Science.gov

Sample records for glucocorticoid-induced bone loss

  1. Heat shock protein 60 protects skeletal tissue against glucocorticoid-induced bone mass loss by regulating osteoblast survival.

    PubMed

    Wang, Feng-Sheng; Wu, Re-Wen; Ko, Jih-Yang; Tai, Ming-Hong; Ke, Huei-Ching; Yeh, Da-Wei; Wu, Shin-Long; Chen, Ming-Wen

    2011-11-01

    Excessive glucocorticoid administration accelerates osteoblast apoptosis and skeletal deterioration. Heat shock proteins (HSPs) regulate metabolic activities in osteoblastic cells. This study characterized the biological significance of HSP60 in glucocorticoid-induced bone loss. Rats were treated with glucocorticoid, HSP60 antisense oligonucleotides, or adenovirus-mediated HSP60 gene transfer. Bone mineral density, metaphyseal trabecular micro-architecture, and fragility were analyzed by dual X-ray absorptiometry, micro-computed tomography, and material testing, respectively. Differential proteomic profiles of bone tissue extracts were detected by bi-dimensional electrophoresis and mass spectrometry. Survival and proapoptotic signal transduction were quantified by immunoblotting. Glucocorticoid-treated rats had low bone mineral density and metaphyseal trabecular microstructure in association with downregulation of collagen 1α1 and HSP60 expressions in bone tissue. Gain of HSP60 function by adenovirus-mediated HSP60 gene transfer abrogated the deleterious effects of glucocorticoid treatment on bone mass, trabecular microstructure, and mechanical strength. Enhancement of HSP60 signaling attenuated the glucocorticoid-induced loss of trabecular bone volume, mineral acquisition reactions and osteoblast surface. HSP60 gene transfer activated ERK and Akt and reduced Bax and cytochrome c release, as well as caspase-3 cleavage, which attenuated the inhibitory effects of glucocorticoid treatment on osteoblast survival. Loss of HSP60 function by HSP60 antisense oligonucleotides accelerated mitochondrial apoptotic programs and osteoblast apoptosis. Knockdown of HSP60 induced loss of bone mass, micro-architecture integrity, and mechanical property. Taken together, loss of HSP60 signaling contributes to the glucocorticoid-induced enhancement of pro-apoptotic reactions, thereby accelerating osteoblast apoptosis and bone mass loss. Enhancement of HSP60 function is beneficial for

  2. Poncirin prevents bone loss in glucocorticoid-induced osteoporosis in vivo and in vitro.

    PubMed

    Yoon, Hyung-Young; Won, Ye-Yeon; Chung, Yoon-Sok

    2012-09-01

    Poncirin, a flavonoid isolated from the fruit of Poncirus trifoliata, possesses anti-bacterial and anti-inflammatory activities. However, the action of poncirin in bone biology is unclear. In this study, the in vivo and in vitro effects of poncirin in a glucocorticoid-induced osteoporosis (GIO) mouse model were investigated. Seven-month-old male mice were assigned to the following five groups: (1) sham-implantation (sham), (2) prednisolone 2.1 mg/kg/day (GC), (3) GC treated with 10 mg/kg/day of genistein, (4) GC treated with 3 mg/kg/day of poncirin, (5) and GC treated with 10 mg/kg/day of strontium (GC + SrCl(2)). After 8 weeks, bone loss was measured by microcomputed tomography. Osteocalcin (OC) and C-terminal telopeptides of type I collagen (CTX) were evaluated in sera. Runx2 protein, OC and osteoprotegerin (OPG) mRNA expression, alkaline phosphatase (ALP) activity, and mineral nodule assay were performed in C3H10T1/2 or primary bone marrow stromal cells. Poncirin significantly increased the bone mineral density and improved the microarchitecture. Poncirin increased serum OC, Runx2 protein production, expression of OC and OPG mRNA, ALP activity, and mineral nodule formation; and decreased serum CTX. These effects were more prominent in the poncirin group compared to the other positive control groups (genistein and strontium). The poncirin-mediated restoration of biochemical bone markers, increased bone mineral density, and improved trabecular microarchitecture likely reflect increased bone formation and decreased bone resorption in GIO mice. PMID:22407507

  3. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Yoon, Sung-Hee; Chen, Jinghan; Grynpas, Marc D; Mitchell, Jane

    2016-09-01

    Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate. PMID:27373502

  4. Aqueous extract of pomegranate seed attenuates glucocorticoid-induced bone loss and hypercalciuria in mice: A comparative study with alendronate.

    PubMed

    Zhang, Yan; Shao, Jin; Wang, Zhi; Yang, Tieyi; Liu, Shuyi; Liu, Yue; Fan, Xinbing; Ye, Weiguang

    2016-08-01

    The present study was performed in order to examine bone loss and calcium homeostasis in mice with glucocorticoid (GC)-induced osteoporosis (GIOP) following treatment with the aqueous extract of pomegranate seed (AE-PS). In addition, a comparative study with alendronate was performed. Biomarkers in the serum and the urine were measured. The tibias, kidney and duodenum were removed in order to measure the levels of bone calcium, protein expression as well as to perform histomorphological analysis of the bone. GC treatment facilitated the induction of hypercalciuria in the mice, and the AE-PS‑treated mice exhibited a greater increase in serum calcium and a decrease in urine calcium. The AE-PS reversed the deleterious effects on the trabecular bone induced by DXM and stimulated bone remodeling, including an increase in bone calcium and alkaline phosphatase‑b (ALP-b) and a decrease in a the critical bone resorption markers C-terminal telopeptide of type I collagen (CTX) and tartrate‑resistant acid phosphatase-5b (TRAP-5b). Hematoxylin and eosin (H&E) staining revealed the increased disconnections and separation between the growth plate and the trabecular bone network as well as the reduction in the trabecular bone mass of the primary and secondary spongiosa throughout the proximal metaphysis of the tibia in the DXM group. Moreover, the decreased protein expression of transient receptor potential vanilloid (TRPV)5, TRPV6 and calbindin‑D9k (CaBP‑9k) was reversed by the AE-PS or alendronate supplementation in the kidneys and the duodenum as well as plasma membrane Ca2+‑ATPase1 (PMCA1) expression in the kidneys of mice with GIOP. There was no marked difference in pharmacological effectiveness between alendronate and the AE-PS. Taken together, these findings suggest that the AE-PS may be an alternative therapy suitable for use in the management of secondary osteoporosis. PMID:27278225

  5. Effect of glucocorticoid withdrawal on glucocorticoid inducing bone impairment.

    PubMed

    Shen, Gengyang; Ren, Hui; Qiu, Ting; Liang, De; Wei, Qiushi; Tang, Jingjing; Zhang, Zhida; Yao, Zhensong; Zhao, Wenhua; Jiang, Xiaobing

    2016-09-01

    Glucocorticoid (GC) withdrawal after a short-term use was common in clinical practice like immediate post-transplant period. However, previous studies without setting age-control group failed to determine whether the BMD recovery was sufficient and whether it is necessary to accept anti-osteoporosis therapy after GC withdrawal. The aim of this study was to investigate the effect of GC withdrawal on bone impairment in glucocorticoid-induced osteoporosis (GIOP) rats. Twenty-four female Sprague-Dawley rats (3 months' old) were randomly divided into two treatment groups: an untreated age-control group (Con, n = 12); another group receiving a dexamethasone injection (DEXA, n = 12). Animals in the Con group were euthanized at 3rd month (M3) and 6th month (M6), respectively. Six rats in the DEXA group were euthanized at 3rd month (M3), whereas GC intervention was withdrew in the remaining animals of DEXA group, which were euthanized at the end of 6th month (M6). Bone mass, bone microarchitecture, biomechanical properties of vertebrae, morphology, serum levels of PINP and β-CTX were evaluated. Compared with the Con(M3) group, the Con(M6) group showed significantly better bone quantity, morphology and quality. Compared with the Con(M3) group, the DEXA (M3) group showed significantly lower BMC, BMD, BS/TV, BV/TV, Tb.N, Tb.Th, vBMD, bone strength, compressive displacement, energy absorption capacity, PINP levels, β-CTX levels, and damaged trabecular morphology. And the same change trend was observed in the comparison between the Con(M6) group and DEXA (M6) group. Compared with the DEXA (M3) group, the DEXA (M6) group showed significantly higher BMC, BMD and AREA, but no significant difference in BS/TV, BV/TV, SMI, Tb.N, Tb.Th, Tb.Sp, vBMD, bone strength, bone stiffness, compressive displacement, energy absorption capacity, PINP levels, β-CTX levels, and improvement in trabecular morphology was observed. These results indicate that the reverse effect of GC withdrawal

  6. Prevention of glucocorticoid induced bone changes with beta-ecdysone

    PubMed Central

    Dai, Weiwei; Jiang, Li; Lay, Yu-An Evan; Chen, Haiyan; Jin, Guoqin; Zhang, Hongliang; Kot, Alex; Ritchie, Robert O.; Lane, Nancy E.; Yao, Wei

    2015-01-01

    Beta-ecdysone (βEcd) is a phytoecdysteroid found in the dry roots and seeds of the asteraceae and achyranthes plants, and is reported to increase osteogenesis in vitro. Since glucocorticoid (GCs) excess is associated with a decrease in bone formation, the purpose of this study was to determine if treatment with βEcd could prevent GC-induced osteoporosis. Two-month-old male Swiss-Webster mice (n=8-10/group) were randomized to either placebo or slow release prednisolone pellets (3.3mg/kg/d) and treated with vehicle control or βEcd (0.5mg/kg/d) for 21 days. GC treatment inhibited age-dependent trabecular gain and cortical bone expansion and this was accompanied by a 30-50% lower bone formation rate (BFR) at both the endosteal and periosteal surfaces. Mice treated with only βEcd significantly increased bone formation on endosteal and periosteal bone surfaces, and increased cortical bone mass were their controls to compare to GC alone. Concurrent treatment of βEcd and GC completely prevented the GC-induced reduction in BFR, trabecular bone volume and partially prevented cortical bone loss. In vitro studies determined that βEcd prevented the GC increase in autophagy of the bone marrow stromal cells as well as in whole bone. In summary, βEcd prevented GC induced changes in bone formation, bone cell viability and bone mass. Additional studies are warranted of βEcd for the treatment of GC induced bone loss. PMID:25585248

  7. Role of glucocorticoid-induced leucine zipper (GILZ) in bone acquisition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucocorticoids (GCs) have both anabolic and catabolic effects on bone. However, no GC anabolic effect mediator has been identified to date. In this report, we provide the first evidence that glucocorticoid-induced leucine zipper (GILZ), a GC anti-inflammatory effect mediator, can enhance bone forma...

  8. Role of glucocorticoid-induced leucine zipper (GILZ) in bone acquisition.

    PubMed

    Pan, Guodong; Cao, Jay; Yang, Nianlan; Ding, Kehong; Fan, Cheng; Xiong, Wen-Cheng; Hamrick, Mark; Isales, Carlos M; Shi, Xing-Ming

    2014-07-11

    Glucocorticoids (GCs) have both anabolic and catabolic effects on bone. However, no GC anabolic effect mediator has been identified to date. Here we show that targeted expression of glucocorticoid-induced leucine zipper (GILZ), a GC anti-inflammatory effect mediator, enhances bone acquisition in mice. Transgenic mice, in which the expression of GILZ is under the control of a 3.6-kb rat type I collagen promoter, exhibited a high bone mass phenotype with significantly increased bone formation rate and osteoblast numbers. The increased osteoblast activity correlates with enhanced osteogenic differentiation and decreased adipogenic differentiation of bone marrow stromal cell cultures in vitro. In line with these changes, the mRNA levels of key osteogenic regulators (Runx2 and Osx) increased, and the level of adipogenic regulator peroxisome proliferator-activated receptor (PPAR) γ2 decreased significantly. We also found that GILZ physically interacts with C/EBPs and disrupts C/EBP-mediated PPARγ gene transcription. In conclusion, our results showed that GILZ is capable of increasing bone acquisition in vivo, and this action is mediated via a mechanism involving the inhibition of PPARγ gene transcription and shifting of bone marrow MSC/progenitor cell lineage commitment in favor of the osteoblast pathway. PMID:24860090

  9. MKP-1 knockout does not prevent glucocorticoid-induced bone disease in mice.

    PubMed

    Conradie, Maria M; Cato, Andrew C B; Ferris, William F; de Wet, Heidi; Horsch, Kay; Hough, Stephen

    2011-09-01

    Glucocorticoid-induced osteoporosis (GCOP) is predominantly caused by inhibition of bone formation, resulting from a decrease in osteoblast numbers. Employing mouse (MBA-15.4) and human (MG-63) osteoblast cell lines, we previously found that the glucocorticoid (GC) dexamethasone (Dex) inhibits cellular proliferation as well as activation of the MAPK/ERK signaling pathway, essential for mitogenesis in these cells, and that both these effects could be reversed by the protein tyrosine phosphatase (PTP) inhibitor vanadate. In a rat model of GCOP, the GC-induced changes in bone formation, mass, and strength could be prevented by vanadate cotreatment, suggesting that the GC effects on bone were mediated by one or more PTPs. Employing phosphatase inhibitors, qRT-PCR, Western blotting, and overexpression/knockdown experiments, we concluded that MKP-1 was upregulated by Dex, that this correlated with the dephosphorylation of ERK, and that it largely mediated the in vitro effects of GCs on bone. To confirm the pivotal role of MKP-1 in vivo, we investigated the effects of the GC methylprednisolone on the quantitative bone histology of wild-type (WT) and MKP-1 homozygous knockout (MKP-1(-/-)) mice. In WT mice, static bone histology revealed that GC administration for 28 days decreased osteoid surfaces, volumes, and osteoblast numbers. Dynamic histology, following time-spaced tetracycline labeling, confirmed a significant GC-induced reduction in osteoblast appositional rate and bone formation rate. However, identical results were obtained in MKP-1 knockout mice, suggesting that in these animals upregulation of MKP-1 by GCs cannot be regarded as the sole mediator of the GC effects on bone. PMID:21698455

  10. Glucocorticoid-induced osteoporosis in growing rats.

    PubMed

    Lin, Sien; Huang, Jianping; Zheng, Liang; Liu, Yanzhi; Liu, Guihua; Li, Nan; Wang, Kuixing; Zou, Liyi; Wu, Tie; Qin, Ling; Cui, Liao; Li, Gang

    2014-10-01

    This study evaluated whether growing rats were appropriate animal models of glucocorticoid-induced osteoporosis. The 3-month-old male rats were treated with either vehicle or prednisone acetate at 1.5, 3.0, and 6.0 mg/kg/day by oral gavage, respectively. All rats were injected with tetracycline and calcein before sacrificed for the purpose of double in vivo labeling. Biochemistry, histomorphometry, mechanical test, densitometry, micro-CT, histology, and component analysis were performed. We found that prednisone treatments dose dependently decreased body weight, serum biomarkers, biomechanical markers, bone formation, and bone resorption parameters in both tibial and femoral trabecular bone without trabecular bone loss. We also found that significant bone loss happened in femoral cortical bone in the glucocorticoid-treated rats. The results suggested that prednisone not only inhibited bone formation, but also inhibited bone resorption which resulted in poor bone strength but with no cancellous bone loss in growing rats. These data also suggested that the effects of glucocorticoid on bone metabolism were different between cortical bone and trabecular bone, and different between tibia and femur. Growing rats may be a glucocorticoid-induced osteoporosis animal model when evaluated the effects of drugs upon juvenile patients exposed to GC for a long time. PMID:25086673

  11. Glucocorticoid-induced differentiation of fetal rat calvarial osteoblasts is mediated by bone morphogenetic protein-6.

    PubMed

    Boden, S D; Hair, G; Titus, L; Racine, M; McCuaig, K; Wozney, J M; Nanes, M S

    1997-07-01

    Glucocorticoids (GCs) at physiological concentrations promote osteoblast differentiation from fetal calvarial cells, calvarial organ cultures, and bone marrow stromal cells; however, the cellular pathways involved are not known. Bone morphogenetic proteins (BMPs) are recognized as important mediators of osteoblast differentiation. Specific roles for individual BMPs during postembryonic membranous bone formation have yet to be determined. We recently reported that GC potentiated the osteoblast differentiation effects of BMP-2 and BMP-4, but not of BMP-6, which, by itself, was the most potent of the three. In the present study, we used fetal rat secondary calvarial cultures to study the role of BMP-6 during early osteoblast differentiation. Treatment with the GC triamcinolone (10(-9) M) resulted in a 5- to 8-fold increase in BMP-6 steady-state messenger RNA levels, peaking at 12 h. In contrast, BMPs -2, -4, -5, -7, and transforming growth factor (TGF)-beta1 messenger RNA levels increased by less than 2-fold, after GC treatment, compared with untreated control cultures at 24 h. BMP-6 protein secretion increased 6- to 7-fold by 12 h and 12-fold (from 7.5 to 90 ng/ml) by 24 h, as measured by quantitative Western analysis. Treatment of cells with oligodeoxynucleotides antisense to BMP-6 diminished secretion of BMP-6 protein and significantly inhibited the GC-induced differentiation, as determined by a 10-fold decrease in the number of mineralized bone nodules, compared with controls that were treated with sense oligonucleotides or no oligonucleotides (ANOVA, P < 0.05). The antisense oligonucleotide inhibition of differentiation was rescued by treatment with exogenous recombinant human BMP-6. We conclude that GC-induced differentiation of osteoblasts from the pluripotent precursors is mediated, in part, by BMP-6. These results suggest that BMP-6 has an important and unique role during early osteoblast differentiation. PMID:9202223

  12. Dicer ablation in osteoblasts by Runx2 driven cre-loxP recombination affects bone integrity, but not glucocorticoid-induced suppression of bone formation.

