldrin, Jr., are seen during various stages of preparation for the launch of Apollo 11, including suitup, breakfast, and boarding the spacecraft. They are also seen during mission training, including preparation for extravehicular activity on the surface of the Moon. The launch of Apollo 11 is shown. The ground support crew is also seen as they wait for the spacecraft to approach the Moon.

  12. The commercial Aquila Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Flittie, Kirk J.; McFarlane, Scott

    1991-06-01

    The American Rocket Company's (AMROC) Aquila Launch Vehicle is a ground-launched, four-stage, all-hybrid propulsion, inertially-guided commercial space booster designed to deliver 2000 pound payloads into low earth orbit. By using AMROC's low-cost hybrid propulsion, the Aquila launch service will provide quick, on-demand, routine access to space; high accuracy orbital placement; and an unprecedented degree of production, ground and flight safety. The first launch of the Aquila will be in early 1995. Aquila utilizes AMROc's unique hybrid propulsion systems consisting of an inert solid polybutadiene fuel and either liquid oxygen or nitrous oxide as oxidizer. A hybrid propulsion system is distinct from all other rocket propulsion systems in that hybrids cannot explode; hybrids offer safe handling, operation and launch pad abort; and hybrids offer start/stop and full throttling capability for trajectory optimization and precise payload placement on orbit. In addition, the exhaust products do not contain hydrogen chlorides which are environmentally degrading.

  13. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests

  14. STS-120 on Launch Pad

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A photographer used a fisheye lens attached to an electronic still camera to record a series of photos of the Space Shuttle Discovery at the launch pad while the STS-120 crew was at Kennedy Space Center for the Terminal Countdown Demonstration Test in October 2007. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007. The crew included Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). Major objectives included the installation of the P6 solar array of the port truss and delivery and installment of Harmony, the Italian-built U.S. Node 2 on the International Space Station (ISS).

  15. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Chartres, James; Cappuccio, Gelsomina

    2015-01-01

    The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or CubeSats, onto launch vehicles. A standard CubeSat measures about 10 cm square, and is referred to as a 1-unit (1U) CubeSat. A single NLAS provides the capability to deploy 24U of CubeSats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.

  16. Personnel Launch System (PLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.

    1991-01-01

    NASA is currently studying a personnel launch system (PLS) approach to help satisfy the crew rotation requirements for the Space Station Freedom. Several concepts from low L/D capsules to lifting body vehicles are being examined in a series of studies as a potential augmentation to the Space Shuttle launch system. Rockwell International Corporation, under contract to NASA, analyzed a lifting body concept to determine whether the lifting body class of vehicles is appropriate for the PLS function. The results of the study are given.

  17. The Scout Launch Vehicle program

    NASA Technical Reports Server (NTRS)

    Foster, L. R., Jr.; Urash, R. G.

    1981-01-01

    The Scout Launch Vehicle Program to utilize solid propellant rockets by the DOD and to provide a reliable, low cost vehicle for scientific and applications aircraft is discussed. The program's history is reviewed and a vehicle description is given. The Vandenberg Air Force Base and the San Marco launch sites are described, and capabilities such as payload weight, orbital inclinations, payload volume and mission integration time spans are discussed. Current and future plans for improvement, including larger heat shields and individual rocket motors are also reviewed.

  18. The Recent Globe at Night Initiative Involving Schoolchildren and Families from 96 Countries

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Isbell, D.; Smith, M.; Ochoa, H.; Orellana, D.; Blurton, C.; Henderson, S.; Ward, D.; Meymaris, K.

    2006-08-01

    More than 18,000 citizen-scientists in 96 countries submitted almost 4,600 observations of the darkness of their local night skies during the 10-day "GLOBE at Night" event at the end of March 2006. The GLOBE at Night Web site received data from all 50 U.S. states and from every continent except Antarctica (where the constellation used for the project was not visible)! Open to anyone in the world, the international GLOBE at Night program was designed to help students, families, and the general public observe and record how the constellation Orion looked from different locations, as a means of measuring the brightness of the sky at a variety of urban and rural sites. The program was conducted to aid teaching about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world's population. Analysis of the GLOBE at Night data set found that the brighter skies (i.e., the brighter dots on the map) corresponded to areas with higher population density, and that most observations were taken in a location with some light pollution. The data also tend to confirm that satellite data is reliable in assessing light pollution. Given the widespread interest in the inaugural GLOBE at Night event, the GLOBE at Night team is eager to offer it again in 2007. For more information, see http://www.globe.gov/GaN or contact globeatnight@globe.gov or outreach@noao.edu .

  19. Turning Content into Conversation: How The GLOBE Program is Growing its Brand Online

    NASA Astrophysics Data System (ADS)

    Zwerin, R.; Randolph, J. G.; Andersen, T.; Mackaro, J.; Malmberg, J.; Tessendorf, S. A.; Wegner, K.

    2012-12-01

    Social Media is now a ubiquitous way for individuals, corporations, governments and communities to communicate. However, the same does not hold quite as true for the science community as many science educators, thought leaders and science programs are either reluctant or unable to build and cultivate a meaningful social media strategy. This presentation will show how The GLOBE Program uses social media to disseminate messages, build a meaningful and engaged following and grow a brand on an international scale using a proprietary Inside-Out strategy that leverages social media platforms such as Facebook, LinkedIn, Twitter, YouTube and Blogs to significantly increase influencers on a worldwide scale. In addition, this poster presentation will be interactive, so viewers will be able to touch and feel the social experience. Moreover, GLOBE representatives will be on hand to talk viewers through how they can implement a social media strategy that will allow them to turn their content into meaningful conversation. About The GLOBE Program: GLOBE is a science and education program that connects a network of students, teachers and scientists from around the world to better understand, sustain and improve Earth's environment at local, regional and global scales. By engaging students in hands-on learning of Earth system science, GLOBE is an innovative way for teachers to get students of all ages excited about scientific discovery locally and globally. To date, more than 23 million measurements have been contributed to the GLOBE database, creating meaningful, standardized, global research-quality data sets that can be used in support of student and professional scientific research. Since beginning operations in 1995, over 58,000 trained teachers and 1.5 million students in 112 countries have participated in GLOBE. For more information or to become involved, visit www.globe.gov.

  20. Openwebglobe - AN Open Source Sdk for Creating Large-Scale Virtual Globes on a Webgl Basis

    NASA Astrophysics Data System (ADS)

    Loesch, B.; Christen, M.; Nebiker, S.

    2012-07-01

    This paper introduces the OpenWebGlobe project (www.openwebglobe.org) and the OpenWebGlobe SDK (Software Development Kit) - an open source virtual globe environment using WebGL. Unlike other (web-based) 3d geovisualisation technologies and toolkits, the OpenWebGlobe SDK not only supports the content authoring and web visualization aspects, but also the data processing functionality for generating multi-terabyte terrain, image, map and 3d point cloud data sets in high-performance and cloud-based parallel computing environments. The OpenWebGlobe architecture is described and the paper outlines the processing and the viewer functionality provided by the OpenWebGlobe SDK. It then discusses the generation and updating of a global 3d base map using OpenStreetMap data and finally presents two show cases employing the technology a) for implementing an interactive national 3d geoportal incorporating high resolution national geodata sets and b) for implementing a 3d geoinformation service supporting the real-time incorporation of 3d point cloud data.

  1. Reusable Reentry Satellite (RRS): Launch tradeoff study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A goal of the Phase B study is to define the launch system interfaces for the reusable reentry satellite (RRS) program. The focus of the launch tradeoff study, documented in this report, is to determine which expendable launch vehicles (ELV's) are best suited for the RRS application by understanding the impact of all viable launch systems on RRS design and operation.

  2. Intelsat communications satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    To be placed into a highly elliptical transfer orbit by the Atlas Centaur (AC-61) launch vehicle, the INTELSAT V-F satellite has 12,000 voice circuits and 2 color television channels and incorporates a maritime communication system for ship to shore communications. The stages of the launch vehicle and the launch operations are described. A table shows the launch sequence.

  3. STS-1 Pre-Launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A timed exposure of the Space Shuttle, STS-1, at Launch Pad A, Complex 39, turns the space vehicle and support facilities into a night- time fantasy of light. Structures to the left of the Shuttle are the fixed and the rotating service structure.

  4. VEGA, a small launch vehicle

    NASA Astrophysics Data System (ADS)

    Duret, François; Fabrizi, Antonio

    1999-09-01

    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  5. Skylab Components in Launch Configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This cutaway drawing illustrates major Skylab components in launch configuration on top of the Saturn V. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  6. Deep Impact on Launch Pad

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Deep Impact awaits launch from Cape Canaveral Air Force Station, Fla. on Jan. 12, 2005.

    The spacecraft will travel to comet Tempel 1 and release an impactor, creating a crater on the surface of the comet. Scientists believe the exposed materials may give clues to the formation of our solar system.

  7. Electromagnetic launch of lunar material

    NASA Technical Reports Server (NTRS)

    Snow, William R.; Kolm, Henry H.

    1992-01-01

    Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year.

  8. Space Shuttle Launch: STS-129

    NASA Video Gallery

    STS-129. Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday, Nov 16, 2009, with a 2:28 p.m. EST launch from NASA's Kennedy S...

  9. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  10. The Citizen-Scientist as Data Collector: GLOBE at Night, Part 2

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Ward, D.; Henderson, S.; Meymaris, K.; Gallagher, S.; Salisbury, D.

    2006-12-01

    An innovative program to realize light pollution education on two continents via Internet 2-based videoconferencing was begun 4 years ago by the National Optical Astronomy Observatory. Bilingual science teachers and their students in Arizona and Chile recorded the brightness of the night sky by matching its appearance toward the constellation Orion with one of 6 stellar maps of limiting magnitude. Students from both hemispheres would report their findings via videoconferences. In the last year the program has evolved in collaboration with UCAR and other partners into an international, user-friendly, web-based science event open to anyone in the world, known as GLOBE at Night. GLOBE at Night uses the same design to observe and record the visible stars toward Orion, as a means of measuring light pollution in a given location. The inaugural event occurred over 11 nights last March, when 18,000 citizen- scientists made over 4,500 observations from 96 countries. Analysis of the GLOBE at Night data set found that the brighter skies corresponded to areas with higher population density, and that most observations were taken in a location with some light pollution. The data also tended to confirm that satellite data is reliable in assessing light pollution. This session will describe our program to incorporate more technology into the GLOBE at Night program. Citizen-scientists will use sky quality meters (visible light photometers), calibrated digital photography, and GPS as a means to measure and map more accurately the brightness of the sky at selected urban and rural sites. This extension of the program is designed to aid further in teaching about the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource. We will also describe how detailed maps of selected urban areas can be used to assess lighting design, safety considerations and energy usage. Given the widespread interest in the inaugural GLOBE at Night

  11. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  12. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  13. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  14. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION,...

  15. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION,...

  16. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION,...

  17. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  18. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION,...

  19. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch of an unguided suborbital launch vehicle. 417.125 Section 417.125 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.125 Launch of an unguided...

  20. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, R.J.; Loughin, S.

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  1. The GLOBE at Night Campaign: Promoting Dark Skies Awareness Beyond IYA2009

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2010-01-01

    One of the most productive programs in the IYA2009 Dark Skies Awareness Cornerstone Project has been GLOBE at Night. The GLOBE at Night program has endeavored to promote social awareness of the dark sky by getting the general public to measure light pollution and submit results on-line. During IYA2009 alone, over 15,700 measurements from 70 countries were contributed during the 2-week campaign period. That amount is twice the number of measurements on average from previous years. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for Dark Skies Awareness have been distributed at these training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and Dark Skies Ranger Activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. There were particularly spirited and creative GLOBE at Night campaigns around the world in 2009. One such "poster child” was carried out by 6500 students in northern Indiana. The students produced 3,391 GLOBE at Night measurements. To visualize the magnitudes of dark sky lost to light pollution, these students removed over 12,000 of the 35,000 stacked LEGO blocks that represented an ideal night sky across the school district. The presentation will provide an update with lessons learned, describe how people can become involved and take a look ahead at the program's sustainability. For further information, visit www.globe.gov/globeatnight.

  2. Citizen-Scientists Monitor Light Pollution Worldwide via "GLOBE at Night"

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Pompea, S. M.; Isbell, D.; Orellana, D.; Ward, D.; Henderson, S.; Meymaris, K.; Gallagher, S.; Salisbury, D.

    2006-12-01

    More than 18,000 citizen-scientists in 96 countries submitted almost 4,600 observations of the darkness of their local night skies during the 10-day “GLOBE at Night” event at the end of March 2006. The GLOBE at Night program was designed to help students, families, and the general public observe and record how the constellation Orion looked from different locations, as a means of measuring the brightness of the sky at a variety of urban and rural sites. The program was conducted to aid teaching about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for the world’s population. Observers reported their results online by comparing the number of stars seen toward Orion with a set of template images on the program’s Web site. These images showed the number of stars in the constellation for a range of visibilities from bright skies to very dark. This session will describe the analysis from last year and our plans for this year to incorporate more technology into the GLOBE at Night program. Citizen-scientists will use sky quality meters (visible light photometers), calibrated digital photography, and GPS as a means to measure and map more accurately the brightness of the sky at selected urban and rural sites. Given the widespread interest in the inaugural GLOBE at Night event, the GLOBE at Night team is eager to offer it again from March 8-21, 2007. For more information, see www.globe.gov/GaN or contact globeatnight@globe.gov.

  3. Globe At Night 2007: Light Pollution Awareness and the Citizen-Scientist

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Isbell, D.; Pompea, S. M.

    2007-05-01

    The GLOBE at Night 2007 program has been built upon the success of the inaugural campaign in March 2006 when 4600 observations were submitted by citizen-scientists from 96 countries. Participation this year is up by 50 percent. The international star-hunting event known as GLOBE at Night returned March 8-21, 2007 in two flavors: the classic GLOBE at Night activity incorporating unaided-eye observations toward Orion, and a new effort to obtain precise measurements of urban dark skies toward zenith using digital sky-brightness meters. Both flavors of the program were designed to heighten the awareness about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world population. To make possible the digital GLOBE at Night program, the NSF funded 135 low-cost, digital sky-quality meters (manufactured by Unihedron). Along with related materials developed by the National Optical Astronomy Observatory (NOAO), the meters were distributed to citizen-scientists in 21 U.S. states plus Washington DC, and in 5 other countries, including Chile, where NOAO has a major observatory. The citizen-scientists were selected from teachers, their students, astronomers at observatories, International Dark-Sky Association (IDA) members and staff from 19 science centers. For each meter, citizen-scientists were asked to make 30 measurements from different locations in their region. The data is being pooled for regional analysis. The success of GLOBE at Night 2007 is a major step toward the International Year of Astronomy in 2009, when one goal is to make the digital data collection into a worldwide activity. In this presentation, we will outline the set-up for the digital part of the program, the outcome and the plans for the future. GLOBE at Night is a collaboration between NOAO, the GLOBE Program, CADIAS, Windows to the Universe, ESRI and IDA.

  4. Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  5. Dynamic Tow Maneuver Orbital Launch Technique

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2014-01-01

    An orbital launch system and its method of operation use a maneuver to improve the launch condition of a booster rocket and payload. A towed launch aircraft, to which the booster rocket is mounted, is towed to a predetermined elevation and airspeed. The towed launch aircraft begins the maneuver by increasing its lift, thereby increasing the flight path angle, which increases the tension on the towline connecting the towed launch aircraft to a towing aircraft. The increased tension accelerates the towed launch aircraft and booster rocket, while decreasing the speed (and thus the kinetic energy) of the towing aircraft, while increasing kinetic energy of the towed launch aircraft and booster rocket by transferring energy from the towing aircraft. The potential energy of the towed launch aircraft and booster rocket is also increased, due to the increased lift. The booster rocket is released and ignited, completing the launch.

