Science.gov

Sample records for glucagon-like peptide-1 analogue

  1. Glucagon-like peptide-1 analogue prevents nonalcoholic steatohepatitis in non-obese mice

    PubMed Central

    Yamamoto, Takaya; Nakade, Yukiomi; Yamauchi, Taeko; Kobayashi, Yuji; Ishii, Norimitsu; Ohashi, Tomohiko; Ito, Kiyoaki; Sato, Ken; Fukuzawa, Yoshitaka; Yoneda, Masashi

    2016-01-01

    AIM: To investigate whether a glucagon-like peptide-1 (GLP-1) analogue inhibits nonalcoholic steatohepatitis (NASH), which is being increasingly recognized in Asia, in non-obese mice. METHODS: A methionine-choline-deficient diet (MCD) along with exendin-4 (20 μg/kg per day, ip), a GLP-1 analogue, or saline was administered to male db/db mice (non-obese NASH model). Four or eight weeks after commencement of the diet, the mice were sacrificed and their livers were excised. The excised livers were examined by histochemistry for evidence of hepatic steatosis and inflammation. Hepatic triglyceride (TG) and free fatty acid (FFA) content was measured, and the expression of hepatic fat metabolism- and inflammation-related genes was evaluated. Oxidative stress-related parameters and macrophage recruitment were also examined using immunohistochemistry. RESULTS: Four weeks of MCD feeding induced hepatic steatosis and inflammation and increased the hepatic TG and FFA content. The expression of fatty acid transport protein 4 (FATP4), a hepatic FFA influx-related gene; macrophage recruitment; and the level of malondialdehyde (MDA), an oxidative stress marker, were significantly augmented by a 4-wk MCD. The levels of hepatic sterol regulatory element-binding protein-1c (SREBP-1c) mRNA (lipogenesis-related gene) and acyl-coenzyme A oxidase 1 (ACOX1) mRNA (β-oxidation-related gene) had decreased at 4 wk and further decreased at 8 wk. However, the level of microsomal triglyceride transfer protein mRNA (a lipid excretion-related gene) remained unchanged. The administration of exendin-4 significantly attenuated the MCD-induced increase in hepatic steatosis, hepatic TG and FFA content, and FATP4 expression as well as the MCD-induced augmentation of hepatic inflammation, macrophage recruitment, and MDA levels. Additionally, it further decreased the hepatic SREBP-1c level and alleviated the MCD-mediated inhibition of the ACOX1 mRNA level. CONCLUSION: These results suggest that GLP-1

  2. The Glucagon-Like Peptide 1 Analogue, Exendin-4, Attenuates the Rewarding Properties of Psychostimulant Drugs in Mice

    PubMed Central

    Egecioglu, Emil; Engel, Jörgen A.; Jerlhag, Elisabet

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is an incretine hormone that controls consummatory behavior and glucose homeostasis. It is released in response to nutrient ingestion from the intestine and production in the brain has also been identified. Given that GLP-1 receptors are expressed in reward areas, such as the nucleus accumbens and ventral tegmental area, and that common mechanisms regulate food and drug-induced reward we hypothesize that GLP-1 receptors are involved in reward regulation. Herein the effect of the GLP-1 receptor agonist Exendin-4 (Ex4), on amphetamine- and cocaine-induced activation of the mesolimbic dopamine system was investigated in mice. In a series of experiments we show that treatment with Ex4, at a dose with no effect per se, reduce amphetamine- as well as cocaine-induced locomotor stimulation, accumbal dopamine release as well as conditioned place preference in mice. Collectively these data propose a role for GLP-1 receptors in regulating drug reward. Moreover, the GLP-1 signaling system may be involved in the development of drug dependence since the rewarding effects of addictive drugs involves interferences with the mesolimbic dopamine system. Given that GLP-1 analogues, such as exenatide and liraglutide, are clinically available for treatment of type II diabetes, we propose that these should be elucidated as treatments of drug dependence. PMID:23874851

  3. The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca(2+) signalling in steatotic hepatocytes.

    PubMed

    Ali, Eunüs S; Hua, Jin; Wilson, Claire H; Tallis, George A; Zhou, Fiona H; Rychkov, Grigori Y; Barritt, Greg J

    2016-09-01

    The release of Ca(2+) from the endoplasmic reticulum (ER) and subsequent replenishment of ER Ca(2+) by Ca(2+) entry through store-operated Ca(2+) channels (SOCE) play critical roles in the regulation of liver metabolism by adrenaline, glucagon and other hormones. Both ER Ca(2+) release and Ca(2+) entry are severely inhibited in steatotic hepatocytes. Exendin-4, a slowly-metabolised glucagon-like peptide-1 (GLP-1) analogue, is known to reduce liver glucose output and liver lipid, but the mechanisms involved are not well understood. The aim of this study was to determine whether exendin-4 alters intracellular Ca(2+) homeostasis in steatotic hepatocytes, and to evaluate the mechanisms involved. Exendin-4 completely reversed lipid-induced inhibition of SOCE in steatotic liver cells, but did not reverse lipid-induced inhibition of ER Ca(2+) release. The action of exendin-4 on Ca(2+) entry was rapid in onset and was mimicked by GLP-1 or dibutyryl cyclic AMP. In steatotic liver cells, exendin-4 caused a rapid decrease in lipid (half time 6.5min), inhibited the accumulation of lipid in liver cells incubated in the presence of palmitate plus the SOCE inhibitor BTP-2, and enhanced the formation of cyclic AMP. Hormone-stimulated accumulation of extracellular glucose in glycogen replete steatotic liver cells was inhibited compared to that in non-steatotic cells, and this effect of lipid was reversed by exendin-4. It is concluded that, in steatotic hepatocytes, exendin-4 reverses the lipid-induced inhibition of SOCE leading to restoration of hormone-regulated cytoplasmic Ca(2+) signalling. The mechanism may involve GLP-1 receptors, cyclic AMP, lipolysis, decreased diacylglycerol and decreased activity of protein kinase C. PMID:27178543

  4. Glucagon-Like Peptide-1 Gene Therapy

    PubMed Central

    Rowzee, Anne M.; Cawley, Niamh X.; Chiorini, John A.; Di Pasquale, Giovanni

    2011-01-01

    Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus. PMID:21747830

  5. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure

    PubMed Central

    2010-01-01

    Background Accumulating evidence suggests glucagon-like peptide-1 (GLP-1) exerts cardioprotective effects in animal models of myocardial infarction (MI). We hypothesized that chronic treatment with GLP-1 or the exenatide analog AC3174 would improve cardiac function, cardiac remodeling, insulin sensitivity, and exercise capacity (EC) in rats with MI-induced chronic heart failure (CHF) caused by coronary artery ligation. Methods Two weeks post-MI, male Sprague-Dawley rats were treated with GLP-1 (2.5 or 25 pmol/kg/min), AC3174 (1.7 or 5 pmol/kg/min) or vehicle via subcutaneous infusion for 11 weeks. Cardiac function and morphology were assessed by echocardiography during treatment. Metabolic, hemodynamic, exercise-capacity, and body composition measurements were made at study end. Results Compared with vehicle-treated rats with CHF, GLP-1 or AC3174 significantly improved cardiac function, including left ventricular (LV) ejection fraction, and end diastolic pressure. Cardiac dimensions also improved as evidenced by reduced LV end diastolic and systolic volumes and reduced left atrial volume. Vehicle-treated CHF rats exhibited fasting hyperglycemia and hyperinsulinemia. In contrast, GLP-1 or AC3174 normalized fasting plasma insulin and glucose levels. GLP-1 or AC3174 also significantly reduced body fat and fluid mass and improved exercise capacity and respiratory efficiency. Four of 16 vehicle control CHF rats died during the study compared with 1 of 44 rats treated with GLP-1 or AC3174. The cellular mechanism by which GLP-1 or AC3174 exert cardioprotective effects appears unrelated to changes in GLUT1 or GLUT4 translocation or expression. Conclusions Chronic treatment with either GLP-1 or AC3174 showed promising cardioprotective effects in a rat model of CHF. Hence, GLP-1 receptor agonists may represent a novel approach for the treatment of patients with CHF or cardiovascular disease associated with type 2 diabetes. PMID:21080957

  6. Glucagon-like peptide-1: glucose homeostasis and beyond.

    PubMed

    Cho, Young Min; Fujita, Yukihiro; Kieffer, Timothy J

    2014-01-01

    Glucagon-like peptide-1 (GLP-1), an incretin hormone secreted primarily from the intestinal L-cells in response to meals, modulates nutrient homeostasis via actions exerted in multiple tissues and cell types. GLP-1 and its analogs, as well as compounds that inhibit endogenous GLP-1 breakdown, have become an effective therapeutic strategy for many subjects with type 2 diabetes. Here we review the discovery of GLP-1; its synthesis, secretion, and elimination from the circulation; and its multiple pancreatic and extrapancreatic effects. Finally, we review current options for GLP-1-based diabetes therapy, including GLP-1 receptor agonism and inhibition of GLP-1 breakdown, as well as the benefits and drawbacks of different modes of therapy and the potential for new therapeutic avenues. PMID:24245943

  7. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1

    PubMed Central

    Wang, XingChun; Liu, Huan; Chen, Jiaqi; Li, Yan; Qu, Shen

    2015-01-01

    The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels. PMID:26366173

  8. The Cardiovascular Biology of Glucagon-like Peptide-1.

    PubMed

    Drucker, Daniel J

    2016-07-12

    Glucagon-like peptide-1, produced predominantly in enteroendocrine cells, controls glucose metabolism and energy homeostasis through regulation of islet hormone secretion, gastrointestinal motility, and food intake, enabling development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. GLP-1 also acts on the immune system to suppress inflammation, and GLP-1R signaling in multiple tissues impacts cardiovascular function in health and disease. Here we review how GLP-1 and clinically approved GLP-1R agonists engage mechanisms that influence the risk of developing cardiovascular disease. We discuss how GLP-1R agonists modify inflammation, cardiovascular physiology, and pathophysiology in normal and diabetic animals through direct and indirect mechanisms and review human studies illustrating mechanisms linking GLP-1R signaling to modification of the cardiovascular complications of diabetes. The risks and benefits of GLP-1R agonists are updated in light of recent data suggesting that GLP-1R agonists favorably modify outcomes in diabetic subjects at high risk for cardiovascular events. PMID:27345422

  9. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system. PMID:7784253

  10. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists.

    PubMed

    Kang, Yu Mi; Jung, Chang Hee

    2016-06-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  11. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists

    PubMed Central

    Kang, Yu Mi

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  12. The Glucagon-Like Peptide 1 Analogue Exendin-4 Attenuates the Nicotine-Induced Locomotor Stimulation, Accumbal Dopamine Release, Conditioned Place Preference as well as the Expression of Locomotor Sensitization in Mice

    PubMed Central

    Egecioglu, Emil; Engel, Jörgen A.; Jerlhag, Elisabet

    2013-01-01

    The gastrointestinal peptide glucagon-like peptide 1 (GLP-1) is known to regulate consummatory behavior and is released in response to nutrient ingestion. Analogues of this peptide recently emerged as novel pharmacotherapies for treatment of type II diabetes since they reduce gastric emptying, glucagon secretion as well as enhance glucose-dependent insulin secretion. The findings that GLP-1 targets reward related areas including mesolimbic dopamine areas indicate that the physiological role of GLP-1 extends beyond food intake and glucose homeostasis control to include reward regulation. The present series of experiments was therefore designed to investigate the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4), on established nicotine-induced effects on the mesolimbic dopamine system in mice. Specifically, we show that treatment with Ex4, at a dose with no effect per se, attenuate nicotine-induced locomotor stimulation, accumbal dopamine release as well as the expression of conditioned place preference in mice. In accordance, Ex4 also blocks nicotine-induced expression of locomotor sensitization in mice. Given that development of nicotine addiction largely depends on the effects of nicotine on the mesolimbic dopamine system these findings indicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for nicotine cessations in humans. PMID:24204788

  13. Glucagon-like peptide-1 binding to rat hepatic membranes.

    PubMed

    Villanueva-Peñacarrillo, M L; Delgado, E; Trapote, M A; Alcántara, A; Clemente, F; Luque, M A; Perea, A; Valverde, I

    1995-07-01

    We have found [125I]glucagon-like peptide (GLP)-1(7-36)amide specific binding activity in rat liver and isolated hepatocyte plasma membranes, with an M(r) of approximately 63,000, estimated by cross-linking and SDS-PAGE. The specific binding was time- and membrane protein concentration-dependent, and equally displaced by unlabelled GLP-1(7-36)amide and by GLP-1(1-36)amide, achieving its ID50 at 3 x 10(-9) M of the peptides. GLP-1(7-36)amide did not modify the basal or the glucagon (10(-8) M)-stimulated adenylate cyclase in the hepatocyte plasma membranes. These data, together with our previous findings of a potent glycogenic effect of GLP-1(7-36)amide in isolated rat hepatocytes, led us to postulate that the insulin-like effects of this peptide on glucose liver metabolism could be mediated by a type of receptor probably different from that described for GLP-1 in pancreatic B-cells or, alternatively, by the same receptor which, in this tissue as well as in muscle, uses a different transduction system. PMID:7561616

  14. The mechanism of glucagon-like peptide-1 participation in the osmotic homeostasis.

    PubMed

    Natochin, Yu V; Marina, A S; Kutina, A V; Balbotkina, E V; Karavashkina, T A

    2016-07-01

    We have found the physiological mechanism of intensification of the excessive fluid removal from the body under the action of glucagon-like peptide-1 and its analog exenatide. Under the water load in rats, exenatide significantly increased the clearance of lithium, reduced fluid reabsorption in the proximal tubule of the nephron and intensified reabsorption of sodium ions in the distal parts, which contributed to the formation of sodium-free water and faster recovery of osmotic homeostasis. Blocking this pathway with a selective antagonist of glucagon-like peptide-1 receptors slowed down the elimination of excessive water from the body. PMID:27595820

  15. Glucagon-Like Peptide-1 Formulation--the Present and Future Development in Diabetes Treatment.

    PubMed

    Lee, Chooi Yeng

    2016-03-01

    Type 2 diabetes mellitus is a chronic metabolic disorder that has become the fourth leading cause of death in the developed countries. The disorder is characterized by pancreatic β-cells dysfunction, which causes hyperglycaemia leading to several other complications. Treatment by far, which focuses on insulin administration and glycaemic control, has not been satisfactory. Glucagon-like peptide-1 (GLP1) is an endogenous peptide that stimulates post-prandial insulin secretion. Despite being able to mimic the effect of insulin, GLP1 has not been the target drug in diabetes treatment due to the peptide's metabolic instability. After a decade-long effort to improve the pharmacokinetics of GLP1, a number of GLP1 analogues are currently available on the market. The current Minireview does not discuss these drugs but presents strategies that were undertaken to address the weaknesses of the native GLP1, particularly drug delivery techniques used in developing GLP1 nanoparticles and modified GLP1 molecule. The article highlights how each of the selected preparations has improved the efficacy of GLP1, and more importantly, through an overview of these studies, it will provide an insight into strategies that may be adopted in the future in the development of a more effective oral GLP1 formulation. PMID:26551045

  16. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors

    PubMed Central

    Kim, Ki-Suk; Jang, Hyeung-Jin

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings. PMID:26788106

  17. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  18. Glucagon-like peptide-1 gastrointestinal regulatory role in metabolism and motility.

    PubMed

    Hellström, Per M

    2010-01-01

    Gastrointestinal (GI) motility, primarily gastric emptying, balances the hormonal output that takes place after food intake in order to maintain stable blood sugar. The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), work together to reduce postprandial hyperglycemia by glucose-dependent insulin secretion and inhibition of glucagon release, as well as inhibition of GI motility and gastric emptying. GLP-1 is considered the more effective of the two incretins due to its additional inhibitory effects on GI motility. It is observed that patients on treatment with GLP-1 analogues or exenatide achieve a considerable weight loss during treatment. This is of benefit to improve insulin resistance in type 2 diabetes. Furthermore, weight loss per se is of considerable benefit in an even longer health perspective. The weight loss is considered to be due to the inhibition of GI motility. This effect has been studied in animal experimentation, and from there taken to involve studies on GI motility in healthy volunteers and patients with irritable bowel syndrome (IBS). Evolving to a phase II study in IBS, the GLP-1 analogue (ROSE-010) was recently shown to be effective for treatment of acute pain attacks in IBS. Taken together, data speak in favor of GI motility as a central component not only in metabolic disorders but also in IBS, be it due to a direct relaxing effect on GI smooth muscle or a slow emptying of gastric contents resulting in a less outspoken nutritional demand on hormonal regulatory functions in the GI tract. PMID:21094906

  19. Efficacy and safety of liraglutide, a once-daily human glucagon-like peptide-1 analogue, in Latino/Hispanic patients with type 2 diabetes: post hoc analysis of data from four phase III trials.

    PubMed

    Davidson, J A; Ørsted, D D; Campos, C

    2016-07-01

    The aim of the present analysis was to evaluate the efficacy of the glucagon-like peptide-1 receptor agonist liraglutide in Latino/Hispanic individuals with type 2 diabetes, in addition to comparing its treatment effects with those observed in non-Latino/Hispanic individuals. Analyses were performed on patient-level data from a subset of individuals self-defined as Latino/Hispanic from four phase III studies, the LEAD-3, LEAD-4, LEAD-6 and 1860-LIRA-DPP-4 trials. Endpoints included change in glycated haemoglobin (HbA1c) and body weight from baseline. In Latino/Hispanic patients (n = 505; 323 treated with liraglutide) after 26 weeks, mean HbA1c reductions were significantly greater with both liraglutide 1.2 and 1.8 mg versus comparator or placebo in the LEAD-3 and LEAD-4 studies, and with 1.8 mg liraglutide in the 1860-LIRA-DPP-4 trial. In LEAD-3 both doses led to significant differences in body weight change among Latino/Hispanic patients versus the comparator. With 1.8 mg liraglutide, difference in weight change was significant only in the 1860-LIRA-DPP-4 trial versus sitagliptin. For both endpoints Latino/Hispanic and non-Latino/Hispanic patients responded to liraglutide similarly. In summary, liraglutide is efficacious for treatment of type 2 diabetes in Latino/Hispanic patients, with a similar efficacy to that seen in non-Latino/Hispanic patients. PMID:26936426

  20. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    SciTech Connect

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  1. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis

    PubMed Central

    Armstrong, Matthew J.; Hull, Diana; Guo, Kathy; Barton, Darren; Hazlehurst, Jonathan M.; Gathercole, Laura L.; Nasiri, Maryam; Yu, Jinglei; Gough, Stephen C.; Newsome, Philip N.; Tomlinson, Jeremy W.

    2016-01-01

    Background & Aims Insulin resistance and lipotoxicity are pathognomonic in non-alcoholic steatohepatitis (NASH). Glucagon-like peptide-1 (GLP-1) analogues are licensed for type 2 diabetes, but no prospective experimental data exists in NASH. This study determined the effect of a long-acting GLP-1 analogue, liraglutide, on organ-specific insulin sensitivity, hepatic lipid handling and adipose dysfunction in biopsy-proven NASH. Methods Fourteen patients were randomised to 1.8 mg liraglutide or placebo for 12-weeks of the mechanistic component of a double-blind, randomised, placebo-controlled trial (ClinicalTrials.gov-NCT01237119). Patients underwent paired hyperinsulinaemic euglycaemic clamps, stable isotope tracers, adipose microdialysis and serum adipocytokine/metabolic profiling. In vitro isotope experiments on lipid flux were performed on primary human hepatocytes. Results Liraglutide reduced BMI (−1.9 vs. +0.04 kg/m2; p <0.001), HbA1c (−0.3 vs. +0.3%; p <0.01), cholesterol-LDL (−0.7 vs. +0.05 mmol/L; p <0.01), ALT (−54 vs. −4.0 IU/L; p <0.01) and serum leptin, adiponectin, and CCL-2 (all p <0.05). Liraglutide increased hepatic insulin sensitivity (−9.36 vs. −2.54% suppression of hepatic endogenous glucose production with low-dose insulin; p <0.05). Liraglutide increased adipose tissue insulin sensitivity enhancing the ability of insulin to suppress lipolysis both globally (−24.9 vs. +54.8 pmol/L insulin required to ½ maximally suppress serum non-esterified fatty acids; p <0.05), and specifically within subcutaneous adipose tissue (p <0.05). In addition, liraglutide decreased hepatic de novo lipogenesis in vivo (−1.26 vs. +1.30%; p <0.05); a finding endorsed by the effect of GLP-1 receptor agonist on primary human hepatocytes (24.6% decrease in lipogenesis vs. untreated controls; p <0.01). Conclusions Liraglutide reduces metabolic dysfunction, insulin resistance and lipotoxicity in the key metabolic organs in the pathogenesis of

  2. Glucagon-like Peptide-1 (GLP-1) Analogs: Recent Advances, New Possibilities, and Therapeutic Implications

    PubMed Central

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin that plays important physiological roles in glucose homeostasis. Produced from intestine upon food intake, it stimulates insulin secretion and keeps pancreatic β-cells healthy and proliferating. Because of these beneficial effects, it has attracted a great deal of attention in the past decade, and an entirely new line of diabetic therapeutics has emerged based on the peptide. In addition to the therapeutic applications, GLP-1 analogs have demonstrated a potential in molecular imaging of pancreatic β-cells; this may be useful in early detection of the disease and evaluation of therapeutic interventions, including islet transplantation. In this Perspective, we focus on GLP-1 analogs for their studies on improvement of biological activities, enhancement of metabolic stability, investigation of receptor interaction, and visualization of the pancreatic islets. PMID:25349901

  3. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon.

    PubMed

    Sekar, R; Singh, K; Arokiaraj, A W R; Chow, B K C

    2016-01-01

    Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon. PMID:27572131

  4. Optimising cardioprotection during myocardial ischaemia: targeting potential intracellular pathways with glucagon-like peptide-1.

    PubMed

    Clarke, Sophie J; McCormick, Liam M; Dutka, David P

    2014-01-01

    Coronary heart disease and type-2 diabetes are both major global health burdens associated with an increased risk of myocardial infarction (MI). Following MI, ischaemia-reperfusion injury (IRI) remains a significant contributor to myocardial injury at the cellular level. Research has focussed on identifying a strategy or intervention to minimise IRI to optimise reperfusion therapy, with the aim of delivering a superior clinical outcome. The incretin hormone glucagon-like peptide-1, already an established basis for the treatment of type-2 diabetes, also has the potential to protect against IRI. We explain the physiology and cellular processes involved in IRI, and the intracellular pathways activated by GLP-1, which could intercept IRI and deliver cardioprotection. The review also examines the current preclinical and clinical evidence for GLP-1 in cardioprotection and future directions for research as we look for an effective adjunctive treatment to minimise IRI. PMID:24410815

  5. Optimising cardioprotection during myocardial ischaemia: targeting potential intracellular pathways with glucagon-like peptide-1

    PubMed Central

    2014-01-01

    Coronary heart disease and type-2 diabetes are both major global health burdens associated with an increased risk of myocardial infarction (MI). Following MI, ischaemia-reperfusion injury (IRI) remains a significant contributor to myocardial injury at the cellular level. Research has focussed on identifying a strategy or intervention to minimise IRI to optimise reperfusion therapy, with the aim of delivering a superior clinical outcome. The incretin hormone glucagon-like peptide-1, already an established basis for the treatment of type-2 diabetes, also has the potential to protect against IRI. We explain the physiology and cellular processes involved in IRI, and the intracellular pathways activated by GLP-1, which could intercept IRI and deliver cardioprotection. The review also examines the current preclinical and clinical evidence for GLP-1 in cardioprotection and future directions for research as we look for an effective adjunctive treatment to minimise IRI. PMID:24410815

  6. Glucagon like peptide-1 receptor agonists may ameliorate the metabolic adverse effect associated with antiretroviral therapy.

    PubMed

    Culha, Mehmet Gokhan; Inkaya, Ahmet Cagkan; Yildirim, Emre; Unal, Serhat; Serefoglu, Ege Can

    2016-09-01

    The number of people living with HIV and AIDS (PLWHA) reached to almost 40 million, half of which are under antiretroviral treatment (ART). Although the introduction of this therapy significantly improved the life span and quality of PLWHA, metabolic complications of these people remains to be an important issue. These metabolic complications include hyperlipidemia, abnormal fat redistribution and diabetes mellitus, which are defined as lipodystrophy syndrome. Glucagon-like peptide-1 (GLP-1) is a neuropeptide secreted from intestinal L cells and recently developed GLP-1 receptor agonists (GLP-1RAs) stimulate insulin secretion, improve weight control and reduce cardiovascular outcomes. This class of drugs may be a valuable medication in the treatment of HIV-associated metabolic adverse effects and extend the life expectancy of patients infected with HIV. PMID:27515222

  7. Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets.

    PubMed

    Tudurí, Eva; López, Miguel; Diéguez, Carlos; Nadal, Angel; Nogueiras, Rubén

    2016-05-01

    Glucagon-like peptide 1 (GLP-1) exerts many actions that improve glycemic control. GLP-1 stimulates glucose-stimulated insulin secretion and protects β cells, while its extrapancreatic effects include cardioprotection, reduction of hepatic glucose production, and regulation of satiety. Although an appealing antidiabetic drug candidate, the rapid degradation of GLP-1 by dipeptidyl peptidase 4 (DPP-4) means that its therapeutic use is unfeasible, and this prompted the development of two main GLP-1 therapies: long-acting GLP-1 analogs and DPP-4 inhibitors. In this review, we focus on the pancreatic effects exerted by current GLP-1 derivatives used to treat diabetes. Based on the results from in vitro and in vivo studies in humans and animal models, we describe the specific actions of GLP-1 analogs on the synthesis, processing, and secretion of insulin, islet morphology, and β cell proliferation and apoptosis. PMID:27062006

  8. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor

    PubMed Central

    Hennen, Stephanie; Kodra, János T.; Soroka, Vladyslav; Krogh, Berit O.; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G.; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S.; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  9. Male fertility and obesity: are ghrelin, leptin and glucagon-like peptide-1 pharmacologically relevant?

    PubMed

    Alves, Marco G; Jesus, Tito T; Sousa, Mário; Goldberg, Erwin; Silva, Branca M; Oliveira, Pedro F

    2016-01-01

    Obesity is rising to unprecedented numbers, affecting a growing number of children, adolescents and young adult men. These individuals face innumerous health problems, including subfertility or even infertility. Overweight and obese men present severe alterations in their body composition and hormonal profile, particularly in ghrelin, leptin and glucagon-like peptide-1 (GLP-1) levels. It is well known that male reproductive health is under the control of the individual's nutritional status and also of a tight network of regulatory signals, particularly hormonal signaling. However, few studies have been focused on the effects of ghrelin, leptin and GLP-1 in male reproduction and how energy homeostasis and male reproductive function are linked. These hormones regulate body glucose homeostasis and several studies suggest that they can serve as targets for anti-obesity drugs. In recent years, our understanding of the mechanisms of action of these hormones has grown significantly. Curiously, their effect on male reproductive potential, that is highly dependent of the metabolic cooperation established between testicular cells, remains a matter of debate. Herein, we review general concepts of male fertility and obesity, with a special focus on the effects of ghrelin, leptin and GLP-1 on male reproductive health. We also discuss the possible pharmacological relevance of these hormones to counteract the fertility problems that overweight and obese men face. PMID:26648473

  10. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    PubMed

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  11. Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1.

    PubMed

    Seino, Yusuke; Maekawa, Ryuya; Ogata, Hidetada; Hayashi, Yoshitaka

    2016-04-01

    Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the incretin hormones secreted from enteroendocrine K-cells and L-cells, respectively, by oral ingestion of various nutrients including glucose. K-cells, L-cells and pancreatic β-cells are glucose-responsive cells with similar glucose-sensing machinery including glucokinase and an adenosine triphosphate-sensitive K(+) channel comprising KIR6.2 and sulfonylurea receptor 1. However, the physiological role of the adenosine triphosphate-sensitive K(+) channel in GIP secretion in K-cells and GLP-1 secretion in L-cells is not elucidated. Recently, it was reported that GIP and GLP-1-producing cells are present also in pancreatic islets, and islet-derived GIP and GLP-1 contribute to glucose-induced insulin secretion from pancreatic β-cells. In this short review, we focus on GIP and GLP-1 secretion by monosaccharides, such as glucose or fructose, and the role of the adenosine triphosphate-sensitive K(+) channel in GIP and GLP-1 secretion. PMID:27186352

  12. Polymer-Based Delivery of Glucagon-Like Peptide-1 for the Treatment of Diabetes

    PubMed Central

    Kim, Pyung-Hwan; Kim, Sung Wan

    2012-01-01

    The incretin hormones, glucagon-like peptide-1 (GLP-1) and its receptor agonist (exendin-4), are well known for glucose homeostasis, insulinotropic effect, and effects on weight loss and food intake. However, due to the rapid degradation of GLP-1 by dipeptidylpeptidase-IV (DPP-IV) enzyme and renal elimination of exendin-4, their clinical applications have been restricted. Although exendin-4 has longer half-life than GLP-1, it still requires frequent injections to maintain efficacy for the treatment of diabetes. In recent decades, various polymeric delivery systems have been developed for the delivery of GLP-1 and exendin-4 genes or peptides for their long-term action and the extra production in ectopic tissues. Herein, we discuss the modification of the expression cassettes and peptides for long-term production and secretion of the native peptides. In addition, the characteristics of nonviral or viral system used for a delivery of a modified GLP-1 or exendin-4 are described. Furthermore, recent efforts to improve the biological half-life of GLP-1 or exendin-4 peptide via chemical conjugation with various smart polymers via chemical conjugation compared with native peptide are discussed. PMID:22701182

  13. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. PMID:26807480

  14. Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes.

    PubMed

    Huang, Jen-Hung; Chen, Yao-Chang; Lee, Ting-I; Kao, Yu-Hsun; Chazo, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2016-04-01

    Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10nM) incubation for 24h. GLP-1 (1 and 10nM) and control cells had similar action potential durations. However, GLP-1 at 10nM significantly increased calcium transients and sarcoplasmic reticular Ca(2+) contents. Compared to the control, GLP-1 (10nM)-treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca(2+)-ATPase and the sodium-calcium exchanger. Moreover, exendin (9-39) amide (a GLP-1 receptor antagonist, 10nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins. PMID:26930508

  15. Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis.

    PubMed

    Koehler, Jacqueline A; Baggio, Laurie L; Cao, Xiemin; Abdulla, Tahmid; Campbell, Jonathan E; Secher, Thomas; Jelsing, Jacob; Larsen, Brett; Drucker, Daniel J

    2015-03-01

    Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67(+) cells in the exocrine compartment; however, pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 phosphorylation, and mediated through the GLP-1R. Rapamycin abrogated the GLP-1R-dependent increase in pancreatic mass but had no effect on the robust induction of Reg3α and Reg3β gene expression. Mass spectrometry analysis identified GLP-1R-dependent upregulation of Reg family members, as well as proteins important for translation and export, including Fam129a, eIF4a1, Wars, and Dmbt1. Hence, pharmacological GLP-1R activation induces protein synthesis, leading to increased pancreatic mass, independent of changes in DNA content or cell proliferation in mice. PMID:25277394

  16. Combining Basal Insulin Analogs with Glucagon-Like Peptide-1 Mimetics

    PubMed Central

    2011-01-01

    Abstract Basal insulin analogs are recognized as an effective method of achieving and maintaining glycemic control for patients with type 2 diabetes. However, the progressive nature of the disease means that some individuals may require additional ways to maintain their glycemic goals. Intensification in these circumstances has traditionally been achieved by the addition of short-acting insulin to cover postprandial glucose excursions that are not targeted by basal insulin. However, intensive insulin regimens are associated with a higher risk of hypoglycemia and weight gain, which can contribute to a greater burden on patients. The combination of basal insulin with a glucagon-like peptide-1 (GLP-1) mimetic is a potentially attractive solution to this problem for some patients with type 2 diabetes. GLP-1 mimetics target postprandial glucose and should complement the activity of basal insulins; they are also associated with a relatively low risk of associated hypoglycemia and moderate, but significant, weight loss. Although the combination has not been approved by regulatory authorities, preliminary evidence from mostly small-scale studies suggests that basal insulins in combination with GLP-1 mimetics do provide improvements in A1c and postprandial glucose with concomitant weight loss and no marked increase in the risk of hypoglycemia. These results are promising, but further studies are required, including comparisons with basal–bolus therapy, before the complex value of this association can be fully appreciated. PMID:21711120

  17. Glucagon-like peptide-1: effect on pro-atrial natriuretic peptide in healthy males.

    PubMed

    Skov, Jeppe; Holst, Jens Juul; Gøtze, Jens Peter; Frøkiær, Jørgen; Christiansen, Jens Sandahl

    2014-01-01

    The antihypertensive actions of glucagon-like peptide-1 (GLP1) receptor agonists have been linked to the release of atrial natriuretic peptide (ANP) in mice. Whether a GLP1-ANP axis exists in humans is unknown. In this study, we examined 12 healthy young males in a randomized, controlled, double-blinded, single-day, cross-over study to evaluate the effects of a 2-h native GLP1 infusion. Plasma proANP concentrations were measured by an automated mid-region-directed proANP immunoassay and N-terminal pro B-type natriuretic peptide (BNP) on Roche Modular E170. Urine was collected for measurements of sodium excretion. Although GLP1 infusion increased the urinary sodium excretion markedly, there were no significant changes in either proANP or proBNP concentrations. When GLP1 infusion was stopped, sodium excretion declined rapidly. As proANP concentration reflects ANP secretion, our data could not confirm the existence of a GLP1-ANP axis in humans. Especially, the natriuretic effects of GLP1 seem unlikely to be mediated exclusively via ANP. PMID:24327600

  18. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. PMID:25678625

  19. Long-term insulinotropic activity of glucagon-like peptide-1/polymer conjugate on islet microcapsules.

    PubMed

    Kim, Sungwon; Bae, You Han

    2004-01-01

    The biohybrid artificial pancreas (BAP), a promising therapy for type 1 diabetes, faces several obstacles such as the need for a large implantation volume of encapsulated islets because of low functionality. To address such problems, in this study we examined long-term insulinotropic activity of glucagon-like peptide-1 (GLP-1)/polymer conjugate [VAPG: poly(N-vinylpyrrolidone-co-acrylic acid-g-PEG) (VAP)-GLP-1] as well as GLP-1/Zn(2+) crystal by coencapsulation with islets. Microcapsules with VAPG or crystal produced round-shaped beads whereas free GLP-1 showed poor capsule morphology. A perfusion experiment suggested that VAPG showed higher bioactivity than did microcapsules with GLP-1/Zn(2+). In long-term culture (200 mg of glucose/dL [G]), VAPG also enhanced insulinotropic activity over 5 weeks compared with the crystal form of GLP-1. However, maintenance of the high bioactivity of VAPG suddenly declined after week 5, possibly because of degradation, metabolism, and overstimulation. Basal (50 G) and glucose-stimulated (300 G) levels of insulin secretion confirmed a see-saw pattern in which the VAPG gradually decreased insulin secretion from encapsulated islets and then fell below the insulin level secreted from microcapsules containing GLP-1/Zn(2+) crystal. Viability of the microcapsulated islets of each group was not significantly different. Consequently, the coencapsulation of VAPG or GLP-1/Zn(2+) crystal can be a potential approach to reducing BAP volume with further optimization of activity duration. PMID:15684669

  20. Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis.

    PubMed

    Cameron-Vendrig, Alison; Reheman, Adili; Siraj, M Ahsan; Xu, Xiaohong Ruby; Wang, Yiming; Lei, Xi; Afroze, Talat; Shikatani, Eric; El-Mounayri, Omar; Noyan, Hossein; Weissleder, Ralph; Ni, Heyu; Husain, Mansoor

    2016-06-01

    Short-term studies in subjects with diabetes receiving glucagon-like peptide 1 (GLP-1)-targeted therapies have suggested a reduced number of cardiovascular events. The mechanisms underlying this unexpectedly rapid effect are not known. We cloned full-length GLP-1 receptor (GLP-1R) mRNA from a human megakaryocyte cell line (MEG-01), and found expression levels of GLP-1Rs in MEG-01 cells to be higher than those in the human lung but lower than in the human pancreas. Incubation with GLP-1 and the GLP-1R agonist exenatide elicited a cAMP response in MEG-01 cells, and exenatide significantly inhibited thrombin-, ADP-, and collagen-induced platelet aggregation. Incubation with exenatide also inhibited thrombus formation under flow conditions in ex vivo perfusion chambers using human and mouse whole blood. In a mouse cremaster artery laser injury model, a single intravenous injection of exenatide inhibited thrombus formation in normoglycemic and hyperglycemic mice in vivo. Thrombus formation was greater in mice transplanted with bone marrow lacking a functional GLP-1R (Glp1r(-/-)), compared with those receiving wild-type bone marrow. Although antithrombotic effects of exenatide were partly lost in mice transplanted with bone marrow from Glp1r(-/-) mice, they were undetectable in mice with a genetic deficiency of endothelial nitric oxide synthase. The inhibition of platelet function and the prevention of thrombus formation by GLP-1R agonists represent potential mechanisms for reduced atherothrombotic events. PMID:26936963

  1. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus.

    PubMed

    Moberly, Steven P; Mather, Kieren J; Berwick, Zachary C; Owen, Meredith K; Goodwill, Adam G; Casalini, Eli D; Hutchins, Gary D; Green, Mark A; Ng, Yen; Considine, Robert V; Perry, Kevin M; Chisholm, Robin L; Tune, Johnathan D

    2013-07-01

    Glucagon-like peptide 1 (GLP-1) has insulin-like effects on myocardial glucose uptake which may contribute to its beneficial effects in the setting of myocardial ischemia. Whether these effects are different in the setting of obesity or type 2 diabetes (T2DM) requires investigation. We examined the cardiometabolic actions of GLP-1 (7-36) in lean and obese/T2DM humans, and in lean and obese Ossabaw swine. GLP-1 significantly augmented myocardial glucose uptake under resting conditions in lean humans, but this effect was impaired in T2DM. This observation was confirmed and extended in swine, where GLP-1 effects to augment myocardial glucose uptake during exercise were seen in lean but not in obese swine. GLP-1 did not increase myocardial oxygen consumption or blood flow in humans or in swine. Impaired myocardial responsiveness to GLP-1 in obesity was not associated with any apparent alterations in myocardial or coronary GLP1-R expression. No evidence for GLP-1-mediated activation of cAMP/PKA or AMPK signaling in lean or obese hearts was observed. GLP-1 treatment augmented p38-MAPK activity in lean, but not obese cardiac tissue. Taken together, these data provide novel evidence indicating that the cardiometabolic effects of GLP-1 are attenuated in obesity and T2DM, via mechanisms that may involve impaired p38-MAPK signaling. PMID:23764734

  2. Glucagon-like peptide 1 (GLP-1) in the gastrointestinal tract of the pheasant (Phasianus colchicus).

    PubMed

    Pirone, Andrea; Ding, Bao An; Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; di Cossato, Margherita Marzoni Fecia; Piano, Ilaria; Lenzi, Carla

    2012-10-01

    The distribution of Glucagon-like peptide 1 (GLP-1) was investigated in the gastrointestinal tract of the pheasant using immunohistochemistry. GLP-1 immunoreactive cells were common in the small intestine, in the proventriculus and in the pancreas. Immunostained cells were not seen in the crop, in the gizzard and in the large intestine. Double labelling demonstrated that GLP-1 and pituitary adenylate cyclase-activating polypeptide (PACAP) were occasionally co-localized only in the duodenal villi. In contrast to what was previously described in the chicken and ostrich, we noted GLP-1 positive cells in the duodenum. These data were consistent with the presence of proglucagon mRNA in the chicken duodenum. Our findings indicate that GLP-1 might have an inhibitory effect on gastric and crop emptying and on acid secretion also in the pheasant. Moreover, the results of the present research regarding the initial region of the small intestine suggest a further direct mechanism of the GLP-1 release during the early digestion phase and an enhancement of its incretin role. PMID:22036174

  3. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

    PubMed

    Trabelsi, Mohamed-Sami; Daoudi, Mehdi; Prawitt, Janne; Ducastel, Sarah; Touche, Véronique; Sayin, Sama I; Perino, Alessia; Brighton, Cheryl A; Sebti, Yasmine; Kluza, Jérôme; Briand, Olivier; Dehondt, Hélène; Vallez, Emmanuelle; Dorchies, Emilie; Baud, Grégory; Spinelli, Valeria; Hennuyer, Nathalie; Caron, Sandrine; Bantubungi, Kadiombo; Caiazzo, Robert; Reimann, Frank; Marchetti, Philippe; Lefebvre, Philippe; Bäckhed, Fredrik; Gribble, Fiona M; Schoonjans, Kristina; Pattou, François; Tailleux, Anne; Staels, Bart; Lestavel, Sophie

    2015-01-01

    Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  4. Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L-cells

    PubMed Central

    TRABELSI, Mohamed-Sami; DAOUDI, Mehdi; PRAWITT, Janne; DUCASTEL, Sarah; TOUCHE, Véronique; SAYIN, Sama I.; PERINO, Alessia; BRIGHTON, Cheryl A.; SEBTI, Yasmine; KLUZA, Jérôme; BRIAND, Olivier; DEHONDT, Hélène; VALLEZ, Emmanuelle; DORCHIES, Emilie; BAUD, Grégory; SPINELLI, Valeria; HENNUYER, Nathalie; CARON, Sandrine; BANTUBUNGI, Kadiombo; CAIAZZO, Robert; REIMANN, Frank; MARCHETTI, Philippe; LEFEBVRE, Philippe; BÄCKHED, Fredrik; GRIBBLE, Fiona M.; SCHOONJANS, Kristina; PATTOU, François; TAILLEUX, Anne; STAELS, Bart; LESTAVEL, Sophie

    2015-01-01

    Bile acids (BA) are signalling molecules which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex BA in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces Glucagon-Like Peptide-1 (GLP-1) production by L-cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L-cells and controls GLP-1 production is unknown. Here we show that FXR activation in L-cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR-deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  5. Electrical activity-triggered glucagon-like peptide-1 secretion from primary murine L-cells

    PubMed Central

    Rogers, G J; Tolhurst, G; Ramzan, A; Habib, A M; Parker, H E; Gribble, F M; Reimann, F

    2011-01-01

    Glucagon like peptide 1 (GLP-1) based therapies are now widely used for the treatment of type 2 diabetes. Developing our understanding of intestinal GLP-1 release may facilitate the development of new therapeutics aimed at targeting the GLP-1 producing L-cells. This study was undertaken to characterise the electrical activity of primary L-cells and the importance of voltage gated sodium and calcium channels for GLP-1 secretion. Primary murine L-cells were identified and purified using transgenic mice expressing a fluorescent protein driven by the proglucagon promoter. Fluorescent L-cells were identified within primary colonic cultures for patch clamp recordings. GLP-1 secretion was measured from primary colonic cultures. L-cells purified by flow cytometry were used to measure gene expression by microarray and quantitative RT-PCR. Electrical activity in L-cells was due to large voltage gated sodium currents, inhibition of which by tetrodotoxin reduced both basal and glutamine-stimulated GLP-1 secretion. Voltage gated calcium channels were predominantly of the L-type, Q-type and T-type, by expression analysis, consistent with the finding that GLP-1 release was blocked both by nifedipine and ω-conotoxin MVIIC. We observed large voltage-dependent potassium currents, but only a small chromanol sensitive current that might be attributable to KCNQ1. GLP-1 release from primary L-cells is linked to electrical activity and activation of L-type and Q-type calcium currents. The concept of an electrically excitable L-cell provides a basis for understanding how GLP-1 release may be modulated by nutrient, hormonal and pharmaceutical stimuli. PMID:21224236

  6. High fat diet impairs the function of glucagon-like peptide-1 producing L-cells

    PubMed Central

    Richards, Paul; Pais, Ramona; Habib, Abdella M.; Brighton, Cheryl A.; Yeo, Giles S.H.; Reimann, Frank; Gribble, Fiona M.

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) acts as a satiety signal and enhances insulin release. This study examined how GLP-1 production from intestinal L-cells is modified by dietary changes. Methods Transgenic mouse models were utilized in which L-cells could be purified by cell specific expression of a yellow fluorescent protein, Venus. Mice were fed on chow or 60% high fat diet (HFD) for 2 or 16 weeks. L-cells were purified by flow cytometry and analysed by microarray and quantitative RT-PCR. Enteroendocrine cell populations were examined by FACS analysis, and GLP-1 secretion was assessed in primary intestinal cultures. Results Two weeks HFD reduced the numbers of GLP-1 positive cells in the colon, and of GIP positive cells in the small intestine. Purified small intestinal L-cells showed major shifts in their gene expression profiles. In mice on HFD for 16 weeks, significant reductions were observed in the expression of L-cell specific genes, including those encoding gut hormones (Gip, Cck, Sct, Nts), prohormone processing enzymes (Pcsk1, Cpe), granins (Chgb, Scg2), nutrient sensing machinery (Slc5a1, Slc15a1, Abcc8, Gpr120) and enteroendocrine-specific transcription factors (Etv1, Isl1, Mlxipl, Nkx2.2 and Rfx6). A corresponding reduction in the GLP-1 secretory responsiveness to nutrient stimuli was observed in primary small intestinal cultures. Conclusion Mice fed on HFD exhibited reduced expression in L-cells of many L-cell specific genes, suggesting an impairment of enteroendocrine cell function. Our results suggest that a western style diet may detrimentally affect the secretion of gut hormones and normal post-prandial signaling, which could impact on insulin secretion and satiety. PMID:26145551

  7. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis

    PubMed Central

    Linnemann, Amelia K.; Neuman, Joshua C.; Battiola, Therese J.; Wisinski, Jaclyn A.; Kimple, Michelle E.

    2015-01-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptinob/ob) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632

  8. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis.

    PubMed

    Linnemann, Amelia K; Neuman, Joshua C; Battiola, Therese J; Wisinski, Jaclyn A; Kimple, Michelle E; Davis, Dawn Belt

    2015-07-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632

  9. Role of Central Glucagon-like Peptide-1 in Stress Regulation

    PubMed Central

    Ghosal, Sriparna; Myers, Brent; Herman, James P.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is best known as an incretin hormone, secreted from L cells in the intestine in response to nutrient ingestion to stimulate glucose-dependent insulin secretion. However, GLP-1 is also expressed in neurons, and plays a major role in regulation of homeostatic function within the central nervous system (CNS). This review summarizes our current state of knowledge on the role GLP-1 plays in neural coordination of the organismal stress response. In brain, the primary locus of GLP-1 production is in the caudal nucleus of the solitary tract (NTS) and the ventrolateral medulla of the hindbrain. GLP-1 immunoreactive fibers directly innervate hypophysiotrophic corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN), placing GLP-1 in prime position to integrate hypothalamo-pituitary-adrenocortical responses. Exogenous central GLP-1 activates HPA axis stress responses, and responses to a variety of stressors can be blocked by a GLP-1 receptor (GLP-1R) antagonist, confirming an excitatory role in glucocorticoid secretion. In addition, central infusion of GLP-1R agonist increases heart rate and blood pressure, and activates hypothalamic and brainstem neurons innervating sympathetic preganglionic neurons, suggesting a sympathoexcitatory role of GLP-1 in the CNS. Bioavailability of preproglucagon (PPG) mRNA and GLP-1 peptide is reduced by exogenous or endogenous glucocorticoid secretion, perhaps as a mechanism to reduce GLP-1-mediated stress excitation. Altogether, the data suggest that GLP-1 plays a key role in activation of stress responses, which may be connected with its role in central regulation of energy homeostasis. PMID:23623992

  10. Expression, purification, and C-terminal amidation of recombinant human glucagon-like peptide-1.

    PubMed

    Zhang, Zhi-Zhen; Yang, Sheng-Sheng; Dou, Hong; Mao, Ji-Fang; Li, Kang-Sheng

    2004-08-01

    Human glucagon-like peptide-1 (hGLP-1) (7-36) amide, a gastrointestinal hormone with a pharmaceutical potential in treating type 2 diabetes mellitus, is composed of 30 amino acid residues as a mature protein. We report here the development of a method for high-level expression and purification of recombinant hGLP-1 (7-36) amide (rhGLP-1) through glutathione S-transferase (GST) fusion expression system. The cDNA of hGLP-1-Leu, the 31st-residue leucine-extended precursor peptide, was prepared by annealing and ligating of artificially synthetic oligonucleotide fragments, inserted into pBluescript SK (+/-) plasmid, and then cloned into pGEX-4T-3 GST fusion vector. The fusion protein GST-hGLP-1-Leu, expressed in Escherichia coli strain BL21 (DE3), was purified by affinity chromatography after high-level culture and sonication of bacteria. Following cleavage of GST-hGLP-1-Leu by cyanogen bromide, the recombinant hGLP-1-Leu was released from fusion protein, and purified using QAE Sepharose ion exchange and RP C(18) chromatography. After purification, the precursor hGLP-1-Leu was transacylated by carboxypeptidase Y, Arg-NH(2) as a nucleophile, to produce rhGLP-1. Electrospray ionization mass spectrometry showed the molecular weight was as expected. The biological activity of rhGLP-1 in a rat model demonstrated that plasma glucose concentrations were significantly lower and insulin concentrations higher after intraperitoneal injection of rhGLP-1 together with glucose compared with glucose alone (P < 0.001). PMID:15249052

  11. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia

    PubMed Central

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-01-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  12. Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas.

    PubMed

    Waser, Beatrice; Blank, Annika; Karamitopoulou, Eva; Perren, Aurel; Reubi, Jean C

    2015-03-01

    Glucagon-like-peptide-1 (GLP1) analogs may induce thyroid or pancreatic diseases in animals, raising questions about their use in diabetic patients. There is, however, controversy regarding expression of GLP1 receptors (GLP1R) in human normal and diseased thyroid and pancreas. Here, 221 human thyroid and pancreas samples were analyzed for GLP1R immunohistochemistry and compared with quantitative in vitro GLP1R autoradiography. Neither normal nor hyperplastic human thyroids containing parafollicular C cells express GLP1R with either method. Papillary thyroid cancer do not, and medullary thyroid carcinomas rarely express GLP1R. Insulin- and somatostatin-producing cells in the normal pancreas express a high density of GLP1R, whereas acinar cells express them in low amounts. Ductal epithelial cells do not express GLP1R. All benign insulinomas express high densities of GLP1R, whereas malignant insulinomas rarely express them. All ductal pancreatic carcinomas are GLP1R negative, whereas 6/20 PanIN 1/2 and 0/12 PanIN 3 express GLP1R. Therefore, normal thyroid, including normal and hyperplastic C cells, or papillary thyroid cancer are not targets for GLP1 analogs in humans. Conversely, all pancreatic insulin- and somatostatin-producing cells are physiological GLP1 targets, as well as most acini. As normal ductal epithelial cells or PanIN 3 or ductal pancreatic carcinomas do not express GLP1R, it seems unlikely that GLP1R is related to neoplastic transformation in pancreas. GLP1R-positive medullary thyroid carcinomas and all benign insulinomas are candidates for in vivo GLP1R targeting. PMID:25216224

  13. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors.

    PubMed

    Sirohi, Sunil; Schurdak, Jennifer D; Seeley, Randy J; Benoit, Stephen C; Davis, Jon F

    2016-07-01

    Recent data implicate glucagon-like peptide-1 (GLP-1), a potent anorexigenic peptide released in response to nutrient intake, as a regulator for the reinforcing properties of food, alcohol and psychostimulants. While, both central and peripheral mechanisms mediate effects of GLP-1R signaling on food intake, the extent to which central or peripheral GLP-1R signaling regulates reinforcing properties of drugs of abuse is unknown. Here, we examined amphetamine reinforcement, alcohol intake and hedonic feeding following peripheral administration of EX-4 (a GLP-1 analog) in FLOX and GLP-1R KD(Nestin) (GLP-1R selectively ablated from the central nervous system) mice (n=13/group). First, the effect of EX-4 pretreatment on the expression of amphetamine-induced conditioned place preference (Amp-CPP) was examined in the FLOX and GLP-1R KD(Nestin) mice. Next, alcohol intake (10% v/v) was evaluated in FLOX and GLP-1R KD(Nestin) mice following saline or EX-4 injections. Finally, we assessed the effects of EX-4 pretreatment on hedonic feeding behavior. Results indicate that Amp-CPP was completely blocked in the FLOX mice, but not in the GLP-1R KD(Nestin) mice following EX-4 pretreatment. Ex-4 pretreatment selectively blocked alcohol consumption in the FLOX mice, but was ineffective in altering alcohol intake in the GLP-1R KD(Nestin) mice. Notably, hedonic feeding was partially blocked in the GLP-1R KD(Nestin) mice, whereas it was abolished in the FLOX mice. The present study provides critical insights regarding the nature by which GLP-1 signaling controls reinforced behaviors and underscores the importance of both peripheral and central GLP-1R signaling for the regulation of addictive disorders. PMID:27072507

  14. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion.

    PubMed

    Mizokami, Akiko; Yasutake, Yu; Higashi, Sen; Kawakubo-Yasukochi, Tomoyo; Chishaki, Sakura; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato

    2014-12-01

    Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion and pancreatic β-cell proliferation. We previously showed that the effect of GluOC on insulin secretion is mediated largely by glucagon-like peptide-1 (GLP-1) secreted from the intestine in response to GluOC exposure. We have now examined the effect of oral administration of GluOC on glucose utilization as well as the fate of such administered GluOC in mice. Long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level and improved glucose tolerance in mice without affecting insulin sensitivity. It also increased the fasting serum insulin concentration as well as the β-cell area in the pancreas. A small proportion of orally administered GluOC reached the small intestine and remained there for at least 24h. GluOC also entered the general circulation, and the serum GLP-1 concentration was increased in association with the presence of GluOC in the intestine and systemic circulation. The putative GluOC receptor, GPRC6A was detected in intestinal cells, and was colocalized with GLP-1 in some of these cells. Our results suggest that orally administered GluOC improved glucose handling likely by acting from both the intestinal lumen and the general circulation, with this effect being mediated in part by stimulation of GLP-1 secretion. Oral administration of GluOC warrants further study as a safe and convenient option for the treatment or prevention of metabolic disorders. PMID:25230237

  15. Role of lateral septum glucagon-like peptide 1 receptors in food intake.

    PubMed

    Terrill, Sarah J; Jackson, Christine M; Greene, Hayden E; Lilly, Nicole; Maske, Calyn B; Vallejo, Samantha; Williams, Diana L

    2016-07-01

    Hindbrain glucagon-like peptide 1 (GLP-1) neurons project to numerous forebrain areas, including the lateral septum (LS). Using a fluorescently labeled GLP-1 receptor (GLP-1R) agonist, Exendin 4 (Ex4), we demonstrated GLP-1 receptor binding throughout the rat LS. We examined the feeding effects of Ex4 and the GLP-1R antagonist Exendin (9-39) (Ex9) at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS Ex4 suppressed overnight chow and high-fat diet (HFD) intake, and Ex9 increased chow and HFD intake relative to vehicle. During 2-h tests, intra-LS Ex9 significantly increased 0.25 M sucrose and 4% corn oil. Ex4 can cause nausea, but intra-LS administration of Ex4 did not induce pica. Furthermore, intra-LS Ex4 had no effect on anxiety-like behavior in the elevated plus maze. We investigated the role of LS GLP-1R in motivation for food by examining operant responding for sucrose on a progressive ratio (PR) schedule, with and without a nutrient preload to maximize GLP-1 neuron activation. The preload strongly suppressed PR responding, but blockade of GLP-1R in the intermediate subdivision of the LS did not affect motivation for sucrose under either load condition. The ability of the nutrient load to suppress subsequent chow intake was significantly attenuated by intermediate LS Ex9 treatment. By contrast, blockade of GLP-1R in the dorsal subdivision of the LS increased both PR responding and overnight chow intake. Together, these studies suggest that endogenous activity of GLP-1R in the LS influence feeding, and dLS GLP-1Rs, in particular, play a role in motivation. PMID:27194565

  16. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. PMID:27142747

  17. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia.

    PubMed

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-07-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  18. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells.

    PubMed

    Leech, Colin A; Dzhura, Igor; Chepurny, Oleg G; Kang, Guoxin; Schwede, Frank; Genieser, Hans-G; Holz, George G

    2011-11-01

    Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K⁺ channels, voltage-dependent K⁺ channels, TRPM2 cation channels, intracellular Ca⁺ release channels, and Ca⁺-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM. PMID:21782840

  19. Molecular Physiology of Glucagon-Like Peptide-1 Insulin Secretagogue Action in Pancreatic β Cells

    PubMed Central

    Leech, Colin A.; Dzhura, Igor; Chepurny, Oleg G.; Kang, Guoxin; Schwede, Frank; Genieser, Hans-G.; Holz, George G.

    2011-01-01

    Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional therapeutic option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2 mediated actions of GLP-1 to regulate ATP-sensitive K+ channels, voltage-dependent K+ channels, TRPM2 cation channels, intracellular Ca2+ release channels, and Ca2+-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM. PMID:21782840

  20. Overnight hypoxic exposure and glucagon-like peptide-1 and leptin levels in humans

    PubMed Central

    Snyder, Eric M.; Carr, Richard D.; Deacon, Carolyn F.; Johnson, Bruce D.

    2009-01-01

    Altitude exposure has been associated with loss of appetite and weight loss in healthy humans; however, the endocrine factors that contribute to these changes remain unclear. Leptin and glucagon-like peptide-1 (GLP-1) are peptide hormones that contribute to the regulation of appetite. Leptin increases with hypoxia; however, the influence of hypoxia on GLP-1 has not been studied in animals or humans to date. We sought to determine the influence of normobaric hypoxia on plasma leptin and GLP-1 levels in 25 healthy humans. Subjects ingested a control meal during normoxia and after 17 h of exposure to normobaric hypoxia (fraction of inspired oxygen of 12.5%, simulating approximately 4100 m). Plasma leptin was assessed before the meal, and GLP-1 was assessed premeal, at 20 min postmeal, and at 40 min postmeal. We found that hypoxia caused a significant elevation in plasma leptin levels (normoxia, 4.9 ± 0.8 pg·mL−1; hypoxia, 7.7 ± 1.5 pg·mL−1; p < 0.05; range, −16% to 190%), no change in the average GLP-1 response to hypoxia, and only a small trend toward an increase in GLP-1 levels 40 min postmeal (fasting, 15.7 ± 0.9 vs 15.9 ± 0.7 pmol·L−1; 20 min postmeal, 21.7 ± 0.9 vs 21.8 ± 1.2 pmol·L−1; 40 min postmeal, 19.5 ± 1.2 vs. 21.0 ± 1.2 pmol·L−1 for normoxia and hypoxia, respectively; p > 0.05 normoxia vs hypoxia). There was a correlation between SaO2 and leptin after the 17 h exposure (r= 0.45; p < 0.05), but no relation between SaO2 and GLP-1. These data confirm that leptin increases with hypoxic exposure in humans. Further study is needed to determine the influence of hypoxia and altitude on GLP-1 levels. PMID:18923568

  1. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles.

    PubMed

    Bueno, Ana B; Showalter, Aaron D; Wainscott, David B; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over; Willard, Francis S; Sloop, Kyle W

    2016-05-13

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5'-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9-36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [(3)H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  2. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.

    PubMed

    Luque, M A; González, N; Márquez, L; Acitores, A; Redondo, A; Morales, M; Valverde, I; Villanueva-Peñacarrillo, M L

    2002-06-01

    Glucagon-like peptide-1 (GLP-1) has been shown to have insulin-like effects upon the metabolism of glucose in rat liver, muscle and fat, and on that of lipids in rat and human adipocytes. These actions seem to be exerted through specific receptors which, unlike that of the pancreas, are not - at least in liver and muscle - cAMP-associated. Here we have investigated the effect, its characteristics, and possible second messengers of GLP-1 on the glucose metabolism of human skeletal muscle, in tissue strips and primary cultured myocytes. In muscle strips, GLP-1, like insulin, stimulated glycogen synthesis, glycogen synthase a activity, and glucose oxidation and utilization, and inhibited glycogen phosphorylase a activity, all of this at physiological concentrations of the peptide. In cultured myotubes, GLP-1 exerted, from 10(-13) mol/l, a dose-related increase of the D-[U-(14)C]glucose incorporation into glycogen, with the same potency as insulin, together with an activation of glycogen synthase a; the effect of 10(-11) mol/l GLP-1 on both parameters was additive to that induced by the equimolar amount of insulin. Synthase a was still activated in cells after 2 days of exposure to GLP-1, as compared with myotubes maintained in the absence of peptide. In human muscle cells, exendin-4 and its truncated form 9-39 amide (Ex-9) are both agonists of the GLP-1 effect on glycogen synthesis and synthase a activity; but while neither GLP-1 nor exendin-4 affected the cellular cAMP content after 5-min incubation in the absence of 3-isobutyl-1-methylxantine (IBMX), an increase was detected with Ex-9. GLP-1, exendin-4, Ex-9 and insulin all induced the prompt hydrolysis of glycosylphosphatidylinositols (GPIs). This work shows a potent stimulatory effect of GLP-1 on the glucose metabolism of human skeletal muscle, and supports the long-term therapeutic value of the peptide. Further evidence for a GLP-1 receptor in this tissue, different from that of the pancreas, is also illustrated

  3. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles*

    PubMed Central

    Showalter, Aaron D.; Wainscott, David B.; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over

    2016-01-01

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5′-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9–36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [3H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  4. Glucagon-Like Peptide-1 Receptor Agonists: Beta-Cell Protection or Exhaustion?