    PubMed

    Liu, Peng; Baumgart, Mario; Groth, Marco; Wittmann, Jürgen; Jäck, Hans-Martin; Platzer, Matthias; Tuckermann, Jan P; Baschant, Ulrike

    2016-01-01

    Glucocorticoid-induced osteoporosis (GIO) is one of the major side effects of long-term glucocorticoid (GC) therapy mediated mainly via the suppression of bone formation and osteoblast differentiation independently of GC receptor (GR) dimerization. Since microRNAs play a critical role in osteoblast differentiation processes, we investigated the role of Dicer dependent microRNAs in the GC-induced suppression of osteoblast differentiation. MicroRNA sequencing of dexamethasone-treated wild-type and GR dimer-deficient mesenchymal stromal cells revealed GC-controlled miRNA expression in a GR dimer-dependent and GR dimer-independent manner. To determine the functional relevance of mature miRNAs in GC-induced osteoblast suppression, mice with an osteoblast-specific deletion of Dicer (Dicer(Runx2Cre)) were exposed to glucocorticoids. In vitro generated Dicer-deficient osteoblasts were treated with dexamethasone and analyzed for proliferation, differentiation and mineralization capacity. In vivo, abrogation of Dicer-dependent miRNA biogenesis in osteoblasts led to growth retardation and impaired bone formation. However, subjecting these mice to GIO showed that bone formation was similar reduced in Dicer(Runx2Cre) mice and littermate control mice upon GC treatment. In line, differentiation of Dicer deficient osteoblasts was suppressed to the same extent as wild type cells by GC treatment. Therefore, Dicer-dependent small RNA biogenesis in osteoblasts plays only a minor role in the pathogenesis of GC-induced inhibition of bone formation. PMID:27554624

  13. Dicer ablation in osteoblasts by Runx2 driven cre-loxP recombination affects bone integrity, but not glucocorticoid-induced suppression of bone formation

    PubMed Central

    Liu, Peng; Baumgart, Mario; Groth, Marco; Wittmann, Jürgen; Jäck, Hans-Martin; Platzer, Matthias; Tuckermann, Jan P.; Baschant, Ulrike

    2016-01-01

    Glucocorticoid-induced osteoporosis (GIO) is one of the major side effects of long-term glucocorticoid (GC) therapy mediated mainly via the suppression of bone formation and osteoblast differentiation independently of GC receptor (GR) dimerization. Since microRNAs play a critical role in osteoblast differentiation processes, we investigated the role of Dicer dependent microRNAs in the GC-induced suppression of osteoblast differentiation. MicroRNA sequencing of dexamethasone-treated wild-type and GR dimer-deficient mesenchymal stromal cells revealed GC-controlled miRNA expression in a GR dimer-dependent and GR dimer-independent manner. To determine the functional relevance of mature miRNAs in GC-induced osteoblast suppression, mice with an osteoblast-specific deletion of Dicer (DicerRunx2Cre) were exposed to glucocorticoids. In vitro generated Dicer-deficient osteoblasts were treated with dexamethasone and analyzed for proliferation, differentiation and mineralization capacity. In vivo, abrogation of Dicer-dependent miRNA biogenesis in osteoblasts led to growth retardation and impaired bone formation. However, subjecting these mice to GIO showed that bone formation was similar reduced in DicerRunx2Cre mice and littermate control mice upon GC treatment. In line, differentiation of Dicer deficient osteoblasts was suppressed to the same extent as wild type cells by GC treatment. Therefore, Dicer-dependent small RNA biogenesis in osteoblasts plays only a minor role in the pathogenesis of GC-induced inhibition of bone formation. PMID:27554624

  14. IL-6 Contributes to the Defective Osteogenesis of Bone Marrow Stromal Cells from the Vertebral Body of the Glucocorticoid-Induced Osteoporotic Mouse

    PubMed Central

    Zhang, Yuan-yuan; Yang, Hui-lin

    2016-01-01

    Osteoporosis is one of the most prevalent skeletal system diseases. It is characterized by a decrease in bone mass and microarchitectural changes in bone tissue that lead to an attenuation of bone resistance and susceptibility to fracture. Vertebral fracture is by far the most prevalent osteoporotic fracture. In the musculoskeletal system, osteoblasts, originated from bone marrow stromal cells (BMSC), are responsible for osteoid synthesis and mineralization. In osteoporosis, BMSC osteogenic differentiation is defective. However, to date, what leads to the defective BMSC osteogenesis in osteoporosis remains an open question. In the current study, we made attempts to answer this question. A mouse model of glucocorticoid-induced osteoporosis (GIO) was established and BMSC were isolated from vertebral body. The impairment of osteogenesis was observed in BMSC of osteoporotic vertebral body. The expression profiles of thirty-six factors, which play important roles in bone metabolisms, were compared through antibody array between normal and osteoporotic BMSC. Significantly higher secretion level of IL-6 was observed in osteoporotic BMSCs compared with normal control. We provided evidences that IL-6 over-secretion impaired osteogenesis of osteoporotic BMSC. Further, it was observed that β-catenin activity was inhibited in response to IL-6 over-secretion. More importantly, in vivo administration of IL-6 neutralizing antibody was found to be helpful to rescue the osteoporotic phenotype of mouse vertebral body. Our study provides a deeper insight into the pathophysiology of osteoporosis and identifies IL-6 as a promising target for osteoporosis therapy. PMID:27128729

  15. Glucocorticoid-induced osteoporosis

    PubMed Central

    Briot, Karine; Roux, Christian

    2015-01-01

    Corticosteroid-induced osteoporosis is the most common form of secondary osteoporosis and the first cause in young people. Bone loss and increased rate of fractures occur early after the initiation of corticosteroid therapy, and are then related to dosage and treatment duration. The increase in fracture risk is not fully assessed by bone mineral density measurements, as it is also related to alteration of bone quality and increased risk of falls. In patients with rheumatoid arthritis, a treat-to-target strategy focusing on low disease activity including through the use of low dose of prednisone, is a key determinant of bone loss prevention. Bone loss magnitude is variable and there is no clearly identified predictor of the individual risk of fracture. Prevention or treatment of osteoporosis should be considered in all patients who receive prednisone. Bisphosphonates and the anabolic agent parathyroid hormone (1–34) have shown their efficacy in the treatment of corticosteroid-induced osteoporosis. Recent international guidelines are available and should guide management of corticosteroid-induced osteoporosis, which remains under-diagnosed and under-treated. Duration of antiosteoporotic treatment should be discussed at the individual level, depending on the subject's characteristics and on the underlying inflammation evolution. PMID:26509049

  16. Loss of Ypk1, the yeast homolog to the human serum- and glucocorticoid-induced protein kinase, accelerates phospholipase B1-mediated phosphatidylcholine deacylation.

    PubMed

    Surlow, Beth A; Cooley, Benjamin M; Needham, Patrick G; Brodsky, Jeffrey L; Patton-Vogt, Jana

    2014-11-01

    Ypk1, the yeast homolog of the human serum- and glucocorticoid-induced kinase (Sgk1), affects diverse cellular activities, including sphingolipid homeostasis. We now report that Ypk1 also impacts the turnover of the major phospholipid, phosphatidylcholine (PC). Pulse-chase radiolabeling reveals that a ypk1Δ mutant exhibits increased PC deacylation and glycerophosphocholine production compared with wild type yeast. Deletion of PLB1, a gene encoding a B-type phospholipase that hydrolyzes PC, in a ypk1Δ mutant curtails the increased PC deacylation. In contrast to previous data, we find that Plb1 resides in the ER and in the medium. Consistent with a link between Ypk1 and Plb1, the levels of both Plb1 protein and PLB1 message are elevated in a ypk1Δ strain compared with wild type yeast. Furthermore, deletion of PLB1 in a ypk1Δ mutant exacerbates phenotypes associated with loss of YPK1, including slowed growth and sensitivity to cell wall perturbation, suggesting that increased Plb1 activity buffers against the loss of Ypk1. Because Plb1 lacks a consensus phosphorylation site for Ypk1, we probed other processes under the control of Ypk1 that might be linked to PC turnover. Inhibition of sphingolipid biosynthesis by the drug myriocin or through utilization of a lcb1-100 mutant results in increased PLB1 expression. Furthermore, we discovered that the increase in PLB1 expression observed upon inhibition of sphingolipid synthesis or loss of Ypk1 is under the control of the Crz1 transcription factor. Taken together, these results suggest a functional interaction between Ypk1 and Plb1 in which altered sphingolipid metabolism up-regulates PLB1 expression via Crz1. PMID:25258318

  17. Supplementation of L-arginine prevents glucocorticoid-induced reduction of bone growth and bone turnover abnormalities in a growing rat model.

    PubMed

    Pennisi, Pietra; D'Alcamo, Maria Antonia; Leonetti, Concetta; Clementi, Anna; Cutuli, Vincenza Maria; Riccobene, Stefania; Parisi, Natalia; Fiore, Carmelo Erio

    2005-01-01

    The present study was designed to evaluate the effects of glucocorticoid (GC) treatment on bone turnover and bone mineral density in the growing rat. Because of the recent evidence that nitric oxide (NO) can counteract prednisolone-induced bone loss in mature rats, we examined the effect on bone of the NO donor L: -arginine in young male rats, in which bone mass is increased by the same biological mechanism as in children and adolescents. Thirty-six 10-week-old Sprague-Dawley male rats were assigned to six groups of six animals each, and treated for 4 weeks with either vehicle (once a week subcutaneous injection of 100 microl of sesame oil); prednisolone sodium succinate, 5 mg/kg, 5 days per week by intramuscular injection (i.m.); L-arginine, 10 mg/kg intraperitoneally (i.p.) once a day; N(G)-nitro-L-arginine methylester (L-NAME), 50 mg/kg subcutaneously once a day; prednisolone sodium succinate 5 mg/kg, 5 days per week i.m. +L-arginine 10 mg/kg i.p. once a day; or prednisolone sodium succinate, 5 mg/kg, 5 days per week i.m. +L-NAME 50 mg/kg subcutaneously once a day. Serum calcium, alkaline phosphatase (ALP), osteocalcin, and the C-terminal telopeptides of type I collagen (RatLaps) were measured at baseline conditions and after 2 and 4 weeks. Prior to treatment, and after 2 and 4 weeks, the whole body, vertebral, pelvic, and femoral bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) scanning. Prednisolone and prednisolone+L-NAME treated rats had significantly lower ALP and osteocalcin levels than controls at 2 and 4 weeks, and significantly higher levels of Rat-Laps than controls at 4 weeks. Prednisolone, L-NAME, and prednisolone+L-NAME produced a significant inhibition of bone accumulation and bone growth at all sites measured. Supplementation with L-arginine appeared to prevent the inhibition of bone growth and increase in bone resorption induced by prednisolone. These data would suggest, for the first time, that supplementation

  18. Bone Loss in IBD

    MedlinePlus

    ... DENSITY? Although bone seems as hard as a rock, it’s actually living tissue. Throughout your life, old ... available Bone Loss (.pdf) File: 290 KB 733 Third Avenue, Suite 510, New York, NY 10017 | 800- ...

  19. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway

    PubMed Central

    Jiang, Yuan; Gou, Hui; Wang, Sanrong; Zhu, Jiang; Tian, Si; Yu, Lehua

    2016-01-01

    Pulsed electromagnetic field (PEMF) has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP), but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD) level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation. PMID:26941827

  20. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway.

    PubMed

    Jiang, Yuan; Gou, Hui; Wang, Sanrong; Zhu, Jiang; Tian, Si; Yu, Lehua

    2016-01-01

    Pulsed electromagnetic field (PEMF) has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP), but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD) level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation. PMID:26941827

  1. Breast Cancer and Bone Loss

    MedlinePlus

    ... Balance › Breast Cancer and Bone Loss Fact Sheet Breast Cancer and Bone Loss July, 2010 Download PDFs English ... JoAnn Pinkerton, MD What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  2. Glucocorticoid-Induced Osteoporosis and Osteonecrosis

    PubMed Central

    Weinstein, Robert S.

    2012-01-01

    SYNOPSIS Glucocorticoid administration is the most common cause of secondary osteoporosis and the leading cause of nontraumatic osteonecrosis. In patients receiving long-term therapy, glucocorticoids induce fractures in 30 to 50% and osteonecrosis in 9 to 40%. This article reviews glucocorticoid-induced osteoporosis and osteonecrosis addressing the risk factors, pathogenesis, evaluation, treatment, and uncertainties in the clinical management of these disorders. PMID:22877431

  3. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism.

    PubMed

    Yang, Nianlan; Baban, Babak; Isales, Carlos M; Shi, Xing-Ming

    2015-09-01

    Bone marrow is a reservoir for regulatory T (T(reg)) cells, but how T(reg) cells are regulated in that environment remains poorly understood. We show that expression of glucocorticoid (GC)-induced leucine zipper (GILZ) in bone marrow mesenchymal lineage cells or bone marrow-derived mesenchymal stem cells (BMSCs) increases the production of T(reg) cells via a mechanism involving the up-regulation of developmental endothelial locus-1 (Del-1), an endogenous leukocyte-endothelial adhesion inhibitor. We found that the expression of Del-1 is increased ∼4-fold in the bone tissues of GILZ transgenic (Tg) mice, and this increase is coupled with a significant increase in the production of IL-10 (2.80 vs. 0.83) and decrease in the production of IL-6 (0.80 vs. 2.33) and IL-12 (0.25 vs. 1.67). We also show that GILZ-expressing BMSCs present antigen in a way that favors T(reg) cells. These results indicate that GILZ plays a critical role mediating the crosstalk between BMSCs and T(reg) in the bone marrow microenvironment. These data, together with our previous findings that overexpression of GILZ in BMSCs antagonizes TNF-α-elicited inflammatory responses, suggest that GILZ plays important roles in bone-immune cell communication and BMSC immune suppressive functions. PMID:26038125

  4. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma

    PubMed Central

    Zode, Gulab S.; Sharma, Arti B.; Lin, Xiaolei; Searby, Charles C.; Bugge, Kevin; Kim, Gun Hee; Clark, Abbot F.; Sheffield, Val C.

    2014-01-01

    Administration of glucocorticoids induces ocular hypertension in some patients. If untreated, these patients can develop a secondary glaucoma that resembles primary open-angle glaucoma (POAG). The underlying pathology of glucocorticoid-induced glaucoma is not fully understood, due in part to lack of an appropriate animal model. Here, we developed a murine model of glucocorticoid-induced glaucoma that exhibits glaucoma features that are observed in patients. Treatment of WT mice with topical ocular 0.1% dexamethasone led to elevation of intraocular pressure (IOP), functional and structural loss of retinal ganglion cells, and axonal degeneration, resembling glucocorticoid-induced glaucoma in human patients. Furthermore, dexamethasone-induced ocular hypertension was associated with chronic ER stress of the trabecular meshwork (TM). Similar to patients, withdrawal of dexamethasone treatment reduced elevated IOP and ER stress in this animal model. Dexamethasone induced the transcriptional factor CHOP, a marker for chronic ER stress, in the anterior segment tissues, and Chop deletion reduced ER stress in these tissues and prevented dexamethasone-induced ocular hypertension. Furthermore, reduction of ER stress in the TM with sodium 4-phenylbutyrate prevented dexamethasone-induced ocular hypertension in WT mice. Our data indicate that ER stress contributes to glucocorticoid-induced ocular hypertension and suggest that reducing ER stress has potential as a therapeutic strategy for treating glucocorticoid-induced glaucoma. PMID:24691439

  5. Menopause and Bone Loss

    MedlinePlus

    ... You reach your highest bone mass (size and density) at about age 30. Then, sometime between age ... your bones, your doctor may do a bone density test (DEXA scan). This test gives exact measurements ...

  6. [An update on glucocorticoid-induced osteoporosis].

    PubMed

    Krasselt, Marco; Baerwald, Christoph

    2016-03-01

    Glucocorticoid-induced osteoporosis is the most common cause of secondary osteoporosis. Moreover, it is the most common reason for an osteoporosis among young adults. The clinical use of oral glucocorticoids increases the fracture incidence already within three months after starting the therapy. There does not seem to be a lower threshold: even doses as low as 2,5 mg of prednisone equivalent increase the risk of fractures. Adequate diagnostic and therapy are able to significantly reduce the resulting fracture risk. This article will discuss the pathophysiology of glucocorticoid-induced osteoporosis and give a summary of the current recommendations including the recently updated German guidelines. PMID:26939107

  7. Thymocytes, Pre-B Cells, and Organ Changes in a Mouse Model of Chronic Ethanol Ingestion—Absence of Subset-Specific Glucocorticoid-Induced Immune Cell Loss

    PubMed Central

    Cook, Robert T.; Schlueter, Annette J.; Coleman, Ruth A.; Tygrett, Lorraine; Ballas, Zuhair K.; Jerrells, Thomas R.; Nashelsky, Marcus B.; Ray, Nancy B.; Haugen, Thomas H.; Waldschmidt, Thomas J.

    2008-01-01

    Background The well-known immune deficiency of the chronic alcoholic dictates the need for a long-term rodent ethanol administration model to evaluate the baseline immunologic effects of chronic ethanol abuse, and investigate the genetic determinants of those effects. Much published work with rodents has shown clearly that acute ethanol administration and short-term ethanol-containing liquid diets both cause elevated corticosterone and can cause significant thymocyte, pre-B cell and peripheral lymphocyte losses. Such losses may mask more subtle alterations in immune homeostasis, and in any case are generally short-lived compared with the span of chronic ethanol abuse. Thus, it is important to have a model in which long-term immune alterations can be studied free of corticosteroid-induced cell losses. Methods We have utilized chronic 20% (w / v) ethanol in water administration to several mouse strains for prolonged periods of time and evaluated serum corticosterone, immunologic stress parameters, and other organ changes by standard methods. Results We now confirm earlier reports that chronic ethanol in water administration to mice does not produce net elevations of corticosterone, although diurnal variation is altered. Importantly, there is neither selective loss of immune cell populations known to be corticosteroid sensitive, CD4+CD8+ thymocytes and pre-B cells, nor are changes observed in the histologic appearance of the thymus. Nonetheless, there are significant chronic ethanol effects in other tissues, including reduced heart weight, mild hepatic steatosis, alterations of gut flora, increased serum peptidoglycan, and as published elsewhere, immune system abnormalities. Conclusions This model of ethanol administration is convenient, sustainable for up to 1 year, demonstrably feasible in several mouse strains, permits good weight gains in most strains, and results in significant changes in a number of organs. The administration method also will permit modeling of

  8. [Management of osteoporosis associated with rheumatoid arthritis and glucocorticoid-induced osteoporosis].

    PubMed

    Suzuki, Yasuo; Wakabayashi, Takayuki

    2015-12-01

    Mechanism of generalized osteoporosis associated with rheumatoid arthritis(RA)is multifactorial and following factors has been proposed:systemic effect of RA synovitis, glucocorticoids, weight loss, and endocrine changes. In addition to control of RA inflammation and management of glucocorticoid-induced osteoporosis(GIO), antiresorptive therapy, such as bisphosphonates is expected to show efficacy. Recently, anti-RANKL monoclonal antibodies have been shown to inhibit bone erosion and bone loss in combination with methotrexate in RA. GC-induced bone loss is most rapid during the initial 3 ~ 6 months and more slowly thereafter. Therefore, both primary and secondary prevention are important. The Japanese Society for Bone and Mineral Research(JSBMR)has updated the Guidelines on the Management and Treatment of GIO and has incorporated a new scoring method. By analyzing five GIO cohorts from primary and secondary prevention studies, age, GC dose, lumbar BMD, and prior fragility fractures were identified as risk factors and the fracture risk for an individual can be calculated as the sum of the scores for each risk factor. Pharmacological intervention should be started on the basis of a score of 3 as the optimal cut-off score. Both alendronate and risedronate are recommended as first-line treatment. Ibandronate,teriparatide, and active vitamin D3 derivatives are recommended as alternative option. PMID:26608858

  9. Vitamin K2 Prevents Glucocorticoid-induced Osteonecrosis of the Femoral Head in Rats

    PubMed Central

    Zhang, Yue-Lei; Yin, Jun-Hui; Ding, Hao; Zhang, Wei; Zhang, Chang-Qing; Gao, You-Shui

    2016-01-01

    Glucocorticoid medication is one of the most common causes of atraumatic osteonecrosis of the femoral head (ONFH), and vitamin K2 (VK2) has been shown to play an important and beneficial role in bone metabolism. In this study, we hypothesized that VK2 could decrease the incidence of glucocorticoid-induced ONFH in a rat model. Using in vitro studies, we investigated how bone marrow-derived stem cells in the presence of methylprednisolone proliferate and differentiate, specifically examining osteogenic-related proteins, including Runx2, alkaline phosphatase and osteocalcin. Using in vivo studies, we established glucocorticoid-induced ONFH in rats and investigated the preventive effect of VK2. We employed micro-CT scanning, angiography of the femoral head, and histological and immunohistochemical analyses, which demonstrated that VK2 yielded beneficial effects for subchondral bone trabecula. In conclusion, VK2 is an effective antagonist for glucocorticoid on osteogenic progenitors. The underlying mechanisms include acceleration of BMSC propagation and promotion of bone formation-associated protein expression, which combine and contribute to the prevention of glucocorticoid-induced ONFH in rats. PMID:27019620

  10. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  11. The osteoimmunology of alveolar bone loss.

    PubMed

    Tompkins, Kevin A

    2016-03-01

    The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD. PMID:26950207

  12. Associated among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weight loss reduces co-¬morbidities of obesity but decreases bone mass. Our aims were to determine whether adequate dairy intake could prevent weight loss related bone loss and to evaluate the contribution of energy-related hormones and inflammatory markers to bone metabolism. Overweight and obese w...

  13. Metaphyseal bone loss in revision knee arthroplasty.

    PubMed

    Ponzio, Danielle Y; Austin, Matthew S

    2015-12-01

    The etiology of bone loss encountered during revision total knee arthroplasty (TKA) is often multifactorial and can include stress shielding, osteolysis, osteonecrosis, infection, mechanical loss due to a grossly loose implant, and iatrogenic loss at the time of implant resection. Selection of the reconstructive technique(s) to manage bone deficiency is determined by the location and magnitude of bone loss, ligament integrity, surgeon experience, and patient factors including the potential for additional revision, functional demand, and comorbidities. Smaller, contained defects are reliably managed with bone graft, cement augmented with screw fixation, or modular augments. Large metaphyseal defects require more extensive reconstruction such as impaction bone grafting with or without mesh augmentation, prosthetic augmentation, use of bulk structural allografts, or use of metaphyseal cones or sleeves. While each technique has advantages and disadvantages, the most optimal method for reconstruction of large metaphyseal bone defects during revision TKA is not clearly established. PMID:26362647

  14. Glucocorticoid-induced osteoporosis: treatment update and review.

    PubMed

    Fraser, Lisa-Ann; Adachi, Jonathan D

    2009-04-01

    Glucocorticoid-induced osteoporosis (GIO) is a serious consequence of glucocorticoid therapy leading to fractures in 30-50% of patients. A wide range of protective medications have been studied in this condition including calcium, vitamin D, vitamin D analogs, oral and intravenous bisphosphonates, sex hormones, anabolic agents and calcitonin. The mechanism of action, and evidence for these therapies, are reviewed - focusing on important trials and new evidence. Recently published guidelines are also reviewed and compared. Bisphosphonates are currently the recommended first-line therapy for the prevention and treatment of GIO. They have been shown to increase bone mineral density (BMD) at the spine and hip and to decrease the incidence of vertebral fractures (especially in postmenopausal women). Testosterone therapy and female hormone replacement therapy (HRT) have been found to increase lumbar spine BMD in hypogonadal patients on glucocorticoid therapy, but effects on hip BMD have not been consistent and there is no fracture data in the GIO population. Similarly, calcitonin increases lumbar spine BMD but has no proven fracture efficacy. The effect of selective estrogen receptor modulators, the oral contraceptive pill and strontium on GIO is relatively unknown. Parathyroid hormone (PTH 1-34) and zoledronic acid have emerged as exciting new options for the treatment of GIO. Both therapies have been found to result in gains in BMD at the spine and hip that are either noninferior or superior to those seen with oral bisphosphonate therapy. PTH 1-34 has also been found to decrease the incidence of new vertebral fractures and may be an option in high-risk patients established on long-term glucocorticoid therapy. PMID:22870429

  15. Prevent and cure disuse bone loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.

    1994-01-01

    Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.