  6. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  7. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. NASA is working to develop this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS program has made in the 2 years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen which combines the use and enhancement of legacy systems and technology with strategic new development projects that will evolve the capabilities of the launch vehicle. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved version of the vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight

  8. Eruptions on A Virtual Globe: The Aster Volcano Archive

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Abrams, M. J.; Tan, H. L.

    2007-12-01

    The systematic study of the world's most frequent volcanic activity is a compelling and productive arena for orbital remote sensing techniques, informing a range of investigations from basic volcanology to societal risk assessments. The Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER--a joint project of Japan and the United States), with its high spatial resolution (15, 30, 90m/pixel), multispectral character (0.52- 0.86μm; 1.6-2.4μm; 8.1-11.6μm), and stereophotogrammetric capability is in many ways an ideal imaging instrument for this task. Since launch in December 1999, an ASTER volcano target list of over 1500 volcanoes has yielded a (still growing) inventory of over 140,000 volcano views on over 70,000 individual ASTER day and night images. A significant emerging challenge for ASTER is how to effectively access a burgeoning data archive in a way that allows the survey, extraction, and distribution of important information in a timely way. This issue is particularly acute in general for ASTER, which has produced a multi-spectral, high spatial resolution, feature-specific targeted global data base of over 1 million image data granules worldwide. To promptly and efficiently access and manage voluminous volcano data within a large ASTER image library, and to house other ancillary correlative volcanological data from MISR, MODIS, EO-1 data sets, SRTM, and related in situ data, we have created a specialty domain called the JPL ASTER Volcano Archive (AVA: http://ava.jpl.nasa.gov). We will discuss and illustrate the myriad challenges and scientific opportunities that this unprecedentedly large, but accessible, global volcanological remote sensing data set represents in terms of data mining, data analysis, and data distribution to the scientific community, to disaster responders, the general public, and to educators, and will conduct a live AVA demonstration. This work was performed at the Jet Propulsion Laboratory-California Institute of

  9. Aqua 10 Years After Launch

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2013-01-01

    A little over ten years ago, in the early morning hours of May 4, 2002, crowds of spectators stood anxiously watching as the Delta II rocket carrying NASA's Aqua spacecraft lifted off from its launch pad at Vandenberg Air Force Base in California at 2:55 a.m. The rocket quickly went through a low-lying cloud cover, after which the main portion of the rocket fell to the waters below and the rockets second stage proceeded to carry Aqua south across the Pacific, onward over Antarctica, and north to Africa, where the spacecraft separated from the rocket 59.5 minutes after launch. Then, 12.5 minutes later, the solar array unfurled over Europe, and Aqua was on its way in the first of what by now have become over 50,000 successful orbits of the Earth.

  10. Launching jets from accretion belts

    NASA Astrophysics Data System (ADS)

    Schreier, Ron; Soker, Noam

    2016-05-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  11. TDRS is ready for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the early morning hours on Launch Pad 36A, Cape Canaveral Air Force Station, the tower rolls back from NASA's Tracking and Data Relay Satellite (TDRS-H) before liftoff atop an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot- diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system's existing S- and Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit.

  12. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  13. The launch of MCBEND 10.

    PubMed

    Cowan, P; Shuttleworth, E; Bird, A; Cooper, A

    2005-01-01

    MCBEND 10 is the latest release of the general radiation transport Monte Carlo code from the ANSWERS Software Service of Serco Assurance. MCBEND is developed within a Nuclear Code Development (NCD) partnership between Serco Assurance and BNFL. The ANSWERS vision is 'to provide easy-to-use software that meets the current and emerging needs of the user community'. In the case of MCBEND, this vision focuses on the key areas of accuracy, understanding of uncertainties, efficiency and user-friendliness. MCBEND 10 is a major launch of the code with many new and enhanced features. New developments in MCBEND 10 include automatic splitting mesh generation, point energy adjoint for neutrons, calculation of uncertainty in the results due to material cross section uncertainties and a unified source facility. Enhanced features include improved temperature treatment, extended scoring of sensitivity to geometry perturbations, geometry improvements, extensions to formulae and improved user guide image. The user-friendliness of the MCBEND code has been further enhanced by recent developments to the visualisation tools, VISAGE and VISTA-RAY. Developments have been made to the three-dimensional visualisation tool, VISTA-RAY, to simplify the detailed checking of a model, with the option to use a mouse-pointer to select regions of interest for further detail and to visually highlight incorrectly defined areas. A further development to VISTA-RAY is the inclusion of the capability to overlay a representation of a user-designated set of results from a MCBEND analysis on the model. Improvements have also been made to the graphical user interface LaunchPad for submitting and controlling calculation submission, with a common user-image across all the systems. Recent enhancements to LaunchPad include a job-scheduler to simplify processing multiple tasks. A selection of the new developments in MCBEND 10, VISTA-RAY and LaunchPad will be described in this paper. PMID:16381755

  14. Minuteman 2 launched small satellite

    NASA Technical Reports Server (NTRS)

    Chan, Sunny; Hinders, Kriss; Martin, Trent; Mcmillian, Shandy; Sharp, Brad; Vajdos, Greg

    1994-01-01

    The goal of LEOSat Industries' Spring 1994 project was to design a small satellite that has a strong technology demonstration or scientific justification and incorporates a high level of student involvement. The satellite is to be launched into low earth orbit by the converted Minuteman 2 satellite launcher designed by Minotaur Designs, Inc. in 1993. The launch vehicle shroud was modified to a height of 90 inches, a diameter of 48 inches at the bottom and 35 inches at the top for a total volume of 85 cubic feet. The maximum allowable mass of the payload is about 1100 lb., depending on the launch site, orbit altitude, and inclination. The satellite designed by LEOSat Industries is TerraSat, a remote-sensing satellite that will provide information for use in space-based earth studies. It will consist of infrared and ultraviolet/visible sensors similar to the SDI-developed sensors being tested on Clementine. The sensors will be mounted on the Defense Systems, Inc. Standard Satellite-1 spacecraft bus. LEOSat has planned for two satellites orbiting the Earth with trajectories similar to that of LANDSAT 5. The semi-major axis is 7080 kilometers, the eccentricity is 0, and the inclination is 98.2 degrees. The estimated mass of TerraSat is 145 kilograms and the estimated volume is 1.8 cubic meters. The estimated cost of TerraSat is $13.7 million. The projected length of time from assembly of the sensors to launch of the spacecraft is 13 months.

  15. Pulsed power for electromagnetic launching

    SciTech Connect

    Cowan, M

    1980-12-01

    There are system advantages to producing power for electromagnetic propulsion by real-time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator. Different types of flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  16. Pulsed power for electromagnetic launching

    NASA Astrophysics Data System (ADS)

    Cowan, M.

    1980-12-01

    There are system advantages to producing power for electromagnetic propulsion by real-time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  17. Pulsed power for electromagnetic launching

    NASA Astrophysics Data System (ADS)

    Cowan, M.

    1982-01-01

    There are system advantages to producing power for electromagnetic propulsion by real time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator. Different types of flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  18. Atmosphere Explorer set for launch

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer-D (Explorer-54) is described which will explore in detail an area of the earth's outer atmosphere where important energy transfer, atomic and molecular processes, and chemical reactions occur that are critical to the heat balance of the atmosphere. Data are presented on the mission facts, launch vehicle operations, AE-D/Delta flight events, spacecraft description, scientific instruments, tracking, and data acquisition.

  19. Hermes rescue strategies during launch

    NASA Astrophysics Data System (ADS)

    Cledassou, Rodelphe

    Safety and rescue strategies during the launch of Hermes space plane by Ariane 5 are discussed. Before solid booster separation, the pilots must be ejected by seats which are later recovered. After solid booster separation it becomes possible to extract the plane, which can perform a reentry leading to an available landing site or to sea recovery. When there is no useful landing site, the plane can be injected on a downgraded orbit.

  20. Results from the Prototype GLOBE at Night Worldwide Light Pollution Observation Program

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Pompea, S. M.; Isbell, D.; Orellana, D.; Blurton, C.; Henderson, S.

    2006-06-01

    Students, families, and educators worldwide participated in GLOBE at Night - an international event designed to observe and record the visible stars as a means of measuring light pollution in a given location. Participation was open to anyone - anywhere in the world - who could get outside and look skyward during the week of March 22-29, 2006. Our goal was 5000 observations from around the world in this prototype program.The hands-on learning activities associated with the program were designed to extend the traditional classroom and school day with a week of nighttime observations involving teachers, students and their families. By locating specific constellations in the sky, students from around the world learned how the lights in their community contribute to light pollution. Students explored the different light sources in their community learning the relationship between science, technology and society, and they reported their observations online through a central database allowing for authentic worldwide research and analysis. The observations made during GLOBE at Night helped students and scientists together assess how the quality of the night sky varies around the world as well as the level of energy wastage associated with poorly-shielded lights.For more information, visit http://www.globe.gov/globeatnight.GLOBE at Night is a collaboration between The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS) in Chile , Windows to the Universe, and Environmental Systems Research Institute, Inc. (ESRI).

  1. Check and modification of GlobeLand30 with MODIS NDVI

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Liao, Anping; Peng, Shu; Zheng, Xinyan; Li, Ming

    2015-10-01

    MODIS NDVI time-series data could indicate vegetation status in each season and have been widely used for land cover classification and studies in the fields of vegetation and land degradation monitoring. During global land cover mapping project at 30m resolution aiming at developing high quality product, there were mistakes of classification between bareland and vegetation in GlobeLand30 data in regions surrounding deserts because that the dates of some images are not in growing season. In this paper, we proposed a method to check GlobeLand30 data of 2010 in these areas. Max NDVI value of MODIS NDVI time-series data is chosen to represent growing conditions of vegetation. And then vegetation fraction (VF) calculated from the max NDVI value is divided into bareland and vegetation based on the definition of bareland that VF of bareland is lower than 10%. The dimidiated VF maps are employed to check GlobeLand30 with the help of high resolution images and other references. Finally, errors found out by steps above are modified with VF maps and segmentation objects of images at 30m resolution. 149 map sheets of GlobeLand30 were checked and 105 of them were modified. 13409 samples in 10 map sheets totally were selected to assess the effect of the approach. The result showed that the accuracy after modification of GlobeLand30 was higher than that before modification.

  2. Voice command weapons launching system

    NASA Astrophysics Data System (ADS)

    Brown, H. E.

    1984-09-01

    This abstract discloses a voice-controlled weapons launching system for use by a pilot of an aircraft against a plurality of simultaneously appearing (i.e., existing) targets, such as two or more aggressor aircraft (or tanks, or the like) attacking more aggressor aircraft. The system includes, in combination, a voice controlled input device linked to and controlling a computer; apparatus (such as a television camera, receiver, and display), linked to and actuated by the computer by a voice command from the pilot, for acquiring and displaying an image of the multi-target area; a laser, linked to and actuated by the computer by a voice command from the pilot to point to (and to lock on to) any one of the plurality of targets, with the laser emitting a beam toward the designated (i.e., selected) target; and a plurality of laser beam-rider missiles, with a different missile being launched toward and attacking each different designated target by riding the laser beam to that target. Unlike the prior art, the system allows the pilot to use his hands full-time to fly and to control the aircraft, while also permitting him to launch each different missile in rapid sequence by giving a two-word spoken command after he has visually selected each target of the plurality of targets, thereby making it possible for the pilot of a single defender aircraft to prevail against the plurality of simultaneously attacking aircraft, or tanks, or the like.

  3. Launch Services, a Proven Model

    NASA Astrophysics Data System (ADS)

    Trafton, W. C.; Simpson, J.

    2002-01-01

    From a commercial perspective, the ability to justify "leap frog" technology such as reusable systems has been difficult to justify because the estimated 5B to 10B investment is not supported in the current flat commercial market coupled with an oversupply of launch service suppliers. The market simply does not justify investment of that magnitude. Currently, next generation Expendable Launch Systems, including Boeing's Delta IV, Lockheed Martin's Atlas 5, Ariane V ESCA and RSC's H-IIA are being introduced into operations signifying that only upgrades to proven systems are planned to meet the changes in anticipated satellite demand (larger satellites, more lifetime, larger volumes, etc.) in the foreseeable future. We do not see a new fleet of ELVs emerging beyond that which is currently being introduced, only continuous upgrades of the fleet to meet the demands. To induce a radical change in the provision of launch services, a Multinational Government investment must be made and justified by World requirements. The commercial market alone cannot justify such an investment. And if an investment is made, we cannot afford to repeat previous mistakes by relying on one system such as shuttle for commercial deployment without having any back-up capability. Other issues that need to be considered are national science and security requirements, which to a large extent fuels the Japanese, Chinese, Indian, Former Soviet Union, European and United States space transportation entries. Additionally, this system must support or replace current Space Transportation Economies with across-the-board benefits. For the next 10 to 20 years, Multinational cooperation will be in the form of piecing together launch components and infrastructure to supplement existing launch systems and reducing the amount of non-recurring investment while meeting the future requirements of the End-User. Virtually all of the current systems have some form of multinational participation: Sea Launch

  4. Heavenly Networks. Celestial Maps and Globes in Circulation between Artisans, Mathematicians, and Noblemen in Renaissance Europe.

    PubMed

    Gessner, Samuel

    2015-01-01

    The aim of this paper is to examine the iconography on a set of star charts by Albrecht Dürer (1515), and celestial globes by Caspar Vopel (1536) and Christoph Schissler (1575). The iconography on these instruments is conditioned by strong traditions which include not only the imagery on globes and planispheres (star charts), but also ancient literature about the constellations. Where this iconography departs from those traditions, the change had to do with humanism in the sixteenth century. This "humanistic" dimension is interwoven with other concerns that involve both "social" and "technical" motivations. The interplay of these three dimensions illustrates how the iconography on celestial charts and globes expresses some features of the shared knowledge and shared culture between artisans, mathematicians, and nobles in Renaissance Europe. PMID:26495585

  5. The Significance of Ongoing Teacher Support in Earth Science Education Programs: Evidence from the GLOBE Program

    NASA Astrophysics Data System (ADS)

    Penuel, B.; Korbak, C.; Shear, L.

    2003-12-01

    The GLOBE program provides a rich context for examining issues concerning implementation of inquiry-oriented, scientist-driven educational programs, because the program has both a history of collecting evaluation data on implementation and mechanisms for capturing program activity as it occurs. In this paper, researchers from SRI International's evaluation team explore the different roles that regional partners play in preparing and supporting teachers to implement the GLOBE Program, an international inquiry-based Earth science education initiative that has trained over 14,000 teachers worldwide. GLOBE program evaluation results show the program can be effective in increasing students' inquiry skills, but that the program is also hard for teachers to implement (Means et al., 2001; Penuel et al., 2002). An analysis of GLOBE's regional partner organizations, which are tasked with preparing teachers to implement its data collection and reporting protocols with students, shows that some partners are more successful than others. This paper reports findings from a quantitative analysis of the relationship between data reporting and partner support activities and from case studies of two such regional partners focused on analyzing what makes them successful. The first analysis examined associations between partner training and support activities and data reporting. For this analysis, we used data from the GLOBE Student Data Archive matched with survey data collected from a large sample of GLOBE teachers as part of SRI's Year 5 evaluation of GLOBE. Our analyses point to the central importance of mentoring and material support to teachers. We found that incentives, mentoring, and other on-site support to teachers have a statistically significant association with higher data reporting levels. We also found that at present, teachers access these supports less often than they access listservs and e-mail communication with teachers after GLOBE training. As a follow-up to this

  6. Effectivity of atmospheric electricity on launch availability

    NASA Technical Reports Server (NTRS)

    Ernst, John A.

    1991-01-01

    Thunderstorm days at KSC; percentage of frequency of thunderstorms (1957-1989); effect of lightning advisory on ground operations; Shuttle launch history; Shuttle launch weather history; applied meteorology unit; and goals/operational benefits. This presentation is represented by viewgraphs.