    PubMed

    van Raalte, Daniël H; Verchere, C Bruce

    2016-07-01

    Glucagon-like peptide (GLP)-1 receptor agonists enhance insulin secretion and may improve pancreatic islet cell function. However, GLP-1 receptor (GLP-1R) agonist treatment may have more complex, and sometimes deleterious, effects on beta cells. We discuss the concepts of beta cell protection versus exhaustion for different GLP-1R agonists based on recent data. PMID:27160799

  5. Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation.

    PubMed

    Wang, Xing-Chun; Gusdon, Aaron M; Liu, Huan; Qu, Shen

    2014-10-28

    Glucagon-like peptide1 (GLP-1) is secreted from Langerhans cells in response to oral nutrient intake. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a new class of incretin-based anti-diabetic drugs. They function to stimulate insulin secretion while suppressing glucagon secretion. GLP-1-based therapies are now well established in the management of type 2 diabetes mellitus (T2DM), and recent literature has suggested potential applications of these drugs in the treatment of obesity and for protection against cardiovascular and neurological diseases. As we know, along with change in lifestyles, the prevalence of non-alcoholic fatty liver disease (NAFLD) in China is rising more than that of viral hepatitis and alcoholic fatty liver disease, and NAFLD has become the most common chronic liver disease in recent years. Recent studies further suggest that GLP-1RAs can reduce transaminase levels to improve NAFLD by improving blood lipid levels, cutting down the fat content to promote fat redistribution, directly decreasing fatty degeneration of the liver, reducing the degree of liver fibrosis and improving inflammation. This review shows the NAFLD-associated effects of GLP-1RAs in animal models and in patients with T2DM or obesity who are participants in clinical trials. PMID:25356042

  6. The major determinant of exendin-4/glucagon-like peptide 1 differential affinity at the rat glucagon-like peptide 1 receptor N-terminal domain is a hydrogen bond from SER-32 of exendin-4*

    PubMed Central

    Mann, RJ; Nasr, NE; Sinfield, JK; Paci, E; Donnelly, D

    2010-01-01

    BACKGROUND AND PURPOSE Exendin-4 (exenatide, Ex4) is a high-affinity peptide agonist at the glucagon-like peptide-1 receptor (GLP-1R), which has been approved as a treatment for type 2 diabetes. Part of the drug/hormone binding site was described in the crystal structures of both GLP-1 and Ex4 bound to the isolated N-terminal domain (NTD) of GLP-1R. However, these structures do not account for the large difference in affinity between GLP-1 and Ex4 at this isolated domain, or for the published role of the C-terminal extension of Ex4. Our aim was to clarify the pharmacology of GLP-1R in the context of these new structural data. EXPERIMENTAL APPROACH The affinities of GLP-1, Ex4 and various analogues were measured at human and rat GLP-1R (hGLP-1R and rGLP-1R, respectively) and various receptor variants. Molecular dynamics coupled with in silico mutagenesis were used to model and interpret the data. KEY RESULTS The membrane-tethered NTD of hGLP-1R displayed similar affinity for GLP-1 and Ex4 in sharp contrast to previous studies using the soluble isolated domain. The selectivity at rGLP-1R for Ex4(9–39) over Ex4(9–30) was due to Ser-32 in the ligand. While this selectivity was not observed at hGLP-1R, it was regained when Glu-68 of hGLP-1R was mutated to Asp. CONCLUSIONS AND IMPLICATIONS GLP-1 and Ex4 bind to the NTD of hGLP-1R with similar affinity. A hydrogen bond between Ser32 of Ex4 and Asp-68 of rGLP-1R, which is not formed with Glu-68 of hGLP-1R, is responsible for the improved affinity of Ex4 at the rat receptor. PMID:20649595

  7. A continued saga of Boc5, the first non-peptidic glucagon-like peptide-1 receptor agonist with in vivo activities

    PubMed Central

    He, Min; Guan, Ni; Gao, Wei-wei; Liu, Qing; Wu, Xiao-yan; Ma, Da-wei; Zhong, Da-fang; Ge, Guang-bo; Li, Chuan; Chen, Xiao-yan; Yang, Ling; Liao, Jia-yu; Wang, Ming-wei

    2012-01-01

    Glucagon-like peptide-1 (GLP-1)-based therapy presents a promising option for treating type 2 diabetes. However, there are several limitations relative to the peptidic GLP-1 mimetics currently on the market or under development. This concern has led to a continued interest in the search for non-peptidic agonists for GLP-1 receptor (GLP-1R). Here, we briefly review the discovery, characterization and current status of a novel class of cyclobutane-derivative-based non-peptidic agonists for GLP-1R, including Boc5 and its newly discovered analogue WB4–24. Although the oral bioavailability of such compounds still poses great challenges, the progress made so far encourages us to identify a truly 'druggable' small molecule agonist for GLP-1R. PMID:22301855

  8. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-01-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. PMID:25326836

  9. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-09-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. PMID:25437458

  10. Safety and Tolerability of Glucagon-Like Peptide-1 Receptor Agonists Utilizing Data from the Exenatide Clinical Trial Development Program.

    PubMed

    Peng, Hui; Want, Laura L; Aroda, Vanita R

    2016-05-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have demonstrated benefits for patients with type 2 diabetes including A1C reduction and weight loss with minimal risk of hypoglycemia. This article provides an evidence-based update of safety and tolerability considerations for the clinical use of GLP-1RAs as a class, with a specific detailed review of data from the exenatide clinical trial development program, which has the longest history and availability of safety and tolerability data as the first-approved GLP-1RA. Specific areas covered include comparative risk of hypoglycemia, as well as pancreatic, thyroid, and cardiovascular safety data; clinical guidance regarding current safety and tolerability data is also reviewed. PMID:27037706

  11. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  12. In Vitro and In Vivo Effects of Natural Putative Secretagogues of Glucagon-Like Peptide-1 (GLP-1)

    PubMed Central

    Rafferty, Eamon P.; Wylie, Alastair R.; Elliott, Chris T.; Chevallier, Olivier P.; Grieve, David J.; Green, Brian D.

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with well-established glucose-lowering activity. The in vitro and in vivo actions of natural putative secretagogues of GLP-1 were investigated. The acute GLP-1 releasing activity of olive leaf extract (OLE), glutamine (GLN), alpha casein (ACAS), beta casein (BCAS) and chlorogenic acid (CGA) were assessed in STC-1 cells and C57BL/6 mice. All compounds except ACAS significantly increased acute in vitro GLP-1 secretion (66–386%; P<0.05–0.001). Oral gavage of OLE and GLN modestly increased plasma GLP-1 concentrations (48% and 41%, respectively), but did not lower glycaemic excursions. OLE and GLN are potent stimulators of GLP-1 secretion both in vitro and in vivo and chronic studies should assess their suitability as nutritional therapies for type 2 diabetes. PMID:21886907

  13. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  14. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation

    PubMed Central

    Thompson, Aiysha; Stephens, Jeffrey W.; Bain, Stephen C.

    2016-01-01

    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9–39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B. PMID:27100083

  15. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion

    PubMed Central

    Parker, HE; Wallis, K; le Roux, CW; Wong, KY; Reimann, F; Gribble, FM

    2012-01-01

    BACKGROUND AND PURPOSE The glucagon-like peptides GLP-1 and GLP-2 are secreted from enteroendocrine L-cells following nutrient ingestion. Drugs that increase activity of the GLP-1 axis are highly successful therapies for type 2 diabetes, and boosting L-cell secretion is a potential strategy for future diabetes treatment. The aim of the present study was to further our understanding of the bile acid receptor GPBA (TGR5), an L-cell target currently under therapeutic exploration. EXPERIMENTAL APPROACH GLUTag cells and mixed primary murine intestinal cultures were exposed to bile acids and a specific agonist, GPBAR-A. Secretion was measured using hormone assays and intracellular calcium and cAMP responses were monitored using real-time imaging techniques. KEY RESULTS Bile acid-triggered GLP-1 secretion from GLUTag cells was GPBA-dependent, as demonstrated by its abolition following tgr5 siRNA transfection. Bile acids and GPBAR-A increased GLP-1 secretion from intestinal cultures, with evidence for synergy between the effects of glucose and GPBA activation. Elevation of cAMP was observed following GPBA activation in individual GLUTag cells. Direct calcium responses to GPBAR-A were small, but in the presence of the agonist, a subpopulation of cells that was previously poorly glucose-responsive exhibited robust glucose responses. In vivo, increased delivery of bile to more distal regions of the ileum augmented L-cell stimulation. CONCLUSIONS AND IMPLICATIONS GPBA signalling in L-cells involves rapid elevation of cAMP, and enhanced calcium and secretory responses to glucose. Modulation of this receptor therapeutically may be an attractive strategy to enhance GLP-1 secretion and achieve better glycaemic control in diabetic patients. PMID:21718300

  16. The insulinotropic effect of exogenous glucagon-like peptide-1 is not affected by acute vagotomy in anaesthetized pigs.

    PubMed

    Veedfald, Simon; Hansen, Marie; Christensen, Louise Wulff; Larsen, Sara Agnete Hjort; Hjøllund, Karina Rahr; Plamboeck, Astrid; Hartmann, Bolette; Deacon, Carolyn Fiona; Holst, Jens Juul

    2016-07-01

    What is the central question of this study? We investigated whether intestinal vagal afferents are necessary for the insulinotropic effect of glucagon-like peptide-1 (GLP-1) infused into a mesenteric artery or a peripheral vein before and after acute truncal vagotomy. What is the main finding and its importance? We found no effect of truncal vagotomy on the insulinotropic effect of exogenous GLP-1 and speculate that high circulating concentrations of GLP-1 after i.v. and i.a. infusion might have overshadowed any neural signalling component. We propose that further investigations into the possible vagal afferent signalling of GLP-1 would best be pursued using enteral stimuli to provide high subepithelial levels of endogenous GLP-1. Glucagon-like peptide 1 (GLP-1) is secreted from the gut in response to luminal stimuli and stimulates insulin secretion in a glucose-dependent manner. As a result of rapid enzymatic degradation of GLP-1 by dipeptidyl peptidase-4, a signalling pathway involving activation of intestinal vagal afferents has been proposed. We conducted two series of experiments in α-chloralose-anaesthetized pigs. In protocol I, pigs (n = 14) were allocated for either i.v. or i.a. (mesenteric) GLP-1 infusions (1 and 2 pmol kg(-1)  min(-1) , 30 min) while maintaining permissive glucose concentrations at 6 mmol l(-1) by i.v. glucose infusion. The GLP-1 infusions were repeated after acute truncal vagotomy. In protocol II, pigs (n = 27) were allocated into six groups. Glucagon-like peptide 1 was infused i.v. or i.a. (mesenteric) for 1 h at 3 or 30 pmol kg(-1)  min(-1) . During the steady state (21 min into the GLP-1 infusion), glucose (0.2 g kg(-1) , i.v.) was administered over 9 min to stimulate β-cell secretion. Thirty minutes after the glucose infusion, GLP-1 infusions were discontinued. Following a washout period, the vagal trunks were severed in four of six groups (vagal trunks were left intact in two of six groups), whereupon all

  17. The Effect of Glucagon-Like Peptide 1 Receptor Agonists on Weight Loss in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison Meta-Analysis

    PubMed Central

    Potts, Jessica E.; Gray, Laura J.; Brady, Emer M.; Khunti, Kamlesh; Davies, Melanie J.; Bodicoat, Danielle H.

    2015-01-01

    Aims To determine the effects of glucagon-like peptide-1 receptor agonists compared with placebo and other anti-diabetic agents on weight loss in overweight or obese patients with type 2 diabetes mellitus. Methods Electronic searches were conducted for randomised controlled trials that compared a glucagon-like peptide-1 receptor agonist therapy at a clinically relevant dose with a comparator treatment (other type 2 diabetes treatment or placebo) in adults with type 2 diabetes and a mean body mass index ≥ 25kg/m2. Pair-wise meta-analyses and mixed treatment comparisons were conducted to examine the difference in weight change at six months between the glucagon-like peptide-1 receptor agonists and each comparator. Results In the mixed treatment comparison (27 trials), the glucagon-like peptide-1 receptor agonists were the most successful in terms of weight loss; exenatide 2mg/week: -1.62kg (95% CrI: -2.95kg, -0.30kg), exenatide 20μg: -1.37kg (95% CI: -222kg, -0.52kg), liraglutide 1.2mg: -1.01kg (95%CrI: -2.41kg, 0.38kg) and liraglutide 1.8mg: -1.51 kg (95% CI: -2.67kg, -0.37kg) compared with placebo. There were no differences between the GLP-1 receptor agonists in terms of weight loss. Conclusions This review provides evidence that glucagon-like peptide-1 receptor agonist therapies are associated with weight loss in overweight or obese patients with type 2 diabetes with no difference in weight loss seen between the different types of GLP-1 receptor agonists assessed. PMID:26121478

  18. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells

    PubMed Central

    Ellingsgaard, Helga; Hauselmann, Irina; Schuler, Beat; Habib, Abdella M; Baggio, Laurie L; Meier, Daniel T; Eppler, Elisabeth; Bouzakri, Karim; Wueest, Stephan; Muller, Yannick D; Hansen, Ann Maria Kruse; Reinecke, Manfred; Konrad, Daniel; Gassmann, Max; Reimann, Frank; Halban, Philippe A; Gromada, Jesper; Drucker, Daniel J; Gribble, Fiona M; Ehses, Jan A; Donath, Marc Y

    2014-01-01

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. PMID:22037645

  19. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells.

    PubMed

    Ellingsgaard, Helga; Hauselmann, Irina; Schuler, Beat; Habib, Abdella M; Baggio, Laurie L; Meier, Daniel T; Eppler, Elisabeth; Bouzakri, Karim; Wueest, Stephan; Muller, Yannick D; Hansen, Ann Maria Kruse; Reinecke, Manfred; Konrad, Daniel; Gassmann, Max; Reimann, Frank; Halban, Philippe A; Gromada, Jesper; Drucker, Daniel J; Gribble, Fiona M; Ehses, Jan A; Donath, Marc Y

    2011-01-01

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. PMID:22037645

  20. [Liraglutide (Victoza): human glucagon-like peptide-1 used in once daily injection for the treatment of type 2 diabetes].

    PubMed

    Scheen, A J; Van Gaal, L F

    2010-01-01

    Liraglutide (Victoza) is a peptide produced by DNA recombinant technology, which presents 97% homology with human glucagon-like peptide-1 (GLP-1) but is resistant to dipeptidylpeptidase-4, the enzyme that degrades the natural hormone. It actives the GLP-1 receptor and exerts an incretin mimetic effect during at least 24 hours after a single subcutaneous injection. Besides a glucose-dependent stimulatory effect of insulin secretion, liraglutide inhibits glucagon secretion and retards gastric emptying. In patients with type 2 diabetes, it reduces glycated haemoglobin by at least 1%, without inducing hypoglycaemia. It also induces a moderate weight loss and a mild reduction in blood pressure. Gastrointestinal adverse events (nausea, vomiting) may occur during the initial phase of treatment, but rarely impose the interruption of the medication and usually diminish with time.Although indicated in combination with other glucose-lowering agents, liraglutide is currently reimbursed in Belgium only if administered in patients with type 2 diabetes not sufficiently controlled with a combination of metformin plus sulfonylurea or metformin plus a thiazolidinedione. Victoza is presented in prefilled pens and is injected subcutaneously once a day. Treatment will be initiated with 0.6 mg to improve digestive tolerance and the daily dose will be increased to 1.2 mg (usual dose) after at least one week, and up to 1.8 mg (maximal dose) if necessary. PMID:20857706

  1. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  2. Stimulation of glucagon-like peptide-1 secretion downstream of the ligand-gated ion channel TRPA1

    PubMed Central

    Emery, Edward C.; Diakogiannaki, Eleftheria; Gentry, Clive; Psichas, Arianna; Habib, Abdella M.; Bevan, Stuart; Fischer, Michael J. M.; Reimann, Frank; Gribble, Fiona M.

    2015-01-01

    Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis, and could be targeted for the treatment of type-2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L-cells producing glucagon-like peptide-1 (GLP-1). By microarray and qPCR analysis we identified trpa1 as an L-cell enriched transcript in the small intestine. Calcium imaging of primary L-cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (AITC, mustard oil), carvacrol and polyunsaturated fatty acids, that were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells; an effect that was abolished in cultures from trpa1−/− mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L-cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes. PMID:25325736

  3. Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin's metabolic action in the presence of insulin resistance.

    PubMed

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J; Liu, Zhenqi

    2014-08-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin's metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  4. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle.

    PubMed

    Dineen, Stacey L; McKenney, Mikaela L; Bell, Lauren N; Fullenkamp, Allison M; Schultz, Kyle A; Alloosh, Mouhamad; Chalasani, Naga; Sturek, Michael

    2015-09-01

    Metabolic syndrome (MetS) doubles the risk of adverse cardiovascular events. Glucagon-like peptide 1 (GLP-1) receptor agonists induce weight loss, increase insulin secretion, and improve glucose tolerance. Studies in healthy animals suggest cardioprotective properties of GLP-1 receptor agonists, perhaps partially mediated by improved sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) activity. We examined the acute effect of GLP-1 receptor agonists on coronary smooth muscle cells (CSM) enzymatically isolated from lean, healthy Ossabaw miniature swine. Intracellular Ca(2+) handling was interrogated with fura-2. The GLP-1 receptor agonist exenatide activated SERCA but did not alter other Ca(2+) transporters. Further, we tested the hypothesis that chronic, in vivo treatment with GLP-1 receptor agonist AC3174 would attenuate coronary artery disease (CAD) in swine with MetS. MetS was induced in 20 swine by 6 months' feeding of a hypercaloric, atherogenic diet. Swine were then randomized (n = 10/group) into placebo or AC3174 treatment groups and continued the diet for an additional 6 months. AC3174 treatment attenuated weight gain, increased insulin secretion, and improved glucose tolerance. Intravascular ultrasound and histology showed no effect of AC3174 on CAD. MetS abolished SERCA activation by GLP-1 receptor agonists. We conclude that MetS confers vascular resistance to GLP-1 receptor agonists, partially through impaired cellular signaling steps involving SERCA. PMID:25845661

  5. Spergularia marina Induces Glucagon-Like Peptide-1 Secretion in NCI-H716 Cells Through Bile Acid Receptor Activation

    PubMed Central

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra

    2014-01-01

    Abstract Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca2+ and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis. PMID:25260089

  6. Cholecystokinin, glucose dependent insulinotropic peptide and glucagon-like peptide 1 secretion in children with anorexia nervosa and simple obesity.

    PubMed

    Tomasik, Przemyslaw J; Sztefko, Krystyna; Starzyk, Jerzy

    2004-12-01

    Cholecystokinin (CCK), glucose dependent insulinotropic peptide (GIP), and glucagon-like peptide 1 (GLP-1) regulate satiety as enterogastrons and incretins. They also directly affect the satiety centers. Therefore, these peptides may participate in the pathogenesis of eating disorders. CCK, GIP, and GLP-1 secretion were studied in 13 adolescent girls suffering from simple obesity, 13 girls with anorexia nervosa, and 10 healthy girls. Each girl was subjected to an oral glucose tolerance test (OGTT) and standard meal test. Blood was collected before stimulation and at 15, 30, 60, and 120 min. The concentrations of all peptides were determined by RIA commercial kits. Fasting and postprandial levels of these peptides as well as integrated outputs were measured. High postprandial levels of CCK observed in the girls with anorexia may aggravate the course of this disease by intensifying nausea and vomiting. Low postprandial level of GLP-1 in girls with simple obesity may be responsible for excessive ingestion of food and weaker inhibition of gastric emptying, which also leads to obesity. PMID:15645696

  7. Hindbrain nucleus tractus solitarius glucagon-like peptide-1 receptor signaling reduces appetitive and motivational aspects of feeding

    PubMed Central

    Grill, Harvey J.

    2014-01-01

    Central glucagon-like peptide-1 receptor (GLP-1R) signaling reduces food intake by affecting a variety of neural processes, including those mediating satiation, motivation, and reward. While the literature suggests that separable neurons and circuits control these processes, this notion has not been adequately investigated. The intake inhibitory effects of GLP-1R signaling in the hindbrain medial nucleus tractus solitarius (mNTS) have been attributed to interactions with vagally transmitted gastrointestinal satiation signals that are also processed by these neurons. Here, behavioral and pharmacological techniques are used to test the novel hypothesis that the reduction of food intake following mNTS GLP-1R stimulation also results from effects on food-motivated appetitive behaviors. Results show that mNTS GLP-1R activation by microinjection of exendin-4, a long-acting GLP-1R agonist, reduced 1) intake of a palatable high-fat diet, 2) operant responding for sucrose under a progressive ratio schedule of reinforcement and 3) the expression of a conditioned place preference for a palatable food. Together, these data demonstrate that the intake inhibitory effects of mNTS GLP-1R signaling extend beyond satiation and include effects on food reward and motivation that are typically ascribed to midbrain and forebrain neurons. PMID:24944243

  8. Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R).

    PubMed

    Yang, Dehua; de Graaf, Chris; Yang, Linlin; Song, Gaojie; Dai, Antao; Cai, Xiaoqing; Feng, Yang; Reedtz-Runge, Steffen; Hanson, Michael A; Yang, Huaiyu; Jiang, Hualiang; Stevens, Raymond C; Wang, Ming-Wei

    2016-06-17

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to the secretin-like (class B) family of G protein-coupled receptors. Members of the class B family are distinguished by their large extracellular domain, which works cooperatively with the canonical seven-transmembrane (7TM) helical domain to signal in response to binding of various peptide hormones. We have combined structure-based site-specific mutational studies with molecular dynamics simulations of a full-length model of GLP-1R bound to multiple peptide ligand variants. Despite the high sequence similarity between GLP-1R and its closest structural homologue, the glucagon receptor (GCGR), nearly half of the 62 stably expressed mutants affected GLP-1R in a different manner than the corresponding mutants in GCGR. The molecular dynamics simulations of wild-type and mutant GLP-1R·ligand complexes provided molecular insights into GLP-1R-specific recognition mechanisms for the N terminus of GLP-1 by residues in the 7TM pocket and explained how glucagon-mimicking GLP-1 mutants restored binding affinity for (GCGR-mimicking) GLP-1R mutants. Structural analysis of the simulations suggested that peptide ligand binding mode variations in the 7TM binding pocket are facilitated by movement of the extracellular domain relative to the 7TM bundle. These differences in binding modes may account for the pharmacological differences between GLP-1 peptide variants. PMID:27059958

  9. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway. PMID:26542397

  10. The inactivation of extracellular signal-regulated kinase by glucagon-like peptide-1 contributes to neuroprotection against oxidative stress.

    PubMed

    Nakajima, Shingo; Numakawa, Tadahiro; Adachi, Naoki; Yoon, Hyung Shin; Odaka, Haruki; Ooshima, Yoshiko; Kunugi, Hiroshi

    2016-03-11

    Glucagon-like peptide-1 (GLP-1), an insulinotropic peptide secreted from enteroendocrine cells, has been known to have a neuroprotective effect. However, it is not fully understood the intracellular mediator of GLP-1 signaling in neuronal cells. In the present study, we examined the change in intracellular signaling of cortical neurons after GLP-1 application and luminal glucose stimulation in vitro and in vivo. GLP-1 receptor was highly expressed in cultured cortical neurons and brain tissues including the prefrontal cortex and hippocampus. The activation of GLP-1 receptor (5min) significantly decreased levels of phosphorylated extracellular signal-regulated kinase (pERK), which is involved in neuronal cell survival and death, in cultured cortical neurons. Oral glucose administration also rapidly reduced pERK levels in the prefrontal cortex, while intraperitoneal glucose injection did not show such an effect. Further, GLP-1 attenuated hydrogen peroxide-induced cell death and hyperactivity of ERK in cultured cortical neurons. It is possible that increased GLP-1 by luminal glucose stimulation affects cortical system including the maintenance of neuronal cell survival. PMID:26827720

  11. Glucagon-like peptide-1 receptor agonist therapeutics for total diabetes management: assessment of composite end-points.

    PubMed

    Yabe, Daisuke; Kuwata, Hitoshi; Usui, Ryota; Kurose, Takeshi; Seino, Yutaka

    2015-01-01

    Assessment of the benefits of anti-diabetic drugs for type 2 diabetes requires analysis of composite end-points, taking HbA1c, bodyweight, hypoglycemia and other metabolic parameters into consideration; continuous, optimal glycemic control as well as bodyweight, blood pressure and lipid levels are critical to prevent micro- and macro-vascular complications. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are now established as an important total treatment strategy for type 2 diabetes, exerting glucose-lowering effects with little hypoglycemia risk and also ameliorating bodyweight, blood pressure and lipid levels, which are therapeutic targets for prevention of complications of the disease. The available data strongly suggest only beneficial effects of GLP-1RAs; however, long-term evaluation of the relevant composite end-points including health-related quality of life and cost-effectiveness remain to be investigated in adequately powered, prospective, controlled clinical trials. In the meantime, healthcare professionals need to be scrupulously attentive for potential, rare adverse events in patients using GLP-1RAs. PMID:25916903

  12. Glucagon-Like Peptide-1 Triggers Protective Pathways in Pancreatic Beta-Cells Exposed to Glycated Serum

    PubMed Central

    Puddu, Alessandra; Sanguineti, Roberta; Durante, Arianna; Nencioni, Alessio; Mach, François; Montecucco, Fabrizio; Viviani, Giorgio L.

    2013-01-01

    Advanced glycation end products (AGEs) might play a pathophysiological role in the development of diabetes and its complications. AGEs negatively affect pancreatic beta-cell function and the expression of transcriptional factors regulating insulin gene. Glucagon-like peptide-1 (GLP-1), an incretin hormone that regulates glucose homeostasis, might counteract the harmful effects of AGEs on the beta cells in culture. The aim of this study was to identify the intracellular mechanisms underlying GLP-1-mediated protection from AGE-induced detrimental activities in pancreatic beta cells. HIT-T15 cells were cultured for 5 days with glycated serum (GS, consisting in a pool of AGEs), in the presence or absence of 10 nmol/L GLP-1. After evaluation of oxidative stress, we determined the expression and subcellular localization of proteins involved in maintaining redox balance and insulin gene expression, such as nuclear factor erythroid-derived 2 (Nrf2), glutathione reductase, PDX-1, and MafA. Then, we investigated proinsulin production. The results showed that GS increased oxidative stress, reduced protein expression of all investigated factors through proteasome activation, and decreased proinsulin content. Furthermore, GS reduced ability of PDX-1 and MafA to bind DNA. Coincubation with GLP-1 reversed these GS-mediated detrimental effects. In conclusion, GLP-1, protecting cells against oxidants, triggers protective intercellular pathways in HIT-T15 cells exposed to GS. PMID:23737644

  13. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future.

    PubMed

    Kalra, Sanjay; Baruah, Manash P; Sahay, Rakesh K; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)-based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  14. Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin

    PubMed Central

    Liu, Rui; Li, Na; Lin, Yi; Wang, Mei; Peng, Yongde; Lewi, Keidren; Wang, Qinghua

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however, the precise underlying molecular mechanism has not been fully defined. Wnt was recently identified as an important regulator of adipogenesis. This study aimed to investigate the involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentiation. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adipogenic transcription factors and Wnts and the phosphorylation level and subcellular localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte differentiation and lipid accumulation, which were accompanied by the expression of adipocyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an important mediator of the Wnt pathway, was immediately dephosphorylated and translocated from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1, however, β-catenin was redirected to the cell plasma membrane leading to its decreased accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular localization of β-catenin and expression level of adipogenic transcription factors. Our findings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new target for the treatment of metabolic disease. PMID:27504979

  15. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  16. Comparative Effects of Prolonged and Intermittent Stimulation of the Glucagon-Like Peptide 1 Receptor on Gastric Emptying and Glycemia

    PubMed Central

    Umapathysivam, Mahesh M.; Lee, Michael Y.; Jones, Karen L.; Annink, Christopher E.; Cousins, Caroline E.; Trahair, Laurence G.; Rayner, Chris K.; Chapman, Marianne J.; Nauck, Michael A.; Horowitz, Michael; Deane, Adam M.

    2014-01-01

    Acute administration of glucagon-like peptide 1 (GLP-1) and its agonists slows gastric emptying, which represents the major mechanism underlying their attenuation of postprandial glycemic excursions. However, this effect may diminish during prolonged use. We compared the effects of prolonged and intermittent stimulation of the GLP-1 receptor on gastric emptying and glycemia. Ten healthy men received intravenous saline (placebo) or GLP-1 (0.8 pmol/kg ⋅ min), as a continuous 24-h infusion (“prolonged”), two 4.5-h infusions separated by 20 h (“intermittent”), and a 4.5-h infusion (“acute”) in a randomized, double-blind, crossover fashion. Gastric emptying of a radiolabeled mashed potato meal was measured using scintigraphy. Acute GLP-1 markedly slowed gastric emptying. The magnitude of the slowing was attenuated with prolonged but maintained with intermittent infusions. GLP-1 potently diminished postprandial glycemia during acute and intermittent regimens. These observations suggest that short-acting GLP-1 agonists may be superior to long-acting agonists when aiming specifically to reduce postprandial glycemic excursions in the treatment of type 2 diabetes. PMID:24089511

  17. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  18. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.; Sahay, Rakesh K.; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)–based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  19. The glucagon-like peptide-1 analog exendin-4 antagonizes the effect of acyl ghrelin on the respiratory exchange ratio.

    PubMed

    Abtahi, Shayan; VanderJagt, Hayley L; Currie, Paul J

    2016-09-01

    The present study investigated the interaction of hypothalamic arcuate nucleus (ArcN) ghrelin and glucagon-like peptide-1 (GLP-1) signaling on metabolic function. Using indirect calorimetry, we first showed that acylated ghrelin, administered into the ArcN, significantly increased the respiratory exchange ratio (RER) in male Sprague-Dawley rats, representing a shift in fuel utilization toward enhanced carbohydrate oxidation and reduced lipid utilization. In contrast, treatment with similar doses of des-acyl ghrelin failed to induce reliable changes in RER. We then examined the ability of exendin-4 (Ex4) to alter acyl ghrelin's energetic effects. Ex4 is a GLP-1 agonist and has been reported previously to suppress food intake in rodent models. Rats were treated with either systemic or direct ArcN Ex4, followed by acyl ghrelin. Our results indicated that both systemic and central injections of Ex4 alone significantly reduced RER and, importantly, Ex4 pretreatment reliably attenuated the impact of ghrelin on RER. Overall, these findings provide compelling evidence that ghrelin and GLP-1 signaling interact in the hypothalamic control of metabolic function. PMID:27454242

  20. Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection

    PubMed Central

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family implicated in the control of appetite and satiety. GLP-1 has insulinotropic, insulinomimetic, and glucagonostatic effects, thereby exerting multiple complementary actions to lower blood glucose in subjects with type 2 diabetes mellitus. A major advantage over conventional insulin is the fact that the insulinotropic actions of GLP-1 are dependent upon ambient glucose concentration, mitigating the risks of hypoglycemia. Recently, the crucial role of GLP-1 in cardiovascular disease has been suggested in both preclinical and clinical studies. The experimental data indicate GLP-1 and its analogs to have direct effects on the cardiovascular system, in addition to their classic glucoregulatory actions. Clinically, beneficial effects of GLP-1 have also been demonstrated in patients with myocardial ischemia and heart failure. GLP-1 has recently been demonstrated to be a more effective alternative in treating myocardial injury. This paper provides a review on the current evidence supporting the use of GLP-1 in experimental animal models and human trials with the ischemic and non-ischemic heart and discusses their molecular mechanisms and potential as a new therapeutic approach. PMID:23777457

  1. Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1).

    PubMed

    Wideman, Rhonda D; Yu, Irene L Y; Webber, Travis D; Verchere, C Bruce; Johnson, James D; Cheung, Anthony T; Kieffer, Timothy J

    2006-09-01

    Glucagon-like peptide 1 (GLP-1) is a hormone that has received significant attention as a therapy for diabetes because of its ability to stimulate insulin biosynthesis and release and to promote growth and survival of insulin-producing beta cells. While GLP-1 is produced from the proglucagon precursor by means of prohormone convertase (PC) 1/3 activity in enteroendocrine L cells, the same precursor is differentially processed by PC2 in pancreatic islet alpha cells to release glucagon, leaving GLP-1 trapped within a larger fragment with no known function. We hypothesized that we could induce GLP-1 production directly within pancreatic islets by means of delivery of PC1/3 and, further, that this intervention would improve the viability and function of islets. Here, we show that adenovirus-mediated expression of PC1/3 in alpha cells increases islet GLP-1 secretion, resulting in improved glucose-stimulated insulin secretion and enhanced survival in response to cytokine treatment. PC1/3 expression in alpha cells also improved performance after islet transplantation in a mouse model of type 1 diabetes, possibly by enhancing nuclear Pdx1 and insulin content of islet beta cells. These results demonstrate a unique strategy for liberating GLP-1 from directly within the target organ and highlight the potential for up-regulating islet GLP-1 production as a means of treating diabetes. PMID:16938896

  2. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents.

    PubMed

    Vallöf, Daniel; Maccioni, Paola; Colombo, Giancarlo; Mandrapa, Minja; Jörnulf, Julia Winsa; Egecioglu, Emil; Engel, Jörgen A; Jerlhag, Elisabet

    2016-03-01

    The incretin hormone, glucagon-like peptide 1 (GLP-1), regulates gastric emptying, glucose-dependent stimulation of insulin secretion and glucagon release, and GLP-1 analogs are therefore approved for treatment of type II diabetes. GLP-1 receptors are expressed in reward-related areas such as the ventral tegmental area and nucleus accumbens, and GLP-1 was recently shown to regulate several alcohol-mediated behaviors as well as amphetamine-induced, cocaine-induced and nicotine-induced reward. The present series of experiments were undertaken to investigate the effect of the GLP-1 receptor agonist, liraglutide, on several alcohol-related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well-documented effects of alcohol on the mesolimbic dopamine system, namely alcohol-induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self-administration of alcohol in selectively bred Sardinian alcohol-preferring rats. Collectively, these data suggest that GLP-1 receptor agonists could be tested for treatment of alcohol dependence in humans. PMID:26303264

  3. Protein Engineering Strategies for Sustained Glucagon-Like Peptide-1 Receptor–Dependent Control of Glucose Homeostasis

    PubMed Central

    Picha, Kristen M.; Cunningham, Mark R.; Drucker, Daniel J.; Mathur, Ashok; Ort, Tatiana; Scully, Michael; Soderman, Avery; Spinka-Doms, Tracy; Stojanovic-Susulic, Vedrana; Ann Thomas, Beth; O'Neil, Karyn T.

    2008-01-01

    OBJECTIVE—We have developed a novel platform for display and delivery of bioactive peptides that links the biological properties of the peptide to the pharmacokinetic properties of an antibody. Peptides engineered in the MIMETIBODY platform have improved biochemical and biophysical properties that are quite distinct from those of Fc-fusion proteins. CNTO736 is a glucagon-like peptide 1 (GLP-1) receptor agonist engineered in our MIMETIBODY platform. It retains many activities of native GLP-1 yet has a significantly enhanced pharmacokinetic profile. Our goal was to develop a long-acting GLP-1 receptor agonist with sustained efficacy. RESEARCH DESIGN AND METHODS—In vitro and in vivo activity of CNTO736 was evaluated using a variety of rodent cell lines and diabetic animal models. RESULTS—Acute pharmacodynamic studies in diabetic rodents demonstrate that CNTO736 reduces fasting and postprandial glucose, decreases gastric emptying, and inhibits food intake in a GLP-1 receptor–specific manner. Reduction of food intake following CNTO736 dosing is coincident with detection of the molecule in the circumventricular organs of the brain and activation of c-fos in regions protected by the blood-brain barrier. Diabetic rodents dosed chronically with CNTO736 have lower fasting and postprandial glucose and reduced body weight. CONCLUSIONS—Taken together, our data demonstrate that CNTO736 produces a spectrum of GLP-1 receptor–dependent actions while exhibiting significantly improved pharmacokinetics relative to the native GLP-1 peptide. PMID:18426860

  4. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Wang, Guo-Du; Mulè, Flavia; Wood, Jackie D

    2012-02-01

    Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks

  5. Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment

    PubMed Central

    Dong, Zhenhua; Chai, Weidong; Wang, Wenhui; Zhao, Lina; Fu, Zhuo; Cao, Wenhong

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signaling intermediate downstream of GLP-1 receptors. To examine whether PKA mediates GLP-1's microvascular action in muscle, GLP-1 was infused to overnight-fasted male rats for 120 min in the presence or absence of H89, a PKA inhibitor. Hindleg muscle microvascular recruitment and glucose use were determined. GLP-1 infusion acutely increased muscle microvascular blood volume within 30 min without altering microvascular blood flow velocity or blood pressure. This effect persisted throughout the 120-min infusion period, leading to a significant increase in muscle microvascular blood flow. These changes were paralleled with an approximately twofold increase in plasma NO levels and hindleg glucose extraction. Systemic infusion of H89 completely blocked GLP-1-mediated muscle microvascular recruitment and increases in NO production and muscle glucose extraction. In cultured endothelial cells, GLP-1 acutely increased PKA activity and stimulated endothelial NO synthase phosphorylation at Ser1177 and NO production. PKA inhibition abolished these effects. In ex vivo studies, perfusion of the distal saphenous artery with GLP-1 induced significant vasorelaxation that was also abolished by pretreatment of the vessels with PKA inhibitor H89. We conclude that GLP-1 recruits muscle microvasculature by expanding microvascular volume and increases glucose extraction in muscle via a PKA/NO-dependent pathway in the vascular endothelium. This may contribute to postprandial glycemic control and complication prevention in diabetes. PMID:23193054

  6. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders

    PubMed Central

    Salcedo, Isidro; Tweedie, David; Li, Yazhou; Greig, Nigel H

    2012-01-01

    Like type-2 diabetes mellitus (T2DM), neurodegenerative disorders and stroke are an ever increasing, health, social and economic burden for developed Westernized countries. Age is an important risk factor in all of these; due to the rapidly increasing rise in the elderly population T2DM and neurodegenerative disorders, both represent a looming threat to healthcare systems. Whereas several efficacious drugs are currently available to ameliorate T2DM, effective treatments to counteract pathogenic processes of neurodegenerative disorders are lacking and represent a major scientific and pharmaceutical challenge. Epidemiological data indicate an association between T2DM and most major neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Likewise, there is an association between T2DM and stroke incidence. Studies have revealed that common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline, occur across these. Based on the presence of shared mechanisms and signalling pathways in these seemingly distinct diseases, one could hypothesize that an effective treatment for one disorder could prove beneficial in the others. Glucagon-like peptide-1 (GLP-1)-based anti-diabetic drugs have drawn particular attention as an effective new strategy to not only regulate blood glucose but also to reduce apoptotic cell death of pancreatic beta cells in T2DM. Evidence supports a neurotrophic and neuroprotective role of GLP-1 receptor (R) stimulation in an increasing array of cellular and animal neurodegeneration models as well as in neurogenesis. Herein, we review the physiological role of GLP-1 in the nervous system, focused towards the potential benefit of GLP-1R stimulation as an immediately translatable treatment strategy for acute and chronic neurological disorders. PMID:22519295

  7. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion

    PubMed Central

    Riz, Michela; Pedersen, Morten Gram

    2015-01-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release. PMID:26630068

  8. Simultaneous quantification of intracellular and secreted active and inactive glucagon-like peptide-1 from cultured cells.

    PubMed

    Amao, Michiko; Kitahara, Yoshiro; Tokunaga, Ayaka; Shimbo, Kazutaka; Eto, Yuzuru; Yamada, Naoyuki

    2015-03-01

    Glucagon-like peptide-1 (GLP-1) is an incretin peptide that regulates islet hormone secretion. During recent years, incretin-based therapies have been widely used for patients with type 2 diabetes. GLP-1 peptides undergo N- and C-terminal processing for gain or loss of functions. We developed a method to quantify picomolar quantities of intact GLP-1 peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By employing this label-free selected reaction monitoring (SRM) method, we were able to analyze secreted GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amid from human enteroendocrine NCI-H716 cells after stimulation with nateglinide, glucose, and sucralose. The absolute total concentrations of secreted GLP-1 peptides at baseline and after stimulation with nateglinide, glucose, and sucralose were 167.3, 498.9, 238.3, and 143.1 pM, respectively. Meanwhile, the ratios of GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amide) to total GLP-1 peptides were similar (6 ± 3, 26 ± 3, and 78 ± 5%, respectively). The SRM assay can analyze the concentrations of individual GLP-1 peptides and, therefore, is a tool to investigate the physiological roles of GLP-1 peptides. Furthermore, the molecular species secreted from NCI-H716 cells were unknown. Therefore, we performed a secretopeptidome analysis of supernatants collected from cultured NCI-H716 cells. Together with GLP-1 peptides, we detected neuroendocrine convertase 1, which regulates peptide hormones released from intestinal endocrine L-cells. PMID:25461479

  9. Overview of Glucagon-like Peptide-1 Analogs and Dipeptidyl Peptidase-4 Inhibitors for Type 2 Diabetes

    PubMed Central

    Pratley, Richard E.

    2008-01-01

    Context Impairment of incretin activity is now recognized as integral to the metabolic derangement underlying type 2 diabetes. Glucoregulatory agents that target the incretin system have recently been developed, and the place of these drugs in the treatment of type 2 diabetes can be assessed based on a growing body of clinical data. Evidence Acquisition A PubMed search was conducted to identify clinical studies of incretin therapies in type 2 diabetes. Article reference lists were also searched for relevant information, and supplemental material such as conference abstracts, drug prescribing information, and treatment guidelines were included as appropriate. Evidence Synthesis Two classes of therapies target the incretin system. The first, glucagon-like peptide-1 (GLP-1) agonists (exemplified by exenatide and liraglutide), have demonstrated considerable efficacy in clinical trials, reducing hemoglobin A1c (HbA1c) by up to 1.3%, decreasing fasting and postprandial glucose concentrations, reducing weight by approximately 3.0 kg, and improving cardiovascular risk factors. The second class, the dipeptidyl peptidase-4 inhibitors (such as sitagliptin and vildagliptin) rely on production of endogenous GLP-1 and act by reducing its turnover. The dipeptidyl peptidase-4 (DPP-4) inhibitors produce modest reductions in HbA1c (< 1%) compared with GLP-1 agonists and are generally weight-neutral. Neither GLP-1 agonists nor DPP-4 inhibitors cause hypoglycemia unless used with other agents known to increase risk. Conclusions GLP-1 agonists and DPP-4 inhibitors provide a valuable new treatment option for patients with type 2 diabetes and may be associated with a wider range of therapeutic benefits than older drugs. PMID:18769687

  10. Glucagon-Like Peptide-1 Synthetic Analogs: New Therapeutic Agents for Use in the Treatment of Diabetes Mellitus

    PubMed Central

    Holz, George G.; Chepurny, Oleg G.

    2010-01-01

    Glucagon-like peptide-1-(7-36)-amide (GLP-1) is a potent blood glucose-lowering hormone now under investigation for use as a therapeutic agent in the treatment of type 2 (adult onset) diabetes mellitus. GLP-1 binds with high affinity to G protein-coupled receptors (GPCRs) located on pancreatic β-cells, and it exerts insulinotropic actions that include the stimulation of insulin gene transcription, insulin biosynthesis, and insulin secretion. The beneficial therapeutic action of GLP-1 also includes its ability to act as a growth factor, stimulating formation of new pancreatic islets (neogenesis) while slowing b-cell death (apoptosis). GLP-1 belongs to a large family of structurally-related hormones and neuropeptides that include glucagon, secretin, GIP, PACAP, and VIP. Biosynthesis of GLP-1 occurs in the enteroendocrine L-cells of the distal intestine, and the release of GLP-1 into the systemic circulation accompanies ingestion of a meal. Although GLP-1 is inactivated rapidly by dipeptidyl peptidase IV (DDP-IV), synthetic analogs of GLP-1 exist, and efforts have been directed at engineering these peptides so that they are resistant to enzymatic hydrolysis. Additional modifications of GLP-1 incorporate fatty acylation and drug affinity complex (DAC) technology to improve serum albumin binding, thereby slowing renal clearance of the peptides. NN2211, LY315902, LY307161, and CJC-1131 are GLP-1 synthetic analogs that reproduce many of the biological actions of GLP-1, but with a prolonged duration of action. AC2993 (Exendin-4) is a naturally occurring peptide isolated from the lizard Heloderma, and it acts as a high affinity agonist at the GLP-1 receptor. This review summarizes structural features and signal transduction properties of GLP-1 and its cognate b-cell GPCR. The usefulness of synthetic GLP-1 analogs as blood glucose-lowering agents is discussed, and the applicability of GLP-1 as a therapeutic agent for treatment of type 2 diabetes is highlighted. PMID

  11. Effect of Glucagon-like Peptide-1 on the Differentiation of Adipose-derived Stem Cells into Osteoblasts and Adipocytes

    PubMed Central

    Lee, Hye Min; Joo, Bo Sun; Lee, Chang Hoon; Kim, Heung Yeol

    2015-01-01

    Objectives Glucagon-like peptide-1 (GLP-1) is an intestinally secreted hormone and it plays an important role in the regulation of glucose homeostasis. However, the possible role of GLP-1 in the differentiation of adipose-derived stem cells (ADSCs) remains unknown. Therefore this study investigated the effect of GLP-1 on the differentiation of ADSCs into osteoblasts and adipocytes. Methods ADSCs were isolated from human adipose tissues of the abdomens, cultured and characterized by flow cytometry and multi-lineage potential assay. ADSCs were induced in osteogenic and adipogenic media treated with two different doses (10 and 100 nM) of GLP-1, and then the effect of GLP-1 on differentiation of ADSCs into osteoblast and adipocyte was examined. The signaling pathway involved in these processes was also examined. Results Isolated human ADSCs expressed mesenchymal stem cell (MSC) specific markers as well as GLP-1 receptor (GLP-1R) proteins. They also showed multiple-lineage potential of MSC. GLP-1 was upregulated the activity and mRNA expression of osteoblast-specific marker, alkaline phosphatase and the mineralization of calcium. In contrast, GLP-1 significantly suppressed the expression of adipocyte-specific markers, peroxisome proliferator-activated receptor gamma (PPAR-γ), lipoprotein lipase (LPL) and adipocyte protein 2 (AP2). This decreased expression of adipocyte specific markers caused by GLP-1 was significantly reversed by the treatment of extracellular signal-regulated kinase (ERK) inhibitor, PD98059 (P < 0.05). Conclusion This result demonstrates that GLP-1 stimulates osteoblast differentiation in ADSCs, whereas it inhibits adipocyte differentiation. The ERK signaling pathway seems to be involved in these differentiation processes mediated by GLP-1. PMID:26357647

  12. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    PubMed

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists. PMID:27186358

  13. Prediction of the effect on antihyperglycaemic action of sitagliptin by plasma active form glucagon-like peptide-1

    PubMed Central

    Kushiyama, Akifumi; Kikuchi, Takako; Tanaka, Kentaro; Tahara, Tazu; Takao, Toshiko; Onishi, Yukiko; Yoshida, Yoko; Kawazu, Shoji; Iwamoto, Yasuhiko

    2016-01-01

    AIM: To investigate whether active glucagon-like peptide-1 (GLP-1) is a prediction Factor of Effect of sitagliptin on patients with type 2 diabetes mellitus (GLP-1 FEST:UMIN000010645). METHODS: Seventy-six patients with type 2 diabetes, who had insufficient glycemic control [Hemoglobin A1c (HbA1c) ≥ 7%] in spite of treatment with metformin and/or sulfonylurea, were included in the investigation. Patients were divided into three groups by tertiles of fasting plasma active GLP-1 level, before the administration of 50 mg sitagliptin. RESULTS: At baseline, body mass index, serum UA, insulin and HOMA-IR were higher in the high active GLP-1 group than in the other two groups. The high active GLP-1 group did not show any decline of HbA1c (7.6% ± 1.4% to 7.5% ± 1.5%), whereas the middle and low groups indicated significant decline of HbA1c (7.4 ± 0.7 to 6.8 ± 0.6 and 7.4 ± 1.2 to 6.9 ± 1.3, respectively) during six months. Only the low and middle groups showed a significant increment of active GLP-1, C-peptide level, a decreased log and proinsulin/insulin ratio after administration. In logistic analysis, the low or middle group is a significant explanatory variable for an HbA1c decrease of ≥ 0.5%, and its odds ratio is 4.5 (1.40-17.6) (P = 0.01) against the high active GLP-1 group. This remains independent when adjusted for HbA1c level before administration, patients’ medical history, medications, insulin secretion and insulin resistance. CONCLUSION: Plasma fasting active GLP-1 is an independent predictive marker for the efficacy of dipeptidyl peptidase 4 inhibitor sitagliptin. PMID:27326345

  14. Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NF-κB in mice.

    PubMed

    Gou, Si; Zhu, Tao; Wang, Wei; Xiao, Min; Wang, Xi-chen; Chen, Zhong-hua

    2014-10-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality and poor prognosis. Previous studies confirmed that NF-κB plays a critical role in the pathogenesis of pulmonary fibrosis and glucagon like peptide-1 (GLP-1) has a property of anti-inflammation by inactivation of NF-κB. Furthermore, the GLP-1 receptor was detected in the lung tissues. Our aim was to investigate the potential value and mechanisms of GLP-1 on BLM-induced pulmonary fibrosis in mice. Mice with BLM-induced pulmonary fibrosis were treated with or without GLP-1 administration. 28 days after BLM infusion, the number of total cells, macrophages, neutrophils, lymphocytes, and the content of TGF-β1 in BALF were measured. Hematoxylin-eosin (HE) staining and Masson's trichrome (MT) staining were performed. The Ashcroft score and hydroxyproline content were analyzed. RT-qPCR and western blot were used to evaluate the expression of α-SMA and VCAM-1. The phosphorylation of NF-κB p65 was also assessed by western blot. DNA binding of NF-κB p65 was measured through Trans(AM) p65 transcription factor ELISA kit. GLP-1 reduced inflammatory cell infiltration and the content of TGF-β1 in BLAF in mice with BLM injection. The Ashcroft score and hydroxyproline content were decreased by GLP-1 administration. Meanwhile, BLM-induced overexpression of α-SMA and VCAM-1 were blocked by GLP-1 treatment in mice. GLP-1 also reduced the ratio of phosphor-NF-κB p65/total-NF-κB p65 and NF-κB p65 DNA binding activity in BLM-induced pulmonary fibrosis in mice. Our data found that BLM-induced lung inflammation and pulmonary fibrosis were significantly alleviated by GLP-1 treatment in mice, possibly through inactivation of NF-κB. PMID:25111852

  15. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents.

    PubMed

    Oguma, Takahiro; Nakayama, Keiko; Kuriyama, Chiaki; Matsushita, Yasuaki; Yoshida, Kumiko; Hikida, Kumiko; Obokata, Naoyuki; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Shiotani, Masaharu

    2015-09-01

    The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(β-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus. PMID:26105952

  16. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    PubMed

    Riz, Michela; Pedersen, Morten Gram

    2015-12-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release. PMID:26630068

  17. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes.

    PubMed

    Balteau, Magali; Van Steenbergen, Anne; Timmermans, Aurélie D; Dessy, Chantal; Behets-Wydemans, Gaetane; Tajeddine, Nicolas; Castanares-Zapatero, Diego; Gilon, Patrick; Vanoverschelde, Jean-Louis; Horman, Sandrine; Hue, Louis; Bertrand, Luc; Beauloye, Christophe

    2014-10-15

    Exposure of cardiomyocytes to high glucose concentrations (HG) stimulates reactive oxygen species (ROS) production by NADPH oxidase (NOX2). NOX2 activation is triggered by enhanced glucose transport through a sodium-glucose cotransporter (SGLT) but not by a stimulation of glucose metabolism. The aim of this work was to identify potential therapeutic approaches to counteract this glucotoxicity. In cultured adult rat cardiomyocytes incubated with 21 mM glucose (HG), AMP-activated protein kinase (AMPK) activation by A769662 or phenformin nearly suppressed ROS production. Interestingly, glucagon-like peptide 1 (GLP-1), a new antidiabetic drug, concomitantly induced AMPK activation and prevented the HG-mediated ROS production (maximal effect at 100 nM). α2-AMPK, the major isoform expressed in cardiomyocytes (but not α1-AMPK), was activated in response to GLP-1. Anti-ROS properties of AMPK activators were not related to changes in glucose uptake or glycolysis. Using in situ proximity ligation assay, we demonstrated that AMPK activation prevented the HG-induced p47phox translocation to caveolae, whatever the AMPK activators used. NOX2 activation by either α-methyl-d-glucopyranoside, a glucose analog transported through SGLT, or angiotensin II was also counteracted by GLP-1. The crucial role of AMPK in limiting HG-mediated NOX2 activation was demonstrated by overexpressing a constitutively active form of α2-AMPK using adenoviral infection. This overexpression prevented NOX2 activation in response to HG, whereas GLP-1 lost its protective action in α2-AMPK-deficient mouse cardiomyocytes. Under HG, the GLP-1/AMPK pathway inhibited PKC-β2 phosphorylation, a key element mediating p47phox translocation. In conclusion, GLP-1 induces α2-AMPK activation and blocks HG-induced p47phox translocation to the plasma membrane, thereby preventing glucotoxicity. PMID:25128166

  18. Dietary Mannoheptulose Increases Fasting Serum Glucagon Like Peptide-1 and Post-Prandial Serum Ghrelin Concentrations in Adult Beagle Dogs

    PubMed Central

    McKnight, Leslie L.; Eyre, Ryan; Gooding, Margaret A.; Davenport, Gary M.; Shoveller, Anna Kate

    2015-01-01

    Simple Summary There is increased interest in the use of nutraceuticals for weight management in companion animals. A nutraceutical can broadly be considered a food (or a part of) that provides a health benefit. Mannoheptulose (MH), a sugar found in avocados, is being investigated as a nutraceutical for dogs. In this study, dogs fed a diet containing MH had increased concentrations of blood biomarkers related to energy intake. In addition, dogs fed MH were less physically active than dogs fed a control diet. These findings suggest that dietary MH has the ability to alter energy intake and lower daily energy expenditure. Abstract There is a growing interest in the use of nutraceuticals for weight management in companion animals. The purpose of this study was to determine the effects of mannoheptulose (MH), a sugar in avocados that inhibits glycolysis, on energy metabolism in adult Beagle dogs. The study was a double-blind, randomized controlled trial where dogs were allocated to a control (CON, n = 10, 10.1 ± 0.4 kg) or MH containing diet (168 mg/kg, n = 10, 10.3 ± 0.4 kg). Blood was collected after an overnight fast and 1 h post-feeding (week 12) to determine serum satiety related hormones and biochemistry. Resting and post-prandial energy expenditure and respiratory quotient were determined by indirect calorimetry (weeks 4 and 8). Physical activity was measured using an accelerometer (weeks 3, 7, 11). Body composition was assessed using dual X-ray absorptiometry (week 12). MH significantly (p < 0.05) increased fasting serum glucagon-like peptide-1 and post-prandial serum ghrelin. MH tended (p < 0.1) to increase fasting serum gastric inhibitory peptide and decrease physical activity. Together, these findings suggest that dietary MH has the ability to promote satiation and lowers daily energy expenditure. PMID:26479244

  19. Efficacy and tolerability of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus

    PubMed Central

    McCarty, Delilah J.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) has been evaluated for use in the treatment of type 2 diabetes mellitus (T2DM) due to its role in glucose regulation. Four GLP-1 receptor agonists (RAs) are currently indicated for T2DM in the USA. Exenatide and liraglutide are short-acting and require twice-daily and daily dosing, respectively. Two longer acting agents, exenatide long-acting release (LAR) and albiglutide, were formulated to allow for once-weekly dosing. All four GLP-1 RAs have demonstrated reductions in hemoglobin A1c, fasting blood glucose, and body weight both as monotherapy and in combination with first- and second-line diabetes agents including metformin, sulfonylureas, thiazolidinediones, and insulin. Greater glycemic control was seen with liraglutide compared with the other GLP-1 treatment options; however, the two long-acting agents were superior to exenatide twice daily. All agents were well tolerated with most adverse events being mild or moderate in nature. The most common adverse event was transient nausea which typically resolved 4–8 weeks after treatment initiation. Long-acting agents had lower rates of nausea but an increased incidence of injection site reactions. Trials have suggested GLP-1 RAs may improve cardiovascular risk factors including blood pressure, lipid parameters and inflammatory markers. Future trials are needed to confirm the clinical outcomes of these agents. Overall, GLP-1 RAs will provide benefit for patients with T2DM intolerable to or not reaching glycemic goals with first-line agents, especially in patients in need of weight loss. PMID:25678952

  20. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells.

    PubMed

    Kwon, Hye-Jung; Park, Hyun-Sun; Park, Sung-Hee; Park, Jae-Hyung; Shin, Su-Kyung; Song, Seung Eun; Hwang, Meeyul; Cho, Ho-Chan; Song, Dae-Kyu

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity. PMID:26655814

  1. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation. PMID:26968794

  2. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine.

    PubMed

    Schmidt, Heath D; Mietlicki-Baase, Elizabeth G; Ige, Kelsey Y; Maurer, John J; Reiner, David J; Zimmer, Derek J; Van Nest, Duncan S; Guercio, Leonardo A; Wimmer, Mathieu E; Olivos, Diana R; De Jonghe, Bart C; Hayes, Matthew R

    2016-06-01

    Cocaine addiction continues to be a significant public health problem for which there are currently no effective FDA-approved treatments. Thus, there is a clear need to identify and develop novel pharmacotherapies for cocaine addiction. Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors in the ventral tegmental area (VTA) reduces intake of highly palatable food. As the neural circuits and neurobiological mechanisms underlying drug taking overlap to some degree with those regulating food intake, these findings suggest that activation of central GLP-1 receptors may also attenuate cocaine taking. Here, we show that intra-VTA administration of the GLP-1 receptor agonist exendin-4 (0.05 μg) significantly reduced cocaine, but not sucrose, self-administration in rats. We also demonstrate that cocaine taking is associated with elevated plasma corticosterone levels and that systemic infusion of cocaine activates GLP-1-expressing neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus that projects monosynaptically to the VTA. To determine the potential mechanisms by which cocaine activates NTS GLP-1-expressing neurons, we microinjected corticosterone (0.5 μg) directly into the hindbrain fourth ventricle. Intraventricular corticosterone attenuated cocaine self-administration and this effect was blocked in animals pretreated with the GLP-1 receptor antagonist exendin-(9-39) (10 μg) in the VTA. Finally, AAV-shRNA-mediated knockdown of VTA GLP-1 receptors was sufficient to augment cocaine self-administration. Taken together, these findings indicate that increased activation of NTS GLP-1-expressing neurons by corticosterone may represent a homeostatic response to cocaine taking, thereby reducing the reinforcing efficacy of cocaine. Therefore, central GLP-1 receptors may represent a novel target for cocaine addiction pharmacotherapies. PMID:26675243

  3. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    PubMed

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  4. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed.

    PubMed

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-10-23

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  5. Enzymatic mono-pegylation of glucagon-like peptide 1 towards long lasting treatment of type 2 diabetes

    PubMed Central

    Selis, Fabio; Schrepfer, Rodolfo; Sanna, Riccardo; Scaramuzza, Silvia; Tonon, Giancarlo; Dedoni, Simona; Onali, Pierluigi; Orsini, Gaetano; Genovese, Stefano

    2012-01-01

    Human glucagon-like peptide-1 (GLP-1) is a physiological gastrointestinal peptide with glucose-dependent insulinotropic effects which is therefore considered an interesting antidiabetic agent. However, after in vivo administration, exogenous GLP-1 does not exert its physiological action due to the combination of rapid proteolytic degradation by ubiquitous dipeptidyldipeptidase IV (DPP IV) enzyme and renal clearance resulting in an extremely short circulating half-life. In this work we describe the conjugation of GLP-1-(7-36)-amide derivatives with polyethylene glycol (PEG) by enzymatic site-specific transglutamination reaction as an approach to reduce both the proteolysis and the renal clearance rates. The compound GLP-1-(7-36)-amide-Q23-PEG 20 kDa monopegylated on the single glutamine residue naturally present in position 23 maintained the ability to activate the GLP-1 receptor expressed in the rat β-cell line RIN-m5F with nanomolar potency along with an increased in vitro resistance to DDP IV and a circulating half-life of about 12 h after subcutaneous administration in rats. These properties enabled GLP-(7-36)-amide-Q23-PEG 20 kDa to exert a glucose-stabilizing effect for a period as long as 8 h, as demonstrated by a single subcutaneous injection to diabetic mice concomitantly challenged with an oral glucose load. The results reported in this work indicate that GLP-(7-36)-amide-Q23-PEG 20 kDa could be a lead compound for the development of long-lasting anti-diabetic agents useful in the treatment of type 2 diabetes affected patients. PMID:25755995

  6. Postprandial glucose, insulin, and glucagon-like peptide-1 responses of different equine breeds adapted to meals containing micronized maize.