  16. Men Miss Out on Bone Loss Screening

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_158810.html Men Miss Out on Bone Loss Screening Yet, millions ... THURSDAY, May 12, 2016 (HealthDay News) -- Unlike women, men at risk for osteoporosis don't get routinely ...

  17. Men Miss Out on Bone Loss Screening

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158810.html Men Miss Out on Bone Loss Screening Yet, millions ... THURSDAY, May 12, 2016 (HealthDay News) -- Unlike women, men at risk for osteoporosis don't get routinely ...

  18. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis.

    PubMed Central

    Stefanelli, C; Bonavita, F; Stanic', I; Farruggia, G; Falcieri, E; Robuffo, I; Pignatti, C; Muscari, C; Rossoni, C; Guarnieri, C; Caldarera, C M

    1997-01-01

    In quiescent thymocytes, mitochondrial de-energization was not correlated to apoptotic death. In fact, thymocytes treated with oligomycin, a highly specific inhibitor of ATP synthase, alone or with atractyloside to block ATP translocation from the cytoplasm, were alive, even if their mitochondria were depolarized, as revealed by flow cytometry after Rhodamine 123 staining. Furthermore, oligomycin was a powerful inhibitor of apoptosis induced in rat thymocytes by dexamethasone and, to a lesser extent, by the calcium ionophore A23187 and etoposide, but was without effect when apoptosis was induced by staurosporine, and increased cell death in mitogen-treated thymocytes. The inhibition of apoptosis was confirmed by morphological criteria, inhibition of inter-nucleosomal DNA fragmentation and inhibition of the loss of membrane integrity. The anti-apoptotic effect of oligomycin in cells treated with A23187 or etoposide was correlated to the inhibition of protein synthesis, while inhibition of apoptosis induced by dexamethasone, already evident at an oligomycin concentration of 10 ng/ml, was instead strictly correlated to the effect exerted on the cellular ATP level. Thymocyte apoptosis triggered by dexamethasone was blocked or delayed by inhibitors of respiratory-chain uncouplers, inhibitors of ATP synthase and antioxidants: a lasting protection from dexamethasone-induced apoptosis was always correlated to a drastic and rapid reduction in ATP level (31-35% of control), while a delay in the death process was characterized by a moderate decrease in ATP (73-82% of control). Oligomycin inhibited the specific binding of radioactive corticosteroid to thymocyte nuclei, confirming the inhibitory effect of ATP depletion on glucocorticoid binding and suggesting that ATP depletion is a common mediator of the anti-apoptotic action of different effectors in glucocorticoid-induced apoptosis. In conclusion, the reported data indicate that ATP may act as a cellular modulator of some

  19. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis.

    PubMed

    Stefanelli, C; Bonavita, F; Stanic', I; Farruggia, G; Falcieri, E; Robuffo, I; Pignatti, C; Muscari, C; Rossoni, C; Guarnieri, C; Caldarera, C M

    1997-03-15

    In quiescent thymocytes, mitochondrial de-energization was not correlated to apoptotic death. In fact, thymocytes treated with oligomycin, a highly specific inhibitor of ATP synthase, alone or with atractyloside to block ATP translocation from the cytoplasm, were alive, even if their mitochondria were depolarized, as revealed by flow cytometry after Rhodamine 123 staining. Furthermore, oligomycin was a powerful inhibitor of apoptosis induced in rat thymocytes by dexamethasone and, to a lesser extent, by the calcium ionophore A23187 and etoposide, but was without effect when apoptosis was induced by staurosporine, and increased cell death in mitogen-treated thymocytes. The inhibition of apoptosis was confirmed by morphological criteria, inhibition of inter-nucleosomal DNA fragmentation and inhibition of the loss of membrane integrity. The anti-apoptotic effect of oligomycin in cells treated with A23187 or etoposide was correlated to the inhibition of protein synthesis, while inhibition of apoptosis induced by dexamethasone, already evident at an oligomycin concentration of 10 ng/ml, was instead strictly correlated to the effect exerted on the cellular ATP level. Thymocyte apoptosis triggered by dexamethasone was blocked or delayed by inhibitors of respiratory-chain uncouplers, inhibitors of ATP synthase and antioxidants: a lasting protection from dexamethasone-induced apoptosis was always correlated to a drastic and rapid reduction in ATP level (31-35% of control), while a delay in the death process was characterized by a moderate decrease in ATP (73-82% of control). Oligomycin inhibited the specific binding of radioactive corticosteroid to thymocyte nuclei, confirming the inhibitory effect of ATP depletion on glucocorticoid binding and suggesting that ATP depletion is a common mediator of the anti-apoptotic action of different effectors in glucocorticoid-induced apoptosis. In conclusion, the reported data indicate that ATP may act as a cellular modulator of some

  20. Osteocytic cell necrosis is caused by a combination of glucocorticoid-induced Dickkopf-1 and hypoxia.

    PubMed

    Ueda, Shusuke; Ichiseki, Toru; Yoshitomi, Yasuo; Yonekura, Hideto; Ueda, Yoshimichi; Kaneuji, Ayumi; Matsumoto, Tadami

    2015-06-01

    Osteonecrosis is a major glucocorticoid-induced complication in the orthopedics field. Despite the extensive researches, mechanisms underlining the glucocorticoid-induced osteonecrosis are largely unknown. Here, we first provide the evidence that a combined treatment of cultured osteocytic cells with glucocorticoid and hypoxia caused necrotic cell death, which is assumed to occur in the acute bone injuries induced by glucocorticoids. We cultured MLO-Y4 murine osteocytic cells under hypoxia in the presence or absence of Dexamethasone (Dex) and examined the rates of apoptotic and necrotic cell death. Dex or hypoxia alone increased apoptotic cells, but not necrotic cells. The combination of Dex and hypoxia dramatically increased osteocytic cell death, notably necrotic cell death. The expression of Dickkopf-1 (Dkk-1), an inhibitor of Wnt/β-catenin signal, was scarcely expressed in the control and hypoxic cells, but a dramatic increase of the Dkk-1 expression was detected in Dex-treated cells. siRNA-mediated knockdown of Dkk-1 in Dex and hypoxia-treated osteocytic cells showed the significant decreases in both apoptotic and necrotic cells. The results indicated that the combination of Dkk-1 overexpression by Dex and hypoxia causes the necrotic osteocytic cell death. The results also indicated that blocking of Dkk-1 can protect bone cells from glucocorticoid and hypoxia-induced cell injury. PMID:24819581

  1. Countermeasures against space flight related bone loss

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian; Schneider, Victor

    1992-01-01

    A general review is presented of data on bone loss with references to countermeasures for use during spaceflight and bedrest. The two primary countermeasures against skeletal atrophy are skeletal loading such as centrifugation and exercise and/or the administration of drugs designed to alter the rate of bone remodeling. Bone loss is argued to be unavoidable in long-duration spaceflight in spite of countermeasures utilized, but a combination of exercise, biochemical treatments, and post-flight therapy is considered the optimal solution.

  2. Weightlessness and bone loss in man

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.

    1983-01-01

    A review is presented of data whicih has been accumulated on the calcium and skeletal changes occurring in humans subjected to various periods of weightlessness. These data reveal that spaceflight induces an overall loss of calcium which continues unabated for at least three months. Urinary calcium levels reach a constant level within approximately four weeks while fecal calcium losses continue to increase throughout the flight period. A decline in the mineral density of weight-bearing bones accompanies these changes. Available data support the contention that the demineralization affects primarily the weight bearing bones. The rates of loss and recovery of calcium and bone mineral density are approximately equal to those observed during and following bedrest of comparable duration. No measure to wholly prevent these losses has yet been devised.

  3. Periprosthetic bone loss: diagnostic and therapeutic approaches

    PubMed Central

    Cavalli, Loredana; Brandi, Maria Luisa

    2014-01-01

    Total joint replacement surgery is being performed on an increasingly large part of the population. Clinical longevity of implants depends on their osseointegration, which is influenced by the load, the characteristics of the implant and the bone-implant interface, as well as by the quality and quantity of the surrounding bone. Aseptic loosening due to periprosthetic osteolysis is the most frequent known cause of implant failure. Wear of prosthetic materials results in the formation of numerous particles of debris that cause a complex biological response. Dual-energy X-ray Absorptiometry (DXA) is regarded as an accurate method to evaluate Bone Mineral Density (BMD) around hip or knee prostheses. Further data may be provided by a new device, the Bone Microarchitecture Analysis (BMA), which combines bone microarchitecture quantification and ultra high resolution osteo-articular imaging. Pharmacological strategies have been developed to prevent bone mass loss and to extend implant survival. Numerous trials with bisphosphonates show a protective effect on periprosthetic bone mass, up to 72 months after arthroplasty. Strontium ranelate has been demonstrated to increase the osseointegration of titanium implants in treated animals with improvement of bone microarchitecture and bone biomaterial properties. PMID:25642325

  4. Bone loss without the loss of bone mineral material? A new perspective on anorexia nervosa.

    PubMed

    Bolotin, H H

    2009-06-01

    Since the advent on non-invasive in vivo clinical bone densitometry, investigators have reported that regional bone mineral material loss accompanies the onset and continuance of anorexia nervosa (AN). Initial single-energy photon absorptiometric (SPA) studies were followed by a succession of dual-energy X-ray absorptiometric (DXA) investigations, and a few single-energy quantitative computer assisted tomographic (SEQCT) bone densitometry vertebral measurements. Although most all DXA studies found a relatively small diminution (approximately 3%) of bone mineral material at lumbar vertebral and proximal femoral bone-sites of AN-afflicted adolescent girls and young women, these findings have been consensually interpreted and near-universally accepted as losses of actual bone mineral material accompanying AN. It has also been claimed by some that about 50% of those beset by AN while still young adolescents were osteoporotic. Nonetheless, over the last intervening 2 decades of these studies, no specific underlying direct bone-biological causal link between AN and trabecular bone material loss has yet been uncovered. The present exposition shows that in vivo SPA, DXA, and SEQCT measurements of bone mineral material losses do not constitute evidence of actual loss of bone material, and that the attribution of osteopenia and osteoporosis to AN-afflicted younger adolescent girls is not sustainable. Rather, the full gamut of these reported bone material "losses" can be accounted for by the already well-documented AN-induced changes in the anthropometrics and compositional mixes of extra-osseous soft tissues (primarily in a very noticeable reduction of extra-skeletal fat) and intra-osseous bone marrow yellowing (marrow hypoplasia and marrow cell necrosis). These changes in soft tissue compositions and anthropometrics alone have been shown to be sufficient to cause in vivo SPA, DXA, and SEQCT to systematically mis-estimate true bone material density and erroneously register

  5. Tobacco smoking and vertical periodontal bone loss.

    PubMed

    Baljoon, Mostafa

    2005-01-01

    Cigarette smoking is associated with increased prevalence and severity of destructive periodontal disease in terms of periodontal pocketing, periodontal bone loss, and tooth loss. The smoking destructive effect on periodontal bone may be of even "horizontal" and vertical "angular" pattern. The vertical bone loss or the "vertical defect" is a sign of progressive periodontal breakdown that involves the periodontal bone. Water pipe smoking has a sharp rise by the popularity in the recent years by men and women in Middle East countries. The general objective of this thesis was to investigate the relationship between tobacco smoking and vertical periodontal bone loss cross-sectionally and longitudinally. This thesis is based on two study populations, Swedish musicians and a Saudi Arabian population. All participants had a full set of intra-oral radiographs including 16 periapical and 4 bitewing projections that were assessed with regard to presence or absence of vertical defects. In Study I, the number of defects per person increased with age. Vertical defects were more common in the posterior as compared to the anterior region of the dentition and the distribution of defects within the maxilla as well as the mandible typically revealed a right-left hand side symmetry. Cigarette smoking was significantly associated with the prevalence and severity of vertical bone defects (Studies II and III). The relative risk associated with cigarette smoking was 2 to 3-fold increased. The impact of water pipe smoking was of the same magnitude as that of cigarette smoking and the relative risk associated with water pipe smoking was 6-fold increased compared to non-smoking. In addition, the risk of vertical defects increased with increased exposure in cigarette smokers as well as water pipe smokers (Study III). In Study IV, the proportion of vertical defects increased over a 10-year period and the increase over time was significantly associated with smoking. Moreover, the 10-year

  6. Characterization of Posterior Glenoid Bone Loss

    PubMed Central

    Yanke, Adam Blair; Frank, Rachel M.; Shin, Jason J.; Van Thiel, Geoffrey S.; Verma, Nikhil N.; Cole, Brian J.; Romeo, Anthony A.; Provencher, Matthew T.

    2016-01-01

    Objectives: The purpose of this study was to characterize the morphology and location of posterior glenoid bone loss in pat ients with posterior instability instability utilizing computed tomography (CT). Methods: Clinical data was selected for patients with posterior shoulder instability that had undergone posterior stabilization (open or arthroscopic) or posterior osseous augmentation (distal tibia or iliac crest). Three fellowship-trained surgeons from two institutions contributed patients. Pre-operative CT data was collected for all patients. The axial cuts were segmented and reformatted in three-dimensions for glenoid analysis using Osirix. From this three-dimensional model, the following was calculated: percent bone loss (Nobuhara), total arc of the defect (degrees), and a clock-face description (start point, stop point, and average or direction). Pearson correlation coefficients were performed using significance of p<0.05. Results: Fifty shoulders from 50 patients were reviewed. Fourteen patients (average age 30 years; 93% male) had evidence of posterior glenoid bone loss and were included for evaluation. Defects on average involved 13.7±8.6% of the glenoid (range, 2-35%). The average start time (assuming all right shoulders) on the clock face was 10 o’clock ± 40 minutes and stopped at 6:30 ± 25 minutes. The average direction of the defect pointed toward 8:15 ± 25 minutes. The percent bone loss correlated with the total arc of the defect (Pearson: 0.93, p<0.05, R2: 0.86) and the direction of the bone loss (Pearson: 0.64, p<0.05, R2: 0.40). The direction of bone loss significantly moved more posterosuperior the larger the defect became (Pearson: 0.63, p<0.05, R2: 0.40). Conclusion: Posterior bone loss associated with posterior glenohumeral instability is typically directed posteriorly at 8:15 on the clock. As defect get bigger, this direction moves more posterosuperior. This information will help guide clinicians in understanding the typical location of

  7. The pathogenesis of bone loss following total knee arthroplasty.

    PubMed

    Lewis, P L; Brewster, N T; Graves, S E

    1998-04-01

    Bone loss following total knee arthroplasty (TKA) may be focal or diffuse. It may be caused mechanically, either by unloading of the bone leading to disuse osteoporosis, or by overloading of the bone leading to trabecular fractures and bone destruction. Osteolysis, instigated by an inflammatory reaction to particulate wear debris, is an important and common cause of bone loss after TKA. Less common, though sometimes dramatic, causes of bone loss are infection and osteonecrosis. PMID:9553564

  8. Vitamin C reverses hypogonadal bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, ...

  9. Bone loss in chronic kidney disease: Quantity or quality?

    PubMed

    Zheng, Cai-Mei; Zheng, Jin-Quan; Wu, Chia-Chao; Lu, Chien-Lin; Shyu, Jia-Fwu; Yung-Ho, Hsu; Wu, Mei-Yi; Chiu, I-Jen; Wang, Yuan-Hung; Lin, Yuh-Feng; Lu, Kuo-Cheng

    2016-06-01

    Chronic kidney disease (CKD) patients experience bone loss and fracture because of a specific CKD-related systemic disorder known as CKD-mineral bone disorder (CKD-MBD). The bone turnover, mineralization, and volume (TMV) system describes the morphological bone lesions in renal osteodystrophy related to CKD-MBD. Bone turnover and bone volume are defined as high, normal, or low, and bone mineralization is classified as normal or abnormal. All types of bone histology related to TMV are responsible for both bone quantity and bone quality losses in CKD patients. This review focuses on current bone quantity and bone quality losses in CKD patients and finally discusses potential therapeutic measures. PMID:27049042

  10. The Role of 99mTc-Annexin V Apoptosis Scintigraphy in Visualizing Early Stage Glucocorticoid-Induced Femoral Head Osteonecrosis in the Rabbit

    PubMed Central

    Wang, Xiaolong; Liu, Yu; Wang, Xuemei; Liu, Rui; Li, Jianbo; Zhang, Guoliang; Li, Qiang; Wang, Lei; Bai, Zhigang; Zhao, Jianmin

    2016-01-01

    Objective. To validate the ability of 99mTc-Annexin V to visualize early stage of glucocorticoid-induced femoral head necrosis by comparing with 99mTc-MDP bone scanning. Methods. Femoral head necrosis was induced in adult New Zealand white rabbits by intramuscular injection of methylprednisolone. 99mTc-Annexin scintigraphy and 99mTc-MDP scans were performed before and 5, 6, and 8 weeks after methylprednisolone administration. Rabbits were sacrificed at various time points and conducted for TUNEL and H&E staining. Results. All methylprednisolone treated animals developed femoral head necrosis; at 8 weeks postinjection, destruction of bone structure was evident in H&E staining, and apoptosis was confirmed by the TUNEL assay. This was matched by 99mTc-Annexin V images, which showed a significant increase in signal over baseline. Serial 99mTc-Annexin V scans revealed that increased 99mTc-Annexin V uptake could be observed in 5 weeks. In contrast, there was no effect on 99mTc-MDP signal until 8 weeks. The TUNEL assay revealed that bone cell apoptosis occurred at 5 weeks. Conclusion. 99mTc-Annexin V is superior to 99mTc-MDP for the early detection of glucocorticoid-induced femoral head necrosis in the rabbit and may be a better strategy for the early detection of glucocorticoid-induced femoral head necrosis in patients. PMID:26989689

  11. Postmenopausal bone loss and the risk of osteoporosis.

    PubMed

    Christiansen, C

    1994-01-01

    The two most important risk factors for long-term skeletal health are the peak bone mass and the subsequent rate of bone loss. The rate of bone loss after skeletal maturity is determined by both genetic factors and environmental factors. Furthermore, all factors that impair estrogen production will increase bone loss. The present risk of developing osteoporosis and fractures may be assessed by bone mass measurements in the total skeleton, or in local parts of the skeleton such as the spine, hip and forearm, by single-photon/X-ray absorptiometry (SPA or SXA), dual-photon/energy X-ray absorptiometry (DPA or DXA), or quantitative computed tomography (QCT). Furthermore, the rate of bone loss in postmenopausal women may be assessed by means of a number of biochemical markers. The fútúre risk of developing osteoporosis may thus be determined by combining the values for bone mineral content and bone loss. PMID:8081059

  12. Serum- and glucocorticoid-inducible kinases in microglia.

    PubMed

    Inoue, Koichi; Sakuma, Eisuke; Morimoto, Hiroyuki; Asai, Hayato; Koide, Yoshinori; Leng, Tiandong; Wada, Ikuo; Xiong, Zhi-Gang; Ueki, Takatoshi

    2016-09-01

    Microglia are derived from myelogenous cells and contribute to immunological and inflammatory responses in central nervous system. They play important roles not only in infectious diseases and inflammation after stroke, but also in psychiatric diseases such as schizophrenia. While recent studies suggest the significances of serum- and glucocorticoid-inducible kinases (SGKs) in other immune cells such as macrophages, T cells and dendritic cells, their role in microglia remains unknown. Here we, for the first time, report that SGK1 and SGK3 are expressed in multiple microglial cell lines. An SGK inhibitor, gsk650394, inhibits cell viability. In addition, lipopolysaccharide-induced expression of inflammatory regulators iNOS and TNFα was enhanced by gsk650394. Furthermore, translocation of NF-κB was enhanced by gsk650394. Taken together, these findings suggest that SGKs may play an important role in regulating microglial viability and inflammatory responses. PMID:27457803

  13. Role of serum- and glucocorticoid-inducible kinases in stroke.

    PubMed

    Inoue, Koichi; Leng, Tiandong; Yang, Tao; Zeng, Zhao; Ueki, Takatoshi; Xiong, Zhi-Gang

    2016-07-01

    Increased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) can be induced by stress and growth factors in mammals, and plays an important role in cancer, diabetes, and hypertension. A recent work suggested that SGK1 activity restores damage in a stroke model. To further investigate the role of SGKs in ischemic brain injury, we examined how SGK inhibitors influence stroke outcome in vivo and neurotoxicity in vitro. Infarct volumes were compared in adult mice with middle cerebral artery occlusion, followed by 24 h reperfusion, in the absence or presence of SGK inhibitors. Neurotoxicity assay, electrophysiological recording, and fluorescence Ca(2+) imaging were carried out using cultured cortical neurons to evaluate the underlying mechanisms. Contrary to our expectation, infarct volume by stroke decreased significantly when SGK inhibitor, gsk650394, or EMD638683, was administrated 30 min before middle cerebral artery occlusion under normal and diabetic conditions. SGK inhibitors reduced neurotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors, a leading factor responsible for cell death in stroke. SGK inhibitors also ameliorated Ca(2+) increase and peak amplitude of NMDA current in cultured neurons. In addition, SGK inhibitor gsk650394 decreased phosphorylation of Nedd4-2 and inhibited voltage-gated sodium currents. These observations suggest that SGK activity exacerbates stroke damage and that SGK inhibitors may be useful candidates for therapeutic intervention. To investigate the role of serum- and glucocorticoid-inducible kinases (SGKs) in ischemic brain injury, we examined how SGK inhibitors influence stroke outcome. Infarct volumes induced by middle cerebral artery occlusion were decreased significantly by SGK inhibitors. The inhibitors also reduced glutamate toxicity, at least partly, by attenuation of NMDA and voltage-gated sodium currents. Thus, SGK inhibition attenuates stroke damage. PMID:27123541

  14. Prostaglandin E2 Prevents Disuse-Induced Cortical Bone Loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Akamine, T.; Ke, Hua Zhu; Li, Xiao Jian; Tang, L. Y.; Zeng, Q. Q.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloaded)-induced cortical bone loss as well as add extra bone to underloaded bones. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to simultaneous right hindlimb immobilization by bandaging and daily subcutaneous doses of 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified tibial shaft sections (proximal to the tibiofibular junction). Disuse-induced cortical bone loss occurred by enlarging the marrow cavity and increasing intracortical porosity. PGE2 treatment of disuse shafts further increased intracortical porosity above that in disuse alone controls. This bone loss was counteracted by enhancement of periosteal and corticoendosteal bone formation. Stimulation of periosteal and corticoendosteal bone formation slightly enlarged the total tissue (cross-sectional) area and inhibited marrow cavity enlargement. These PGE2-induced activities netted the same percentage of cortical bone with a different distribution than the beginning and age related controls. These findings indicate the PGE2-induced increase in bone formation compensated for the disuse and PGE2-induced bone loss, and thus prevented immobilization induced bone loss.