  7. Delta launch vehicle inertial guidance system (DIGS)

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1973-01-01

    The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.

  8. NASA's Space Launch System: Powering Forward

    NASA Video Gallery

    One year ago, NASA announced a new capability for America's space program: a heavy-lift rocket to launch humans farther into space than ever before. See how far the Space Launch System has come in ...

  9. Soyuz Rolled to Launch Pad in Kazakhstan

    NASA Video Gallery

    The Soyuz rocket is rolled out to the launch pad by train on Tuesday, March 26, 2013, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for March 29 and will send Ex...

  10. Expedition 30 Soyuz Moves to Launch Pad

    NASA Video Gallery

    On Dec. 19, the Soyuz TMA-03M spacecraft and its booster were moved to the launch pad at the Baikonur Cosmodrome in Kazakhstan for final preparations before launch to the International Space Statio...

  11. Delta XTE Launch Activities (Scrub #2)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This NASA Kennedy Space Center video presents Delta XTE (X-Ray Timing Explorer) launch activities on 12/11/95. The launch was rescheduled for next weekend due to out of limit upper level wind conditions.

  12. Nanosatellite Launch Adapter System (NLAS) Overview

    NASA Technical Reports Server (NTRS)

    Chartres, James

    2015-01-01

    An overview of the Nanosatellite Launch Adapter System (NLAS) is provided that contains information on NLAS' objectives and relevance, structural components and position in the launch vehicle stack, and details on its three main components.

  13. A study on the impact of the GLOBE program on students' attitudes regarding environmental issues

    NASA Astrophysics Data System (ADS)

    Manfready, Gary Martin

    A key objective in environmental curricula should be to instill responsible and concerned attitudes toward environmental issues. This can be accomplished through the application of innovative programs which emphasize the development of the affective domain of learning. The development of personal attitudes is one form of evidence that the affective domain is being addressed. This study was undertaken to determine the impact of the GLOBE program (Global Learning and Observation to Benefit the Environment) on the attitudes of students toward environmental issues. Three hundred and five middle and high school level students from four states were surveyed to determine their attitudes toward selected environmental statements. Results demonstrated that attitudes toward environmental issues of GLOBE students were significantly greater than non-GLOBE students. Additional analysis demonstrated that regardless of grade levels, gender, racial and ethnicity backgrounds, depth of GLOBE involvement, and degree of teachers' GLOBE experiences, GLOBE students display similar levels of attitudes toward environmental issues. Establishment of a reliable Likert scale measurement instrument was accomplished. Permission to use an existing survey was obtained. Additional items were added to increase validity. Establishment of reliability was accomplished through a Guttman split half analysis of the piloted instrument. Through the use of factor analysis, four categories or sub-groupings of attitudes were determined to exist. Reliability was established for the factors. These sub-groupings were identified as personal commitment to environmental protection, awareness of avenues for action, loci of control, and students' perception of teachers' abilities to present environmental topics. These categories were a part of the analysis of four hypotheses.

  14. Engaging the Public in the Citizen Science GLOBE at Night Campaign

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Sparks, R. T.; Pompea, S. M.

    2011-05-01

    The emphasis in the international star-hunting campaign, GLOBE at Night, is in bringing awareness to the public on issues of light pollution. Light pollution threatens not only observatory sites and our "right to starlight", but can affect energy consumption, wildlife and health. GLOBE at Night has successfully reached a few 100,000 citizen-scientists. What steps can be taken to improve it? To promote the campaign via popular social media, GLOBE at Night created Facebook and Twitter pages. To increase participation in the 2011 campaign, children and adults submitted their sky brightness measurements in real time with smart phones or tablets using the web application at www.globeatnight.org/webapp/. With smart phones and tablets, the location, date and time register automatically. For those without smart mobile devices, user-friendly tools on the GLOBE at Night report page were reconfigured to determine latitude and longitude more easily and accurately. To increase the robustness of the data, 2 new approaches were taken. GLOBE at Night prototyped an "Adopt a Street” program in Tucson. The aim was for people to adopt different major or semi-major streets and take measurements every mile or so for the length of the street. The grid of measurements would canvas the town, allowing for comparisons of light levels over time (hours, days, years) or search for dark sky oases or light polluted areas. The increase to 2 campaigns in 2011 re-enforces these studies. The intent is to offer the program year-round for seasonal studies. The data can also be used to compare with datasets on wildlife, health, and energy consumption. Recently, NOAO and the Arizona Game and Fish Department have started a project with GLOBE at Night data and bat telemetry to examine a dark skies corridor in Tucson where the endangered bats fly. In our presentation, results of our efforts are discussed.

  15. Analysis and Evaluation of GPM Pre-launch Algorithms

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Venkatachalam; Le, Minda

    2014-05-01

    The Global Precipitation Measurement (GPM) mission is the next satellite mission to obtain global precipitation measurements following success of TRMM (Tropical Rainfall Measuring Mission). GPM will be launched on February 28, 2014. The GPM mission architecture consists of satellite instruments flying within a constellation to provide accurate precipitation measurements around the globe every 2 to 4 hours and the its orbits cover up to 65 degree latitude of the earth. The GPM core satellite will be equipped with a dual-frequency precipitation radar (DPR) operating at Ku- (13.6 GHz) and Ka- (35.5 GHz) band. DPR on aboard the GPM core satellite is expected to improve our knowledge of precipitation processes relative to the single-frequency (Ku- band) radar used in TRMM by providing greater dynamic range, more detailed information on microphysics, and better accuracies in rainfall and liquid water content retrievals. New Ka- band channel observation of DPR will help to improve the detection thresholds for light rain and snow relative to TRMM PR. The dual-frequency signals will allow us to distinguish regions of liquid, frozen, and mixed-phase precipitation. GPM-DPR level 2 pre-launch algorithms include seven modules. Classification module plays a critical function in the retrieval system of DPR. The outputs of the classification module determine the nature of microphysical models and algorithms to be used in the retrievals. Classification module involves two main aspects: 1) precipitation type classification, including classifying stratiform, convective, and other rain type; and 2) hydrometeor profile characterization or hydrometeor phase state detection. DPR offers dual-frequency observations along the vertical profile, which provides additional information for investigating the microphysical properties using the difference in measured radar reflectivities at the two frequencies, a quantity often called the measured dual-frequency ratio (DFRm). The vertical profile

  16. Visible and near infrared observation on the Global Aerosol Backscatter Experiment (GLOBE)

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Cavanaugh, John F.; Chudamani, S.; Bufton, Jack L.; Sullivan, Robert J.

    1991-01-01

    The Global Aerosol Backscatter Experiment (GLOBE) was intended to provide data on prevailing values of atmospheric backscatter cross-section. The primary intent was predicting the performance of spaceborne lidar systems, most notably the Laser Atmospheric Wind Sounder (LAWS) for the Earth Observing System (EOS). The second and related goal was to understand the source and characteristics of atmospheric aerosol particles. From the GLOBE flights, extensive data was obtained on the structure of clouds and the marine planetary boundary layer. A notable result for all observations is the consistency of the large increases in the aerosol scattering ratio for the marine boundary layer. Other results are noted.

  17. The GLOBE Program in Alabama: A Mentoring Approach to State-wide Implementation

    NASA Astrophysics Data System (ADS)

    Cox, G. N.

    2003-12-01

    Established in 1997, the GLOBE in Alabama (GIA) partnership has trained more than 1,000 teachers in almost 500 schools - over 25% of the total number of K-12 schools in Alabama. Over those five years, GIA has strived to achieve recognition of GLOBE as the "glue" to Alabama's new education program, the Alabama Math, Science and Technology Initiative (AMSTI). In 2003, GIA trained over 370 AMSTI K-8 teachers at two AMSTI hub sites in north Alabama. As the AMSTI program grows with the addition of future hub sites (eleven are planned), GIA must ready itself to train thousands of AMSTI teachers during the two-week summer professional development institutes that are part of AMSTI. A key component of AMSTI is a mentoring program conducted by math and science specialists - classroom educators loaned to the AMSTI hub sites by the school systems each hub site serves. The AMSTI mentoring program mirrors the GIA mentoring model begun in 1999 that originally funded regional GLOBE master teachers to provide technical assistance, feedback, and coaching for other GLOBE teachers. In schools where GIA mentor teachers were working, nearly a 100% increase in GLOBE student data reporting was noted. The GIA mentors now work within the hub site framework to ensure implementation of GLOBE as an integrated part of AMSTI. With the continued support of the State of Alabama, GIA will establish a network of mentors who work with the AMSTI hub site specialists in providing support for all AMSTI teachers. GIA is administered by the National Space Science and Technology Center, a partnership between NASA and the State of Alabama's seven research universities. Operational funding for GIA has been provided by the University of Alabama in Huntsville's Earth System Science Center, the NASA Marshall Space Flight Center, the Alabama Space Grant Consortium, The Alabama Department of Economic and Community Affairs, the Alabama State Department of Education, and Legacy. GIA has been able to build on these

  18. The Citizen-Scientist as Data Collector: GLOBE at Night, Part 1

    NASA Astrophysics Data System (ADS)

    Ward, D. L.; Henderson, S.; Meymaris, K.; Walker, C.; Pompea, S. M.; Gallagher, S.; Salisbury, D.

    2006-12-01

    GLOBE at Night is an international science event designed to observe and record the visible stars as a means of measuring light pollution in a given location. Increased and robust understanding of our environment requires learning opportunities that take place outside of the conventional K-12 classroom and beyond the confines of the school day. This hands-on learning activity extended the traditional classroom and school day through 11 nights last March, when 18,000 citizen-scientists made over 4,500 observations from 96 countries. Utilizing the international networking capabilities of The GLOBE Program, GLOBE at Night was designed to make data collection and input user-friendly. Citizen-scientists were able to participate in this global scientific campaign by submitting their observations through an online database, allowing for authentic worldwide research and analysis by participating scientists. The data collected is available online in a variety of formats for use by students, teachers and scientists worldwide to assess how the quality of the night sky varies around the world. Using the online analysis tools provided by ESRI, participants were able to compare the observed data with population density and nighttime lighting datasets (DMSP Earth at Night). This comparison allowed correlations between observed data patterns and commonly used indices of population density and energy usage. This session will share our results and demonstrate how students and scientists across the globe can explore and analyze the results of this exciting campaign. We will discuss how the project team planned and executed the project in such a way that non-astronomers were able to make valid and useful contributions. We will also discuss lessons learned and best practices based on the 2006 campaign. GLOBE at Night is a collaborative effort sponsored by The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS

  19. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The last mission of the Shuttle-Mir program begins as the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2. A torrent of water is seen flowing onto the mobile launcher platform (MLP) from numerous large quench nozzles, or 'rainbirds,' mounted on its surface. This water, part of the Sound Suppression System, helps protect the orbiter and its payloads from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during launch. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.

  20. Artist's rendering of Launch and Translunar Injection

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Launch and Translunar Injection: On launch day at Complex 39A, Kennedy Space Center, Fla., the astronauts enter the spacecraft. After launch and Saturn V first-stage burnout and jettison, the S-II second stage ignites. The crew checks spacecraft systems in Earth orbit before the S-IVB third stage ignites the second time to send Apollo 11 to the Moon.

  1. Lightning interaction with launch facilities

    NASA Astrophysics Data System (ADS)

    Mata, C. T.; Rakov, V. A.

    2009-12-01

    Lightning is a major threat to launch facilities. In 2008 and 2009 there have been a significant number of strikes within 5 nautical miles of Launch Complexes 39A and 39B at the Kennedy Space Center. On several occasions, the Shuttle Space Vehicle (SSV) was at the pad. Fortunately, no accidents or damage to the flight hardware occurred, but these events resulted in many launch delays, one launch scrub, and many hours of retesting. For complex structures, such as launch facilities, the design of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some “unprotected” or “exposed” areas. In order to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for a large number of years using a long term ground flash density that corresponds to the geographical region where the structures being analyzed are located or will be installed. The output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution. This tool was used in designing the lightning protection system of Launch Complex 39B at the Kennedy Space Center, FL, for NASA’s Constellation program. The tool allowed the designers to select the position of the towers and to design the catenary wire system to minimize the probability of direct strikes to the spacecraft and associated ground support equipment. This tool can be used to evaluate

  2. Titan III-C Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph shows a Titan III-C launch vehicle. Titan vehicles are designed to carry payloads equal to the size and weight of those on the space shuttle. The Titan IV Centaur can put 10,000 pound payloads into geosynchronous orbit, 22,300 miles above Earth. For more information about Titan and Centaur, please see chapters 4 and 8, respectively, in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  3. Reusable launch vehicle development research

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  4. Saturn I (SA-4) Launch

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight's upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for 'Project Highwater' physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket

  5. Saturn I (SA-4) Launch

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight's upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for 'Project Highwater' physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket

  6. EB welding of launch vehicles

    NASA Astrophysics Data System (ADS)

    Szabo, Attila

    While large structural components can be electron beam (EB) welded, equipment and operating costs increase with the requisite vacuum chamber's size. Attention is presently given to cost-effective ways of EB welding launch-vehicle assemblies without compromise of weld quality in such alloys as 2219, 2090, Weldalite, and HP9-4-30/20. Weld strengths at both room and cryogenic temperatures that were 50 percent higher than those obtainable for such materials with arc welding have been demonstrated. Fracture toughnesses were also 40-50 percent higher than arc-welded values. Attention is given to EB joint fit-up allowables for 2219-T87 Al alloy.

  7. APOLLO 12: A heartstopping launch

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 12: A heartstopping launch as the rocket is struck by lightning. From the film documentary 'APOLLO 12: 'Pinpoint for Science'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 12: Second manned lunar landing and return with Charles 'Pete' Conrad, Jr., Richard F. Gordon, and Alan F. Bean. Landed in the Ocean of Storms on November 19, 1969; deployed television camera and ALSEP experiments; two EVA's performed; collected core samples and lunar materials; photographed and retrieved parts from surveyor 3 spacecraft. Mission duration 244hrs 36min 24sec

  8. GRYPHON: Air launched space booster

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  9. GRYPHON: Air launched space booster

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  10. An Overview of JPSS-1 VIIRS Pre-Launch Testing and Performanc

    NASA Astrophysics Data System (ADS)

    Xiong, X.; McIntire, J.; Oudrari, H.; Thome, K.; Butler, J. J.; Ji, Q.; Schwarting, T.

    2015-12-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument for the Suomi National Polar-orbiting Partnership (S-NPP) satellite launched in 2011 and future Joint Polar Satellite System (JPSS) satellites. The JPSS-1 (J1) spacecraft is scheduled to launch in January 2017. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a cross-track scanning radiometer using a rotating telescope with spatial resolutions of 375 and 750 m at nadir for its imaging and moderate bands, respectively. It has 22 spectral bands covering wavelengths from 0.412 to 12.01 μm, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (DNB). VIIRS observations are used to generate 22 environmental data products (EDRs), enabling a wide range of applications. This paper describes J1 VIIRS pre-launch testing program, instrument calibration and characterization strategies, and its projected performance based on independent analyses made by the NASA VIIRS Characterization Support Team (VCST). It also discusses the effort made the joint government team to produce sensor at-launch baseline performance parameters and the metrics needed to populate the Look-Up-Tables (LUTs) needed for the sensor data records (SDR) production. Sensor performance to be illustrated in this paper include signal-to-noise ratios (SNRs), dynamic range, spatial and spectral performance, response versus scan-angle (RVS), and polarization sensitivity.

  11. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post...

  12. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post...

  13. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post...

  14. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post...

  15. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  16. Launch system development in the Pacific Rim

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Page, John R.