    PubMed

    Bamford, N J; Baskerville, C L; Harris, P A; Bailey, S R

    2015-07-01

    The enteroinsular axis is a complex system that includes the release of incretin hormones from the gut to promote the absorption and utilization of glucose after a meal. The insulinogenic effect of incretin hormones such as glucagon-like peptide-1 (GLP-1) remains poorly characterized in the horse. The aim of this study was to compare postprandial glucose, insulin, and GLP-1 responses of different equine breeds adapted to twice-daily meals containing micronized maize. Four Standardbred horses, 4 mixed-breed ponies, and 4 Andalusian cross horses in moderate BCS (5.5 ± 0.2 out of 9) were fed meals at 0800 and 1600 h each day. The meals contained micronized maize (mixed with soaked soybean hulls and lucerne chaff), with the amount of maize gradually increased over 12 wk to reach a final quantity of 1.7 g/kg BW (1.1 g/kg BW starch) in each meal. Animals had ad libitum access to the same hay throughout. After 12 wk of acclimation, serial blood samples were collected from all animals over a 14-h period to measure concentrations of glucose, insulin, and GLP-1, with meals fed immediately after the 0 and 8 h samples. Glucose area under the curve (AUC) values were similar between breed groups (P = 0.41); however, ponies and Andalusian horses exhibited significantly higher insulin AUC values after both meals compared with Standardbred horses (both P < 0.005). Postprandial GLP-1 AUC values were also significantly higher in ponies and Andalusian horses compared with Standardbred horses (breed × time interaction; P < 0.001). Correlation analysis demonstrated a strong positive association between concentrations of insulin and GLP-1 over time (rs = 0.752; P < 0.001). The increased insulin concentrations in ponies and Andalusian horses may partly reflect lower insulin sensitivity but could also be attributed to increased GLP-1 release. Given that hyperinsulinemia is a recognized risk factor for the development of laminitis in domestic equids, this study provides evidence that the

  7. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes.

    PubMed

    Vila Petroff, M G; Egan, J M; Wang, X; Sollott, S J

    2001-08-31

    The gut hormone, glucagon-like peptide-1 (GLP-1), which is secreted in nanomolar amounts in response to nutrients in the intestinal lumen, exerts cAMP/protein kinase A-mediated insulinotropic actions in target endocrine tissues, but its actions in heart cells are unknown. GLP-1 (10 nmol/L) increased intracellular cAMP (from 5.7+/-0.5 to 13.1+/-0.12 pmol/mg protein) in rat cardiac myocytes. The effects of cAMP-doubling concentrations of both GLP-1 and isoproterenol (ISO, 10 nmol/L) on contraction amplitude, intracellular Ca(2+) transient (CaT), and pH(i) in indo-1 and seminaphthorhodafluor (SNARF)-1 loaded myocytes were compared. Whereas ISO caused a characteristic increase (above baseline) in contraction amplitude (160+/-34%) and CaT (70+/-5%), GLP-1 induced a significant decrease in contraction amplitude (-27+/-5%) with no change in the CaT after 20 minutes. Neither pertussis toxin treatment nor exposure to the cGMP-stimulated phosphodiesterase (PDE2) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine or the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine nor the phosphatase inhibitors okadaic acid or calyculin A unmasked an ISO-mimicking response of GLP-1. In SNARF-1-loaded myocytes, however, both ISO and GLP-1 caused an intracellular acidosis (DeltapH(i) -0.09+/-0.02 and -0.08+/-0.03, respectively). The specific GLP-1 antagonist exendin 9-39 and the cAMP inhibitory analog Rp-8CPT-cAMPS inhibited both the GLP-1-induced intracellular acidosis and the negative contractile effect. We conclude that in contrast to beta-adrenergic signaling, GLP-1 increases cAMP but fails to augment contraction, suggesting the existence of functionally distinct adenylyl cyclase/cAMP/protein kinase A compartments, possibly determined by unique receptor signaling microdomains that are not controlled by pertussis toxin-sensitive G proteins or by enhanced local PDE or phosphatase activation. Furthermore, GLP-1 elicits a cAMP-dependent modest negative inotropic effect produced by a

  8. Recombinant expression, in vitro refolding, and biophysical characterization of the human glucagon-like peptide-1 receptor.

    PubMed

    Schröder-Tittmann, Kathrin; Bosse-Doenecke, Eva; Reedtz-Runge, Steffen; Ihling, Christian; Sinz, Andrea; Tittmann, Kai; Rudolph, Rainer

    2010-09-14

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) upon ligand binding leads to the release of insulin from pancreatic cells. This strictly glucose-dependent process renders the receptor and its ligands useful in the treatment of type II diabetes mellitus. To enable a biophysical characterization in vitro, we expressed the human full-length GLP-1R in the cytosol of Escherichia coli as inclusion bodies. After purification, refolding of the SDS-solubilized receptor was achieved by the exchange of SDS against the detergent Brij78 using an artificial chaperone system. Far-UV circular dichroism spectroscopic studies revealed that the receptor adopts a characteristic alpha-helical structure in Brij78 micelles. Ligand binding of the renatured protein was quantified by fluorescence quenching and surface plasmon resonance spectroscopy. In the presence of Brij micelles, the refolded receptor binds the agonist exendin-4 with an apparent dissociation constant of approximately 100 nM in a reversible one-step mechanism. To demonstrate that the detected ligand binding activity is not only due to an autonomously functional N-terminal domain (nGLP-1R) but also due to additional contacts with the juxtamembrane part, we separately expressed and refolded the extracellular domain relying on identical protocols established for the full-length GLP-1R. In support of the suggested multidomain binding mode, the nGLP-1R binds exendin-4 with a lower affinity (K(app) in the micromolar range) and a different kinetic mechanism. The lower ligand affinity of the nGLP-1R results entirely from a decreased kinetic stability of the receptor-ligand complex, dissociation of which is approximately 40-fold faster in the case of the nGLP-1R compared to the full-length GLP-1R. In summary, a framework was developed to produce functional human full-length GLP-1R by recombinant expression in E. coli as a prerequisite for eventual structure determination and a rigorous biophysical characterization

  9. Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure.

    PubMed

    Halbirk, Mads; Nørrelund, Helene; Møller, Niels; Holst, Jens Juul; Schmitz, Ole; Nielsen, Roni; Nielsen-Kudsk, Jens Erik; Nielsen, Søren Steen; Nielsen, Torsten Toftegaard; Eiskjaer, Hans; Bøtker, Hans Erik; Wiggers, Henrik

    2010-03-01

    The incretin hormone glucagon-like peptide-1 (GLP-1) and its analogs are currently emerging as antidiabetic medications. GLP-1 improves left ventricular ejection fraction (LVEF) in dogs with heart failure (HF) and in patients with acute myocardial infarction. We studied metabolic and cardiovascular effects of 48-h GLP-1 infusions in patients with congestive HF. In a randomized, double-blind crossover design, 20 patients without diabetes and with HF with ischemic heart disease, EF of 30 +/- 2%, New York Heart Association II and III (n = 14 and 6) received 48-h GLP-1 (0.7 pmol.kg(-1).min(-1)) and placebo infusion. At 0 and 48 h, LVEF, diastolic function, tissue Doppler regional myocardial function, exercise testing, noninvasive cardiac output, and brain natriuretic peptide (BNP) were measured. Blood pressure, heart rate, and metabolic parameters were recorded. Fifteen patients completed the protocol. GLP-1 increased insulin (90 +/- 17 pmol/l vs. 69 +/- 12 pmol/l; P = 0.025) and lowered glucose levels (5.2 +/- 0.1 mmol/l vs. 5.6 +/- 0.1 mmol/l; P < 0.01). Heart rate (67 +/- 2 beats/min vs. 65 +/- 2 beats/min; P = 0.016) and diastolic blood pressure (71 +/- 2 mmHg vs. 68 +/- 2 mmHg; P = 0.008) increased during GLP-1 treatment. Cardiac index (1.5 +/- 0.1 l.min(-1).m(-2) vs. 1.7 +/- 0.2 l.min(-1).m(-2); P = 0.54) and LVEF (30 +/- 2% vs. 30 +/- 2%; P = 0.93), tissue Doppler indexes, body weight, and BNP remained unchanged. Hypoglycemic events related to GLP-1 treatment were observed in eight patients. GLP-1 infusion increased circulating insulin levels and reduced plasma glucose concentration but had no major cardiovascular effects in patients without diabetes but with compensated HF. The impact of minor increases in heart rate and diastolic blood pressure during GLP-1 infusion requires further studies. Hypoglycemia was frequent and calls for caution in patients without diabetes but with HF. PMID:20081109

  10. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    SciTech Connect

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  11. Glucagon-Like Peptide-1 Induced Signaling and Insulin Secretion Do Not Drive Fuel and Energy Metabolism in Primary Rodent Pancreatic β-Cells

    PubMed Central

    Peyot, Marie-Line; Gray, Joshua P.; Lamontagne, Julien; Smith, Peter J. S.; Holz, George G.; Madiraju, S. R. Murthy

    2009-01-01

    Background Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic β-cells, in particular cAMP, Ca2+ and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors. Methodology/Prinicipal Findings GLP-1 or Ex-4 at high glucose caused release (∼20%) of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on β-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca2+]i and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered. Conclusions/Significance The results indicate that GLP-1 barely affects β-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the β-cell, and that the β-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a “push” (fuel substrate driven) process, rather than a “pull” mechanism secondary to enhanced insulin release as well as to Ca2+, cAMP and PKB signaling. PMID:19593440

  12. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling

    PubMed Central

    Dods, Rachel L.; Donnelly, Dan

    2015-01-01

    Glucagon-like peptide-1 (7–36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide–receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design. PMID:26598711

  13. Effects of prepartum fat supplementation on plasma concentrations of glucagon-like peptide-1, peptide YY, adropin, insulin, and leptin in periparturient dairy cows.

    PubMed

    Zapata, Rizaldy C; Salehi, Reza; Ambrose, Divakar J; Chelikani, Prasanth K

    2015-10-01

    Dietary fat supplementation during the periparturient period is one strategy to increase energy intake and attenuate the degree of negative energy balance during early lactation; however, little is known of the underlying hormonal and metabolic adaptations. We evaluated the effects of prepartum fat supplementation on energy-balance parameters and plasma concentrations of glucagon-like peptide-1, peptide tyrosine-tyrosine (PYY), adropin, insulin, leptin, glucose, nonesterified fatty acid, and β-hydroxybutyric acid in dairy cows. Twenty-four pregnant dairy cows were randomized to diets containing either rolled canola or sunflower seed at 8% of dry matter, or no oilseed supplementation, during the last 5 wk of gestation and then assigned to a common lactation diet postpartum. Blood samples were collected at -2, +2, and +14 h relative to feeding, at 2 wk after the initiation of the diets, and at 2 wk postpartum. Dietary canola and sunflower supplementation alone did not affect energy balance, body weight, and plasma concentrations of glucagon-like peptide-1, PYY, adropin, insulin, leptin, nonesterified fatty acid, and β-hydroxybutyric acid; however, canola decreased and sunflower tended to decrease dry matter intake. We also observed that the physiological stage had a significant, but divergent, effect on circulating hormones and metabolite concentrations. Plasma glucagon-like peptide-1, PYY, adropin, nonesterified fatty acid, and β-hydroxybutyric acid concentrations were greater postpartum than prepartum, whereas glucose, insulin, leptin, body weight, and energy balance were greater prepartum than postpartum. Furthermore, the interaction of treatment and stage was significant for leptin and adropin, and tended toward significance for PYY and insulin; only insulin exhibited an apparent postprandial increase. Postpartum PYY concentrations exhibited a strong negative correlation with body weight, suggesting that PYY may be associated with body weight regulation during

  14. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by “Silencing” Central Glucagon-Like Peptide 1 Signaling in Rats

    PubMed Central

    Maniscalco, James W.; Zheng, Huiyuan; Gordon, Patrick J.

    2015-01-01

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast “silences” GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. SIGNIFICANCE STATEMENT The results from this study reveal a potential central mechanism for the “metabolic tuning” of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats

  15. Opposite Regulation of Ghrelin and Glucagon-like Peptide-1 by Metabolite G-Protein-Coupled Receptors.

    PubMed

    Engelstoft, M S; Schwartz, T W

    2016-09-01

    Gut hormones send information about incoming nutrients to the rest of the body and thereby control many aspects of metabolism. The secretion of ghrelin and glucagon-like protein (GLP)-1, two hormones with opposite secretory patterns and opposite actions on multiple targets, is controlled by a limited number of G-protein coupled receptors (GPCRs); half of which recognize and bind dietary nutrient metabolites, metabolites generated by gut microbiota, and metabolites of the host's intermediary metabolism. Most metabolite GPCRs controlling ghrelin secretion are inhibitory, whereas all metabolite receptors controlling GLP-1 secretion are stimulatory. This dichotomy in metabolite sensor function, which is obtained through a combination of differential expression and cell-dependent signaling bias, offers pharmacological targets to stimulate GLP-1 and inhibit ghrelin through the same mechanism. PMID:27474997

  16. A Dual-Purpose Linker for Alpha Helix Stabilization and Imaging Agent Conjugation to Glucagon-Like Peptide-1 Receptor Ligands

    PubMed Central

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.

    2016-01-01

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  17. Dietary sweet potato (Ipomoea batatas L.) leaf extract attenuates hyperglycaemia by enhancing the secretion of glucagon-like peptide-1 (GLP-1).

    PubMed

    Nagamine, Rika; Ueno, Shiori; Tsubata, Masahito; Yamaguchi, Kazuya; Takagaki, Kinya; Hira, Tohru; Hara, Hiroshi; Tsuda, Takanori

    2014-09-01

    'Suioh', a sweet potato (Ipomoea batatas L.) cultivar developed in Japan, has edible leaves and stems. The sweet potato leaves contain polyphenols such as caffeoylquinic acid (CQA) derivatives. It has multiple biological functions and may help to regulate the blood glucose concentration. In this study, we first examined whether sweet potato leaf extract powder (SP) attenuated hyperglycaemia in type 2 diabetic mice. Administration of dietary SP for 5 weeks significantly lowered glycaemia in type 2 diabetic mice. Second, we conducted in vitro experiments, and found that SP and CQA derivatives significantly enhanced glucagon-like peptide-1 (GLP-1) secretion. Third, pre-administration of SP significantly stimulated GLP-1 secretion and was accompanied by enhanced insulin secretion in rats, which resulted in a reduced glycaemic response after glucose injection. These results indicate that oral SP attenuates postprandial hyperglycaemia, possibly through enhancement of GLP-1 secretion. PMID:25066255

  18. [Impact of anti-diabetic therapy based on glucagon-like peptide-1 receptor agonists on the cardiovascular risk of patients with type 2 diabetes mellitus].

    PubMed

    Camafort-Babkowski, Miguel

    2013-08-17

    Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue. PMID:23332622

  19. [Dulaglutide (Trulicity®), a new once-weekly agonist of glucagon-like peptide-1 receptors for type 2 diabetes].

    PubMed

    Scheen, A J

    2016-03-01

    Dulaglutide (Trulicity®) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors indicated in the treatment of type 2 diabetes. Phase III clinical trials in AWARD programme demonstrated the efficacy and safety of dulaglutide in patients with type 2 diabetes treated by diet and exercise, metformin, a combination of metformin and a sulfonylurea or metformin and pioglitazone or even by supplements of prandial insulin. In the AWARD programme, dulaglutide (subcutaneous 0.75 or 1.5 mg once weekly) exerted a greater glucose-lowering activity than metformin, sitagliptin, exenatide or insulin glargine, and was non-inferior to liraglutide 1.8 mg once daily. Dulaglutide is currently reimbursed in Belgium after failure of and in combination with a dual oral therapy with metformin and a sulfonylurea or metformin and pioglitazone. PMID:27311248

  20. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    SciTech Connect

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro; Nakamichi, Yoko; Nishiwaki, Chiyono; Kawakami, Hayato; Nagamatsu, Shinya

    2009-12-04

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  1. Inhibition of carbohydrate-mediated glucagon-like peptide-1 (7-36)amide secretion by circulating non-esterified fatty acids.

    PubMed

    Ranganath, L; Norris, F; Morgan, L; Wright, J; Marks, V

    1999-04-01

    Two studies were performed to assess the entero-insular axis in simple obesity and the possible effect of variations in the level of circulating non-esterified fatty acids (NEFA) on one of the components of the entero-insular axis, glucagon-like peptide-1 [(7-36) amide]. In the first study, we compared the entero-pancreatic hormone response to oral carbohydrate in obese and lean women. Obese subjects demonstrated hyperinsulinaemia and impaired glucose tolerance but this was not associated with an increased secretion of either glucose-dependent insulinotropic polypeptide or glucagon-like peptide-1 (GLP-1). These findings therefore provide no support for the hypothesis that overactivity of the entero-insular axis contributes to the hyperinsulinaemia seen in obesity. Indeed, the plasma GLP-1 response to carbohydrate was markedly attenuated in obese subjects, confirming previous observations. In the second study, in which carbohydrate-stimulated GLP-1 responses were again evaluated in obese and lean women, circulating NEFA levels were modulated using either heparin (to increase serum NEFA) or acipimox (to reduce serum NEFA). Treatment with acipimox resulted in complete suppression of NEFA levels and in a markedly higher GLP-1 response than the response to carbohydrate alone or to carbohydrate plus heparin. We suggest that higher fasting and postprandial NEFA levels in obesity may tonically inhibit nutrient-mediated GLP-1 secretion, and that this results in attenuation of the GLP-1 response to carbohydrate. However, although serum NEFA levels post-acipimox were similarly suppressed in both lean and obese subjects, the GLP-1 response was again significantly lower in obese subjects, suggesting the possibility of an intrinsic defect of GLP-1 secretion in obesity. The reduction of GLP-1 levels in obesity may be important both in relation to its insulinotropic effect and to its postulated role as a satiety factor. PMID:10087239

  2. Glucagon-like peptide 1 (GLP-1)-based therapy upregulates LXR-ABCA1/ABCG1 cascade in adipocytes.

    PubMed

    Mostafa, Ahmed M; Hamdy, Nadia M; El-Mesallamy, Hala O; Abdel-Rahman, Sherif Z

    2015-12-25

    A promising treatment for obesity involves the use of therapeutic agents that increase the level of the glucagon-like peptide (GLP-1) which reduces appetite and food intake. Native GLP-1 is rapidly metabolized by the dipeptidyl peptidase-4 (DPP-4) enzyme and, as such, GLP-1 mimetics or DPP-4 inhibitors represent promising treatment approaches. Interestingly, obese patient receiving such medications showed improved lipid profiles and cholesterol homeostasis, however the mechanism(s) involved are not known. Members of the ATP-binding cassette (ABC) transporters, including ABCA1 and ABCG1, play essential roles in reverse cholesterol transport and in high density lipoprotein (HDL) formation. These transporters are under the transcriptional regulation of liver X receptor alpha (LXR-α). We hypothesize that GLP-1 mimetics and/or DPP-4 inhibitors modulate ABCA1/ABCG1 expression in adipocytes through an LXR-α mediated process and thus affecting cholesterol homeostasis. 3T3-L1 adipocytes were treated with the DPP-4 inhibitor vildagliptin (2 nM) or the GLP-1 mimetic exendin-4 (5 nM). Gene and protein expression of ABCA1, ABCG1 and LXR-α were determined and correlated with cholesterol efflux. Expression levels of interleukin-6 (IL-6), leptin and the glucose transporter-4 (GLUT-4) were also determined. Treatment with both medications significantly increased the expression of ABCA1, ABCG1, LXR-α and GLUT-4, decreased IL-6 and leptin, and improved cholesterol efflux from adipocytes (P < 0.05). Our data suggest that GLP-1-based therapy modulate ABCA1/ABCG1 expression in adipocytes potentially through an LXR-α mediated process. PMID:26603933

  3. Influence of Selective Fluorination on the Biological Activity and Proteolytic Stability of Glucagon-like Peptide-1

    PubMed Central

    Meng, He; Krishnaji, Subrahmanian Tarakkad; Beinborn, Martin; Kumar, Krishna

    2009-01-01

    The relative simplicity and high specificity of peptide therapeutics has fueled recent interest. However, peptide and protein drugs generally require injection and suffer from low metabolic stability. We report here the design, synthesis and characterization of fluorinated analogues of the gut hormone peptide, GLP-1. Overall, fluorinated GLP-1 analogues displayed higher proteolytic stability with simultaneous retention of biological activity (efficacy). Fluorinated amino acids are useful for engineering peptide drug candidates and probing ligand-receptor interactions. PMID:18950150

  4. Differential effects of glucagon-like peptide-1 on microvascular recruitment and glucose metabolism in short- and long-term insulin resistance

    PubMed Central

    Sjøberg, Kim A; Rattigan, Stephen; Jeppesen, Jacob F; Lundsgaard, Anne-Marie; Holst, Jens J; Kiens, Bente

    2015-01-01

    Abstract Acute infusion of glucagon-like peptide-1 (GLP-1) has potent effects on blood flow distribution through the microcirculation in healthy humans and rats. A high fat diet induces impairments in insulin-mediated microvascular recruitment (MVR) and muscle glucose uptake, and here we examined whether this could be reversed by GLP-1. Using contrast-enhanced ultrasound, microvascular recruitment was assessed by continuous real-time imaging of gas-filled microbubbles in the microcirculation after acute (5 days) and prolonged (8 weeks) high fat diet (HF)-induced insulin resistance in rats. A euglycaemic hyperinsulinaemic clamp (3 mU min−1 kg−1), with or without a co-infusion of GLP-1 (100 pmol l−1), was performed in anaesthetized rats. Consumption of HF attenuated the insulin-mediated MVR in both 5 day and 8 week HF interventions which was associated with a 50% reduction in insulin-mediated glucose uptake compared to controls. Acute administration of GLP-1 restored the normal microvascular response by increasing the MVR after both 5 days and 8 weeks of HF intervention (P < 0.05). This effect of GLP-1 was associated with a restoration of both whole body insulin sensitivity and increased insulin-mediated glucose uptake in skeletal muscle by 90% (P < 0.05) after 5 days of HF but not after 8 weeks of HF. The present study demonstrates that GLP-1 increases MVR in rat skeletal muscle and can reverse early stages of high fat diet-induced insulin resistance in vivo. Key points Acute glucagon-like peptide-1 (GLP-1) infusion reversed the high fat diet-induced microvascular insulin resistance that occurred after both 5 days and 8 weeks of a high fat diet intervention. When GLP-1 was co-infused with insulin it had overt effects on whole body insulin sensitivity as well as insulin-mediated skeletal muscle glucose uptake after 5 days of a high fat diet, but not after 8 weeks of high fat diet intervention. Acute GLP-1 infusion did not have an additive

  5. Evaluating preferences for profiles of glucagon-like peptide-1 receptor agonists among injection-naive type 2 diabetes patients in Japan

    PubMed Central

    Gelhorn, Heather L; Bacci, Elizabeth D; Poon, Jiat Ling; Boye, Kristina S; Suzuki, Shuichi; Babineaux, Steven M

    2016-01-01

    Objective The objective of this study was to use a discrete choice experiment (DCE) to estimate patients’ preferences for the treatment features, safety, and efficacy of two specific glucagon-like peptide-1 receptor agonists, dulaglutide and liraglutide, among patients with type 2 diabetes mellitus (T2DM) in Japan. Methods In Japan, patients with self-reported T2DM and naive to treatment with self-injectable medications were administered a DCE through an in-person interview. The DCE examined the following six attributes of T2DM treatment, each described by two levels: “dosing frequency”, “hemoglobin A1c change”, “weight change”, “type of delivery system”, “frequency of nausea”, and “frequency of hypoglycemia”. Part-worth utilities were estimated using logit models and were used to calculate the relative importance (RI) of each attribute. A chi-square test was used to determine the differences in preferences for the dulaglutide versus liraglutide profiles. Results The final evaluable sample consisted of 182 participants (mean age: 58.9 [standard deviation =10.0] years; 64.3% male; mean body mass index: 26.1 [standard deviation =5.0] kg/m2). The RI values for the attributes in rank order were dosing frequency (44.1%), type of delivery system (26.3%), frequency of nausea (15.1%), frequency of hypoglycemia (7.4%), weight change (6.2%), and hemoglobin A1c change (1.0%). Significantly more participants preferred the dulaglutide profile (94.5%) compared to the liraglutide profile (5.5%; P<0.0001). Conclusion This study elicited the preferences of Japanese T2DM patients for attributes and levels representing the actual characteristics of two existing glucagon-like peptide-1 receptor agonists. In this comparison, dosing frequency and type of delivery system were the two most important characteristics, accounting for >70% of the RI. These findings are similar to those of a previous UK study, providing information about patients’ preferences that

  6. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice

    PubMed Central

    Kim, Ki-Suk; Jung Yang, Hea; Lee, In-Seung; Kim, Kang-Hoon; Park, Jiyoung; Jeong, Hyeon-Soo; Kim, Yoomi; Seok Ahn, Kwang; Na, Yun-Cheol; Jang, Hyeung-Jin

    2015-01-01

    Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides stimulate GLP-1 secretion according to the position of their sugar moieties. Through a pharmacological approach and RNA interference technique to inhibit the cellular signal cascade and using the Gαgust−/− mice, we elucidated that GLP-1 secreting effect of Rg3 mediated by the sweet taste receptor mediated the signaling pathway. Rg3, a ginsenoside metabolite that transformed the structure through a steaming process, showed the strongest GLP-1 secreting effects in NCI-H716 cells and also showed an anti-hyperglycemic effect on a type 2 diabetic mouse model through increased plasma GLP-1 and plasma insulin levels during an oral glucose tolerance test. Our study reveals a novel mechanism where the sugar moieties of ginsenosides Rg3 stimulates GLP-1 secretion in enteroendocrine L cells through a sweet taste receptor-mediated signal transduction pathway and thus has an anti-hyperglycemic effect on the type 2 diabetic mouse model. PMID:26675132

  7. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency.

    PubMed

    Mokadem, Mohamad; Zechner, Juliet F; Margolskee, Robert F; Drucker, Daniel J; Aguirre, Vincent

    2014-04-01

    Glucagon-like peptide-1 (GLP-1) secretion is greatly enhanced after Roux-en-Y gastric bypass (RYGB). While intact GLP-1exerts its metabolic effects via the classical GLP-1 receptor (GLP-1R), proteolytic processing of circulating GLP-1 yields metabolites such as GLP-1(9-36)amide/GLP-1(28-36)amide, that exert similar effects independent of the classical GLP-1R. We investigated the hypothesis that GLP-1, acting via these metabolites or through its known receptor, is required for the beneficial effects of RYGB using two models of functional GLP-1 deficiency - α-gustducin-deficient (α-Gust (-/-)) mice, which exhibit attenuated nutrient-stimulated GLP-1 secretion, and GLP-1R-deficient mice. We show that the effect of RYGB to enhance glucose-stimulated GLP-1 secretion was greatly attenuated in α-Gust (-/-) mice. In both genetic models, RYGB reduced body weight and improved glucose homeostasis to levels observed in lean control mice. Therefore, GLP-1, acting through its classical GLP-1R or its bioactive metabolites, does not seem to be involved in the effects of RYGB on body weight and glucose homeostasis. PMID:24634822

  8. Glucagon-Like Peptide-1 Protects Against Cardiac Microvascular Injury in Diabetes via a cAMP/PKA/Rho-Dependent Mechanism

    PubMed Central

    Wang, Dongjuan; Luo, Peng; Wang, Yabin; Li, Weijie; Wang, Chen; Sun, Dongdong; Zhang, Rongqing; Su, Tao; Ma, Xiaowei; Zeng, Chao; Wang, Haichang; Ren, Jun; Cao, Feng

    2013-01-01

    Impaired cardiac microvascular function contributes to cardiovascular complications in diabetes. Glucagon-like peptide-1 (GLP-1) exhibits potential cardioprotective properties in addition to its glucose-lowering effect. This study was designed to evaluate the impact of GLP-1 on cardiac microvascular injury in diabetes and the underlying mechanism involved. Experimental diabetes was induced using streptozotocin in rats. Cohorts of diabetic rats received a 12-week treatment of vildagliptin (dipeptidyl peptidase-4 inhibitor) or exenatide (GLP-1 analog). Experimental diabetes attenuated cardiac function, glucose uptake, and microvascular barrier function, which were significantly improved by vildagliptin or exenatide treatment. Cardiac microvascular endothelial cells (CMECs) were isolated and cultured in normal or high glucose medium with or without GLP-1. GLP-1 decreased high-glucose–induced reactive oxygen species production and apoptotic index, as well as the levels of NADPH oxidase such as p47phox and gp91phox. Furthermore, cAMP/PKA (cAMP-dependent protein kinase activity) was increased and Rho-expression was decreased in high-glucose–induced CMECs after GLP-1 treatment. In conclusion, GLP-1 could protect the cardiac microvessels against oxidative stress, apoptosis, and the resultant microvascular barrier dysfunction in diabetes, which may contribute to the improvement of cardiac function and cardiac glucose metabolism in diabetes. The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-mediated pathway. PMID:23364453

  9. Site of action of a pentapeptide agonist at the glucagon-like peptide-1 receptor. Insight into a small molecule agonist-binding pocket

    PubMed Central

    Dong, Maoqing; Pinon, Delia I.; Miller, Laurence J.

    2011-01-01

    The development of small molecule agonists for class B G protein-coupled receptors (GPCRs) has been quite challenging. With proof-of-concept that exenatide, the parenterally administered peptide agonist of the glucagon-like peptide-1 (GLP1) receptor, is an effective treatment for patients with diabetes mellitus, the development of small molecule agonists could have substantial advantages. We previously reported a lead for small molecule GLP1 receptor agonist development representing the pentapeptide NRTFD. In this work, we have prepared an NRTFD derivative incorporating a photolabile benzoylphenylalanine and used it to define its site of action. This peptide probe was a full agonist with potency similar to NRTFD, which bound specifically and saturably to a single, distinct site within the GLP1 receptor. Peptide mapping using cyanogen bromide and endoproteinase Lys-C cleavage of labeled wild type and M397L mutant receptor constructs identified the site of covalent attachment of NRTFD within the third extracellular loop above the sixth transmembrane segment. This region is the same as that identified using an analogous photolabile probe based on secretin receptor sequences, and has been shown in mutagenesis studies to be important for natural agonist action of several members of this family. While these observations suggest that small molecule ligands can act at a site bordering the third extracellular loop to activate this class B GPCR, the relationship of this site to the site of action of the amino-terminal end of the natural agonist peptide is unclear. PMID:22079758

  10. Chronic elevation of systemic glucagon-like peptide-1 following surgical weight loss: association with nausea and vomiting and effects on adipokines.

    PubMed

    Al-Rasheid, Noora; Gray, Rosaire; Sufi, Pratik; Marina-Gonzalez, Nephtali; Al-Sayrafi, Mohammed; Atherton, Elizabeth; Mohamed-Ali, Vidya

    2015-02-01

    We determined whether persistent nausea and vomiting (N/V) symptoms following Roux-en-Y gastric bypass surgery is due to elevated systemic glucagon-like peptide-1 (GLP-1) and leptin in female non-diabetic subjects. Subjects with N/V post-Roux-en-Y gastric bypass (RYGB) surgery had significantly elevated fasting GLP-1 levels compared to that with post-operative asymptomatic subjects and to morbidly obese, obese and lean subjects not undergoing surgery. Weight loss, glycaemia, insulin and post-prandial GLP-1 levels were similar in all post-operative subjects. Despite comparable BMI, leptin was significantly lower in symptomatic subjects. Furthermore, leptin secretion from subcutaneous adipose tissue was inhibited by GLP-1 (0.1-1.0 nM; n = 6). Persistent N/V following RYGB surgery is associated with elevated fasting GLP-1, but lower leptin levels. The latter may be a consequence of the direct GLP-1 inhibition of leptin secretion from adipose tissue. PMID:25411121

  11. Glucagon-like peptide-1 does not have acute effects on central or renal hemodynamics in patients with type 2 diabetes without nephropathy.

    PubMed

    Asmar, Ali; Simonsen, Lene; Asmar, Meena; Madsbad, Sten; Holst, Jens J; Frandsen, Erik; Moro, Cedric; Sorensen, Charlotte M; Jonassen, Thomas; Bülow, Jens

    2016-05-01

    During acute administration of native glucagon-like peptide-1 (GLP-1), we previously demonstrated central hemodynamic effects in healthy males, whereas renal hemodynamics, despite renal uptake of GLP-1 in excess of glomerular filtration, was unaffected. In the present study, we studied hemodynamic effects of GLP-1 in patients with type 2 diabetes under fixed sodium intake. During a 3-h infusion of GLP-1 (1.5 pmol·kg(-1)·min(-1)) or saline, intra-arterial blood pressure and heart rate were measured continuously, concomitantly with cardiac output estimated by pulse contour analysis. Renal plasma flow, glomerular filtration rate, and uptake/release of hormones and ions were measured using Fick's Principle after catheterization of a renal vein. Urine collection was conducted throughout the experiments at voluntary voiding, and patients remained supine during the experiments. During the GLP-1 infusion, systolic and diastolic blood pressure and cardiac output remained unchanged, whereas heart rate increased significantly. Arterio-venous gradients for GLP-1 exceeded glomerular filtrations significantly, but renal plasma flow and glomerular filtration rate as well as renal sodium and lithium excretion were not affected. In conclusion, acute administration of GLP-1 in patients with type 2 diabetes leads to a positive chronotropic effect, but in contrast to healthy individuals, cardiac output does not increase in patients with type 2 diabetes. Renal hemodynamics and sodium excretion are not affected. PMID:26956188

  12. Application of Adaptive Design Methodology in Development of a Long-Acting Glucagon-Like Peptide-1 Analog (Dulaglutide): Statistical Design and Simulations

    PubMed Central

    Skrivanek, Zachary; Berry, Scott; Berry, Don; Chien, Jenny; Geiger, Mary Jane; Anderson, James H.; Gaydos, Brenda

    2012-01-01

    Background Dulaglutide (dula, LY2189265), a long-acting glucagon-like peptide-1 analog, is being developed to treat type 2 diabetes mellitus. Methods To foster the development of dula, we designed a two-stage adaptive, dose-finding, inferentially seamless phase 2/3 study. The Bayesian theoretical framework is used to adaptively randomize patients in stage 1 to 7 dula doses and, at the decision point, to either stop for futility or to select up to 2 dula doses for stage 2. After dose selection, patients continue to be randomized to the selected dula doses or comparator arms. Data from patients assigned the selected doses will be pooled across both stages and analyzed with an analysis of covariance model, using baseline hemoglobin A1c and country as covariates. The operating characteristics of the trial were assessed by extensive simulation studies. Results Simulations demonstrated that the adaptive design would identify the correct doses 88% of the time, compared to as low as 6% for a fixed-dose design (the latter value based on frequentist decision rules analogous to the Bayesian decision rules for adaptive design). Conclusions This article discusses the decision rules used to select the dula dose(s); the mathematical details of the adaptive algorithm—including a description of the clinical utility index used to mathematically quantify the desirability of a dose based on safety and efficacy measurements; and a description of the simulation process and results that quantify the operating characteristics of the design. PMID:23294775

  13. Nesfatin-1 stimulates glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide secretion from STC-1 cells in vitro.

    PubMed

    Ramesh, Naresh; Mortazavi, Sima; Unniappan, Suraj

    2015-06-26

    Nesfatin-1 is an 82 amino acid peptide encoded in a secreted precursor, nucleobindin 2. It is an anorexigenic and insulinotropic peptide found abundantly in the hypothalamus, pancreas and gastric oxyntic mucosa. NUCB2 mRNA expression is 10 fold higher in the gastric mucosa than in brain, suggesting gastrointestinal tract as a main source of nesfatin-1. Meal responsive insulin secretion is regulated by incretins glucagon-like peptide-1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP). Since both nesfatin-1 and incretins modulate insulin secretion, we hypothesized that nesfatin-1 is present in the enteroendocrine cells, and that it regulates incretin secretion. RT-PCR analysis found NUCB2 mRNA expression, and immunofluorescence microscopy determined nesfatin-1 immunoreactivity in STC-1, an enteroendocrine cell line. NUCB2/nesfatin-1 is co-localized with GLP-1 and GIP in mouse small intestinal cells. Static incubation of STC-1 cells with nesfatin-1 upregulated preproglucagon (GLP-1 precursor) mRNA (0.01, 0.1, 1 and 10 nM) and GLP-1 secretion (0.1, 1 and 10 nM). Nesfatin-1 also enhanced GIP mRNA (0.1, 1 and 10 nM) and GIP secretion (1 and 10 nM). Together, our data support the hypothesis that nesfatin-1 is present in enteroendocrine cells and that it stimulates incretin secretion. Future studies should aim for nesfatin-1 and incretin interactions in vivo. PMID:25930999

  14. Glucagon-Like Peptide-1 Strengthens the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells Under Basal and Hyperglycemia Conditions.

    PubMed

    Fukuda, Shuji; Nakagawa, Shinsuke; Tatsumi, Rie; Morofuji, Yoichi; Takeshita, Tomonori; Hayashi, Kentaro; Tanaka, Kunihiko; Matsuo, Takayuki; Niwa, Masami

    2016-06-01

    The objective of the present study was to determine the effects of glucagon-like peptide-1 (GLP-1) on barrier functions and to assess the underlying mechanism using an in vitro blood-brain barrier (BBB) model comprised of a primary culture of rat brain capillary endothelial cells (RBECs). GLP-1 increased transendothelial electrical resistance and decreased the permeability of sodium fluorescein in RBECs in a dose- and time-dependent manner. The effects on these barrier functions were significantly reduced in the presence of the GLP-1 receptor antagonist exendin-3 (9-39) and the protein kinase A (PKA) inhibitor H-89. Western blot analysis showed that GLP-1 increased the amount of occludin and claudin-5. GLP-1 analogs are approved for treatment of type 2 diabetes mellitus, and thus, we examined the effects of GLP-1 on hyperglycemia-induced BBB damage. GLP-1 inhibited the increase in production of reactive oxygen species under hyperglycemia conditions and improved the BBB integrity induced by hyperglycemia. As GLP-1 stabilized the integrity of the BBB, probably via cAMP/PKA signaling, the possibility that GLP-1 acts as a BBB-protective drug should be considered. PMID:26659380

  15. Low incidence of anti-drug antibodies in patients with type 2 diabetes treated with once-weekly glucagon-like peptide-1 receptor agonist dulaglutide.

    PubMed

    Milicevic, Z; Anglin, G; Harper, K; Konrad, R J; Skrivanek, Z; Glaesner, W; Karanikas, C A; Mace, K

    2016-05-01

    Therapeutic administration of peptides may result in anti-drug antibody (ADA) formation, hypersensitivity adverse events (AEs) and reduced efficacy. As a large peptide, the immunogenicity of once-weekly glucagon-like peptide-1 (GLP-1) receptor agonist dulaglutide is of considerable interest. The present study assessed the incidence of treatment-emergent dulaglutide ADAs, hypersensitivity AEs, injection site reactions (ISRs), and glycaemic control in ADA-positive patients in nine phase II and phase III trials (dulaglutide, N = 4006; exenatide, N = 276; non-GLP-1 comparators, N = 1141). Treatment-emergent dulaglutide ADAs were detected using a solid-phase extraction acid dissociation binding assay. Neutralizing ADAs were detected using a cell-based assay derived from human endothelial kidney cells (HEK293). A total of 64 dulaglutide-treated patients (1.6% of the population) tested ADA-positive versus eight (0.7%) from the non-GLP-1 comparator group. Of these 64 patients, 34 (0.9%) had dulaglutide-neutralizing ADAs, 36 (0.9%) had native-sequence GLP-1 (nsGLP-1) cross-reactive ADAs and four (0.1%) had nsGLP-1 neutralization ADAs. The incidence of hypersensitivity AEs and ISRs was similar in the dulaglutide versus placebo groups. No dulaglutide ADA-positive patient reported hypersensitivity AEs. Because of the low incidence of ADAs, it was not possible to establish their effect on glycaemic control. PMID:26847401

  16. Presence and characterization of glucagon-like peptide-1(7-36) amide receptors in solubilized membranes of rat adipose tissue.

    PubMed

    Valverde, I; Mérida, E; Delgado, E; Trapote, M A; Villanueva-Peñacarrillo, M L

    1993-01-01

    Specific binding of [125I]glucagon-like peptide-1(7-36)amide ([125I]GLP-1(7-36)amide) to solubilized rat adipose tissue membranes was found to be dependent on temperature, time, and membrane protein concentration and readily dissociated. GLP-1(1-36)amide, GLP-2, or glucagon (10(-6) M) did not compete with [125I]GLP-1(7-36)amide binding. Half-maximal binding was achieved with 8 x 10(-10) M unlabeled GLP-1(7-36)amide, and the Scatchard plot revealed the presence of high and low affinity binding sites with Kd values of approximately 0.6 and 20 nM, respectively. The binding capacity of [125I]GLP-1(7-36)amide was about 3 times higher than that of [125I]glucagon, while the high affinity Kd and the half-maximal binding of the two peptides were similar. The presence and abundance of GLP-1(7-36)amide receptors in fat tissue together with the previous findings that the peptide stimulates glycerol and cAMP production in rat adipocytes and stimulates fatty acid synthesis in explants of rat adipose tissue open the possibility that this insulinotropic intestinal peptide may also be involved in the regulation of lipid metabolism in health and disease. PMID:8380388

  17. Inositolphosphoglycans possibly mediate the effects of glucagon-like peptide-1(7-36)amide on rat liver and adipose tissue.

    PubMed

    Márquez, L; Trapote, M A; Luque, M A; Valverde, I; Villanueva-Peñacarrillo, M L

    1998-03-01

    Insulin-like effects of glucagon-like peptide-1(7-36)amide (GLP-1) in rat liver, skeletal muscle and fat, and also the presence of GLP-1 receptors in these extrapancreatic tissues, have been documented. In skeletal muscle and liver, the action of GLP-1 is not associated with an activation of adenylate cyclase, and in cultured murine myocytes and hepatoma cell lines, it was found that GLP-1 provokes the generation of inositolphosphoglycan molecules (IPGs), which are considered second messengers of insulin action. In the present work, we document in isolated normal rat adipocytes and hepatocytes that GLP-1 exerts a rapid decrease of the radiolabelled glycosylphosphatidylinositols (GPIs)--precursors of IPGs--in the same manner as insulin, indicating their hydrolysis and the immediate short-lived generation of IPGs. Thus, IPGs could be mediators in the GLP-1 actions in adipose tissue and liver, as well as in skeletal muscle, through GLP-1 receptors which are, at least functionally, different from that of the pancreatic B-cell. PMID:9580153

  18. Glucagon-like Peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed.

    PubMed

    Alhadeff, Amber L; Baird, John-Paul; Swick, Jennifer C; Hayes, Matthew R; Grill, Harvey J

    2014-08-01

    Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward. PMID:24681814

  19. Glucagon-Like Peptide-1 Receptor Signaling in the Lateral Parabrachial Nucleus Contributes to the Control of Food Intake and Motivation to Feed

    PubMed Central

    Alhadeff, Amber L; Baird, John-Paul; Swick, Jennifer C; Hayes, Matthew R; Grill, Harvey J

    2014-01-01

    Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward. PMID:24681814

  20. Preservation of the Blood Brain Barrier and Cortical Neuronal Tissue by Liraglutide, a Long Acting Glucagon-Like-1 Analogue, after Experimental Traumatic Brain Injury

    PubMed Central

    Hakon, Jakob; Ruscher, Karsten; Tomasevic, Gregor

    2015-01-01

    Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI), and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1) has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI) or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 μg/kg) significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI. PMID:25822252

  1. Glucagon-Like Peptide 1 Protects against Hyperglycemic-Induced Endothelial-to-Mesenchymal Transition and Improves Myocardial Dysfunction by Suppressing Poly(ADP-Ribose) Polymerase 1 Activity

    PubMed Central

    Yan, Fei; Zhang, Guang-hao; Feng, Min; Zhang, Wei; Zhang, Jia-ning; Dong, Wen-qian; Zhang, Cheng; Zhang, Yun; Chen, Li; Zhang, Ming-Xiang

    2015-01-01

    Under high glucose conditions, endothelial cells respond by acquiring fibroblast characteristics, that is, endothelial-to-mesenchymal transition (EndMT), contributing to diabetic cardiac fibrosis. Glucagon-like peptide-1 (GLP-1) has cardioprotective properties independent of its glucose-lowering effect. However, the potential mechanism has not been fully clarified. Here we investigated whether GLP-1 inhibits myocardial EndMT in diabetic mice and whether this is mediated by suppressing poly(ADP-ribose) polymerase 1 (PARP-1). Streptozotocin diabetic C57BL/6 mice were treated with or without GLP-1 analog (24 nmol/kg daily) for 24 wks. Transthoracic echocardiography was performed to assess cardiac function. Human aortic endothelial cells (HAECs) were cultured in normal glucose (NG) (5.5 mmol/L) or high glucose (HG) (30 mmol/L) medium with or without GLP-1analog. Immunofluorescent staining and Western blot were performed to evaluate EndMT and PARP-1 activity. Diabetes mellitus attenuated cardiac function and increased cardiac fibrosis. Treatment with the GLP-1 analog improved diabetes mellitus–related cardiac dysfunction and cardiac fibrosis. Immunofluorescence staining revealed that hyperglycemia markedly increased the percentage of von Willebrand factor (vWF)+/alpha smooth muscle actin (α-SMA)+ cells in total α-SMA+ cells in diabetic hearts compared with controls, which was attenuated by GLP-1 analog treatment. In cultured HAECs, immunofluorescent staining and Western blot also showed that both GLP-1 analog and PARP-1 gene silencing could inhibit the HG-induced EndMT. In addition, GLP-1 analog could attenuate PARP-1 activation by decreasing the level of reactive oxygen species (ROS). Therefore, GLP-1 treatment could protect against the hyperglycemia-induced EndMT and myocardial dysfunction. This effect is mediated, at least partially, by suppressing PARP-1 activation. PMID:25715248

  2. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD. PMID:27233809

  3. Establishment of a Refined Oral Glucose Tolerance Test in Pigs, and Assessment of Insulin, Glucagon and Glucagon-Like Peptide-1 Responses

    PubMed Central

    Manell, Elin; Hedenqvist, Patricia; Svensson, Anna; Jensen-Waern, Marianne

    2016-01-01

    Diabetes mellitus is increasing worldwide and reliable animal models are important for progression of the research field. The pig is a commonly used large animal model in diabetes research and the present study aimed to refine a model for oral glucose tolerance test (OGTT) in young growing pigs, as well as describing intravenous glucose tolerance test (IVGTT) in the same age group. The refined porcine OGTT will reflect that used in children and adolescents. Eighteen pigs were obtained one week after weaning and trained for two weeks to bottle-feed glucose solution, mimicking the human OGTT. The pigs subsequently underwent OGTT (1.75 g/kg BW) and IVGTT (0.5 g/kg BW). Blood samples were collected from indwelling vein catheters for measurements of glucose and the diabetes related hormones insulin, glucagon and active glucagon-like peptide-1. The study confirmed that pigs can be trained to bottle-feed glucose dissolved in water and thereby undergo an OGTT more similar to the human standard OGTT than previously described methods in pigs. With the refined method for OGTT, oral intake only consists of glucose and water, which is an advantage over previously described methods in pigs where glucose is given together with feed which will affect glucose absorption. Patterns of hormonal secretion in response to oral and intravenous glucose were similar to those in humans; however, the pigs were more glucose tolerant with lower insulin levels than humans. In translational medicine, this refined OGTT and IVGTT methods provide important tools in diabetes research when pigs are used as models for children and adolescents in diabetes research. PMID:26859145

  4. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  5. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Nauck, M

    2016-03-01

    Over the last few years, incretin-based therapies have emerged as important agents in the treatment of type 2 diabetes (T2D). These agents exert their effect via the incretin system, specifically targeting the receptor for the incretin hormone glucagon-like peptide 1 (GLP-1), which is partly responsible for augmenting glucose-dependent insulin secretion in response to nutrient intake (the 'incretin effect'). In patients with T2D, pharmacological doses/concentrations of GLP-1 can compensate for the inability of diabetic β cells to respond to the main incretin hormone glucose-dependent insulinotropic polypeptide, and this is therefore a suitable parent compound for incretin-based glucose-lowering medications. Two classes of incretin-based therapies are available: GLP-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1RAs promote GLP-1 receptor (GLP-1R) signalling by providing GLP-1R stimulation through 'incretin mimetics' circulating at pharmacological concentrations, whereas DPP-4 inhibitors prevent the degradation of endogenously released GLP-1. Both agents produce reductions in plasma glucose and, as a result of their glucose-dependent mode of action, this is associated with low rates of hypoglycaemia; however, there are distinct modes of action resulting in differing efficacy and tolerability profiles. Furthermore, as their actions are not restricted to stimulating insulin secretion, these agents have also been associated with additional non-glycaemic benefits such as weight loss, improvements in β-cell function and cardiovascular risk markers. These attributes have made incretin therapies attractive treatments for the management of T2D and have presented physicians with an opportunity to tailor treatment plans. This review endeavours to outline the commonalities and differences among incretin-based therapies and to provide guidance regarding agents most suitable for treating T2D in individual patients. PMID:26489970

  6. Self-Assembling Glucagon-Like Peptide 1-Mimetic Peptide Amphiphiles for Enhanced Activity and Proliferation of Insulin-Secreting Cells

    PubMed Central

    Khan, Saahir; Sur, Shantanu; Newcomb, Christina J.; Appelt, Elizabeth A.

    2012-01-01

    Current treatment for type 1 diabetes mellitus requires daily insulin injections that fail to produce physiological glycemic control. Islet cell transplantation has been proposed as a permanent cure but is limited by loss of β-cell viability and function. These limitations could potentially be overcome by relying on the activity of glucagon-like peptide 1 (GLP-1), which acts on β-cells to promote insulin release, proliferation, and survival. We have developed a peptide amphiphile (PA) molecule incorporating a peptide mimetic for GLP-1. This GLP-1-mimetic PA self-assembles into one-dimensional nanofibers that stabilize the active secondary structure of GLP-1 and can be cross-linked by calcium ions to form a macroscopic gel capable of cell encapsulation and 3-dimensional culture. The GLP-1-mimetic PA nanofibers were found to stimulate insulin secretion from rat insulinoma (RINm5f) cells to a significantly greater extent than the mimetic peptide alone and to a level equivalent to that of the clinically used agonist exendin-4. The activity of the GLP-1-mimetic PA is glucose-dependent, lipid-raft dependent, and partially PKA-dependent consistent with native GLP-1. The GLP-1-mimetic PA also completely abrogates inflammatory cytokine-induced cell death to the level of untreated controls. When used as a PA gel to encapsulate RINm5f cells, the GLP-1-mimetic PA stimulates insulin secretion and proliferation in a cytokine-resistant manner that is significantly greater than a non-bioactive PA gel containing exendin-4. Due to its self-assembling property and bioactivity, the GLP-1-mimetic PA can be incorporated into previously developed islet cell transplantation protocols with the potential for significant enhancement of β-cell viability and function. PMID:22342354

  7. The Anthocyanin Delphinidin 3-Rutinoside Stimulates Glucagon-Like Peptide-1 Secretion in Murine GLUTag Cell Line via the Ca2+/Calmodulin-Dependent Kinase II Pathway

    PubMed Central

    Kato, Masaki; Tani, Tsubasa; Terahara, Norihiko; Tsuda, Takanori

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from enteroendocrine L-cells. Although several nutrients induce GLP-1 secretion, there is little evidence to suggest that non-nutritive compounds directly increase GLP-1 secretion. Here, we hypothesized that anthocyanins induce GLP-1 secretion and thereby significantly contribute to the prevention and treatment of diabetes. Delphinidin 3-rutinoside (D3R) was shown to increase GLP-1 secretion in GLUTag L cells. The results suggested that three hydroxyl or two methoxyl moieties on the aromatic ring are essential for the stimulation of GLP-1 secretion. Notably, the rutinose moiety was shown to be a potent enhancer of GLP-1 secretion, but only in conjunction with three hydroxyl moieties on the aromatic ring (D3R). Receptor antagonist studies revealed that D3R-stimulates GLP-1 secretion involving inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca2+ mobilization. Treatment of GLUTag cells with a Ca2+/calmodulin-dependent kinaseII (CaMKII) inhibitor (KN-93) abolished D3R-stimulated GLP-1 secretion. In addition, treatment of GLUTag cells with D3R resulted in activation of CaMKII. Pre-treatment of cells with a G protein-coupled receptor (GPR) 40/120 antagonist (GW1100) also significantly decreased D3R-stimulated GLP-1 secretion. These observations suggest that D3R stimulates GLP-1 secretion in GLUTag cells, and that stimulation of GLP-1 secretion by D3R is mediated via Ca2+-CaMKII pathway, which may possibly be mediated by GPR40/120. These findings provide a possible molecular mechanism of GLP-1 secretion in intestinal L-cells mediated by foods or drugs and demonstrate a novel biological function of anthocyanins in regards to GLP-1 secretion. PMID:25962102

  8. Split Ssp DnaB mini-intein-mediated production of recombinant human glucagon-like peptide-1/7-36.

    PubMed

    Jiang, Aiqin; Jin, Wenbo; Zhao, Feng; Tang, Yanchun; Sun, Ziyong; Liu, Jian-Ning

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) plays an important role in the regulation of postprandial insulin release. Here, we used the split DnaB mini-intein system to produce recombinant human GLP-1/7-36 (rhGLP-1) in Escherichia coli. The C-terminal domain of DnaB mini-intein (IntC) was genetically fused at the N-terminus of rhGLP-1 to produce IntC-GLP-1. IntC-GLP-1 and N-terminal domain of DnaB mini-intein (IntN) protein were prepared in a denatured buffer of pH 8.0. IntC-GLP-1 was diluted 1:8 into the phosphate buffer of pH 6.6. IntN was added into the diluted solution of IntC-GLP-1 at the molar ratio of 1:2. Then, rhGLP-1 was released from IntC-GLP-1 via inducible C-terminal peptide-bond cleavage by shifting pH from 8.0 to 6.6 at 25 °C for 24-H incubation. Then, the supernatant was applied to a Ni-Sepharose column, and the pass through fraction was collected. About 5.34 mg of rhGLP-1 with the purity of 97% was obtained from 1 L of culture medium. Mass spectrometry showed the molecular weight of 3,300.45 Da, which was equal to the theoretical value of GLP-1/7-36. The glucose-lowering activity of rhGLP-1 was confirmed by the glucose tolerance test in mice. In conclusion, the reported method was an efficient strategy to produce rhGLP-1 without using enzyme or chemical reagents, which could also be used for other similar peptides. PMID:25066911

  9. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  10. Hindbrain glucagon-like peptide-1 neurons track intake volume and contribute to injection stress-induced hypophagia in meal-entrained rats.

    PubMed

    Kreisler, Alison D; Rinaman, Linda

    2016-05-15

    Published research supports a role for central glucagon-like peptide 1 (GLP-1) signaling in suppressing food intake in rodent species. However, it is unclear whether GLP-1 neurons track food intake and contribute to satiety, and/or whether GLP-1 signaling contributes to stress-induced hypophagia. To examine whether GLP-1 neurons track intake volume, rats were trained to consume liquid diet (LD) for 1 h daily until baseline intake stabilized. On test day, schedule-fed rats consumed unrestricted or limited volumes of LD or unrestricted volumes of diluted (calorically matched to LD) or undiluted Ensure. Rats were perfused after the test meal, and brains processed for immunolocalization of cFos and GLP-1. The large majority of GLP-1 neurons expressed cFos in rats that consumed satiating volumes, regardless of diet type, with GLP-1 activation proportional to intake volume. Since GLP-1 signaling may limit intake only when such large proportions of GLP-1 neurons are activated, a second experiment examined the effect of central GLP-1 receptor (R) antagonism on 2 h intake in schedule-fed rats. Compared with baseline, intracerebroventricular vehicle (saline) suppressed Ensure intake by ∼11%. Conversely, intracerebroventricular injection of vehicle containing GLP-1R antagonist increased intake by ∼14% compared with baseline, partly due to larger second meals. We conclude that GLP-1 neural activation effectively tracks liquid diet intake, that intracerebroventricular injection suppresses intake, and that central GLP-1 signaling contributes to this hypophagic effect. GLP-1 signaling also may contribute to satiety after large volumes have been consumed, but this potential role is difficult to separate from a role in the hypophagic response to intracerebroventricular injection. PMID:26936779

  11. Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial.

    PubMed

    Ramsey, Timothy L; Brennan, Mark D

    2014-12-01

    Glucagon-like peptide 1 receptor (GLP1R) signaling has been shown to have antipsychotic properties in animal models and to impact glucose-dependent insulin release, satiety, memory, and learning in man. Previous work has shown that two coding mutations (rs6923761 and rs1042044) are associated with altered insulin release and cortisol levels. We identified four frequently occurring haplotypes in Caucasians, haplotype 1 through haplotype 4, spanning exons 4-7 and containing the two coding variants. We analyzed response to antipsychotics, defined as predicted change in PANSS-Total (dPANSS) at 18 months, in Caucasian subjects from the Clinical Antipsychotic Trial of Intervention Effectiveness treated with olanzapine (n=139), perphenazine (n=78), quetiapine (n=14), risperidone (n=143), and ziprasidone (n=90). Haplotype trend regression analysis revealed significant associations with dPANSS for olanzapine (best p=0.002), perphenazine (best p=0.01), quetiapine (best p=0.008), risperidone (best p=0.02), and ziprasidone (best p=0.007). We also evaluated genetic models for the two most common haplotypes. Haplotype 1 (uniquely including the rs1042044 [Leu(260)] allele) was associated with better response to olanzapine (p=0.002), and risperidone (p=0.006), and worse response to perphenazine (p=.03), and ziprasidone (p=0.003), with a recessive genetic model providing the best fit. Haplotype 2 (uniquely including the rs6923761 [Ser(168)] allele) was associated with better response to perphenazine (p=0.001) and worse response to olanzapine (p=.02), with a dominant genetic model providing the best fit. However, GLP1R haplotypes were not associated with antipsychotic-induced weight gain. These results link functional genetic variants in GLP1R to antipsychotic response. PMID:25449714

  12. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers.

    PubMed

    Gil-Lozano, Manuel; Hunter, Paola M; Behan, Lucy-Ann; Gladanac, Bojana; Casper, Robert F; Brubaker, Patricia L

    2016-01-01

    The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways. PMID:26530153

  13. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic β-cells

    PubMed Central

    Xiong, Xiaoquan; Shao, Weijuan; Jin, Tianru

    2012-01-01

    During the past two decades, the exploration of function of two incretin hormones, namely glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), has led to the development of two categories of novel therapeutic agents for diabetes and its complications, known as GLP-1 receptor (GLP-1R) agonists and DPP-IV inhibitors. Mechanisms underlying the function of GLP-1, however, still need to be further explored. GLP-1 not only functions as an incretin hormone in stimulating insulin secretion in response to nutritional, hormonal and neuronal stimulations, but also acts as an “insulin-like” factor in β-cell and extra-pancreatic organs. In addition to these insulinotropic and insulinomimetic effects, GLP-1 was shown to exert its protective effect in β-cell by repressing the expression of TxNIP, a mediator of glucolipotoxicity. A number of recent studies have shown that the Wnt signaling pathway effector, the bipartite transcription factor β-catenin/TCF, controls not only the production of GLP-1, but also the function of GLP-1. Furthermore, previously assumed “degradation” products of GLP-1(7–36)amide, including GLP-1(9–36)amide and GLP-1(28–36)amide, have been shown to exert beneficial effect in pancreas and extra-pancreatic tissues or cell lineages. Here we summarized our current knowledge on the metabolic, proliferative and protective effects of GLP-1(7–36)amide and its cleavage fragments, mainly focusing on pancreatic β-cells and the involvement of the Wnt signaling pathway effector β-catenin. PMID:23314611

  14. Progesterone Receptor Membrane Component 1 Is a Functional Part of the Glucagon-like Peptide-1 (GLP-1) Receptor Complex in Pancreatic β Cells*

    PubMed Central

    Zhang, Ming; Robitaille, Mélanie; Showalter, Aaron D.; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S.; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y.; Angers, Stéphane; Sloop, Kyle W.; Dai, Feihan F.; Wheeler, Michael B.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic β cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 β cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in β cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor–PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of β cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1. PMID:25044020

  15. Mosapride citrate, a 5-HT₄ receptor agonist, increased the plasma active and total glucagon-like peptide-1 levels in non-diabetic men.