  15. Subtle shake-up in bone-loss research.

    PubMed

    Flinn, Edward D

    2002-03-01

    Recent research in the prevention of bone loss during weightlessness is described. Scientists are studying the effects of vibration on bone loss in laboratory animals and humans. Research is focused on determining how bone formation is triggered, the effects of stimulation of the stress response in bones, and the mechanisms behind the effects. Clinton Rubin at the State University of New York at Stony Brook is experimenting with 90 Hz vibration frequencies in rats. Other researchers are studying the effects of vibration plates in the treatment of osteoporosis in postmenopausal women and in children with low bone density. Tests among astronauts have been proposed, but none are scheduled. PMID:11898823

  16. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model

    PubMed Central

    Liu, Chengcheng; Janke, Laura J.; Kawedia, Jitesh D.; Ramsey, Laura B.; Cai, Xiangjun; Mattano, Leonard A.; Boyd, Kelli L.; Funk, Amy J.; Relling, Mary V.

    2016-01-01

    Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006). Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007). As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001). This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027) and asparaginase (P = 0.036). We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids. PMID:26967741

  17. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    PubMed

    Liu, Chengcheng; Janke, Laura J; Kawedia, Jitesh D; Ramsey, Laura B; Cai, Xiangjun; Mattano, Leonard A; Boyd, Kelli L; Funk, Amy J; Relling, Mary V

    2016-01-01

    Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006). Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007). As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001). This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027) and asparaginase (P = 0.036). We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids. PMID:26967741

  18. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  19. Pathogenesis of Age-Related Bone Loss in Humans

    PubMed Central

    2013-01-01

    Background. Although data from rodent systems are extremely useful in providing insights into possible mechanisms of age-related bone loss, concepts evolving from animal models need to ultimately be tested in humans. Methods. This review provides an update on mechanisms of age-related bone loss in humans based on the author’s knowledge of the field and focused literature reviews. Results. Novel imaging, experimental models, biomarkers, and analytic techniques applied directly to human studies are providing new insights into the patterns of bone mass acquisition and loss as well as the role of sex steroids, in particular estrogen, on bone metabolism and bone loss with aging in women and men. These studies have identified the onset of trabecular bone loss at multiple sites that begins in young adulthood and remains unexplained, at least based on current paradigms of the mechanisms of bone loss. In addition, estrogen appears to be a major regulator of bone metabolism not only in women but also in men. Studies assessing mechanisms of estrogen action on bone in humans have identified effects of estrogen on RANKL expression by several different cell types in the bone microenvironment, a role for TNF-α and IL-1β in mediating effects of estrogen deficiency on bone, and possible regulation of the Wnt inhibitor, sclerostin, by estrogen. Conclusions. There have been considerable advances in our understanding of age-related bone loss in humans. However, there are also significant gaps in knowledge, particularly in defining cell autonomous changes in bone in human studies to test or validate concepts emerging from studies in rodents. Decision Editor: Luigi Ferrucci, MD, PhD PMID:22923429

  20. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  1. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    NASA Technical Reports Server (NTRS)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  2. Role of dehydroepiandrosterone in management of glucocorticoid-induced secondary osteoporosis in female rats.

    PubMed

    Ahmed, Hanaa H; Morcos, Nadia Y S; Eskander, Emad F; Seoudi, Dina M S; Shalby, Aziza B

    2012-09-01

    The current study aimed to evaluate the potential role of dehydroepiandrosterone (DHEA) in the protection and intervention of glucocorticoid-induced secondary osteoporosis in female rats. For this purpose this study was conducted on five groups of female Sprague Dawley rats which were classified into: (1) negative control group received saline as vehicle, (2) osteoporotic group orally administered with prednisolone (5 mg/kg b.wt.) daily for six months, (3) positive control group orally administered with DHEA (250 mg/kg b.wt.) three times weekly for six months, (4) protective group orally administered with prednisolone daily with simultaneous oral administration of DHEA three times weekly for six months and (5) therapeutic group orally administered with prednisolone daily for six months then orally administered with DHEA three times weekly for other six months. The obtained data revealed that prednisolone administration resulted in significant decrease in serum osteocalcin (OC), 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2) D(3)) and osteoprotegerin (OPG) levels accompanied with significant increase in serum parathyroid hormone (PTH) and receptor activator nuclear factor kappa B ligand (RANKL) levels. Histopathological investigation of left femur bone showed that prednisolone administration produced compression of the reduced articular surface and atrophy of the epiphyseal bone. On the other hand, DHEA supplementation to osteoporotic rats increased serum OC, 1,25-(OH)(2) D(3) and OPG levels while decreased serum PTH and RANKL levels. Moreover, DHEA administration resulted in restoration of intact epiphyseal bony structure and articular surface. In conclusion, DHEA via its control on glucocorticoid activity and androgenic action provided potent effect on bone. PMID:21310600

  3. ZIP4 silencing improves bone loss in pancreatic cancer

    PubMed Central

    Yang, Jingxuan; Ding, Hao; LeBrun, Drake; Ding, Kai; Houchen, Courtney W.; Postier, Russell G.; Ambrose, Catherine G.; Li, Zhaoshen; Bi, Xiaohong; Li, Min

    2015-01-01

    Metabolic bone disorders are associated with several types of human cancers. Pancreatic cancer patients usually suffer from severe nutrition deficiency, muscle wasting, and loss of bone mass. We have previously found that silencing of a zinc transporter ZIP4 prolongs the survival and reduces the severity of the cachexia in vivo. However, the role of ZIP4 in the pancreatic cancer related bone loss remains unknown. In this study we investigated the effect of ZIP4 knockdown on the bone structure, composition and mechanical properties of femurs in an orthotopic xenograft mouse model. Our data showed that silencing of ZIP4 resulted in increased bone tissue mineral density, decreased bone crystallinity and restoration of bone strength through the RANK/RANKL pathway. The results further support the impact of ZIP4 on the progression of pancreatic cancer, and suggest its potential significance as a therapeutic target for treating patients with such devastating disease and cancer related disorders. PMID:26305676

  4. Modeling Calcium Loss from Bones During Space Flight

    NASA Technical Reports Server (NTRS)

    Wastney, Meryl E.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Nillen, Jeannie L.; Davis-Street, Janis E.; Lane, Helen W.; Smith, Scott M.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Calcium loss from bones during space flight creates a risk for astronauts who travel into space, and may prohibit space flights to other planets. The problem of calcium loss during space flight has been studied using animal models, bed rest (as a ground-based model), and humans in-flight. In-flight studies have typically documented bone loss by comparing bone mass before and after flight. To identify changes in metabolism leading to bone loss, we have performed kinetic studies using stable isotopes of calcium. Oral (Ca-43) and intravenous (Ca-46) tracers were administered to subjects (n=3), three-times before flight, once in-flight (after 110 days), and three times post-flight (on landing day, and 9 days and 3 months after flight). Samples of blood, saliva, urine, and feces were collected for up to 5 days after isotope administration, and were analyzed for tracer enrichment. Tracer data in tissues were analyzed using a compartmental model for calcium metabolism and the WinSAAM software. The model was used to: account for carryover of tracer between studies, fit data for all studies using the minimal number of changes between studies, and calculate calcium absorption, excretion, bone calcium deposition and bone calcium resorption. Results showed that fractional absorption decreased by 50% during flight and that bone resorption and urinary excretion increased by 50%. Results were supported by changes in biochemical markers of bone metabolism. Inflight bone loss of approximately 250 mg Ca/d resulted from decreased calcium absorption combined with increased bone resorption and excretion. Further studies will assess the time course of these changes during flight, and the effectiveness of countermeasures to mitigate flight-induced bone loss. The overall goal is to enable human travel beyond low-Earth orbit, and to allow for better understanding and treatment of bone diseases on Earth.

  5. Hypercalciuric Bone Disease

    NASA Astrophysics Data System (ADS)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  6. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction.

    PubMed

    Dong, Yanjun; Pan, Jenny S; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production. PMID:23516508

  7. Myostatin Suppression of Akirin1 Mediates Glucocorticoid-Induced Satellite Cell Dysfunction

    PubMed Central

    Dong, Yanjun; Pan, Jenny S.; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production. PMID:23516508

  8. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we

  9. Quercetin prevents experimental glucocorticoid-induced osteoporosis: a comparative study with alendronate.

    PubMed

    Derakhshanian, Hoda; Djalali, Mahmoud; Djazayery, Abolghassem; Nourijelyani, Keramat; Ghadbeigi, Sajad; Pishva, Hamideh; Saedisomeolia, Ahmad; Bahremand, Arash; Dehpour, Ahmad Reza

    2013-05-01

    Glucocorticoid-induced osteoporosis (GIO) is the most common type of secondary osteoporosis. The aim of this study was to compare the efficacy of quercetin, a plant-derived flavonoid, with alendronate in the prevention of GIO. Fifty-six Sprague-Dawley rats were randomly distributed among 7 groups (8 rats per group) and treated for 6 weeks with one of the following: (i) normal saline; (ii) 40 mg methylprednisolone sodium succinate (MP)/kg body mass; (iii) MP + 40 μg alendronate/kg; (iv) MP + 50 mg quercetin/kg; (v) MP + 40 μg alendronate/kg + 50 mg quercetin/kg; (vi) MP + 150 mg quercetin/kg; and (vii) MP + 40 μg alendronate/kg + 150 mg quercetin/kg. MP and alendronate were injected subcutaneously and quercetin was administered by oral gavage 3 days a week. At the end of the study, femur breaking strength was significantly decreased as a consequence of MP injection. This decrease was completely compensated for in groups receiving 50 mg quercetin/kg plus alendronate, and 150 mg quercetin/kg with or without alendronate. Quercetin noticeably elevated osteocalcin as a bone formation marker, while alendronate did not show such an effect. In addition, administration of 150 mg quercetin/kg increased femoral trabecular and cortical thickness by 36% and 22%, respectively, compared with the MP-treated group. These data suggest that 150 mg quercetin/kg, alone or in combination with alendronate, can completely prevent GIO through its bone formation stimulatory effect. PMID:23656499

  10. Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss

    PubMed Central

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H.; Farman, Helen H.; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice. PMID:24637895

  11. Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy

    PubMed Central

    Andres-Mateos, Eva; Brinkmeier, Heinrich; Burks, Tyesha N; Mejias, Rebeca; Files, Daniel C; Steinberger, Martin; Soleimani, Arshia; Marx, Ruth; Simmers, Jessica L; Lin, Benjamin; Finanger Hedderick, Erika; Marr, Tom G; Lin, Brian M; Hourdé, Christophe; Leinwand, Leslie A; Kuhl, Dietmar; Föller, Michael; Vogelsang, Silke; Hernandez-Diaz, Ivan; Vaughan, Dana K; Alvarez de la Rosa, Diego; Lang, Florian; Cohn, Ronald D

    2013-01-01

    Maintaining skeletal muscle mass is essential for general health and prevention of disease progression in various neuromuscular conditions. Currently, no treatments are available to prevent progressive loss of muscle mass in any of these conditions. Hibernating mammals are protected from muscle atrophy despite prolonged periods of immobilization and starvation. Here, we describe a mechanism underlying muscle preservation and translate it to non-hibernating mammals. Although Akt has an established role in skeletal muscle homeostasis, we find that serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates muscle mass maintenance via downregulation of proteolysis and autophagy as well as increased protein synthesis during hibernation. We demonstrate that SGK1 is critical for the maintenance of skeletal muscle homeostasis and function in non-hibernating mammals in normal and atrophic conditions such as starvation and immobilization. Our results identify a novel therapeutic target to combat loss of skeletal muscle mass associated with muscle degeneration and atrophy. PMID:23161797

  12. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    SciTech Connect

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-08-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.

  13. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeff; Shapiro, Jay; Lang, Tom; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; Ploutz-Snyder, Robert; Nakamura, Toshitaka; Kohri,Kenjiro; Ohshima, Hiroshi

    2011-01-01

    Experiment Hypothesis -- The combined effect of anti-resorptive drugs plus in-flight exercise regimen will have a measurable effect in preventing space flight induced bone mass and strength loss and reducing renal stone risk.

  14. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey A.; Shapiro, Jay; Lang, Thomas F.; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; Koslovskaya, Inessa

    2009-01-01

    Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss (Bisphosphonates) will determine whether antiresorptive agents, in conjunction with the routine inflight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density documented on previous ISS missions.

  15. Pathophysiology of bone loss in the female athlete.

    PubMed

    Lambrinoudaki, Irene; Papadimitriou, Dimitra

    2010-09-01

    Low bone mass is frequent among female athletes. The "female athlete triad" is a term that describes the interaction among energy availability, menstrual function, and bone metabolism that may lead to amenorrhea and osteopenia or osteoporosis. The main pathophysiologic mechanisms that lead to low bone mass in female athletes are low energy availability and functional hypothalamic amenorrhea. Increased energy expenditure and/or decreased energy intake, as well as the presence of eating disorders, are associated with low bone mass. In addition, menstrual dysfunction is quite common, especially among athletes competing in sports favoring leanness, and also associates with low bone mass. Screening for bone loss in female athletes should take place in the presence of amenorrhea or body mass index <18 kg/m(2) . Management of low bone mass aims to restore normal energy availability and nutritional habits. Hormone replacement therapy has no effect in abnormally underweight patients unless normal eating behaviors are restored. PMID:20840252

  16. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.; Evans, H.; Spector, E.; Ploutz-Snyder, R.; Sibonga, J.; Nakamura, T.; Kohri, K.; Ohshima, H.

    2011-01-01

    This poster reviews the possibility of using Bisphosphonates to counter the bone loss that is experienced during space flight. The Hypothesis that is tested in this experiment is that the combined effect of anti-resorptive drugs plus in-flight exercise regimen will attenuate space flight induced loss in bone mass and strength and reduce renal stone risk. The experiment design, the status and the results are described.

  17. The glucocorticoid-induced gene tdag8 encodes a pro-apoptotic G protein-coupled receptor whose activation promotes glucocorticoid-induced apoptosis.

    PubMed

    Malone, Michael H; Wang, Zhengqi; Distelhorst, Clark W

    2004-12-17

    The apoptotic action of glucocorticoids on lymphocytes makes them effective therapeutics for many lymphoid malignancies. Although it is clear that glucocorticoid-induced apoptosis requires transcription, the gene products that induce apoptosis remain unknown. Using gene expression profiles of lymphoma cell lines and primary thymocytes treated with the synthetic glucocorticoid dexamethasone, we discovered that induction of tdag8 (T-cell death-associated gene 8) was a common event in each model system investigated. Activation of TDAG8 by its agonist psychosine markedly enhanced dexamethasone-induced apoptosis in a TDAG8-dependent manner. Expression of a TDAG8-GFP fusion protein was sufficient to induce apoptosis, and repression of endogenous TDAG8 using RNA interference partially inhibited dexamethasone-induced apoptosis. Together, these data suggest that TDAG8 is a regulator of glucocorticoid-induced apoptosis and that agonists of TDAG8 may be promising agents to improve the efficacy of glucocorticoids for the treatment of leukemia and lymphoma. PMID:15485889

  18. Bone loss: Quantitative imaging techniques for assessing bone mass in rheumatoid arthritis

    PubMed Central

    Njeh, Christopher F; Genant, Harry K

    2000-01-01

    Osteoporosis is associated with low bone mass and microarchitectural deterioration of bone tissue with clinical manifestation of low trauma fractures. Rheumatoid arthritis (RA) is a risk factor due to generalized and articular bone loss. This minireview presents past and current bone mass measurement techniques in RA. These techniques include: plain radiographs, absorptiometry, quantitative computed tomography (QCT) and ultrasound. The most widely used technique is dual x-ray absorptiometry (DXA). RA patients have lower bone mass as compared with normals and substantial bone loss may occur early after the onset of disease. Measurement of bone mineral density (BMD) at the hand using either DXA or ultrasound maybe a useful tool in the management of RA patients. PMID:11094457

  19. Sclerostin is essential for alveolar bone loss in occlusal hypofunction

    PubMed Central

    XU, YANG; WANG, LUFEI; SUN, YAO; HAN, XIANGLONG; GAO, TIAN; XU, XIN; CHEN, TIAN; ZHAO, XUEFENG; ZENG, HUAN; WANG, YANMIN; BAI, DING

    2016-01-01

    Bone loss is caused by occlusal hypofunction and is a serious health concern. This is particularly true of tooth loss, which is common in the elderly. However, the cellular and molecular mechanisms underlying bone loss have yet to be fully elucidated. Sclerostin and Wnt/β-catenin signaling have previously been reported to serve important roles in regulating bone remodeling. Therefore, the present study aimed to investigate the involvement of sclerostin and Wnt/β-catenin signaling in occlusal hypofunction-induced alveolar bone remodeling. The unilateral maxillary molars of 14 male Sprague-Dawley rats were extracted in order to establish a model of occlusal hypofunction. For each rat, the non-extraction side was treated as the control group for comparisons with the extraction side. At 8 weeks after tooth extraction, the rats were sacrificed and alveolar bone specimens were harvested for X-ray radiography, micro-computed tomography (CT) and histological and immunohistochemical examinations. Bone loss and architecture deterioration were observed at the occlusal hypofunction side. The bone mineral density was markedly decreased and the ratio of bone volume to total volume was significantly decreased at the hypofunction side, as compared with the control side (P<0.001). In addition, the number of osteoclasts at the hypofunction side were significantly increased compared with that in the control side (P<0.001), as demonstrated using tartrate-resistant acid phosphatase staining. Furthermore, the protein expression levels of sclerostin and receptor activator of nuclear factor-κB ligand were increased, whereas those of β-catenin were decreased, at the hypofunction side when compared with the control side. In conclusion, the results of the present study suggested that occlusal hypofunction-induced bone loss may be associated with upregulated expression of sclerostin, which, in turn, may inhibit the activity of the Wnt/β-catenin signaling pathway. PMID:27168809

  20. Oncogenic and Therapeutic Targeting of PTEN Loss in Bone Malignancies.

    PubMed

    Xi, Yongming; Chen, Yan

    2015-09-01

    Being a tumor suppressor, PTEN functions as a dual-specificity protein and phospholipid phosphatase and regulates a variety of cellular processes and signal transduction pathways. Loss of PTEN function has been detected frequently in different forms of cancers, such as breast, prostate and lung cancer, gastric and colon cancer, skin cancer, as well as endometrial carcinoma. In this review, we provide a summary of PTEN and its role in bone malignancies including bone metastases, multiple myeloma, and osteosarcoma, etc. We highlight the importance of PTEN loss leading to activation of the oncogenic PI3K/Akt/mTOR pathway in tumorigenesis and progression, which can be attributed to both genetic and non-genetic alterations involving gene mutation, loss of heterozygosity, promoter hypermethylation, and microRNA mediated negative regulation. We also discuss the emerging therapeutic applications targeting PTEN loss for the treatment of these bone malignant diseases. PMID:25773992

  1. Massive acetabular bone loss: Limits of trabecular metal cages

    PubMed Central

    Villanueva-Martínez, Manuel; Ríos-Luna, Antonio; Diaz-Mauriño, Juán

    2011-01-01

    Massive acetabular bone loss (more than 50% of the acetabular area) can result in insufficient native bone for stable fixation and long-term bone ingrowth of conventional porous cups. The development of trabecular metal cages with osteoconductive properties may allow a more biological and versatile approach that will help restore bone loss, thus reducing the frequency of implant failure in the short-to-medium term. We report a case of massive bone loss affecting the dome of the acetabulum and the ilium, which was treated with a trabecular metal cage and particulate allograft. Although the trabecular metal components had no intrinsic stability, they did enhance osseointegration and incorporation of a non-impacted particulate graft, thus preventing failure of the reconstruction. The minimum 50% contact area between the native bone and the cup required for osseointegration with the use of porous cups may not hold for new trabecular metal cups, thus reducing the need for antiprotrusio cages. The osteoconductive properties of trabecular metal enhanced allograft incorportation and iliac bone rebuilding without the need to fill the defect with multiple wedges nor protect the reconstruction with an antiprotrusio cage. PMID:21221229

  2. Serum markers of bone metabolism show bone loss in hibernating bears

    USGS Publications Warehouse

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.