    1993-01-01

    Several Western Pacific Rim nations are beginning to challenge the domination of the United States, Europe, and the former Soviet Union in the international market for commercial launch sevices. This paper examines the current development of launch systems in China, Japan, and Australia. China began commercial launch services with their Long March-3 in April 1990, and is making enhancements to vehicles in this family. Japan is developing the H-2 rocket which will be marketed on a commercial basis. In Australia, British Aerospace Ltd. is leading a team conducting a project definition study for an Australian Launch Vehicle, aimed at launching the new generation of satellites into low Earth orbit.

  17. 14 CFR 1214.117 - Launch and orbit parameters for a standard launch.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Launch and orbit parameters for a standard..., Reimbursable Customers § 1214.117 Launch and orbit parameters for a standard launch. To qualify for the...) Launch from Kennedy Space Center (KSC) into the customer's choice of two standard mission orbits: 160...

  18. 14 CFR 1214.117 - Launch and orbit parameters for a standard launch.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Launch and orbit parameters for a standard..., Reimbursable Customers § 1214.117 Launch and orbit parameters for a standard launch. To qualify for the...) Launch from Kennedy Space Center (KSC) into the customer's choice of two standard mission orbits: 160...

  19. 14 CFR 1214.117 - Launch and orbit parameters for a standard launch.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Launch and orbit parameters for a standard..., Reimbursable Customers § 1214.117 Launch and orbit parameters for a standard launch. To qualify for the...) Launch from Kennedy Space Center (KSC) into the customer's choice of two standard mission orbits: 160...

  20. 14 CFR 1214.117 - Launch and orbit parameters for a standard launch.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Launch and orbit parameters for a standard..., Reimbursable Customers § 1214.117 Launch and orbit parameters for a standard launch. To qualify for the...) Launch from Kennedy Space Center (KSC) into the customer's choice of two standard mission orbits: 160...

  1. Railgun launch of small bodies

    SciTech Connect

    Drobyshevski, E.M.; Zhukov, B.G.; Sakharov, V.A.

    1995-01-01

    The small body launching using gas or plasma faces the fundamental problem caused by excess energy loss due to great wall surface/volume of the barrel ratio. That is why the efficiency of the plasma armature (PA) railgun acceleration is maximum for 8--10 mm-size bodies and drops as their size decreases. For the nuclear fusion applications, where {number_sign}1--2 mm-size pellets at 5--10 km/s velocity are desirable, one is forced to search for compromise between the body size (3--4 mm) and its velocity (3 km/s). Under these conditions, EM launchers did not demonstrate an advantage over the light-gas guns. When elaborating the {number_sign}1 mm railgun, the authors made use of the ideology of the body launching at constant acceleration close to the body strength or the electrode skin-layer explosion limits. That shortened the barrel length sufficiently. The system becomes highly compact thus permitting rapid test of new operation modes and different modifications of the design including the magnetic field augmentation. As a result of these refinements, the difficulties caused by the catastrophic supply of mass ablated from the electrodes were overcome and regimes of {number_sign}1 mm body non-sabot speed-up to 4.5 km/s were found. Potentialities of the small system created are far from being exhausted.

  2. Mortar-launched surveillance system

    NASA Astrophysics Data System (ADS)

    Lewis, Carl E.; Cooper, Steve; Carlton, Lindley A.

    2001-09-01

    Accurate Automation Corporation has completed the conceptual design of a mortar launched air vehicle system to perform close range or over-the-horizon surveillance missions. Law enforcement and military units require an organic capability to obtain real time intelligence information of time critical targets. Our design will permit law enforcement to detect, classify, locate and track these time critical targets. The surveillance system is a simple, unmanned fixed-winged aircraft deployed via a conventional mortar tube. The aircraft's flight surfaces are deployed following mortar launch to permit maximum range and time over target. The aircraft and sensor system are field retrievable. The aircraft can be configured with an engine to permit extended time over target or range. The aircraft has an integrated surveillance sensor system; a programmable CMOS sensor array. The integrated RF transmitter is capable of down- linking real-time video over line-of-sight distances exceeding 10 kilometers. The major benefit of the modular design is the ability to provide surveillance or tracking quickly at a low cost. Vehicle operational radius and sensor field coverage as well as design trade results of vehicle range and endurance performance and payload capacity at operational range are presented for various mortar configurations.

  3. STS-109 Shuttle Mission Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Carrying the STS-109 crew of seven, the Space Shuttle Orbiter Columbia blasted from its launch pad as it began its 27th flight and 108th flight overall in NASA's Space Shuttle Program. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST) which was developed, designed, and constructed by the Marshall Space Flight Center. Captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, the HST received the following upgrades: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Four of the crewmembers performed 5 space walks in the 10 days, 22 hours, and 11 minutes of the the STS-109 mission.

  4. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. The competitive effects of launch vehicle technology

    NASA Astrophysics Data System (ADS)

    Dupnick, Edwin; Hopkins, Charles

    1996-03-01

    We performed a study to evaluate the economics of advanced technology incorporation in selected expendable launch vehicles, the Ariane, the Atlas, and the Delta. The competitive merits of these launch vehicles were assessed against a reference mission—the delivery of a telecommunications satellite to geostationary orbit. We provide estimates of the cost of the launch services for the competing missions; the GE PRICE models were used to provide cost estimates for the three launch vehicles. Using publicly available data, a comparison of cost with price for the launch was utilized to examine the issue of potential profit earned and/or subsidization of the cost. Other factors such as the location of the launch site, transportation costs, exchange rates, the availability of financing at competitive rates and communication problems was also considered in evaluating the competitive launch vehicle systems.

  6. The competitive effects of launch vehicle technology

    SciTech Connect

    Dupnick, E.; Hopkins, C.

    1996-03-01

    We performed a study to evaluate the economics of advanced technology incorporation in selected expendable launch vehicles, the Ariane, the Atlas, and the Delta. The competitive merits of these launch vehicles were assessed against a reference mission{emdash}the delivery of a telecommunications satellite to geostationary orbit. We provide estimates of the cost of the launch services for the competing missions; the GE PRICE models were used to provide cost estimates for the three launch vehicles. Using publicly available data, a comparison of cost with price for the launch was utilized to examine the issue of potential profit earned and/or subsidization of the cost. Other factors such as the location of the launch site, transportation costs, exchange rates, the availability of financing at competitive rates and communication problems was also considered in evaluating the competitive launch vehicle systems. {copyright} {ital 1996 American Institute of Physics.}

  7. Design, Development, and Maintenance of the GLOBE Program Website and Database

    NASA Technical Reports Server (NTRS)

    Brummer, Renate; Matsumoto, Clifford

    2004-01-01

    This is a 1-year (Fy 03) proposal to design and develop enhancements, implement improved efficiency and reliability, and provide responsive maintenance for the operational GLOBE (Global Learning and Observations to Benefit the Environment) Program website and database. This proposal is renewable, with a 5% annual inflation factor providing an approximate cost for the out years.

  8. Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment

    NASA Astrophysics Data System (ADS)

    Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.

    2011-09-01

    This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.

  9. Diurnal Soil Temperature Effects within the Globe[R] Program Dataset

    ERIC Educational Resources Information Center

    Witter, Jason D.; Spongberg, Alison L.; Czajkowski, Kevin P.

    2007-01-01

    Long-term collection of soil temperature with depth is important when studying climate change. The international program GLOBE[R] provides an excellent opportunity to collect such data, although currently endorsed temperature collection protocols need to be refined. To enhance data quality, protocol-based methodology and automated data logging,…

  10. Geography via Use of the Globe: Do It This Way, 5.

    ERIC Educational Resources Information Center

    McKinney, William M.

    In order to visualize relationships of space for teaching mathematical geography, this booklet shows how the globe may be used as a model of the earth in space. Its purpose is to stimulate the teaching of mathematical principles in secondary-school geography and earth science through a survey of basic principles of global usage. The introduction…

  11. Personal Globe Inventory: Measurement of the Spherical Model of Interests and Competence Beliefs. Monograph.

    ERIC Educational Resources Information Center

    Tracey, Terence J. G.

    2002-01-01

    Describes the development of the Personal Globe Inventory, based on a spherical model of interests, which contains 18 scales representing people/things, data/ideas, and prestige dimensions of occupations. Discusses tests of reliability and construct validity and provides five sample interpretations of its use. (Contains 69 references.) (SK)

  12. Educational Research and Strategies of World-Forming: The Globe, the Unconscious, and the Child

    ERIC Educational Resources Information Center

    Baker, Bernadette

    2009-01-01

    In this article, the author revisits the interlinked conceptualizations of globe, of an unconscious, and of the child, which subtly shape repetitively appearing issues that educational research now entails, confronts, and works through. By looking exclusively at institutional structures, educational policy, or classroom-based interactions, the…

  13. a Virtual Globe-Based Multi-Resolution Tin Surface Modeling and Visualizetion Method

    NASA Astrophysics Data System (ADS)

    Zheng, Xianwei; Xiong, Hanjiang; Gong, Jianya; Yue, Linwei

    2016-06-01

    The integration and visualization of geospatial data on a virtual globe play an significant role in understanding and analysis of the Earth surface processes. However, the current virtual globes always sacrifice the accuracy to ensure the efficiency for global data processing and visualization, which devalue their functionality for scientific applications. In this article, we propose a high-accuracy multi-resolution TIN pyramid construction and visualization method for virtual globe. Firstly, we introduce the cartographic principles to formulize the level of detail (LOD) generation so that the TIN model in each layer is controlled with a data quality standard. A maximum z-tolerance algorithm is then used to iteratively construct the multi-resolution TIN pyramid. Moreover, the extracted landscape features are incorporated into each-layer TIN, thus preserving the topological structure of terrain surface at different levels. In the proposed framework, a virtual node (VN)-based approach is developed to seamlessly partition and discretize each triangulation layer into tiles, which can be organized and stored with a global quad-tree index. Finally, the real time out-of-core spherical terrain rendering is realized on a virtual globe system VirtualWorld1.0. The experimental results showed that the proposed method can achieve an high-fidelity terrain representation, while produce a high quality underlying data that satisfies the demand for scientific analysis.

  14. Harmonizing the Educational Globe. World Polity, Cultural Features, and the Challenges to Educational Research

    ERIC Educational Resources Information Center

    Trohler, Daniel

    2010-01-01

    The general thesis of this paper is that the motives of the currently dominant global educational governance are rooted in a specific cultural milieu in the time of the Cold War, more precisely in the late 1950s, heading to a harmonious world. The more specific thesis is that a series of failures in the achievement of this harmonized globe led to…

  15. Writing Education around the Globe: Introduction and Call for a New Global Analysis

    ERIC Educational Resources Information Center

    Graham, Steve; Rijlaarsdam, Gert

    2016-01-01

    This paper presents a special issue on writing around the globe. Researchers from across the world describe writing practices in their country using a wide variety of methodology. The papers show that while there are many similarities in writing instruction from one country to the next, there are also many differences. As a result, the authors…

  16. A Low-Cost Celestial Globe for Hands-On Astronomy

    ERIC Educational Resources Information Center

    Ruangsuwan, Chaiyapong; Arayathanitkul, Kwan

    2009-01-01

    A low-cost celestial globe is developed to support astronomical coordinate learning. It is used for demonstrating how stars are positioned and to analyse the motion of celestial bodies or diurnal motion. The model was implemented at a weekend astronomy camp provided for students from schools in the northeastern region of Thailand. A series of…

  17. Implementation Variation and Fidelity in an Inquiry Science Program: Analysis of GLOBE Data Reporting Patterns

    ERIC Educational Resources Information Center

    Penuel, William R.; Means, Barbara

    2004-01-01

    This article examines variations in patterns in the enactment of a large-scale kindergarten through Grade 12 science inquiry program. Student data reports in the GLOBE program provide a useful measure of implementation because key design elements in the program are student collection and reporting of local environmental data. We examined…

  18. Crisscrossing the Globe: A World of International Books for Young People

    ERIC Educational Resources Information Center

    Poe, Elizabeth

    2010-01-01

    2010 marks the fifth year the United States Board on Books for Young People (USBBY) has selected an honor list of international books. Once again, titles on the list crisscross the globe. They have been published in Australia, Canada, Denmark, France, India, Japan, the Netherlands, New Zealand, Sweden, Switzerland, and the United Kingdom. This…

  19. Interactive Visualization and Analysis of Geospatial Data Sets - TrikeND-iGlobe

    NASA Astrophysics Data System (ADS)

    Rosebrock, Uwe; Hogan, Patrick; Chandola, Varun

    2013-04-01

    The visualization of scientific datasets is becoming an ever-increasing challenge as advances in computing technologies have enabled scientists to build high resolution climate models that have produced petabytes of climate data. To interrogate and analyze these large datasets in real-time is a task that pushes the boundaries of computing hardware and software. But integration of climate datasets with geospatial data requires considerable amount of effort and close familiarity of various data formats and projection systems, which has prevented widespread utilization outside of climate community. TrikeND-iGlobe is a sophisticated software tool that bridges this gap, allows easy integration of climate datasets with geospatial datasets and provides sophisticated visualization and analysis capabilities. The objective for TrikeND-iGlobe is the continued building of an open source 4D virtual globe application using NASA World Wind technology that integrates analysis of climate model outputs with remote sensing observations as well as demographic and environmental data sets. This will facilitate a better understanding of global and regional phenomenon, and the impact analysis of climate extreme events. The critical aim is real-time interactive interrogation. At the data centric level the primary aim is to enable the user to interact with the data in real-time for the purpose of analysis - locally or remotely. TrikeND-iGlobe provides the basis for the incorporation of modular tools that provide extended interactions with the data, including sub-setting, aggregation, re-shaping, time series analysis methods and animation to produce publication-quality imagery. TrikeND-iGlobe may be run locally or can be accessed via a web interface supported by high-performance visualization compute nodes placed close to the data. It supports visualizing heterogeneous data formats: traditional geospatial datasets along with scientific data sets with geographic coordinates (NetCDF, HDF, etc

  20. Saturn I (SA-3) Launch

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Saturn I (SA-3) flight lifted off from Kennedy Space Center launch Complex 34, November 16, 1962. The third launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. During the SA-3 flight, the upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for 'Project Highwater' physics experiment. The water was released at an altitude of 65 miles, where within only 5 seconds, it expanded into a massive ice cloud 4.6 miles in diameter. Release of this vast

  1. The Use of the Nelder-Mead Method in Determining Projection Parameters for Globe Photographs

    NASA Astrophysics Data System (ADS)

    Gede, M.

    2009-04-01

    A photo of a terrestrial or celestial globe can be handled as a map. The only hard issue is its projection: the so-called Tilted Perspective Projection which, if the optical axis of the photo intersects the globe's centre, is simplified to the Vertical Near-Side Perspective Projection. When georeferencing such a photo, the exact parameters of the projections are also needed. These parameters depend on the position of the viewpoint of the camera. Several hundreds of globe photos had to be georeferenced during the Virtual Globes Museum project, which made necessary to automatize the calculation of the projection parameters. The author developed a program for this task which uses the Nelder-Mead Method in order to find the optimum parameters when a set of control points are given as input. The Nelder-Mead method is a numerical algorithm for minimizing a function in a many-dimensional space. The function in the present application is the average error of the control points calculated from the actual values of parameters. The parameters are the geographical coordinates of the projection centre, the image coordinates of the same point, the rotation of the projection, the height of the perspective point and the scale of the photo (calculated in pixels/km). The program reads the Global Mappers Ground Control Point (.GCP) file format as input and creates projection description files (.PRJ) for the same software. The initial values of the geographical coordinates of the projection centre are calculated as the average of the control points, while the other parameters are set to experimental values which represent the most common circumstances of taking a globe photograph. The algorithm runs until the change of the parameters sinks below a pre-defined limit. The minimum search can be refined by using the previous result parameter set as new initial values. This paper introduces the calculation mechanism and examples of the usage. Other possible other usages of the method are

  2. Effect of cone angle on the hydraulic characteristics of globe control valve

    NASA Astrophysics Data System (ADS)

    Lin, Zhe; Wang, Huijie; Shang, Zhaohui; Cui, Baoling; Zhu, Chongxi; Zhu, Zuchao

    2015-05-01

    Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature regarding the influence of valve plug on the internal and external features in globe control valves. Thus the effect of valve plug is studied by CFD and experiment in this paper. It is obtained from external features that the pressure drop between upstream and downstream pressure-sampling position increases exponentially with flow rate. And for small valve opening, the increment of pressure drop decreases with the increase of cone angle (β). However, with the increase of valve opening, the effect of cone angle diminishes significantly. It is also found that the cone angle has little effect on flow coefficient (C v) when the valve opening is larger than 70%. But for the cases less than 70%, C v curve varies from an arc to a straight line. The variation of valve performance is caused by the change of internal flow. The results of internal flow show that cone angle has negligible effect on flow properties for the cases of valve opening larger than 70%. However, when valve opening is smaller than 70%, the pressure drop of orifice decreases with the increase of β, making the reduction in value and scope of the high speed zone around the conical surface of valve plug, and then results in a decreasing intensity of adjacent downstream vortex. Meanwhile, it is concluded from the results that the increase of cone angle will be beneficial for the anti-cavitation and anti-erosion of globe control valve. This paper focuses on the internal and external features of globe control valve that caused by the variation of cone angle, arriving at some results beneficial for the design and usage of globe control valve.