    PubMed

    Aoki, Kazutaka; Kamiyama, Hiroshi; Masuda, Kiyomi; Togashi, Yu; Terauchi, Yasuo

    2013-01-01

    Mosapride citrate, a selective agonist of the 5-hydroxytryptaine (5-HT)₄ receptor, is typically used to treat heartburn, nausea, and vomiting associated with chronic gastritis or to prepare for a barium enema X-ray examination. Mosapride citrate reportedly improves insulin sensitivity in patients with type 2 diabetes. As mosapride citrate activates the motility of the gastrointestinal tract, we hypothesized that mosapride citrate affects incretin secretion. We examined the effect of the administration of mosapride citrate on the plasma glucose, serum insulin, plasma glucagon, and plasma incretin levels before breakfast and at 60, 120, and 180 min after breakfast in men with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT) to exclude gastropathy. Mosapride citrate was administered according to two different intake schedules (C: control (no drug), M: mosapride citrate 20 mg) in each of the subject groups. The area under the curve (AUC) of the plasma glucose levels was smaller in the M group than in the C group. The time profiles for the serum insulin levels at 60 and 120 min after treatment with mosapride citrate tended to be higher, although the difference was not statistically significant. The AUCs of the plasma active and total glucagon-like peptide-1 (GLP-1) levels were significantly larger in the M group than in the C group. No significant difference in the AUC of the plasma glucose-dependent insulinotropic polypeptide (GIP) level was observed between the two groups. Our results suggest that mosapride citrate may have an antidiabetic effect by increasing GLP-1 secretion. PMID:23257734

  16. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    SciTech Connect

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-07-30

    Research highlights: {yields} GLP-1 prevents AGEs-induced cell death. {yields} GLP-1 prevents AGEs-induced oxidative stress. {yields} GLP-1 ameliorated AGEs-induced cell dysfunction. {yields} GLP-1 attenuates AGEs-induced RAGE increment. {yields} GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  17. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling*

    PubMed Central

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 μm OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7–36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7–36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7–36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level. PMID:25903129

  18. Establishment of a Refined Oral Glucose Tolerance Test in Pigs, and Assessment of Insulin, Glucagon and Glucagon-Like Peptide-1 Responses.

    PubMed

    Manell, Elin; Hedenqvist, Patricia; Svensson, Anna; Jensen-Waern, Marianne

    2016-01-01

    Diabetes mellitus is increasing worldwide and reliable animal models are important for progression of the research field. The pig is a commonly used large animal model in diabetes research and the present study aimed to refine a model for oral glucose tolerance test (OGTT) in young growing pigs, as well as describing intravenous glucose tolerance test (IVGTT) in the same age group. The refined porcine OGTT will reflect that used in children and adolescents. Eighteen pigs were obtained one week after weaning and trained for two weeks to bottle-feed glucose solution, mimicking the human OGTT. The pigs subsequently underwent OGTT (1.75 g/kg BW) and IVGTT (0.5 g/kg BW). Blood samples were collected from indwelling vein catheters for measurements of glucose and the diabetes related hormones insulin, glucagon and active glucagon-like peptide-1. The study confirmed that pigs can be trained to bottle-feed glucose dissolved in water and thereby undergo an OGTT more similar to the human standard OGTT than previously described methods in pigs. With the refined method for OGTT, oral intake only consists of glucose and water, which is an advantage over previously described methods in pigs where glucose is given together with feed which will affect glucose absorption. Patterns of hormonal secretion in response to oral and intravenous glucose were similar to those in humans; however, the pigs were more glucose tolerant with lower insulin levels than humans. In translational medicine, this refined OGTT and IVGTT methods provide important tools in diabetes research when pigs are used as models for children and adolescents in diabetes research. PMID:26859145

  19. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    PubMed

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  20. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats.

    PubMed

    Nakajima, Shingo; Hira, Tohru; Hara, Hiroshi

    2015-05-14

    Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity. PMID:25827219

  1. Chromanol 293B, an inhibitor of KCNQ1 channels, enhances glucose-stimulated insulin secretion and increases glucagon-like peptide-1 level in mice.

    PubMed

    Liu, Lijie; Wang, Fanfan; Lu, Haiying; Ren, Xiaomei; Zou, Jihong

    2014-01-01

    Glucose-stimulated insulin secretion (GSIS) is a highly regulated process involving complex interaction of multiple factors. Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) is a susceptibility gene for type 2 diabetes (T2D) and the risk alleles of the KCNQ1 gene appear to be associated with impaired insulin secretion. The role of KCNQ1 channel in insulin secretion has been explored by previous work in clonal pancreatic β-cells but has yet to be investigated in the context of primary islets as well as intact animals. Genetic studies suggest that altered incretin glucagon-like peptide-1 (GLP-1) secretion might be a potential link between KCNQ1 variants and impaired insulin secretion, but this hypothesis has not been verified so far. In the current study, we examined KCNQ1 expression in pancreas and intestine from normal mice and then investigated the effects of chromanol 293B, a KCNQ1 channel inhibitor, on insulin secretion in vitro and in vivo. By double-immunofluorescence staining, KCNQ1 was detected in insulin-positive β-cells and GLP-1-positive L-cells. Administration of chromanol 293B enhanced GSIS in cultured islets and intact animals. Along with the potentiated insulin secretion during oral glucose tolerance tests (OGTT), plasma GLP-1 level after gastric glucose load was increased in 293B treated mice. These data not only provided new evidence for the participation of KCNQ1 in GSIS at the level of pancreatic islet and intact animal but also indicated the potential linking role of GLP-1 between KCNQ1 and insulin secretion. PMID:25437377

  2. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  3. Miglitol administered before breakfast increased plasma active glucagon-like peptide-1 (GLP-1) levels after lunch in patients with type 2 diabetes treated with sitagliptin.

    PubMed

    Aoki, Kazutaka; Kamiyama, Hiroshi; Yoshimura, Kouichiro; Shibuya, Makoto; Masuda, Kiyomi; Terauchi, Yasuo

    2012-06-01

    We recently reported that the administration of miglitol alone just before breakfast improved postprandial hyperglycemia and increased active glucagon-like peptide-1 (GLP-1) levels after lunch in men without diabetes. Miglitol and dipeptidyl peptidase-4 inhibitors, such as sitagliptin, enhance plasma active GLP-1 concentrations via different mechanisms; therefore, combined therapy with these agents was more effective than monotherapy. In this study, we compared the effectiveness of the administration of miglitol alone just before breakfast on the plasma glucose, serum insulin and glucagon, and plasma incretin levels in sitagliptin-treated patients with type 2 diabetes. We measured the plasma glucose, serum insulin and glucagon, plasma active GLP-1, and total glucose-dependent insulinotropic polypeptide levels before breakfast, at 120 min after breakfast, before lunch, and 60 and 120 min after lunch in patients with diabetes who are receiving sitagliptin. This trial was performed for the following 2 days on each subject (Day 1: no miglitol, Day 2: miglitol alone [50 mg] administered just before breakfast). The area under the curve (AUC) of the plasma glucose levels after lunch in the miglitol-treated group tended to be lower than that in the miglitol-untreated group, but the difference was not statistically significant. Miglitol alone administered at breakfast increased the AUC of the active plasma GLP-1 levels after lunch in sitagliptin-treated patients with diabetes. Our results suggest that the once-daily administration of miglitol as a "GLP-1 enhancer" in combination with sitagliptin was effective for the treatment for patients with diabetes. PMID:21898126

  4. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats.

    PubMed

    Jia, Xiao-Tao; Ye-Tian; Yuan-Li; Zhang, Ge-Juan; Liu, Zhi-Qin; Di, Zheng-Li; Ying, Xiao-Ping; Fang, Yan; Song, Er-Fei; Qi, Jin-Shun; Pan, Yan-Fang

    2016-05-15

    Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share specific molecular mechanisms, and agents with proven efficacy in one may be useful against the other. The glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has similar properties to GLP-1 and is currently in clinical use for T2DM treatment. Thus, this study was designed to characterize the effects of exendin-4 on the impairment of learning and memory induced by amyloid protein (Aβ) and its probable molecular underlying mechanisms. The results showed that (1) intracerebroventricular (i.c.v.) injection of Aβ1-42 resulted in a significant decline of spatial learning and memory of rats in water maze tests; (2) pretreatment with exendin-4 effectively and dose-dependently protected against the Aβ1-42-induced impairment of spatial learning and memory; (3) exendin-4 treatment significantly decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl2 in Aβ1-42-induced Alzheimer's rats. The vision and swimming speed of the rats among all groups in the visible platform tests did not show any difference. These findings indicate that systemic pretreatment with exendin-4 can effectively prevent the behavioral impairment induced by neurotoxic Aβ1-42, and the underlying protective mechanism of exendin-4 may be involved in the Bcl2, Bax and caspase-3 pathways. Thus, the application of exendin-4 or the activation of its signaling pathways may be a promising strategy to ameliorate the degenerative processes observed in AD. PMID:26992957

  5. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling.

    PubMed

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-06-01

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 μM OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7-36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7-36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7-36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level. PMID:25903129

  6. Synthesis and Pharmacological Characterization of Novel Glucagon-like Peptide-2 (GLP-2) Analogues with Low Systemic Clearance.

    PubMed

    Wiśniewski, Kazimierz; Sueiras-Diaz, Javier; Jiang, Guangcheng; Galyean, Robert; Lu, Mark; Thompson, Dorain; Wang, Yung-Chih; Croston, Glenn; Posch, Alexander; Hargrove, Diane M; Wiśniewska, Halina; Laporte, Régent; Dwyer, John J; Qi, Steve; Srinivasan, Karthik; Hartwig, Jennifer; Ferdyan, Nicky; Mares, Monica; Kraus, John; Alagarsamy, Sudarkodi; Rivière, Pierre J M; Schteingart, Claudio D

    2016-04-14

    Glucagon-like peptide-2 receptor agonists have therapeutic potential for the treatment of intestinal diseases. The native hGLP-2, a 33 amino acid gastrointestinal peptide, is not a suitable clinical candidate, due to its very short half-life in humans. In search of GLP-2 receptor agonists with better pharmacokinetic characteristics, a series of GLP-2 analogues containing Gly substitution at position 2, norleucine in position 10, and hydrophobic substitutions in positions 11 and/or 16 was designed and synthesized. In vitro receptor potency at the human GLP-2, selectivity vs the human GLP-1 and GCG receptors, and PK profile in rats were determined for the new analogues. A number of compounds more potent at the hGLP-2R than the native hormone, showing excellent receptor selectivity and very low systemic clearance (CL) were discovered. Analogues 69 ([Gly(2),Nle(10),d-Thi(11),Phe(16)]hGLP-2-(1-30)-NH2), 72 ([Gly(2),Nle(10),d-Phe(11),Leu(16)]hGLP-2-(1-33)-OH), 73 ([Gly(2),Nle(10),d-Phe(11),Leu(16)]hGLP-2-(1-33)-NH2), 81 ([Gly(2),Nle(10),d-Phe(11),Leu(16)]hGLP-2-(1-33)-NHEt), and 85 ([Gly(2),Nle(10),d-Phe(11),Leu(16)]hGLP-2-(1-33)-NH-((CH2)2O)4-(CH2)2-CONH2) displayed the desired profiles (EC50 (hGLP-2R) < 100 pM, CL in rat <0.3 mL/min/kg, selective vs hGLP-1R and hGCGR). Compound 73 (FE 203799) was selected as a candidate for clinical development. PMID:26986178

  7. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome.

    PubMed

    Thymann, Thomas; Stoll, Barbara; Mecklenburg, Lars; Burrin, Douglas G; Vegge, Andreas; Qvist, Niels; Eriksen, Thomas; Jeppesen, Palle B; Sangild, Per T

    2014-06-01

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our objective was to test the efficacy of the long-acting synthetic human GLP-2 analogue, teduglutide (ALX-0600), in a neonatal piglet jejunostomy model. Two-day-old pigs were subjected to resection of 50% of the small intestine (distal part), and the remnant intestine was exteriorized on the abdominal wall as a jejunostomy. All pigs were given total parenteral nutrition for 7 days and a single daily injection of the following doses of teduglutide: 0.01 (n = 6), 0.02 (n = 6), 0.1 (n = 5), or 0.2 mg · kg · day (n = 6), and compared with placebo (n = 9). Body weight increment was similar for all 4 teduglutide groups but higher than placebo (P < 0.05). There was a dose-dependent increase in weight per length of the remnant intestine (P < 0.01) and fractional protein synthesis rate in the intestine was increased in the 0.2 mg · kg · day group versus placebo (P < 0.001); however, functional and structural endpoints including activity of digestive enzymes, absorption of enteral nutrients, and immunohistochemistry (Ki67, villin, FABP2, ChgA, and GLP-2R) were not affected by the treatment. Teduglutide induces trophicity on the remnant intestine but has limited acute effects on functional endpoints. Significant effects of teduglutide on gut function may require a longer adaptation period and/or a more frequent administration of the peptide. In perspective, GLP-2 or its analogues may be relevant to improve intestinal adaptation in pediatric patients with short bowel syndrome. PMID:24399211

  8. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells

    PubMed Central

    Poreba, M. A.; Dong, C. X.; Li, S. K.; Stahl, A.; Miner, J. H.

    2012-01-01

    The antidiabetic intestinal L cell hormone glucagon-like peptide-1 (GLP-1) enhances glucose-dependent insulin secretion and inhibits gastric emptying. GLP-1 secretion is stimulated by luminal oleic acid (OA), which crosses the cell membrane by an unknown mechanism. We hypothesized that L cell fatty acid transport proteins (FATPs) are essential for OA-induced GLP-1 release. Therefore, the murine GLUTag L cell model was used for immunoblotting, [3H]OA uptake assay, and GLP-1 secretion assay as determined by radioimmunoassay following treatment with OA ± phloretin, sulfo-N-succinimidyl oleate, or siRNA against FATP4. FATP4−/− and cluster-of-differentiation 36 (CD36)−/− mice received intraileal OA, and plasma GLP-1 was measured by sandwich immunoassay. GLUTag cells were found to express CD36, FATP1, FATP3, and FATP4. The cells demonstrated specific 3H[OA] uptake that was dose-dependently inhibited by 500 and 1,000 μM unlabeled OA (P < 0.001). Cell viability was not altered by treatment with OA. Phloretin and sulfo-N-succinimidyl oleate, inhibitors of protein-mediated transport and CD36, respectively, also decreased [3H]OA uptake, as did knockdown of FATP4 by siRNA transfection (P < 0.05–0.001). OA dose-dependently increased GLP-1 secretion at 500 and 1,000 μM (P < 0.001), whereas phloretin, sulfo-N-succinimidyl oleate, and FATP4 knockdown decreased this response (P < 0.05–0.01). FATP4−/− mice displayed lower plasma GLP-1 at 60 min in response to intraileal OA (P < 0.05), whereas, unexpectedly, CD36−/− mice displayed higher basal GLP-1 levels (P < 0.01) but a normal response to intraileal OA. Together, these findings demonstrate a key role for FATP4 in OA-induced GLP-1 secretion from the murine L cell in vitro and in vivo, whereas the precise role of CD36 remains unclear. PMID:22871340

  9. Efficacy and Acceptability of Glycemic Control of Glucagon-Like Peptide-1 Receptor Agonists among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis

    PubMed Central

    Li, Zhixia; Zhang, Yuan; Quan, Xiaochi; Yang, Zhirong; Zeng, Xiantao; Ji, Linong

    2016-01-01

    Objective To synthesize current evidence of the impact of Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on hypoglycemia, treatment discontinuation and glycemic level in patients with type 2 diabetes. Design Systematic review and network meta-analysis. Data Sources Literature search (Medline, Embase, the Cochrane library), website of clinical trial, bibliographies of published systematic reviews. Eligibility Criteria Randomized controlled trials with available data comparing GLP-1 RAs with placebo or traditional anti-diabetic drugs in patients with type 2 diabetes. Data Synthesis Traditional pairwise meta-analyses within DerSimonian-Laird random effects model and network meta-analysis within a Bayesian framework were performed to calculate odds ratios for the incidence of hypoglycemia, treatment discontinuation, HbA1c<7.0% and HbA1c<6.5%. Ranking probabilities for all treatments were estimated to obtain a treatment hierarchy using the surface under the cumulative ranking curve (SUCRA) and mean ranks. Results 78 trials with 13 treatments were included. Overall, all GLP-1 RAs except for albiglutide increased the risk of hypoglycemia when compared to placebo. Reduction in the incidence of hypoglycemia was found for all GLP-1 RAs versus insulin (except for dulaglutide) and sulphonylureas. For the incidence of treatment discontinuation, increase was found for exenatide, liraglutide, lixisenatide and taspoglutide versus placebo, insulin and sitagliptin. For glycemic level, decrease was found for all GLP-1 RAs versus placebo. Dulaglutide, exenatide long-acting release (exe_lar), liraglutide and taspoglutide had significant lowering effect when compared with sitagliptin (HbA1c<7.0%) and insulin (HbA1c<6.5%). Finally, according to SUCRAs, placebo, thiazolidinediones and albiglutide had the best decrease effect on hypoglycemia; sulphanylureas, sitagliptin and insulin decrease the incidence of treatment discontinuation most; exe_lar and dulaglutide had the highest

  10. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial.

    PubMed

    Bottin, Jeanne H; Swann, Jonathan R; Cropp, Eleanor; Chambers, Edward S; Ford, Heather E; Ghatei, Mohammed A; Frost, Gary S

    2016-07-01

    Dietary mycoprotein decreases energy intake in lean individuals. The effects in overweight individuals are unclear, and the mechanisms remain to be elucidated. This study aimed to investigate the effect of mycoprotein on energy intake, appetite regulation, and the metabolic phenotype in overweight and obese volunteers. In two randomised-controlled trials, fifty-five volunteers (age: 31 (95 % CI 27, 35) years), BMI: 28·0 (95 % CI 27·3, 28·7) kg/m2) consumed a test meal containing low (44 g), medium (88 g) or high (132 g) mycoprotein or isoenergetic chicken meals. Visual analogue scales and blood samples were collected to measure appetite, glucose, insulin, peptide tyrosine-tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Ad libitum energy intake was assessed after 3 h in part A (n 36). Gastric emptying by the paracetamol method, resting energy expenditure and substrate oxidation were recorded in part B (n 14). Metabonomics was used to compare plasma and urine samples in response to the test meals. Mycoprotein reduced energy intake by 10 % (280 kJ (67 kcal)) compared with chicken at the high content (P=0·009). All mycoprotein meals reduced insulin concentrations compared with chicken (incremental AUClow (IAUClow): -8 %, IAUCmedium: -12 %, IAUChigh: -21 %, P=0·004). There was no significant difference in glucose, PYY, GLP-1, gastric emptying rate and energy expenditure. Following chicken intake, paracetamol-glucuronide was positively associated with fullness. After mycoprotein, creatinine and the deamination product of isoleucine, α-keto-β-methyl-N-valerate, were inversely related to fullness, whereas the ketone body, β-hydroxybutyrate, was positively associated. In conclusion, mycoprotein reduces energy intake and insulin release in overweight volunteers. The mechanism does not involve changes in PYY and GLP-1. The metabonomics analysis may bring new understanding to the appetite regulatory properties of food. PMID:27198187

  11. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our object...

  12. Effects of Green Tea Extract on Insulin Resistance and Glucagon-Like Peptide 1 in Patients with Type 2 Diabetes and Lipid Abnormalities: A Randomized, Double-Blinded, and Placebo-Controlled Trial

    PubMed Central

    Liu, Chia-Yu; Huang, Chien-Jung; Huang, Lin-Huang; Chen, I-Ju; Chiu, Jung-Peng; Hsu, Chung-Hua

    2014-01-01

    The aim of this study is to investigate the effect of green tea extract on patients with type 2 diabetes mellitus and lipid abnormalities on glycemic and lipid profiles, and hormone peptides by a double-blinded, randomized and placebo-controlled clinical trial. This trial enrolled 92 subjects with type 2 diabetes mellitus and lipid abnormalities randomized into 2 arms, each arm comprising 46 participants. Of the participants, 39 in therapeutic arm took 500 mg green tea extract, three times a day, while 38 in control arm took cellulose with the same dose and frequency to complete the 16-week study. Anthropometrics measurements, glycemic and lipid profiles, safety parameters, and obesity-related hormone peptides were analyzed at screening and after 16-week course. Within-group comparisons showed that green tea extract caused a significant decrease in triglyceride and homeostasis model assessment of insulin resistance index after 16 weeks. Green tea extract also increased significantly high density lipoprotein cholesterol. The HOMA-IR index decreased from 5.4±3.9 to 3.5±2.0 in therapeutic arm only. Adiponectin, apolipoprotein A1, and apolipoprotein B100 increased significantly in both arms, but only glucagon-like peptide 1 increased in the therapeutic arm. However, only decreasing trend in triglyceride was found in between-group comparison. Our study suggested that green tea extract significantly improved insulin resistance and increased glucagon-like peptide 1 only in within-group comparison. The potential effects of green tea extract on insulin resistance and glucagon-like peptide 1 warrant further investigation. Trial Registration ClinicalTrials.gov NCT01360567 PMID:24614112

  13. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats.

    PubMed

    Hoelmkjaer, Kirsten M; Wewer Albrechtsen, Nicolai J; Holst, Jens J; Cronin, Anna M; Nielsen, Dorte H; Mandrup-Poulsen, Thomas; Bjornvad, Charlotte R

    2016-01-01

    Glucagon-like Peptide-1 mimetics increase insulin secretion and reduces body weight in humans. In lean, healthy cats, short-term treatment has produced similar results, whereas the effect in obese cats or with extended duration of treatment is unknown. Here, prolonged (12 weeks) treatment with the Glucagon-like Peptide-1 mimetic, exenatide, was evaluated in 12 obese, but otherwise healthy, client-owned cats. Cats were randomized to exenatide (1.0 μg/kg) or placebo treatment twice daily for 12 weeks. The primary endpoint was changes in insulin concentration; the secondary endpoints were glucose homeostasis, body weight, body composition as measured by dual-energy x-ray absorptiometry and overall safety. An intravenous glucose tolerance test (1 g/kg body weight) was conducted at week 0 and week 12. Exenatide did not change the insulin concentration, plasma glucose concentration or glucose tolerance (P>0.05 for all). Exenatide tended to reduce body weight on continued normal feeding. Median relative weight loss after 12 weeks was 5.1% (range 1.7 to 8.4%) in the exenatide group versus 3.2% (range -5.3 to 5.7%) in the placebo group (P = 0.10). Body composition and adipokine levels were unaffected by exenatide (P>0.05). Twelve weeks of exenatide was well-tolerated, with only two cases of mild, self-limiting gastrointestinal signs and a single case of mild hypoglycemia. The long-term insulinotropic effect of exenatide appeared less pronounced in obese cats compared to previous short-term studies in lean cats. Further investigations are required to fully elucidate the effect on insulin secretion, glucose tolerance and body weight in obese cats. PMID:27136422

  14. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats

    PubMed Central

    Hoelmkjaer, Kirsten M.; Wewer Albrechtsen, Nicolai J.; Holst, Jens J.; Cronin, Anna M.; Nielsen, Dorte H.; Mandrup-Poulsen, Thomas; Bjornvad, Charlotte R.

    2016-01-01

    Glucagon-like Peptide-1 mimetics increase insulin secretion and reduces body weight in humans. In lean, healthy cats, short-term treatment has produced similar results, whereas the effect in obese cats or with extended duration of treatment is unknown. Here, prolonged (12 weeks) treatment with the Glucagon-like Peptide-1 mimetic, exenatide, was evaluated in 12 obese, but otherwise healthy, client-owned cats. Cats were randomized to exenatide (1.0 μg/kg) or placebo treatment twice daily for 12 weeks. The primary endpoint was changes in insulin concentration; the secondary endpoints were glucose homeostasis, body weight, body composition as measured by dual-energy x-ray absorptiometry and overall safety. An intravenous glucose tolerance test (1 g/kg body weight) was conducted at week 0 and week 12. Exenatide did not change the insulin concentration, plasma glucose concentration or glucose tolerance (P>0.05 for all). Exenatide tended to reduce body weight on continued normal feeding. Median relative weight loss after 12 weeks was 5.1% (range 1.7 to 8.4%) in the exenatide group versus 3.2% (range -5.3 to 5.7%) in the placebo group (P = 0.10). Body composition and adipokine levels were unaffected by exenatide (P>0.05). Twelve weeks of exenatide was well-tolerated, with only two cases of mild, self-limiting gastrointestinal signs and a single case of mild hypoglycemia. The long-term insulinotropic effect of exenatide appeared less pronounced in obese cats compared to previous short-term studies in lean cats. Further investigations are required to fully elucidate the effect on insulin secretion, glucose tolerance and body weight in obese cats. PMID:27136422

  15. Truncated Glucagon-like Peptide-1 and Exendin-4 α-Conotoxin pl14a Peptide Chimeras Maintain Potency and α-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro.

    PubMed

    Swedberg, Joakim E; Schroeder, Christina I; Mitchell, Justin M; Fairlie, David P; Edmonds, David J; Griffith, David A; Ruggeri, Roger B; Derksen, David R; Loria, Paula M; Price, David A; Liras, Spiros; Craik, David J

    2016-07-22

    Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22-27) directing the binding of Phe(22) into a hydrophobic pocket on the GLP-1R. PMID:27226591

  16. Intrameal Hepatic Portal and Intraperitoneal Infusions of Glucagon-Like Peptide-1 Reduce Spontaneous Meal Size in the Rat via Different Mechanisms

    PubMed Central

    Rüttimann, Elisabeth B.; Arnold, Myrtha; Hillebrand, Jacquelien J.; Geary, Nori; Langhans, Wolfgang

    2009-01-01

    Peripheral administration of glucagon-like peptide (GLP)-1 reduces food intake in animals and humans, but the sites and mechanism of this effect and its physiological significance are not yet clear. To investigate these issues, we prepared rats with chronic catheters and infused GLP-1 (0.2 ml/min; 2.5 or 5.0 min) during the first spontaneous dark-phase meals. Infusions were remotely triggered 2–3 min after meal onset. Hepatic portal vein (HPV) infusion of 1.0 or 3.0 (but not 0.33) nmol/kg GLP-1 reduced the size of the ongoing meal compared with vehicle without affecting the subsequent intermeal interval, the size of subsequent meals, or cumulative food intake. In double-cannulated rats, HPV and vena cava infusions of 1.0 nmol/kg GLP-1 reduced meal size similarly. HPV GLP-1 infusions of 1.0 nmol/kg GLP-1 also reduced meal size similarly in rats with subdiaphragmatic vagal deafferentations and in sham-operated rats. Finally, HPV and ip infusions of 10 nmol/kg GLP-1 reduced meal size similarly in sham-operated rats, but only HPV GLP-1 reduced meal size in subdiaphragmatic vagal deafferentation rats. These data indicate that peripherally infused GLP-1 acutely and specifically reduces the size of ongoing meals in rats and that the satiating effect of ip, but not iv, GLP-1 requires vagal afferent signaling. The findings suggest that iv GLP-1 infusions do not inhibit eating via hepatic portal or hepatic GLP-1 receptors but may act directly on the brain. PMID:18948395

  17. Glucagon-Like Peptide-1 Receptor Agonist Treatment Prevents Glucocorticoid-Induced Glucose Intolerance and Islet-Cell Dysfunction in Humans

    PubMed Central

    van Raalte, Daniël H.; van Genugten, Renate E.; Linssen, Margot M.L.; Ouwens, D. Margriet; Diamant, Michaela

    2011-01-01

    OBJECTIVE Glucocorticoids (GCs) are regarded as diabetogenic because they impair insulin sensitivity and islet-cell function. This study assessed whether treatment with the glucagon-like peptide receptor agonist (GLP-1 RA) exenatide (EXE) could prevent GC-induced glucose intolerance. RESEARCH DESIGN AND METHODS A randomized, placebo-controlled, double-blind, crossover study in eight healthy men (age: 23.5 [20.0–28.3] years; BMI: 26.4 [24.3–28.0] kg/m2) was conducted. Participants received three therapeutic regimens for 2 consecutive days: 1) 80 mg of oral prednisolone (PRED) every day (q.d.) and intravenous (IV) EXE infusion (PRED+EXE); 2) 80 mg of oral PRED q.d. and IV saline infusion (PRED+SAL); and 3) oral placebo-PRED q.d. and intravenous saline infusion (PLB+SAL). On day 1, glucose tolerance was assessed during a meal challenge test. On day 2, participants underwent a clamp procedure to measure insulin secretion and insulin sensitivity. RESULTS PRED+SAL treatment increased postprandial glucose levels (vs. PLB+SAL, P = 0.012), which was prevented by concomitant EXE (vs. PLB+SAL, P = NS). EXE reduced PRED-induced hyperglucagonemia during the meal challenge (P = 0.018) and decreased gastric emptying (vs. PRED+SAL, P = 0.028; vs. PLB+SAL, P = 0.046). PRED+SAL decreased first-phase glucose- and arginine-stimulated C-peptide secretion (vs. PLB+SAL, P = 0.017 and P = 0.05, respectively), whereas PRED+EXE improved first- and second-phase glucose- and arginine-stimulated C-peptide secretion (vs. PLB+SAL; P = 0.017, 0.012, and 0.093, respectively). CONCLUSIONS The GLP-1 RA EXE prevented PRED-induced glucose intolerance and islet-cell dysfunction in healthy humans. Incretin-based therapies should be explored as a potential strategy to prevent steroid diabetes. PMID:21216851

  18. The Glucagon-Like Peptide 1 Receptor Agonist Exenatide Inhibits Small Intestinal Motility, Flow, Transit, and Absorption of Glucose in Healthy Subjects and Patients With Type 2 Diabetes: A Randomized Controlled Trial.

    PubMed

    Thazhath, Sony S; Marathe, Chinmay S; Wu, Tongzhi; Chang, Jessica; Khoo, Joan; Kuo, Paul; Checklin, Helen L; Bound, Michelle J; Rigda, Rachael S; Crouch, Benjamin; Jones, Karen L; Horowitz, Michael; Rayner, Christopher K

    2016-01-01

    The short-acting glucagon-like peptide 1 receptor agonist exenatide reduces postprandial glycemia, partly by slowing gastric emptying, although its impact on small intestinal function is unknown. In this study, 10 healthy subjects and 10 patients with type 2 diabetes received intravenous exenatide (7.5 μg) or saline (-30 to 240 min) in a double-blind randomized crossover design. Glucose (45 g), together with 5 g 3-O-methylglucose (3-OMG) and 20 MBq (99m)Tc-sulfur colloid (total volume 200 mL), was given intraduodenally (t = 0-60 min; 3 kcal/min). Duodenal motility and flow were measured using a combined manometry-impedance catheter and small intestinal transit using scintigraphy. In both groups, duodenal pressure waves and antegrade flow events were fewer, and transit was slower with exenatide, as were the areas under the curves for serum 3-OMG and blood glucose concentrations. Insulin concentrations were initially lower with exenatide than with saline and subsequently higher. Nausea was greater in both groups with exenatide, but suppression of small intestinal motility and flow was observed even in subjects with little or no nausea. The inhibition of small intestinal motor function represents a novel mechanism by which exenatide can attenuate postprandial glycemia. PMID:26470783

  19. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1.

    PubMed

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention. PMID:26292284

  20. The G Protein-coupled Receptor Family C Group 6 Subtype A (GPRC6A) Receptor Is Involved in Amino Acid-induced Glucagon-like Peptide-1 Secretion from GLUTag Cells*

    PubMed Central

    Oya, Manami; Kitaguchi, Tetsuya; Pais, Ramona; Reimann, Frank; Gribble, Fiona; Tsuboi, Takashi

    2013-01-01

    Although amino acids are dietary nutrients that evoke the secretion of glucagon-like peptide 1 (GLP-1) from intestinal L cells, the precise molecular mechanism(s) by which amino acids regulate GLP-1 secretion from intestinal L cells remains unknown. Here, we show that the G protein-coupled receptor (GPCR), family C group 6 subtype A (GPRC6A), is involved in amino acid-induced GLP-1 secretion from the intestinal L cell line GLUTag. Application of l-ornithine caused an increase in intracellular Ca2+ concentration ([Ca2+]i) in GLUTag cells. Application of a GPRC6A receptor antagonist, a phospholipase C inhibitor, or an IP3 receptor antagonist significantly suppressed the l-ornithine-induced [Ca2+]i increase. We found that the increase in [Ca2+]i stimulated by l-ornithine correlated with GLP-1 secretion and that l-ornithine stimulation increased exocytosis in a dose-dependent manner. Furthermore, depletion of endogenous GPRC6A by a specific small interfering RNA (siRNA) inhibited the l-ornithine-induced [Ca2+]i increase and GLP-1 secretion. Taken together, these findings suggest that the GPRC6A receptor functions as an amino acid sensor in GLUTag cells that promotes GLP-1 secretion. PMID:23269670

  1. Differential effects of once-weekly glucagon-like peptide-1 receptor agonist dulaglutide and metformin on pancreatic β-cell and insulin sensitivity during a standardized test meal in patients with type 2 diabetes.

    PubMed

    Mari, A; Del Prato, S; Ludvik, B; Milicevic, Z; de la Peña, A; Shurzinske, L; Karanikas, C A; Pechtner, V

    2016-08-01

    This substudy of the AWARD-3 trial evaluated the effects of the once-weekly glucagon-like peptide-1 receptor agonist, dulaglutide, versus metformin on glucose control, pancreatic function and insulin sensitivity, after standardized test meals in patients with type 2 diabetes. Meals were administered at baseline, 26 and 52 weeks to patients randomized to monotherapy with dulaglutide 1.5 mg/week (n = 133), dulaglutide 0.75 mg/week (n = 136), or metformin ≥1500 mg/day (n = 140). Fasting and postprandial serum glucose, insulin, C-peptide and glucagon levels were measured up to 3 h post-meal. β-cell function and insulin sensitivity were assessed using empirical variables and mathematical modelling. At 26 weeks, similar decreases in area under the curve for glucose [AUCglucose (0-3 h)] were observed among all groups. β-cell function [AUCinsulin /AUCglucose (0-3 h)] increased with dulaglutide and was unchanged with metformin (p ≤ 0.005, both doses). Dulaglutide improved insulin secretion rate at 9 mmol/l glucose (p ≤ 0.04, both doses) and β-cell glucose sensitivity (p = 0.004, dulaglutide 1.5 mg). Insulin sensitivity increased more with metformin versus dulaglutide. In conclusion, dulaglutide improves postprandial glycaemic control after a standardized test meal by enhancing β-cell function, while metformin exerts a greater effect on insulin sensitivity. PMID:27059816

  2. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket.

    PubMed

    Mann, Rosalind J; Al-Sabah, Suleiman; de Maturana, Rakel López; Sinfield, John K; Donnelly, Dan

    2010-12-01

    G protein-coupled receptors (GPCRs) are seven transmembrane α-helical (7TM) integral membrane proteins that play a central role in both cell signaling and in the action of many pharmaceuticals. The crystal structures of several Family A GPCRs have shown the presence of a disulfide bond linking transmembrane helix 3 (TM3) to the second extracellular loop (ECL2), enabling ECL2 to stabilize and contribute to the ligand binding pocket. Family B GPCRs share no significant sequence identity with those in Family A but nevertheless share two conserved cysteines in topologically equivalent positions. Since there are no available crystal structures for the 7TM domain of any Family B GPCR, we used mutagenesis alongside pharmacological analysis to investigate the role of ECL2 and the conserved cysteine residues. We mutated Cys-226, at the extracellular end of TM3 of the glucagon-like peptide-1 (GLP-1) receptor, to alanine and observed a 38-fold reduction in GLP-1 potency. Interestingly, this potency loss was restored by the additional substitution of Cys-296 in ECL2 to alanine. Alongside the complete conservation of these cysteine residues in Family B GPCRs, this functional coupling suggested the presence of a disulfide bond. Further mutagenesis demonstrated that the low potency observed at the C226A mutant, compared with the C226A-C296A double mutant, was the result of the bulky nature of the released Cys-296 side chain. Since this suggested that ECL2 was in close proximity to the agonist activation pocket, an alanine scan of ECL2 was carried out which confirmed the important role of this loop in agonist-induced receptor activation. PMID:20869417

  3. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence

    PubMed Central

    Suchankova, P; Yan, J; Schwandt, M L; Stangl, B L; Caparelli, E C; Momenan, R; Jerlhag, E; Engel, J A; Hodgkinson, C A; Egli, M; Lopez, M F; Becker, H C; Goldman, D; Heilig, M; Ramchandani, V A; Leggio, L

    2015-01-01

    The hormone glucagon-like peptide-1 (GLP-1) regulates appetite and food intake. GLP-1 receptor (GLP-1R) activation also attenuates the reinforcing properties of alcohol in rodents. The present translational study is based on four human genetic association studies and one preclinical study providing data that support the hypothesis that GLP-1R may have a role in the pathophysiology of alcohol use disorder (AUD). Case–control analysis (N=908) was performed on a sample of individuals enrolled in the National Institute on Alcohol Abuse and Alcoholism (NIAAA) intramural research program. The Study of Addiction: Genetics and Environment (SAGE) sample (N=3803) was used for confirmation purposes. Post hoc analyses were carried out on data from a human laboratory study of intravenous alcohol self-administration (IV-ASA; N=81) in social drinkers and from a functional magnetic resonance imaging study in alcohol-dependent individuals (N=22) subjected to a Monetary Incentive Delay task. In the preclinical study, a GLP-1R agonist was evaluated in a mouse model of alcohol dependence to demonstrate the role of GLP-1R for alcohol consumption. The previously reported functional allele 168Ser (rs6923761) was nominally associated with AUD (P=0.004) in the NIAAA sample, which was partially replicated in males of the SAGE sample (P=0.033). The 168Ser/Ser genotype was further associated with increased alcohol administration and breath alcohol measures in the IV-ASA experiment and with higher BOLD response in the right globus pallidus when receiving notification of outcome for high monetary reward. Finally, GLP-1R agonism significantly reduced alcohol consumption in a mouse model of alcohol dependence. These convergent findings suggest that the GLP-1R may be an attractive target for personalized pharmacotherapy treatment of AUD. PMID:26080318

  4. Effects of glucagon-like peptide-1 on advanced glycation endproduct-induced aortic endothelial dysfunction in streptozotocin-induced diabetic rats: possible roles of Rho kinase- and AMP kinase-mediated nuclear factor κB signaling pathways.

    PubMed

    Tang, Song-Tao; Zhang, Qiu; Tang, Hai-Qin; Wang, Chang-Jiang; Su, Huan; Zhou, Qing; Wei, Wei; Zhu, Hua-Qing; Wang, Yuan

    2016-07-01

    Interaction between advanced glycation endproducts (AGEs) and receptor for AGEs (RAGE) as well as downstream pathways leads to vascular endothelial dysfunction in diabetes. Glucagon-like peptide-1 (GLP-1) has been reported to attenuate endothelial dysfunction in the models of atherosclerosis. However, whether GLP-1 exerts protective effects on aortic endothelium in diabetic animal model and the underlying mechanisms are still not well defined. Experimental diabetes was induced through administration with combination of high-fat diet and intraperitoneal injection of streptozotocin. Rats were randomly divided into four groups, including controls, diabetes, diabetes + sitagliptin (30 mg/kg/day), diabetes + exenatide (3 μg/kg/12 h). Eventually, endothelial damage, markers of inflammation and oxidative stress, were measured. After 12 weeks administration, diabetic rats received sitagliptin and exenatide showed significant elevation of serum NO level and reduction of ET-1 as well as inflammatory cytokines levels. Moreover, sitagliptin and exenatide significantly inhibited aortic oxidative stress level and improved aortic endothelial function in diabetic rats. Importantly, these drugs inhibited the protein expression level in AGE/RAGE-induced RhoA/ROCK/NF-κB/IκBα signaling pathways and activated AMPK in diabetic aorta. Finally, the target proteins of p-eNOS, iNOS, and ET-1, which reflect endothelial function, were also changed by these drugs. Our present study indicates that sitagliptin and exenatide administrations can improve endothelial function in diabetic aorta. Of note, RAGE/RhoA/ROCK and AMPK mediated NF-κB signaling pathways may be the intervention targets of these drugs to protect aortic endothelium. PMID:26758998

  5. Effects of consumption of main and side dishes with white rice on postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 responses in healthy Japanese men.

    PubMed

    Kameyama, Noriko; Maruyama, Chizuko; Matsui, Sadako; Araki, Risa; Yamada, Yuichiro; Maruyama, Taro

    2014-05-01

    The co-ingestion of protein, fat and fibre with carbohydrate reportedly affects postprandial glucose, insulin and incretin (glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)) responses. However, the effects of combination dishes with carbohydrate-rich foods at typically eaten amounts remain unclear. The objective of the present study was to evaluate the effects of consuming recommended amounts of side dishes with boiled white rice in the same meal on postprandial plasma glucose, insulin and incretin hormone responses. A total of nine healthy male volunteers consumed four different meals in a random order on separate days. The test meals were as follows: S, white rice; SM, addition of protein-rich main dishes to the S meal; SMF, addition of a fat-rich food item to the SM meal; SMFV, addition of vegetables to the SMF meal. Plasma glucose, GIP and GLP-1 and serum insulin concentrations were determined during a 3 h period after consumption of these meals. Postprandial glucose responses were lower after SMFV meal consumption than after consumption of the other meals. The incremental AUC for GIP (0-180 min) were largest after consumption of the SMF and SMFV meals, followed by that after SM meal consumption, and was smallest after S meal consumption (P< 0·05). Furthermore, we found GIP concentrations to be dose dependently increased by the fat content of meals of ordinary size, despite the amount of additional fat being small. In conclusion, the combination of recommended amounts of main and vegetable side dishes with boiled white rice is beneficial for lowering postprandial glucose concentrations, with an increased incretin response, when compared with white rice alone. PMID:24507870

  6. Effects of liraglutide, a glucagon-like peptide-1 analog, on left ventricular remodeling assessed by cardiac magnetic resonance imaging in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention.

    PubMed

    Nozue, Tsuyoshi; Yamada, Masayo; Tsunoda, Tetsuji; Katoh, Hiromasa; Ito, Shimpei; Iwaki, Taku; Michishita, Ichiro

    2016-08-01

    The clinical efficacy of glucagon-like peptide-1 (GLP-1) analogs in patients with acute myocardial infarction (AMI) is uncertain. The purpose of the present study was to evaluate the effects of the GLP-1 analog liraglutide on left ventricular (LV) remodeling in patients with AMI. We retrospectively evaluated the effects of liraglutide on LV remodeling assessed by cardiac magnetic resonance imaging (CMRI) in 15 patients with type 2 diabetes who were successfully treated with primary percutaneous coronary intervention (PCI) for AMI. Patients were divided into two groups based on their hypoglycemic medication: liraglutide use (group L; n = 6) or standard therapy (group S; n = 9). The CMRI findings in the early phase and at the 6-month follow-up were compared. At the 6-month follow-up, group S showed increases in LV end-diastolic (from 64 to 74 mL/m(2), p = 0.08) and end-systolic (from 38 to 45 mL/m(2), p = 0.13) volume indexes, whereas no such increase was observed in group L. The LV mass index (LVMI) was significantly smaller in group L than in group S at baseline (64 vs. 75 g/m(2), p = 0.05) and at follow-up (56 vs. 78 g/m(2), p = 0.009). Multivariate regression analysis showed that liraglutide use was an independent negative predictor of LVMI (β = -0.720, p = 0.003). In conclusion, liraglutide may be able to prevent the progression of LV remodeling and is associated with a lower LV mass in diabetic patients with AMI undergoing primary PCI. PMID:26293570

  7. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    PubMed

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models. PMID:25787141

  8. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence.

    PubMed

    Suchankova, P; Yan, J; Schwandt, M L; Stangl, B L; Caparelli, E C; Momenan, R; Jerlhag, E; Engel, J A; Hodgkinson, C A; Egli, M; Lopez, M F; Becker, H C; Goldman, D; Heilig, M; Ramchandani, V A; Leggio, L

    2015-01-01

    The hormone glucagon-like peptide-1 (GLP-1) regulates appetite and food intake. GLP-1 receptor (GLP-1R) activation also attenuates the reinforcing properties of alcohol in rodents. The present translational study is based on four human genetic association studies and one preclinical study providing data that support the hypothesis that GLP-1R may have a role in the pathophysiology of alcohol use disorder (AUD). Case-control analysis (N = 908) was performed on a sample of individuals enrolled in the National Institute on Alcohol Abuse and Alcoholism (NIAAA) intramural research program. The Study of Addiction: Genetics and Environment (SAGE) sample (N = 3803) was used for confirmation purposes. Post hoc analyses were carried out on data from a human laboratory study of intravenous alcohol self-administration (IV-ASA; N = 81) in social drinkers and from a functional magnetic resonance imaging study in alcohol-dependent individuals (N = 22) subjected to a Monetary Incentive Delay task. In the preclinical study, a GLP-1R agonist was evaluated in a mouse model of alcohol dependence to demonstrate the role of GLP-1R for alcohol consumption. The previously reported functional allele 168Ser (rs6923761) was nominally associated with AUD (P = 0.004) in the NIAAA sample, which was partially replicated in males of the SAGE sample (P = 0.033). The 168 Ser/Ser genotype was further associated with increased alcohol administration and breath alcohol measures in the IV-ASA experiment and with higher BOLD response in the right globus pallidus when receiving notification of outcome for high monetary reward. Finally, GLP-1R agonism significantly reduced alcohol consumption in a mouse model of alcohol dependence. These convergent findings suggest that the GLP-1R may be an attractive target for personalized pharmacotherapy treatment of AUD. PMID:26080318

  9. A Novel Glucagon-like Peptide-1 (GLP-1)/Glucagon Hybrid Peptide with Triple-acting Agonist Activity at Glucose-dependent Insulinotropic Polypeptide, GLP-1, and Glucagon Receptors and Therapeutic Potential in High Fat-fed Mice*

    PubMed Central

    Gault, Victor A.; Bhat, Vikas K.; Irwin, Nigel; Flatt, Peter R.

    2013-01-01

    Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA2]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA2]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA2]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA2]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA2]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA2]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA2]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes. PMID:24165127

  10. Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis.

    PubMed

    Chen, Song; Yin, Lei; Xu, Zheng; An, Feng-Mao; Liu, Ai-Ran; Wang, Ying; Yao, Wen-Bing; Gao, Xiang-Dong

    2016-01-26

    Our previous study has demonstrated that glucagon-like peptide-1 (GLP-1) receptor agonist could protect neurons from advanced glycation end products (AGEs) toxicity in vitro. However, further studies are still needed to clarify the molecular mechanism of this GLP-1 receptor -dependent action. The present study mainly focused on the effect of GLP-1 receptor agonists against the receptor for advanced glycation end products (RAGE) signal pathway and the mechanism underlying this effect of GLP-1. Firstly the data based on the SH-GLP-1R(+) and SH-SY5Y cells confirmed our previous finding that GLP-1 receptor could mediate the protective effect against AGEs. The assays of the protein activity and of the mRNA level revealed that apoptosis-related proteins such as caspase-3, caspase-9, Bax and Bcl-2 were involved. Additionally, we found that both GLP-1 and exendin-4 could reduce AGEs-induced reactive oxygen species (ROS) accumulation by suppressing the activity of nicotinamide adenine dinucleotide phosphate-oxidase. Interestingly, we also found that GLP-1 receptor activation could attenuate the abnormal expression of the RAGE in vitro and in vivo. Furthermore, based on the analysis of the protein expression and translocation level of transcription factor nuclear factor-κB (NF-κB), and the use of GLP-1 receptor antagonist exendin(9-39) and NF-κB inhibitor pyrrolidine dithiocarbamate, we found that the effect mediated by GLP-1 receptor could alleviate the over expression of RAGE induced by ligand via the suppression of NF-κB. In summary, the results indicated that inhibiting RAGE/oxidative stress was involved in the protective effect of GLP-1 on neuron cells against AGEs induced apoptosis. PMID:26679229

  11. Comparative Effects of the Endogenous Agonist Glucagon-Like Peptide-1 (GLP-1)-(7-36) Amide and the Small-Molecule Ago-Allosteric Agent “Compound 2” at the GLP-1 Receptor

    PubMed Central

    Coopman, Karen; Huang, Yan; Johnston, Neil; Bradley, Sophie J.; Wilkinson, Graeme F.

    2010-01-01

    Glucagon-like peptide-1 (GLP-1) mediates antidiabetogenic effects through the GLP-1 receptor (GLP-1R), which is targeted for the treatment of type 2 diabetes. Small-molecule GLP-1R agonists have been sought due to difficulties with peptide therapeutics. Recently, 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (compound 2) has been described as a GLP-1R allosteric modulator and agonist. Using human embryonic kidney-293 cells expressing human GLP-1Rs, we extended this work to consider the impact of compound 2 on G protein activation, Ca2+ signaling and receptor internalization and particularly to compare compound 2 and GLP-1 across a range of functional assays in intact cells. GLP-1 and compound 2 activated Gαs in cell membranes and increased cellular cAMP in intact cells, with compound 2 being a partial and almost full agonist, respectively. GLP-1 increased intracellular [Ca2+] by release from intracellular stores, which was mimicked by compound 2, with slower kinetics. In either intact cells or membranes, the orthosteric antagonist exendin-(9-39), inhibited GLP-1 cAMP generation but increased the efficacy of compound 2. GLP-1 internalized enhanced green fluorescent protein-tagged GLP-1Rs, but the speed and magnitude evoked by compound 2 were less. Exendin-(9-39) inhibited internalization by GLP-1 and also surprisingly that by compound 2. Compound 2 displays GLP-1R agonism consistent with action at an allosteric site, although an orthosteric antagonist increased its efficacy on cAMP and blocked compound 2-mediated receptor internalization. Full assessment of the properties of compound 2 was potentially hampered by damaging effects that were particularly manifest in either longer term assays with intact cells or in acute assays with membranes. PMID:20507928

  12. Effects of the glucagon-like polypeptide-1 analogue (Val8)GLP-1 on learning, progenitor cell proliferation and neurogenesis in the C57B/16 mouse brain.

    PubMed

    McGovern, Stephen F J; Hunter, Kerry; Hölscher, Christian

    2012-09-14

    Type 2 diabetes (T2DM) has been identified as a risk factor for Alzheimer's disease. Here, we tested the properties of the glucagon-like polypetide-1 (GLP-1) analogue (Val8)GLP-1, a drug originally developed as a treatment for T2DM at a range of doses (2.5 nmol; 25 nmol; 100 nmol; or 250 nmol/kg bw ip.) in an acute memory study in wild type C57B/l6 mice. We also tested (Val8)GLP-1 and the GLP-1 receptor antagonist exendin (9-39) in a chronic study (3 weeks at 25 nmol/kg bw ip. once-daily). We found that (Val8)GLP-1 crossed the blood brain barrier readily and that peripheral injection increased levels in the brain 30 min post-injection ip. but not 2h post-injection in rats. In the acute study, the low dose of 2.5 nmol/kg ip. enhanced motor activity in the open field task, while total distance travelled, exploratory behaviour and anxiety was not affected at any dose. Learning an object recognition task was not affected either. In the chronic study, no effect was observed in the open field assessment. The antagonist exendin (9-39) impaired object recognition learning and spatial learning in a water maze task, demonstrating the importance of GLP-1 signalling in memory formation. Locomotor activity was also affected in some cases. Blood sugar levels and insulin sensitivity was not affected in chronically treated mice. Neuronal stem cells and neurogenesis was enhanced by (Val8)GLP-1 in the dentate gyrus of wild type mice. The results demonstrate that (Val8)GLP-1 is safe in a range of doses, crosses the BBB and has potentially beneficial effects in the CNS by enhancing neurogenesis. PMID:22867941

  13. Teduglutide, a glucagon-like peptide 2 analogue: a novel protective agent with anti-apoptotic and anti-oxidant properties in mice with lung injury.

    PubMed

    Arda-Pirincci, Pelin; Oztay, Fusun; Bayrak, Bertan Boran; Yanardag, Refiye; Bolkent, Sehnaz

    2012-12-01

    Teduglutide is a long-acting synthetic analogue of human glucagon-like peptide-2 (GLP-2). GLP-2 regulates cell proliferation and apoptosis as well as normal physiology in the gastrointestinal tract. In the present study, possible cytoprotective and reparative effects of teduglutide were analyzed on a mouse model with lung injury induced by tumor necrosis factor-alpha (TNF-α) and actinomycin D (Act D). BALB/c mice were divided into six groups: control mice (I), mice injected intraperitoneally with 15 μg/kg TNF-α (II), 800 μg/kg Act D (III), Act D 2 min prior to TNF-α administration with the same doses (IV), mice injected subcutaneously with 200 μg/kg teduglutide every 12h for 10 consecutive days (V), and mice given Act D 2 min prior to TNF-α administration on day 11 after receiving teduglutide for 10 days (VI). The TNF-α/Act D administration made the lung a sensitive organ to damage. Mice lung subjected to TNF-α/Act D were characterized by the disruption of alveolar wall, induced pulmonary endothelial/epithelial cell apoptosis and expression of active caspase-3. These mice exhibited an increase in lipid peroxidation, glutathione levels, and activities of myeloperoxidase, superoxide dismutase, catalase, glutathione peroxidase and xanthine oxidase, as well as reduced tissue factor and sodium-potassium/ATPase activities. Teduglutide pretreatment regressed the structural damage, cell apoptosis and oxidative stress by reducing lipid peroxidation in mice received TNF-α/Act D. GLP-2 receptors were present on the cell membrane of type II pneumocytes and interstitial cells. Thus, teduglutide can be suggested as a novel protective agent, which possesses anti-apoptotic and anti-oxidant properties, against lung injury. PMID:23059393

  14. Discovery of (S)-2-Cyclopentyl-N-((1-isopropylpyrrolidin2-yl)-9-methyl-1-oxo-2,9-dihydro-1H-pyrrido[3,4-b]indole-4-carboxamide (VU0453379): A Novel, CNS Penetrant Glucagon-Like Peptide 1 Receptor (GLP-1R) Positive Allosteric Modulator (PAM)

    PubMed Central

    2015-01-01

    A duplexed, functional multiaddition high throughput screen and subsequent iterative parallel synthesis effort identified the first highly selective and CNS penetrant glucagon-like peptide-1R (GLP-1R) positive allosteric modulator (PAM). PAM (S)-9b potentiated low-dose exenatide to augment insulin secretion in primary mouse pancreatic islets, and (S)-9b alone was effective in potentiating endogenous GLP-1R to reverse haloperidol-induced catalepsy. PMID:25423411

  15. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Disease

    PubMed Central

    Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer’s disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer’s disease carrying different clinical APP/PS1 mutations, i.e. the ‘London’ (hAPPLon/PS1A246E) and ‘Swedish’ mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  16. Treatment With the Human Once-Weekly Glucagon-Like Peptide-1 Analog Taspoglutide in Combination With Metformin Improves Glycemic Control and Lowers Body Weight in Patients With Type 2 Diabetes Inadequately Controlled With Metformin Alone

    PubMed Central

    Nauck, Michael A.; Ratner, Robert E.; Kapitza, Christoph; Berria, Rachele; Boldrin, Mark; Balena, Raffaella

    2009-01-01

    OBJECTIVE To evaluate the efficacy and safety of taspoglutide (R1583/BIM51077), a human once-weekly glucagon-like peptide-1 analog, in patients with type 2 diabetes inadequately controlled with metformin. RESEARCH DESIGN AND METHODS Type 2 diabetic (n = 306) patients who failed to obtain glycemic control (A1C 7–9.5%) despite 1,500 mg metformin daily were randomly assigned to 8 weeks of double-blind subcutaneous treatment with placebo or taspoglutide, either 5, 10, or 20 mg once weekly or 10 or 20 mg once every 2 weeks, and followed for 4 additional weeks. All patients received their previously established dose of metformin throughout the study. Glycemic control was assessed by change in A1C (percent) from baseline. RESULTS Significantly greater (P < 0.0001) reductions in A1C from a mean ± SD baseline of 7.9 ± 0.7% were observed in all taspoglutide groups compared with placebo after 8 weeks of treatment: –1.0 ± 0.1% (5 mg once weekly), –1.2 ± 0.1% (10 mg once weekly), –1.2 ± 0.1% (20 mg once weekly), –0.9 ± 0.1% (10 mg Q2W), and –1.0 ± 0.1% (20 mg Q2W) vs. –0.2 ± 0.1% with placebo. After 8 weeks, body weight loss was significantly greater in the 10 mg (–2.1 ± 0.3 kg, P = 0.0035 vs. placebo) and 20 mg (–2.8 ± 0.3 kg, P < 0.0001) once-weekly groups and the 20 mg once every 2 weeks (–1.9 ± 0.3 kg, P = 0.0083) group than with placebo (–0.8 ± 0.3 kg). The most common adverse event was dose-dependent, transient, mild-to-moderate nausea; the incidence of hypoglycemia was very low. CONCLUSIONS Taspoglutide used in combination with metformin significantly improves fasting and postprandial glucose control and induces weight loss, with a favorable tolerability profile. PMID:19366970

  17. Glucagon Like Peptide-1 (GLP-1) Modulates OVA-Induced Airway Inflammation and Mucus Secretion Involving a Protein Kinase A (PKA)-Dependent Nuclear Factor-κB (NF-κB) Signaling Pathway in Mice

    PubMed Central

    Zhu, Tao; Wu, Xiao-ling; Zhang, Wei; Xiao, Min

    2015-01-01

    Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-κB (NF-κB) p65 were also measured by Western blotting. Further, NF-κB p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-κB p65 activation and NF-κB p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-κB in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future. PMID:26343632

  18. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  19. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients

    PubMed Central

    Jeppesen, P B; Sanguinetti, E L; Buchman, A; Howard, L; Scolapio, J S; Ziegler, T R; Gregory, J; Tappenden, K A; Holst, J; Mortensen, P B

    2005-01-01

    Background and aims: Glucagon-like peptide 2 (GLP-2) may improve intestinal absorption in short bowel syndrome (SBS) patients with an end jejunostomy. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant GLP-2 analogue, prolongs the intestinotrophic properties of GLP-2 in animal models. The safety and effect of teduglutide were investigated in SBS patients with and without a colon in continuity. Methods: Teduglutide was given subcutaneously for 21 days once or twice daily to 16 SBS patients in the per protocol investigational group, 10 with end jejunostomy (doses of 0.03 (n = 2), 0.10 (n = 5), or 0.15 (n = 3) mg/kg/day), one with <50% colon in continuity (dose 0.03 mg/kg/day), and five with ≥50% colon in continuity (dose 0.10 mg/kg/day). Nutrient balance studies, D-xylose tests, and intestinal mucosa biopsies were performed at baseline, on the last three days of treatment, and after three weeks of follow up. Pre-study fasting native GLP-2 levels were determined for the five patients with ≥50% colon in continuity. Results: Pooled across groups and compared with baseline, teduglutide increased absolute (+743 (477) g/day; p<0.001) and relative (+22 (16)%; p<0.001) wet weight absorption, urine weight (+555 (485) g/day; p<0.001), and urine sodium excretion (+53 (40) mmol/day; p<0.001). Teduglutide decreased faecal wet weight (−711 (734) g/day; p = 0.001) and faecal energy excretion (−808 (1453) kJ/day (−193 (347) kcal/day); p = 0.040). In SBS patients with end jejunostomy, teduglutide significantly increased villus height (+38 (45)%; p = 0.030), crypt depth (+22 (18)%; p = 0.010), and mitotic index (+115 (108)%; p = 0.010). Crypt depth and mitotic index did not change in colonic biopsies from SBS patients with colon in continuity. The most common side effects were enlargement of the stoma nipple and mild lower leg oedema. The improvements in intestinal absorption and decreases in faecal excretion noted after treatment had

  20. Lamprey proglucagon and the origin of glucagon-like peptides.

    PubMed

    Irwin, D M; Huner, O; Youson, J H

    1999-11-01

    We characterized two proglucagon cDNAs from the intestine of the sea lamprey Petromyzon marinus. As in other vertebrates, sea lamprey proglucagon genes encode three glucagon-like sequences, glucagon, and glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). This observation indicates that all three glucagon-like sequences encoded by the proglucagon gene originated prior to the divergence of jawed and jawless vertebrates. Estimates of the rates of evolution for the glucagon-like sequences suggest that glucagon originated first, about 1 billion years ago, while GLP-1 and GLP-2 diverged from each other about 700 MYA. The two sea lamprey intestinal proglucagon cDNAs have differing coding potential. Proglucagon I cDNA encodes the previously characterized glucagon and the glucagon-like peptide GLP-1, while proglucagon II cDNA encodes a predicted GLP-2 and, possibly, a glucagon. The existence of two proglucagon cDNAs which differ with regard to their potential to encode glucagon-like peptides suggests that the lamprey may use differential gene expression as a third mechanism, in addition to alternative proteolytic processing and mRNA splicing, to regulate the production of proglucagon-derived peptides. PMID:10555286

  1. Metabolism and excretion of the once-daily human glucagon-like peptide-1 analog liraglutide in healthy male subjects and its in vitro degradation by dipeptidyl peptidase IV and neutral endopeptidase.