  3. Phytoestrogens in the prevention of postmenopausal bone loss.

    PubMed

    Lagari, Violet S; Levis, Silvina

    2013-01-01

    Postmenopausal osteoporosis is a condition associated with low bone mass resulting from the increased bone resorption that occurs following a decline in estrogen levels. Phytoestrogens are plant-derived compounds that have affinity to the estrogen receptor and are able to act as either estrogen agonists or antagonists. Because of their structural similarity to 17-beta-estradiol, they have been studied extensively for their role in the prevention of postmenopausal bone loss. An extensive number of studies employing different types of isoflavone preparations (including soy foods, soy-enriched foods, and soy isoflavone tablets) have been conducted in a wide range of populations, including Western and Asian women. Although there is considerable variability in study design and duration, study population, type of soy isoflavone employed in the intervention, and study outcomes, the evidence points to a lack of a protective role of soy isoflavones in the prevention of postmenopausal bone loss. PMID:24090647

  4. Role of Corticosteroids in Bone Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.

    1998-01-01

    The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.

  5. Telomerized presenescent osteoblasts prevent bone mass loss in vivo.

    PubMed

    Yudoh, K; Nishioka, K

    2004-06-01

    Previously, we showed that human osteoblasts expressing the human telomerase reverse transcriptase (hTERT) gene exhibited specific survival advantages--the result of breaching the replicative senescence barrier and maintaining the phenotypic and functional properties of primary osteoblasts in vitro over the total replicative capacity of primary osteoblasts. We postulated that rejuvenated osteoblasts may have a potential to correct bone loss or osteopenia in age-related osteoporotic diseases. In the present study, we studied whether telomerized presenescent osteoblasts prevent bone mass loss in vivo. After obtaining the informed consent from a patient with osteoarthritis who underwent the arthroplastic knee surgery, osteoblastic cells were isolated from donor bone sample. We transfected the gene encoding hTERT into human osteoblastic cells. Human bone fragments from a donor were incubated with human hTERT-transfected presenescent (in vitro aged) osteoblasts or mock-transfected presenescent osteoblasts in culture medium containing Matrigel. We subcutaneously implanted human bone fragments with telomerized presenescent osteoblasts or primary presenescent osteoblasts as three-dimensional Matrigel xenografts in severe combined immunodeficiency (SCID) mice (each group: six mice) and analyzed the grafts at 6 weeks after implantation. We also determined whether telomerized osteoblasts affect the bone-forming capacity in vivo, using a well-established mouse transplantation model in which ceramic hydroxyapatite/tricalcium phosphate particles are used as carrier vehicle. Telomerized presenescent osteoblasts were rejuvenated, and maintained the functional properties of young osteoblasts in vitro. Bone mineral content (BMC) and bone mineral density (BMD) were measured by ash weight and dual-energy X-ray absorptiometry, respectively. Whereas BMC and BMD of human bone fragments, which were inoculated with aged osteoblasts in SCID mice, decreased with time, telomerized

  6. Bone Loss During Spaceflight: Available Models and Counter-Measures

    NASA Technical Reports Server (NTRS)

    Morris, Jonathan; Bach, David; Geller, David

    2015-01-01

    There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground

  7. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss.

    PubMed

    Tomaszewski, P K; van Diest, M; Bulstra, S K; Verdonschot, N; Verkerke, G J

    2012-07-26

    Currently available implants for direct attachment of prosthesis to the skeletal system after transfemoral amputation (OPRA system, Integrum AB, Sweden and ISP Endo/Exo prosthesis, ESKA Implants AG, Germany) show many advantages over the conventional socket fixation. However, restraining biomechanical issues such as considerable bone loss around the stem and peri-prosthetic bone fractures are present. To overcome these limiting issues a new concept of the direct intramedullary fixation was developed. We hypothesize that the new design will reduce the peri-prosthetic bone failure risk and adverse bone remodeling by restoring the natural load transfer in the femur. Generic CT-based finite element models of an intact femur and amputated bones implanted with 3 analyzed implants were created and loaded with a normal walking and a forward fall load. The strain adaptive bone remodeling theory was used to predict long-term bone changes around the implants and the periprosthetic bone failure risk was evaluated by the von Mises stress criterion. The results show that the new design provides close to physiological distribution of stresses in the bone and lower bone failure risk for the normal walking as compared to the OPRA and the ISP implants. The bone remodeling simulations did not reveal any overall bone loss around the new design, as opposed to the OPRA and the ISP implants, which induce considerable bone loss in the distal end of the femur. This positive outcome shows that the presented concept has a potential to considerably improve safety of the rehabilitation with the direct fixation implants. PMID:22677337

  8. Anabolic Vitamin D Analogs as Countermeasures to Bone Loss

    NASA Technical Reports Server (NTRS)

    Li, Wei; Duncan, Randall L.; Karin, Norman J.; Farach-Carson, Mary C.

    1997-01-01

    We demonstrated for the first time that vitamin D3 influences the effect of PTH on bone cell calcium ion levels. This is a rapid effect, taking place within seconds/minutes. This may prove to be a critical contribution to our understanding of bone physiology in that these two hormones are among the most potent regulators of bone calcium content and of systemic calcium homeostasis. Together with the data gathered from the study of astronauts exposed to microgravity for extended periods, these observations suggest the interaction of vitamin D3 and PTH as a possible therapeutic target in the treatment of bone loss disorders such as osteoporosis and disuse atrophy. Chronic exposure of cultured osteoblasts to vitamin D, altered the number of voltage-sensitive Ca(+2) channels expressed. Estrogen treatment yielded a similar result, suggesting that there is overlap in the mechanism by which these hormones elicit long-term effects on bone cell calcium homeostasis.

  9. Predictors of bone loss in revision total knee arthroplasty.

    PubMed

    Bloomfield, Michael R; Klika, Alison K; Lee, Ho H; Joyce, David M; Mehta, Priyesh; Barsoum, Wael K

    2010-03-01

    Revision total knee arthroplasty (RTKA) requires preoperative planning to enable the reconstruction of bony deficiencies. The objective of this project was to identify predictors of bone loss management at RTKA based on the preoperative failure mode and patient demographics known preoperatively. We retrospectively reviewed 245 consecutive RTKA procedures in which the same revision knee system was utilized. Patient demographic and treatment data were recorded, and locations of bone loss were identified based on the reconstructive management. We identified significant predictors for use of femoral augments at all four positions. Several predictors significantly predisposed to use of a thick (>19 mm) polyethylene; however, no predictors of tibial augments were significant. Although the reconstruction of bone loss is primarily based on the intraoperative assessment, these findings may provide additional information to help the surgeon prepare for difficult revision procedures. PMID:20812582

  10. A mechanism of bone tissue loss in monkeys (BION - 11).

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.; Oganov, V. S.

    The elucidation of mechanisms of bone tissue loss under the spaceflight conditions remains an actual problem until now It was established that primary reactions to a mechanical stress evolve at the cellular level therefore the main attention of the researchers was aimed at studying bone tissue cells and their interactions With the use of electron microscopy we studied osteoblasts osteocytes osteoclasts and stromal cells in bioptats of the iliac bone crest from monkeys flown on board the satellite guillemotleft BION - 11 guillemotright during 2 weeks The flight samples were compared with the vivarium and simulation controls The functional state of cells was evaluated by the degree of development of organelles for specific biosyntheses rough endoplasmic reticulum Golgy complex nucleus state interrelation with a mineralized matrix The analysis of the obtained results and data of other authors Klein -- Nulend et al 2003 etc permits to suppose that the following sequence of cell interactions underlies the bone tissue loss during mechanical stress microgravity reaction of mechano-sensitive osteocytes to a mechanical stimulus consisting in enhancement of osteolytic processes in cells which results in a partial bone tissue loss along the local unloading Simultaneously the modulating signals are transmitted through a system of canals and processes towards active osteoblasts surface osteocytes and bone marrow stromal cells as well As a reply to a mechanical stimulus there occurs a reduction slowing down of proliferation

  11. Fractal texture analysis of the healing process after bone loss.

    PubMed

    Borowska, Marta; Szarmach, Janusz; Oczeretko, Edward

    2015-12-01

    Radiological assessment of treatment effectiveness of guided bone regeneration (GBR) method in postresectal and postcystal bone loss cases, observed for one year. Group of 25 patients (17 females and 8 males) who underwent root resection with cystectomy were evaluated. The following combination therapy of intraosseous deficits was used, consisting of bone augmentation with xenogenic material together with covering regenerative membranes and tight wound closure. The bone regeneration process was estimated, comparing the images taken on the day of the surgery and 12 months later, by means of Kodak RVG 6100 digital radiography set. The interpretation of the radiovisiographic image depends on the evaluation ability of the eye looking at it, which leaves a large margin of uncertainty. So, several texture analysis techniques were developed and used sequentially on the radiographic image. For each method, the results were the mean from the 25 images. These methods compute the fractal dimension (D), each one having its own theoretic basis. We used five techniques for calculating fractal dimension: power spectral density method, triangular prism surface area method, blanket method, intensity difference scaling method and variogram analysis. Our study showed a decrease of fractal dimension during the healing process after bone loss. We also found evidence that various methods of calculating fractal dimension give different results. During the healing process after bone loss, the surfaces of radiographic images became smooth. The result obtained show that our findings may be of great importance for diagnostic purpose. PMID:26362075

  12. Genistein supplementation increases bone turnover but does not prevent alcohol-induced bone loss in male mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy prote...

  13. Ginsenosides Rg3 attenuates glucocorticoid-induced osteoporosis through regulating BMP-2/BMPR1A/Runx2 signaling pathway.

    PubMed

    Zhang, Xiaonan; Chen, Kang; Wei, Bo; Liu, Xingwang; Lei, Zeming; Bai, Xizhuang

    2016-08-25

    Glucocorticoid-induced osteoporosis (GIOP) is the primary cause of secondary osteoporosis and the existing therapeutic strategies are limited. The aim of this study is to evaluate the effects of ginsenosides (GS) Rg3 on dexamethasone (DEX)-induced osteoporosis in vivo and in vitro. GIOP rat was established by DEX injection for 5 weeks and treated by GS Rg3 10 or 20 mg/kg. Body weight and bone mineral density (BMD) of rats were measured at the beginning and the end of the experiment. Histological changes of femurs were observed using HE staining. The in vitro model was established on primary osteoblasts induced by DEX. CCK-8 assay was used to test the cell viability. Bone metabolism markers in serum or primary osteoblasts were detected using biochemical kits. Real time PCR and western blot were used to measure nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG), bone morphogenic protein-2 (BMP-2), BMP receptor 1A (BMPR1A) and Runx2 expression. The results demonstrated that GS Rg3 prevented DEX-induced body weight and BMD reduction, enhanced secretion of bone formation markers and decreased bone resorption markers. In addition, GS Rg3 was found to prevent the suppression of BMP-2/BMPR1A/Runx2 signals induced by DEX both in GIOP rats and primary osteoblasts. Inhibition of BMP-2 by noggin completely blocked the bone-alkaline phosphatase-secretion-promoted effect of GS Rg3 in vitro. These data suggest that GS Rg3 attenuates GIOP through regulating BMP-2 signaling pathway. This study provides a potential drug candidate for GIOP therapy. PMID:27387537

  14. Blocking antibody to the beta-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low estrogen levels undoubtedly underlie menopausal bone thinning. However, rapid and profuse bone loss begins three years prior to the last menstrual period, when serum estrogen is relatively normal. We have shown that the pituitary hormone FSH, the levels of which are high during the late peri-men...

  15. SOCS-3 Regulates Alveolar Bone Loss in Experimental Periodontitis.

    PubMed

    Papathanasiou, E; Kantarci, A; Konstantinidis, A; Gao, H; Van Dyke, T E

    2016-08-01

    The host immune response plays a key role in bacteria-induced alveolar bone resorption. Endogenous control of the magnitude and duration of inflammatory signaling is considered an important determinant of the extent of periodontal pathology. Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytokine signaling pathways and may play a role in restraining periodontal inflammation. We hypothesized that SOCS-3 regulates alveolar bone loss in experimental periodontitis. Periodontal bone loss was induced in 16-wk-old myeloid-specific SOCS-3-knockout and wild-type (WT) C57Bl6-B.129 mice by oral inoculation 9 times with 10(9) colony-forming units of Porphyromonas gingivalis A7436 through an oral gavage model for periodontitis. Sham controls for both types of mice received vehicle without bacteria. The mice were euthanized 6 wk after the last oral inoculation. Increased bone loss was demonstrated in P. gingivalis-infected SOCS-3-knockout mice as compared with P. gingivalis-infected WT mice by direct morphologic measurements, micro-computed tomography analyses, and quantitative histology. Loss of SOCS-3 function resulted in an increased number of alveolar bone osteoclasts and increased RANKL expression after P. gingivalis infection. SOCS-3 deficiency in myeloid cells also promotes a higher P. gingivalis lipopolysaccharide-induced inflammatory response with higher secretion of IL-1β, IL-6, and KC (IL-8) by peritoneal macrophages as compared with WT controls. Our data implicate SOCS-3 as a critical negative regulator of alveolar bone loss in periodontitis. PMID:27126447

  16. Bone density in limb-immobilized beagles: An animal model for bone loss in weightlessness

    NASA Technical Reports Server (NTRS)

    Wolinsky, Ira

    1987-01-01

    Prolonged weightlessness is man in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. In order to seek and test preventative measures an appropriate ground based animal model simulating weightlessness is necessary. Use of the mature Beagle in limb immobilization has been documented as an excellent model for orthopedic research since this animal most closely simulates the phenomenom of bone loss with regards to growth, remodeling, structure, chemistry and mineralization. The purpose of this project is to develop a research protocol for the study of bone loss in Beagles during and after cast immobilization of a hindleg; research will then be initiated.

  17. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling.

    PubMed

    Zheng, Xi; Lee, Sun-Kyeong; Chun, Ock K

    2016-01-01

    Osteoporosis is an age-related disorder that affects both women and men, although estrogen deficiency induced by menopause accelerates bone loss in older women. As the demographic shifts to a more aged population, a growing number of men and women will be afflicted with osteoporosis. Since the current drug therapies available have multiple side effects, including increased risk of developing certain types of cancer or complications, a search for potential nonpharmacologic alternative therapies for osteoporosis is of prime interest. Soy isoflavones (SI) have demonstrated potential bone-specific effects in a number of studies. This article provides a systematic review of studies on osteoporotic bone loss in relation to SI intake from diet or supplements to comprehensively explain how SI affect the modulation of bone remodeling. Evidence from epidemiologic studies supports that dietary SI attenuate menopause-induced osteoporotic bone loss by decreasing bone resorption and stimulating bone formation. Other studies have also illustrated that bone site-specific trophic and synergistic effects combined with exercise intervention might contribute to improve the bioavailability of SI or strengthen the bone-specific effects. To date, however, the effects of dietary SI on osteoporotic bone loss remain inconclusive, and study results vary from study to study. The current review will discuss the potential factors that result in the conflicting outcomes of these studies, including dosages, intervention materials, study duration, race, and genetic differences. Further well-designed studies are needed to fully understand the underlying mechanism and evaluate the effects of SI on osteoporosis in humans. PMID:26670451

  18. CYP11A1 expression in bone is associated with aromatase inhibitor-related bone loss.

    PubMed

    Rodríguez-Sanz, M; García-Giralt, N; Prieto-Alhambra, D; Servitja, S; Balcells, S; Pecorelli, R; Díez-Pérez, A; Grinberg, D; Tusquets, I; Nogués, X

    2015-08-01

    Aromatase inhibitors (AIs) used as adjuvant therapy in postmenopausal women with hormone receptor-positive breast cancer cause diverse musculoskeletal side effects that include bone loss and its associated fracture. About half of the 391 patients treated with AIs in the Barcelona-Aromatase induced bone loss in early breast cancer cohort suffered a significant bone loss at lumbar spine (LS) and/or femoral neck (FN) after 2 years on AI-treatment. In contrast, up to one-third (19.6% LS, 38.6% FN) showed no decline or even increased bone density. The present study aimed to determine the genetic basis for this variability. SNPs in candidate genes involved in vitamin D and estrogen hormone-response pathways (CYP11A1, CYP17A1, HSD3B2, HSD17B3, CYP19A1, CYP2C19, CYP2C9, ESR1, DHCR7, GC, CYP2R1, CYP27B1, VDR and CYP24A1) were genotyped for association analysis with AI-related bone loss (AIBL). After multiple testing correction, 3 tag-SNPs (rs4077581, s11632698 and rs900798) located in the CYP11A1 gene were significantly associated (P<0.005) with FN AIBL at 2 years of treatment. Next, CYP11A1 expression in human fresh bone tissue and primary osteoblasts was demonstrated by RT-PCR. Both common isoforms of human cholesterol side-chain cleavage enzyme (encoded by CYP11A1 gene) were detected in osteoblasts by western blot. In conclusion, the genetic association of CYP11A1 gene with AIBL and its expression in bone tissue reveals a potential local function of this enzyme in bone metabolism regulation, offering a new vision of the steroidogenic ability of this tissue and new understanding of AI-induced bone loss. PMID:26108486

  19. Amlexanox Suppresses Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss

    PubMed Central

    Zhang, Yong; Guan, Hanfeng; Li, Jing; Fang, Zhong; Chen, Wenjian; Li, Feng

    2015-01-01

    The activity of protein kinases IKK-ε and TANK-binding kinase 1 (TBK1) has been shown to be associated with inflammatory diseases. As an inhibitor of IKK-ε and TBK1, amlexanox is an anti-inflammatory, anti-allergic, immunomodulator and used for treatment of ulcer, allergic rhinitis and asthma in clinic. We hypothesized that amlexanox may be used for treatment of osteoclast-related diseases which frequently associated with a low grade of systemic inflammation. In this study, we investigated the effects of amlexanox on RANKL-induced osteoclastogenesis in vitro and ovariectomy-mediated bone loss in vivo. In primary bone marrow derived macrophages (BMMs), amlexanox inhibited osteoclast formation and bone resorption. At the molecular level, amlexanox suppressed RANKL-induced activation of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPKs), c-Fos and NFATc1. Amlexanox decreased the expression of osteoclast-specific genes, including TRAP, MMP9, Cathepsin K and NFATc1. Moreover, amlexanox enhanced osteoblast differentiation of BMSCs. In ovariectomized (OVX) mouse model, amlexanox prevented OVX-induced bone loss by suppressing osteoclast activity. Taken together, our results demonstrate that amlexanox suppresses osteoclastogenesis and prevents OVX-induced bone loss. Therefore, amlexanox may be considered as a new therapeutic candidate for osteoclast-related diseases, such as osteoporosis and rheumatoid arthritis. PMID:26338477

  20. Alendronate as an Effective Countermeasure to Disuse Induced Bone loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian D.; Driscol, Theda B.; Shackelford, Linda C.; Evans, Harlan J.; Rianon, Nahid J.; Smith, Scott M.; Lai, Dejian

    2002-01-01

    Microgravity, similar to diuse immobilization on earth, causes rapid bone loss. This loss is believed to be an adaptive response to the reduced musculoskelatal forces in space and occurs gradually enough that changes occurring during short duration space flight are not a concern. Bone loss, however, will be a major impediment for long duration missions if effective countermeasures are not developed and implemented. Bed rest is used to simulate the reduced mechanical forces in humans and was used to test the hypothesis that oral alendronate would reduce the effects of long duration (17 weeks) inactivity on bone. Eight male subjects were given daily oral doses of alendronate during 17 weeks of horizontal bed rest and compared with 13 male control subjects not given the drug. Efficacy was evaluated based on measurements of bone markers, calcium balance and bone density performed before, during and after the bed rest. The results show that oral alendronate attenuates most of the characteristic changes associated with long duration bed rest and presumably space flight.