  3. Understanding phyolgenetic relationships among species in the Nosema/Vairimorpha clade: what does genetic similarity say about host switching in the microsporidia?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsporidian species with high genetic identity based on rDNA phylogenies have been isolated from different insect species and even higher level host taxa across the globe. Complicating the picture, for genera such as the lepidopteran Nosema and Vairimorpha, isolates from different hosts may be mo...

  4. Launch operations of the SSME

    NASA Astrophysics Data System (ADS)

    Klatt, F. P.

    1983-10-01

    The mission profile, performance over the first eight flights, and inspection and repair procedures for the Shuttle main engines (SSME) are outlined. The Orbiter has three SSMEs, each delivering 470,000 lb thrust at rated level and 512,000 lb thrust at full power level. The engines each have a design lifetime of 55 launches and 27,000 sec operating life. After eight STS flights the SSME maintenance requirements and part replacements have generally followed those experiences during ground tests, i.e., routine checkout of some items are performed every flight, some after a few flights, and replacements are made as needed or scheduled. Hot-fire tests are performed only if a generic defect has been recognized and corrective action taken. Attention is also given to engine sensors to verify functioning status. Details of the inspection procedures, unscheduled maintenance, and inspection tools and instruments are provided.

  5. TDRS is launched from CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Leaving billowing clouds of steam and smoke behind, NASA's Tracking and Data Relay Satellite (TDRS-H) shoots into the blue sky aboard an Atlas IIA/Centaur rocket from Pad 36A, Cape Canaveral Air Force Station. Liftoff occurred at 8:56 a.m. EDT. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system's existing S- and Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit.

  6. TDRS is launched from CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Looking like a Roman candle, NASA's Tracking and Data Relay Satellite (TDRS-H) shoots into the blue sky aboard an Atlas IIA/Centaur rocket from Pad 36A, Cape Canaveral Air Force Station. Liftoff occurred at 8:56 a.m. EDT. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system's existing S- and Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit.

  7. EADS Roadmap for Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Eymar, Patrick; Grimard, Max

    2002-01-01

    still think about the future, especially at industry level in order to make the most judicious choices in technologies, vehicle types as well as human resources and facilities specialization (especially after recent merger moves). and production as prime contractor, industrial architect or stage provider have taken benefit of this expertise and especially of all the studies ran under national funding and own financing on reusable vehicles and ground/flight demonstrators have analyzed several scenarios. VEHICLES/ASTRIUM SI strategy w.r.t. launch vehicles for the two next decades. Among the main inputs taken into account of course visions of the market evolutions have been considered, but also enlargement of international cooperations and governments requests and supports (e.g. with the influence of large international ventures). 1 patrick.eymar@lanceurs.aeromatra.com 2

  8. Redstone Missile on Launch Pad

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Redstone missile No. 1002 on the launch pad at Cape Canaveral, Florida, on May 16, 1958. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and production was begun in 1952. Redstone rockets became the 'reliable workhorse' for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  9. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  10. Space Stations using the Skylon Launch System

    NASA Astrophysics Data System (ADS)

    Hempsell, M.

    After the International Space Station is decommissioned in 2020 or soon after, Skylon will be an operating launch system and it is the obvious means to launch any successor in orbit infrastructure. The study looked at establishing 14 stations of 7 different types located from Low Earth Orbit to the Moon's surface with common elements all launched by Skylon. The key reason for the study was to validate Skylon could launch such an infrastructure, but the study's secondary objectives were to contribute to consideration of what should replace the ISS, and explore a ``multiple small station'' architecture. It was found that the total acquisition costs for LEO stations could be below 1 billion (2010) while for stations beyond LEO total acquisition costs were found to be between 3 and £5 billion. No technical constraints on the Skylon launch system were found that would prevent it launching all 14 stations in under 5 years.

  11. Chemical launch system options for microspacecraft

    NASA Technical Reports Server (NTRS)

    Sargent, Mark G.

    1989-01-01

    The paper presents launch vehicle and upper-stage options for application to lunar and interplanetary microspacecraft missions. Particular attention is given to the capabilities of Piggyback, small launch vehicles, and large launch vehicles. It is noted that Piggyback options on the Shuttle and expendable launch vehicles enable near-term earth-orbital missions and the potential for lunar and planetary missions if an electric-propulsion upper-stage is developed. Launch systems like the Space Shuttle could be used to launch large members of microspacecraft in 'constellation deployment' and 'shotgun' class missions to a variety of solar-system targets such as the sun, asteroids, comets, the moon, Mars, and Saturn.

  12. Launch of Jupiter-C/Explorer 1

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much greater importance. After the Vanguard rocket exploded on the pad in December 1957, the ability to orbit a satellite became a matter of national prestige. On January 31, 1958, slightly more than four weeks after the launch of Sputnik.The ABMA (Army Ballistic Missile Agency) in Redstone Arsenal, Huntsville, Alabama, in cooperation with the Jet Propulsion Laboratory, launched a Jupiter from Cape Canaveral, Florida. The rocket consisted of a modified version of the Redstone rocket's first stage and two upper stages of clustered Baby Sergeant rockets developed by the Jet Propulsion Laboratory and later designated as Juno boosters for space launches

  13. Launch, Jupiter-C, Explorer 1

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much greater importance. After the Vanguard rocket exploded on the pad in December 1957, the ability to orbit a satellite became a matter of national prestige. On January 31, 1958, slightly more than four weeks after the launch of Sputnik.The ABMA (Army Ballistic Missile Agency) in Redstone Arsenal, Huntsville, Alabama, in cooperation with the Jet Propulsion Laboratory, launched a Jupiter from Cape Canaveral, Florida. The rocket consisted of a modified version of the Redstone rocket's first stage and two upper stages of clustered Baby Sergeant rockets developed by the Jet Propulsion Laboratory and later designated as Juno boosters for space launches

  14. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch plans. 415.119 Section 415.119... From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must contain the plans required by § 417.111 of this chapter, except for the countdown plan of § 417.111(l)...

  15. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch plans. 415.119 Section 415.119... From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must contain the plans required by § 417.111 of this chapter, except for the countdown plan of § 417.111(l)...

  16. ISS Service Module Pre-Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Various shots show Discovery at the launch pad during the final 30-minute countdown. The prelaunch conditions are described and information is given on the upcoming launch and the orbiter's docking with the International Space Station (ISS). A brief collage of rollout and launch footage of STS-92 Endeavour commemorates the 100th Space Shuttle mission and the 100th anniversary of the Philadelphia Orchestra (also seen). The music of '2001: A Space Odyssey) is played by the orchestra.

  17. Prelaunch summary: NOAA-B launch

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The NOAA-B satellite will launch from the Western Test Range into Sun-synchronous orbit to replace the TIROSN-satellite as part of the national operational environmental satellite system in support of the Global Atmospheric Research Program and the World Weather Watch. The mission objectives, primary environmental sensors, launch particulars, flight sequence of events, mission support, and project costs for NOAA-A through NOAA-G are discussed. NASA's responsibilities include launch, in-orbit evaluation and spacecraft checkout.

  18. Globe at Night: From IYA2009 to the International Year of Light 2015 and Beyond

    NASA Astrophysics Data System (ADS)

    Walker, Constance Elaine; Pompea, Stephen M.; Sparks, Robert T.

    2015-08-01

    Citizen-science is a rewardingly inclusive way to bring awareness to the public on important issues like the disappearing starry night sky, its cause and solutions. Citizen-science can also provide meaningful, hands-on “science process” experiences for students. One program that does both is Globe at Night (www.globeatnight.org), an international campaign to raise public awareness of the impact of light pollution by having people measure night-sky brightness and submit observations via a “web app” on any smart device or computer. Additionally, 2 native mobile apps - Loss of the Night for iPhone & Android, and Dark Sky Meter for iPhone - support Globe at Night.Since 2006, more than 125,000 vetted measurements from 115 countries have been reported. For 2015 the campaign is offered as a 10-day observation window each month when the Moon is not up. To facilitate Globe at Night as an international project, the web app and other materials are in many languages. (See www.globeatnight.org/downloads.)Students and the general public can use the data to monitor levels of light pollution around the world, as well as understand light pollution’s effects on energy consumption, plants, wildlife, human health and our ability to enjoy a starry night sky. Projects have compared Globe at Night data with ground-truthing using meters for energy audits as well as with data on birds and bats, population density, satellite data and trends over time. Globe at Night tackles grand challenges and everyday problems. It provides resources for formal and informal educators to engage learners of all ages. It has 9 years of experience in best practices for data management, design, collection, visualization, interpretation, etc. It has externally evaluated its program, workshops, lesson plans and accompanying kit to explore reasons for participation, skills developed, impact of experiences and perceived outcomes. Three recent papers (Birriel et al. 2014; Kyba et al. 2013; 2015) verify the

  19. STS-121: Discovery Launch Postponement MMT Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Bruce Buckingham from NASA Public Affairs introduces the panel who consist of: John Shannon, MMT chairman JSC; Mike Leinbach, NASA Launch Director; and 1st Lieutenant Kaleb Nordren, USAF 45th Weather Squadron. An opening statement is given from John Shannon on the postponement of the launch due to thunderstorms. Mike Leinbach also elaborates on the weather and talks about scrubbing two hours early, draining the vehicle, and reloading the hydrogen for the fuel cells for a possible launch attempt on Tuesday morning. Norden gives his weather forecast for Tuesday and Wednesday. Questions from the media on launch attempts, weather, and the cost of the scrub are addressed.

  20. Overcoming Scalability Challenges for Tool Daemon Launching

    SciTech Connect

    Ahn, D H; Arnold, D C; de Supinski, B R; Lee, G L; Miller, B P; Schulz, M

    2008-02-15

    Many tools that target parallel and distributed environments must co-locate a set of daemons with the distributed processes of the target application. However, efficient and portable deployment of these daemons on large scale systems is an unsolved problem. We overcome this gap with LaunchMON, a scalable, robust, portable, secure, and general purpose infrastructure for launching tool daemons. Its API allows tool builders to identify all processes of a target job, launch daemons on the relevant nodes and control daemon interaction. Our results show that Launch-MON scales to very large daemon counts and substantially enhances performance over existing ad hoc mechanisms.

  1. Launch processing system concept to reality

    NASA Technical Reports Server (NTRS)

    Bailey, W. W.

    1985-01-01

    The Launch Processing System represents Kennedy Space Center's role in providing a major integrated hardware and software system for the test, checkout and launch of a new space vehicle. Past programs considered the active flight vehicle to ground interfaces as part of the flight systems and therefore the related ground system was provided by the Development Center. The major steps taken to transform the Launch Processing System from a concept to reality with the successful launches of the Shuttle Programs Space Transportation System are addressed.

  2. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  3. The Delta Launch Vehicle Model 2914 Series

    NASA Technical Reports Server (NTRS)

    Gunn, C. R.

    1973-01-01

    The newest Delta launch vehicle configuration, Model 2914 is described for potential users together with recent flight results. A functional description of the vehicle, its performance, flight profile, flight environment, injection accuracy, spacecraft integration requirements, user organizational interfaces, launch operations, costs and reimbursable users payment plan are provided. The versatile, relatively low cost Delta has a flight demonstrated reliability record of 92 percent that has been established in 96 launches over twelve years while concurrently undergoing ten major upratings to keep pace with the ever increasing performance and reliability requirements of its users. At least 40 more launches are scheduled over the next three years from the Eastern and Western Test Ranges.

  4. Mars Science Laboratory Launch Pad Thermal Control

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Bame, David

    2011-01-01

    This paper will describe the challenges faced in accommodating the warm Multi Mission Radioisotope Thermoelectric Generator (MMRTG) during the pre-launch phases of integration, launch pad operations as well as during launch. Predictions of temperatures during these phases will be presented when all the cooling systems (HRS and A/C) are operational. In-air tests conducted on the spacecraft in December 2008 to simulate the launch conditions were very successful and showed that all components would be within their allowable limits during these phases. Results of these tests will be shared in this paper.

  5. KOMPSAT Satellite Launch and Deployment Operations

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Chang, Young-Keun; Lee, Jin-Ho

    1999-12-01

    In this paper, KOMPSAT satellite launch and deployment operations are discussed. The U.S. Taurus launch vehicle delivers KOMPSAT satellite into the mission orbit directly. Launch and deployment operations is monitored and controlled by several international ground stations including Korean Ground Station (KGS). After separation from launch vehicle, KOMPSAT spacecraft deploys solar array by on-board autonomous stored commands without ground inter-vention and stabilizes the satellite such that solar arrays point to the sun. Autonomous ground communication is designed for KOMPSAT for the early orbit ground contact. KOMPSAT space-craft has capability of handing contingency situation by on-board fault management design to retry deployment sequence.

  6. Ten-year space launch technology plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document is the response to the National Space Policy Directive-4 (NSPD-4), signed by the President on 10 Jul. 1991. Directive NSPD-4 calls upon the Department of Defense (DoD), the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA) to coordinate national space launch technology efforts and to jointly prepare a 10-year space launch technology plan. The nation's future in space rests on the strength of its national launch technology program. This plan documents our current launch technology efforts, plans for future initiatives in this arena, and the overarching philosophy that links these activities into an integrated national technology program.

  7. 14 CFR 415.113 - Launch personnel certification program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.113 Launch personnel certification program. (a... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch personnel certification program....

  8. 14 CFR 415.113 - Launch personnel certification program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.113 Launch personnel certification program. (a... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch personnel certification program....

  9. 14 CFR 415.133 - Safety at end of launch.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Launch Vehicle From a Non-Federal Launch Site § 415.133 Safety at end of launch. An applicant must demonstrate compliance with § 417.129 of this chapter, for any proposed launch of a launch vehicle with a... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety at end of launch. 415.133...

  10. 14 CFR 415.133 - Safety at end of launch.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Launch Vehicle From a Non-Federal Launch Site § 415.133 Safety at end of launch. An applicant must demonstrate compliance with § 417.129 of this chapter, for any proposed launch of a launch vehicle with a... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Safety at end of launch. 415.133...

  11. 14 CFR 415.111 - Launch operator organization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Launch Vehicle From a Non-Federal Launch Site § 415.111 Launch operator organization. An applicant's...-related goods or services for the launch of the launch vehicle. ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Launch operator organization....

  12. 14 CFR 415.111 - Launch operator organization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Launch Vehicle From a Non-Federal Launch Site § 415.111 Launch operator organization. An applicant's...-related goods or services for the launch of the launch vehicle. ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch operator organization....