    PubMed

    Malm-Erjefält, Monika; Bjørnsdottir, Inga; Vanggaard, Jan; Helleberg, Hans; Larsen, Uffe; Oosterhuis, Berend; van Lier, Jan Jaap; Zdravkovic, Milan; Olsen, Anette K

    2010-11-01

    Liraglutide is a novel once-daily human glucagon-like peptide (GLP)-1 analog in clinical use for the treatment of type 2 diabetes. To study metabolism and excretion of [(3)H]liraglutide, a single subcutaneous dose of 0.75 mg/14.2 MBq was given to healthy males. The recovered radioactivity in blood, urine, and feces was measured, and metabolites were profiled. In addition, [(3)H]liraglutide and [(3)H]GLP-1(7-37) were incubated in vitro with dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase (NEP) to compare the metabolite profiles and characterize the degradation products of liraglutide. The exposure of radioactivity in plasma (area under the concentration-time curve from 2 to 24 h) was represented by liraglutide (≥89%) and two minor metabolites (totaling ≤11%). Similarly to GLP-1, liraglutide was cleaved in vitro by DPP-IV in the Ala8-Glu9 position of the N terminus and degraded by NEP into several metabolites. The chromatographic retention time of DPP-IV-truncated liraglutide correlated well with the primary human plasma metabolite [GLP-1(9-37)], and some of the NEP degradation products eluted very close to both plasma metabolites. Three minor metabolites totaling 6 and 5% of the administered radioactivity were excreted in urine and feces, respectively, but no liraglutide was detected. In conclusion, liraglutide is metabolized in vitro by DPP-IV and NEP in a manner similar to that of native GLP-1, although at a much slower rate. The metabolite profiles suggest that both DPP-IV and NEP are also involved in the in vivo degradation of liraglutide. The lack of intact liraglutide excreted in urine and feces and the low levels of metabolites in plasma indicate that liraglutide is completely degraded within the body. PMID:20709939

  2. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel

    PubMed Central

    Zhou, Hui-Ren; Pestka, James J.

    2015-01-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca2+ signaling. The results indicate for the first time that DON elicits Ca2-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-17-36 amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations—I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca2+-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca2+ stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca2+ channel-facilitated extracellular Ca2+ entry, (3) amplification of extracellular Ca2+ entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca2+-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models. PMID:25787141

  3. Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated Glucagon-Like Peptide 1 (GLP-1) analogue.

    PubMed

    Cowper, Ben; Sze, Tsz Mei; Premdjee, Bhavesh; Bongat White, Aileen F; Hacking, Andrew; Macmillan, Derek

    2015-02-21

    3/4-Mercaptobenzyl sulfonates were investigated as aryl thiol catalysts for native chemical ligation (NCL). Whilst catalysing NCL processes at a similar rate to 4-mercaptophenyl acetic acid (MPAA), the increased polarity and solubility of 3-mercaptobenzyl sulfonate in particular may favour its selection as NCL catalyst in many instances. PMID:25605668

  4. 99mTc Labeled Glucagon-Like Peptide-1-Analogue (99mTc-GLP1) Scintigraphy in the Management of Patients with Occult Insulinoma

    PubMed Central

    Sowa-Staszczak, Anna; Trofimiuk-Müldner, Małgorzata; Stefańska, Agnieszka; Tomaszuk, Monika; Buziak-Bereza, Monika; Gilis-Januszewska, Aleksandra; Jabrocka-Hybel, Agata; Głowa, Bogusław; Małecki, Maciej; Bednarczuk, Tomasz; Kamiński, Grzegorz; Kowalska, Aldona; Mikołajczak, Renata; Janota, Barbara; Hubalewska-Dydejczyk, Alicja

    2016-01-01

    Introduction The aim of this study was to assess the utility of [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 scintigraphy in the management of patients with hypoglycemia, particularly in the detection of occult insulinoma. Materials and Methods Forty patients with hypoglycemia and increased/confusing results of serum insulin and C-peptide concentration and negative/inconclusive results of other imaging examinations were enrolled in the study. In all patients GLP-1 receptor imaging was performed to localise potential pancreatic lesions. Results Positive results of GLP-1 scintigraphy were observed in 28 patients. In 18 patients postsurgical histopathological examination confirmed diagnosis of insulinoma. Two patients had contraindications to the surgery, one patient did not want to be operated. One patient, who presented with postprandial hypoglycemia, with positive result of GLP-1 imaging was not qualified for surgery and is in the observational group. Eight patients were lost for follow up, among them 6 patients with positive GLP-1 scintigraphy result. One patient with negative scintigraphy was diagnosed with malignant insulinoma. In two patients with negative scintigraphy Munchausen syndrome was diagnosed (patients were taking insulin). Other seven patients with negative results of 99mTcGLP-1 scintigraphy and postprandial hypoglycemia with C-peptide and insulin levels within the limits of normal ranges are in the observational group. We would like to mention that 99mTc-GLP1-SPECT/CT was also performed in 3 pts with nesidioblastosis (revealing diffuse tracer uptake in two and a focal lesion in one case) and in two patients with malignant insulinoma (with the a focal uptake in the localization of a removed pancreatic headin one case and negative GLP-1 1 scintigraphy in the other patient). Conclusions 99mTc-GLP1-SPECT/CT could be helpful examination in the management of patients with hypoglycemia enabling proper localization of the pancreatic lesion and effective surgical treatment. This imaging technique may eliminate the need to perform invasive procedures in case of occult insulinoma. PMID:27526057

  5. Glucagon-like peptide 1: a potent glycogenic hormone.

    PubMed

    Valverde, I; Morales, M; Clemente, F; López-Delgado, M I; Delgado, E; Perea, A; Villanueva-Peñacarrillo, M L

    1994-08-01

    GLP-1(7-36)amide is an insulinotropic peptide derived from the intestinal post-translational proglucagon process, the release of which is increased mainly after a carbohydrate meal; also, its anti-diabetogenic effect in normal and diabetic states has been reported. In this study, GLP-1(7-36)amide stimulates the formation of glycogen from glucose in isolated rat hepatocytes, such a glycogenic effect being achieved with physiological concentrations of the peptide. The GLP-1(7-36)amide-induced glycogenesis is abolished by glucagon, and it is accompanied by stimulation of the glycogen synthase alpha activity and by a decrease in the basal and glucagon-stimulated cyclic AMP content. These findings could explain, at least in part, the GLP-1(7-36)amide insulin-independent plasma glucose lowering effect. PMID:8050588

  6. Efficacy and safety of the glucagon-like peptide-1 receptor agonist liraglutide added to insulin therapy in poorly regulated patients with type 1 diabetes—a protocol for a randomised, double-blind, placebo-controlled study: The Lira-1 study

    PubMed Central

    Dejgaard, Thomas Fremming; Knop, Filip Krag; Tarnow, Lise; Frandsen, Christian Seerup; Hansen, Tanja Stenbæk; Almdal, Thomas; Holst, Jens Juul; Madsbad, Sten; Andersen, Henrik Ullits

    2015-01-01

    Introduction Intensive insulin therapy is recommended for the treatment of type 1 diabetes (T1D). Hypoglycaemia and weight gain are the common side effects of insulin treatment and may reduce compliance. In patients with insulin-treated type 2 diabetes, the addition of glucagon-like peptide-1 receptor agonist (GLP-1RA) therapy has proven effective in reducing weight gain and insulin dose. The present publication describes a protocol for a study evaluating the efficacy and safety of adding a GLP-1RA to insulin treatment in overweight patients with T1D in a randomised, double-blinded, controlled design. Methods and analysis In total, 100 patients with type 1 diabetes, poor glycaemic control (glycated haemoglobin (HbA1c) >8%) and overweight (body mass index >25 kg/m2) will be randomised to either liraglutide 1.8 mg once daily or placebo as an add-on to intensive insulin therapy in this investigator initiated, double-blinded, placebo-controlled parallel study. The primary end point is glycaemic control as measured by changes in HbA1c. Secondary end points include changes in the insulin dose, hypoglyacemic events, body weight, lean body mass, fat mass, food preferences and adverse events. Glycaemic excursions, postprandial glucagon levels and gastric emptying rate during a standardised liquid meal test will also be studied. Ethics and dissemination The study is approved by the Danish Medicines Authority, the Regional Scientific-Ethical Committee of the Capital Region of Denmark and the Data Protection Agency. The study will be carried out under the surveillance and guidance of the good clinical practice (GCP) unit at Copenhagen University Hospital Bispebjerg in accordance with the ICH-GCP guidelines and the Helsinki Declaration. Trial registration number NCT01612468. PMID:25838513

  7. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion.

    PubMed

    Jafri, Laila; Saleem, Samreen; Calderwood, Danielle; Gillespie, Anna; Mirza, Bushra; Green, Brian D

    2016-04-01

    Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in pGIP/neo STC-1 cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-D-glycopyranoside and QA-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists. PMID:26820940

  8. Dibutyl Phthalate Exposure Disrupts Evolutionarily Conserved Insulin and Glucagon-Like Signaling in Drosophila Males.

    PubMed

    Williams, Michael J; Wiemerslage, Lyle; Gohel, Priya; Kheder, Sania; Kothegala, Lakshmi V; Schiöth, Helgi B

    2016-06-01

    Phthalate diesters are commonly used as industrial plasticisers, as well as in cosmetics and skin care products, as a result people are constantly exposed to these xenobiotics. Recent epidemiological studies have found a correlation between circulating phthalate levels and type 2 diabetes, whereas animal studies indicate that phthalates are capable of disrupting endocrine signaling. Nonetheless, how phthalates interfere with metabolic function is still unclear. Here, we show that feeding Drosophila males the xenobiotic dibutyl phthalate (DBP) affects conserved insulin- and glucagon-like signaling. We report that raising flies on food containing DBP leads to starvation resistance, increased lipid storage, hyperglycemia, and hyperphagia. We go on to show that the starvation-resistance phenotype can be rescued by overexpression of the glucagon analogue adipokinetic hormone (Akh). Furthermore, although acute DBP exposure in adult flies is able to affect insulin levels, only chronic feeding influences Akh expression. We establish that raising flies on DBP-containing food or feeding adults DBP food affects the expression of homologous genes involved in xenobiotic and lipid metabolism (AHR [Drosophila ss], NR1I2 [Hr96], ABCB1 [MDR50], ABCC3 [MRP], and CYP3A4 [Cyp9f2]). Finally, we determined that the expression of these genes is also influenced by Akh. Our results provide comprehensive evidence that DBP can disrupt metabolism in Drosophila males, by regulating genes involved in glucose, lipid, and xenobiotic metabolism. PMID:27100621

  9. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes.

    PubMed Central

    Yu, JingJia; Wang, Xiaojing; Liu, Dongmei; Zhao, Lin; Sun, Lihao; Zhao, Hongyan; Tao, Bei; Liu, Jianmin

    2015-01-01

    Recently, a number of studies have demonstrated the potential beneficial role for novel anti-diabetic GLP-1 receptor agonists (GLP-1RAs) in the skeleton metabolism in diabetic rodents and patients. In this study, we evaluated the impacts of the synthetic GLP-1RA Liraglutide on bone mass and quality in osteoporotic rats induced by ovariectomy (OVX) but without diabetes, as well as its effect on the adipogenic and osteoblastogenic differentiation of bone marrow stromal cells (BMSCs). Three months after sham surgery or bilateral OVX, eighteen 5-month old female Wistar rats were randomly divided into three groups to receive the following treatments for 2 months: (1) Sham + normal saline; (2) OVX + normal saline; and (3) OVX + Liraglutide (0.6 mg/day). As revealed by micro-CT analysis, Liraglutide improved trabecular volume, thickness and number, increased BMD, and reduced trabecular spacing in the femurs in OVX rats; similar results were observed in the lumbar vertebrae of OVX rats treated with Liraglutide. Following in vitro treatment of rat and human BMSCs with 10 nM Liraglutide, there was a significant increase in the mRNA expression of osteoblast-specific transcriptional factor Runx2 and the osteoblast markers alkaline phosphatase (ALP) and collagen α1 (Col-1), but a significant decrease in peroxisome proliferator-activated receptor γ (PPARγ). In conclusion, our results indicate that the anti-diabetic drug Liraglutide can exert a bone protective effect even in non-diabetic osteoporotic OVX rats. This protective effect is likely attributable to the impact of Liraglutide on the lineage fate determination of BMSCs. PMID:26177280

  10. Inositolphosphoglycans are possible mediators of the glucagon-like peptide 1 (7-36)amide action in the liver.

    PubMed

    Trapote, M A; Clemente, F; Galera, C; Morales, M; Alcántara, A I; López-Delgado, M I; Villanueva-Peñacarrillo, M L; Valverde, I

    1996-02-01

    A potent glycogenic effect for GLP-1(7-36)amide has been found in rat hepatocytes and skeletal muscle, and the specific receptors detected for GLP-1(7-36)amide in these tissue membranes do not seem to be associated to adenylate cyclase. On the other hand, inositolphosphoglycan molecules (IPGs) have been implicated as second messengers in the action of insulin. In a human hepatoma cell line (HEP G-2), we have observed the presence of [125I]GLP-1(7-36)amide specific binding, and a stimulatory effect of the peptide upon glycogen synthesis, confirming the findings in isolated rat hepatocytes. Also, GLP-1(7-36)amide modulates the cell content of radiolabelled glycosylphosphatidylinositols (GPIs), in the same manner as insulin, indicating hydrolysis of GPIs and an immediate and short-lived generation of IPGs. Thus, IPGs could be mediators in the GLP-1(7-36)amide glycogenic action in the liver. PMID:8778163

  11. Glucagon-like peptide 2 therapy reduces negative effects of diarrhea on calf gut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damage to the intestinal epithelium caused by diarrhea reduces nutrient absorption and growth rate, and may have long-term effects on the young animal. Glucagon-like peptide 2 (GLP-2) is an intestinotropic hormone that improves gut integrity and nutrient absorption, and has antioxidant effects in th...

  12. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following in...

  13. Intestinal Permeability and Glucagon-Like Peptide-2 in Children with Autism: A Controlled Pilot Study

    ERIC Educational Resources Information Center

    Robertson, Marli A.; Sigalet, David L.; Holst, Jens J.; Meddings, Jon B.; Wood, Julie; Sharkey, Keith A.

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response to feeding. Results were compared with sibling controls…

  14. Glucagon-like peptide-2 increases small intestinal mass of calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid hormone secreted from the gastrointestinal tract in response to luminal nutrients that potently increases small intestinal mass in non-ruminants. However, the effects of GLP-2 on small intestinal mass and morphology of ruminants is unknown. Eight Ho...

  15. Glucagon-like peptide 2 may mediate growth and development of the bovine gastrointestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide 2 (GLP-2), secreted by enteroendocrine cells, promotes growth, reduces apoptosis, and enhances blood flow, nutrient absorption, and barrier function in intestinal epithelium of monogastric species. Regulatory functions of GLP-2 in the ruminant gastrointestinal tract (GIT) are u...

  16. A novel, long-acting glucagon-like peptide receptor-agonist: dulaglutide

    PubMed Central

    Gurung, Tara; Shyangdan, Deepson S; O’Hare, Joseph Paul; Waugh, Norman

    2015-01-01

    Background Dulaglutide is a new, long-acting glucagon-like peptide analogue in the treatment of type 2 diabetes. It is available in two doses, 0.75 and 1.5 mg, given by injection once weekly. This systematic review reports the effectiveness and safety of dulaglutide in type 2 diabetes in dual and triple therapy. Methods MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, and conference abstracts were searched from 2005 to August 2014, and updated in January 2015. Company websites and references of included studies were checked for potentially relevant studies. European Medicines Agency and US Food and Drug Administration websites were searched. Results Four trials were included. All were manufacturer-funded randomized controlled trials from the Assessment of Weekly Administration of Dulaglutide in Diabetes (AWARD) program. AWARD-1 compared dulaglutide 1.5 mg against exenatide 10 µg twice daily and placebo, AWARD-2 compared dulaglutide 0.75 and 1.5 mg against insulin glargine, AWARD-5 compared dulaglutide 0.75 and 1.5 mg against sitagliptin 100 mg and placebo, and AWARD-6 compared dulaglutide 1.5 mg against liraglutide 1.8 mg. The duration of follow-up in the trials ranged from 26 to 104 weeks. The primary outcome of all the included trials was change in HbA1c. At 26 weeks, greater HbA1c reductions were seen with dulaglutide than with twice daily exenatide (dulaglutide 1.5/0.75 mg: −1.5%/−1.3%; exe: 0.99%) and sitagliptin (1.5/0.75 mg −1.22%/−1.01%; sitagliptin: −0.6%). HbA1c change was greater with dulaglutide 1.5 mg (−1.08%) than with glargine (−0.63%), but not with dulaglutide 0.75 mg (−0.76%). Dulaglutide 1.5 mg was found to be noninferior to liraglutide 1.8 mg. More patients treated with dulaglutide achieved HbA1c targets of <7% and ≤6.5%. Reduction in weight was greater with dulaglutide than with sitagliptin and exenatide. Hypoglycemia was infrequent. The main adverse events were nausea, diarrhea, and vomiting. Conclusion

  17. Characterization of the hypotensive effects of glucagon-like peptide-2 in anesthetized rats.

    PubMed

    Iwai, Takashi; Kaneko, Maki; Sasaki-Hamada, Sachie; Oka, Jun-Ichiro

    2013-08-29

    Glucagon-like peptide-2 (GLP-2) is a proglucagon-derived peptide released from enteroendocrine cells and neurons. We recently reported that GLP-2 induced hypotension. In the present study, we characterized the mechanisms of GLP-2-induced hypotension. GLP-2 was administered peripherally or centrally to male Wistar rats anesthetized with urethane and α-chloralose. The rats were vagotomized or systemically pretreated with atropine, prazosin, or propranolol before the GLP-2 administration. The central and peripheral administration of GLP-2 reduced mean arterial blood pressure (MAP). The maximum change of MAP (maximum ΔMAP) was reduced by vagotomy or prazosin, but not propranolol. The effects of the central but not peripheral administration of GLP-2 were reduced by atropine. These results suggest that GLP-2 modulates vagal afferent inputs and inhibits the sympathetic nervous system in the brain to induce hypotension. PMID:23867714

  18. Comparative physiology of glucagon-like peptide-2 – Implications and applications for production and health of ruminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L-cells. Studies conducted in humans, rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in th...

  19. Comparative physiology of glucagon-like peptide 2 - Implications and applications for production and health of ruminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide 2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L-cells. Studies conducted in humans, rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in th...

  20. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiotaderived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine...

  1. Glucagon-like peptide-2 (GLP-2) increases small intestinal blood flow and mucosal growth in ruminating calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2), increases small intestinal mass and blood flow in non-ruminants, but its effect in ruminants is unknown. Eight Holstein calves with an ultrasonic flow probe around the superior mesenteric artery (SMA), and catheters in the carotid artery and mesenteric vein, were pa...

  2. Glucagon-like peptide-2 activates the mTOR signaling through a PI3-kinase-Akt-dependent pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract. We have shown that GLP-2-stimulated mucosal growth occurred in vivo with an increased rate of protein synthesis in the neonatal intestine, which was associated with up-regu...

  3. Glucagon-like peptide-2 increases splanchnic blood flow acutely in calves but loses effectiveness with chronic exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid hormone secreted from the gastrointestinal tract that rapidly increases small intestinal blood flow. No experiments have been conducted evaluating the blood flow response to GLP-2 after extended administration, nor have investigations been performed...

  4. The glucagon-like peptide 2 pathway may mediate growth and development of the bovine gastrointestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide 2 (GLP-2), secreted by enteroendocrine cells, has a number of physiological effects on the intestine of monogastric species, including promotion of growth of intestinal epithelium, reduction of epithelial cell apoptosis, and enhancement of intestinal blood flow, nutrient absorp...

  5. Glucagon-like peptide 2 therapy reduces the negative impacts the proinflammatory response in the gut of calves with coccidiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damage to the intestinal epithelium reduces nutrient absorption and animal growth, and can have negative long-term health effects on livestock. The intestinotropic hormone glucagon-like peptide 2 (GLP-2) contributes to gut integrity, reduces inflammation, and improves nutrient absorption. The presen...

  6. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestina...

  7. Alveolar Rhabdomyosarcoma in a 69-Year-Old Woman Receiving Glucagon-Like Peptide-2 Therapy

    PubMed Central

    Zyczynski, Laura E.; McHugh, Jonathan B.; Gribbin, Thomas E.; Schuetze, Scott M.

    2015-01-01

    A 69-year-old woman was diagnosed with alveolar rhabdomyosarcoma (ARMS) of the nasopharynx. She has a history of catastrophic thromboembolic event in the abdomen that caused short-gut syndrome and dependence on total parenteral nutrition (TPN) twelve hours per day. She was treated for short-gut syndrome with teduglutide, a glucagon-like peptide-2 (GLP-2) analog, which led to reduction of TPN requirements. However, a few months later, she developed metastatic alveolar rhabdomyosarcoma. Though a causative relationship is unlikely between the peptide and ARMS due to the brief time course between teduglutide therapy and sarcoma diagnosis, neoplastic growth may have been accelerated by the GLP-2 analog, causing release of IGF-1. The transmembrane receptor for IGF-1 is frequently overexpressed in ARMS and is implicated in cell proliferation and metastatic behavior. This case describes a rare incidence of metastatic alveolar rhabdomyosarcoma in a sexagenarian and possibly the first case reported associated with the use of teduglutide. Teduglutide was discontinued due to a potential theoretical risk of acceleration of sarcoma growth, and the patient's rhabdomyosarcoma is in remission following sarcoma chemotherapy. PMID:26266067

  8. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2.

    PubMed

    Drucker, Daniel J; Yusta, Bernardo

    2014-01-01

    Glucagon-like peptide-2 (GLP-2) is a 33-amino-acid proglucagon-derived peptide secreted from enteroendocrine L cells. GLP-2 circulates at low basal levels in the fasting period, and plasma levels rise rapidly after food ingestion. Renal clearance and enzymatic inactivation control the elimination of bioactive GLP-2. GLP-2 increases mesenteric blood flow and activates proabsorptive pathways in the gut, facilitating nutrient absorption. GLP-2 also enhances gut barrier function and induces proliferative and cytoprotective pathways in the small bowel. The actions of GLP-2 are transduced via a single G protein-coupled receptor (GLP-2R), expressed predominantly within the gastrointestinal tract. Disruption of GLP-2R signaling increases susceptibility to gut injury and impairs the adaptive mucosal response to refeeding. Sustained augmentation of GLP-2R signaling reduces the requirement for parenteral nutrition in human subjects with short-bowel syndrome. Hence GLP-2 integrates nutrient-derived signals to optimize mucosal integrity and energy absorption. PMID:24161075

  9. Angioplastic necrolytic migratory erythema. Unique association of necrolytic migratory erythema, extensive angioplasia, and high molecular weight glucagon-like polypeptide

    SciTech Connect

    Franchimont, C.; Pierard, G.E.; Luyckx, A.S.; Gerard, J.; Lapiere, C.M.

    1982-12-01

    A diabetic patient developed necrolytic migratory erythema with extensive angioplasia and high molecular weight glucagon-like polypeptide. There was no associated neoplasm such as glucagonoma. Lesions in the skin were studied by standard optical microscopy and by radioautography after incorporation of tritiated thymidine. Alterations in the skin begin as focal necrosis in the epidermis and in epithelial structures of adnexa, followed by marked angioplasia and a superficial and deep perivascular dermatitis.

  10. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance.

    PubMed

    Tella, Sri Harsha; Rendell, Marc S

    2015-06-01

    Glucagon-like polypeptide (GLP-1) receptor agonist treatment has multiple effects on glucose metabolism, supports the β cell, and promotes weight loss. There are now five GLP-1 agonists in clinical use with more in development. GLP-1 treatment typically can induce a lowering of hemoglobin A1c (HbA1c) of 0.5-1.5% over time with weight loss of 2-5%. In some individuals, a progressive loss of weight occurs. There is evidence that GLP-1 therapy opposes the loss of β cells which is a feature of type 2 diabetes. The chief downside of GLP-1 treatment is the gastrointestinal motility disturbance which is one of the modes of action of the hormone; significant nausea, vomiting, and diarrhea may lead to discontinuation of treatment. Although daily injection of GLP-1 agents is successful, the development of extended release preparations allows for injection once weekly, and perhaps much longer in the future. The indication for GLP-1 use is diabetes, but now, liraglutide has been approved for primary treatment of obesity. When oral agents fail to control glucose levels in type 2 diabetes, there is a choice between long-acting insulin and GLP-1 agonists as additional treatments. The lowering of HbA1c by either modality is equivalent in most studies. Patients lose weight with GLP-1 treatment and gain weight on insulin. There is a lower incidence of hypoglycemia with GLP-1 therapy but a much higher incidence of gastrointestinal complaints. Insulin dosing is flexible while GLP-1 agents have historically been administered at fixed dosages. Now, the use of combined long-acting insulin and GLP-1 agonists is promising a major therapeutic change. Combined therapy takes advantage of the benefits of both insulin and GLP-1 agents. Furthermore, direct admixture of both in the same syringe will permit flexible dosing, improvement of glucose levels, and reduction of both hypoglycemia and gastrointestinal side effects. PMID:26137215

  11. Glucagon-Like Peptide-2 Improves Both Acute and Late Experimental Radiation Enteritis in the Rat

    SciTech Connect

    Torres, Sandra

    2007-12-01

    Purpose: Acute and/or chronic radiation enteritis can develop after radiotherapy for pelvic cancers. Experimental and clinical observations have provided evidence of a role played by acute mucosal disruption in the appearance of late effects. The therapeutic potential of acute administration of glucagon-like peptide-2 (GLP-2) against acute and chronic intestinal injury was investigated in this study. Methods and Materials: Intestinal segments were surgically exteriorized and exposed to 16.7 or 19 Gy X-rays. The rats were treated once daily with vehicle or a protease-resistant GLP-2 derivative for 14 days before irradiation, with or without 7 days of GLP-2 after treatment. Macroscopic and microscopic observations were made 2 and 15 weeks after radiation exposure. Results: In the control animals, GLP-2 induced an increase in intestinal mucosal mass, along with an increase in villus height and crypt depth. GLP-2 administration before and after irradiation completely prevented the acute radiation-induced mucosal ulcerations observed after exposure to 16.7 Gy. GLP-2 treatment strikingly reduced the late radiation damage observed after 19 Gy irradiation. Microscopic observations revealed an improved organization of the intestinal wall and an efficient wound healing process, especially in the smooth muscle layers. Conclusion: GLP-2 has a clear therapeutic potential against both acute and chronic radiation enteritis. This therapeutic effect is mediated through an increased mucosal mass before tissue injury and the stimulation of still unknown mechanisms of tissue response to radiation damage. Although these preliminary results still need to be confirmed, GLP-2 might be a way to limit patient discomfort during radiotherapy and reduce the risk of consequential late effects.

  12. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats

    PubMed Central

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-01

    AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. PMID:25593463

  13. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance

    PubMed Central

    Tella, Sri Harsha

    2015-01-01

    Glucagon-like polypeptide (GLP-1) receptor agonist treatment has multiple effects on glucose metabolism, supports the β cell, and promotes weight loss. There are now five GLP-1 agonists in clinical use with more in development. GLP-1 treatment typically can induce a lowering of hemoglobin A1c (HbA1c) of 0.5–1.5% over time with weight loss of 2–5%. In some individuals, a progressive loss of weight occurs. There is evidence that GLP-1 therapy opposes the loss of β cells which is a feature of type 2 diabetes. The chief downside of GLP-1 treatment is the gastrointestinal motility disturbance which is one of the modes of action of the hormone; significant nausea, vomiting, and diarrhea may lead to discontinuation of treatment. Although daily injection of GLP-1 agents is successful, the development of extended release preparations allows for injection once weekly, and perhaps much longer in the future. The indication for GLP-1 use is diabetes, but now, liraglutide has been approved for primary treatment of obesity. When oral agents fail to control glucose levels in type 2 diabetes, there is a choice between long-acting insulin and GLP-1 agonists as additional treatments. The lowering of HbA1c by either modality is equivalent in most studies. Patients lose weight with GLP-1 treatment and gain weight on insulin. There is a lower incidence of hypoglycemia with GLP-1 therapy but a much higher incidence of gastrointestinal complaints. Insulin dosing is flexible while GLP-1 agents have historically been administered at fixed dosages. Now, the use of combined long-acting insulin and GLP-1 agonists is promising a major therapeutic change. Combined therapy takes advantage of the benefits of both insulin and GLP-1 agents. Furthermore, direct admixture of both in the same syringe will permit flexible dosing, improvement of glucose levels, and reduction of both hypoglycemia and gastrointestinal side effects. PMID:26137215

  14. Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts.

    PubMed

    Bulut, Kerem; Pennartz, Christian; Felderbauer, Peter; Meier, Juris J; Banasch, Matthias; Bulut, Daniel; Schmitz, Frank; Schmidt, Wolfgang E; Hoffmann, Peter

    2008-01-14

    Glucagon like peptide-2 (GLP-2) exerts intestinotrophic actions, but the underlying mechanisms are still a matter of debate. Recent studies demonstrated the expression of the GLP-2 receptor on fibroblasts located in the subepithelial tissue, where it might induce the release of growth factors such as keratinocyte growth factor (KGF) or vascular endothelial growth factor (VEGF). Therefore, in the present studies we sought to elucidate the downstream mechanisms involved in improved intestinal adaptation by GLP-2. Human colonic fibroblasts (CCD-18Co), human colonic cancer cells (Caco-2 cells) and rat ileum IEC-18 cells were used. GLP-2 receptor mRNA expression was determined using real time RT-PCR. Conditioned media from CCD-18Co cells were obtained following incubation with GLP-2 (50-250 nM) for 24 h. Cell viability was assessed by a 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide (MTT)-assay, and wound healing was determined with an established migration-assay. Transforming Growth Factor beta (TGF-beta), VEGF and KGF mRNA levels were determined by RT-PCR. Protein levels of VEGF and TGF-beta in CCD-18Co cells following GLP-2 stimulation were determined using ELISA. Neutralizing TGF-beta and VEGF-A antibodies were utilized to assess the role of TGF-beta and VEGF-A in the process of wound healing. GLP-2 receptor expression was detected in CCD-18Co cells. Conditioned media from CCD-18Co cells dose-dependently induced proliferation in Caco-2 cells, but not in IEC-18 cells. Conditioned media also enhanced cell migration in IEC-18 cells (P<0.01), while migration was even inhibited in Caco-2 cells (P<0.0012). GLP-2 significantly stimulated mRNA expression of VEGF and TGF-beta, but not of KGF in CCD-18Co. The migratory effects of GLP-2 were completely abolished in the presence of TGF-beta and VEGF-A antibodies. GLP-2 exerts differential effects on the epithelium of the small intestine and the colon. Thus, in small intestinal cells GLP-2 stimulates wound

  15. Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2).

    PubMed

    Ghanem, Simona S; Heinrich, Garrett; Lester, Sumona G; Pfeiffer, Verena; Bhattacharya, Sumit; Patel, Payal R; DeAngelis, Anthony M; Dai, Tong; Ramakrishnan, Sadeesh K; Smiley, Zachary N; Jung, Dae Y; Lee, Yongjin; Kitamura, Tadahiro; Ergun, Suleyman; Kulkarni, Rohit N; Kim, Jason K; Giovannucci, David R; Najjar, Sonia M

    2016-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) regulates food intake as demonstrated by hyperphagia in mice with the Ceacam2 null mutation (Cc2(-/-)). This study investigated whether CEACAM2 also regulates insulin secretion. Ceacam2 deletion caused an increase in β-cell secretory function, as assessed by hyperglycemic clamp analysis, without affecting insulin response. Although CEACAM2 is expressed in pancreatic islets predominantly in non-β-cells, basal plasma levels of insulin, glucagon and somatostatin, islet areas, and glucose-induced insulin secretion in pooled Cc2(-/-) islets were all normal. Consistent with immunofluorescence analysis showing CEACAM2 expression in distal intestinal villi, Cc2(-/-) mice exhibited a higher release of oral glucose-mediated GLP-1, an incretin that potentiates insulin secretion in response to glucose. Compared with wild type, Cc2(-/-) mice also showed a higher insulin excursion during the oral glucose tolerance test. Pretreating with exendin(9-39), a GLP-1 receptor antagonist, suppressed the effect of Ceacam2 deletion on glucose-induced insulin secretion. Moreover, GLP-1 release into the medium of GLUTag enteroendocrine cells was increased with siRNA-mediated Ceacam2 down-regulation in parallel to an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels. Thus, CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors. PMID:26586918

  16. Effects of exendin-4, a glucagon like peptide-1 receptor agonist, on neutrophil count and inflammatory cytokines in a rat model of endotoxemia

    PubMed Central

    Yanay, Ofer; Bailey, Adam L; Kernan, Kelly; Zimmerman, Jerry J; Osborne, William R

    2015-01-01

    Background Sepsis remains a major cause of morbidity and mortality. A variety of strategies targeting modulation of the pro-inflammatory response associated with early sepsis have been reported without clinical success. GLP-1 enhances glucose-stimulated insulin secretion. In addition, it was shown to have anti-inflammatory effects. We hypothesized that treatment with exendin-4, a GLP-1 receptor agonist, would attenuate inflammation and improve glucose control in a lipopolysaccharide (LPS) rat model of inflammation. Methods Two-month-old male Wistar rats were randomly assigned to one of the following four groups: 1) treatment: intraperitoneal (IP) injection of LPS 10 mg/kg followed by exendin-4, 30 μg/kg, 10 minutes later; 2) control-1: IP injection of LPS 10 mg/kg, followed by normal saline (NS); 3) control-2: IP NS injection followed by exendin-4; 4) sham: IP injection of NS followed by another NS injection. Glucose concentration, total white blood count with absolute neutrophil count, and pro- and anti-inflammatory cytokine concentrations were measured at 0, 3, 6, and 10 hours following LPS injection. Results At 3 hours, rats injected with LPS developed neutropenia, elevated pro- and anti-inflammatory cytokines, and mild hypoglycemia. Treatment with exendin-4 significantly modulated neutropenia, and decreased pro-inflammatory cytokine concentrations (IL-1α, IL-1β, IL-6, TNFα, and IFNγ). However, exendin-4 had no effect on IL-10 concentrations. LPS injection led to mild hypoglycemia, that was not observed in rats treated with exendin-4. Sham animals exhibited no significant change from baseline in all parameters. Conclusion In this LPS model of acute early phase inflammation, treatment with exendin-4 decreased pro-inflammatory cytokine concentrations without changing IL-10 blood levels and improved neutropenia. Following LPS injection, rats developed a tendency toward hypoglycemia that improved with exendin-4. Overall our data suggest that exogenous exendin-4 mediates anti-inflammatory effects early in this rat model of endotoxin-induced inflammation. PMID:26244029

  17. Protein kinase C pathway mediates the protective effects of glucagon-like peptide-1 on the apoptosis of islet β-cells.

    PubMed

    Zhang, Lihai; Wang, Yuesheng; Wang, Jiao; Liu, Yinglan; Yin, Yanbin

    2015-11-01

    The incidence of diabetes has been increasing over previous years. It is hypothesized that promoting the survival of islet β-cells is a key direction for the treatment of diabetes. Although gastric bypass surgery improves certain types of diabetes and attenuates its progression, there are certain associated disadvantages (including intestinal obstruction and anastomotic leakage), and quality of life and physical status (such as malnutrition) are significantly affected by gastric bypass surgery. Therefore, it is important to determine the mechanisms underlying the improvement of diabetes by gastric bypass surgery and identify novel gene targets for diabetes therapeutics. In the present study, glucagon‑like peptide‑1 (GLP‑1), whose secretion was markedly increased following gastric bypass surgery, increased the activity of protein kinase C (PKC) in islet β‑cells in a dose‑dependent manner. Additionally, treatment with GLP‑1 boosted cell viability and decreased cell death in starved islet β‑cells, and inhibited mitochondria‑dependent apoptosis by regulating the expression levels of Bcl‑2/Bax. These effects were reversed by inhibiting the PKC pathway using hypericin. Therefore, the present study concluded that GLP‑1 may promote the survival and inhibit the apoptosis of islet β‑cells at least in part by activating the PKC pathway, which is an important underlying mechanism and may be exploited in the treatment of diabetes. PMID:26459881

  18. GLUCAGON LIKE PEPTIDE-1(7–36) BUT NOT (9–36) AUGMENTS CARDIAC OUTPUT DURING MYOCARDIAL ISCHEMIA VIA AFRANK-STARLING MECHANISM

    PubMed Central

    Goodwill, Adam G.; Tune, Johnathan D.; Noblet, Jillian N.; Conteh, Abass M.; Sassoon, Daniel; Casalini, Eli D.; Mather, Kieren J.

    2014-01-01

    This study examined the cardiovascular effects of GLP-1 (7–36) or (9–36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7–36 or 9–36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9–36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7–36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7–36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p=0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7–36) produced marked increases in end diastolic volume (74 ± 1 to 92 ± 5 mL; p=0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p=0.05), without any change in the slope of the end systolic pressure volume relationship vs. vehicle during regional ischemia. GLP-1 (9–36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7–36) but not GLP-1 (9–36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy. PMID:25005062

  19. Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium

    PubMed Central

    DeNicola, Megan; Du, Jianfeng; Wang, Zhengke; Yano, Naohiro; Zhang, Ling; Wang, Yigang; Qin, Gangjian; Zhuang, Shougang

    2014-01-01

    We have demonstrated that GLP-1 improved myocardial functional recovery in acute myocardial ischemic injury. However, whether stimulation of the GLP-1 receptor (GLP-1R) with exendin-4, a selective GLP-1R agonist, could initiate a protective effect in the heart remains to be determined. Mouse myocardial infarction (MI) was created by ligation of the left descending artery. After 48 h of MI, animals were divided into the following groups (n = 5–7/group): 1) sham (animals that underwent thoracotomy without ligation), 2) MI [animals that underwent MI and received a daily dose of intraperitoneal injection (ip) of saline]; and 3) MI + exendin-4 [infarcted mice that received injections of exendin-4 (0.1 mg/kg ip)]. Two weeks later, cardiac function was assessed by echocardiography and an isovolumetrically perfused heart. Compared with control MI hearts, stimulation of GLP-1R improved cardiac function, which was associated with attenuation of myocardial hypertrophy, the mitigation of interstitial fibrosis, and an increase in survival rate in post-MI hearts. Furthermore, H9c2 cardiomyoblasts were preconditioned with exendin-4 at a dose of 100 nmol/l and then subjected to hydrogen peroxide exposure at concentrations of 50 and 100 μmol/l. The exendin-4 treatment decreased lactate dehydrogenase leakage and increased cell survival. Notably, this event was also associated with the reduction of cleaved caspase-3 and caspase-9 and attenuation of reactive oxygen species production. Exendin-4 treatments improved mitochondrial respiration and suppressed the opening of mitochondrial permeability transition pore and protected mitochondria function. Our results indicate that GLP-1R serves as a novel approach to eliciting cardioprotection and mitigating oxidative stress-induced injury. PMID:25117407

  20. Combination of soya protein and polydextrose reduces energy intake and glycaemic response via modulation of gastric emptying rate, ghrelin and glucagon-like peptide-1 in Chinese.

    PubMed

    Soong, Yean Yean; Lim, Wen Xin; Leow, Melvin Khee Shing; Siow, Phei Ching; Teh, Ai Ling; Henry, Christiani Jeyakumar

    2016-06-01

    The short-term effect of soya protein, polydextrose and their combination on energy intake (EI) was investigated in Chinese. In total, twenty-seven healthy, normotensive and lean Chinese men aged 21-40 years were given four different soyabean curd preloads with or without polydextrose. The study was a repeated-measure, randomised, cross-over design. The consumption of high-protein soyabean curd alone or in addition with polydextrose as a preload led to greater reduction in EI at a subsequent meal. A similar observation was also found after intake of low-protein soyabean curd with polydextrose. The gut hormone responses mirrored the reduction in food intake. It appears that incorporation of polydextrose either with low- or high-protein soyabean curd could be a potential strategy to reduce EI and assist with weight management. The popular consumption of soyabean curd in Chinese makes it an ideal vehicle for incorporation of polydextrose. This evidence-based dietary approach can serve as a guideline for developing functional foods for weight reduction and weight maintenance. PMID:27185412

  1. Do Lactation-Induced Changes in Ghrelin, Glucagon-Like Peptide-1, and Peptide YY Influence Appetite and Body Weight Regulation during the First Postpartum Year?

    PubMed Central

    Larson-Meyer, D. Enette; Schueler, Jessica; Kyle, Erin; Austin, Kathleen J.; Hart, Ann Marie; Alexander, Brenda M.

    2016-01-01

    To determine whether fasting and meal-induced appetite-regulating hormones are altered during lactation and associated with body weight retention after childbearing, we studied 24 exclusively breastfeeding women (BMI = 25.2 ± 3.6 kg/m2) at 4-5 weeks postpartum and 20 never-pregnant controls (BMI = 24.0 ± 3.1 kg/m2). Ghrelin, PYY, GLP-1, and appetite ratings were measured before/and 150 minutes after a standardized breakfast and 60 minutes after an ad libitum lunch. Body weight/composition were measured at 6 and 12 months. Fasting and area under-the-curve responses for appetite-regulating hormones did not differ between lactating and control groups; ghrelinacyl, however, tended to track higher after the standardized breakfast in lactating women and was higher (p < 0.05) after the ad libitum lunch despite a 24% higher energy intake (p < 0.05). By 12 months, lactating women lost 5.3 ± 2.2 kg (n = 18), whereas control women (n = 15) remained weight stable (p = 0.019); fifteen of the lactating women returned to within ±2.0 kg of prepregnancy weight but three retained >6.0 kg. The retainers had greater (p < 0.05) postmeal ghrelin rebound responses following breakfast. Overall these studies do not support the hypothesis that appetite-regulating hormones are altered during lactation and associated with postpartum weight retention. Altered ghrelin responses, however, deserve further exploration. PMID:27313876

  2. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis.

    PubMed

    Guan, Xinfu

    2014-09-15

    The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiota-derived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine L cells in the gut and coreleased from preproglucagonergic neurons in the brain stem. Glucagon-like peptides are proposed as key mediators for bariatric surgery-improved glycemic control and energy balance. Little is known about the GLP-2 receptor (Glp2r)-mediated physiological roles in the control of food intake and glucose homeostasis, yet Glp1r has been studied extensively. This review will highlight the physiological relevance of the central nervous system (CNS) Glp2r in the control of energy balance and glucose homeostasis and focuses on cellular mechanisms underlying the CNS Glp2r-mediated neural circuitry and intracellular PI3K signaling pathway. New evidence (obtained from Glp2r tissue-specific KO mice) indicates that the Glp2r in POMC neurons is essential for suppressing feeding behavior, gastrointestinal motility, and hepatic glucose production. Mice with Glp2r deletion selectively in POMC neurons exhibit hyperphagic behavior, accelerated gastric emptying, glucose intolerance, and hepatic insulin resistance. GLP-2 differentially modulates postsynaptic membrane excitability of hypothalamic POMC neurons in Glp2r- and PI3K-dependent manners. GLP-2 activates the PI3K-Akt-FoxO1 signaling pathway in POMC neurons by Glp2r-p85α interaction. Intracerebroventricular GLP-2 augments glucose tolerance, suppresses glucose production, and enhances insulin sensitivity, which require PI3K (p110α) activation in POMC neurons. Thus, the CNS Glp2r plays a physiological role in the control of food intake and glucose homeostasis. This review will also discuss key questions for future studies. PMID:24990862

  3. GLUCAGON-LIKE PEPTIDE-2 INCREASES GLUCOSE UPTAKE BY INCREASING SGLT-1 AND GLUT2 ABUNDANCE IN TPN-FED NEONATAL PIGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Children with intestinal dysfunction, often require total parenteral nutrition (TPN) to meet their nutritional needs. Although TPN provides the necessary nutrition, it may limit intestinal adaptation, growth, and restoration of normal function. The trophic gut peptide, glucagon-like peptide-2 (GLP-2...

  4. Glucagon-like peptide-2 intracellularly stimulates eNOS phosphorylation and specifically induces submucosal arteriole vasodilation via a sheer stress-independent, local neural mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract, including enhancing mucosal cell survival and proliferation, mucosal blood flow, luminal nutrient uptake, and suppressing gastric motility and secretion. We have shown th...

  5. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story.

    PubMed

    Tappenden, Kelly A; Albin, David M; Bartholome, Anne L; Mangian, Heather Fottler

    2003-11-01

    The nutritional regulation of intestinal adaptation extends beyond the route of nutrient administration as specific nutrients are known to mediate the adaptive response. Dietary carbohydrates are known to enhance intestinal adaptation in patients with short-bowel syndrome. This review discusses SCFA-induced adaptation in intestinal structure and function in adult rat and neonatal piglet models. Potential mechanisms relate to the salvage of energy as SCFA in the colon, direct mediation of intestinal adaptation by SCFA and stimulated release of glucagon-like peptide-2 (GLP-2) from enteroendocrine L cells by SCFA. Among the produced SCFA, butyrate appears to be responsible for increasing plasma GLP-2 concentration, in addition to the enterotrophic effects. Emerging evidence reveals that physiological concentrations of butyrate acutely upregulate the expression of key enterocyte-associated nutrient transporters. Focused experiments are needed to carefully identify the critical components of intestinal adaptation and yield conclusions regarding the relative contributions of SCFA and GLP-2 during the various phases of this process. PMID:14608102

  6. Teduglutide, a glucagon-like peptide-2 analog for the treatment of gastrointestinal diseases, including short bowel syndrome.

    PubMed

    Yazbeck, Roger

    2010-12-01

    Glucagon-like peptide-2 (GLP-2) is a potent intestinotrophic growth factor with therapeutic potential for the prevention or treatment of an expanding number of gastrointestinal diseases, including short bowel syndrome (SBS). Teduglutide, being developed by NPS Allelix and licensee Nycomed, is a protease-resistant analog of GLP-2 for the potential treatment of gastrointestinal disease. Teduglutide has prolonged biological activity compared with native GLP-2, and preclinical studies demonstrated significant intestinotrophic activity in models of SBS, experimental colitis and chemotherapy-induced intestinal mucositis. Patients with SBS rely on parenteral nutrition (PN) following bowel resection, and in a phase III clinical trial with teduglutide, > 20% reduction in PN was observed in patients with SBS receiving teduglutide. A phase II clinical trial for teduglutide in Crohn's disease observed remission rates of 55.6% in patients. At the time of publication, phase III clinical trials for SBS were ongoing, as were preclinical studies for chemotherapy-induced mucositis and pediatric indications. Teduglutide represents a novel, efficacious drug capable of increasing intestinal growth and improving intestinal function, and may change clinical management of intestinal disease and damage. PMID:21154171

  7. Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Liu, Sumei; Qu, Mei-Hu; Mulè, Flavia; Wood, Jackie D

    2009-10-01

    Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of short-circuit current (I(sc)) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1-100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline I(sc) and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in I(sc), with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2-(3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons. PMID:19628655

  8. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals.

    PubMed

    Connor, E E; Evock-Clover, C M; Wall, E H; Baldwin, R L; Santin-Duran, M; Elsasser, T H; Bravo, D M

    2016-07-01

    Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of these enteric peptides are only beginning to be uncovered. One peptide in particular, glucagon-like peptide 2 (GLP-2) produced by enteroendocrine L cells, has been fairly well characterized in rodent and swine models in terms of its ability to improve nutrient absorption and healing of the gut after injury. In fact, a long-acting form of GLP-2 recently has been approved for the management and treatment of human conditions like inflammatory bowel disease and short bowel syndrome. However, novel functions of GLP-2 within the gut continue to be demonstrated, including its beneficial effects on intestinal barrier function and reducing intestinal inflammation. As knowledge continues to grow about GLP-2's effects on the gut and its mechanisms of release, the potential to use GLP-2 to improve gut function and health of food animals becomes increasingly more apparent. Thus, the purpose of this review is to summarize: (1) the current understanding of GLP-2's functions and mechanisms of action within the gut; (2) novel applications of GLP-2 (or stimulators of its release) to improve general health and production performance of food animals; and (3) recent findings, using dairy calves as a model, that suggest the therapeutic potential of GLP-2 to reduce the pathogenesis of intestinal protozoan infections. PMID:27345324

  9. Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets.

    PubMed

    Cottrell, J J; Stoll, B; Buddington, R K; Stephens, J E; Cui, L; Chang, X; Burrin, D G

    2006-02-01

    Premature infants receiving chronic total parenteral nutrition (TPN) due to feeding intolerance develop intestinal atrophy and reduced nutrient absorption. Although providing the intestinal trophic hormone glucagon-like peptide-2 (GLP-2) during chronic TPN improves intestinal growth and morphology, it is uncertain whether GLP-2 enhances absorptive function. We placed catheters in the carotid artery, jugular and portal veins, duodenum, and a portal vein flow probe in piglets before providing either enteral formula (ENT), TPN or a coinfusion of TPN plus GLP-2 for 6 days. On postoperative day 7, all piglets were fed enterally and digestive functions were evaluated in vivo using dual infusion of enteral ((13)C) and intravenous ((2)H) glucose, in vitro by measuring mucosal lactase activity and rates of apical glucose transport, and by assessing the abundances of sodium glucose transporter-1 (SGLT-1) and glucose transporter-2 (GLUT2). Both ENT and GLP-2 pigs had larger intestine weights, longer villi, and higher lactose digestive capacity and in vivo net glucose and galactose absorption compared with TPN alone. These endpoints were similar in ENT and GLP-2 pigs except for a lower intestinal weight and net glucose absorption in GLP-2 compared with ENT pigs. The enhanced hexose absorption in GLP-2 compared with TPN pigs corresponded with higher lactose digestive and apical glucose transport capacities, increased abundance of SGLT-1, but not GLUT-2, and lower intestinal metabolism of [(13)C]glucose to [(13)C]lactate. Our findings indicate that GLP-2 treatment during chronic TPN maintains intestinal structure and lactose digestive and hexose absorptive capacities, reduces intestinal hexose metabolism, and may facilitate the transition to enteral feeding in TPN-fed infants. PMID:16166344

  10. alpha-Lactalbumin hydrolysate stimulates glucagon-like peptide-2 secretion and small intestinal growth in suckling rats.

    PubMed

    Izumi, Hirohisa; Ishizuka, Satoshi; Inafune, Ayako; Hira, Tohru; Ozawa, Kazuhiro; Shimizu, Takashi; Takase, Mitsunori; Hara, Hiroshi

    2009-07-01

    We investigated whether bovine milk constituents influenced glucagon-like peptide (GLP)-2 secretion and intestinal growth in suckling rats. Male Sprague-Dawley rats (14 d old) received i.g. infusions of a milk protein fraction, a lactose solution, or the cream fraction of milk. The serum concentration of GLP-2, but not GLP-1, markedly increased in rats administered milk protein compared with those given the lactose solution or the cream fraction from 60 to 120 min after administration. In another experiment, both casein (CN) and whey protein isolate stimulated GLP-2 secretion at 120 min after administration, but soy protein and ovalbumin did not. Stimulation of GLP-2 secretion by several milk proteins was similar, including alpha-CN, alpha-lactalbumin (alpha-La), and beta-lactoglobulin, in a separate experiment. A hydrolysate of alpha-La obtained by incubation with protease A extracted from Aspergillus oryzae (LaHPA) caused almost twice the GLP-2 release due to intact alpha-La and other alpha-La hydrolysates. Free amino acid concentrations and molecular size distributions did not differ among alpha-La hydrolysates, including LaHPA. In rat pups reared with milk formulae containing alpha-La or LaHPA, LaHPA significantly promoted small intestinal elongation and increased the number of crypt epithelial cells compared with a formula containing intact alpha-La. LaHPA administration also increased the maltase:lactase activity ratio, a marker of maturation of the intestinal mucosa. In conclusion, milk proteins stimulate GLP-2 secretion and contribute to growth and maturation of the small intestine in suckling rats. PMID:19494023

  11. Secretion of glucagon-like peptide-2 responds to nutrient intake but not glucose provision in milk-fed calves.

    PubMed

    Castro, J J; Morrison, S Y; Hosseinni, A; Loor, J J; Drackley, J K; Ipharraguerre, I R

    2016-07-01

    Glucagon-like peptide 2 (GLP-2) is a peptide released by the lower gut that has potent trophic and restorative effects on the intestinal epithelium. Two experiments were conducted to assess the effects of feeding rate and either metabolizable or nonmetabolizable glucose supplementation on GLP-2 concentrations in plasma and intestinal development in Holstein calves. In the first experiment, 48 newborn calves were assigned to 12 treatments (n=4) corresponding to the factorial combination of 4 milk feeding amounts [1.75, 1.32, 0.88, and 0.44% of body weight (BW) as dry matter (DM)] and 3 oral supplementation treatments (nonsupplemented, glucose-supplemented, and 3-O-methyl glucose-supplemented). In the second experiment 30 newborn calves (n=10) were fed milk at a fixed rate of 1.75% of BW as DM and assigned to the same glucose supplementation treatments used in experiment 1 to investigate effects on intestinal development. In the first experiment, we found a saturating response of plasma GLP-2 to increasing feeding levels. The feeding rate at which 50% of the maximal GLP-2 release occurred was estimated to be 0.53% of BW as DM or 30.3% of the maximum feeding rate (1.75% of BW as DM), whereas maximal secretion was estimated to be about 98.6 pmol/L. In turn, feeding 75, 50, or 25% of the maximal feeding rate (i.e., 1.75% BW as DM) resulted in plasma GLP-2 concentrations 87, 72, and 49% of that in fully fed calves, respectively. Neither metabolizable nor nonmetabolizable glucose supplementation affected GLP-2 secretion and no interaction with feed intake level was detected. In the second experiment, no effect of glucose supplementation was observed on intestinal growth, mucosal cell proliferation, or expression of genes related to the actions of GLP-2. Nonetheless, we observed that a pool of genes of the GLP-2 signaling pathway was more abundantly and coordinately regulated in the colon than in the ileum of these animals, indicating an opportunity for dietary induction

  12. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome

    PubMed Central

    2012-01-01

    Short bowel syndrome results from surgical resection, congenital defect or disease-associated loss of absorption. Parenteral support (PS) is lifesaving in patients with short bowel syndrome and intestinal failure who are unable to compensate for their malabsorption by metabolic or pharmacologic adaptation. Together, the symptoms of short bowel syndrome and the inconvenience and complications in relation to PS (e.g. catheter-related blood steam infections, central thrombosis and intestinal failure associated liver disease) may impair the quality of life of patients. The aim of treatment is to maximize intestinal absorption, minimize the inconvenience of diarrhea, and avoid, reduce or eliminate the need for PS to achieve the best possible quality of life for the patient. Conventional treatments include dietary manipulations, oral rehydration solutions, and antidiarrheal and antisecretory treatments. However, the evidence base for these interventions is limited and treatments that improve the structural and functional integrity of the remaining intestine are needed. Teduglutide, an analog of glucagon-like peptide 2, improves intestinal rehabilitation by promoting mucosal growth and possibly by restoring gastric emptying and secretion, thereby reducing intestinal losses and promoting intestinal absorption. In a 3-week, phase II balance study, teduglutide reduced diarrhea by around 700 g/day and fecal energy losses by around 0.8 MJ/day. In two randomized, placebo-controlled, 24-week, phase III studies, similar findings were obtained when evaluating the fluid composite effect, which is the sum of the beneficial effects of teduglutide – reduction in the need for PS, increase in urine production and reduction in oral fluid intake. The fluid composite effect reflects the increase in intestinal fluid absorption (and the concomitant reduction in diarrhea) and may be used in studies in which metabolic balance assessments are not performed. In studies of up to 24 weeks

  13. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome.

    PubMed

    Jeppesen, Palle Bekker

    2012-05-01

    Short bowel syndrome results from surgical resection, congenital defect or disease-associated loss of absorption. Parenteral support (PS) is lifesaving in patients with short bowel syndrome and intestinal failure who are unable to compensate for their malabsorption by metabolic or pharmacologic adaptation. Together, the symptoms of short bowel syndrome and the inconvenience and complications in relation to PS (e.g. catheter-related blood steam infections, central thrombosis and intestinal failure associated liver disease) may impair the quality of life of patients. The aim of treatment is to maximize intestinal absorption, minimize the inconvenience of diarrhea, and avoid, reduce or eliminate the need for PS to achieve the best possible quality of life for the patient. Conventional treatments include dietary manipulations, oral rehydration solutions, and antidiarrheal and antisecretory treatments. However, the evidence base for these interventions is limited and treatments that improve the structural and functional integrity of the remaining intestine are needed. Teduglutide, an analog of glucagon-like peptide 2, improves intestinal rehabilitation by promoting mucosal growth and possibly by restoring gastric emptying and secretion, thereby reducing intestinal losses and promoting intestinal absorption. In a 3-week, phase II balance study, teduglutide reduced diarrhea by around 700 g/day and fecal energy losses by around 0.8 MJ/day. In two randomized, placebo-controlled, 24-week, phase III studies, similar findings were obtained when evaluating the fluid composite effect, which is the sum of the beneficial effects of teduglutide - reduction in the need for PS, increase in urine production and reduction in oral fluid intake. The fluid composite effect reflects the increase in intestinal fluid absorption (and the concomitant reduction in diarrhea) and may be used in studies in which metabolic balance assessments are not performed. In studies of up to 24 weeks

  14. Clinical trial simulations in pediatric patients using realistic covariates: application to teduglutide, a glucagon-like peptide-2 analog in neonates and infants with short-bowel syndrome.

    PubMed

    Mouksassi, M S; Marier, J F; Cyran, J; Vinks, A A

    2009-12-01

    Teduglutide, a synthetic glucagon-like peptide-2 (GLP-2) analog with activity relating to the regeneration, maintenance, and repair of the intestinal epithelium, is currently being evaluated for the treatment of short-bowel syndrome (SBS), Crohn's disease, and other gastrointestinal disorders. On the basis of promising results from teduglutide studies in adults with SBS and from studies in neonatal and juvenile animal models, a pediatric multiple-dose phase I clinical study was designed to determine the safety, efficacy, and pharmacokinetics of teduglutide in pediatric patients with SBS who have undergone resection for necrotizing enterocolitis, malrotation, or intestinal atresia. This report details the application of clinical trial simulations coupled with a novel approach using generalized additive modeling for location, scale, and shape (GAMLSS) that facilitates the simulation of demographic covariates specific to the targeted patient populations. The goal was to optimize phase I dosing strategies and the likelihood of achieving target exposure and therapeutic effect. PMID:19847163

  15. Disrupted dynamics of F-actin and insulin granule fusion in INS-1 832/13 beta-cells exposed to glucotoxicity: partial restoration by glucagon-like peptide 1.

    PubMed

    Quinault, Aurore; Gausseres, Blandine; Bailbe, Danielle; Chebbah, Nella; Portha, Bernard; Movassat, Jamileh; Tourrel-Cuzin, Cecile

    2016-08-01

    Actin dynamics in pancreatic β-cells is involved in insulin exocytosis but the molecular mechanisms of this dynamics and its role in biphasic insulin secretion in pancreatic β-cells is largely unknown. Moreover, the impact of a glucotoxic environment on the sub-cortical actin network dynamics is poorly studied. In this study, we investigate the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 β-cells submitted to a normal or glucotoxic environment. Our results show that glucose stimulation leads to a reorganization of the subcortical actin network with a rupture of its interactions with t-SNARE proteins (Syntaxin 1A and SNAP-25), promoting insulin secretion in INS-1 832/13 β-cells. Prolonged exposure of INS-1 832/13 β-cells to high-glucose levels (glucotoxicity) leads to the densification of the cortical actin network, which prevents its reorganization under acute glucose, and diminishes the glucose-stimulated insulin secretion, as shown by the decreased number of fusion events. The most interesting in our results is the partial restoration by GLP-1 of the insulin secretion ability from high-glucose treated INS-1 832/13 cells. This improved insulin exocytosis is associated with partial restored actin dynamics and fusion events during the two phases of the secretion, with a preferential involvement of Epac2 signaling in the first phase and a rather involvement of PKA signaling in the second phase of insulin exocytosis. All these data provide some new insights into the mechanism by which current therapeutics may be improving insulin secretion. PMID:27101990

  16. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway.