  1. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss

    PubMed Central

    Harre, Ulrike; Lang, Stefanie C.; Pfeifle, René; Rombouts, Yoann; Frühbeißer, Sabine; Amara, Khaled; Bang, Holger; Lux, Anja; Koeleman, Carolien A.; Baum, Wolfgang; Dietel, Katharina; Gröhn, Franziska; Malmström, Vivianne; Klareskog, Lars; Krönke, Gerhard; Kocijan, Roland; Nimmerjahn, Falk; Toes, René E. M.; Herrmann, Martin; Scherer, Hans Ulrich; Schett, Georg

    2015-01-01

    Immunglobulin G (IgG) sialylation represents a key checkpoint that determines the engagement of pro- or anti-inflammatory Fcγ receptors (FcγR) and the direction of the immune response. Whether IgG sialylation influences osteoclast differentiation and subsequently bone architecture has not been determined yet, but may represent an important link between immune activation and bone loss. Here we demonstrate that desialylated, but not sialylated, immune complexes enhance osteoclastogenesis in vitro and in vivo. Furthermore, we find that the Fc sialylation state of random IgG and specific IgG autoantibodies determines bone architecture in patients with rheumatoid arthritis. In accordance with these findings, mice treated with the sialic acid precursor N-acetylmannosamine (ManNAc), which results in increased IgG sialylation, are less susceptible to inflammatory bone loss. Taken together, our findings provide a novel mechanism by which immune responses influence the human skeleton and an innovative treatment approach to inhibit immune-mediated bone loss. PMID:25825024

  2. Cathepsin K Deficiency Suppresses Disuse-Induced Bone Loss.

    PubMed

    Moriya, Shuichi; Izu, Yayoi; Arayal, Smriti; Kawasaki, Makiri; Hata, Koki; Pawaputanon Na Mahasarakhahm, Chantida; Izumi, Yuichi; Saftig, Paul; Kaneko, Kazuo; Noda, Masaki; Ezura, Yoichi

    2016-05-01

    Unloading induces bone loss and causes disuse osteoporosis. However, the mechanism underlying disuse osteoporosis is still incompletely understood. Here, we examined the effects of cathepsin K (CatK) deficiency on disuse osteoporosis induced by using sciatic neurectomy (Nx) model. After 4 weeks of surgery, CatK KO and WT mice were sacrificed and subjected to analyses. For cancellous bone rich region, Nx reduced the bone mineral density (BMD) compared to the BMD in the sham operated side in wild type mice. In contrast, CatK deficiency suppressed such Nx-induced reduction of BMD in cancellous bone. Nx also reduced BMD in the mid shaft cortical bone compared to the BMD in the corresponding region on the sham operated side in wild type mice. In contrast, CatK deficiency suppressed such Nx-induced reduction of BMD in the mid shaft cortical bone. Bone volume (BV/TV) was reduced by Nx in WT mice. In contrast, Cat-K deficiency suppressed such reduction in bone volume. Interestingly, CatK deficiency suppressed osteoclast number and osteoclast surface in the Nx side compared to sham side. When bone marrow cells obtained from Nx side femur of CatK-KO mice were cultured, the levels of the calcified area in culture were increased. Further examination of gene expression indicated that Nx suppressed the expression of genes encoding osteoblast-phenotype-related molecules such as Runx2 and alkaline phosphatase in WT mice. In contrast, CatK deficiency suppressed such reduction. These data indicate that CatK is involved in the disuse-induced bone mass reduction. PMID:26460818

  3. Effect of bone loss in anterior shoulder instability

    PubMed Central

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-01-01

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  4. Rate of bone loss in postmenopausal and osteoporotic women

    SciTech Connect

    Aloia, J.F.; Ross, P.; Vaswani, A.; Zanzi, I.; Cohn, S.H.

    1982-02-01

    Regional and total bone mass were determined in three groups of women by photon absorptiometry of the distal radius (bone mineral content (BMC)) and total neutron activation analysis (total body calcium (TBCa)), respectively. There were three groups of patients: group A, osteoporotic women treated with a variety of pharmacologic agents; group B, osteoporotic women (controls) taking only calcium supplements; and group C, normal postmenopausal women. The mean TBCa and BMC were considerably higher in the postmenopausal women than in the osteoporotic women. The rate of change of bone mass in group C was -0.45%/yr and -0.9%/yr for the total skeleton and radius, respectively. Group B had no significant rate of loss, whereas group A demonstrated a significant increase in TBCa of 0.75%/yr with no change in the BMC of the radius. There were no significant between-subject correlations for the slopes (rates of change) of the two bone mineral measurements.

  5. Osteoprotegerin ameliorates sciatic nerve crush induced bone loss.

    PubMed

    Bateman, T A; Dunstan, C R; Lacey, D L; Ferguson, V L; Ayers, R A; Simske, S J

    2001-07-01

    This study examines the ability of osteoprotegerin (OPG) to prevent the local bone resorption caused by sciatic nerve damage. Sixty-five 18-week-old male mice were assigned to one of six groups (n = 10-11/group). A baseline control group was sacrificed on day zero of the 10-day study. The remaining groups were placebo sham operated, placebo nerve crush (Plac NC) operated, 0.1 mg/kg/day OPG + nerve crush (LOW), 0.3 mg/kg/day OPG + nerve crush (MED), and 1.0 mg/kg/day OPG + nerve crush (HI). Nerve crush or sham operations were performed on the right leg. The left leg served as a contralateral control to the nerve crushed (ipsilateral) leg. The difference in mass between the right and left femur and tibia was examined. Additionally, quantitative histomorphometry was performed on the right and left femur and tibia diaphyses. Nerve crush resulted in a significant loss of bone mass in the ipsilateral side compared to the contralateral side. Bone mass for the ipsilateral bones of the Plac NC group were significantly reduced by 3.8% in the femur and 3.5% in the tibia compared to the contralateral limb. The percent diminution was reduced for OPG treated mice compared to the Plac NC group for both the femur and tibia. In the femur, the percent reduction of ipsilateral bone mass was reduced to 1.0% (LOW), 1.3% (MED) and 1.6% (HI) compared to the contralateral limb. In the tibia, loss of bone mass in the ipsilateral limb was reduced to 1.4% (LOW), 1.4% (MED), and 2.4% (HI) compared to the contralateral. OPG also decreased the amount of tibial endocortical resorption compared to the Plac NC group. In summary, OPG mitigated bone loss caused by damage to the sciatic nerve. PMID:11518255

  6. Bone growth stimulators. New tools for treating bone loss and mending fractures.

    PubMed

    Whitfield, James F; Morley, Paul; Willick, Gordon E

    2002-01-01

    In the new millennium, humans will be traveling to Mars and eventually beyond with skeletons that respond to microgravity by self-destructing. Meanwhile in Earth's aging populations growing numbers of men and many more women are suffering from crippling bone loss. During the first decade after menopause all women suffer an accelerating loss of bone, which in some of them is severe enough to result in "spontaneous" crushing of vertebrae and fracturing of hips by ordinary body movements. This is osteoporosis, which all too often requires prolonged and expensive care, the physical and mental stress of which may even kill the patient. Osteoporosis in postmenopausal women is caused by the loss of estrogen. The slower development of osteoporosis in aging men is also due at least in part to a loss of the estrogen made in ever smaller amounts in bone cells from the declining level of circulating testosterone and is needed for bone maintenance as it is in women. The loss of estrogen increases the generation, longevity, and activity of bone-resorbing osteoclasts. The destructive osteoclast surge can be blocked by estrogens and selective estrogen receptor modulators (SERMs) as well as antiosteoclast agents such as bisphosphonates and calcitonin. But these agents stimulate only a limited amount of bone growth as the unaffected osteoblasts fill in the holes that were dug by the now suppressed osteoclasts. They do not stimulate osteoblasts to make bone--they are antiresorptives not bone anabolic agents. (However, certain estrogen analogs and bisphosphates may stimulate bone growth to some extent by lengthening osteoblast working lives.) To grow new bone and restore bone strength lost in space and on Earth we must know what controls bone growth and destruction. Here we discuss the newest bone controllers and how they might operate. These include leptin from adipocytes and osteoblasts and the statins that are widely used to reduce blood cholesterol and cardiovascular damage. But

  7. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture

    SciTech Connect

    Bhattacharyya, M.H.; Whelton, B.D.; Stern, P.H.; Peterson, D.P. )

    1988-11-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which {sup 45}Ca release from {sup 45}Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with {sup 45}Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption. These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke.

  8. Alendronate prevents glucocorticoid-induced osteoporosis in patients with rheumatic diseases: A meta-analysis.

    PubMed

    Kan, Shun-Li; Yuan, Zhi-Fang; Li, Yan; Ai, Jie; Xu, Hong; Sun, Jing-Cheng; Feng, Shi-Qing

    2016-06-01

    Glucocorticoid-induced osteoporosis (GIOP) is a serious problem for patients with rheumatic diseases requiring long-term glucocorticoid treatment. Alendronate, a bisphosphonate, has been recommended in the prevention of GIOP. However, the efficacy and safety of alendronate in preventing GIOP remains controversial. We performed a meta-analysis to investigate the efficacy and safety of alendronate in preventing GIOP in patients with rheumatic diseases.We retrieved randomized controlled trials from PubMed, EMBASE, and the Cochrane Library. Two reviewers extracted the data and evaluated the risk of bias and quality of the evidence. We calculated the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes, and the mean difference (MD) with a 95% CI for continuous outcomes using Review Manager, version 5.3.A total of 339 studies were found, and 9 studies (1134 patients) were included. Alendronate was not able to reduce the incidence of vertebral fractures (RR = 0.63, 95% CI: 0.10-4.04, P = 0.62) and nonvertebral fractures (RR = 0.40, 95% CI: 0.15-1.12, P = 0.08). Alendronate significantly increased the percent change in bone mineral density (BMD) at the lumbar spine (MD = 3.66, 95% CI: 2.58-4.74, P < 0.05), total hip (MD = 2.08, 95% CI: 0.41-3.74, P < 0.05), and trochanter (MD = 1.68, 95% CI: 0.75-2.61, P < 0.05). Significant differences were not observed in the percent change in BMD at the femoral neck (MD = -0.33, 95% CI: -2.79 to 2.13, P = 0.79) and total body (MD = 0.64, 95% CI: -0.06 to 1.34, P = 0.07). No significant differences in the adverse events were observed in patients treated with alendronate versus the controls (RR = 1.00, 95% CI: 0.94-1.07, P = 0.89). The odds of gastrointestinal adverse events were significantly reduced (RR = 0.77, 95% CI: 0.62-0.97, P < 0.05).Our analysis suggests that alendronate can increase the percent change in BMD at the lumbar spine, total hip, and

  9. Weight, muscle and bone loss during space flight: another perspective.

    PubMed

    Stein, T P

    2013-09-01

    Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission. PMID:23192310

  10. Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to explore bioavailability, efficacy, and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 (placebo vs. lipopolysaccharide, LPS) × 2 (no GTP vs. 0.5% GTP in drinking water) factorial design using ...

  11. Aminohydroxybutane bisphosphonate inhibits bone loss due to immobilization in rats.

    PubMed

    Thompson, D D; Seedor, J G; Weinreb, M; Rosini, S; Rodan, G A

    1990-03-01

    The purpose of this study was to document the effects of aminobutane bisphosphonate (AHBuP) on bone remodeling during immobilization in rats. Male Sprague-Dawley rats underwent unilateral sciatic neurectomy after receiving two daily subcutaneous injections of 0, 0.01, 0.10, or 1.0 mg P per kg AHBuP. Rats were sacrificed at 24 h or 10 or 20 days postimmobilization. Femora were ashed and tibiae were prepared for histomorphometric analysis. AHBuP was effective in inhibiting bone loss due to immobilization in a dose-dependent manner. The percentage loss of femoral ash weight due to immobilization decreased in a dose-dependent manner. In vehicle-treated rats, there was a significant decrease in trabecular bone volume (TBV) in the immobilized tibiae compared to the normal tibiae; in AHBuP-treated rats there was a dose-dependent increase in TBV both in the immobilized and control tibiae. The osteoid surface extent was decreased in AHBuP-treated rats in a dose-dependent manner. The mineral apposition rate was altered only in the intact leg of rats treated with 0.1 and 1.0 mg P AHBuP per kg compared to vehicle treated. Osteoclast number per mm was reduced by AHBuP treatment. In conclusion, aminohydroxybutane bisphosphonate effectively prevented the bone loss due to immobilization in this system. PMID:2333787

  12. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation.

    PubMed

    Fan, Ruoxun; Gong, He; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  13. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    PubMed Central

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  14. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    bone tissue. The macrophages are incorporated into resorption lacunaes and utilize the organic matrix and cellular detritus. The products are secreted to remodeling zones and act as haemoattractants for recruiting and subsequent differentiation here of the osteogenic precursor cells. However, as shown by our results with 3H-glycine, in absence of mechanical stimulus the activization of osteoblastogenesis either doesn't occur, or takes place on a smaller scale. According to our electron-microscopic data a load deficit leads to an adaptive differentiation of fibroblasts and adipocytes in this remodeling zones. This sequence of events is considered as a mechanism of bone tissue loss which underlies the development of osteopenia and osteoporosis under space flight condition.

  15. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis

    PubMed Central

    Zhu, Ling-Ling; Blair, Harry; Cao, Jay; Yuen, Tony; Latif, Rauf; Guo, Lida; Tourkova, Irina L.; Li, Jianhua; Davies, Terry F.; Sun, Li; Bian, Zhuan; Rosen, Clifford; Zallone, Alberta; New, Maria I.; Zaidi, Mone

    2012-01-01

    Low estrogen levels undoubtedly underlie menopausal bone thinning. However, rapid and profuse bone loss begins 3 y before the last menstrual period, when serum estrogen is relatively normal. We have shown that the pituitary hormone FSH, the levels of which are high during late perimenopause, directly stimulates bone resorption by osteoclasts. Here, we generated and characterized a polyclonal antibody to a 13-amino-acid-long peptide sequence within the receptor-binding domain of the FSH β-subunit. We show that the FSH antibody binds FSH specifically and blocks its action on osteoclast formation in vitro. When injected into ovariectomized mice, the FSH antibody attenuates bone loss significantly not only by inhibiting bone resorption, but also by stimulating bone formation, a yet uncharacterized action of FSH that we report herein. Mesenchymal cells isolated from mice treated with the FSH antibody show greater osteoblast precursor colony counts, similarly to mesenchymal cells isolated from FSH receptor (FSHR)−/− mice. This suggests that FSH negatively regulates osteoblast number. We confirm that this action is mediated by signaling-efficient FSHRs present on mesenchymal stem cells. Overall, the data prompt the future development of an FSH-blocking agent as a means of uncoupling bone formation and bone resorption to a therapeutic advantage in humans. PMID:22908268

  16. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss.

    PubMed

    Yuan, X; Cao, J; Liu, T; Li, Y-P; Scannapieco, F; He, X; Oursler, M J; Zhang, X; Vacher, J; Li, C; Olson, D; Yang, S

    2015-12-01

    Regulators of G protein signaling (Rgs) have pivotal roles in controlling various cellular processes, such as cell differentiation. How Rgs proteins regulate osteoclast (OC) differentiation, function and bone homeostasis is poorly understood. It was previously demonstrated that Rgs12, the largest protein in the Rgs family, is predominantly expressed in OCs and regulates OC differentiation in vitro. To further understand the role and mechanism of Rgs12 in OC differentiation and bone diseases in vivo, we created OC-targeted Rgs12 knockout mice by using inducible Mx1-Cre and CD11b-Cre. Deletion of Rgs12 in hematopoietic cells or specifically in OC precursors resulted in increased bone mass with decreased OC numbers. Loss of Rgs12 impaired OC differentiation and function with impaired Ca(2+) oscillations and reduced nuclear factor of activated T cells (NFAT) 2 expression. The introduction of wild-type osteoblasts did not rescue the defective osteoclastogenesis. Ectopic expression of NFAT2 rescued defective OC differentiation in CD11b;Rgs12(fl/fl) cells and promoted normal OC differentiation. Moreover, deletion of Rgs12 significantly inhibited pathological osteoclastogenesis and bone destruction in Rgs12-deficient mice that were subjected to ovariectomy and lipodysaccharide for bone loss. Thus our findings demonstrate that Rgs12 is an important regulator in OC differentiation and function and identify Rgs12 as a potential therapeutic target for osteoporosis and inflammation-induced bone loss. PMID:25909889

  17. L-arginine prevents bone loss and bone collagen breakdown in cyclosporin A-treated rats.

    PubMed

    Fiore, C E; Pennisi, P; Cutuli, V M; Prato, A; Messina, R; Clementi, G

    2000-11-24

    Cyclosporin A is implicated in the pathogenesis of post-transplantation bone disease. Because of recent evidence that cyclosporin A may cause renal and cardiovascular toxicity by inhibiting nitric oxide (NO) activity, and that NO slows bone remodeling and bone loss in animal and human studies, we investigated a possible link between NO production and beneficial effects on bone health in cyclosporin A-treated rats. Thirty-six 10-week-old male rats were assigned to six groups of six animals each, and treated for 4 weeks with: vehicle; cyclosporin A; L-arginine; N(G)-nitro-L-arginine methylester (L-NAME, a general inhibitor of NO synthase activity); a combination of cyclosporin A+L-arginine; and a combination of cyclosporin A+L-NAME. Whole body and regional (spine and pelvis) bone mineral content of rats were measured under basal conditions and at the end of the treatment period by dual-energy X-ray absorptiometry (DXA) scanning. Femur weights and serum concentrations of pyridinoline, a reliable marker of bone resorption, were measured at the end of the study period. Cyclosporin A-, L-NAME-, and cyclosporin A+L-NAME-treated rats had significantly lower bone mineral content and femur weights, and significantly higher pyridinoline levels than did control animals. The administration of L-arginine appeared to prevent bone loss caused by cyclosporin A, suggesting that this amino acid, which can be converted to produce NO, might prove useful in preventing disturbed bone modeling and inhibition of bone growth associated with cyclosporin A therapy. PMID:11090650

  18. Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Pennline, James A.

    2009-01-01

    Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.

  19. Mast Cells Contribute to Porphyromonas gingivalis-induced Bone Loss.

    PubMed

    Malcolm, J; Millington, O; Millhouse, E; Campbell, L; Adrados Planell, A; Butcher, J P; Lawrence, C; Ross, K; Ramage, G; McInnes, I B; Culshaw, S

    2016-06-01

    Periodontitis is a chronic inflammatory and bone-destructive disease. Development of periodontitis is associated with dysbiosis of the microbial community, which may be caused by periodontal bacteria, such as Porphyromonas gingivalis Mast cells are sentinels at mucosal surfaces and are a potent source of inflammatory mediators, including tumor necrosis factors (TNF), although their role in the pathogenesis of periodontitis remains to be elucidated. This study sought to determine the contribution of mast cells to local bone destruction following oral infection with P. gingivalis Mast cell-deficient mice (Kit(W-sh/W-sh)) were protected from P. gingivalis-induced alveolar bone loss, with a reduction in anti-P. gingivalis serum antibody titers compared with wild-type infected controls. Furthermore, mast cell-deficient mice had reduced expression of Tnf, Il6, and Il1b mRNA in gingival tissues compared with wild-type mice. Mast cell-engrafted Kit(W-sh/W-sh) mice infected with P. gingivalis demonstrated alveolar bone loss and serum anti-P. gingivalis antibody titers equivalent to wild-type infected mice. The expression of Tnf mRNA in gingival tissues of Kit(W-sh/W-sh) mice was elevated following the engraftment of mast cells, indicating that mast cells contributed to the Tnf transcript in gingival tissues. In vitro, mast cells degranulated and released significant TNF in response to oral bacteria, and neutralizing TNF in vivo abrogated alveolar bone loss following P. gingivalis infection. These data indicate that mast cells and TNF contribute to the immunopathogenesis of periodontitis and may offer therapeutic targets. PMID:26933137

  20. Massive Bone Loss Due to Orchidectomy and Localized Disuse: Preventive Effects of a Biosphonsphonate

    NASA Astrophysics Data System (ADS)

    Libouban, H.; Moreau, M. F.; Chappard, D.