  13. 14 CFR 415.111 - Launch operator organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Launch Vehicle From a Non-Federal Launch Site § 415.111 Launch operator organization. An applicant's...-related goods or services for the launch of the launch vehicle. ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch operator organization....

  14. 14 CFR 415.113 - Launch personnel certification program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.113 Launch personnel certification program. (a... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Launch personnel certification program....

  15. 14 CFR 415.133 - Safety at end of launch.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Launch Vehicle From a Non-Federal Launch Site § 415.133 Safety at end of launch. An applicant must demonstrate compliance with § 417.129 of this chapter, for any proposed launch of a launch vehicle with a... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Safety at end of launch. 415.133...

  16. 14 CFR 415.133 - Safety at end of launch.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Launch Vehicle From a Non-Federal Launch Site § 415.133 Safety at end of launch. An applicant must demonstrate compliance with § 417.129 of this chapter, for any proposed launch of a launch vehicle with a... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety at end of launch. 415.133...

  17. 14 CFR 415.111 - Launch operator organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Launch Vehicle From a Non-Federal Launch Site § 415.111 Launch operator organization. An applicant's...-related goods or services for the launch of the launch vehicle. ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch operator organization....

  18. 14 CFR 415.113 - Launch personnel certification program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.113 Launch personnel certification program. (a... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch personnel certification program....

  19. Great Globes

    ERIC Educational Resources Information Center

    Cronin, Jim

    2004-01-01

    While trying to explain to his seventh grade students why models are needed to study science, the author stumbled across this project idea. At the time, his class was just beginning to study geology and rocks and minerals. This unit starts by introducing the structure of the Earth so students had very little background knowledge. He wanted a quick…

  20. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  1. Strypi VII R launch vehicle

    SciTech Connect

    Wente, H.A.

    1982-01-01

    The Strypi VII R is a three-stage solid propellant launch vehicle designed to boost payloads ranging from 50 to 300 pounds to re-entry environment conditions. The first stage, a fin-stabilized ballistic rocket boosts the final two stages into an exoatmospheric trajectory where an attitude control system (ACS) precesses the spinning stages into the re-entry attitude. The ACS section is then jettisoned, and ignition of the spin-stabilized upper stages is initiated at a time determined to provide a zero angle-of-attack at beginning of re-entry. Four vehicles have been flown carrying three different re-entry test vehicles. Originally designed for use with a Castor II motor, the highly aluminized propellant in the first stage spinning environment contributed to a case rupture resulting in failure of the second flight. The last two flights were flown successfully using Castor I motors. Typically, the Strypi VII R can boost a 100 lbm RV to a speed of 19,500 fps on a flight path of -30 degrees at 300,000 feet altitude.

  2. Crew Launch Vehicle Upper Stage

    NASA Technical Reports Server (NTRS)

    Davis, D. J.; Cook, J. R.

    2006-01-01

    The Agency s Crew Launch Vehicle (CLV) will be the first human rated space transportation system developed in the United States since the Space Shuttle. The CLV will utilize existing Shuttle heritage hardware and systems combined with a "clean sheet design" for the Upper Stage. The Upper Stage element will be designed and developed by a team of NASA engineers managed by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The team will design the Upper Stage based on the Exploration Systems Architecture Study (ESAS) Team s point of departure conceptual design as illustrated in the figure below. This concept is a self-supporting cylindrical structure, approximately 1 15 feet long and 216 inches in diameter. While this "clean-sheet" upper stage design inherently carries more risk than utilizing a modified design, the approach also has many advantages. This paper will discuss the advantages and disadvantages of pursuing a "clean-sheet" design for the new CLV Upper Stage as well as describe in detail the overall design of the Upper Stage and its integration into NASA s CLV.

  3. Burundi launches campaign against AIDS.

    PubMed

    1999-05-10

    The conflict-ridden central African state of Burundi launched a campaign against AIDS as the health minister said 160,000 children were orphans as a result of the disease. "This day can be considered the real beginning of the war against AIDS in our country," said Leonce Ngendakumana National Assembly President. He was opening a workshop designed to develop strategies to combat the spread of HIV, which was attended by UN agencies, aid organizations, and members of the government. Health Minister Juma Kariburyo said 30,000 people had died of AIDS in 2 years in Burundi, which has a population of around 6 million. "We had less than 1% of infection in 1983, but today the urban area figures are more than 20%, and more than 14% in the rural areas," he added. But Jeanne Gapiya, president of a Burundian association for people who are HIV positive, said she feared the true figures could be far higher. Gapiya is HIV positive and has lost her husband, child, brother and sister to AIDS. Minister of Defense Colonel Alfred Nkurunziza told the workshop the disease was rampant within the army. Burundi's Tutsi-dominated army is fighting a bitter civil war against ethnic Hutu rebels. The conflict has caused large refugee movements, which has exacerbated the spread of infectious diseases. PMID:12349334

  4. Launch of Russian reactor postponed

    SciTech Connect

    Not Available

    1993-02-05

    Astronomers and weapons scientists seemed heated on a collision course a few months ago over the military's plans to send a Russian nuclear reactor into space. But an agreement reached in late January has prevented a pile-up, at least for 6 months. The astronomers, led by Donald Lamb of the University of Chicago, were objecting to plans by the Strategic Defense Initiative Office (SDIO) to launch Topaz 2, an experimental Russian nuclear reactor, arguing that rogue particles from it might ruin sensitive gamma ray experiments. The reactor is designed to propel itself in space with a jet of xenon ions. One worry was that leaking gamma rays and positrons, which can travel in the earth's magnetic field and pop up in the darndest places, might cause false signals in gamma ray monitors (Science, 18 December 1992, p. 1878). The worry has abated now that SDI officials will postpone choosing a rocket and mission altitutde for Topaz 2 for 6 months, while experts study how its emissions at various altitudes might affect instruments aboard the Gamma Ray Observatory and other satellites. In effect, the SDIO has agreed to an environmental impact study for space, following an unusual meeting organized by former Russian space official Roald Sagdeev at the University of Maryland on 19 January. There the Russian designers of Topaz 2, its new owners at the SDIO, and critics in the astronomy community achieved common ground: that more study was needed.

  5. Multi-procedure management in an eyeglasses-related open globe injury.

    PubMed

    Skopiński, Piotr; Woronkowicz, Małgorzata; Langwińska-Wośko, Ewa; Korwin, Magdalena; Kołodziejczyk, Wojciech; Ambroziak, Anna Maria

    2014-03-01

    We present a case of successful multi-procedure management of a patient with an open globe injury. A 47-year-old man sustained an injury to his left eye caused by glass fragments of his own spectacles shattered while he was protecting an unknown woman from physical assault at a bus stop. Over a span of 65 months the patient underwent multiple procedures including primary wound repair, penetrating keratoplasty combined with extracapsular cataract extraction, neodymium: YAG laser capsulotomy, and laser-assisted subepithelial keratectomy (LASEK), and had a successfully treated episode of corneal graft rejection. This sequence of treatment substantially improved his left eye vision from hand movements at the time of admission to 0.9-0.5 × 90 at the last follow-up nearly 10 years after the trauma. Proper initial surgical management of an open globe injury can create the possibility for virtually complete vision restoration. PMID:24729818

  6. EXPLORER 11 LIFTS OFF FROM LAUNCH COMPLEX 26B BY A JUNO LAUNCH VEHICLE

    NASA Technical Reports Server (NTRS)

    1961-01-01

    NASA today launched from Cape Canaveral a 75 pound experiment designed to transmit information about the structure of the ionosphere, called the S-15. It was launched at 0917 AM. All four stages fired successfully.

  7. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  8. Long-term trend in tropospheric carbon monoxide over the globe

    NASA Astrophysics Data System (ADS)

    Girach, I. A.; Nair, Prabha R.

    2016-05-01

    Tropospheric carbon monoxide (CO) is an air pollutant and indirect greenhouse gas which plays a major role in atmospheric chemistry involving hydroxyl (OH) radical. We utilised the remote-sensing retrievals of lower-tropospheric CO (at 900 hPa) from Measurements of Pollution in the Troposphere (MOPITT) aboard Terra-satellite for the period of ~15 years. Using simple linear regression model, we estimated the decreasing trend of ~0-2 %year-1 in the lowertropospheric CO over the globe. Utilising the in-situ measurements of surface-CO over 83 locations carried out by the NOAA (National Oceanic and Atmospheric Administration) network, we confirmed the observed negative trend as surface-CO showed decreasing trend over most of the locations. To estimate the trend in columnar CO, we utilised multiple retrievals of from different satellites, MOPITT, AIRS (Atmospheric InfraRed Sounder), and TES (Tropospheric Emission Spectrometer). All data sets show the decreasing trend of 0.2-0.5 %year-1 in columnar CO when averaged over entire globe. However, the heterogeneity in the trend is observed on regional basis. The retrievals of upper-tropospheric CO (at 200 hPa) from MOPITT and AIRS show an increasing trend of 1-4 %year-1 over the globe. However, the retrievals of upper-tropospheric CO from MLS (Microwave Limb Sounder) show decreasing trend. Further investigations are needed to confirm the trend in the upper-tropospheric CO over the globe. The decreasing trend in lower-tropospheric CO and columnar CO could be due to moistening of troposphere and/or increase in tropospheric ozone, causing increase in OH radical (strengthening the depletion of lower-tropospheric CO).

  9. An Evaluation of the GLOBE Surface Ozone Protocol After Five Years of Implementation

    NASA Astrophysics Data System (ADS)

    Pippin, M.; Ladd, I.; Fishman, J.

    2003-12-01

    The Surface Ozone Protocol has been a part of the GLOBE Program since 1998. Our goal has been to introduce the student to the subject of atmospheric chemistry and the relationship between air quality and other parameters such as temperature and cloud cover by providing teachers and students with a relatively accurate and inexpensive method to measure ozone. During the past five years, our group can point to both successes and disappointments. Vital elements for the successes include teacher training in data collection and analysis with integration into the core curriculum, a support structure within the schools and community to facilitate continuous data collection and reporting, quality assurance of the reported data and an open channel of communication between teachers and scientists. Once the protocol is implemented, we recognize that our GLOBE teachers require additional structure and support beyond the initial GLOBE training. Out of 57 GLOBE schools reporting ozone data, 47 schools have reported fewer than 100 data points, with 38 of those schools reporting fewer than 30 data points. However, four schools located in the Czech Republic are successfully implementing the surface ozone protocol and have reported over 500 ozone measurements with meta data providing continuous data sets over several years. We are currently developing the infrastructure for educator/community teams to facilitate year-round surface ozone measurements, and providing on-site training, follow up visits, and electronic based interactions to support the educator/community teams and students as they gather data. We present the successful strategies from the Czech Republic schools and provide suggestions for improving the involvement and retention for the U.S. schools.

  10. Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-1996

    SciTech Connect

    Hahn, C.J.; Warren, S.G.

    1999-08-01

    Surface synoptic weather reports for the entire globe, gathered from various available data sets, were processed, edited, and rewritten to provide a single data set of individual observations of clouds, spanning the 44 years 1952-1995 for ship data and the 26 years 1971-1996 for land station data. In addition to the cloud portion of the synoptic report, each edited report also includes the associated pressure, present weather, wind, air temperature, and dew point (and sea surface temperature over oceans).

  11. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.

    2006-01-01

    The U.S. Vision for Space Exploration (January 2004) serves as the foundation for the National Aeronautics and Space Administration's (NASA) strategic goals and objectives. As the NASA Administrator outlined during his confirmation hearing in April 2005, these include: 1) Flying the Space Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human space flight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. In spring 2005, the Agency commissioned a team of aerospace subject matter experts to perform the Exploration Systems Architecture Study (ESAS). The ESAS team performed in-depth evaluations of a number of space transportation architectures and provided recommendations based on their findings? The ESAS analysis focused on a human-rated Crew Launch Vehicle (CLV) for astronaut transport and a heavy lift Cargo Launch Vehicle (CaLV) to carry equipment, materials, and supplies for lunar missions and, later, the first human journeys to Mars. After several months of intense study utilizing safety and reliability, technical performance, budget, and schedule figures of merit in relation to design reference missions, the ESAS design options were unveiled in summer 2005. As part of NASA's systems engineering approach, these point of departure architectures have been refined through trade studies during the ongoing design phase leading to the development phase that

  12. Ventilation loss and pressurization in the NASA launch/entry suit: Potential for heat stress

    NASA Technical Reports Server (NTRS)

    Kaufman, Jonathan W.; Dejneka, Katherine Y.; Askew, Gregory K.

    1989-01-01

    The potential of the NASA Launch/Entry Suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment was studied. The testing was designed to identify potential heat stress hazards if the LES were pressurized or if ventilation were lost. Conditions were designed to simulate an extreme pre-launch situation with chamber temperatures maintained at dry bulb temperature = 27.2 +/- 0.1 C, globe temperature = 27.3 +/- 0.1 C, and wet bulb temperature = 21.1 +/- 0.3 C. Two females and two males, 23 to 34 years of age, were employed in this study, with two subjects having exposures in all 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. Pressurized runs (Pr) were designed for 45 minutes, which all subjects also achieved. While some significant differences related to experimental conditions were noted in rectal and mean skin temperatures, evaporation rates, sweat rates, and heart rate, these differences were not thought to be physiologically significant. The results indicate that the LES garment, in either the Pr or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Space Shuttle cabin during launch or reentry.

  13. Successful medical treatment for globe penetration following tooth extraction in a dog.

    PubMed

    Guerreiro, Cleo E; Appelboam, Helen; Lowe, Robert C

    2014-03-01

    A five-year-old entire male Tibetan Terrier was referred for left-sided periorbital swelling and blepharospasm 4 days following ipsilateral maxillary tooth extraction. Examination of the left eye revealed mild exophthalmos, pain on retropulsion, and absent menace response and pupillary light reflexes. Examination of the posterior segment was not possible owing to the anterior segment pathology. Differential diagnoses considered were iatrogenic globe penetration and peribulbar abscess/cellulitis. Ocular ultrasound was consistent with a penetrating wound to the globe. Treatment with systemic prednisolone and marbofloxacin, and topical atropine sulfate 1%, prednisolone acetate, and brinzolamide was started. Marked clinical improvement allowed visual confirmation of the perforation. Oral prednisolone was tapered over the following 10 weeks. At final re-examination (10 months), the patient was visual, and fundic examination revealed an additional chorioretinal scar, most likely an exit wound that was obscured by vitreal debris on initial examinations. Neither scar was associated with retinal detachment. To the authors' knowledge, this is the first reported case of successful medical management of iatrogenic globe penetration following exodontic procedures. PMID:23869648

  14. 3D Globe Support for Arctic Science through the Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Brady, J. J.; Gaylord, A. G.; Johnson, G.; Cody, R. P.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With special emphasis on the International Polar Year (IPY), ARMAP has a target audience of science planners, scientists, educators, and the general public. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP and includes information on US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project, which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. ARMAP services may be accessed via the gateway web site at http://www.armap.org. ARMAP's 3D globe services includes a layer users can download into Google Earth and a prototype ArcGIS Explorer (ESRI) application. A comparison of the strengths and weaknesses of the two virtual globe applications will be presented.

  15. Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis.