    PubMed

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming

    2016-08-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. PMID:27208776

  17. Endogenous GLP1 and GLP1 analogue alter CNS responses to palatable food consumption.

    PubMed

    Ten Kulve, Jennifer S; Veltman, Dick J; van Bloemendaal, Liselotte; Groot, Paul F C; Ruhé, Henricus G; Barkhof, Frederik; Diamant, Michaela; Ijzerman, Richard G

    2016-04-01

    Glucagon-like peptide-1 (GLP1) affects appetite, supposedly mediated via the central nervous system (CNS). In this study, we investigate whether modulation of CNS responses to palatable food consumption may be a mechanism by which GLP1 contributes to the central regulation of feeding. Using functional MRI, we determined the effects of endogenous GLP1 and treatment with the GLP1 analogue liraglutide on CNS activation to chocolate milk receipt. Study 1 included 20 healthy lean individuals and 20 obese patients with type 2 diabetes (T2DM). Scans were performed on two occasions: during infusion of the GLP1 receptor antagonist exendin 9-39 (blocking actions of endogenous GLP1) and during placebo infusion. Study 2 was a randomised, cross-over intervention study carried out in 20 T2DM patients, comparing treatment with liraglutide to insulin, after 10 days and 12 weeks. Compared with lean individuals, T2DM patients showed reduced activation to chocolate milk in right insula (P = 0.04). In lean individuals, blockade of endogenous GLP1 effects inhibited activation in bilateral insula (P ≤ 0.03). Treatment in T2DM with liraglutide, vs insulin, increased activation to chocolate milk in right insula and caudate nucleus after 10 days (P ≤ 0.03); however, these effects ceased to be significant after 12 weeks. Our findings in healthy lean individuals indicate that endogenous GLP1 is involved in the central regulation of feeding by affecting central responsiveness to palatable food consumption. In obese T2DM, treatment with liraglutide may improve the observed deficit in responsiveness to palatable food, which may contribute to the induction of weight loss observed during treatment. However, no long-term effects of liraglutide were observed. PMID:26769912

  18. Comparison of GLP-1 Analogues versus Sitagliptin in the Management of Type 2 Diabetes: Systematic Review and Meta-Analysis of Head-to-Head Studies

    PubMed Central

    Wang, Tiansheng; Gou, Zhuoyue; Wang, Fei; Ma, Manling; Zhai, Suo-di

    2014-01-01

    Background Incretin–based therapies which include glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors are recommended by several practice guidelines as second-line agents for add-on therapy to metformin in patients with type 2 diabetes (T2DM) who do not achieve glycemic control with metformin plus lifestyle interventions alone. The purpose of this study is to perform a systematic review with meta-analysis of existing head to head studies to compare the efficacy and safety of GLP-1 analogues with DPP-4 inhibitors. Methods We performed a systematic review and meta-analysis of head-to-head studies to compare GLP-1 analogues with DPP-4 inhibitors in the management of type 2 diabetes. A random effects model was selected to perform the meta-analyses, results were expressed as weighted mean differences for continuous outcomes and relative risks for dichotomous outcomes, both with 95% confidence intervals, and with I2 values and P values as markers of heterogeneity. Results Four head-to-head randomized controlled studies with 1755 patients were included. Compared to sitagliptin, GLP-1 analogues are more effective in reducing HbA1C (weight mean difference −0.41%, 95% CI −0.51 to −0.31) and body weight (weight mean difference −1.55 kg, 95% CI −1.98 to −1.12). Conversely, GLP-1 analogues are associated with a higher incidence of gastrointestinal adverse events compared to sitagliptin: nausea (relative risk 3.14, 95% CI 2.15 to 4.59), vomiting (relative risk 2.60, 95% CI 1.48 to 4.56), diarrhea (relative risk 1.82, 95% CI 1.24 to 2.69), and constipation (relative risk 2.50, 95% CI 1.33 to 4.70). Conclusions The result of this meta-analysis demonstrates that compared to sitagliptin, GLP-1 analogues are more effective for glycemic control and weight loss, but have similar efficacy in reducing blood pressure and lipid parameters, however, GLP-1 analogues are associated with a higher incidence of gastrointestinal adverse

  19. Glucagon-Like Peptide-2 Requires a Full Complement of Bmi-1 for Its Proliferative Effects in the Murine Small Intestine.

    PubMed

    Smither, Bradley R; Pang, Hilary Y M; Brubaker, Patricia L

    2016-07-01

    The intestinal hormone, glucagon-like peptide-2 (GLP-2), stimulates growth, survival, and function of the intestinal epithelium through increased crypt cell proliferation, and a long-acting analog has recently been approved to enhance intestinal capacity in patients with short bowel syndrome. The goal of the present study was to determine whether GLP-2-induced crypt cell proliferation requires a full complement of B-cell lymphoma Moloney murine leukemia virus insertion region-1 homolog (Bmi-1), using the Bmi-1(eGFP/+) mouse model in comparison with age- and sex-matched Bmi-1(+/+) littermates. Bmi-1 is a member of the polycomb-repressive complex family that promotes stem cell proliferation and self-renewal and is expressed by both stem cells and transit-amplifying (TA) cells in the crypt. The acute (6 h) and chronic (11 d) proliferative responses to long-acting human (Gly(2))GLP-2 in the crypt TA zone, but not in the active or reserve stem cell zones, were both impaired by Bmi-1 haploinsufficiency. Similarly, GLP-2-induced crypt regeneration after 10-Gy irradiation was reduced in the Bmi-1(eGFP/+) animals. Despite these findings, chronic GLP-2 treatment enhanced overall intestinal growth in the Bmi-1(eGFP/+) mice, as demonstrated by increases in small intestinal weight per body weight and in the length of the crypt-villus axis, in association with decreased apoptosis and an adaptive increase in crypt epithelial cell migration rate. The results of these studies therefore demonstrate that a full complement of Bmi-1 is required for the intestinal proliferative effects of GLP-2 in both the physiological and pathological setting, and mediates, at least in part, the proliferation kinetics of cells in the TA zone. PMID:27187177

  20. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    PubMed Central

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker; Hartmann, Bolette; Holst, Jens J; Meddings, Jon

    2013-01-01

    BACKGROUND/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release is triggered by nutrient contact. The authors hypothesized that ileal Crohn disease (CD) affects GLP-2 release. METHODS: With ethics board approval, pediatric patients hospitalized with CD were studied; controls were recruited from local schools. Inclusion criteria were endoscopy-confirmed CD (primarily of the small intestine) with a disease activity index >150. Fasting and post-prandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose/mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean [± SD] age 15.3±1.3 years) and 10 controls (10.3±1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose/mannitol recovery; all normalized with disease remission. The change in the lactulose/mannitol ratio was due to both reduced lactulose and increased mannitol absorption. CONCLUSIONS: These findings suggest that pediatric patients with acute ileal CD have decreased postprandial GLP-2 release, reduced glucose absorption and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies as a therapy in CD patients; further studies of the effects of inflammation and the GLP-2 axis are recommended. PMID:24106731

  1. Pharmacokinetics, safety, and tolerability of teduglutide, a glucagon-like peptide-2 (GLP-2) analog, following multiple ascending subcutaneous administrations in healthy subjects.

    PubMed

    Marier, Jean-Francois; Beliveau, Martin; Mouksassi, Mohamad-Samer; Shaw, Paula; Cyran, Jane; Kesavan, Jothi; Wallens, John; Zahir, Hamim; Wells, David; Caminis, John

    2008-11-01

    Teduglutide, a glucagon-like peptide-2 (GLP-2) analog, is currently being evaluated for the treatment of short-bowel syndrome, Crohn's disease, and other gastrointestinal disorders. The pharmacokinetics, safety, and tolerability of teduglutide in healthy subjects (N = 64) were assessed following daily subcutaneous administrations for 8 days in a double-blinded, randomized, placebo-controlled, ascending-dose study. Teduglutide treatments were administered as a 50-mg/mL (10, 15, 20, 25, 30, 50, and 80 mg) or 20-mg/mL (20 mg) formulation. Blood samples were collected on days 1 and 8, and plasma concentrations of teduglutide were measured using a liquid chromatography/tandem mass spectrometry method. Mean systemic exposures to teduglutide were very similar on days 1 and 8, suggesting minimal, if any, accumulation following once-daily repeated administrations. The apparent clearance of teduglutide following administration of the 50-mg/mL formulation was constant over the dose range, with mean values in male and female subjects of 0.155 and 0.159 L/h/kg, respectively. Peak plasma concentrations and total exposure of teduglutide after subcutaneous injection of a 20-mg/mL formulation (1.0 mL) were approximately 15% and 78% higher than those observed with the 50-mg/mL formulation (0.4 mL), respectively. Teduglutide treatments were safe and well tolerated. All but 1 adverse event was assessed as mild or moderate in severity. No relationship between teduglutide treatments and frequency of adverse events was observed, with the exception of injection site pain, which increased as a function of dose and injected volume. Results from the current study will assist in the dose selection in future efficacy studies. PMID:18974283

  2. Effect of Teduglutide, a Glucagon-like Peptide 2 Analog, on Citrulline Levels in Patients With Short Bowel Syndrome in Two Phase III Randomized Trials

    PubMed Central

    Seidner, Douglas L; Joly, Francisca; Youssef, Nader N

    2015-01-01

    Objectives: In clinical trials, treatment with the glucagon-like peptide 2 analog teduglutide was associated with improved fluid and nutrient absorption and increased intestinal villus height and crypt depth in patients with short bowel syndrome (SBS). Plasma citrulline, an amino acid produced by enterocytes, is considered a measure of enterocyte mass. This analysis assessed changes in plasma citrulline levels in patients with SBS in 2 phase III clinical studies of teduglutide. Methods: Both teduglutide studies (0.05 or 0.10 mg/kg/day in CL0600-004 and 0.05 mg/kg/day in CL0600-020) were phase III, 24-week, double-blind, and placebo controlled. Plasma citrulline levels were analyzed and validated by liquid chromatography coupled to tandem mass spectrometry. Results: In both the CL0600-004 and CL0600-020 studies, change in mean plasma citrulline concentrations at Week 24 vs. baseline was significantly greater with teduglutide compared with placebo (10.9 (0.05-mg/kg/day dose) and 15.7 (0.10-mg/kg/day dose) vs. 2.0 μmol/L and 20.6 vs. 0.7 μmol/L, respectively, for each study (P≤0.0001 for each comparison with placebo)). Teduglutide treatment was associated with reductions from baseline in PS (parenteral support) volume requirements; however, a significant correlation between PS reduction and increase in plasma citrulline at Week 24 was observed in only one out of the three teduglutide treatment groups. Conclusions: In 2 phase III studies, patients receiving teduglutide had significant increases in plasma citrulline at Week 24 compared with patients receiving placebo. Increases in plasma citrulline concentrations likely reflect enterocyte mass expansion, but no clear correlation was detected between change in plasma citrulline and change in weekly PS volume. PMID:26111125

  3. Degradation, receptor binding, insulin secreting and antihyperglycaemic actions of palmitate-derivatised native and Ala8-substituted GLP-1 analogues.

    PubMed

    Green, Brian D; Gault, Victor A; Mooney, Mark H; Irwin, Nigel; Harriott, Patrick; Greer, Brett; Bailey, Cliff J; O'Harte, Finbarr P M; Flatt, Peter R

    2004-02-01

    The hormone glucagon-like peptide-1(7-36)amide (GLP-1) is released in response to ingested nutrients and acts to promote glucose-dependent insulin secretion ensuring efficient postprandial glucose homeostasis. Unfortunately, the beneficial actions of GLP-1 which give this hormone many of the desirable properties of an antidiabetic drug are short lived due to degradation by dipeptidyl-peptidase IV (DPP IV) and rapid clearance by renal filtration. In this study we have attempted to extend GLP-1 action through the attachment of palmitoyl moieties to the epsilon-amino group in the side chain of the Lys26 residue and to combine this modification with substitutions of the Ala8 residue, namely Val or amino-butyric acid (Abu). In contrast to native GLP-1, which was rapidly degraded, [Lys(pal)26]GLP-1, [Abu8, Lys(pal)26]GLP-1 and [Val8 Lys(pal)26]GLP-1 all exhibited profound stability during 12 h incubations with DPP IV and human plasma. Receptor binding affinity and the ability to increase cyclic AMP in the clonal beta-cell line BRIN-BD11 were decreased by 86- to 167-fold and 15- to 62-fold, respectively compared with native GLP-1. However, insulin secretory potency tested using BRIN-BD11 cells was similar, or in the case of [Val8,Lys(pal)26]GLP-1 enhanced. Furthermore, when administered in vivo together with glucose to diabetic (ob/ob) mice, [Lys(pal)26]GLP-1, [Abu8,Lys(pal)26]GLP-1 and [Val8,Lys(pal)26]GLP-1 did not demonstrate acute glucose-lowering or insulinotropic activity as observed with native GLP-1. These studies support the potential usefulness of fatty acid linked analogues of GLP-1 but indicate the importance of chain length for peptide kinetics and bioavailability. PMID:15101559

  4. PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS.

    PubMed

    Qi, K K; Wu, J; Deng, B; Li, Y M; Xu, Z W

    2015-09-01

    This study was conducted to determine the effects on intestinal function, anti-inflammatory role and possible mechanism of polyethylene glycosylated (PEGylated) porcine glucagon-like peptide-2 (pGLP-2), a long-acting form of pGLP-2, in weaning piglets challenged with Escherichia coli lipopolysaccharide (LPS). We divided 18 weaned piglets on day 21 into three groups (control, LPS and LPS+PEG-pGLP-2; n=6). The piglets from the LPS+PEG-pGLP-2 group were injected with PEG-pGLP-2 at 10 nmol/kg BW from 5 to 7 days of the trials daily. On 8th day, the piglets in the LPS and LPS+PEG-pGLP-2 groups were intraperitoneally administered with 100 µg LPS/kg. The control group was administered with the same volume of saline solution. The piglets were then sacrificed on day 28. Afterwards, serum, duodenum, jejunum and ileum samples were collected for analysis of structural and functional endpoints. LPS+PEG-pGLP-2 treatment increased (P<0.05) lactase activities in the duodenum and the jejunum compared with LPS treatment. LPS+PEG-pGLP-2 treatment also significantly increased sucrase activity in the jejunum compared with LPS treatment. Furthermore, LPS treatment increased (P<0.05) the mRNA expression levels of interleukin (IL)-8, tumour necrosis factor-α (TNF-α) and IL-10 in the ileum compared with the control treatment. By contrast, LPS+PEG-pGLP-2 treatment decreased (P<0.05) the mRNA expression levels of IL-8, IL-10 and TNF-α in the ileum compared with the LPS treatment. LPS treatment also increased (P<0.05) the mRNA expression level of GLP-2 receptor (GLP-2R) and the percentage of GLP-2R-positive cells in the ileum; by comparison, these results were (P<0.05) reduced by LPS+PEG-pGLP-2 treatment. Moreover, LPS+PEG-pGLP-2 treatment increased (P<0.05) the content of serum keratinocyte growth factor compared with the control group and the LPS group. The protective effects of PEG-pGLP-2 on intestinal digestive function were associated with the release of GLP-2R mediator (keratinocyte

  5. Basal insulin combined incretin mimetic therapy with glucagon-like protein 1 receptor agonists as an upcoming option in the treatment of type 2 diabetes: a practical guide to decision making

    PubMed Central

    Fleischmann, Holger

    2014-01-01

    The combination of basal insulin and glucagon-like protein 1 receptor agonists (GLP-1 RAs) is a new intriguing therapeutic option for patients with type 2 diabetes. In our daily practice we abbreviate this therapeutic concept with the term BIT (basal insulin combined incretin mimetic therapy) in a certain analogy to BOT (basal insulin supported oral therapy). In most cases BIT is indeed an extension of BOT, if fasting, prandial or postprandial blood glucose values have not reached the target range. In our paper we discuss special features of combinations of short- or prandial-acting and long- or continuous-acting GLP-1 RAs like exenatide, lixisenatide and liraglutide with basal insulin in relation to different glycemic targets. Overall it seems appropriate to use a short-acting GLP-1 RA if, after the near normalization of fasting blood glucose with BOT, the prandial or postprandial values are elevated. A long-acting GLP-1 RA might well be given, if fasting blood glucose values are the problem. Based on pathophysiological findings, recent clinical studies and our experience with BIT and BOT as well as BOTplus we developed chart-supported algorithms for decision making, including features and conditions of patients. The development of these practical tools was guided by the need for a more individualized antidiabetic therapy and the availability of the new BIT principle. PMID:25419451

  6. Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4.

    PubMed

    Vallon, Volker; Docherty, Neil G

    2014-09-01

    The tubular hypothesis of glomerular filtration and nephropathy in diabetes is a pathophysiological concept that assigns a critical role to the tubular system, including proximal tubular hyper-reabsorption and growth, which is relevant for early glomerular hyperfiltration and later chronic kidney disease. Here we focus on how harnessing the bioactivity of hormones released from the gut may ameliorate the early effects of diabetes on the kidney in part by attenuating proximal tubular hyper-reabsorption and growth. The endogenous tone of the glucagon-like peptide 1 (GLP-1)/GLP-1 receptor (GLP-1R) system and its pharmacological activation are nephroprotective in diabetes independent of changes in blood glucose. This is associated with suppression of increases in kidney weight and glomerular hyperfiltration, which may reflect, at least in part, its inhibitory effects on tubular hyper-reabsorption and growth. Inhibition of dipeptidyl peptidase 4 (DPP-4) is also nephroprotective independent of changes in blood glucose and involves GLP-1/GLP-1R-dependent and -independent mechanisms. The GLP-1R agonist exendin-4 induces natriuresis via activation of the GLP-1R. In contrast, DPP4 inhibition increases circulating GLP-1, but drives a GLP-1R-independent natriuretic response, implying a role for other DPP-4 substrates. The extent to which the intrarenal DPP-4/GLP-1 receptor system contributes to all these changes remains to be established, as does the direct impact of the system on renal inflammation. PMID:25085841

  7. The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase–Protein Kinase B–Mammalian Target of Rapamycin Signaling Pathway

    PubMed Central

    Yu, Changsong; Jia, Gang; Deng, Qiuhong; Zhao, Hua; Chen, Xiaoling; Liu, Guangmang; Wang, Kangning

    2016-01-01

    Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 μg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ’s expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway. PMID:26954146

  8. The Imaging of Insulinomas Using a Radionuclide-Labelled Molecule of the GLP-1 Analogue Liraglutide: A New Application of Liraglutide

    PubMed Central

    Li, Xiao; Cheng, Dengfeng; Liu, Shuai; Shi, Hongcheng; Zhang, Yifan

    2014-01-01

    Objective This study explores a new, non-invasive imaging method for the specific diagnosis of insulinoma by providing an initial investigation of the use of 125I-labelled molecules of the glucagon-like peptide-1 (GLP-1) analogue liraglutide for in vivo and in vitro small-animal SPECT/CT (single-photon emission computed tomography/computed tomography) imaging of insulinomas. Methods Liraglutide was labelled with 125I by the Iodogen method. The labelled 125I-liraglutide compound and insulinoma cells from the INS-1 cell line were then used for in vitro saturation and competitive binding experiments. In addition, in a nude mouse model, the use of 125I-liraglutide for the in vivo small-animal SPECT/CT imaging of insulinomas and the resulting distribution of radioactivity across various organs were examined. Results The labelling of liraglutide with 125I was successful, yielding a labelling rate of approximately 95% and a radiochemical purity of greater than 95%. For the binding between 125I-liraglutide and the GLP-1 receptor on the surface of INS-1 cells, the equilibrium dissociation constant (Kd) was 128.8±30.4 nmol/L(N = 3), and the half-inhibition concentration (IC50) was 542.4±187.5 nmol/L(N = 3). Small-animal SPECT/CT imaging with 125I-liraglutide indicated that the tumour imaging was clearest at 90 min after the 125I-liraglutide treatment. An examination of the in vivo distribution of radioactivity revealed that at 90 min after the 125I-liraglutide treatment, the target/non-target (T/NT) ratio for tumour and muscle tissue was 4.83±1.30(N = 3). Our study suggested that 125I-liraglutide was predominantly metabolised and cleared by the liver and kidneys. Conclusion The radionuclide 125I-liraglutide can be utilised for the specific imaging of insulinomas, representing a new non-invasive approach for the in vivo diagnosis of insulinomas. PMID:24805918

  9. The role of GLP-1 mimetics and basal insulin analogues in type 2 diabetes mellitus: guidance from studies of liraglutide

    PubMed Central

    Barnett, A H

    2012-01-01

    In people with type 2 diabetes mellitus (T2DM), the incretin effect is reduced, but the recent advent of dipeptidyl peptidase-4 inhibitors and glucagon-like peptide (GLP)-1 agonists/analogues has enabled restoration of at least some of the function of the incretin system, with accompanying improvements in glycaemic control. Two GLP-1 receptor agonists/analogues are currently approved for the treatment of T2DM—exenatide (Byetta®, Eli Lilly & Co., Indianapolis, IN, US) and liraglutide (Victoza®, Novo Nordisk, Bagsvaerd, Denmark); a once-weekly formulation of exenatide (Bydureon®, Eli Lilly & Co.) has also been approved by the European Medicines Agency. The National Institute for Health and Clinical Excellence (NICE) has recently published guidance on the use of liraglutide in T2DM, based on evidence from the Liraglutide Effect and Action in Diabetes (LEAD) Phase III trial programme, which compared liraglutide with existing glucose-lowering therapies, such as exenatide and insulin glargine. The LEAD programme reported HbA1c reductions from 0.8 to 1.5% with liraglutide (1.2 and 1.8 mg), accompanied by low rates of hypoglycaemia and some weight loss; side effects were primarily gastrointestinal in nature (e.g. nausea and diarrhoea). Based on the findings of the LEAD studies and the NICE recommendation, liraglutide now represents an important therapy widely available in the UK for certain patient groups, including those with a body mass index (BMI) ≥35.0 kg/m2, and patients with a BMI <35 kg/m2 who are considered unsuitable for insulin and are failing to meet targets for glycaemic control with oral agents. NICE guidelines still suggest that most patients without considerable obesity (BMI <35 kg/m2) are probably best managed using insulin therapy. Evidence also suggests a future role for GLP-1 mimetics in combination with basal insulin. PMID:22051096

  10. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  11. Radiolabelled GLP-1 analogues for in vivo targeting of insulinomas

    PubMed Central

    Brom, Maarten; Joosten, Lieke; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.

    2012-01-01

    For peptide receptor targeting usually internalizing agonists are selected. There is increasing evidence that non-internalizing receptor antagonists can be used for this purpose. We investigated whether the glucagon-like peptide-1 receptor (GLP-1R) antagonist exendin(9-39) can be used for in vivo targeting of GLP-1R expressing tumours and compared the in vitro and in vivo characteristics to the GLP-1R agonists exendin-3 and exendin-4. The binding and internalization kinetics of labelled [Lys40(DTPA)]exendin-3, [Lys40(DTPA)]exendin-4 and [Lys40(DTPA)]exendin(9-39) were determined in vitro using INS-1 cells. The in vivo targeting properties of [Lys40(111In-DTPA)]exendin-3, [Lys40(111In-DTPA)]exendin-4 and [Lys40(111In-DTPA)]exendin(9-39) were examined in BALB/c nude mice with subcutaneous INS-1 tumours. natIn-labelled [Lys40(DTPA)]exendin-3, [Lys40(DTPA)]exendin-4 and [Lys40(DTPA)]exendin(9-39) exhibited similar IC50 values (13.5, 14.4 and 13.4 nM, respectively) and bound to 26 × 103, 41 × 103 and 37 × 103 receptors/cell, respectively. [Lys40(111In-DTPA)]exendin-3 and [Lys40(111In-DTPA)]exendin-4 showed rapid in vitro binding and internalization kinetics, whereas [Lys40(111In-DTPA)]exendin(9-39) showed lower binding and minimal internalization in vitro. In mice, high specific uptake of [Lys40(111In-DTPA)]exendin-3 (25.0 ± 6.0 %ID/g) in the tumour was observed at 0.5 h p.i. with similar uptake up to 4 h p.i.. [Lys40(111In-DTPA)]exendin-4 showed higher tumour uptake at 1 and 4 h p.i. (40.8 ± 7.0 and 41.9 ± 7.2 %ID/g, respectively). Remarkably, [Lys40(111In-DTPA)]exendin(9-39) showed only low specific uptake in the tumour at 0.5 h p.i. (3.2 ± 0.7 %ID/g), rapidly decreasing over time. In conclusion, the GLP-1R agonists [Lys40(DTPA)]exendin-3 and [Lys40(DTPA)]exendin-4 labelled with 111In could be useful for in vivo GLP-1R targeting, whereas [Lys40(DTPA)]exendin(9-39) is not suited for in vivo targeting of the GLP-1R. PMID:22434628

  12. Examination of a Viral Infection Mimetic Model in Human iPS Cell-Derived Insulin-Producing Cells and the Anti-Apoptotic Effect of GLP-1 Analogue

    PubMed Central

    Baden, Megu Yamaguchi; Fukui, Kenji; Hosokawa, Yoshiya; Iwahashi, Hiromi; Imagawa, Akihisa; Shimomura, Iichiro

    2015-01-01

    Aims Viral infection is associated with pancreatic beta cell destruction in fulminant type 1 diabetes mellitus. The aim of this study was to investigate the acceleration and protective mechanisms of beta cell destruction by establishing a model of viral infection in pancreatic beta cells. Methods Polyinosinic:polycytidylic acid was transfected into MIN6 cells and insulin-producing cells differentiated from human induced pluripotent stem cells via small molecule applications. Gene expression was analyzed by real-time PCR, and apoptosis was evaluated by caspase-3 activity and TUNEL staining. The anti-apoptotic effect of Exendin-4 was also evaluated. Results Polyinosinic:polycytidylic acid transfection led to elevated expression of the genes encoding IFNα, IFNβ, CXCL10, Fas, viral receptors, and IFN-inducible antiviral effectors in MIN6 cells. Exendin-4 treatment suppressed the elevated gene expression levels and reduced polyinosinic:polycytidylic acid-induced apoptosis both in MIN6 cells and in insulin-producing cells from human induced pluripotent stem cells. Glucagon-like peptide-1 receptor, protein kinase A, and phosphatidylinositol-3 kinase inhibitors counteracted the anti-apoptotic effect of Exendin-4. Conclusions Polyinosinic:polycytidylic acid transfection can mimic viral infection, and Exendin-4 exerted an anti-apoptotic effect both in MIN6 and insulin-producing cells from human induced pluripotent stem cells. PMID:26659307

  13. Structural Analogues of Selfotel.

    PubMed

    Dziuganowska, Zofia A; Ślepokura, Katarzyna; Volle, Jean-Noël; Virieux, David; Pirat, Jean-Luc; Kafarski, Paweł

    2016-06-17

    A small library of phosphonopiperidylcarboxylic acids, analogues of NMDA antagonist selfotel (CGS 19755), was synthesized. First, the series of aromatic esters was obtained via a palladium-catalyzed cross-coupling reaction (Hirao coupling) of dialkyl phosphites with bromopyridinecarboxylates, followed by their hydrolysis. Then, hydrogenation of the resulting phosphonopyridylcarboxylic acids over PtO2 yielded the desired phosphonopiperidylcarboxylic acids. NMR studies indicated that the hydrogenation reaction proceeds predominantly by cis addition. Several compounds were obtained as monocrystal structures. Preliminary biological studies performed on cultures of neurons suggest that the obtained compounds possess promising activity toward NMDA receptors. PMID:27187758

  14. Shuttling protein nucleolin is a microglia receptor for amyloid beta peptide 1-42.

    PubMed

    Ozawa, Daisuke; Nakamura, Takashi; Koike, Masanori; Hirano, Kazuya; Miki, Yuichi; Beppu, Masatoshi

    2013-01-01

    Amyloid-beta peptide 1-42 (Aβ42) plays a key role in the neurotoxicity found in Alzheimer's disease. Mononuclear phagocytes in the brain (microglia), can potentially clear Aβ via phagocytosis. Recently, the shuttling-protein nucleolin has been shown to possess scavenger receptor-activity. Here, we investigated whether this receptor interacts specifically with Aβ type 1-42 and mediates its phagocytosis by microglia. While monomeric and fibril Aβ42 were phagocytosed by mouse microglial EOC2 cells, amyloid β peptide 1-40 (Aβ40) was only weakly phagocytosed. Surface plasmon-resonance analysis revealed that nucleolin strongly associates with Aβ42, but only weakly associates with Aβ40. Immunofluorescence staining of anti-nucleolin antibody revealed that EOC2 cells and rat primary microglia express nucleolin on their cell surfaces. Further, pretreating EOC2 cells with anti-nucleolin antibody, but not immunoglobulin G (IgG), inhibited phagocytosis of monomeric Aβ42 by microglia. Additionally, nucleolin-transfected HEK293 cells phagocytosed monomeric and fibril Aβ42 but not monomeric and fibril Aβ40. Moreover, AGRO, a nucleolin-specific oligonucleotide aptamer, inhibited phagocytosis of monomeric and fibril Aβ42, but not monomeric and fibril Aβ40. These results indicate that nucleolin is a receptor that allows microglia to recognize monomeric and fibril Aβ42. PMID:23912744

  15. Analogue-to-Digital and Digital-to-Analogue Conversion.

    ERIC Educational Resources Information Center

    Gregory, Martin

    1997-01-01

    Discusses circuits for three-bit and four-bit analogue digital converters and digital analogue converters. These circuits feature slow operating speeds that enable the circuitry to be used to demonstrate the mode of operation using oscilloscopes and signal generators. (DDR)

  16. Phosphonate analogues of aminoacyl adenylates.

    PubMed Central

    Southgate, C C; Dixon, H B

    1978-01-01

    Phosphonomethyl analogues of glycyl phosphate and valyl phosphate, i.e. NH2-CHR-CO-CH2-PO(OH)2, were synthesized and esterified with adenosine to give analogues of aminoacyl adenylates. The interaction of these adenylate analogues with valyl-tRNA synthetase from Escherichia coli was studied by fluorescence titration. The analogue of valyl phosphate has an affinity for the enzyme comparable with that of valine, but that of valyl adenylate is bound much less tightly than either valyl adenylate or corresponding derivative of valinol. The affinity of the analogue of glycyl adenylate was too low to be measured. We conclude that this enzyme interacts specifically with both the side chain and the anhydride linkage of the adenylate intermediate. PMID:743207

  17. Human neutrophil peptide-1 decreases during ageing in selected Mexican population.

    PubMed

    Rivas-Santiago, Bruno; Castañeda-Delgado, Julio E; de Haro-Acosta, Jeny; Torres-Juarez, Flor; Frausto-Lujan, Isabel; Marin-Luevano, Paulina; González-Amaro, Roberto; Enciso-Moreno, Jose A

    2016-04-01

    Antimicrobial peptide innate immunity plays a central role in the susceptibility to infectious diseases, as has been described extensively in different settings. However, the role that these molecules play in the immunity mediated by polymorphonuclear phagocytes as part of the innate immunity of ageing individuals has not been described. In the present study, we addressed the question whether antimicrobial activity in polymorphonuclear cells from elderly individuals was altered in comparison with young adults. We compared phagocytosis index, bacterial killing efficiency, myeloperoxidase activity and cathelicidin expression. Results showed that there were no statistical differences among groups. However, human neutrophil peptide-1 (HNP-1) was decreased in the elderly individuals group. Results suggest that the decreased HNP-1 production in the polymorphonuclear phagocytes form elderly individuals might have an important participation in the increased susceptibility to infectious diseases. PMID:26323500

  18. Murine nonvolatile pheromones: isolation of exocrine-gland secreting Peptide 1.

    PubMed

    Kimoto, Hiroko; Touhara, Kazushige

    2013-01-01

    Our search for a substance recognized by the vomeronasal neurons revealed that the extra-orbital lacrimal gland (ELG) isolated from adult male mice produced the male-specific peptide pheromone exocrine gland-secreting peptide 1 (ESP1). The following protocol reveals how ESP1 may be extracted from the ELG, purified using anion-exchange and reverse-phase high-performance liquid chromatography (HPLC), and analyzed by mass spectrometry. This protocol has been specifically designed for the purification of ESP1, but may be modified to isolate a variety of peptides from the exocrine glands. Peptides purified in this manner may help further define the molecular mechanisms underlying pheromone communication in the vomeronasal system. PMID:24014353

  19. NASA/ESMD Analogue Mission Plans

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  20. ZmPep1, an ortholog of Arabidopsis elicitor Peptide 1, regulates maize innate immunity and enhances disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize gene termed ZmPROPEP1. The gene was identified by sequence similarity as an ortholog of the Arabidopsis AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1...

  1. [Potential of pharmacological modulation of level and activity incretins on diabetes mellitus type 2].

    PubMed

    Spasov, A A; Chepljaeva, N I

    2015-01-01

    This review summarizes data on the main approaches used for the search of biologically active compounds modulating the level and physiological activity of incretins. Currently two groups of drugs are used in clinical practice: they either replenish the deficit of incretins (glucagon-like peptide-1 receptor agonists) or inhibit the degradation processes (dipeptidyl peptidase 4 inhibitors). In addition, new groups of substances are actively searched. These include non-peptide agonists of glucagon-like peptide-1 receptors, agonists/antagonists of glucose-dependent insulinotropic peptide, the hybrid polypeptides based on glucagon-like peptide-1 and glucagon. PMID:26350740

  2. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics.

    PubMed

    Gaspar, Diana; Freire, João M; Pacheco, Teresa R; Barata, João T; Castanho, Miguel A R B

    2015-02-01

    Cancer remains a major cause of morbidity and mortality worldwide. Although progress has been made regarding chemotherapeutic agents, new therapies that combine increased selectivity and efficacy with low resistance are still needed. In the search for new anticancer agents, therapies based on biologically active peptides, in particular, antimicrobial peptides (AMPs), have attracted attention for their decreased resistance development and low cytotoxicity. Many AMPs have proved to be tumoricidal agents against human cancer cells, but their mode of action is still controversial. The existence of common properties shared by the membranes of bacteria and tumor cells points to similar lipid-targeting mechanisms in both cases. On the other hand, anticancer peptides (ACPs) also induce apoptosis and inhibit angiogenesis. Human neutrophil peptide-1 (HNP-1) is an endogenous AMP that has been implicated in different cellular phenomena such as tumor proliferation. The presence of HNP-1 in the serum/plasma of oncologic patients turns this peptide into a potential tumor biomarker. The present work reveals the different effects of HNP-1 on the biophysical and nanomechanical properties of solid and hematological tumor cells. Studies on cellular morphology, cellular stiffness, and membrane ultrastructure and charge using atomic force microscopy (AFM) and zeta potential measurements show a preferential binding of HNP-1 to solid tumor cells from human prostate adenocarcinoma when compared to human leukemia cells. AFM also reveals induction of apoptosis with cellular membrane defects at very low peptide concentrations. Understanding ACPs mode(s) of action will certainly open innovative pathways for drug development in cancer treatment. PMID:25447543

  3. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-22

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(ii). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(ii)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(ii) and Co(ii) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(ii) and Zn(ii) and a pentacoordinate geometry for Co(ii)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(ii)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(ii)-CP-1(CAHH) and Co(ii)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(ii) complexes. PMID:26936488

  4. Dosimetry of exendin-4 based radiotracer for glucagonlike peptide-1 receptor imaging: an initial report

    NASA Astrophysics Data System (ADS)

    Tomaszuk, M.; Sowa-Staszczak, A.; Lenda-Tracz, W.; Glowa, B.; Pach, D.; Buziak-Bereza, M.; Stefanska, A.; Janota, B.; Pawlak, D.; Mikolajczak, R.; Hubalewska-Dydejczyk, A. B.

    2011-09-01

    Overexpression of glucagonlike peptide-1 (GLP-1) receptors in human tumours is a potential target for future imaging and therapy. The GLP-1 receptor imaging using [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 could be useful in the localization of unknown insulinoma focus. The aim of this study was to present the first experience of our unit with the new radiopharmaceutical and its dose estimates. Imaging studies and dose assessment, according to the MIRD schema and MIRD Pamphlet No.11, were performed for 3 patients (2 with suspicion of insulinoma, 1 with suspected insulinoma recurrence). In the first case suspicion of insulinoma was not confirmed. In the second case localized accumulation of tracer in the pancreas was removed by surgery and the clinical symptoms of insulinoma receded. In the third case, pathological accumulation of tracer was localized and recurrence of insulinoma was confirmed in fusion with CT images. The biological half-time did not exceed 2.7.h. The effective half-time did not exceed 4.8 h. The total-body radiation dose did not exceed 0.0038 mGy/MBq and is comparable with the radiation dose to patient after somatostatin receptor scintigraphy. The highest radiation dose was calculated for kidneys (~ 0.070 mGy/MBq). [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 is a good candidate for clinical GLP-1 receptor imaging studies and appears safe for the patient from radiological safety point of view.

  5. Phosphonomethyl analogues of hexose phosphates.

    PubMed

    Webster, D; Jondorf, W R; Dixon, H B

    1976-05-01

    The analogue of fructose 1,6-bisphosphate in which the phosphate group, -O-PO3H2, on C-6 is replaced by the phosphonomethyl group, -CH2-PO3H2, was made enzymically from the corresponding analogue of 3-phosphoglycerate. It was a substrate for aldolase, which was used to form it, but not for fructose 1,6-bisphosphatase. It was hydrolysed chemically to yield the corresponding analogue of fructose 6-phosphate [i.e. 6-deoxy-6-(phosphonomethyl)-D-fructose, or, more strictly, 6,7-dideoxy-7-phosphono-D-arabino-2-heptulose]. This proved to be a substrate for the sequential actions of glucose 6-phosphate isomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Thus seven out of the nine enzymes of the glycolytic and pentose phosphate pathways so far tested catalyse the reactions of the phosphonomethyl isosteres of their substrates. PMID:7247

  6. The incretin hormone glucagon‐like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage‐dependent potassium channel

    PubMed Central

    Llewellyn‐Smith, Ida J.; Gribble, Fiona; Reimann, Frank; Trapp, Stefan; Fadool, Debra Ann

    2016-01-01

    Key points The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain.GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb.GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3).Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing.The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes. Abstract The olfactory system is intricately linked with the endocrine system where it may serve as a detector of the internal metabolic state or energy homeostasis in addition to its classical function as a sensor of external olfactory information. The recent development of transgenic mGLU‐yellow fluorescent protein mice that express a genetic reporter under the control of the preproglucagon reporter suggested the presence of the gut hormone, glucagon‐like peptide (GLP‐1), in deep short axon cells (Cajal cells) of the olfactory bulb and its neuromodulatory effect on mitral cell (MC) first‐order neurons. A MC target for the peptide was determined using GLP‐1 receptor binding assays, immunocytochemistry for the receptor and injection of fluorescence‐labelled GLP‐1 analogue exendin‐4. Using patch clamp recording of olfactory bulb slices in the whole‐cell configuration, we report that GLP‐1 and its

  7. Muscarinic interactions of bisindolylmaleimide analogues.

    PubMed

    Lazareno, S; Popham, A; Birdsall, N J

    1998-11-01

    We have used radioligand binding studies to determine the affinities of seven bisindolylmaleimide analogues, six of which are selective inhibitors of protein kinase C, at human muscarinic M1-M4 receptors. The compounds were most potent at M1 receptors, and Ro-31-8220 was the most potent analogue, with a Kd of 0.6 microM at M1 receptors. The weakest compounds, bisindolylmaleimide IV and bisindolylmaleimide V, had Kd values of 100 microM. If it is necessary to use protein kinase C inhibitors at concentrations of 10 microM or more in studies involving muscarinic receptors then bisindolylmaleimide IV may be the most appropriate inhibitor to use. PMID:9851596

  8. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  9. Policy issues in space analogues

    NASA Astrophysics Data System (ADS)

    Auger, Robin N.; Facktor, Debra D.

    Space mission planning is increasingly focusing on destinations beyond Earth orbit. Advancements in technology will inevitably be required to enable long-duration human spaceflight missions, and breakthroughs in the policy arena will also be needed to achieve success in such missions. By exploring how policy issues have been addressed in analogous extreme environments, policymakers can develop a framework for addressing these issues as they apply to long-term human spaceflight. Policy issues that need to be addressed include: crew selection, training, organization, and activities, medical testing, illness, injury, and death; communication; legal accountability and liability; mission safety and risk management; and environmental contamination. This paper outlines the approach of a study underway by The George Washington University and ANSER to examine how these policy issues have been addressed in several analogues and how the experiences of these analogues can help formulate policies for long-duration human spaceflight missions. Analogues being studied include Antarctic bases, submarine voyages, undersea stations, Biosphere 2, and the U.S. Skylab and Russian Mir space stations.

  10. Phosphonate analogue substrates for enolase.

    PubMed

    Anderson, V E; Cleland, W W

    1990-11-20

    Phosphonate analogues in which the bridge between C-2 and phosphorus is a CH2 group are slow substrates for yeast enolase. The pH variation of the kinetic parameters for the methylene analogue of 2-phosphoglycerate suggests that the substrate binds as a dianion and that Mg2+ can bind subsequently only if a metal ligand and the catalytic base are unprotonated. Primary deuterium isotope effects of 4-8 on V/KMg, but ones of only 1.15-1.32 on V for dehydration, show that proton removal to give the carbanion intermediate largely limits V/KMg and that a slow step follows which largely limits V (presumably carbanion breakdown). Since there is a D2O solvent isotope effect on V for the reverse reaction of 5, but not an appreciable one on the forward reaction, it appears that the slow rates with phosphonate analogues result from the fact that the carbanion intermediate is more stable than that formed from the normal substrates, and its reaction in both directions limits V. Increased stability as a result of replacement of oxygen by carbon at C-2 of the carbanion is the expected chemical behavior. PMID:2271661

  11. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    PubMed

    Li, Wenyue; Zheng, Yunfei; Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  12. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells

    PubMed Central

    Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  13. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

    DOEpatents

    Skramstad, H.K.; Wright, J.H.; Taback, L.

    1961-12-12

    An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

  14. Ecstasy analogues found in cacti.

    PubMed

    Bruhn, Jan G; El-Seedi, Hesham R; Stephanson, Nikolai; Beck, Olof; Shulgin, Alexander T

    2008-06-01

    Human interest in psychoactive phenethylamines is known from the use of mescaline-containing cacti and designer drugs such as Ecstasy. From the alkaloid composition of cacti we hypothesized that substances resembling Ecstasy might occur naturally. In this article we show that lophophine, homopiperonylamine and lobivine are new minor constituents of two cactus species, Lophophora williamsii (peyote) and Trichocereus pachanoi (San Pedro). This is the first report of putatively psychoactive phenethylamines besides mescaline in these cacti. A search for further biosynthetic analogues may provide new insights into the structure-activity relationships of mescaline. An intriguing question is whether the new natural compounds can be called "designer drugs." PMID:18720674

  15. The Drosophila ortholog of TMEM18 regulates insulin and glucagon-like signaling.

    PubMed

    Wiemerslage, Lyle; Gohel, Priya A; Maestri, Giulia; Hilmarsson, Torfi G; Mickael, Michel; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B

    2016-06-01

    Transmembrane protein 18 (TMEM18) is an ill-described, obesity-related gene, but few studies have explored its molecular function. We found single-nucleotide polymorphism data, suggesting that TMEM18 may be involved in the regulation/physiology of metabolic syndrome based on associations with insulin, homeostatic model assessment-β (HOMAβ), triglycerides, and blood sugar. We then found an ortholog in the Drosophila genome, knocked down Drosophila Tmem18 specifically in insulin-producing cells, and tested for its effects on metabolic function. Our results suggest that TMEM18 affects substrate levels through insulin and glucagon signaling, and its downregulation induces a metabolic state resembling type 2 diabetes. This work is the first to experimentally describe the metabolic consequences of TMEM18 knockdown, and further supports its association with obesity. PMID:27029472

  16. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis

    PubMed Central

    Bharucha, K. N.; Tarr, P.; Zipursky, S. L.

    2009-01-01

    SUMMARY The regulation of energy homeostasis is fundamental to all organisms. The Drosophila fat body serves as a repository for both triglycerides and glycogen, combining the energy storage functions of mammalian adipose and hepatic tissues, respectively. Here we show that mutation of the Drosophila adipokinetic hormone receptor (AKHR), a functional analog of the mammalian glucagon receptor, leads to abnormal accumulation of both lipid and carbohydrate. As a consequence of their obese phenotypes, AKHR mutants are markedly starvation resistant. We show that AKHR is expressed in the fat body, and, intriguingly, in a subset of gustatory neurons that mediate sweet taste. Genetic rescue experiments establish that the metabolic phenotypes arise exclusively from the fat body AKHR expression. Behavioral experiments demonstrate that AKHR mutants are neither sedentary nor hyperphagic, suggesting the metabolic abnormalities derive from a genetic propensity to retain energy stores. Taken together, our results indicate that a single endocrine pathway contributes to both lipid and carbohydrate catabolism in the Drosophila fat body. PMID:18805809

  17. The Valles natural analogue project

    SciTech Connect

    Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  18. Forum for Injection Techniques, India: The First Indian Recommendations for Best Practice in Insulin Injection Technique

    PubMed Central

    Kalra, Sanjay; Balhara, Yatan Pal Singh; Baruah, Manash P.; Chadha, Manoj; Chandalia, Hemraj B.; Chowdhury, Subhankar; Kumar, K. M. Prasanna; Modi, Sonal; Pitale, Shailesh; Shukla, Rishi; Sahay, Rakesh; Sundaram, Annamalai; Unnikrishnan, Ambika G.; Wangnoo, Subhash K.

    2012-01-01

    Advances in the treatment of diabetes have led to an increase in the number of injectable therapies, such as human insulin, insulin analogues, and glucagon-like peptide-1 analogues. The efficacy of injection therapy in diabetes depends on correct injection technique, among many other factors. Good injection technique is vital in achieving glycemic control and thus preventing complications of diabetes. From the patients’ and health-care providers’ perspective, it is essential to have guidelines to understand injections and injection techniques. The abridged version of the First Indian Insulin Injection technique guidelines developed by the Forum for Injection Technique (FIT) India presented here acknowledge good insulin injection techniques and provide evidence-based recommendations to assist diabetes care providers in improving their clinical practice. PMID:23226630

  19. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  20. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  1. An analogue study of intrusions.

    PubMed

    Laposa, Judith M; Alden, Lynn E

    2006-07-01

    According to cognitive theorists, intrusive trauma memories have their origin in how information during the event is processed. Two studies investigated functional cognitive strategies during medical crises that might protect against intrusions. In Study 1, interviews with health-care professionals were used to identify cognitive strategies judged to be effective in controlling emotions and dealing with medical crises. Study 2 systematically manipulated the use of those strategies in a trauma analogue film paradigm. Experimental participants reported fewer intrusions, and less fear and avoidance of film-related stimuli during the subsequent week than controls. The manipulation did not affect anxiety during the film or memory disorganization. Implications for cognitive theories of intrusion development are discussed. PMID:16125135

  2. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  3. Laboratory study of cometary analogues

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Brucato, J.; Mennella, V.; Palumbo, P.

    In situ exploration (e.g., GIOTTO mission) and astronomical observations (e.g., ISO) of comets have provided fundamental information about the structure, chemistry and physical properties of materials present in such primordial bodies of the Solar System. Moreover, it is known that cosmic materials evolve, depending on the efficiency of active processes (e.g., thermal annealing, UV irradiation, ion bombardment, gassolid interactions) in different space environments. Thus, the properties of cometary constituents must be considered in a wider perspective, including cosmic dust formation around cold stars and evolution in the interstellar medium until the formation of proto-planetary nebulae. In this scenario, laboratory experiments provide important hints to clarify the status of cometary compounds. The laboratory work is aimed at both reproducing material properties and at simulating their evolution based on the most effective mechanisms active in space. Several techniques are used to synthesise "analogues" of cometary compounds with controlled chemical and physical characteristics. The study of optical properties, complemented by other analytical techniques, is applied to investigate the products of synthesis in the experiments. The monitoring of the effects produced by processing methods, similar to those active in space, provides information both on the reactivity of materials and on the efficiency of treatments. Such an approach is able to provide quantitative information on chemical and structural modifications produced on organic and refractory materials. The comparison of laboratory results with data coming from space observations and in situ measurements provides a powerful tool to understand the real nature of comets and to place constraints on formation and evolution pathways. The laboratory experiments on analogues gain even more relevance as a sort of training in the future perspective of analysing cometary samples returned to Earth by space missions (e

  4. Plant volatile analogues strengthen attractiveness to insect.

    PubMed

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  5. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  6. Space analogue studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Lugg, D.; Shepanek, M.

    1999-09-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  7. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  8. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-01-01

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity. PMID:24918540

  9. Space analogue studies in Antarctica

    NASA Technical Reports Server (NTRS)

    Lugg, D.; Shepanek, M.

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  10. Heterocyclic chalcone analogues as potential anticancer agents.

    PubMed

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties. PMID:22721390

  11. Synthesis and SAR of vinca alkaloid analogues.

    PubMed

    Voss, Matthew E; Ralph, Jeffery M; Xie, Dejian; Manning, David D; Chen, Xinchao; Frank, Anthony J; Leyhane, Andrew J; Liu, Lei; Stevens, Jason M; Budde, Cheryl; Surman, Matthew D; Friedrich, Thomas; Peace, Denise; Scott, Ian L; Wolf, Mark; Johnson, Randall

    2009-02-15

    Versatile intermediates 12'-iodovinblastine, 12'-iodovincristine and 11'-iodovinorelbine were utilized as substrates for transition metal based chemistry which led to the preparation of novel analogues of the vinca alkaloids. The synthesis of key iodo intermediates, their transformation into final products, and the SAR based upon HeLa and MCF-7 cell toxicity assays is presented. Selected analogues 27 and 36 show promising anticancer activity in the P388 murine leukemia model. PMID:19147348

  12. Large-scale production of soluble recombinant amyloid-β peptide 1-42 using cold-inducible expression system.

    PubMed

    Kim, Eun-Kyung; Moon, Jeong Chan; Lee, Jeong Mi; Jeong, Min Seop; Oh, Choongseob; Ahn, Sung-Min; Yoo, Yung Joon; Jang, Ho Hee

    2012-11-01

    Amyloid-β peptide 1-42 (Aβ(1-42)), the predominant form in senile plaques, plays important roles in the pathogenesis of Alzheimer's disease. Because Aβ(1-42) has aggregation-prone nature, it has been difficult to produce in a soluble state in bacterial expression systems. In this study, we modified our expression system to increase the soluble fraction of Aβ(1-42) in Escherichia coli (E. coli) cells. The expression level and solubility of recombinant Aβ(1-42) induced at the low temperature (16°C) is highly increased compared to that induced at 37°C. To optimize expression temperature, the coding region of Aβ(1-42) was constructed in a pCold vector, pCold-TF, which has a hexahistidine-tagged trigger factor (TF). Recombinant Aβ(1-42) was expressed primarily as a soluble protein using pCold vector system and purified with a nickel-chelating resin. When the toxic effect of recombinant Aβ(1-42) examined on human neuroblastoma SH-SY5Y cells, the purified Aβ(1-42) induced cell toxicity on SH-SY5Y cells. In conclusion, the system developed in this study will provide a useful method for the production of aggregation prone-peptide such as Aβ(1-42). PMID:22982229

  13. Planetary habitability: lessons learned from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Preston, Louisa J.; Dartnell, Lewis R.

    2014-01-01

    Terrestrial analogue studies underpin almost all planetary missions and their use is essential in the exploration of our Solar system and in assessing the habitability of other worlds. Their value relies on the similarity of the analogue to its target, either in terms of their mineralogical or geochemical context, or current physical or chemical environmental conditions. Such analogue sites offer critical ground-truthing for astrobiological studies on the habitability of different environmental parameter sets, the biological mechanisms for survival in extreme environments and the preservation potential and detectability of biosignatures. The 33 analogue sites discussed in this review have been selected on the basis of their congruence to particular extraterrestrial locations. Terrestrial field sites that have been used most often in the literature, as well as some lesser known ones which require greater study, are incorporated to inform on the astrobiological potential of Venus, Mars, Europa, Enceladus and Titan. For example, the possibility of an aerial habitable zone on Venus has been hypothesized based on studies of life at high-altitudes in the terrestrial atmosphere. We also demonstrate why many different terrestrial analogue sites are required to satisfactorily assess the habitability of the changing environmental conditions throughout Martian history, and recommend particular sites for different epochs or potential niches. Finally, habitable zones within the aqueous environments of the icy moons of Europa and Enceladus and potentially in the hydrocarbon lakes of Titan are discussed and suitable analogue sites proposed. It is clear from this review that a number of terrestrial analogue sites can be applied to multiple planetary bodies, thereby increasing their value for astrobiological exploration. For each analogue site considered here, we summarize the pertinent physiochemical environmental features they offer and critically assess the fidelity with which

  14. Glucagonlike Peptide 2 Analogue Teduglutide

    PubMed Central

    Chaturvedi, Lakshmi S.; Basson, Marc D.

    2015-01-01

    IMPORTANCE Short bowel syndrome occurs when a shortened intestine cannot absorb sufficient nutrients or fluids. Teduglutide is a recombinant analogue of human glucagonlike peptide 2 that reduces dependence on parenteral nutrition in patients with short bowel syndrome by promoting enterocytic proliferation, increasing the absorptive surface area. However, enterocyte function depends not only on the number of cells that are present but also on differentiated features that facilitate nutrient absorption and digestion. OBJECTIVE To test the hypothesis that teduglutide impairs human intestinal epithelial differentiation. DESIGN AND SETTING We investigated the effects of teduglutide in the modulation of proliferation and differentiation in human Caco-2 intestinal epithelial cells at a basic science laboratory. This was an in vitro study using Caco-2 cells, a human-derived intestinal epithelial cell line commonly used to model enterocytic biology. EXPOSURE Cells were exposed to teduglutide or vehicle control. MAINOUTCOMESAND MEASURES We analyzed the cell cycle by bromodeoxyuridine incorporation or propidium iodide staining and flow cytometry and measured cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. We used quantitative reverse transcription–polymerase chain reaction to assay the expression of the enterocytic differentiation markers villin, sucrase-isomaltase, glucose transporter 2 (GLUT2), and dipeptidyl peptidase 4 (DPP-4), as well as that of the putative differentiation signals schlafen 12 (SLFN12) and caudal-related homeobox intestine-specific transcription factor (Cdx2). Villin promoter activity was measured by a luciferase-based assay. RESULTS The MTS assay demonstrated that teduglutide increased cell numbers by a mean (SD) of 10% (2%) over untreated controls at a maximal 500nM (n = 6, P < .05). Teduglutide increased bromodeoxyuridine-positive cells vs untreated controls by a mean (SD

  15. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance.

    PubMed

    Huffaker, Alisa; Dafoe, Nicole J; Schmelz, Eric A

    2011-03-01

    ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops. PMID:21205619

  16. Convergent syntheses of LeX analogues

    PubMed Central

    Wang, An; Hendel, Jenifer

    2010-01-01

    Summary The synthesis of three Lex derivatives from one common protected trisaccharide is reported. These analogues will be used respectively for competitive binding experiments, conjugation to carrier proteins and immobilization on gold. An N-acetylglucosamine monosaccharide acceptor was first glycosylated at O-4 with a galactosyl imidate. This coupling was performed at 40 °C under excess of BF3·OEt2 activation and proceeded best if the acceptor carried a 6-chlorohexyl rather than a 6-azidohexyl aglycon. The 6-chlorohexyl disaccharide was then converted to an acceptor and submitted to fucosylation yielding the corresponding protected 6-chlorohexyl Lex trisaccharide. This protected trisaccharide was used as a precursor to the 6-azidohexyl, 6-acetylthiohexyl and 6-benzylthiohexyl trisaccharide analogues which were obtained in excellent yields (70–95%). In turn, we describe the deprotection of these intermediates in one single step using dissolving metal conditions. Under these conditions, the 6-chlorohexyl and 6-azidohexyl intermediates led respectively to the n-hexyl and 6-aminohexyl trisaccharide targets. Unexpectedly, the 6-acetylthiohexyl analogue underwent desulfurization and gave the n-hexyl glycoside product, whereas the 6-benzylthiohexyl analogue gave the desired disulfide trisaccharide dimer. This study constitutes a particularly efficient and convergent preparation of these three Lex analogues. PMID:20485599

  17. Dolastatin 11 conformations, analogues and pharmacophore.

    PubMed

    Ali, Md Ahad; Bates, Robert B; Crane, Zackary D; Dicus, Christopher W; Gramme, Michelle R; Hamel, Ernest; Marcischak, Jacob; Martinez, David S; McClure, Kelly J; Nakkiew, Pichaya; Pettit, George R; Stessman, Chad C; Sufi, Bilal A; Yarick, Gayle V

    2005-07-01

    Twenty analogues of the natural antitumor agent dolastatin 11, including majusculamide C, were synthesized and tested for cytotoxicity against human cancer cells and stimulation of actin polymerization. Only analogues containing the 30-membered ring were active. Molecular modeling and NMR evidence showed the low-energy conformations. The amide bonds are all trans except for the one between the Tyr and Val units, which is cis. Since an analogue restricted to negative 2-3-4-5 angles stimulated actin polymerization but was inactive in cells, the binding conformation (most likely the lowest-energy conformation in water) has a negative 2-3-4-5 angle, whereas a conformation with a positive 2-3-4-5 angle (most likely the lowest energy conformation in chloroform) goes through cell walls. The highly active R alcohol from borohydride reduction of dolastatin 11 is a candidate for conversion to prodrugs. PMID:15878670

  18. Incretin manipulation in diabetes management

    PubMed Central

    Pappachan, Joseph M; Raveendran, AV; Sriraman, Rajagopalan

    2015-01-01

    Incretin-based therapies have revolutionized the medical management of type 2 diabetes mellitus (T2DM) in the 21st century. Glucagon-like peptide-1 (GLP-1) suppresses appetite and gastric motility, and has trophic effects on pancreas, cardio-protective and renal effects. GLP-1 analogues and dipeptidyl peptidase-4 inhibitors form the incretin-based therapies. Significant reduction of hemoglobin A1c when used as monotherapy and in combination regimens, favorable effects on body weight, and low risk of hypoglycemia are their unique therapeutic benefits. Their safety and tolerability are comparable to other anti-diabetic medications. Concern about elevated risk of pancreatitis has been discarded by two recent meta-analyses. This article discusses the therapeutic manipulation of incretin system for the management of T2DM. PMID:26131320

  19. Incretin manipulation in diabetes management.

    PubMed

    Pappachan, Joseph M; Raveendran, A V; Sriraman, Rajagopalan

    2015-06-25

    Incretin-based therapies have revolutionized the medical management of type 2 diabetes mellitus (T2DM) in the 21(st) century. Glucagon-like peptide-1 (GLP-1) suppresses appetite and gastric motility, and has trophic effects on pancreas, cardio-protective and renal effects. GLP-1 analogues and dipeptidyl peptidase-4 inhibitors form the incretin-based therapies. Significant reduction of hemoglobin A1c when used as monotherapy and in combination regimens, favorable effects on body weight, and low risk of hypoglycemia are their unique therapeutic benefits. Their safety and tolerability are comparable to other anti-diabetic medications. Concern about elevated risk of pancreatitis has been discarded by two recent meta-analyses. This article discusses the therapeutic manipulation of incretin system for the management of T2DM. PMID:26131320

  20. New drug treatments show neuroprotective effects in Alzheimer's and Parkinson's diseases

    PubMed Central

    Hölscher, Christian

    2014-01-01

    Type 2 diabetes is a risk factor for Alzheimer's disease and Parkinson's disease. Insulin signaling in the brains of people with Alzheimer's disease or Parkinson's disease is impaired. Preclinical studies of growth factors showed impressive neuroprotective effects. In animal models of Alzheimer's disease and Parkinson's disease, insulin, glia-derived neurotrophic factor, or analogues of the incretin glucagon-like peptide-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality in Alzheimer's disease and Parkinson's disease. On the basis of these promising findings, several clinical trials are ongoing with the first encouraging clinical results published. This gives hope for developing effective treatments for Alzheimer's disease and Parkinson's disease that are currently unavailable. PMID:25558231

  1. Improvement in binge eating in non-diabetic obese individuals after 3 months of treatment with liraglutide - A pilot study.

    PubMed

    Robert, Sarah Anne; Rohana, Abdul Ghani; Shah, Shamsul Azhar; Chinna, Karuthan; Wan Mohamud, Wan Nazaimoon; Kamaruddin, Nor Azmi

    2015-01-01

    We examined the effects of liraglutide, a glucagon-like peptide-1 analogue on appetite and plasma ghrelin in non-diabetic obese participants with subclinical binge eating (BE). Forty-four obese BE participants (mean age: 34±9 years, BMI: 35.9±4.2kg/m(2)) were randomly assigned to intervention or control groups for 12 weeks. All participants received standard advice for diet and exercise. Binge eating score, ghrelin levels and other anthropometric variables were evaluated at baseline and at the end of the study. Participants who received liraglutide showed significant improvement in binge eating, accompanied by reduction in body weight, BMI, waist circumference, systolic blood pressure, fasting glucose and total cholesterol. Ghrelin levels were significantly increased which may potentially diminish the weight loss effects of liraglutide beyond the intervention. PMID:25870084

  2. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-08-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  3. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-06-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  4. D-luciferin analogues: a multicolor toolbox for bioluminescence imaging.

    PubMed

    Sun, Yuan-Qiang; Liu, Jing; Wang, Pi; Zhang, Jingyu; Guo, Wei

    2012-08-20

    Colorful mixture: Three types of luciferin analogues, that is, alkylaminoluciferins, aminoselenoluciferin, and luciferins with a benzimidazole scaffold, have been reported. These analogues show excellent bioluminescent properties and great potential in bioluminescence imaging. PMID:22807027

  5. Synthesis and Cytoxicity of Sempervirine and Analogues.

    PubMed

    Pan, Xiaohong; Yang, Chunying; Cleveland, John L; Bannister, Thomas D

    2016-03-01

    Sempervirine and analogues were synthesized using a route featuring Sonogashira and Larock Pd-catalyzed reactions. Structure-activity relationships were investigated using three human cancer cell lines. 10-Fluorosempervirine is the most potently cytotoxic member of the family yet described. PMID:26828413

  6. Solanapyrone analogues from a Hawaiian fungicolous fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  7. New cytotoxic analogues of annonaceous acetogenins.