    2008-06-01

    Orchidectomy (ORX) and hindlimb paralysis induced by botulinum neurotoxin (BTX) were combined to see if their effects were cumulative and if bone loss could be prevented by an antiresorptive agent (risedronate) or testosterone. Four groups of mature rats were studied for 1 month: SHAM operated; ORX and right hindlimb immobilization (BTX); ORX+BTX+risedronate or testosterone. Bone loss and microarchitecture deterioration were maximized on the immobilized bone. Risedronate but not testosterone prevented trabecular bone loss but was less effective on cortical bone loss. ORX and BTX had additive effects on bone loss which can be prevented by risedronate but not testosterone.

  1. Bone loss and human adaptation to lunar gravity

    NASA Technical Reports Server (NTRS)

    Keller, T. S.; Strauss, A. M.

    1992-01-01

    Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.

  2. Soy Isoflavones for Reducing Bone Loss (SIRBL) Study: Randomized Three Year Intervention in Postmenopausal Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has indicated that soy protein with isoflavones may attenuate bone loss in postmenopausal women. We hypothesized that soy isoflavones would decrease bone loss in healthy postmenopausal women (45.8-65.0 years) by maintaining bone mineral density (BMD), and this bone-sparing effect would be g...

  3. NELL-1 in the treatment of osteoporotic bone loss.

    PubMed

    James, Aaron W; Shen, Jia; Zhang, Xinli; Asatrian, Greg; Goyal, Raghav; Kwak, Jin H; Jiang, Lin; Bengs, Benjamin; Culiat, Cymbeline T; Turner, A Simon; Seim Iii, Howard B; Wu, Benjamin M; Lyons, Karen; Adams, John S; Ting, Kang; Soo, Chia

    2015-01-01

    NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast:osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to a large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Altogether, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss. PMID:26082355

  4. NELL-1 in the treatment of osteoporotic bone loss

    PubMed Central

    James, Aaron W.; Shen, Jia; Zhang, Xinli; Asatrian, Greg; Goyal, Raghav; Kwak, Jin H.; Jiang, Lin; Bengs, Benjamin; Culiat, Cymbeline T.; Turner, A. Simon; Seim III, Howard B.; Wu, Benjamin M.; Lyons, Karen; Adams, John S.; Ting, Kang; Soo, Chia

    2015-01-01

    NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast:osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to a large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Altogether, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss. PMID:26082355

  5. Bioactive Silica Nanoparticles Reverse Age-Associated Bone Loss in Mice

    PubMed Central

    Vikulina, Tatyana; Roser-Page, Susanne; Lee, Jin-Kyu; Beck, George R.

    2015-01-01

    We recently reported that in vitro, engineered 50 nm spherical silica nanoparticles promote the differentiation and activity of bone building osteoblasts but suppress that of bone-resorbing osteoclasts. Furthermore, these nanoparticles promote bone accretion in young mice in vivo. In the present study the capacity of these nanoparticles to reverse bone loss in aged mice, a model of human senile osteoporosis, was investigated. Aged mice received nanoparticles weekly and bone mineral density (BMD), bone structure, and bone turnover was quantified. Our data revealed a significant increase in BMD, bone volume, and biochemical markers of bone formation. Biochemical and histological examinations failed to identify any abnormalities caused by nanoparticle administration. Our studies demonstrate that silica nanoparticles effectively blunt and reverse age-associated bone loss in mice by a mechanism involving promotion of bone formation. The data suggest that osteogenic silica nanoparticles may be a safe and effective therapeutic for counteracting age-associated bone loss. PMID:25680544

  6. Human Placenta-Derived Adherent Cells Prevent Bone loss, Stimulate Bone formation, and Suppress Growth of Multiple Myeloma in Bone

    PubMed Central

    Li, Xin; Ling, Wen; Pennisi, Angela; Wang, Yuping; Khan, Sharmin; Heidaran, Mohammad; Pal, Ajai; Zhang, Xiaokui; He, Shuyang; Zeitlin, Andy; Abbot, Stewart; Faleck, Herbert; Hariri, Robert; Shaughnessy, John D.; van Rhee, Frits; Nair, Bijay; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel

    2011-01-01

    Human placenta has emerged as a valuable source of transplantable cells of mesenchymal and hematopoietic origin for multiple cytotherapeutic purposes, including enhanced engraftment of hematopoietic stem cells, modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDACs) are mesenchymal-like stem cells isolated from postpartum human placenta. Multiple myeloma is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. We evaluated the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDACs in the severe combined immunodeficiency (SCID)–rab model of medullary myeloma-associated bone loss. Intrabone injection of PDACs into non-myelomatous and myelomatous implanted bone in SCID-rab mice promoted bone formation by stimulating endogenous osteoblastogenesis, and most PDACs disappeared from bone within 4 weeks. PDACs inhibitory effects on myeloma bone disease and tumor growth were dose-dependent and comparable with those of fetal human mesenchymal stem cells (MSCs). Intrabone, but not subcutaneous, engraftment of PDACs inhibited bone disease and tumor growth in SCID-rab mice. Intratumor injection of PDACs had no effect on subcutaneous growth of myeloma cells. A small number of intravenously injected PDACs trafficked into myelomatous bone. Myeloma cell growth rate in vitro was lower in coculture with PDACs than with MSCs from human fetal bone or myeloma patients. PDACs also promoted apoptosis in osteoclast precursors and inhibited their differentiation. This study suggests that altering the bone marrow microenvironment with PDAC cytotherapy attenuates growth of myeloma and that PDAC cytotherapy is a promising therapeutic approach for myeloma osteolysis. PMID:21732484

  7. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    SciTech Connect

    Riis, B.J.; Christiansen, C.

    1988-04-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement.

  8. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    PubMed

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats. PMID:26367331

  9. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    PubMed

    Todd, Henry; Galea, Gabriel L; Meakin, Lee B; Delisser, Peter J; Lanyon, Lance E; Windahl, Sara H; Price, Joanna S

    2015-01-01

    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to

  10. Artificial Gravity as a Bone Loss Countermeasure in Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Crawford, G. E.; Gillman, P. L.; LeBlanc, A.; Shackelford, L. C.; Heer, M. A.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. We report here initial results from a pilot study designed to explore the utility of artificial gravity (AG) as a countermeasure to the effects of microgravity, specifically to bone loss. After an initial phase of adaptation and testing, 15 male subjects underwent 21 days of 6 head-down bed rest to simulate the deconditioning associated with space flight. Eight of the subjects underwent 1 h of centrifugation (AG, 1 gz at the heart, 2.5 gz at the feet) each day for 21 days, while 7 of the subjects served as untreated controls (CN). Blood and urine were collected before, during, and after bed rest for bone marker determinations. At this point, preliminary data are available on the first 8 subjects (6 AG, and 2 CN). Comparing the last week of bed rest to before bed rest, urinary excretion of the bone resorption marker n-telopeptide increased 95 plus or minus 59% (mean plus or minus SD) in CN but only 32 plus or minus 26% in the AG group. Similar results were found for another resorption marker, helical peptide (increased 57 plus or minus 0% and 35 plus or minus 13% in CN and AG respectively). Bone-specific alkaline phosphatase, a bone formation marker, did not change during bed rest. At this point, sample analyses are continuing, including calcium tracer kinetic studies. These initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest.

  11. Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II

    PubMed Central

    Kollmann, Katrin; Pestka, Jan Malte; Kühn, Sonja Christin; Schöne, Elisabeth; Schweizer, Michaela; Karkmann, Kathrin; Otomo, Takanobu; Catala-Lehnen, Philip; Failla, Antonio Virgilio; Marshall, Robert Percy; Krause, Matthias; Santer, Rene; Amling, Michael; Braulke, Thomas; Schinke, Thorsten

    2013-01-01

    Mucolipidosis type II (MLII) is a severe multi-systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock-in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro-osteoclastogenic cytokine interleukin-6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. PMID:24127423

  12. Role of carbonic anhydrase in bone - Plasma acetazolamide concentrations associated with inhibition of bone loss

    NASA Technical Reports Server (NTRS)

    Kenny, A. D.

    1985-01-01

    The effects of acetazolamide and benzolamide on bone formation are examined. Solutions of acetazolamide and benzolamide with 1 M THAM/tris(hydromethyl)aminoethane/ or without 1 M THAM were injected subcutaneous with a minipump and into the food of Sprague-Dawley rats. The data reveal that for 8-day and 12-day infusions only acetazolamide combined with 1 M THAM caused any reduction in bone loss and there were no changes in body weights, food consumption and plasma calcium and phosphorus values. Following 8 days of infusion of acetazolamide with 1 M THAM at infusion rates of 0.5, 5.0, and 50 micrograms/hr, no reduction was detected at 0.5 microgram/hr, a 30 percent reduction occurred at 5.0 micrograms/hr and a 49 percent decrease at 50 micrograms/hr. In the benzolamide experiment it was observed that 0.5 percent of the solution in the food caused no reduction in bone loss; however, infusions with benzolamide plus 1 M THAM resulted in a bone loss reduction of 30 percent at 5.0 micrograms/hr, and a 49 percent decrease at 50 micrograms/hr. Acetazolamide levels in the plasma at 50 micrograms/hr doses are calculated as ranging from 99 ng/ml-223 ng/ml and as 46 ng/ml at 5 micrograms/hr doses.

  13. Morsellized bone grafting compensates for femoral bone loss in revision total knee arthroplasty. An experimental study.

    PubMed

    van Loon, C J; de Waal Malefijt, M C; Verdonschot, N; Buma, P; van der Aa, A J; Huiskes, R

    1999-01-01

    This study was undertaken to examine the contribution of uncontained morsellized bone graft to the structural properties of a femoral reconstruction in total knee arthroplasty and to serve as a basis for an in vivo animal study. Ten human distal femora with a standard unicondylar uncontained medial bone defect were prepared to fit a femoral component of a cruciate sacrificing TKA. A cyclic axial load of 750 N was applied to the medial part of the femoral component in the presence of impacted morsellized bone graft. After removal of the bone graft, the cyclic loading was repeated for the unsupported situation. None of the grafts collapsed and all cement mantles stayed intact during the experiments. Elastic deformation during cyclic loading was significantly less when graft was added while time-dependent deformation was not affected. We conclude that impacted morsellized bone graft, used for reconstruction of uncontained femoral bone loss in revision knee arthroplasty, may improve the structural resistance against loading. Further animal experimentation for in vivo application is warranted. PMID:9916775

  14. Prostaglandin E2 Prevents Bone Loss and Adds Extra Bone to Immobilized Distal Femoral Metaphysis in Female Rats

    NASA Technical Reports Server (NTRS)

    Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.

  15. GLENOHUMERAL INSTABILITY AND GLENOID BONE LOSS IN A THROWING ATHLETE

    PubMed Central

    Mair, Scott; Lattermann, Christian

    2013-01-01

    This case presents the challenges of management associated with a young throwing athlete presenting with a history of bilateral anterior shoulder instability. This athlete had multiple surgical interventions over a three‐year period. The imaging modalities provided partial elucidation (at best) of the true picture of the pathology. This case report outlines the decision making process utilized to provide individualized care to a young throwing athlete with bilateral glenohumeral joint instability, recurrent dislocations, and resultant glenoid bone loss. Level of Evidence: 5 (Single Case report) PMID:23593558

  16. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    PubMed Central

    Kim, Tae-Ho; Park, Eui Kyun; Huh, Man-Il; Kim, Hong Kyun; Kim, Shin-Yoon; Lee, Sang-Han

    2016-01-01

    Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica) extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr) cocoons spun by Rhus javanica (Bell.) Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr) or 100% ethanolic extract (eeGr) on ovariectomy- (OVX-) induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT) was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks) augmented the inhibition of femoral bone mineral density (BMD), bone mineral content (BMC), and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss. PMID:27313644

  17. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  18. Bone marrow monocyte PECAM-1 deficiency elicits increased osteoclastogenesis resulting in trabecular bone loss.

    PubMed

    Wu, Yue; Tworkoski, Kathryn; Michaud, Michael; Madri, Joseph A

    2009-03-01

    In our investigations of the bone marrow (BM) of PECAM-1 null (knockout, KO) mice, we observed that the trabecular bone volume and number of trabeculae were significantly reduced in femoral and tibial long bones. Further studies in vitro revealed increased numbers and size of osteoclasts, enhanced bone resorption on dentin substrates, and hypersensitivity to macrophage CSF and receptor activator of NF-kappaB ligand in BM-derived osteoclast precursor cultures from KO mice. Associations among PECAM-1, Syk, and SHP-1 were found in wild-type BM monocyte derived osteoclast-like cells. The absence of PECAM-1 and SHP-1 interactions in the KO cells leads to the dysregulation of Syk kinases and/or phosphatases, possibly SHP-1. Indeed, KO derived osteoclast-like cells exhibited increased Syk tyrosine phosphorylation levels compared with WT cells. Lastly, WT mice engrafted with marrow from KO kindred showed loss of trabecular bone analogous to KO mice, consistent with increased osteoclastogenesis. PMID:19234161

  19. Phytoestrogens for menopausal bone loss and climacteric symptoms.

    PubMed

    Lagari, Violet S; Levis, Silvina

    2014-01-01

    Women have always looked for non-hormonal options to alleviate menopausal vasomotor symptoms and prevent menopausal bone loss. The use of complementary and alternative medicine for these purposes has particularly increased after the publication of the Women's Health Initiative's results suggesting that there might be more risks than benefits with hormone replacement. Phytoestrogens are plant-derived estrogens that, although less potent than estradiol, bind to the estrogen receptor and can function as estrogen agonists or antagonists. Soy isoflavones extracted from soy are the phytoestrogens most commonly used by menopausal women. Because typical Western diets are low in phytoestrogens and taking into account the general difficulty in changing dietary habits, most clinical trials in Western women have used isoflavone-fortified foods or isoflavone tablets. Although some women might experience a reduction in the frequency or severity of hot flashes, most studies point towards the lack of effectiveness of isoflavones derived from soy or red clover, even in large doses, in the prevention of hot flashes and menopausal bone loss. This article is part of a Special Issue entitled 'Phytoestrogens'. PMID:23246986

  20. Superoxide dismutase overexpression protects against glucocorticoid-induced depressive-like behavioral phenotypes in mice.

    PubMed

    Uchihara, Yuki; Tanaka, Ken-ichiro; Asano, Teita; Tamura, Fumiya; Mizushima, Tohru

    2016-01-22

    In the stress response, activation of the hypothalamic-pituitary-adrenal axis, and particularly the release of glucocorticoids, plays a critical role. However, dysregulation of this system and sustained high plasma levels of glucocorticoids can result in depression. Recent studies have suggested the involvement of reactive oxygen species (ROS), such as superoxide anion, in depression. However, direct evidence for a role of ROS in the pathogenesis of this disorder is lacking. In this study, using transgenic mice expressing human Cu/Zn-superoxide dismutase (SOD1), an enzyme that catalyzes the dismutation of superoxide anions, we examined the effect of SOD1 overexpression on depressive-like behavioral phenotypes in mice. Depressive-like behaviors were induced by daily subcutaneous administration of the glucocorticoid corticosterone for 4 weeks, and was monitored with the social interaction test, the sucrose preference test and the forced swim test. These tests revealed that transgenic mice overexpressing SOD1 are more resistant to glucocorticoid-induced depressive-like behavioral disorders than wild-type animals. Furthermore, compared with wild-type mice, transgenic mice showed a reduction in the number of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress)-positive cells in the hippocampal CA3 region following corticosterone administration. These results suggest that overexpression of SOD1 protects mice against glucocorticoid-induced depressive-like behaviors by decreasing cellular ROS levels. PMID:26721432

  1. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes

    PubMed Central

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  2. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes.

    PubMed

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  3. Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...

  4. Impaired mast cell activation in gene-targeted mice lacking the serum- and glucocorticoid-inducible kinase SGK1.

    PubMed

    Sobiesiak, Malgorzata; Shumilina, Ekaterina; Lam, Rebecca S; Wölbing, Florian; Matzner, Nicole; Kaesler, Susanne; Zemtsova, Irina M; Lupescu, Adrian; Zahir, Naima; Kuhl, Dietmar; Schaller, Martin; Biedermann, Tilo; Lang, Florian

    2009-10-01

    The PI3K pathway plays a pivotal role in the stimulation of mast cells. PI3K-dependent kinases include the serum- and glucocorticoid-inducible kinase 1 (SGK1). The present study explored the role of SGK1 in mast cell function. Mast cells were isolated from bone marrow (BMMC) of SGK1 knockout mice (sgk1(-/-)) and their wild-type littermates (sgk1(+/+)). The BMMC number as well as CD117, CD34, and FcepsilonRI expression in BMCCs were similar in both genotypes. Upon Ag stimulation of the FcepsilonRI receptor, Ca(2+) entry but not Ca(2+) release from intracellular stores was markedly impaired in sgk1(-/-) BMMCs. The currents through Ca(2+)-activated K+ channels induced by Ag were significantly higher in sgk1(+/+) BMMCs than in sgk1(-/-) BMMCs. Treatment with the Ca(2+) ionophore ionomycin (1 microM) led to activation of the K+ channels in both genotypes, indicating that the Ca(2+)-activated K+ channels are similarly expressed and sensitive to activation by Ca(2+) in sgk1(+/+) and sgk1(-/-) BMMCs, and that blunted stimulation of Ca(2+)-activated K+ channels was secondary to decreased Ca(2+) entry. Ag-IgE-induced degranulation and early IL-6 secretion were also significantly blunted in sgk1(-/-) BMMCs. The decrease in body temperature following Ag treatment, which reflects an anaphylactic reaction, was substantially reduced in sgk1(-/-) mice, pointing to impaired mast cell function in vivo. Serum histamine levels measured 30 min after induction of an anaphylactic reaction were significantly lower in sgk1(-/-) than in sgk1(+/+)mice. The observations reveal a critical role for SGK1 in ion channel regulation and the function of mast cells, and thus disclose a completely novel player in the regulation of allergic reaction. PMID:19748978

  5. Comparison of single- and dual-photon absorptiometry in postmenopausal bone mineral loss

    SciTech Connect

    Nilas, L.; Borg, J.; Gotfredsen, A.; Christiansen, C.

    1985-11-01

    The authors describe a single photon absorptiometric (SPA) technique, which enables differential estimation of the rates of loss from trabecular and cortical bone. Ten scans are obtained in the forearm: six in an area with about 7% trabecular bone and four scans in the adjacent distal area with a trabecular bone content of 25%. By comparing bone masses of these two sites in 19 postmenopausal and 53 premenopausal women, the postmenopausal trabecular bone loss was estimated to be approximately seven times greater than cortical loss within the first years of cessation of regular vaginal bleeding. On a group basis the bone loss at the distal forearm scan site (by SPA) corresponded closely to the spinal bone loss (by dual-photon absorptiometry). The reproducibility of the two scan sites in the forearm was 1-1.5% (CV%), which makes the method suitable for longitudinal studies. Corrections for variations in fatty tissue covering can be made without deterioration of the reproducibility.