    PubMed

    Eljounaidi, K; Comino, C; Moglia, A; Cankar, K; Genre, A; Hehn, A; Bourgaud, F; Beekwilder, J; Lanteri, S

    2015-10-01

    Globe artichoke (Cynara cardunculus var. scolymus) belongs to the Asteraceae family, in which one of the most biologically significant class of secondary metabolites are sesquiterpene lactones (STLs). In globe artichoke the principal STL is the cynaropicrin, which contributes to approximately 80% of its characteristic bitter taste. Cynaropicrin content was assessed in globe artichoke tissues and was observed to accumulate in leaves of different developmental stages. In the receptacle, a progressive decrease was observed during inflorescence development, while the STL could not be detected in the inflorescence bracts. Almost undetectable amounts were found in the roots and inflorescence stems at the commercial stage. Cynaropicrin content was found to correlate with expression of genes encoding CcGAS, CcGAO and CcCOS, which are involved in the STL biosynthesis. A more detailed study of leaf material revealed that cynaropicrin predominantly accumulates in the trichomes, and not in the apoplastic cavity fluids. Analysis of the promoter regions of CcGAO and CcCOS revealed the presence of L1-box motifs, which confers trichome-specific expression in Arabidopsis, suggesting that cynaropicrin is not only stored but also synthesized in trichomes. A transient expression of GFP fusion proteins was performed in Nicotiana benthamiana plants: the CcGAS fluorescence signal was located in the cytoplasm while the CcGAO and CcCOS localized to the endoplasmatic reticulum. PMID:26398797

  16. Risk factors for poor outcomes in patients with open-globe injuries

    PubMed Central

    Page, Rita D; Gupta, Sumeet K; Jenkins, Thomas L; Karcioglu, Zeynel A

    2016-01-01

    Purpose The aim of this study was to identify the risk factors that are predictive of poor outcomes in penetrating globe trauma. Patients and methods This retrospective case series evaluated 103 eyes that had been surgically treated for an open-globe injury from 2007 to 2010 at the eye clinic of the University of Virginia. A total of 64 eyes with complete medical records and at least 6 months of follow-up were included in the study. Four risk factors (preoperative best-corrected visual acuity [pre-op BCVA], ocular trauma score [OTS], zone of injury [ZOI], and time lapse [TL] between injury and primary repair) and three outcomes (final BCVA, monthly rate of additional surgeries [MRAS], and enucleation) were identified for analysis. Results Pre-op BCVA was positively associated with MRAS, final BCVA, and enucleation. Calculated OTS was negatively associated with the outcome variables. No association was found between TL and ZOI with the outcome variables. Further, age and predictor variable-adjusted analyses showed pre-op BCVA to be independently positively associated with MRAS (P=0.008) and with final BCVA (P<0.001), while the calculated OTS was independently negatively associated with final BCVA (P<0.001), but not uniquely associated with MRAS (P=0.530). Conclusion Pre-op BCVA and OTS are best correlated with prognosis in open-globe injuries. However, no conventional features reliably predict the outcome of traumatized eyes. PMID:27536059

  17. GLOBE at Night: a Dark Skies Awareness Citizen-Science Program for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2009-01-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also health, ecology, safety, economics and energy conservation. For this reason, "Dark Skies” is a theme of the US International Year of Astronomy (IYA). Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. As one means to reach this goal, the presentation will introduce participants to the star-hunting program, GLOBE at Night. Over the last 3 years, GLOBE at Night has successfully run two-week campaigns every spring, during which a total of 20,000 observations have been submitted from 100 countries. For IYA 2009, GLOBE at Night will take place March 16-28. During the campaign period, the GLOBE at Night program has students and the general public, as citizen-scientists, take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists can use digital sky brightness meters. Measurements are submitted on-line from around the globe and within a few weeks a world map showing results is available. Measurements can then be compared with data from previous years, Earth at Night satellite data and population density data. Information will be available on how to participate in GLOBE at Night, as well as on how to jump-start GLOBE at Night locally through the use of well-developed instructional materials and kits, should participants decide to become GLOBE at Night community leaders. Visit http://www.globe.gov/GaN/ for more details.

  18. Saturn V - Design Considerations and Launch Issues

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Understand some of the design considerations that went into creating the Saturn V launch vehicle; b) Gain an appreciation for some of the manufacturing issues concerning the Saturn V; and c) Review three major problems that affected Saturn V launches.

  19. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 70mm camera was used to record the image. Note the vegetation and the reflection of the launch in the water across from the launch pad.

  20. Launch of STS-67 Space Shuttle Endeavour

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Carrying a crew of seven and a complement of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995. In this view the fence line near the launch pad is evident in the foreground.

  1. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 35mm camera was used to record the image, which includes much of the base of the launch site as well as the launch itself.

  2. Pigeons' Discrimination of Michotte's Launching Effect

    ERIC Educational Resources Information Center

    Young, Michael E.; Beckmann, Joshua S.; Wasserman, Edward A.

    2006-01-01

    We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal,…

  3. Launching into the Podcast/Vodcast Universe

    ERIC Educational Resources Information Center

    Sampson, Jo Ann

    2006-01-01

    In the fall of 2005, the Orange County Library System (OCLS), located in the Orlando metropolitan area of Florida, launched a mission to explore podcasting. This article, written in the form of a "captain's log," prepares the reader for their own journey into the universe of successfully launching podcasts and a vodcast (video podcast). This…

  4. Space Launch Flight Termination System initial development

    NASA Astrophysics Data System (ADS)

    Ratkevich, B.; Brierley, S.; Lupia, D.; Leiker, T.

    This paper describes the studies, capabilities and challenges in initial development of a new digital encrypted termination system for space launch vehicles. This system is called the Space Launch Flight Termination System (SLFTS). Development of SLFTS is required to address an obsolescence issue and to improve the security of flight termination systems presently in use on the nation's space launch vehicles. SLFTS development was implemented in a four phase approach with the goal of producing a high secure, cost effective flight termination system for United Launch Alliance (ULA) and the United States Air Force (USAF) Evolved Expendable Launch Vehicle (EELV). These detailed study phases developed the requirements, design and implementation approach for a new high secure flight termination system. Studies led to a cost effective approach to replace the High Alphabet Command Receiver Decoders (HA-CRD) presently used on the EELV (Delta-IV & Atlas-V), with a common SLFTS unit. SLFTS is the next generation flight termination system for space launch vehicles, providing an assured high secure command destruct system for launch vehicles in flight. The unique capabilities and challenges to develop this technology for space launch use will be addressed in this paper in detail. This paper summarizes the current development status, design and capabilities of SLFTS for EELV.

  5. Indian Launch Services - Its Evolution and Potential

    NASA Astrophysics Data System (ADS)

    Balakrishnan, S. S.; Narayana Moorthi, D.; Sridhara Murthy, K. R.; Ramakrishnan, S.

    2002-01-01

    Development and operationalisation of the Polar Satellite Launch Vehicle (PSLV) has enabled the Indian Space Research Organisation (ISRO) end-to-end capability from launch to application in remote sensing satellites from the year 1997. Even as the PSLV was getting developed, its potential to provide launch services to international customers after meeting the internal demand was recognized. A unique method of carrying two microsatellites in every launch was worked out. Four piggyback payloads were flown in the last two flights of PSLV. The main payload has been flown with a standard interface. Having deployed through PSLV five primary satellites and four piggyback satellites, PSLV can carry a combination of satellites of different masses including the use of a dual launch adapter. With the successful flight of the Geosynchronous Satellite Launch Vehicle (GSLV) in its very first attempt, soon this will also be available on a commercial basis. Thus, ISRO has the capability to offer commercial launch opportunity through Antrix Corporation Limited, the commercial wing of the Department of Space from 10 kg to 1300 kg in SSO or 1000-2000 kg in to GTO or into any other LEO or MEO. This paper provides a brief account of the evolution of Indian Launch Services over the years and the future potential.

  6. Launch operations manpower yesterday, today and tomorrow

    NASA Astrophysics Data System (ADS)

    Ojalehto, George

    1991-05-01

    The manpower to accomplish spacecraft launch operations was analyzed. It seems that the ratio of personnel to launches was much higher in the beginning of the space program than in later years. The analysis was performed to see why the operational efficiency was better then than now and how that efficiency can be reattained.

  7. 14 CFR § 1214.117 - Launch and orbit parameters for a standard launch.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Launch and orbit parameters for a standard.... Government, Reimbursable Customers § 1214.117 Launch and orbit parameters for a standard launch. To qualify... orbits: 160 NM circular orbit, 28.5° inclination (nominal), or 160 NM circular orbit, 57°...

  8. KSC Launch Complex 34 during Apollo/Saturn Mission 202 pre-launch alert

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Scene at the Kennedy Space Center's Launch Complex 34 during an Apollo/Saturn Mission 202 pre-launch alert. The mission was a step toward qualifying the Apollo Command and Service modules and the uprated Saturn I launch vehicle for manned flight.

  9. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... energy to reach any populated area in any direction from the launch point; or (2) A launch operator demonstrates through the licensing process that the launch will be conducted using a wind weighting safety system that meets the requirements of paragraph (c) of this section. (c) Wind weighting safety system....

  10. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch site location review-launch site boundary. 420.21 Section 420.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a...

  11. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining...

  12. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity... modification under § 417.11. (3) Thirty-day flight safety analysis update. A launch operator must file updated flight safety analysis products, using previously approved methodologies, for each launch no later...

  13. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Notification. Not later than noon, EST, 15 days before each licensed flight, a launch operator must file a... modification under § 417.11. (3) Thirty-day flight safety analysis update. A launch operator must file updated flight safety analysis products, using previously approved methodologies, for each launch no later...

  14. Launching the Future... Constellation Program at KSC

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2010-01-01

    With the Constellation Program, NASA is entering a new age of space exploration that will take us back to the Moon, to Mars, and beyond, and NASA is developing the new technology and vehicles to take us there. At the forefront are the Orion spacecraft and the Ares I launch vehicle. As NASA's gateway to space, Kennedy Space Center (KSC) will process and launch the new vehicles. This will require new systems and extensive changes to existing infrastructure. KSC is designing a new mobile launcher, a new launch control system, and new ground support equipment; modifying the Vehicle Assembly Building, one of the launch pads, and other facilities; and launching the Ares I-X flight test. It is an exciting and challenging time to be an engineer at KSC.

  15. Program Computes Sound Pressures at Rocket Launches

    NASA Technical Reports Server (NTRS)

    Ogg, Gary; Heyman, Roy; White, Michael; Edquist, Karl

    2005-01-01

    Launch Vehicle External Sound Pressure is a computer program that predicts the ignition overpressure and the acoustic pressure on the surfaces and in the vicinity of a rocket and launch pad during launch. The program generates a graphical user interface (GUI) that gathers input data from the user. These data include the critical dimensions of the rocket and of any launch-pad structures that may act as acoustic reflectors, the size and shape of the exhaust duct or flame deflector, and geometrical and operational parameters of the rocket engine. For the ignition-overpressure calculations, histories of the chamber pressure and mass flow rate also are required. Once the GUI has gathered the input data, it feeds them to ignition-overpressure and launch-acoustics routines, which are based on several approximate mathematical models of distributed sources, transmission, and reflection of acoustic waves. The output of the program includes ignition overpressures and acoustic pressures at specified locations.

  16. Environmental noise assessment STS-1 Columbia launch

    NASA Technical Reports Server (NTRS)

    Putnicki, G. J.

    1982-01-01

    An environmental noise assessement of the initial launch of the Space Transportation System, STS-1 Columbia was conducted. The principal objective of the environmental noise assessment was to measure the noise generated during the initial launch of the space shuttle to ascertain the validity of the levels predicted in the 1979 environmental impact statement. In the 1979 study information obtained for expendable launch vehicles, Titan, Saturn and Atlas was used to predict the noise levels that would be generated by the simultaneous firing of the two solid rocket boosters and the three space shuttle main engines. Fifteen monitoring sites were established in accessable areas located from 4,953 to 23,640 meters from the launch pad. Precision sound level meters were used to capture the peak level during the launch. Data obtained was compared to the predicted levels and were also compared to the identified levels, standards and criteria established by the federal agencies with noise abatement and control responsibilities.

  17. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, Randolph High School students are assembling their rocket in preparation for launch.

  18. International Launch Vehicle Selection for Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  19. Recommended Screening Practices for Launch Collision Aviodance

    NASA Technical Reports Server (NTRS)

    Beaver, Brian A.; Hametz, Mark E.; Ollivierre, Jarmaine C.; Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    The objective of this document is to assess the value of launch collision avoidance (COLA) practices and provide recommendations regarding its implementation for NASA robotic missions. The scope of this effort is limited to launch COLA screens against catalog objects that are either spacecraft or debris. No modifications to manned safety COLA practices are considered in this effort. An assessment of the value of launch COLA can be broken down into two fundamental questions: 1) Does collision during launch represent a significant risk to either the payload being launched or the space environment? 2) Can launch collision mitigation be performed in a manner that provides meaningful risk reduction at an acceptable level of operational impact? While it has been possible to piece together partial answers to these questions for some time, the first attempt to comprehensively address them is documented in reference (a), Launch COLA Operations: an Examination of Data Products, Procedures, and Thresholds, Revision A. This report is the product of an extensive study that addressed fundamental technical questions surrounding launch collision avoidance analysis and practice. The results provided in reference (a) will be cited throughout this document as these two questions are addressed. The premise of this assessment is that in order to conclude that launch COLA is a value-added activity, the answer to both of these questions must be affirmative. A "no" answer to either of these questions points toward the conclusion that launch COLA provides little or no risk mitigation benefit. The remainder of this assessment will focus on addressing these two questions.

  20. The International Globe at Night Citizen-Science Campaign: Shedding Light on Light Pollution

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2013-12-01

    For 8 years now, the Globe at Night campaign has invited citizen-scientists worldwide to measure and record the brightness of their night sky by hunting for the faintest stars in a particular constellation. Students for science projects and scientists for research use the data to monitor levels of brightness or 'light pollution' around the world. They also use the Globe at Night data to understand light pollution's effects on energy consumption, plants, wildlife and human health, as well as our ability to enjoy a starry night sky. The dates of the campaign for 2014 have been extended to every month during the year. Ten days each month (when the Moon is not up between 8pm and 10pm) are the recommended times to take measurements for the campaign. However, one can participate at other times and dates, as long as the Moon is not in the night sky and it is more than an hour after sunset or more than an hour before sunrise. New in 2014 will be an Android app that will allow you to input visual measurements anytime the Moon is not up. Also possibly included will be an iPhone app that will take sky brightness measurements. The campaign dates and the 5 easy steps to participating in the campaign are listed at www.globeatnight.org. You do not need to register. Once on the report page, you enter your location, date and time (automatic for a smart device). You find the constellation of the month in the night sky. (Help is on the website.) Then you choose which chart looks most like what you see toward the constellation. Choose the icon for how clear or cloudy it is and hit the submit button and you are done! The fifth step is returning later to the website to compare your observations on the world map to others from around the globe. Included on the Globe at Night website are many helpful resources and tools from finding the constellations used in the campaign, to understanding concepts like light pollution, to games that test your expertise in choosing 'limiting magnitudes

  1. GLOBE at Night: Raising Public Awareness and Involvement through Citizen Science

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Sparks, R. T.

    2010-12-01

    With half of the world’s population now living in cities, many urban dwellers have never experienced the wonderment of pristinely dark skies and maybe never will. Light pollution is obscuring people’s long-standing natural heritage to view stars. The GLOBE at Night program (www.globeatnight.org) is an international citizen-science campaign to raise public awareness of the impact of light pollution by encouraging everyone everywhere to measure local levels of night sky brightness and contribute observations online to a world map. In the last 5 years, GLOBE at Night has been the most productive public light pollution monitoring campaign, collecting over 52,000 observations in a two-week period annually. This year, during the moonless two weeks in March, the campaign set a record high of over 17,800 measurements from people in 86 countries. Foundational resources are available to facilitate the public’s participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and “Dark Skies Rangers” activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. The GLOBE at Night data from different years can be compared to look for trends over time or with population density maps. The data can also be used to search for dark sky oases or to monitor lighting ordinance compliance. Most

  2. Powering Exploration: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities the United States needs to continue its pioneering tradition as a spacefaring nation. This paper will discuss programmatic, design, fabrication, and testing progress toward building these new launch vehicles.

  3. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  4. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  5. Pathogenesis of influenza: virus-host interactions.