    PubMed

    Rodier, S; Le Huerou, Y; Renoux, B; Doyon, J; Renard, P; Pierré, A; Gesson, J P; Grée, R

    2001-01-01

    A series of new acetogenin analogues incorporating a central catechol moiety instead of the tetrahydrofuran ring(s) have been prepared and tested against L1210 leukemia cells. Although less potent than bullatacinone, which has the same terminal lactone, these compounds display interesting cell cycle effects. PMID:11962508

  8. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  9. Synthesis of lipid II phosphonate analogues.

    PubMed

    Borbás, Anikó; Herczegh, Pál

    2011-09-01

    Simple analogues of lipid II were synthesized from 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-1-thio-β-D-glucopyranose using conjugate addition onto ethylidene bisphosphonate and subsequent Wadsworth-Horner-Emmons reaction with long chain aliphatic aldehydes. PMID:21600568

  10. The arsonomethyl analogue of 3-phosphoglycerate.

    PubMed Central

    Adams, S R; Sparkes, M J; Dixon, H B

    1983-01-01

    4-Arsono-2-hydroxybutanoic acid, the analogue of 3-phosphoglycerate in which -CH2-AsO3H2 replaces -O-PO3H2, was synthesized. It proved to be a substrate for phosphoglycerate kinase. Its Michaelis constant was only slightly higher than that of the natural substrate, but its catalytic constant was about 1300 times smaller. PMID:6615422

  11. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  12. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment. PMID:27301366

  13. Recent advances in topoisomerase I-targeting agents, camptothecin analogues.

    PubMed

    Kim, Dae-Kee; Lee, Namkyu

    2002-12-01

    The present review concentrates on camptothecin (CPT) analogues, the most extensively studied topoisomerase I (topo I) inhibitors, and provides concise information on the structural features of human topo I enzyme, mechanisms of interaction of CPT with topo I, structure-activity relationship study of CPT analogues including the influence of lactone stability on antitumor activity, and recent updates of valuable CPT analogues. PMID:12370044

  14. [Insulin analogues: modifications in the structure, molecular and metabolic consequences].

    PubMed

    de Luis, D A; Romero, E

    2013-01-01

    Recombinant DNA technology has provided insulin analogues for the treatment of diabetes mellitus, with an efficacy and safety that has improved the treatment of this disease. We briefly review the principal characteristics of the insulin analogues currently available. Both rapid-acting (lispro, aspart and glulisine) and long acting (glargine and determir) insulin analogues are included in this review. We describe the pharmacology of each insulin analogue, their differences with the human insulin, the administration, indication, efficacy and safety. In addition we discussed the main controversies of the use of these insulin analogues. In particular, those related with the risk of cancer and retinopathy, and their use in pregnant women. PMID:23517895

  15. Design and synthesis of new fluconazole analogues.

    PubMed

    Pore, Vandana S; Agalave, Sandip G; Singh, Pratiksha; Shukla, Praveen K; Kumar, Vikash; Siddiqi, Mohammad I

    2015-06-21

    We have synthesized new fluconazole analogues containing two different 1,2,3-triazole units in the side chain. The synthesis of new amide analogues using a variety of acids is also described. All the compounds showed very good antifungal activity. A hemolysis study of the most active compounds 6e and 13j showed that both compounds did not cause any hemolysis at the dilutions tested. These compounds did not exhibit any toxicity to L929 cells at MIC and lower concentrations. In the docking study, the overall binding mode of 6e and 13j appeared to be reasonable and provided a good insight into the structural basis of inhibition of Candida albicans Cyp51 by these compounds. PMID:25975803

  16. Efficient synthesis of esermethole and its analogues.

    PubMed

    Zhou, Yongyun; Zhao, Yuanhong; Dai, Xiaoyong; Liu, Jianping; Li, Liang; Zhang, Hongbin

    2011-06-01

    In this work, a general and flexible synthetic route towards the synthesis of pyrroloindoline alkaloids was developed. This new strategy features with a palladium mediated sequential arylation-allylation of o-bromoanilides and leads to the construction of oxindoles bearing a full carbon quaternary center. The cheap triphenylphosphine was proved to be a highly effective ligand for this one pot transformation. On the basis of this new method, esermethole and its analogues were synthesized. PMID:21472186

  17. Synthesis of constrained analogues of tryptophan

    PubMed Central

    Negrato, Marco; Abbiati, Giorgio; Dell’Acqua, Monica

    2015-01-01

    Summary A Lewis acid-catalysed diastereoselective [4 + 2] cycloaddition of vinylindoles and methyl 2-acetamidoacrylate, leading to methyl 3-acetamido-1,2,3,4-tetrahydrocarbazole-3-carboxylate derivatives, is described. Treatment of the obtained cycloadducts under hydrolytic conditions results in the preparation of a small library of compounds bearing the free amino acid function at C-3 and pertaining to the class of constrained tryptophan analogues. PMID:26664620

  18. Synthesis and cytotoxic activity of acetogenin analogues.

    PubMed

    Rodier, S; Le Huérou, Y; Renoux, B; Doyon, J; Renard, P; Pierré, A; Gesson, J P; Grée, R

    2000-06-19

    A set of 16 new simplified analogues of acetogenins has been designed based on: (i) the replacement of the bis THF moiety of these natural products by an ethylene glycol bis ether unit; (ii) the introduction of different lipophilic side chains (alkyl, aryl, dialkylamino, O-cholesteryl); (iii) the presence of the same terminal isolactone. In vitro cytotoxic activity against L1210 leukemia is reported. PMID:10890167

  19. The Brookhaven electron analogue, 1953--1957

    SciTech Connect

    Plotkin, M.

    1991-12-18

    The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.

  20. Blood Loss Estimation Using Gauze Visual Analogue

    PubMed Central

    Ali Algadiem, Emran; Aleisa, Abdulmohsen Ali; Alsubaie, Huda Ibrahim; Buhlaiqah, Noora Radhi; Algadeeb, Jihad Bagir; Alsneini, Hussain Ali

    2016-01-01

    Background Estimating intraoperative blood loss can be a difficult task, especially when blood is mostly absorbed by gauze. In this study, we have provided an improved method for estimating blood absorbed by gauze. Objectives To develop a guide to estimate blood absorbed by surgical gauze. Materials and Methods A clinical experiment was conducted using aspirated blood and common surgical gauze to create a realistic amount of absorbed blood in the gauze. Different percentages of staining were photographed to create an analogue for the amount of blood absorbed by the gauze. Results A visual analogue scale was created to aid the estimation of blood absorbed by the gauze. The absorptive capacity of different gauze sizes was determined when the gauze was dripping with blood. The amount of reduction in absorption was also determined when the gauze was wetted with normal saline before use. Conclusions The use of a visual analogue may increase the accuracy of blood loss estimation and decrease the consequences related to over or underestimation of blood loss. PMID:27626017

  1. Three Efficient Methods for Preparation of Coelenterazine Analogues.

    PubMed

    Shakhmin, Anton; Hall, Mary P; Walker, Joel R; Machleidt, Thomas; Binkowski, Brock F; Wood, Keith V; Kirkland, Thomas A

    2016-07-18

    The growing popularity of bioluminescent assays has highlighted the need for coelenterazine analogues possessing properties tuned for specific applications. However, the structural diversity of known coelenterazine analogues has been limited by current syntheses. Known routes for the preparation of coelenterazine analogues employ harsh reaction conditions that limit access to many substituents and functional groups. Novel synthetic routes reported here establish simple and robust methods for synthesis and investigation of structurally diverse marine luciferase substrates. Specifically, these new routes allow synthesis of coelenterazine analogues containing various heterocyclic motifs and substituted aromatic groups with diverse electronic substituents at the R(2) position. Interesting analogues described herein were characterized by their physicochemical properties, bioluminescent half-life, light output, polarity and cytotoxicity. Some of the analogues represent leads that can be utilized in the development of improved bioluminescent systems. PMID:27305599

  2. U.S. Nuclear Regulatory Commission natural analogue research program

    SciTech Connect

    Kovach, L.A.; Ott, W.R.

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.

  3. CO2 Removal using a Synthetic Analogue of Carbonic Anhydrase

    SciTech Connect

    Cordatos, Harry

    2010-09-14

    Project attempts to develop a synthetic analogue for carbonic anhydrase and incorporate it in a membrane for separation of CO2 from coal power plant flue gas. Conference poster presents result of first 9 months of project progress including concept, basic system architecture and membrane properties target, results of molecular modeling for analogue - CO2 interaction, and next steps of testing analogue resistance to flue gas contaminants.

  4. Conformationally restrained aromatic analogues of fosmidomycin and FR900098.

    PubMed

    Kurz, Thomas; Schlüter, Katrin; Pein, Miriam; Behrendt, Christoph; Bergmann, Bärbel; Walter, Rolf D

    2007-07-01

    The synthesis and in-vitro antimalarial activity of conformationally restrained bis(pivaloyloxymethyl) ester analogues of the natural product fosmidomycin is presented. In contrast to alpha-aryl-substituted analogues, conformationally restrained aromatic analogues exhibit only moderate in-vitro antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The most active derivative displays an IC(50) value of 47 microM. PMID:17611943

  5. Phonon analogue of topological nodal semimetals

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Bahri, Yasaman; Vishwanath, Ashvin

    2015-03-01

    Recently, Kane and Lubensky proposed a mapping between bosonic phonon problems on isostatic lattices to chiral fermion systems based on factorization of the dynamical matrix [Nat. Phys. 10, 39 (2014)]. The existence of topologically protected zero modes in such mechanical problems is related to their presence in the fermionic system and is dictated by a local index theorem. Here we adopt the proposed mapping to construct a two-dimensional mechanical analogue of a fermionic topological nodal semimetal that hosts a robust bulk node in its linearized phonon spectrum. Such topologically protected soft modes with tunable wavevector may be useful in designing mechanical structures with fault-tolerant properties.

  6. Digitoxin Analogues with Improved Anticytomegalovirus Activity

    PubMed Central

    2014-01-01

    Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure–activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication. PMID:24900847

  7. Analogue factoring algorithm based on polychromatic interference

    NASA Astrophysics Data System (ADS)

    Tamma, Vincenzo; Garuccio, Augusto; Shih, Yanhua

    2010-08-01

    We present a novel factorization algorithm which can be computed using an analogue computer based on a polychromatic source with a given wavelength bandwidth, a multi-path interferometer and a spectrometer. The core of this algorithm stands on the measurement of the periodicity of a "factoring" function given by an exponential sum at continuous argument by recording a sequence of interferograms associated with suitable units of displacement in the inteferometer. A remarking rescaling property of such interferograms allows, in principle, the prime number decomposition of several large integers. The information about factors is encoded in the location of the inteferogram maxima.

  8. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D

  9. Materials analogue of zero-stiffness structures

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Subramaniam, Anandh

    2011-04-01

    Anglepoise lamps and certain tensegrities are examples of zero-stiffness structures. These structures are in a state of neutral equilibrium with respect to changes in configuration of the system. Using Eshelby's example of an edge dislocation in a thin plate that can bend, we report the discovery of a non-trivial new class of material structures as an analogue to zero-stiffness structures. For extended positions of the edge dislocation in these structures, the dislocation experiences a zero image force. Salient features of these material structures along with the key differences from conventional zero-stiffness structures are pointed out.

  10. Future glucose-lowering drugs for type 2 diabetes.

    PubMed

    Bailey, Clifford J; Tahrani, Abd A; Barnett, Anthony H

    2016-04-01

    The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision. PMID:26809680

  11. Liraglutide in Type 2 Diabetes Mellitus: Clinical Pharmacokinetics and Pharmacodynamics.

    PubMed

    Jacobsen, Lisbeth V; Flint, Anne; Olsen, Anette K; Ingwersen, Steen H

    2016-06-01

    Liraglutide is an acylated glucagon-like peptide-1 analogue with 97 % amino acid homology with native glucagon-like peptide-1 and greatly protracted action. It is widely used for the treatment of type 2 diabetes mellitus, and administered by subcutaneous injection once daily. The pharmacokinetic properties of liraglutide enable 24-h exposure coverage, a requirement for 24-h glycaemic control with once-daily dosing. The mechanism of protraction relates to slowed release from the injection site, and a reduced elimination rate owing to metabolic stabilisation and reduced renal filtration. Drug exposure is largely independent of injection site, as well as age, race and ethnicity. Increasing body weight and male sex are associated with reduced concentrations, but there is substantial overlap between subgroups; therefore, dose escalation should be based on individual treatment outcome. Exposure is reduced with mild, moderate or severe renal or hepatic impairment. There are no clinically relevant changes in overall concentrations of various drugs (e.g. paracetamol, atorvastatin, griseofulvin, digoxin, lisinopril and oral combination contraceptives) when co-administered with liraglutide. Pharmacodynamic studies show multiple beneficial actions with liraglutide, including improved fasting and postprandial glycaemic control (mediated by increased insulin and reduced glucagon levels and minor delays in gastric emptying), reduced appetite and energy intake, and effects on postprandial lipid profiles. The counter-regulatory hormone response to hypoglycaemia is largely unaltered. The effects of liraglutide on insulin and glucagon secretion are glucose dependent, and hence the risk of hypoglycaemia is low. The pharmacokinetic and pharmacodynamic properties of liraglutide make it an important treatment option for many patients with type 2 diabetes. PMID:26597252

  12. Liraglutide: A review of its therapeutic use as a once daily GLP-1 analog for the management of type 2 diabetes mellitus

    PubMed Central

    Dharmalingam, Mala; Sriram, Usha; Baruah, Manash P.

    2011-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive disease associated with significant morbidity and mortality. Even though progress have been accomplished in the management of type 2 diabetes, current treatment preferences for patients with this disease still fall short to address disease progression. With the present therapy, glycaemic control remains suboptimal and are often associated with weight gain and hypoglycaemia. Glucagon like peptide-1 (GLP-1) is an incretin hormone secreted from the small intestine that lowers fasting and postprandial glucose through multiple mechanisms including glucose-dependent insulin secretion, reduction of glucagon secretion, delaying gastric emptying and increased satiety. Liraglutide, a human glucagon-like peptide 1 (GLP-1) analogue is a treatment for T2DM that is administered as a once-daily subcutaneous injection. The efficacy and tolerability of liraglutide at doses of 0.6, 1.2, and 1.8 mg for T2DM, in combination with, and compared with, other T2DM treatments were investigated in the Liraglutide Effect and Action in Diabetes (LEAD) Phase III clinical trial program. In the LEAD trial, treatment with liraglutide was associated with substantial improvements in glycaemic control and low risk of hypoglycaemia. In addition liraglutide significantly improved β-cell function, reduced systolic blood pressure (BP) and induced weight loss. Overall, liraglutide was well tolerated. Recent data on safety and efficacy of liraglutide from real-life clinical practice settings also reiterate the better therapeutic profile of this molecule. Based on results from the LEAD programme, and real-life clinical experience, liraglutide has been demonstrated as an effective therapeutic intervention even at the early stage of diabetes regardless of with what, it has been used. PMID:21584160

  13. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of the...

  14. Energy-Dependent Modulation of Glucagon-Like Signaling in Drosophila via the AMP-Activated Protein Kinase

    PubMed Central

    Braco, Jason T.; Gillespie, Emily L.; Alberto, Gregory E.; Brenman, Jay E.; Johnson, Erik C.

    2012-01-01

    Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes a suite of behavioral and physiological phenotypes resembling AKH cell ablations. Specifically, reduced AMPK function increases life span during starvation and delays starvation-induced hyperactivity. Neither AKH cell survival nor gene expression is significantly impacted by reduced AMPK function. AKH immunolabeling was significantly higher in animals with reduced AMPK function; this result is paralleled by genetic inhibition of synaptic release, suggesting that AMPK promotes AKH secretion. We observed reduced secretion in AKH cells bearing AMPK mutations employing a specific secretion reporter, confirming that AMPK functions in AKH secretion. Live-cell imaging of wild-type AKH neuroendocrine cells shows heightened excitability under reduced sugar levels, and this response was delayed and reduced in AMPK-deficient backgrounds. Furthermore, AMPK activation in AKH cells increases intracellular calcium levels in constant high sugar levels, suggesting that the underlying mechanism of AMPK action is modification of ionic currents. These results demonstrate that AMPK signaling is a critical feature that regulates AKH secretion, and, ultimately, metabolic homeostasis. The significance of these findings is that AMPK is important in the regulation of glucagon signaling, suggesting that the organization of metabolic networks is highly conserved and that AMPK plays a prominent role in these networks. PMID:22798489

  15. Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase.

    PubMed

    Braco, Jason T; Gillespie, Emily L; Alberto, Gregory E; Brenman, Jay E; Johnson, Erik C

    2012-10-01

    Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes a suite of behavioral and physiological phenotypes resembling AKH cell ablations. Specifically, reduced AMPK function increases life span during starvation and delays starvation-induced hyperactivity. Neither AKH cell survival nor gene expression is significantly impacted by reduced AMPK function. AKH immunolabeling was significantly higher in animals with reduced AMPK function; this result is paralleled by genetic inhibition of synaptic release, suggesting that AMPK promotes AKH secretion. We observed reduced secretion in AKH cells bearing AMPK mutations employing a specific secretion reporter, confirming that AMPK functions in AKH secretion. Live-cell imaging of wild-type AKH neuroendocrine cells shows heightened excitability under reduced sugar levels, and this response was delayed and reduced in AMPK-deficient backgrounds. Furthermore, AMPK activation in AKH cells increases intracellular calcium levels in constant high sugar levels, suggesting that the underlying mechanism of AMPK action is modification of ionic currents. These results demonstrate that AMPK signaling is a critical feature that regulates AKH secretion, and, ultimately, metabolic homeostasis. The significance of these findings is that AMPK is important in the regulation of glucagon signaling, suggesting that the organization of metabolic networks is highly conserved and that AMPK plays a prominent role in these networks. PMID:22798489

  16. Glucagon-like peptide-2 (GLP-2) activates the Mtor signaling through a PI3-kinase-Akt-dependent pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GLP-2 is a nutrient-responsive enterotrophic neuropeptide that exerts diverse actions in the gastrointestinal tract including enhancing mucosal cell survival and proliferation, inducing mucosal blood flow and anabolic metabolism, and suppressing gastric motility and secretion. GLP-2-stimulated muco...

  17. Tight junction gene expression in gastrointestinal tract of dairy calves with coccidiosis and treated with glucagon-like peptide-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selective permeability of the intestinal epithelium and efficient nutrient absorption are important functions for proper growth and development of calves. Damage to the intestinal mucosa can give rise to harmful long-term health effects and reduce productivity of the mature animal. Tight junction pr...

  18. The electrical properties of Mars analogue dust

    NASA Astrophysics Data System (ADS)

    Merrison, J.; Jensen, J.; Kinch, K.; Mugford, R.; Nørnberg, P.

    2004-03-01

    Dust is a major environmental factor on the surface and in the atmosphere of Mars. Knowing the electrical charge state of this dust would be of both scientific interest and important for the safety of instruments on the Martian surface. In this study the first measurements have been performed of dust electrification using suspended Mars analogue material. This has been achieved by attracting suspended dust onto electrodes placed inside a Mars simulation wind tunnel. The Mars analogue used was from Salten Skov in Denmark, this contained a high concentration of ferric oxide precipitate. Once suspended, this dust was found to consist of almost equal quantities of negatively (46±6%) and positively (44±15%) charged grains. These grains were estimated to typically carry a net charge of around 10 5e, this is sufficient to dominate the processes of adhesion and cohesion of this suspended dust. Evidence is presented for electrostatic aggregation of the dust while in suspension. Development of a simple instrument for measuring electrical charging of the suspended dust on Mars will be discussed.

  19. Long-term predictions using natural analogues

    SciTech Connect

    Ewing, R.C.

    1995-09-01

    One of the unique and scientifically most challenging aspects of nuclear waste isolation is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3}-10{sup 5} years) required by regulatory agencies for performance assessment. The direct validation of these extrapolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the lay public that there is a demonstrable and reasonable basis for accepting the long-term extrapolations. Natural systems (e.g., {open_quotes}natural analogues{close_quotes}) provide perhaps the only means of partial {open_quotes}validation,{close_quotes} as well as data that may be used directly in the models that are used in the extrapolation. Natural systems provide data on very large spatial (nm to km) and temporal (10{sup 3}-10{sup 8} years) scales and in highly complex terranes in which unknown synergisms may affect radionuclide migration. This paper reviews the application (and most importantly, the limitations) of data from natural analogue systems to the {open_quotes}validation{close_quotes} of performance assessments.

  20. Self-Powered Analogue Smart Skin.

    PubMed

    Shi, Mayue; Zhang, Jinxin; Chen, Haotian; Han, Mengdi; Shankaregowda, Smitha A; Su, Zongming; Meng, Bo; Cheng, Xiaoliang; Zhang, Haixia

    2016-04-26

    The progress of smart skin technology presents unprecedented opportunities for artificial intelligence. Resolution enhancement and energy conservation are critical to improve the perception and standby time of robots. Here, we present a self-powered analogue smart skin for detecting contact location and velocity of the object, based on a single-electrode contact electrification effect and planar electrostatic induction. Using an analogue localizing method, the resolution of this two-dimensional smart skin can be achieved at 1.9 mm with only four terminals, which notably decreases the terminal number of smart skins. The sensitivity of this smart skin is remarkable, which can even perceive the perturbation of a honey bee. Meanwhile, benefiting from the triboelectric mechanism, extra power supply is unnecessary for this smart skin. Therefore, it solves the problems of batteries and connecting wires for smart skins. With microstructured poly(dimethylsiloxane) films and silver nanowire electrodes, it can be covered on the skin with transparency, flexibility, and high sensitivity. PMID:27010713

  1. Immunoreactive prohormone atrial natriuretic peptides 1-30 and 31-67 - Existence of a single circulating amino-terminal peptide

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Ming; Whitson, Peggy A.; Cintron, Nitza M.

    1990-01-01

    Sep-Pak C18 extraction of human plasma and radioimmunoassay using antibodies which recognize atrial natriuretic peptide (99-128) and the prohormone sequences 1-30 and 31-67 resulted in mean values from 20 normal subjects of 26.2 (+/- 9.2), 362 (+/- 173) and 368 (+/- 160) pg/ml, respectively. A high correlation coefficient between values obtained using antibodies recognizing prohormone sequences 1-30 and 31-67 was observed (R = 0.84). Extracted plasma immunoreactivity of 1-30 and 31-67 both eluted at 46 percent acetonitrile. In contrast, chromatographic elution of synthetic peptides 1-30 and 31-67 was observed at 48 and 39 percent acetonitrile, respectively. Data suggest that the radioimmunoassay of plasma using antibodies recognizing prohormone sequences 1-30 and 31-67 may represent the measurement of a unique larger amino-terminal peptide fragment containing antigenic sites recognized by both antisera.

  2. Functional Analysis: The Use of Analogues in Applied Settings.

    ERIC Educational Resources Information Center

    Stichter, Janine Peck

    2001-01-01

    This article suggests possible applications of experimental analyses using analogues to empirically verify results of functional assessments in classrooms for students with autism and related disabilities. Analogue assessments involve creating conditions in which antecedents and consequences are held constant and specific variables suspected to…

  3. Space Analogue Environments: Are the Populations Comparable?

    NASA Astrophysics Data System (ADS)

    Sandal, G. M.

    Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that

  4. Development of new mitomycin C and porfiromycin analogues.

    PubMed

    Iyengar, B S; Lin, H J; Cheng, L; Remers, W A; Bradner, W T

    1981-08-01

    New mitomycin C and porfiromycin analogues were prepared by treating mitomycin A and N-methylmitomycin A with a variety of amines, including aziridines, allylamines, propargylamines, chloroalkylamines, hydroxyalkylamines, glycine derivatives, aralkylamines, and heterocyclic amines. All analogues were evaluated against P-388 murine leukemia and selected ones were examined for their leukopenic properties. Certain analogues were found to be superior to mitomycin C in potency, efficacy, and therapeutic ratio in the P-388 assay. The most active substituents at the mitosane 7 position included aziridine, 2-methylaziridine, propargylamine, furfurylamine, methyl glycinate, and 3-aminopyridine. Mitomycin A and the 7-aziridino, 7-(2-methylaziridino), and 3-aminopyridine analogues were less leukopenic than mitomycin C. Certain other analogues, including propargylamino and methyl glycinate, were highly leukopenic. The three compounds tested against B-16 melanoma in mice were significantly more effective than mitomycin C in this assay. Previously established structure--activity relationships were found inadequate to account for all of the new data. PMID:7328599

  5. Synthesis and biological activity of tetralone abscisic acid analogues.

    PubMed

    Nyangulu, James M; Nelson, Ken M; Rose, Patricia A; Gai, Yuanzhu; Loewen, Mary; Lougheed, Brenda; Quail, J Wilson; Cutler, Adrian J; Abrams, Suzanne R

    2006-04-01

    Bicyclic analogues of the plant hormone abscisic acid (ABA) were designed to incorporate the structural elements and functional groups of the parent molecule that are required for biological activity. The resulting tetralone analogues were predicted to have enhanced biological activity in plants, in part because oxidized products would not cyclize to forms corresponding to the inactive catabolite phaseic acid. The tetralone analogues were synthesized in seven steps from 1-tetralone and a range of analogues were accessible through a second route starting with 2-methyl-1-naphthol. Tetralone ABA 8 was found to have greater activity than ABA in two bioassays. The absolute configuration of (+)-8 was established by X-ray crystallography of a RAMP hydrazone derivative. The hydroxymethyl compounds 10 and 11, analogues for studying the roles of 8- and 9-hydroxy ABA 3 and 6, were also synthesized and found to be active. PMID:16557330

  6. Derivatisable Cyanobactin Analogues: A Semisynthetic Approach

    PubMed Central

    Oueis, Emilia; Adamson, Catherine; Mann, Greg; Ludewig, Hannes; Redpath, Philip; Migaud, Marie

    2015-01-01

    Abstract Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine‐tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger‐scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics. PMID:26507241

  7. Solution Processed PEDOT Analogues in Electrochemical Supercapacitors.

    PubMed

    Österholm, Anna M; Ponder, James F; Kerszulis, Justin A; Reynolds, John R

    2016-06-01

    We have designed fully soluble ProDOTx-EDOTy copolymers that are electrochemically equivalent to electropolymerized PEDOT without using any surfactants or dispersants. We show that these copolymers can be incorporated as active layers in solution processed thin film supercapacitors to demonstrate capacitance, stability, and voltage similar to the values of those that use electrodeposited PEDOT as the active material with the added advantage of the possibility for large scale, high-throughput processing. These Type I supercapacitors provide exceptional cell voltages (up to 1.6 V), highly symmetrical charge/discharge behavior, promising long-term stability exceeding 50 000 charge/discharge cycles, as well as energy (4-18 Wh/kg) and power densities (0.8-3.3 kW/kg) that are comparable to those of electrochemically synthesized analogues. PMID:27195798

  8. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  9. Evolving a polymerase for hydrophobic base analogues.

    PubMed

    Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp

    2009-10-21

    Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity. PMID:19778048

  10. Current european regulatory perspectives on insulin analogues.

    PubMed

    Enzmann, Harald G; Weise, Martina

    2011-01-01

    Insulin analogues are increasingly considered as an alternative to human insulin in the therapy of diabetes mellitus. Insulin analogues (IAs) are chemically different from human insulin and may have different pharmacokinetic or pharmacodynamic properties. The significance of the modifications of the insulin molecule for the safety profile of IAs must be considered. This review describes the regulatory procedure and the expectations for the scientific content of European marketing authorization applications for innovative IAs submitted to the European Medicines Agency. Particular consideration is given to a potential cancer hazard. Specific regulatory guidance on how to address a possible carcinogenic or tumor promoting effect of innovative IAs in non-clinical studies is available. After marketing authorization, the factual access of patients to the new product will be determined to great extent by health technology assessment bodies, reimbursement decisions and the price. Whereas the marketing authorization is a European decision, pricing and reimbursement are national or regional responsibilities. The assessment of benefit and risk by the European Medicines Agency is expected to influence future decisions on price and reimbursement on a national or regional level. Collaborations between regulatory agencies and health technology assessment bodies have been initiated on European and national level to facilitate the use of the European Medicines Agency's benefit risk assessment as basis on which to build the subsequent health technology assessment. The option for combined or joint scientific advice procedures with regulators and health technology assessment bodies on European level or on a national level in several European Member States may help applicants to optimize their development program and dossier preparation in regard of both European marketing authorization application and reimbursement decisions. PMID:21736748

  11. Functionalized Congener Approach to Muscarinic Antagonists: Analogues of Pirenzepine

    PubMed Central

    Karton, Yishai; Bradbury, Barton J.; Baumgold, Jesse; Paek, Robert; Jacobson, Kenneth A.

    2012-01-01

    The M1-selective muscarinic receptor antagonist pirenzepine (5,11-dihydro-11-[(4-methyl-1-piperazinyl)acetyl]-6H-pyrido[2,3-b] [1,4]benzodiazepin-6-one) was derivatized to explore points of attachment of functionalized side chains for the synthesis of receptor probes and ligands for affinity chromatography. The analogues prepared were evaluated in competitive binding assays versus [3H]-N-methylscopolamine at four muscarinic receptor subtypes (m1AChR-m4AChR) in membranes from rat heart tissue and transfected A9L cells. 9-(Hydroxymethyl)pirenzepine, 8-(methylthio)pirenzepine, and a series of 8-aminosulfonyl derivatives were synthesized. Several 5-substituted analogues of pirenzepine also were prepared. An alternate series of analogues substituted on the 4-position of the piperazine ring was prepared by reaction of 4-desmethylpirenzepine with various electrophiles. An N-chloroethyl analogue of pirenzepine was shown to form a reactive aziridine species in aqueous buffer yet failed to affinity label muscarinic receptors. Within a series of aminoalkyl analogues, the affinity increased as the length of the alkyl chain increased. Shorter chain analogues were generally much less potent than pirenzepine, and longer analogues (7–10 carbons) were roughly as potent as pirenzepine at m1 receptors, but were nonselective. Depending on the methylene chain length, acylation or alkyl substitution of the terminal amine also influenced the affinity at muscarinic receptors. PMID:2066986

  12. The preparation of zaragozic acid A analogues by directed biosynthesis.

    PubMed

    Chen, T S; Petuch, B; MacConnell, J; White, R; Dezeny, G; Arison, B; Bergstrom, J D; Colwell, L; Huang, L; Monaghan, R L

    1994-11-01

    Zaragozic acid A analogues are produced by an unidentified sterile fungus when it is exogenously supplied with 2-thiophenecarboxylic acid, 3-thiophenecarboxylic acid, 2-furoic acid, 2-fluorobenzoic acid, 3-fluorobenzoic acid, or 4-fluorobenzoic acid. The analogues carry 2-thiophenyl, 3-thiophenyl, 2-furyl, o-fluorophenyl, m-fluorophenyl, or p-fluorophenyl group, respectively, at C-6' of the C-1 alkyl side chain replacing the phenyl group of natural zaragozic acid A. All the new analogues of zaragozic acid A possess picomolar inhibitory activity against squalene synthase in vitro. PMID:8002393

  13. Recent developments in naturally derived antimalarials: cryptolepine analogues.

    PubMed

    Wright, Colin W

    2007-06-01

    Increasing resistance of Plasmodium falciparum to commonly used antimalarial drugs has made the need for new agents increasingly urgent. In this paper, the potential of cryptolepine, an alkaloid from the West African shrub Cryptolepis sanguinolenta, as a lead towards new antimalarial agents is discussed. Several cryptolepine analogues have been synthesized that have promising in-vitro and in-vivo antimalarial activity. Studies on the antimalarial modes of action of these analogues indicate that they may have different or additional modes of action to the parent compound. Elucidation of the mode of action may facilitate the development of more potent antimalarial cryptolepine analogues. PMID:17637183

  14. Synthesis, antiarrhythmic activity, and toxicological evaluation of mexiletine analogues.

    PubMed

    Roselli, Mariagrazia; Carocci, Alessia; Budriesi, Roberta; Micucci, Matteo; Toma, Maddalena; Di Cesare Mannelli, Lorenzo; Lovece, Angelo; Catalano, Alessia; Cavalluzzi, Maria Maddalena; Bruno, Claudio; De Palma, Annalisa; Contino, Marialessandra; Perrone, Maria Grazia; Colabufo, Nicola Antonio; Chiarini, Alberto; Franchini, Carlo; Ghelardini, Carla; Habtemariam, Solomon; Lentini, Giovanni

    2016-10-01

    Four mexiletine analogues have been tested for their antiarrhythmic, inotropic, and chronotropic effects on isolated guinea pig heart tissues and to assess calcium antagonist activity, in comparison with the parent compound mexiletine. All analogues showed from moderate to high antiarrhythmic activity. In particular, three of them (1b,c,e) were more active and potent than the reference drug, while exhibiting only modest or no negative inotropic and chronotropic effects and vasorelaxant activity, thus showing high selectivity of action. All compounds showed no cytotoxicity and 1b,c,d did not impair motor coordination. All in, these new analogues exhibit an interesting cardiovascular profile and deserve further investigation. PMID:27267000

  15. Actions of Thyroid Hormone Analogues on Chemokines

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3′-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  16. Radiolabeled Somatostatin Analogue Therapy Of Gastroenteropancreatic Cancer.

    PubMed

    Bodei, Lisa; Kwekkeboom, Dik J; Kidd, Mark; Modlin, Irvin M; Krenning, Eric P

    2016-05-01

    Peptide receptor radionuclide therapy (PRRT) has been utilized for more than two decades and has been accepted as an effective therapeutic modality in the treatment of inoperable or metastatic gastroenteropancreatic neuroendocrine neoplasms (NENs) or neuroendocrine tumors (NETs). The two most commonly used radiopeptides for PRRT, (90)Y-octreotide and (177)Lu-octreotate, produce disease-control rates of 68%-94%, with progression-free survival rates that compare favorably with chemotherapy, somatostatin analogues, and newer targeted therapies. In addition, biochemical and symptomatic responses are commonly observed. In general, PRRT is well tolerated with only low to moderate toxicity in most individuals. In line with the need to place PRRT in the therapeutic sequence of gastroenteropancreatic NENs, a recently sponsored phase III randomized trial in small intestine NENs treated with (177)Lu-octreotate vs high-dose octreotide long-acting release demonstrated that (177)Lu-octreotate significantly improved progression-free survival. Other strategies that are presently being developed include combinations with targeted therapies or chemotherapy, intra-arterial PRRT, and salvage treatments. Sophisticated molecular tools need to be incorporated into the management strategy to more effectively define therapeutic efficacy and for an early identification of adverse events. The strategy of randomized controlled trials is a key issue to standardize the treatment and establish the position of PRRT in the therapeutic algorithm of NENs. PMID:27067503

  17. Actions of Thyroid Hormone Analogues on Chemokines.

    PubMed

    Davis, Paul J; Glinsky, Gennadi V; Lin, Hung-Yun; Mousa, Shaker A

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3'-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  18. Cell-Cycle Analyses Using Thymidine Analogues in Fission Yeast

    PubMed Central

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry. PMID:24551125

  19. Synthesis of a stable and orally bioavailable englerin analogue.

    PubMed

    Fash, David M; Peer, Cody J; Li, Zhenwu; Talisman, Ian J; Hayavi, Sima; Sulzmaier, Florian J; Ramos, Joe W; Sourbier, Carole; Neckers, Leonard; Figg, W Douglas; Beutler, John A; Chain, William J

    2016-06-01

    Synthesis of analogues of englerin A with a reduced propensity for hydrolysis of the glycolate moiety led to a compound which possessed the renal cancer cell selectivity of the parent and was orally bioavailable in mice. PMID:27107948

  20. Efficient total syntheses and biological activities of two teixobactin analogues.

    PubMed

    Parmar, Anish; Iyer, Abhishek; Vincent, Charlotte S; Van Lysebetten, Dorien; Prior, Stephen H; Madder, Annemieke; Taylor, Edward J; Singh, Ishwar

    2016-04-26

    The discovery of the new antibiotic teixobactin has been timely in the race for unearthing novel antibiotics wherein the emergence of drug resistant bacteria poses a serious threat worldwide. Herein, we present the total syntheses and biological activities of two teixobactin analogues. This approach is simple, efficient and has several advantages: it uses commercially available building blocks (except AllocHN-d-Thr-OH), has a single purification step and a good recovery (22%). By using this approach we have synthesised two teixobactin analogues and established that the d-amino acids are critical for the antimicrobial activity of these analogues. With continuing high expectations from teixobactin, this work can be regarded as a stepping stone towards an in depth study of teixobactin, its analogues and the quest for synthesising similar molecules. PMID:26984316

  1. Defining Analytical Strategies for Mars Sample Return with Analogue Missions

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Sapers, H. M.; Francis, R.; Pontefract, A.; Tornabene, L. L.; Haltigin, T.

    2016-05-01

    The characterization of biosignatures in MSR samples will require integrated, cross-platform laboratory analyses carefully correlated and calibrated with Rover-based technologies. Analogue missions provide context for implementation and assessment.

  2. Effects of Prostaglandin Analogues on Aqueous Humor Outflow Pathways

    PubMed Central

    Winkler, Nelson S.

    2014-01-01

    Abstract Elevated intraocular pressure (IOP) is the most prevalent risk factor for glaucoma. All treatments, whether surgical or pharmaceutical, are aimed at lowering IOP. Prostaglandin analogues are a first line therapy for glaucoma due to their ability to reduce IOP, once-daily dosing, efficacy, and minimal side-effect profile. Whereas prostaglandin analogues have been known to alter aqueous humor outflow through the unconventional (uveoscleral) pathway, more recent evidence suggests their action also occurs through the conventional (trabecular) pathway. Understanding how prostaglandin analogues successfully lower IOP is important, as this information may lead to the discovery of new molecular targets for future therapeutic intervention. This review explores the current understanding of prostaglandin analogue biology as it pertains to IOP reduction and improved aqueous humor outflow facility. PMID:24359106

  3. Practical enantiospecific syntheses of lysobisphosphatidic acid and its analogues.

    PubMed

    Jiang, Guowei; Xu, Yong; Prestwich, Glenn D

    2006-02-01

    We describe a versatile, efficient, and practical method for the preparation of enantiomerically pure lysobisphosphatidic acid (LBPA), bisether analogues, and phosphorothioate analogues of LBPA from solketal. Phosphorylation of a protected sn-2-O-oleoyl glycerol with 2-cyanoethyl bis(N,N-diisopropylamino)phosphite, followed by oxidation and deprotection, generated the enantiomers of 2,2'-LBPA. The corresponding phosphorothioate analogues were obtained by oxidation with sulfur. The (R,R) and (S,S) enantiomers of both LBPA and phosphorothioate LBPA were synthesized from (S)- and (R)-solketal, respectively. The ether analogue of (S,S)-lysobisphosphatidic acid (LBPA) and its enantiomer were synthesized from the same enantiomer (S)-solketal by simply changing the sequence of deprotection steps. PMID:16438504

  4. From BPA to its analogues: Is it a safe journey?

    PubMed

    Usman, Afia; Ahmad, Masood

    2016-09-01

    Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful? PMID:27262103

  5. Structural analogues of diosgenyl saponins: synthesis and anticancer activity.

    PubMed

    Kaskiw, Matthew J; Tassotto, Mary Lynn; Mok, Mac; Tokar, Stacey L; Pycko, Roxanne; Th'ng, John; Jiang, Zi-Hua

    2009-11-15

    Saponins display various biological activities including anti-tumor activity. Recently intensive research has been focused on developing saponins for tumor therapies. The diosgenyl saponin dioscin is one of the most common steroidal saponins and exhibits potent anticancer activity in several human cancer cells through apoptosis-inducing pathways. In this paper, we describe the synthesis of several diosgenyl saponin analogues containing either a 2-amino-2-deoxy-beta-d-glucopyranosyl residue or an alpha-l-rhamnopyranosyl-(1-->4)-2-amino-2-deoxy-beta-d-glucopyranosyl residue with different acyl substituents on the amino group. The cytotoxic activity of these compounds was evaluated in MCF-7 breast cancer cells and HeLa cervical cancer cells. Structure-activity relationship studies show that the disaccharide saponin analogues are in general less active than their corresponding monosaccharide analogues. The incorporation of an aromatic nitro functionality into these saponin analogues does not exhibit significant effect on their cytotoxic activity. PMID:19819703

  6. Carbacaprazamycins: Chemically Stable Analogues of the Caprazamycin Nucleoside Antibiotics.

    PubMed

    Ichikawa, Satoshi; Yamaguchi, Mayumi; Hsuan, Lee Shang; Kato, Yuta; Matsuda, Akira

    2015-04-10

    Carbacaprazamycins, which are chemically stable analogues of caprazamycins, were designed and synthesized. These analogues were active against drug-resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and their activities were comparable to those of the parent caprazamycins. The effect of treatment with carbacaprazamycin on morphological changes in S. aureus indicated that the mode of action was completely different from those of existing peptidoglycan inhibitors. PMID:27622529

  7. Analogue and digital linear modulation techniques for mobile satellite

    NASA Technical Reports Server (NTRS)

    Whitmarsh, W. J.; Bateman, A.; Mcgeehan, J. P.

    1990-01-01

    The choice of modulation format for a mobile satellite service is complex. The subjective performance is summarized of candidate schemes and voice coder technologies. It is shown that good performance can be achieved with both analogue and digital voice systems, although the analogue system gives superior performance in fading. The results highlight the need for flexibility in the choice of signaling format. Linear transceiver technology capable of using many forms of narrowband modulation is described.

  8. Amphiphilic Tobramycin Analogues as Antibacterial and Antifungal Agents

    PubMed Central

    Shrestha, Sanjib K.; Fosso, Marina Y.; Green, Keith D.

    2015-01-01

    In this study, we investigated the in vitro antifungal activities, cytotoxicities, and membrane-disruptive actions of amphiphilic tobramycin (TOB) analogues. The antifungal activities were established by determination of MIC values and in time-kill studies. Cytotoxicity was evaluated in mammalian cell lines. The fungal membrane-disruptive action of these analogues was studied by using the membrane-impermeable dye propidium iodide. TOB analogues bearing a linear alkyl chain at their 6″-position in a thioether linkage exhibited chain length-dependent antifungal activities. Analogues with C12 and C14 chains showed promising antifungal activities against tested fungal strains, with MIC values ranging from 1.95 to 62.5 mg/liter and 1.95 to 7.8 mg/liter, respectively. However, C4, C6, and C8 TOB analogues and TOB itself exhibited little to no antifungal activity. Fifty percent inhibitory concentrations (IC50s) for the most potent TOB analogues (C12 and C14) against A549 and Beas 2B cells were 4- to 64-fold and 32- to 64-fold higher, respectively, than their antifungal MIC values against various fungi. Unlike conventional aminoglycoside antibiotics, TOB analogues with alkyl chain lengths of C12 and C14 appear to inhibit fungi by inducing apoptosis and disrupting the fungal membrane as a novel mechanism of action. Amphiphilic TOB analogues showed broad-spectrum antifungal activities with minimal mammalian cell cytotoxicity. This study provides novel lead compounds for the development of antifungal drugs. PMID:26033722

  9. Analogue gravitational phenomena in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano

    2012-08-01

    Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which are general relativistic spacetimes allowing faster-than-light travel, are unstable. Finally, the cosmological constant issue is investigated from an analogue gravity perspective and relativistic Bose-Einstein condensates are proposed as new analogue systems with novel interesting properties.

  10. Cladribine Analogues via O6-(Benzotriazolyl) Derivatives of Guanine Nucleosides

    PubMed Central

    Satishkumar, Sakilam; Vuram, Prasanna K.; Relangi, Siva Subrahmanyam; Gurram, Venkateshwarlu; Zhou, Hong; Kreitman, Robert J.; Montemayor, Michelle M. Martínez; Yang, Lijia; Kaliyaperumal, Muralidharan; Sharma, Somesh; Pottabathini, Narender; Lakshman, Mahesh K.

    2016-01-01

    Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest on the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL), and chronic lymphocytic leukemia (CLL) cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribo analogue of cladribine possessed activity, but was least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, only cladribine and its ribose analogue were most active. PMID:26556315

  11. Bisphenol A and Its Analogues Activate Human Pregnane X Receptor

    PubMed Central

    Sui, Yipeng; Ai, Ni; Park, Se-Hyung; Rios-Pilier, Jennifer; Perkins, Jordan T.; Welsh, William J.

    2012-01-01

    Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA and its analogues are present in environmental and human samples. Many endocrine-disrupting chemicals, including BPA, have been shown to activate the pregnane X receptor (PXR), a nuclear receptor that functions as a master regulator of xenobiotic metabolism. However, the detailed mechanism by which these chemicals activate PXR remains unknown. Objective: We investigated the mechanism by which BPA interacts with and activates PXR and examined selected BPA analogues to determine whether they bind to and activate PXR. Methods: Cell-based reporter assays, in silico ligand–PXR docking studies, and site-directed mutagenesis were combined to study the interaction between BPA and PXR. We also investigated the influence of BPA and its analogues on the regulation of PXR target genes in human LS180 cells. Results: We found that BPA and several of its analogues are potent agonists for human PXR (hPXR) but do not affect mouse PXR activity. We identified key residues within hPXR’s ligand-binding pocket that constitute points of interaction with BPA. We also deduced the structural requirements of BPA analogues that activate hPXR. BPA and its analogues can also induce PXR target gene expression in human LS180 cells. Conclusions: The present study advances our understanding of the mechanism by which BPA interacts with and activates human PXR. Activation of PXR by BPA may explain some of the adverse effects of BPA in humans. PMID:22214767

  12. Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists have both glucose- and weight-lowering effects. The brain is poised to mediate both of these actions since GLP-1Rs are present in key areas known to control weight and glucose. Although some research has been performed on the effects of ...

  13. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice. PMID:26497774

  14. Brain GLP-1 and insulin sensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 2 diabetes is often treated with a class of drugs referred to as glucagon-like peptide-1 (GLP-1) analogs. GLP-1 is a peptide secreted by the gut that acts through only one known receptor, the GLP-1 receptor. The primary function of GLP-1 is thought to be lowering of postprandial glucose levels....

  15. EXENATIDE IMPROVES HYPERTENSION IN A RAT MODEL OF THE METABOLIC SYNDROME

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exenatide is a peptide incretin mimetic that has glucoregulatory actions associated with weight reduction. Previous reports demonstrated acute increases in blood pressure after systemic or intracerebroventricular administration of exenatide or glucagon-like peptide-1 (GLP-1) in rats. However, there ...

  16. Hydrophobic surfactant proteins and their analogues.

    PubMed

    Walther, Frans J; Waring, Alan J; Sherman, Mark A; Zasadzinski, Joseph A; Gordon, Larry M

    2007-01-01

    Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine lung surfactant extracts, which contain only polar lipids and native SP-B and SP-C, has dramatically improved the therapeutic outcomes of preterm infants with respiratory distress syndrome (RDS). One important goal of surfactant researchers is to replace animal-derived therapies with fully synthetic preparations based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. Here, we review recent research developments with peptide analogues of SP-B and SP-C, designed using either the known primary sequence and three-dimensional (3D) structure of the native proteins or, alternatively, the known 3D structures of closely homologous proteins. Such SP-B and SP-C mimics offer the possibility of studying the mechanisms of action of the respective native proteins, and may allow the design of optimized surfactant formulations for specific pulmonary diseases (e.g., acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)). These synthetic surfactant preparations may also be a cost-saving therapeutic approach, with better quality control than may be obtained with animal-based treatments. PMID:17575474

  17. Vascular disrupting activity of combretastatin analogues.

    PubMed

    Porcù, Elena; Salvador, Alessia; Primac, Irina; Mitola, Stefania; Ronca, Roberto; Ravelli, Cosetta; Bortolozzi, Roberta; Vedaldi, Daniela; Romagnoli, Romeo; Basso, Giuseppe; Viola, Giampietro

    2016-08-01

    Tubulin binding agents (TBAs) are drugs commonly used in cancer therapy as antimitotics. In the last years it has been described that TBAs, like combretastatin A-4 (CA-4), present also vascular disrupting activity and among its derivatives we identified three analogues endowed with potent microtubule depolymerizing activity, higher than that of the lead compound. In this paper we have investigated the anti-vascular activity of these derivatives. We tested the anti-angiogenic effects in human umbilical endothelial cells (HUVEC) and in vivo in chick chorioallantoic membrane assay (CAM), and in a syngeneic tumor mouse model. The three molecules, compound 1: 1-(3,4,5-trimethoxyphenyl)-5-(4-ethoxyphenyl)-1H-1,2,4-triazole; compound 2: (1-(3,4,5-trimethoxyphenyl)-5-(4-ethoxyphenyl)-1H-tetrazole, compound-3 (4-amino-2-p-tolylaminothiazol-5-yl)-(3,4,5-trimethoxyphenyl)-methanone) showed a moderate effect on the growth of HUVEC cells at concentrations below 200nM. At lower concentrations (5-20nM), in particular compound 2, they induced inhibition of capillary tube formation, inhibition of endothelial cell migration and affected endothelial cell morphology as demonstrated by the alteration of the microfilaments network. Moreover, they also increased permeability of HUVEC cells in a time dependent manner. In addition, compounds 1 and 3, as well as the reference compound CA-4, inhibited VEGF-induced phosphorylation of VE-cadherin and in addition compound 3 prevented the VEGF-induced phosphorylation of FAK. In CAM assay, both compounds 2 and 3 efficiently counteracted the strong angiogenic response induced by bFGF, even at the lowest concentration used (1pmol/egg). Moreover in a syngenic mouse model, compounds 1-3 after a single i.p. injection (30mg/kg), showed a stronger reduction of microvascular density. Altogether our results identified these derivatives as potential new vascular disrupting agents candidates. PMID:27235861

  18. Somatostatin Analogues for Receptor Targeted Photodynamic Therapy

    PubMed Central

    Kaščáková, Slávka; Hofland, Leo J.; De Bruijn, Henriette S.; Ye, Yunpeng; Achilefu, Samuel; van der Wansem, Katy; van der Ploeg-van den Heuvel, Angelique; van Koetsveld, Peter M.; Brugts, Michael P.; van der Lelij, Aart-Jan; Sterenborg, Henricus J. C. M.; ten Hagen, Timo L. M.; Robinson, Dominic J.; van Hagen, Martin P.

    2014-01-01

    Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2+ AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate. PMID:25111655

  19. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International

  20. Role of Urinary Levels of Endothelin-1, Monocyte Chemotactic Peptide-1, and N-Acetyl Glucosaminidase in Predicting the Severity of Obstruction in Hydronephrotic Neonates

    PubMed Central

    Rafiei, Alireza; Mousavi, Seyed Abdollah; Alaee, Abdulrasool; Yeganeh, Yalda

    2014-01-01

    Purpose Antenatal hydronephrosis (AH) is found in 0.5%-1% of neonates. The aim of the study was to assess the urinary concentrations of 3 biomarkers, endothelin-1 (ET-1), monocyte chemotactic peptide-1 (MCP-1), and N-acetyl-glucosaminidase (NAG) in severely hydronephrotic neonates. Materials and Methods Neonates with a history of prenatal hydronephrosis were enrolled in the prospective study in 2 groups. Group 1 included neonates with severe forms of obstruction requiring surgical intervention and group 2 included neonates with milder forms of obstruction without any functional impairment. Fresh voided urinary levels of ET-1, MCP-1, and NAG were measured and their ratios to urinary Cr were calculated. Results Fourty-two neonates were enrolled into the 2 groups: group 1, 24 patients (21 male, 3 female); group 2, 18 neonates (16 male, 2 female). There were no statistically significant differences between urinary ET-1, NAG, MCP-1 values, and ET-1/Cr and NAG/Cr ratios in groups 1 and 2. The urinary MCP-1/Cr ratio was significantly higher in group 1 than in group 2. For comparison of groups 1 and 2, the cut-off values were measured as 0.5709 ng/mg (sensitivity, 75%; specificity, 67%; positive predictive value [PPV], 71%; negative predictive value [NPV], 71%), 0.927 ng/mg (sensitivity, 77%; specificity, 72%; PPV, 77%; NPV, 72%), and 1.1913 IU/mg (sensitivity, 62%; specificity, 67%; PPV, 68%; NPV, 60%) for ET-1/Cr, MCP-1/Cr, and NAG/Cr ratios, respectively. Conclusions The urinary MCP-1/Cr ratio is significantly elevated in neonates with severe obstruction requiring surgical intervention. Based upon these results, urinary MCP-1/Cr may be useful in identification of severe obstructive hydronephrosis in neonates. PMID:25324951

  1. Glucogon-like Peptide 1 Receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial

    PubMed Central

    Ramsey, Timothy; Brennan, Mark D.

    2014-01-01

    Glucogon-like peptide 1 receptor (GLP1R) signaling has been shown to have antipsychotic properties in animal models and to impact glucose-dependent insulin release, satiety, memory, and learning in man. Previous work has shown that two coding mutations (rs6923761 and rs1042044) are associated with altered insulin release and cortisol levels. We identified four frequently occurring haplotypes in Caucasians, haplotype 1 through haplotype 4, spanning exons 4-7 and containing the two coding variants. We analyzed response to antiapsychotics, as defined as predicted change in PANSS-Total (dPANSS) at 18 months, in Caucasian subjects from Clinical Antipsychotic Trial of Intervention Effectiveness treated with (olanzapine, n=139; perphenazine, n=78; quetiapine, n=14; risperidone, n=143; and ziprasidone, n=90). Haplotype trend regression analysis revealed significant associations with dPANSS for olanzapine (best p=0.002), perphenazine (best p=0.01), quetiapine (best p=0.008), risperidone (best p=0.02), and ziprasidone (best p=0.007). We also evaluated genetic models for the two most common haplotypes. Haplotype 1 (uniquely including the rs1042044 [Leu260] allele) was associated with better response to olanzapine (p=0.002), and risperidone (p=0.006), and worse response to perphenazine (p=.03), and ziprasidone (p=0.003), with a recessive genetic model providing the best fit. Haplotype 2 (uniquely including the rs6923761 [Ser168] allele) was associated with better response to perphenazine (p=0.001) and worse response to olanzapine (p=.02), with a dominant genetic model providing the best fit. However, GLP1R haplotypes were not associated with antipsychotic-induced weight gain. These results link functional genetic variants in GLP1R to antipsychotic response. PMID:25449714

  2. Perception of the Arabidopsis Danger Signal Peptide 1 Involves the Pattern Recognition Receptor AtPEPR1 and Its Close Homologue AtPEPR2*

    PubMed Central

    Krol, Elzbieta; Mentzel, Tobias; Chinchilla, Delphine; Boller, Thomas; Felix, Georg; Kemmerling, Birgit; Postel, Sandra; Arents, Michael; Jeworutzki, Elena; Al-Rasheid, Khaled A. S.; Becker, Dirk; Hedrich, Rainer

    2010-01-01

    Plasma membrane-borne pattern recognition receptors, which recognize microbe-associated molecular patterns and endogenous damage-associated molecular patterns, provide the first line of defense in innate immunity. In plants, leucine-rich repeat receptor kinases fulfill this role, as exemplified by FLS2 and EFR, the receptors for the microbe-associated molecular patterns flagellin and elongation factor Tu. Here we examined the perception of the damage-associated molecular pattern peptide 1 (AtPep1), an endogenous peptide of Arabidopsis identified earlier and shown to be perceived by the leucine-rich repeat protein kinase PEPR1. Using seedling growth inhibition, elicitation of an oxidative burst and induction of ethylene biosynthesis, we show that wild type plants and the pepr1 and pepr2 mutants, affected in PEPR1 and in its homologue PEPR2, are sensitive to AtPep1, but that the double mutant pepr1/pepr2 is completely insensitive. As a central body of our study, we provide electrophysiological evidence that at the level of the plasma membrane, AtPep1 triggers a receptor-dependent transient depolarization through activation of plasma membrane anion channels, and that this effect is absent in the double mutant pepr1/pepr2. The double mutant also fails to respond to AtPep2 and AtPep3, two distant homologues of AtPep1 on the basis of homology screening, implying that the PEPR1 and PEPR2 are responsible for their perception too. Our findings provide a basic framework to study the biological role of AtPep1-related danger signals and their cognate receptors. PMID:20200150

  3. Incorporation of tryptophan analogues into the lantibiotic nisin.

    PubMed

    Zhou, Liang; Shao, Jinfeng; Li, Qian; van Heel, Auke J; de Vries, Marcel P; Broos, Jaap; Kuipers, Oscar P

    2016-05-01

    Lantibiotics are posttranslationally modified peptides with efficient inhibitory activity against various Gram-positive bacteria. In addition to the original modifications, incorporation of non-canonical amino acids can render new properties and functions to lantibiotics. Nisin is the most studied lantibiotic and contains no tryptophan residues. In this study, a system was constructed to incorporate tryptophan analogues into nisin, which included the modification machinery (NisBTC) and the overexpression of tryptophanyl-tRNA synthetase (TrpRS). Tryptophan and three different tryptophan analogues (5-fluoroTrp (5FW), 5-hydroxyTrp (5HW) and 5-methylTrp (5MeW)) were successfully incorporated at four different positions of nisin (I1W, I4W, M17W and V32W). The incorporation efficiency of tryptophan analogues into mutants I1W, M17W and V32W was over 97 %, while the mutant I4W showed relatively low incorporation efficiency (69-93 %). The variants with 5FW showed relatively higher production yield, while 5MeW-containing variants showed the lowest yield. The dehydration efficiency of serines or threonines was affected by the tryptophan mutants of I4W and V32W. The affinity of the peptides for the cation-ion exchange and reverse phase chromatography columns was significantly reduced when 5HW was incorporated. The antimicrobial activity of IIW and its 5FW analogue both decreased two times compared to that of nisin, while that of its 5HW analogue decreased four times. The 5FW analogue of I4W also showed two times decreased activity than nisin. However, the mutant M17W and its 5HW analogue both showed 32 times reduced activity relative to that of nisin. PMID:26872656

  4. Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors.

    PubMed

    Hanson, J E; Kaplan, A P; Bartlett, P A

    1989-07-25

    Analogues of tri- and tetrapeptide substrates of carboxypeptidase A in which the scissile peptide linkage is replaced with a phosphonate moiety (-PO2--O-) were synthesized and evaluated as inhibitors of the enzyme. The inhibitors terminated with either L-lactate or L-phenyllactate [designated (O) Ala and (O) Phe, respectively] in the P1' position. Transition-state analogy was shown for a series of 14 tri- and tetrapeptide derivatives containing the structure RCO-AlaP-(O)Ala [RCO-AP(O)A, AP indicates the phosphonic acid analogue of alanine] by the correlation of the Ki values for the inhibitors and the Km/kcat values for the corresponding amide substrates. This correlation supports a transition state for the enzymatic reaction that resembles the tetrahedral intermediate formed upon addition of water to the scissile carbonyl group. The inhibitors containing (O) Phe at the P1' position proved to be the most potent reversible inhibitors of carboxypeptidase A reported to date: the dissociation constants of ZAFP(O)F, ZAAP(O)F, and ZFAP(O)F are 4, 3, and 1 pM, respectively. Because of the high affinity of these inhibitors, their dissociation constants could not be determined by steady-state methods. Instead, the course of the association and dissociation processes was monitored for each inhibitor as its equilibrium with the enzyme was established in both the forward and reverse directions. A phosphonamidate analogue, ZAAPF, in which the peptide linkage is replaced with a -PO2-NH- moiety, was prepared and shown to hydrolyze rapidly at neutral pH (t1/2 = 20 min at pH 7.5). This inhibitor is bound an order of magnitude less tightly than the corresponding phosphonate, ZAAP(O)F, a result that contrasts with the 840-fold higher affinity of phosphonamidates for thermolysin [Bartlett, P. A., & Marlowe, C. K. (1987) Science 235, 569-571], a zinc peptidase with a similar arrangement of active-site catalytic residues. PMID:2790000

  5. Terrestrial research in Mars analogue environments

    NASA Astrophysics Data System (ADS)

    Osipov, G.

    Fatty acids (FA) content was measured by GC-MS SIM technique in Sulfide ores of present day (Mid-Atlantic Ridge and others) and ancient (Ural Paleocene, Russia) black smokers; Early Proterozoic kerites of Volyn; Siberian, Canadian and Antarctic permafrosts and also in rocks of East-European platform Achaean crystalline basement. Analysis was shown presence those and only those fatty acids which are specific to microorganisms. FA with 12 up 19 of carbon atoms are thought to be a bacterial biomass sign. 3-Hydroxy fatty acids also found in samples and are strong specific markers of gram-negative bacteria. Cultivation yield living bacteria in some cases. The East-European platform Achaean crystalline basement rocks opened by Vorotilov Deep Well (VDW) drilled through Puchezh-Katunski impact structure were studied within depths 2575 - 2805 m. 34 microbial lipid markers were detected by GC-MS and 22 species were identified. Bacteria of g. Bacillus reached 6,8 % in subsurface communities. However, members of gg. Clostridium (37,1 - 33,2 %) and Rhodococcus (27,6 - 33,7 %) were absolute dominants within studied depth interval. Some lipid patterns of kerite samples could be assessed to definite genera or, in special cases, to species of contemporary microorganisms. For instance, 2-hydroxylauric acid is specific to Pseudomonas putida group or Acinetobacter spp., and hydroxymyristic together with hydroxypalmitic are specific to P.cepacea and cyanobacteria. 3-hydroxystearic acid was known as component of Acetobacter diazothrophycus and Gloebacter violaceous cyanobacterium. 10-hydroxystearic acid associated with Nocardia spp., which oxidizes oleic acid in organic substrates. 10-methylhexadecanoic (10Me16) acid together with 10Me14, 10Me15 and 10Me17 analogues are markers of actinomycetes. Significant part of Black Smokers organic matter is probably biogenic. Fatty acid features strongly assigns it to bacterial, microeucariotic and planta cells. Par example 3-hydroxy acids are

  6. Spectral analysis of lunar analogue samples

    NASA Astrophysics Data System (ADS)

    Offringa, Marloes; Foing, Bernard

    2016-04-01

    Analyses of samples derived from terrestrial analogue sites are used to study lunar processes in their geological context (Foing, Stoker, Ehrenfreund, 2011). For this study samples from the volcanic region of the Eifel, Germany collected during field campaigns (Foing et al., 2010), are analyzed with a variety of spectrometers. The aim is to obtain a database of analyzed samples that could be used as a reference for future in situ measurements. Equipment used in the laboratory consists of a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer, a Raman laser spectrometer, as well as UV-VIS and NIR reflectance spectrometers. The Raman, UV-VIS and NIR are also used in combination with the EXoGeoLab mock-up lander during field campaigns (Foing, Stoker, Ehrenfreund, 2011). Calibration of the UV-VIS and NIR reflectance spectrometers is the main focus of this research in order to obtain the clearest spectra. The calibration of the UV-VIS and NIR reflectance spectrometers requires the use of a good light source as well as suitable optical fibers to create a signal that covers the widest range in wavelengths available. To eliminate noise towards the edges of this range, multiple measurements are averaged and data is processed by dividing the signal by reference spectra. Calibration of the devices by creating a new dark and reference spectra has to take place after every sample measurement. In this way we take into account changes that occur in the signal due to the eating of the devices during the measurements. Moreover, the integration time is adjusted to obtain a clear signal without leading to oversaturation in the reflectance spectrum. The typical integration times for the UV-VIS reflectance spectrometer vary between 1 - 18 s, depending on the amount of daylight during experiments. For the NIR reflectance spectrometer the integration time resulting in the best signals is approximately 150 ms in combination with a broad spectrum light

  7. Iron isotopes in an Archean ocean analogue

    NASA Astrophysics Data System (ADS)

    Busigny, Vincent; Planavsky, Noah J.; Jézéquel, Didier; Crowe, Sean; Louvat, Pascale; Moureau, Julien; Viollier, Eric; Lyons, Timothy W.

    2014-05-01

    Iron isotopes have been extensively used to trace the history of microbial metabolisms and the redox evolution of the oceans. Archean sedimentary rocks display greater variability in iron isotope ratios and more markedly negative values than those deposited in the Proterozoic and Phanerozoic. This increased variability has been linked to changes in either water column iron cycling or the extent of benthic microbial iron reduction through time. We tested these contrasting scenarios through a detailed study of anoxic and ferruginous Lac Pavin (France), which can serve as a modern analogue of the Archean ocean. A depth-profile in the water column of Lac Pavin shows a remarkable increase in dissolved Fe concentration (0.1-1200 μM) and δ56Fe values (-2.14‰ to +0.31‰) across the oxic-anoxic boundary to the lake bottom. The largest Fe isotope variability is found at the redox boundary and is related to partial oxidation of dissolved ferrous iron, leaving the residual Fe enriched in light isotopes. The analysis of four sediment cores collected along a lateral profile (one in the oxic layer, one at the redox boundary, one in the anoxic zone, and one at the bottom of the lake) indicates that bulk sediments, porewaters, and reactive Fe mostly have δ56Fe values near 0.0 ± 0.2‰, similar to detrital iron. In contrast, pyrite δ56Fe values in sub-chemocline cores (60, 65, and 92 m) are highly variable and show significant deviations from the detrital iron isotope composition (δ56Fepyrite between -1.51‰ and +0.09‰; average -0.93‰). Importantly, the pyrite δ56Fe values mirror the δ56Fe of dissolved iron at the redox boundary—where near quantitative sulfate and sulfide drawdown occurs—suggesting limited iron isotope fractionation during iron sulfide formation. This finding has important implications for the Archean environment. Specifically, this work suggests that in a ferruginous system, most of the Fe isotope variability observed in sedimentary pyrites can

  8. Review of insulin and its analogues in diabetes mellitus.

    PubMed

    Mane, Krishnappa; Chaluvaraju, Kc; Niranjan, Ms; Zaranappa, Tr; Manjuthej, Tr

    2012-03-01

    Diabetes is a metabolic disorder where in human body does not produce or properly uses insulin, a hormone that is required to convert sugar, starches and other food into energy. Diabetes finally leads to more complications and to prevent these complications insulin and its analogues are used. After more than half a century of treating diabetics with animal insulin's, recombinant DNA technologies and advanced protein chemistry made human insulin preparations available in the early 1980s. As the next step, over the last decade, insulin analogues were constructed by changing the structure of the native protein with the goal of improving the therapeutic properties of it, because the pharmacokinetic characteristics of rapid, intermediate and long-acting preparations of human insulin make it almost impossible to achieve sustained normoglycemia. The first clinically available insulin analogue, lispro, confirmed the hopes by showing that improved glycaemic control can be achieved without an increase in hypoglycaemic events. Two new insulin analogues, insulin glargine and insulin aspart, have recently been approved for clinical use in the United States and several other analogues are being intensively tested. PMID:24826038

  9. Role of glycine-33 and methionine-35 in Alzheimer's amyloid beta-peptide 1-42-associated oxidative stress and neurotoxicity.

    PubMed

    Kanski, Jaroslaw; Varadarajan, Sridhar; Aksenova, Marina; Butterfield, D Allan

    2002-03-16

    Recent theoretical calculations predicted that Gly33 of one molecule of amyloid beta-peptide (1-42) (Abeta(1-42)) is attacked by a putative sulfur-based free radical of methionine residue 35 of an adjacent peptide. This would lead to a carbon-centered free radical on Gly33 that would immediately bind oxygen to form a peroxyl free radical. Such peroxyl free radicals could contribute to the reported Abeta(1-42)-induced lipid peroxidation, protein oxidation, and neurotoxicity, all of which are prevented by the chain-breaking antioxidant vitamin E. In the theoretical calculations, it was shown that no other amino acid, only Gly, could undergo such a reaction. To test this prediction we studied the effects of substitution of Gly33 of Abeta(1-42) on protein oxidation and neurotoxicity of hippocampal neurons and free radical formation in synaptosomes and in solution. Gly33 of Abeta(1-42) was substituted by Val (Abeta(1-42G33V)). The substituted peptide showed almost no neuronal toxicity compared to the native Abeta(1-42) as well as significantly lowered levels of oxidized proteins. In addition, synaptosomes subjected to Abeta(1-42G33V) showed considerably lower dichlorofluorescein-dependent fluorescence - a measure of reactive oxygen species (ROS) - in comparison to native Abeta(1-42) treatment. The ability of the peptides to generate ROS was also evaluated by electron paramagnetic resonance (EPR) spin trapping methods using the ultrapure spin trap N-tert-butyl-alpha-phenylnitrone (PBN). While Abeta(1-42) gave a strong mixture of four- and six-line PBN-derived spectra, the intensity of the EPR signal generated by Abeta(1-42G33V) was far less. Finally, the ability of the peptides to form fibrils was evaluated by electron microscopy. Abeta(1-42G33V) does not form fibrils nearly as well as Abeta(1-42) after 48 h of incubation. The results suggest that Gly33 may be a possible site of free radical propagation processes that are initiated on Met35 of Abeta(1-42) and that

  10. Migrastatin analogues target fascin to block tumour metastasis

    SciTech Connect

    Chen, L.; Jakoncic, J.; Yang, S.; Zhang, J.; Huang, X.Y.

    2010-04-15

    Tumour metastasis is the primary cause of death of cancer patients. Development of new therapeutics preventing tumour metastasis is urgently needed. Migrastatin is a natural product secreted by Streptomyces, and synthesized migrastatin analogues such as macroketone are potent inhibitors of metastatic tumour cell migration, invasion and metastasis. Here we show that these migrastatin analogues target the actin-bundling protein fascin to inhibit its activity. X-ray crystal structural studies reveal that migrastatin analogues bind to one of the actin-binding sites on fascin. Our data demonstrate that actin cytoskeletal proteins such as fascin can be explored as new molecular targets for cancer treatment, in a similar manner to the microtubule protein tubulin.

  11. Membrane-permeable Triphosphate Prodrugs of Nucleoside Analogues.

    PubMed

    Gollnest, Tristan; Dinis de Oliveira, Thiago; Rath, Anna; Hauber, Ilona; Schols, Dominique; Balzarini, Jan; Meier, Chris

    2016-04-18

    The metabolic conversion of nucleoside analogues into their triphosphates often proceeds insufficiently. Rate-limitations can be at the mono-, but also at the di- and triphosphorylation steps. We developed a nucleoside triphosphate (NTP) delivery system (TriPPPro-approach). In this approach, NTPs are masked by two bioreversible units at the γ-phosphate. Using a procedure involving H-phosphonate chemistry, a series of derivatives bearing approved, as well as potentially antivirally active, nucleoside analogues was synthesized. The enzyme-triggered delivery of NTPs was demonstrated by pig liver esterase, in human T-lymphocyte cell extracts and by a polymerase chain reaction using a prodrug of thymidine triphosphate. The TriPPPro-compounds of some HIV-inactive nucleoside analogues showed marked anti-HIV activity. For cellular uptake studies, a fluorescent TriPPPro-compound was prepared that delivered the triphosphorylated metabolite to intact CEM cells. PMID:27008042

  12. The metabolic and mitogenic properties of basal insulin analogues

    PubMed Central

    2013-01-01

    Context Retrospective, observational studies have reported an association between diabetes treatment with insulin and a higher incidence of cancer. Objective Overview the literature for in vitro and in vivo studies of the metabolic and mitogenic properties of basal insulin analogues and assess the implications for clinical use. Methods Relevant studies were identified through PubMed and congress abstract database searches; data on metabolic and mitogenic signalling in relation to insulin treatment of diabetes are included in this review. Results The balance of evidence shows that although some analogues have demonstrated mitogenic potency in some in vitro studies in cancer cell lines, these findings do not translate to the in vivo setting in animals or to the clinical setting in humans. Conclusions The current consensus is that there is no clinical or in vivo evidence to indicate that any commercially available insulin analogue has carcinogenic effects. Large-scale, prospective clinical and observational studies will further establish any potential link. PMID:23373726

  13. Synthesis and cytotoxic activities of semisynthetic zearalenone analogues.

    PubMed

    Tadpetch, Kwanruthai; Kaewmee, Benyapa; Chantakaew, Kittisak; Kantee, Kawalee; Rukachaisirikul, Vatcharin; Phongpaichit, Souwalak

    2016-08-01

    Zearalenone is a β-resorcylic acid macrolide with various biological activities. Herein we report the synthesis and cytotoxic activities of 34 zearalenone analogues against human oral epidermoid carcinoma (KB) and human breast adenocarcinoma (MCF-7) cells as well as noncancerous Vero cells. Some zearalenone analogues showed moderately enhanced cytotoxic activities against the two cancer cell lines. We have discovered the potential lead compounds with diminished or no cytotoxicity to Vero cells. Preliminary structure-activity relationship studies revealed that the double bond at the 1' and 2' positions of zearalenone core was crucial for cytotoxic activities on both cell lines. In addition, for zearalenol analogues, the unprotected hydroxyl group at C-2 and an alkoxy substituent at C-4 played key roles on cytotoxic effects of both cell lines. PMID:27311894

  14. Synthesis and Biological Evaluation of New (-)-Englerin Analogues.

    PubMed

    López-Suárez, Laura; Riesgo, Lorena; Bravo, Fernando; Ransom, Tanya T; Beutler, John A; Echavarren, Antonio M

    2016-05-01

    We report the synthesis and biological evaluation of a series of (-)-englerin A analogues obtained along our previously reported synthetic route based on a stereoselective gold(I) cycloaddition process. This synthetic route is a convenient platform to access analogues with broad structural diversity and has led us to the discovery of unprecedented and easier-to-synthesize derivatives with an unsaturation in the cyclopentyl ring between C4 and C5. We also introduce novel analogues in which the original isopropyl motif has been substituted with cyclohexyl, phenyl, and cyclopropyl moieties. The high selectivity and growth-inhibitory activity shown by these new derivatives in renal cancer cell lines opens new ways toward the final goal of finding effective drugs for the treatment of renal cell carcinoma (RCC). PMID:27005578

  15. Analogue peptides for the immunotherapy of human acute myeloid leukemia.

    PubMed

    Hofmann, Susanne; Mead, Andrew; Malinovskis, Aleksandrs; Hardwick, Nicola R; Guinn, Barbara-Ann

    2015-11-01

    The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies. PMID:26438084

  16. Nicorandil analogues containing NO-donor furoxans and related furazans.

    PubMed

    Boschi, D; Cena, C; Di Stilo, A; Fruttero, R; Gasco, A

    2000-07-01

    The synthesis and in vitro vasodilating properties of hybrid compounds in which furoxan (1,2,5-oxadiazole 2-oxide) moieties, endowed with different NO-donor properties, were substituted for the nitroxy function of Nicorandil are reported. The corresponding cyanoguanidine analogues are also considered. This approach has led to a series of vasorelaxing compounds devoid of affinity for K(ATP) channels, whose activity is prevalently due to their ability to activate sGC, at the concentrations of the experiments. Related furazan (1,2,5-oxadiazole) derivatives, unable to release nitric oxide were also prepared and studied for control. The amide analogues of Nicorandil display feeble vasorelaxing action not involving the activation of K+ channels, while in the guanidine analogues, this mechanism seems to underlie this action. PMID:10976520

  17. Analogue modelling of syntectonic leucosomes in migmatitic schists

    NASA Astrophysics Data System (ADS)

    Druguet, Elena; Carreras, Jordi

    2006-10-01

    Migmatites from the Cap de Creus tectonometamorphic belt display a wide variety of structures, from those formed when the leucosomes were melt-bearing, to those developed during solid-state deformation. The observed field structures have been modelled by means of analogue experiments. The materials used in the models are layered plasticine as a schist analogue, and chocolate as analogue of the crystallizing leucosome. A model for the development of syntectonic migmatites is proposed in which initial melt-bearing patches, preferentially formed within fertile pelitic layers, progressively evolve towards lens-shaped veins. Furthermore, heterogeneous deformation of anisotropic metasediments facilitates formation of extensional sites for further melt accumulation and transport. Melt crystallization implies a rapid increase in effective viscosity of leucosomes producing a reversal in competence contrast with respect to the enclosing schists. During the whole process, deformation localizes around crystallizing veins, giving rise to different and contrasting structures for melt-bearing and for solid-state stages.

  18. Relative benefits of linear analogue and advanced digital hearing aids.

    PubMed

    Wood, Sally A; Lutman, Mark E

    2004-03-01

    Speech recognition performance and self-reported benefit from linear analogue and advanced (digital) hearing aids were compared in 100 first-time hearing aid users with mild-to-moderate sensorineural hearing loss fitted monaurally with a behind-the-ear (BTE) hearing aid in a single-blind randomized crossover trial. Subjects used each aid for 5 weeks in turn, with aid order balanced across subjects. Three alternative models of digital hearing aid were assigned to subjects according to a balanced design. Aid type was disguised to keep subjects blind within practical limitations. Aided speech recognition performance in noise was measured at speech levels of 65 and 75dB at a speech-to-noise ratio (SNR) of +2dB for closed sets of single words. Self-rated benefit was measured using the Abbreviated Profile of Hearing Aid Benefit (APHAB) and the Glasgow Hearing Aid Benefit Profile (GHABP). Quality of life, hearing aid use and user preferences were also assessed. Speech recognition scores with the digital aids were significantly better at 75dB than with the analogue aids Self-reported benefit (APHAB, GHABP) and improvement in quality of life were generally not significantly different between analogue and digital aids, although aversiveness measured with the APHAB was significantly lower with digital aids, and satisfaction measured with the GHABP was greater. The digital aids were preferred significantly more often than the analogue aids, with 61 subjects choosing their digital aid, 26 choosing the analogue aid, and nine being equivocal. Overall, this study shows advantages for advanced digital over simple linear analogue aids in terms of both objective and subjective outcomes, although average differences are not large. PMID:15198378

  19. The Object-analogue approach for probabilistic forecasting

    NASA Astrophysics Data System (ADS)

    Frediani, M. E.; Hopson, T. M.; Anagnostou, E. N.; Hacker, J.

    2015-12-01

    The object-analogue is a new method to estimate forecast uncertainty and to derive probabilistic predictions of gridded forecast fields over larger regions rather than point locations. The method has been developed for improving the forecast of 10-meter wind speed over the northeast US, and it can be extended to other forecast variables, vertical levels, and other regions. The object-analogue approach combines the analog post-processing technique (Hopson 2005; Hamill 2006; Delle Monache 2011) with the Method for Object-based Diagnostic Evaluation (MODE) for forecast verification (Davis et al 2006a, b). Originally, MODE is used to verify mainly precipitation forecasts using features of a forecast region represented by an object. The analog technique is used to reduce the NWP systematic and random errors of a gridded forecast field. In this study we use MODE-derived objects to characterize the wind fields forecasts into attributes such as object area, centroid location, and intensity percentiles, and apply the analogue concept to these objects. The object-analogue method uses a database of objects derived from reforecasts and their respective reanalysis. Given a real-time forecast field, it searches the database and selects the top-ranked objects with the most similar set of attributes using the MODE fuzzy logic algorithm for object matching. The attribute probabilities obtained with the set of selected object-analogues are used to derive a multi-layer probabilistic prediction. The attribute probabilities are combined into three uncertainty layers that address the main concerns of most applications: location, area, and magnitude. The multi-layer uncertainty can be weighted and combined or used independently in such that it provides a more accurate prediction, adjusted according to the application interest. In this study we present preliminary results of the object-analogue method. Using a database with one hundred storms we perform a leave-one-out cross-validation to

  20. Naturally occurring crystalline phases: analogues for radioactive waste forms

    SciTech Connect

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  1. Halogenase Engineering for the Generation of New Natural Product Analogues.

    PubMed

    Brown, Stephanie; O'Connor, Sarah E

    2015-10-12

    Halogenases catalyze the incorporation of halogen atoms into organic molecules. Given the importance that halogenation has on the biological activity of small molecules, these enzymes have been subjected to intense engineering efforts to make them more suitable for biotechnology applications. The ability to biohalogenate complex molecules provides, in principle, the opportunity for rapid generation of a series of analogues with new or improved properties. Here we discuss the potential and limitations of using halogenases as biocatalysts, including recent advances in engineering halogenases to generate halogenated natural product analogues. PMID:26256103

  2. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.

    PubMed Central

    Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A

    1992-01-01

    In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines

  3. 12-Amino-andrographolide analogues: synthesis and cytotoxic activity.

    PubMed

    Kasemsuk, Sakkasem; Sirion, Uthaiwan; Suksen, Kanoknetr; Piyachaturawat, Pawinee; Suksamrarn, Apichart; Saeeng, Rungnapha

    2013-12-01

    Andrographolide, a diterpenoid lactone of the plant Andrographis paniculata, has been shown to be cytotoxic against various cancer cells in vitro. In the present study, a series of β-amino-γ-butyrolactone analogues has been synthesized from naturally occurring andrographolide via one pot tandem aza-conjugate addition-elimination reaction. By using economic procedure without any base or catalyst at room temperature, the products obtained were in fair to excellent yields with high stereoselectivity. The cytotoxicity of all new amino analogues were evaluated against six cancer cell lines and revealed their potential for being developed as promising anti-cancer agents. PMID:23709127

  4. Concise synthesis of ether analogues of lysobisphosphatidic acid.

    PubMed

    Jiang, Guowei; Xu, Yong; Falguières, Thomas; Gruenberg, Jean; Prestwich, Glenn D

    2005-09-01

    We describe a versatile, efficient method for the preparation of ether analogues of (S,S)-lysobisphosphatidic acid (LBPA) and its enantiomer from (S)-solketal. Phosphorylation of a protected sn-2-O-octadecenyl glyceryl ether with 2-cyanoethyl bis-N,N-diisopropylamino phosphine and subsequent deprotection generated the bisether LBPA analogues. By simply changing the sequence of deprotection steps, we obtained the (R,R)- and (S,S)-enantiomers of 2,2'-bisether LBPA. An ELISA assay with anti-LBPA monoclonal antibodies showed that the bisether LBPAs were recognized with the same affinity as the natural 2,2'-bisoleolyl LBPA. [reaction: see text] PMID:16119911

  5. Synthesis of Conformationally Locked Versions of Puromycin Analogues

    PubMed Central

    Saneyoshi, Hisao; Michel, Benoît Y.; Choi, Yongseok; Strazewski, Peter; Marquez, Victor E.

    2009-01-01

    Conformationally locked North and South versions of puromycin analogues built on a bicyclo[3.1.0]hexane pseudosugar template were synthesized. The final assembly of the products was accomplished by the Staudinger-Vilarrasa coupling of the corresponding North (2 and 3) and South (6 and 7) 3′-azidopurine carbanucleosides with the Fmoc-protected 1-hydroxybenzotriazole ester of 4-methoxy-L-tyrosine. North azides 2 and 3 were reported earlier. The 3′-azido intermediates 6 and 7 that are necessary for the synthesis of the South puromycin analogues are described herein for the first time. PMID:18991379

  6. Tumor imaging and therapy using radiolabeled somatostatin analogues.

    PubMed

    de Jong, Marion; Breeman, Wout A P; Kwekkeboom, Dik J; Valkema, Roelf; Krenning, Eric P

    2009-07-21

    Molecular imaging plays an essential role in balancing the clinical benefits and risks of radionuclide-based cancer therapy. To effectively treat individual patients, careful assessment of biodistribution, dosimetry, and toxicity is essential. In this Account, we describe advances that combine features of molecular imaging and radionuclide therapy to provide new avenues toward individualized cancer treatment. Selective receptor-targeting radiopeptides have emerged as an important class of radiopharmaceuticals for molecular imaging and therapy of tumors that overexpress peptide receptors on the cell membrane. After such peptides labeled with gamma-emitting radionuclides bind to their receptors, they allow clinicians to visualize receptor-expressing tumors non-invasively. Peptides labeled with beta-particle emitters could also eradicate receptor-expressing tumors. The somatostatin receptors, which are overexpressed in a majority of neuroendocrine tumors, represent the first and best example of targets for radiopeptide-based imaging and radionuclide therapy. The somatostatin analogue (111)In-octreotide permits the localization and staging of neuroendocrine tumors that express the appropriate somatostatin receptors. Newer modified somatostatin analogues, including Tyr(3)-octreotide and Tyr(3)-octreotate, are successfully being used for tumor imaging and radionuclide therapy. Because there are few effective therapies for patients with inoperable or metastasized neuroendocrine tumors, this therapy is a promising novel treatment option for these patients. Peptide receptor imaging and radionuclide therapy can be combined in a single probe, called a "theranostic". To select patients who are likely to benefit from this type of intervention, we first use a peptide analogue labeled with a diagnostic radionuclide to obtain a scan. Selected patients will be treated using the same or a similar peptide analogue labeled with a therapeutic radionuclide. The development of such

  7. Synthesis and Cytotoxicity of Semisynthetic Withalongolide A Analogues

    PubMed Central

    2013-01-01

    The natural product withaferin A exhibits potent antitumor activity and other diverse pharmacological activities. The recently discovered withalongolide A, a C-19 hydroxylated congener of withaferin A, was recently reported to possess cytotoxic activity against head and neck squamous cell carcinomas. Semisynthetic acetylated analogues of withalongolide A were shown to be considerably more cytotoxic than the parent compound. To further explore the structure–activity relationships, 20 new semisynthetic analogues of withalongolide A were synthesized and evaluated for cytotoxic activity against four different cancer cell lines. A number of derivatives were found to be more potent than the parent compound and withaferin A. PMID:24273633

  8. Non-natural acetogenin analogues as potent Trypanosoma brucei inhibitors

    PubMed Central

    Florence, Gordon J.; Fraser, Andrew L.; Gould, Eoin R.; King, Elizabeth F.; Menzies, Stefanie K.; Morris, Joanne C.; Tulloch, Lindsay B.; Smith, Terry K.

    2015-01-01

    A series of novel bis-tetrahydropyran 1,4-triazole analogues based on the acetogenin framework display low micromolar trypanocidal activities towards both bloodstream and insect forms of Trypanosoma brucei, the causative agent of African sleeping sickness. A divergent synthetic strategy was adopted for the synthesis of the key tetrahydropyran intermediates to enable rapid access to diastereochemical variation either side of the 1,4-triazole core. The resulting diastereomeric analogues displayed varying degrees of trypanocidal activity and selectivity in structure activity relationship studies. PMID:25145275

  9. New therapeutic approaches in type 2 diabetes.

    PubMed

    Scheen, A J

    2008-01-01

    Type 2 diabetes is a progressive chronic disease resulting from a dynamic interaction between defects in insulin secretion and insulin action. New molecules have recently been launched and many others are under clinical investigation. Besides classical sulfonylureas and glinides, new insulin secretagogues are now available, which target the incretin gut hormone glucagon-like peptide-1 (GLP-1). Indeed, oral incretin enhancers acting as antagonists of the enzyme DPP-4 (dipeptidylpeptidase-4), which inactivates natural GLP-1,and injectable incretin mimetics (exenatide) or analogues (liraglutide), which reproduce the actions of GLP-1 while resisting to DPP-4, represent new opportunities to stimulate insulin secretion, without increasing the risk of hypoglycaemia and weight gain. Among insulin sensitizers, metformin remains unequivocally the first drug of choice for the treatment of type 2 diabetes, whereas promising drugs as thiazolidinediones (glitazones) were recently challenged because of various safety issues. When insulin is required, insulin analogues, both short-acting and basal ones, may offer some advantages regarding better control of postprandial hyperglycaemia, reduced risk of hypoglycaemia and/or lower weight gain in patients with type 2 diabetes. Emphasis should be put on early detection and intensive management of type 2 diabetes, individualized glucose lowering treatments and goals, stepwise pharmacological strategy avoiding therapeutic inertia, and multiple cardiovascular risk--targeted approach. PMID:19170358

  10. Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer's disease.

    PubMed

    Ji, Chenhui; Xue, Guo-Fang; Li, Guanglai; Li, Dongfang; Hölscher, Christian

    2016-01-01

    Glucose-dependent insulinotropic polypeptide (GIP) is a member of the incretin hormones and growth factors. Neurons express the GIP receptor, and GIP and its agonists can pass through the blood brain barrier and show remarkable neuroprotective effects by protecting synapse function and numbers, promoting neuronal proliferation, reducing amyloid plaques in the cortex and reducing the chronic inflammation response of the nervous system. Long-acting analogues of GIP that are protease resistant had been developed as a treatment for type 2 diabetes. It has been found that such GIP analogues show good protective effects in animal models of Alzheimer's disease. Novel dual agonist peptides that activate the GIP receptor and another incretin receptor, glucagon-like peptide -1 (GLP-1), are under development that show superior effects in diabetic patients compared to single GLP-1 agonists. The dual agonists also show great promise in treating neurodegenerative disorders, and there are currently several clinical trials ongoing, testing GLP-1 mimetics in people with Alzheimer's or Parkinson's disease. PMID:26351802

  11. Facile Synthesis of Natural Alkoxynaphthalene Analogues from Plant Alkoxybenzenes.

    PubMed

    Tsyganov, Dmitry V; Krayushkin, Mikhail M; Konyushkin, Leonid D; Strelenko, Yuri A; Semenova, Marina N; Semenov, Victor V

    2016-04-22

    Analogues of the bioactive natural alkoxynaphthalene pycnanthulignene D were synthesized by an efficient method. The starting plant allylalkoxybenzenes (1) are easily available from the plant essential oils of sassafras, dill, and parsley. The target 1-arylalkoxynaphthalenes (5) exhibited antiproliferative activity in a phenotypic sea urchin embryo assay. PMID:26910798

  12. Thymidine analogues to assess microperfusion in human tumors

    SciTech Connect

    Janssen, Hilde L.; Ljungkvist, Anna S.; Rijken, Paul F.; Sprong, Debbie; Bussink, Jan; Kogel, Albert J. van der; Haustermans, Karin M.; Begg, Adrian C. . E-mail: a.begg@nki.nl

    2005-07-15

    Purpose: To validate the use of the thymidine analogues as local perfusion markers in human tumors (no labeling indicates no perfusion) by comparison with the well-characterized perfusion marker Hoechst 33342. Methods and Materials: Human tumor xenografts from gliomas and head-and-neck cancers were injected with iododeoxyuridine (IdUrd) or bromodeoxyuridine (BrdUrd) and the fluorescent dye Hoechst 33342. In frozen sections, each blood vessel was scored for the presence of IdUrd/BrdUrd labeling and Hoechst in surrounding cells. The percentage of analogue-negative vessels was compared with the fraction of Hoechst-negative vessels. Collocalization of the two markers was also scored. Results: We found considerable intertumor variation in the fraction of perfused vessels, measured by analogue labeling, both in the human tumor xenografts and in a series of tumor biopsies from head-and-neck cancer patients. There was a significant correlation between the Hoechst-negative and IdUrd/BrdUrd-negative vessels in the xenografts (r 85, p = 0.0004), despite some mismatches on a per-vessel basis. Conclusions: Thymidine analogues can be successfully used to rank tumors according to their fraction of perfused vessels. Whether this fraction correlates with the extent of acute hypoxia needs further confirmation.

  13. Synthesis, reactivity and biological activity of 5-alkoxymethyluracil analogues

    PubMed Central

    Brulikova, Lucie

    2011-01-01

    Summary This review article summarizes the results of a long-term investigation of 5-alkoxymethyluracil analogues and is aimed, in particular, at methods of syntheses. Most of the presented compounds were synthesized in order to evaluate their biological activity, therefore, a brief survey of biological activity, especially antiviral, cytotoxic and antibacterial, is also reported. PMID:21804865

  14. A Macroscopic Analogue of the Nuclear Pairing Potential

    ERIC Educational Resources Information Center

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  15. Charged Analogues of Henning Knutsen Type Solutions in General Relativity

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Kumar, Sachin; Pratibha

    2011-11-01

    In the present article, we have found charged analogues of Henning Knutsen's interior solutions which join smoothly to the Reissner-Nordstrom metric at the pressure free interface. The solutions are singularity free and analyzed numerically with respect to pressure, energy-density and charge-density in details. The solutions so obtained also present the generalization of A.L. Mehra's solutions.

  16. Synthesis of 4” manipulated Lewis X trisaccharide analogues

    PubMed Central

    Moore, Christopher J

    2012-01-01

    Summary Three analogues of the Lex trisaccharide antigen (β-D-Galp(1→4)[α-L-Fucp(1→3)]-D-GlcNAcp) in which the galactosyl residue is modified at O-4 as a methyloxy, deoxychloro or deoxyfluoro, were synthesized. We first report the preparation of the modified 4-OMe, 4-Cl and 4-F trichloroacetimidate galactosyl donors and then report their use in the glycosylation of an N-acetylglucosamine glycosyl acceptor. Thus, we observed that the reactivity of these donors towards the BF3·OEt2-promoted glycosylation at O-4 of the N-acetylglucosamine glycosyl acceptors followed the ranking 4-F > 4-OAc ≈ 4-OMe > 4-Cl. The resulting disaccharides were deprotected at O-3 of the glucosamine residue and fucosylated, giving access to the desired protected Lex analogues. One-step global deprotection (Na/NH3) of the protected 4”-methoxy analogue, and two-step deprotections (removal of a p-methoxybenzyl with DDQ, then Zemplén deacylation) of the 4”-deoxychloro and 4”-deoxyfluoro protected Lex analogues gave the desired compounds in good yields. PMID:23019441

  17. ON A p-ADIC ANALOGUE OF TATE HEIGHT

    NASA Astrophysics Data System (ADS)

    Berzin'sh, A. A.

    1983-04-01

    This paper is devoted to the study of the Tate height of an elliptic curve and its p-adic analogue. The main result is a series of explicit formulas for computing the local archimedean part of the Tate height. These results are used to obtain a new method for constructing the p-adic Tate height. Bibliography: 5 titles.

  18. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production

    PubMed Central

    Walmagh, Maarten; Zhao, Renfei; Desmet, Tom

    2015-01-01

    Trehalose (α-d-glucopyranosyl α-d-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-d-glucopyranosyl α-d-galactopyranoside) or galactotrehalose (α-d-galactopyranosyl α-d-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. “Greener” alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis. PMID:26084050

  19. A new analogue of fatty alcohol from Tamarix hampeana L.

    PubMed

    Aykac, Ahmet; Akgül, Yurdanur

    2010-01-01

    New analogues of a long-chain secondary alcohol (1) and laserine (2) were isolated from the flowers of Tamarix hampeana L. The isolated compounds were identified using 1D and 2D NMR, LCMS/APCI, and chemical methods. Laserine was isolated for the first time from T. hampeana L. PMID:20013470

  20. Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues.

    PubMed

    Hager, Anastasia; Wu, Mingxuan; Wang, Huanchen; Brown, Nathaniel W; Shears, Stephen B; Veiga, Nicolás; Fiedler, Dorothea

    2016-08-22

    The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions. PMID:27460418

  1. Synthesis of monophytanyl ether analogues of lysophosphatidic and lysophosphatidyl glycerol.

    PubMed

    Kates, M; Hancock, A J

    1976-10-01

    The chemical synthesis of 3-O-phytanyl-sn-glycero-1-phosphoric acid (monophytanyl ether analogue of lysophosphatidic acid) was effected by condensation of 1-iodo-2-O-benzyl-3-O-phytanyl-sn-glycerol with silver di-p-nitrobenzyl phosphate in anhydrous toluene followed by catalytic hydrogenolysis of the resulting phosphotriester to remove the benzyl and p-nitrobenzyl groups. Synthesis of 3-O-phytanyl-sn-glycero-1-phosphoryl-1'-sn-glycerol (monophytanyl ether analogue of lysophosphatidyl glycerol) was carried out by conversion of the above phosphotriester to the monosilver salt of the suitably blocked lysophosphatidic acid which was condensed with 1-iodo-2-O-t-butyl-3-O-benzyl-sn-glycerol. Removal of the protecting aromatic and t-butyl groups from the resulting blocked triester intermediate gave the desired phytanyl ether analogue of lysophosphatidyl glycerol. Both lyso analogues were isolated as analytically and chromatographically pure potassium salts. Their physical properties and behavior towards acid hydrolysis are described. PMID:991376

  2. New phosphorus analogues of nitrogen classics--no carbon copies.

    PubMed

    Gudat, Dietrich

    2014-05-01

    Getting heavy: The recently prepared phosphorus analogues of two old acquaintances, urea and dinitrogen tetroxide, bear some structural resemblance to their archetypes but are no carbon copies. Their syntheses and chemical properties reveal rather certain peculiarities, which back the doctrine that the electronic properties of the heavier elements in a group differ from those of the lightest congener. PMID:24718995

  3. Synthesis of glycophostones: cyclic phosphonate analogues of biologically relevant sugars

    PubMed

    Hanessian; Rogel

    2000-05-01

    Analogues of L-fucose, N-acetyl-D-glucosamine, N-acetyl-D-mannosamine, and N-acetyl neuraminic acid in which the anomeric carbon atom was replaced by a phosphonyl group (phostones or cyclic phosphonates) were synthesized by stereocontrolled methods relying on the Abramov reaction. PMID:10808439

  4. An Analysis of an Autoclitic Analogue in Pigeons

    ERIC Educational Resources Information Center

    Kuroda, Toshikazu; Lattal, Kennon A.; García-Penagos, Andrés

    2014-01-01

    Using a conditional discrimination procedure, pigeons were exposed to a nonverbal analogue of qualifying autoclitics such as "definitely" and "maybe." It has been suggested that these autoclitics are similar to tacts except that they are under the control of private discriminative stimuli. Instead of the conventional assumption…

  5. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  6. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production.

    PubMed

    Walmagh, Maarten; Zhao, Renfei; Desmet, Tom

    2015-01-01

    Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-D-glucopyranosyl α-D-galactopyranoside) or galactotrehalose (α-D-galactopyranosyl α-D-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. "Greener" alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis. PMID:26084050

  7. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand

  8. Metric optimisation for analogue forecasting by simulated annealing

    NASA Astrophysics Data System (ADS)

    Bliefernicht, J.; Bárdossy, A.

    2009-04-01

    It is well known that weather patterns tend to recur from time to time. This property of the atmosphere is used by analogue forecasting techniques. They have a long history in weather forecasting and there are many applications predicting hydrological variables at the local scale for different lead times. The basic idea of the technique is to identify past weather situations which are similar (analogue) to the predicted one and to take the local conditions of the analogues as forecast. But the forecast performance of the analogue method depends on user-defined criteria like the choice of the distance function and the size of the predictor domain. In this study we propose a new methodology of optimising both criteria by minimising the forecast error with simulated annealing. The performance of the methodology is demonstrated for the probability forecast of daily areal precipitation. It is compared with a traditional analogue forecasting algorithm, which is used operational as an element of a hydrological forecasting system. The study is performed for several meso-scale catchments located in the Rhine basin in Germany. The methodology is validated by a jack-knife method in a perfect prognosis framework for a period of 48 years (1958-2005). The predictor variables are derived from the NCEP/NCAR reanalysis data set. The Brier skill score and the economic value are determined to evaluate the forecast skill and value of the technique. In this presentation we will present the concept of the optimisation algorithm and the outcome of the comparison. It will be also demonstrated how a decision maker should apply a probability forecast to maximise the economic benefit from it.

  9. Biological evaluation of a novel sorafenib analogue, t-CUPM.

    PubMed

    Wecksler, Aaron T; Hwang, Sung Hee; Liu, Jun-Yan; Wettersten, Hiromi I; Morisseau, Christophe; Wu, Jian; Weiss, Robert H; Hammock, Bruce D

    2015-01-01

    Sorafenib (Nexavar®) is currently the only FDA-approved small molecule targeted therapy for advanced hepatocellular carcinoma. The use of structural analogues and derivatives of sorafenib has enabled the elucidation of critical targets and mechanism(s) of cell death for human cancer lines. We previously performed a structure-activity relationship study on a series of sorafenib analogues designed to investigate the inhibition overlap between the major targets of sorafenib Raf-1 kinase and VEGFR-2, and an enzyme shown to be a potent off-target of sorafenib, soluble epoxide hydrolase. In the current work, we present the biological data on our lead sorafenib analogue, t-CUPM, demonstrating that this analogue retains cytotoxicity similar to sorafenib in various human cancer cell lines and strongly inhibits growth in the NCI-60 cell line panel. Co-treatment with the pan-caspase inhibitor, Z-VAD-FMK, failed to rescue the cell viability responses of both sorafenib and t-CUPM, and immunofluorescence microscopy shows similar mitochondrial depolarization and apoptosis-inducing factor release for both compounds. These data suggest that both compounds induce a similar mechanism of caspase-independent apoptosis in hepatoma cells. In addition, t-CUPM displays anti-proliferative effects comparable to sorafenib as seen by a halt in G0/G1 in cell cycle progression. The structural difference between sorafenib and t-CUPM significantly reduces inhibitory spectrum of kinases by this analogue, and pharmacokinetic characterization demonstrates a 20-fold better oral bioavailability of t-CUPM than sorafenib in mice. Thus, t-CUPM may have the potential to reduce the adverse events observed from the multikinase inhibitory properties and the large dosing regimens of sorafenib. PMID:25413440

  10. Convolutamydine A and synthetic analogues have antinociceptive properties in mice.

    PubMed

    Figueiredo, Gabriela S M; Zardo, Renata S; Silva, Bárbara V; Violante, Flávio A; Pinto, Angelo C; Fernandes, Patricia D

    2013-01-01

    Convolutamydine A, an oxindole that originated from a marine bryozoan, has several biological effects. In this study, we aimed to investigate the antinociceptive effects of convolutamydine A and two new synthetic analogues. Convolutamydine A and the two analogues were given orally to assess their ability to induce antinociceptive effects. Formalin-induced licking response, acetic acid-induced contortions, and hot plate models were used to characterize the effects of convolutamydine A and its analogues. Convolutamydine A (4,6-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), compound 1 (3-(2-oxopropyl)-3-hydroxy-2-oxindole), and compound 2 (5-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole) caused peripheral antinociceptive and anti-inflammatory effects in the acetic acid-induced contortions and the formalin-induced licking models. Supraspinal effects were also observed in the hot plate model and were similar to those obtained with morphine. The peripheral effects were not mediated by the cholinergic or opioid systems. The antinociceptive effects of convolutamydine A seem to be mediated by all three systems (cholinergic, opioid, and nitric oxide systems), and the mechanism of action of compounds 1 and 2 involved cholinergic and nitric oxide-mediated mechanisms. Convolutamydine A and its analogues (compounds 1 and 2) showed good antinociceptive ability after systemic administration in acute pain models. The antinociceptive action mediated by cholinergic, opioid, and nitric oxide systems could explain why convolutamydine A, compound 1, and compound 2 retained their antinociceptive effects. The doses used were similar to the doses of morphine and were much lower than that of acetylsalicylic acid, the classical analgesic and anti-inflammatory drug. In conclusion, convolutamydine A and the two analogues demonstrated antinociceptive effects comparable to morphine's effects. PMID:23046852

  11. Analogue Sites for Mars Missions - A report from two workshops

    NASA Astrophysics Data System (ADS)

    Hipkin, V.; Voytek, M. A.; Glamoclija, M.

    2014-12-01

    Fieldwork, at terrestrial sites that are analogous in some way to Mars, has a key role in defining questions addressed by Mars missions. For MSL, the question is whether its landing site was habitable, and for Mars 2020, the question is how do we search for and what are signs of life in ancient habitable environments. Implementing these investigations by means of a rover mission on a distant planetary surface has challenges due to a limited set of tools and period of operations. Using this context of planetary missions is important in shaping how analog research can be used to advance planetary science. Following a successful 2010 AGU fall meeting session entitled "Analogue Sites for Mars Missions", two community workshops were held at The Woodlands, TX March 2011 and the Carnegie Institute of Washington in July 2013. These activities represent an ongoing dialogue with the analogue and mission communities. The AGU session solicited presentations of current analogue research relevant to MSL, at which time the landing site selection process was still considering four final sites. The 2011 Woodlands workshop solicited details on representative science questions and analogue sites by means of an abstract template. The output from The Woodlands workshop was an initial metric to assess the utility of analogue sites against specific science questions, as well as recommendations for future activities. The 2013 Carnegie workshop, followed up on some of the recommendations from 2011. Both on-line interactive dialogue and in person discussions targeted broad topics, including 'the advantages and problems of using a great terrestrial analog for field testing', and 'knowing what we currently do about Mars, what would be the best place on the planet to collect the first suite of samples to be returned to Earth? What would be appropriate analog sites on Earth?'. The results and recommendations from both workshops are summarized to publicize and stimulate this ongoing discussion.

  12. Current and investigational antiobesity agents and obesity therapeutic treatment targets.

    PubMed

    Bays, Harold E

    2004-08-01

    Public health efforts and current antiobesity agents have not controlled the increasing epidemic of obesity. Investigational antiobesity agents consist of 1) central nervous system agents that affect neurotransmitters or neural ion channels, including antidepressants (bupropion), selective serotonin 2c receptor agonists, antiseizure agents (topiramate, zonisamide), some dopamine antagonists, and cannabinoid-1 receptor antagonists (rimonabant); 2) leptin/insulin/central nervous system pathway agents, including leptin analogues, leptin transport and/or leptin receptor promoters, ciliary neurotrophic factor (Axokine), neuropeptide Y and agouti-related peptide antagonists, proopiomelanocortin and cocaine and amphetamine regulated transcript promoters, alpha-melanocyte-stimulating hormone analogues, melanocortin-4 receptor agonists, and agents that affect insulin metabolism/activity, which include protein-tyrosine phosphatase-1B inhibitors, peroxisome proliferator activated receptor-gamma receptor antagonists, short-acting bromocriptine (ergoset), somatostatin agonists (octreotide), and adiponectin; 3) gastrointestinal-neural pathway agents, including those that increase cholecystokinin activity, increase glucagon-like peptide-1 activity (extendin 4, liraglutide, dipeptidyl peptidase IV inhibitors), and increase protein YY3-36 activity and those that decrease ghrelin activity, as well as amylin analogues (pramlintide); 4) agents that may increase resting metabolic rate ("selective" beta-3 stimulators/agonist, uncoupling protein homologues, and thyroid receptor agonists); and 5) other more diverse agents, including melanin concentrating hormone antagonists, phytostanol analogues, functional oils, P57, amylase inhibitors, growth hormone fragments, synthetic analogues of dehydroepiandrosterone sulfate, antagonists of adipocyte 11B-hydroxysteroid dehydrogenase type 1 activity, corticotropin-releasing hormone agonists, inhibitors of fatty acid synthesis, carboxypeptidase

  13. An analogue conceptual rainfall-runoff model for educational purposes

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Riedl, Michael; Schulz, Karsten

    2016-04-01

    Conceptual rainfall-runoff models, in which runoff processes are modelled with a series of connected linear and non-linear reservoirs, remain widely applied tools in science and practice. Additionally, the concept is appreciated in teaching due to its somewhat simplicity in explaining and exploring hydrological processes of catchments. However, when a series of reservoirs are used, the model system becomes highly parametrized and complex and the traceability of the model results becomes more difficult to explain to an audience not accustomed to numerical modelling. Since normally the simulations are performed with a not visible digital code, the results are also not easily comprehensible. This contribution therefore presents a liquid analogue model, in which a conceptual rainfall-runoff model is reproduced by a physical model. This consists of different acrylic glass containers representing different storage components within a catchment, e.g. soil water or groundwater storage. The containers are equipped and connected with pipes, in which water movement represents different flow processes, e.g. surface runoff, percolation or base flow. Water from a storage container is pumped to the upper part of the model and represents effective rainfall input. The water then flows by gravity through the different pipes and storages. Valves are used for controlling the flows within the analogue model, comparable to the parameterization procedure in numerical models. Additionally, an inexpensive microcontroller-based board and sensors are used to measure storage water levels, with online visualization of the states as time series data, building a bridge between the analogue and digital world. The ability to physically witness the different flows and water levels in the storages makes the analogue model attractive to the audience. Hands-on experiments can be performed with students, in which different scenarios or catchment types can be simulated, not only with the analogue but

  14. Inhibition of receptor/G protein coupling by suramin analogues.

    PubMed

    Beindl, W; Mitterauer, T; Hohenegger, M; Ijzerman, A P; Nanoff, C; Freissmuth, M

    1996-08-01

    Suramin analogues act as direct antagonists of heterotrimeric G proteins because they block the rate-limiting step of G protein activation (i.e., the dissociation of GDP prebound to the G protein alpha subunit). We have used the human brain A1 adenosine receptor and the rat striatal D2 dopamine receptor, two prototypical Gi/G(o)-coupled receptors, as a model system to test whether the following analogues suppress the receptor-dependent activation of G proteins: 8-(3-nitrobenzamido)-1,3,5-naphthalenetrisulfonic acid (NF007), 8-(3-(3-nitrobenzamido)-benzamido)-1,3,5-naphthalenetrisulfonic acid (NF018); 8,8'-(carbonylbis(imino-3,1-phenylene))bis-(1,3,5-naphthalenetr isulfonic acid) (NF023); 8,8'-(carbonylbis(imino-3,1-phenylene)carbonylimino-(3,1- phenylene)) bis(1,3,5-naphthalenetrisulfonic acid) (NF037); and suramin. Suramin and its analogues inhibit the formation of the agonist-specific ternary complex (agonist/receptor/G protein). This inhibition is (i) quasicompetitive with respect to agonist binding in that it can be overcome by increasing receptor occupancy but (ii) does not result from an interaction of the analogues with the ligand binding pocket of the receptors because the binding of antagonists or of agonists in the absence of functional receptor/G protein interaction is not affected. In addition to suppressing the spontaneous release of GDP from defined G protein alpha subunits, suramin and its analogues reduce receptor-catalyzed guanine nucleotide exchange. The site, to which suramin analogues bind, overlaps with the docking site for the receptor on the G protein alpha subunit. The structure-activity relationships for inhibition of agonist binding to the A1 adenosine receptor (suramin > NF037 > NF023) and of agonist binding to the inhibition D2 dopamine receptor (suramin = NF037 > NF023 > NF018) differ. Thus, NF037 discriminates between the ternary complexes formed by the agonist-liganded D2 dopamine receptors and those formed by the A1 adenosine

  15. The use of prostaglandins and their analogues for abortion.

    PubMed

    Bygdeman, M

    1984-12-01

    In general, termination of second trimester pregnancy is associated with three to five times higher morbidity and mortality risks than termination during the first trimester. The procedures mainly used are extra- or intra-amniotic administration of solutions such as hypertonic saline, ethacridine lactate, PGF2 alpha and PGE2. In comparison with these procedures, the use of prostaglandin analogues may offer important advantages, the most important one being the possibility of using non-invasive routes of administration. The continuous development of new analogues has now resulted in compounds that are highly effective in stimulating uterine contractility and are associated with a low frequency of side-effects; these compounds are suitable for both vaginal and intramuscular administration and are applicable for termination of pregnancy during both the early and late parts of the second trimester. The most widely used method for termination of first trimester pregnancy is vacuum aspiration. It is a highly effective procedure and the overall complication rate is low. One problem with vacuum aspiration is the mechanical dilatation of the cervical canal which is necessary from at least the 8th week and onwards. Pretreatment with laminaria tents or with prostaglandin analogues eliminates or reduces the need for mechanical dilatation and significantly facilitates the procedure. Pretreatment with prostaglandin analogues also reduces the risk of both operative and postoperative complications. The prostaglandins also offer a possibility as a non-surgical procedure for termination of very early pregnancy. Both vaginal and intramuscular administration of the latest generation of PG analogues have been shown in several studies to be equally as effective as vacuum aspiration if the treatment is restricted to the first three weeks following the first missed menstrual period. Gastrointestinal side-effects are still a problem although of significantly less importance than if natural

  16. Noncommutative analogue Aharonov-Bohm effect and superresonance

    NASA Astrophysics Data System (ADS)

    Anacleto, M. A.; Brito, F. A.; Passos, E.

    2013-06-01

    We consider the idea of modeling a rotating acoustic black hole by an idealized draining bathtub vortex which is a planar circulating flow phenomenon with a sink at the origin. We find the acoustic metric for this phenomenon from a noncommutative Abelian Higgs model. As such the acoustic metric not only describes a rotating acoustic black hole but also inherits the noncommutative characteristic of the spacetime. We address the issues of superresonance and analogue Aharonov-Bohm (AB) effect in this background. We mainly show that the scattering of planar waves by a draining bathtub vortex leads to a modified AB effect and due to spacetime noncommutativity, the phase shift persists even in the limit where the parameters associated with the circulation and draining vanish. Finally, we also find that the analogue AB effect and superresonance are competing phenomena at a noncommutative spacetime.

  17. Analogue Transformations in Physics and their Application to Acoustics

    PubMed Central

    García-Meca, C.; Carloni, S.; Barceló, C.; Jannes, G.; Sánchez-Dehesa, J.; Martínez, A.

    2013-01-01

    Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an “analogue transformation acoustics” formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft. PMID:23774575

  18. Synthesis and α1-adrenoceptor antagonist activity of tamsulosin analogues.

    PubMed

    Sagratini, Gianni; Angeli, Piero; Buccioni, Michela; Gulini, Ugo; Marucci, Gabriella; Melchiorre, Carlo; Poggesi, Elena; Giardinà, Dario

    2010-12-01

    Tamsulosin (-)-1 is the most utilized α(1)-adrenoceptor antagonist in the benign prostatic hyperplasia therapy owing to its uroselective antagonism and capability in relieving both obstructive and irritative lower urinary tract symptoms. Here we report the synthesis and pharmacological study of the homochiral (-)-1 analogues (-)-2-(-)-5, bearing definite modifications in the 2-substituted phenoxyethylamino group in order to evaluate their influence on the affinity profile for α(1)-adrenoceptor subtypes. The benzyl analogue (-)-3, displaying a preferential antagonist profile for α1A-than α1D-and α1B-adrenoceptors, and a 12-fold higher potency at α1A-adrenoceptors with respect to the α1B subtype, may have improved uroselectivity compared to (-)-1. PMID:20934789

  19. New selenium-75 labeled radiopharmaceuticals: selenonium analogues of dopamine

    SciTech Connect

    Sadek, S.A.; Basmadjian, G.P.; Hsu, P.M.; Rieger, J.A.

    1983-07-01

    Selenium-75 labeled selenonium analogues of dopamine, (2-(3,4-dimethoxyphenyl)ethyl)dimethylselenonium iodide and its dihydroxy analogue, were prepared by reducing (/sup 75/Se)selenious acid with sodium borohydride at pH 6.0 and reacting the NaSeH produced with 1-(3,4-dimethoxyphenyl)-2-(p-toluenesulfonyloxy)ethane. Tissue distribution studies in rats given the /sup 75/Se-labeled selenonium agents intravenously demonstrated high initial heart uptake. Prolonged adrenal retention and high adrenal to blood ratio of compound 4 were observed. The high uptake and adrenal to blood ratio suggest the potential use of compound 4 as a radiopharmaceutical for the adrenal gland.

  20. Novel Azetidine-Containing TZT-1027 Analogues as Antitumor Agents.

    PubMed

    Yan, Qi; Wang, Yujie; Zhang, Wei; Li, Yingxia

    2016-05-01

    A conformational restriction strategy was used to design and synthesize nine TZT-1027 analogues. 3-Aryl-azetidine moiety was used to replace phenylethyl group of TZT-1027 at the C-terminus. These analogues exhibited moderate to excellent antiproliferative activities, and the most potent compound 1a showed IC50 values of 2.2 nM against A549 and 2.1 nM against HCT116 cell lines, respectively. However, 1a could not achieve effective inhibition at all the dose levels in the A549 xenograft model (up to 5 mg/kg, injection, once a day), which is only 16%-35% inhibition at the end of the experiment. PMID:27136567

  1. Alligator rivers analogue project an OECD/NEA international project

    SciTech Connect

    Duerden, P.; Airey, P.; Pescatore, C.

    1994-12-31

    The Koongarra uranium deposit in the Alligator Rivers Region of the Northern Territory of Australia was studied as a natural analogue of the far field behaviour of high level waste repositories following groundwater ingress. A number of mathematical modelling approaches were developed for processes as diverse as groundwater transport, host rock weathering, radionuclide sorption, evolution of the uranium dispersion fan and the distribution of uranium series nuclides between mineral assemblages in weathered host rock. Some of these models are relevant to performance assessment at the level of individual processes and subsystem performance. Through the project, new insights into the application of the natural analogue approach to the assessment of potential waste repository sites were obtained.

  2. Stereocontrolled Synthesis of Key Advanced Intermediates toward Simplified Acetogenin Analogues.

    PubMed

    Le Huérou, Yvan; Doyon, Julien; Grée, René L.

    1999-09-01

    The stereo- and enantiocontrolled synthesis of substituted beta-hydroxy ethers based on glycol and catechol bearing an alkyne group and a series of substituents is reported. These substrates were designed to mimic the bis-THF array of annonaceous acetogenins and to provide an access to simplified and modified analogues. The key steps of the synthesis involve the condensation of the nonracemic mesylate of solketal with ethylene glycol and catechol, followed by an alkylation with a glycidyl derivative. Under appropriate conditions, the reaction is completely stereoselective and allows the synthesis of all the diastereomers. After the epoxide was opened with triethylsilylacetylene, the second epoxide was unmasked and reacted with a series of alkyl, aryl, amine, and alcohol reagents. A series of 28 analogues was prepared having a glycol or a catechol core, a stereodefined configuration of the flanking hydroxyl groups, and an acetylenic appendage suitable for a coupling to a lactone-bearing fragment. PMID:11674687

  3. Synthesis of Methylenecyclopropane Analogues of Antiviral Nucleoside Phosphonates

    PubMed Central

    Yan, Zhaohua; Zhou, Shaoman; Kern, Earl R.; Zemlicka, Jiri

    2006-01-01

    Synthesis of methylenecyclopropane analogues of nucleoside phosphonates 6a, 6b, 7a and 7b is described. Cyclopropyl phosphonate 8 was transformed in four steps to methylenecyclopropane phosphonate 16. The latter intermediate was converted in seven steps to the key Z- and E-methylenecyclopropane alcohols 23 and 24 separated by chromatography. Selenoxide eliminations (15 → 16 and 22 → 23 + 24) were instrumental in the synthesis. The Z- and E-isomers 23 and 24 were transformed to bromides 25a and 25b which were used for alkylation of adenine and 2-amino-6-chloropurine to give intermediates 26a, 26b, 26c and 26d. Acid hydrolysis provided the adenine and guanine analogues 6a, 6b, 7a and 7b. Phosphonates 6b and 7b are potent inhibitors of replication of Epstein-Barr virus (EBV). PMID:16758001

  4. Millimeter and Submillimeter Studies of Interstellar Ice Analogues

    NASA Astrophysics Data System (ADS)

    Mesko, AJ; Wagner, Ian C.; Smith, Houston Hartwell; Milam, Stefanie N.; Widicus Weaver, Susanna L.

    2015-06-01

    The chemistry of interstellar ice analogues has been a topic of great interest to astrochemists over the last 20 years. Currently, the models of interstellar chemistry feature icy-grain reactions as a primary mechanism for the formation of many astrochemical species as well as potentially astrobiologically-relevant complex organic molecules. This talk presents new spectral results collected by a millimeter and submillimeter spectrometer coupled to a vacuum chamber designed to study the sublimation or sputtered products of icy-grain reactions initiated by thermal-processing or photo-processing of interstellar ice analogues. Initial results from thermal desorption and UV photoprocessing experiments of pure water ice and water + methanol ice mixtures will be presented.

  5. Neurological Effects of Bisphenol A and its Analogues

    PubMed Central

    Inadera, Hidekuni

    2015-01-01

    The endocrine disrupting chemical bisphenol A (BPA) is widely used in the production of polycarbonate plastics and epoxy resins. The use of BPA-containing products in daily life makes exposure ubiquitous, and the potential human health risks of this chemical are a major public health concern. Although numerous in vitro and in vivo studies have been published on the effects of BPA on biological systems, there is controversy as to whether ordinary levels of exposure can have adverse effects in humans. However, the increasing incidence of developmental disorders is of concern, and accumulating evidence indicates that BPA has detrimental effects on neurological development. Other bisphenol analogues, used as substitutes for BPA, are also suspected of having a broad range of biological actions. The objective of this review is to summarize our current understanding of the neurobiological effects of BPA and its analogues, and to discuss preventive strategies from a public health perspective. PMID:26664253

  6. Glaucine analogues as inhibitors of mouse splenocyte activity.

    PubMed

    Philipov, S; Ivanovska, N; Nikolova, P

    1998-10-01

    The inhibitory effect of 15 semi-synthetic analogues of glaucine (1) on the lipopolysaccharide (LPS)-induced and the concanavalin A (Con A)-induced proliferation of mouse splenocytes was compared in vitro. Isoboldine (3), bracteoline (4) and dehydroglaucine (9) showed a significantly higher potency to suppress LPS-induced proliferation than 1, while 7-hydroxy-4-methylglaucine (8), 7-formyldehydroglaucine (11), 7-acetyldehydroglaucine (13), 7-benzoyldehydroglaucine (14), oxoglaucine (15) and glaucine-quinol (16) were less inhibitory. Compounds 3, 4, boldine (5), 15 and 16 surpassed significantly the inhibition expressed by 1 on Con A-induced proliferative response. The effect was equal to the inhibition determined for mitomycin C (Mit C) with both mitogens. In contrast to all others analogues, thaliporphine (2) stimulated splenocyte proliferation in both assays. Antibody response against sheep red blood cells (SRBC) was lowered most strongly by cataline (6), 7-methyldehydroglaucine (10) and 16. PMID:9812336

  7. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    SciTech Connect

    Tran, Truong X.; Longhi, Stefano; Biancalana, Fabio

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  8. Analogue transformations in physics and their application to acoustics.

    PubMed

    García-Meca, C; Carloni, S; Barceló, C; Jannes, G; Sánchez-Dehesa, J; Martínez, A

    2013-01-01

    Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an "analogue transformation acoustics" formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft. PMID:23774575

  9. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Jameson, Bradford A.; McDonnell, James M.; Marini, Joseph C.; Korngold, Robert

    1994-04-01

    EXPERIMENTAL allergic encephalomyelitis (EAE) is an acute inflammatory autoimmune disease of the central nervous system that can be elicited in rodents and is the major animal model for the study of multiple sclerosis (MS)1,2. The pathogenesis of both EAE and MS directly involves the CD4+ helper T-cell subset3-5. Anti-CD4 monoclonal antibodies inhibit the development of EAE in rodents6-9, and are currently being used in human clinical trials for MS. We report here that similar therapeutic effects can be achieved in mice using a small (rationally designed) synthetic