    PubMed

    Godlee, Alexandra; Almond, Mark H; Dong, Tao

    2011-08-01

    Since their inception in March 1972, Keystone Symposia on Molecular and Cellular Biology have brought together scientists from across the globe to discuss key biological topics. Now in its 40th year, it is a completely independent, nonprofit organization devoted solely to providing outstanding scientific conferences in all areas of the biological and biomedical sciences. Towards the end of May 2011, over 200 virologists and immunologists came to Hong Kong, an appropriate setting given the emergence of H5N1, to discuss influenza virus and host interactions. The meeting, expertly organized by Siamon Gordon (University of Oxford, Oxofrd, UK), Malik Peiris (University of Hong Kong, Hong Kong, China) and Kanta Subbarao (NIAID, NIH, MD, USA), took place in the aftermath of the first pandemic in 40 years and provided great insight into both pandemic H1N1 and H5N1. This article focuses on some of the recurring themes that were discussed during the week. PMID:21819324

  6. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    NASA Technical Reports Server (NTRS)

    Novack, Steven D.; Rogers, Jim; Al Hassan, Mohammad; Hark, Frank

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk, and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results, and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods, such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty, are rendered obsolete, since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods. This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper describes how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  7. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  8. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    NASA Technical Reports Server (NTRS)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  9. An evolutionary approach to space launch commercialization

    NASA Astrophysics Data System (ADS)

    Chow, Brian G.

    The findings and recommendations of this study fall into two groups: Department of Defense (DoD) space launch procurement and DoD steps to strengthen U.S. launch competitiveness. Our analytic results support the choices that the Air Force and the Navy have made since 1985 in the methods of procuring launch services and in the degree of government oversight stipulated in these launch contracts. We further found that the Air Force's upcoming Medium Launch Vehicle-3 (MLV-3) procurement is DoD's most suitable major program to be procured with commercial practices over the next ten years. We recommend that the MLV-3 Request For Proposal (RFP) include commercial launches as an option and that the Air Force consider this option. To help strengthen launch competitiveness, we recommend that DoD concentrate its new launcher development on the most commercially relevant (MCR) range, which is the capability to lift 10,000 to 50,000 lbs of payload into low earth orbits (LEO's).

  10. Dementia across the Lifespan and around the Globe-Pathophysiology, Prevention, Treatment, and Societal Impact: A Call for Papers.

    PubMed

    2016-08-01

    In this months editorial, the PLOS Medicine Editors announce an upcoming Special Issue and call for papers, with Guest Editors Carol Brayne and Bruce Miller, on dementia across the lifespan and around the globe. PMID:27575695

  11. The Demeter micro satellite launch campaign

    NASA Astrophysics Data System (ADS)

    Dubourg, V.; Kainov, V.; Thoby, M.; Silkin, O.; Solovey, V.

    The CNES Micro satellite DEMETER is planned for launch by the end of June 2004 on a DNEPR launcher, from the Baíkonur cosmodrome. DEMETER will be the main payload among nine co-passengers. DEMETER, initiated by CNES in 1998, is the first model of the MYRIADE micro satellites line of product; at the time when this abstract is issued, the satellite is going through the final integration tests, as well as the last system validation phase. The space head module of the launcher has been developed by the Ukrainian YSDO company, and a successful fit check test campaign has been performed in December 2003 and January 2004 that allowed confirming the compatibility of the payloads with their launcher interface. The launch campaign is in process of preparation, implying a close partnership between the satellite team at CNES and Russian and Ukrainian launcher authorities: DEMETER is a pioneer not only for the satellite concept itself, but also for being the first satellite of this range (3 axis stabilized, including an hydrazine propulsion system and developed by a national space agency) being launched on a Russian space adapted intercontinental ballistic missile SS18. The launch service is contracted and managed by ISC Kosmotras, and it will also be the first sun synchronous orbit launch for DNEPR. Thus the launch preparation proved to be a very challenging endeavour providing all the actors with very rich human experience, as well as technical exchanges, in the fields of launcher technology and interfaces, facilities adaptation, logistics and project coordination. In the coming paper, a short presentation of the DEMETER satellite and of the DNEPR launcher will be made, but the main purpose is to present: the launch campaign preparation milestones, the launch campaign itself and related preliminary results and the lessons learnt from this first CNES/DNEPR experience to open the way to the future MYRIADE launches. A common CNES/KOSMOTRAS presentation is proposed at the

  12. Tabletop Experimental Track for Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  13. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. STS-99 / Endeavour: Launch Postponement Press Conference

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage shows Ron Dittemore, the Shuttle Program Manager from Johnson Space Center (JSC), participating in a Launch Postponement Press Conference disclosing the status of the STS-99 flight. He addresses the weather condition which caused the postponement and the erroneous response from one of the Master Events Controllers (MEC). The moderator of this conference is Bruce Buckingham from NASA's Public Affairs Office. Ron answers questions from the audience about the MEC responsible for sending commands for launch, and the implications that it might have on the launch schedule.

  15. NASA launch vehicles - The next twenty years

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.; Reese, Terrence G.

    1988-01-01

    Future space activities call for robust, reliable, cost-effective access to space, together with greater launch capacity. Attention is presently given to prospective developments in the field of cargo launch vehicle design, whose near-term goal for NASA is the Shuttle-C Space Shuttle-development unmanned vehicle. In the longer term, the Advanced Launch System will be developed jointly by NASA and the DOD for LEO placement of payloads of as much as 200,000 lb. NASA is studying ways of developing the current manned Space Shuttle Orbiter through incorporation of emerging technologies; eventually, a 'Shuttle-II' vehicle will be developed.

  16. Viking Mars launch set for August 11

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1975-01-01

    The 1975-1976 Viking Mars Mission is described in detail, from launch phase through landing and communications relay phase. The mission's scientific goals are outlined and the various Martian investigations are discussed. These investigations include: geological photomapping and seismology; high-resolution, stereoscopic horizon scanning; water vapor and thermal mapping; entry science; meteorology; atmospheric composition and atmospheric density; and, search for biological products. The configurations of the Titan 3/Centaur combined launch vehicles, the Viking orbiters, and the Viking landers are described; their subsystems and performance characteristics are discussed. Preflight operations, launch window, mission control, and the deep space tracking network are also presented.

  17. Ideas for GLOBE's Future Drawn from the 7-Year Experience of the CERES S'COOL Project

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Detweiler, P. T.; Fischer, J. D.; Sepulveda, R.; Arabini, E.

    2003-12-01

    As the outreach portion of the Clouds and the Earth's Radiant Energy System (CERES) project, the Students' Cloud Observations On-Line (S'COOL) project is of smaller scale and scope than GLOBE; but its aims and methods are quite similar. As a result, lessons learned from S'COOL since its beginnings in 1997 may provide useful ideas for the future of GLOBE. This is particularly true as the director of S'COOL has also been a GLOBE science principal investigator for the last year (leading the contrail investigation within GLOBE). This paper will discuss a number of lessons learned from the experience with the S'COOL Project, and will make some suggestions for the future of GLOBE based on that experience. It will include discussion of most of the important elements of GLOBE, including 1) teacher training: S'COOL recently conducted its 5th annual Summer S'COOL Teacher Workshop; 2) data collection: S'COOL is nearing 26,000 complete student cloud observations; 3) integration of scientific research with classroom teaching and learning: S'COOL promotes use of real, student-reported, scientific observations for use in the classroom and in student projects. S'COOL also makes scientific satellite data available and accessible to students and teachers; 4) use of data by scientists: S'COOL pursues a statistical analysis of student data which was requested and obtained for a specific purpose. The paper will also present some observations and ideas for GLOBE based on the author's year of experience as a GLOBE principal investigator.

  18. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  19. The power of Virtual Globes for valorising cultural heritage and enabling sustainable tourism: NASA World Wind applications

    NASA Astrophysics Data System (ADS)

    Brovelli, M.; Hogan, P.; Minghini, M.; Zamboni, G.

    2013-10-01

    Inspired by the visionary idea of Digital Earth, as well as from the tremendous improvements in geo-technologies, use of virtual globes has been changing the way people approach to geographic information on the Web. Unlike the traditional 2D-visualization typical of Geographic Information Systems (GIS), virtual globes offer multi-dimensional, fully-realistic content visualization which allows for a much richer user experience. This research investigates the potential for using virtual globes to foster tourism and enhance cultural heritage. The paper first outlines the state of the art for existing virtual globes, pointing out some possible categorizations according to license type, platform-dependence, application type, default layers, functionalities and freedom of customization. Based on this analysis, the NASA World Wind virtual globe is the preferred tool for promoting tourism and cultural heritage. This is because its open source nature allows unlimited customization (in terms of both data and functionalities), and its Java core supports platform-independence. Relevant tourism-oriented World Wind-based applications, dealing with both the Web promotion of historical cartography and the setup of a participatory Web platform exploiting crowd-sourced data, are described. Finally, the paper presents a project focusing on the promotion of the Via Regina area (crossing the border between Italy and Switzerland) through an ad hoc World Wind customization. World Wind can thus be considered an ideal virtual globe for tourism applications, as it can be shaped to increase awareness of cultural history and, in turn, enhance touristic experience.

  20. 14 CFR 417.113 - Launch safety rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and the status of the launch vehicle, launch support equipment, and personnel under which launch... will determine whether initiating flight would expose the launch vehicle to a lightning hazard and not... criteria for ensuring that: (i) The flight safety system is operating to ensure the launch vehicle...

  1. 14 CFR 415.133 - Safety at end of launch.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Safety at end of launch. 415.133 Section 415.133 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site...

  2. 14 CFR 415.39 - Safety at end of launch.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Safety at end of launch. 415.39 Section 415.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch From a Federal Launch Range § 415.39 Safety at end of launch....

  3. 14 CFR 417.113 - Launch safety rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch safety rules. 417.113 Section 417.113 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.113 Launch safety rules. (a) General. For each launch, a...

  4. 14 CFR 417.113 - Launch safety rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and the status of the launch vehicle, launch support equipment, and personnel under which launch... will determine whether initiating flight would expose the launch vehicle to a lightning hazard and not... criteria for ensuring that: (i) The flight safety system is operating to ensure the launch vehicle...

  5. 14 CFR 415.39 - Safety at end of launch.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... compliance with § 417.129 of this chapter, for any proposed launch of a launch vehicle with a stage or... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Safety at end of launch. 415.39 Section 415... OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch From a...

  6. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The HOST (the Hubble Space Telescope Orbital Systems Test) payload is uncrated in the Space Station Processing Facility (SSPF). HOST is scheduled to fly on the STS-95 mission, planned for launch on Oct. 29, 1998. The mission includes other research payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  7. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The HOST (the Hubble Space Telescope Orbital Systems Test) payload is moved into the high bay of the Space Station Processing Facility (SSPF). HOST is scheduled to fly on the STS- 95 mission, planned for launch on Oct. 29, 1998. The mission includes other research payloads such as the Spartan solar- observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  8. STS-134 Launch Composite Video Comparison

    NASA Video Gallery

    A side-by-side comparison video shows a one-camera view of the STS-134 launch (left) with the six-camera composited view (right). Imaging experts funded by the Space Shuttle Program and located at ...

  9. European Cargo Ship Launches to Station

    NASA Video Gallery

    The European Space Agency's third Automated Transfer Vehicle (ATV-3) launched atop an Ariane 5 rocket from the European space port in Kourou, French Guiana, at 12:34 a.m. EDT Friday, beginning a si...

  10. European Cargo Ship Launches to Station

    NASA Video Gallery

    The European Space Agency's (ESA) fourth Automated Transfer Vehicle cargo craft (ATV-4) launched atop an Ariane 5 rocket from Kourou, French Guiana at 5:52 p.m. EDT on Wednesday to begin a 10-day t...

  11. Apollo experience report: Launch escape propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Townsend, N. A.

    1973-01-01

    The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.

  12. Launch of the MR-2 spacecraft

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Launching of the Mercury-Redstone 2 (MR-3) spacecraft from Cape Canaveral on a suborbital mission. Onboard the craft was Ham, a 37-pound chimpanzee. Despite an over-acceleration factor, the flight was considered to be successful.

  13. Expedition 34 Crew Prepares for Soyuz Launch

    NASA Video Gallery

    At the Baikonur Cosmodrome in Kazakhstan, Tom Marshburn of NASA, Roman Romanenko of the Russian Federal Space Agency and Chris Hadfield of the Canadian Space Agency prepare for their Dec. 19 launch...

  14. FAME selected for MIDEX 2004 launch

    NASA Astrophysics Data System (ADS)

    Urban, S. E.; Seidelmann, P. K.; Germain, M.; Horner, S.; Greene, T.; Harris, F.; Johnson, M.; Johnston, K. J.; Monet, D.; Murrison, M.; Phillips, J.; Reasenberg, R.; Vassar, R.

    FAME, the Full-sky Astrometric Mapping Explorer, was selected for the MIDEX mission of NASA and is sheduled for a 2004 launch. Project goals and design, as well as data analysis and recent experiments are summarized.

  15. NASA's Space Launch System Building Orion Adapter

    NASA Video Gallery

    NASA is hard at work designing the nation's next flagship rocket, a heavy-lift launch vehicle that will carry explorers deeper into space than ever before. While the first full-configuration won't ...

  16. NATO-3C/Delta launch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NATO-3C, the third in a series of NATO defense-related communication satellites, is scheduled to be launched on a delta vehicle from the Eastern Test Range no earlier than November 15, 1978. NATO-3A and -3B were successfully launched by Delta vehicles in April 1976 and January 1977, respectively. The NATO-3C spacecraft will be capable of transmitting voice, data, facsimile, and telex messages among military ground stations. The launch vehicle for the NATO-3C mission will be the Delta 2914 configuration. The launch vehicle is to place the spacecraft in a synchronous transfer orbit. The spacecraft Apogee Kick motor is to be fired at fifth transfer orbit apogee to circularize its orbit at geosynchronous altitude of 35,900 km(22,260 miles) above the equator over the Atlantic Ocean somewhere between 45 and 50 degrees W longitude.

  17. Commercial Crew Program: Launch Abort Systems

    NASA Video Gallery

    NASA's work in the next generation of launch abort systems (LAS) is significantly different from past programs. Instead of designing a specific system for a given spacecraft or rocket, engineers ar...

  18. NASA nixes Centaur launches from shuttle

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    James C. Fletcher, the administrator of the National Aeronautics and Space Administration (NASA) announced on June 19, 1986, that because of safety considerations, the space shuttle will not be used to launch the Centaur Upper Stage. The Ulysses and Galileo missions, which were originally to have been launched in May 1986, would have been launched from the shuttle with the Centaur rocket (Eos, November 19, 1985, p. 1183; February 4, 1986, p. 57). The Galileo craft is to explore Jupiter; Ulysses is a joint mission of the European Space Agency (ESA) and NASA that is to orbit the sun around its poles, outside of the “ecliptic plane” where the planets lie. The decision seems likely to delay further the two missions, which were already delayed by the suspension of shuttle launches after the explosion of the space shuttle Challenger on January 28, 1986.

  19. New Research Site to Launch in June

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-05-01

    Thirteen science and technology societies will launch a new Web site (http://www.scitopia.org) in June that will enable users to search more than three million journal articles, conference proceedings, and patents at once.

  20. Cost effective launch technology for communications satellites

    NASA Astrophysics Data System (ADS)

    Taylor, T. C.; Overman, A.

    1984-10-01

    The present investigation is concerned with the possibility to reduce the costs for placing satellites in orbit by making use of an 'Air Launch' system. It is pointed out that the launching of rockets to orbit from aircraft in flight has been done successfully. It is suggested to modify the existing technology for the purpose of launching communications satellites and other payloads to orbit. Thus, the Air Launch Concept combines aircraft and missile technologies to produce a method of transport to orbit. A heavy lift cargo aircraft is employed to fly a rocket and the satellite payload to a specific location at the service ceiling of the aircraft. Attention is given to aspects of cost reduction, commercial and technical benefits, the anticipated market, and technical details.