  6. The science and practice of bone health in oncology: managing bone loss and metastasis in patients with solid tumors.

    PubMed

    Lipton, Allan; Uzzo, Robert; Amato, Robert J; Ellis, Georgiana K; Hakimian, Behrooz; Roodman, G David; Smith, Matthew R

    2009-10-01

    Cancer and its treatment can compromise bone health, leading to fracture, pain, loss of mobility, and hypercalcemia of malignancy. Bone metastasis occurs frequently in advanced prostate and breast cancers, and bony manifestations are commonplace in multiple myeloma. Osteoporosis and osteopenia may be consequences of androgen-deprivation therapy for prostate cancer, aromatase inhibition for breast cancer, or chemotherapy-induced ovarian failure. Osteoporotic bone loss and bone metastasis ultimately share a pathophysiologic pathway that stimulates bone resorption by increasing the formation and activity of osteoclasts. Important mediators of pathologic bone metabolism include substances produced by osteoblasts, such as RANKL, the receptor activator of nuclear factor kappa B ligand, which spurs osteoclast differentiation from myeloid cells. Available therapies are targeted to various steps in cascade of bone metastasis. PMID:19878635

  7. Bone Loss Triggered by the Cytokine Network in Inflammatory Autoimmune Diseases

    PubMed Central

    Amarasekara, Dulshara Sachini; Yu, Jiyeon; Rho, Jaerang

    2015-01-01

    Bone remodeling is a lifelong process in vertebrates that relies on the correct balance between bone resorption by osteoclasts and bone formation by osteoblasts. Bone loss and fracture risk are implicated in inflammatory autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, and systemic lupus erythematosus. The network of inflammatory cytokines produced during chronic inflammation induces an uncoupling of bone formation and resorption, resulting in significant bone loss in patients with inflammatory autoimmune diseases. Here, we review and discuss the involvement of the inflammatory cytokine network in the pathophysiological aspects and the therapeutic advances in inflammatory autoimmune diseases. PMID:26065006

  8. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment.

    PubMed

    Shu, Lei; Beier, Eric; Sheu, Tzong; Zhang, Hengwei; Zuscik, Michael J; Puzas, Edward J; Boyce, Brendan F; Mooney, Robert A; Xing, Lianping

    2015-04-01

    Obesity is a severe health problem in children, afflicting several organ systems including bone. However, the role of obesity on bone homeostasis and bone cell function in children has not been studied in detail. Here we used young mice fed a high-fat diet (HFD) to model childhood obesity and investigate the effect of HFD on the phenotype of cells within the bone marrow environment. Five-week-old male mice were fed a HFD for 3, 6, and 12 weeks. Decreased bone volume was detected after 3 weeks of HFD treatment. After 6 and 12 weeks, HFD-exposed mice had less bone mass and increased osteoclast numbers. Bone marrow cells, but not spleen cells, from HFD-fed mice had increased osteoclast precursor frequency, elevated osteoclast formation, and bone resorption activity, as well as increased expression of osteoclastogenic regulators including RANKL, TNF, and PPAR-gamma. Bone formation rate and osteoblast and adipocyte numbers were also increased in HFD-fed mice. Isolated bone marrow cells also had a corresponding elevation in the expression of positive regulators of osteoblast and adipocyte differentiation. Our findings indicate that in juvenile mice, HFD-induced bone loss is mainly due to increased osteoclast bone resorption by affecting the bone marrow microenvironment. Thus, targeting osteoclast formation may present a new therapeutic approach for bone complications in obese children. PMID:25673503

  9. Paradoxical Response to Mechanical Unloading in Bone Loss, Microarchitecture, and Bone Turnover Markers

    PubMed Central

    Sun, Xiaodi; Yang, Kaiyun; Wang, Chune; Cao, Sensen; Merritt, Mackenzie; Hu, Yingwei; Xu, Xin

    2015-01-01

    Background: Sclerostin, encoded by the SOST gene, has been implicated in the response to mechanical loading in bone. Some studies demonstrated that unloading leads to up-regulated SOST expression, which may induce bone loss. Purpose: Most reported studies regarding the changes caused by mechanical unloading were only based on a single site. Considering that the longitudinal bone growth leads to cells of different age with different sensitivity to unloading, we hypothesized that bone turnover in response to unloading is site specific. Methods: We established a disuse rat model by sciatic neurectomy in tibia. In various regions at two time-points, we evaluated the bone mass and microarchitecture in surgically-operated rats and control rats by micro-Computed Tomography (micro-CT) and histology, sclerostin/SOST by immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and quantitative reverse transcription polymerase chain reaction (qPCR), tartrate resistant acid phosphatase 5b (TRAP 5b) by ELISA and TRAP staining, and other bone markers by ELISA. Results: Micro-CT and histological analysis confirmed bone volume in the disuse rats was significantly decreased compared with those in the time-matched control rats, and microarchitecture also changed 2 and 8 weeks after surgery. Compared with the control groups, SOST mRNA expression in the diaphysis was down-regulated at both week 2 and 8. On the contrary, the percentage of sclerostin-positive osteocytes showed an up-regulated response in the 5 - 6 mm region away from the growth plate, while in the 2.5 - 3.5 mm region, the percentage was no significant difference. Nevertheless, in 0.5 - 1.5 mm region, the percentage of sclerostin-positive osteocytes decreased after 8 weeks, consistent with serum SOST level. Besides, the results of TRAP also suggested that the expression in response to unloading may be opposite in different sites or system. Conclusion: Our data indicated that unloading-induced changes in bone

  10. Effect of anti-osteoporotic agents on the prevention of bone loss in unloaded bone.

    PubMed

    Siu, Wing Sum; Ko, Chun Hay; Hung, Leung Kim; Lau, Ching Po; Lau, Clara Bik San; Fung, Kwok Pui; Leung, Ping Chung

    2013-10-01

    Pharmaceutical countermeasures to treat disuse osteoporosis are rarely studied. Pharmaceutical studies for the treatment and prevention of osteoporosis depend on the ovariectomized rat model, which is a suitable model for the disease in women. Disuse osteoporosis affects men and women, but there is lack of awareness and relevant pharmaceutical studies for this condition. The objectives of this study were to verify the validity of an unusual tail-suspension rat model in the induction of disuse osteoporosis and subsequent pharmaceutical treatments. This model was created by unloading the hind limbs of the rats in order to create a state of weightlessness in their hindlimb bones. Validation of the model was performed with non-suspended rats. This study included five groups of suspended rats fed with different agents, such as distilled water (control), high-, medium- and low-dose raloxifene and a bisphosphonate (alendronate). The experiment lasted for 28 days. Comparisons were made between the suspended control and treatment groups. Ovariectomized and sham‑operated rats were also included as a reference for bone changes during osteoporosis. Changes in bone mineral density (BMD) at the distal femur and proximal tibia, microarchitecture at the distal femur and biomechanical strength at the diaphyseal femur were studied. Reduction of BMD and deterioration of trabeculae were similar between the suspended control and ovariectomized rats. Loss of BMD induced by tail suspension was reduced most effectively by medium-dose raloxifene. Deterioration of trabecular microarchitecture was also prevented by raloxifene. The tail-suspension rat model is suitable for the study of disuse osteoporosis under the effects of various therapeutic agents. The preventive effects of raloxifene against bone loss under disuse conditions have been demonstrated using this model. PMID:23970373

  11. Bisphosphonate treatment of type I diabetic mice prevents early bone loss but accentuates suppression of bone formation

    PubMed Central

    Coe, Lindsay M.; Tekalur, Srinivasan Arjun; Shu, Yutian; Baumann, Melissa J.; McCabe, Laura R.

    2016-01-01

    Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Previous studies demonstrate that T1-diabetes decreases osteoblast activity and viability. Bisphosphonate therapy, commonly used to treat osteoporosis, is demonstrated to inhibit osteoclast activity as well as osteoblast apoptosis. Therefore, we examined the effect of weekly alendronate treatments on T1-diabetes induced osteoblast apoptosis and bone loss. Bone TUNEL assays identified that alendronate therapy prevents the diabetes-induced osteoblast death observed during early stages of diabetes development. Consistent with this, alendronate treatment for 40 days was able to prevent diabetes-induced trabecular bone loss. Alendronate was also able to reduce marrow adiposity in both control diabetic mice compared to untreated mice. Mechanical testing indicated that 40 days of alendronate treatment increased bone stiffness but decreased the work required for fracture in T1-diabetic and alendronate treated mice. Of concern at this later time point, bone formation rate and osteoblast markers, which were already decreased in diabetic mice, were further suppressed in alendronate treated diabetic mice. Taken together, our results suggest that short term alendronate treatment can prevent T1-diabetes-induced bone loss in mice, possibly in part by inhibiting diabetes onset associated osteoblast death, while longer treatment enhanced bone density but at the cost of further suppressing bone formation in diabetic mice. PMID:25641511

  12. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  13. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.

    PubMed

    Foster, B L; Ao, M; Willoughby, C; Soenjaya, Y; Holm, E; Lukashova, L; Tran, A B; Wimer, H F; Zerfas, P M; Nociti, F H; Kantovitz, K R; Quan, B D; Sone, E D; Goldberg, H A; Somerman, M J

    2015-09-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in

  14. Corticosteroid-induced bone loss. Prevention and management.

    PubMed

    Picado, C; Luengo, M

    1996-11-01

    Osteoporosis is one of the most serious adverse effects experienced by patients receiving long term corticosteroid therapy. Bone loss occurs soon after corticosteroid therapy is initiated and results from a complex mechanism involving osteoblastic suppression and increased bone resorption. There are a number of factors that may increase the risk of corticosteroid-induced osteoporosis [smoking, excessive alcohol (ethanol) consumption, amenorrhoea, relative immobilisation, chronic obstructive pulmonary disease, inflammatory bowel disease, hypogonadism in men, organ transplantation]. The initial assessment of patients about to start taking corticosteroids should include measurement of spinal bone density, urinary calcium level and plasma calcifediol (25-hydroxycholecalciferol) level; serum testosterone levels should also be measured when hypogonadism is suspected. Many different drugs have been used to prevent osteoporosis in patients receiving long-term corticosteroid therapy, including thiazide diuretics, cholecalciferol (vitamin D) metabolites, bisphosphonates, calcitonin, fluoride, estrogens, anabolic steroids and progesterone. At present, however, published studies have failed to demonstrate a reduction in the rate of fracture using different preventive pharmacological therapies in patients being treated with corticosteroids on a continuous basis. Among the drugs studied, bisphosphonates (pamidronic acid and etidronic acid) and calcitonin appear to be effective in increasing bone density. Cholecalciferol preparations have been reported to be effective in some, but not all, studies. Limited data have shown positive results with thiazide diuretics, estrogen, progesterone and nandrolone. When treating patients with corticosteroids, the lowest effective dose should be used, with topical corticosteroids used whenever possible. Auranofin may be considered in patients with corticosteroid-dependent asthma. Patients should take as much physical activity as possible

  15. Periotest for measuring periodontal characteristics--correlation with periodontal bone loss.

    PubMed

    Schulte, W; d'Hoedt, B; Lukas, D; Maunz, M; Steppeler, M

    1992-05-01

    The Periotest measures the reaction of the periodontium to a defined percussive force. The percussion is applied to the tooth by an electronically controlled tapping head. Information on structural change is obtained by measurement of both the elastic and viscous characteristics of the periodontium. The latter prevent oscillations of the tooth in the alveolar bone. A value is calculated and is displayed as a "Periotest value". The following research report shows the relation of Periotest values to bone loss. Bone loss was quantitatively determined for 2312 teeth from orthopantomographic radiographs and for 900 teeth exposed to intra-oral films using the standard paralleling technique. A differentiation was made between vertical and horizontal bone loss. Clinical mobility index, pocket depth, gingival recession and papillary hemorrhagic index were also measured. There was a strong association between the Periotest value and bone loss. These results suggest that Periotest evaluation provides an objective indication of the extent of periodontal bone loss. PMID:1608031

  16. Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside-a Comprehensive Review.

    PubMed

    Alves, C Henrique; Farrell, Eric; Vis, Marijn; Colin, Edgar M; Lubberts, Erik

    2016-08-01

    Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions. PMID:26634933

  17. Specificity and inhibition of glucocorticoid-induced macrocortin secretion from rat peritoneal macrophages.

    PubMed Central

    Blackwell, G. J.

    1983-01-01

    The secretion of the phospholipase A2-inhibitor macrocortin and the binding of dexamethasone were studied in suspensions of rat peritoneal macrophages. Corticosteroid-induced macrocortin secretion was specific for glucocorticoids and did not occur in response to glucocorticoid antagonists or other steroids or in response to non-steroid macrophage activators (formyl-methionyl-leucyl-phenylalanine f-MLP), the calcium ionophore A23187, phorbol myristate acetate (PMA) and lipopolysaccharide-E.-coli(LPS) ). The apparent potency of competition by secretory glucocorticoids for dexamethasone binding to the macrophage parallelled their ability to induce secretion, implying that these binding sites represent the receptors by which macrocortin secretion is initiated. Agents which interfere with microtubule assembly (colchicine, vinblastine and trimethylcolchicinic acid) and prostacyclin and dibutyryl cyclic AMP inhibit macrocortin secretion. Inhibition studies of glucocorticoid-induced macrocortin secretion also suggest dependence upon metabolic energy, a source of Ca2+ and proteolysis and glycosylation prior to secretion. PMID:6317116

  18. Novel Tumor Suppressor Function of Glucocorticoid-Induced TNF Receptor GITR in Multiple Myeloma

    PubMed Central

    Liu, Yang; Quang, Phong; Braggio, Esteban; Ngo, Hai; Badalian-Very, Gayane; Flores, Ludmila; Zhang, Yong; Sacco, Antonio; Maiso, Patricia; Azab, Abdel Kareem; Azab, Feda; Carrasco, Ruben; Rollins, Barrett J.; Roccaro, Aldo M.; Ghobrial, Irene M.

    2013-01-01

    Glucocorticoid-induced TNF receptor (GITR) plays a crucial role in modulating immune response and inflammation, however the role of GITR in human cancers is poorly understood. In this study, we demonstrated that GITR is inactivated during tumor progression in Multiple Myeloma (MM) through promoter CpG island methylation, mediating gene silencing in primary MM plasma cells and MM cell lines. Restoration of GITR expression in GITR deficient MM cells led to inhibition of MM proliferation in vitro and in vivo and induction of apoptosis. These findings were supported by the presence of induction of p21 and PUMA, two direct downstream targets of p53, together with modulation of NF-κB in GITR-overexpressing MM cells. Moreover, the unbalanced expression of GITR in clonal plasma cells correlated with MM disease progression, poor prognosis and survival. These findings provide novel insights into the pivotal role of GITR in MM pathogenesis and disease progression. PMID:23785514

  19. Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander?

    PubMed Central

    Hoppstädter, Jessica; Kiemer, Alexandra K.

    2015-01-01

    Induction of glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids has been reported to be essential for their anti-inflammatory actions. At the same time, GILZ is actively downregulated under inflammatory conditions, resulting in an enhanced pro-inflammatory response. Two papers published in the recent past showed elevated GILZ expression in the late stage of an inflammation. Still, the manuscripts suggest seemingly contradictory roles of endogenous GILZ: one of them suggested compensatory actions by elevated corticosterone levels in GILZ knockout mice, while our own manuscript showed a distinct phenotype upon GILZ knockout in vivo. Herein, we discuss the role of GILZ in inflammation with a special focus on the influence of endogenous GILZ on macrophage responses and suggest a cell-type specific action of GILZ as an explanation for the conflicting results as presented in recent reports. PMID:26498359

  20. Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining

    PubMed Central

    2013-01-01

    Background Glucocorticoids are potent anti-inflammatory agents used for the treatment of diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease and psoriasis. Unfortunately, usage is limited because of metabolic side-effects, e.g. insulin resistance, glucose intolerance and diabetes. To gain more insight into the mechanisms behind glucocorticoid induced insulin resistance, it is important to understand which genes play a role in the development of insulin resistance and which genes are affected by glucocorticoids. Medline abstracts contain many studies about insulin resistance and the molecular effects of glucocorticoids and thus are a good resource to study these effects. Results We developed CoPubGene a method to automatically identify gene-disease associations in Medline abstracts. We used this method to create a literature network of genes related to insulin resistance and to evaluate the importance of the genes in this network for glucocorticoid induced metabolic side effects and anti-inflammatory processes. With this approach we found several genes that already are considered markers of GC induced IR, such as phosphoenolpyruvate carboxykinase (PCK) and glucose-6-phosphatase, catalytic subunit (G6PC). In addition, we found genes involved in steroid synthesis that have not yet been recognized as mediators of GC induced IR. Conclusions With this approach we are able to construct a robust informative literature network of insulin resistance related genes that gave new insights to better understand the mechanisms behind GC induced IR. The method has been set up in a generic way so it can be applied to a wide variety of disease networks. PMID:23379763

  1. Bed Rest and Immobilization: Risk Factors for Bone Loss

    MedlinePlus

    ... Pub. No. 16–7887 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ... another language, contact the NIH Osteoporosis and Related Bone Diseases ~ National Resource Center at NIHBoneInfo@mail.nih.gov . ...

  2. A positive correlation between occlusal trauma and peri-implant bone loss: literature support.

    PubMed

    Misch, Carl E; Suzuki, Jon B; Misch-Dietsh, Francine M; Bidez, Martha W

    2005-06-01

    The relationship between occlusal overload and peri-implant bone loss remains a controversial topic in implant dentistry. A causal relationship between the incidence of marginal bone loss next to an implant and occlusal overload implies a treatment plan and occlusal scheme would benefit from a force management approach. A MEDLINE-assisted and hand search of peer-reviewed English literature and relative textbooks were used for a selective review of articles addressing biomechanical stress and bone loss in cellular biomechanics, engineering principles, mechanical properties of bone, animal studies, clinical reports, bone physiology, and implant design biomechanics. These papers demonstrate occlusal overload on implants may increase the incidence of marginal bone loss. PMID:15968181

  3. S-Ketoprofen Inhibits Tenotomy-Induced Bone Loss and Dynamics in Weanling Rats

    NASA Technical Reports Server (NTRS)

    Zeng, Q. Q.; Jee, W. S. S.; Ke, H. Z.; Wechter, W. J.

    1993-01-01

    The objects of this study were to determine whether S-ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), can prevent immobilization (tenotomy)-induced bone loss in weanling rats. Forty five 4 week-old Sprague-Dawley female rats were either sham-operated or subjected to knee tenotomy and treated simultaneously with 0, 0.02, 0.1, 0.5 or 2.5 mg of S-ketoprofen/kg per day for 21 days. We then studied double-fluorescent labeled proximal tibial longitudinal sections and tibial shaft cross sections using static and dynamic histomorphometry. Less cancellous bone mass in proximal tibial metaphyses was found in tenotomized controls than in basal (36%) and sham-operated (54%) controls. This was due to the inhibition of age-related bone gain and induced bone loss due to increased bone resorption and decreased bone formation. S-ketoprofen prevented both the inhibition of age-related bone gain and the stimulation of bone loss at the 2.5 mg/kg per day dose level, while it only prevented bone loss at the 0.5 mg/kg dose levels. In cancellous bone, dynamic histomorphometry showed that S-ketoprofen prevented the tenotomy induced decrease in bone formation and increase in bone resorption. In the tibial shaft, tenotomy inhibited the enlargement of total tissue area by depressing periosteal bone formation, and thus inhibited age-related cortical bone gain. S-ketoprofen treatment did not prevent this change at all dose levels, but reduced marrow cavity area to increase cortical bone area at the 0.1, 0.5 and 2.5 mg/kg per dose levels compared to tenotomy controls. However, the cortical bone area in the 0.1 and 0.5 mg dose-treated treated tenotomy rats was still lower than in the age-related controls. S-ketoprofen also prevented the increase in endocortical eroded perimeter induced by tenotomy. In summary, tenotomy inhibited age-related bone gain and stimulated bone loss in cancellous bone sites, and only inhibited age-related bone gain in cortical bone sites. S

  4. Hydrogen Sulfide Is a Novel Regulator of Bone Formation Implicated in the Bone Loss Induced by Estrogen Deficiency.

    PubMed

    Grassi, Francesco; Tyagi, Abdul Malik; Calvert, John W; Gambari, Laura; Walker, Lindsey D; Yu, Mingcan; Robinson, Jerid; Li, Jau-Yi; Lisignoli, Gina; Vaccaro, Chiara; Adams, Jonathan; Pacifici, Roberto

    2016-05-01

    Hydrogen sulfide (H2 S) is a gasotransmitter known to regulate bone formation and bone mass in unperturbed mice. However, it is presently unknown whether H2 S plays a role in pathologic bone loss. Here we show that ovariectomy (ovx), a model of postmenopausal bone loss, decreases serum H2 S levels and the bone marrow (BM) levels of two key H2 S-generating enzymes, cystathione β-synthase (CBS) and cystathione γ-lyase (CSE). Treatment with the H2 S-donor GYY4137 (GYY) normalizes serum H2 S in ovx mice, increases bone formation, and completely prevents the loss of trabecular bone induced by ovx. Mechanistic studies revealed that GYY increases murine osteoblastogenesis by activating Wnt signaling through increased production of the Wnt ligands Wnt16, Wnt2b, Wnt6, and Wnt10b in the BM. Moreover, in vitro treatment with 17β-estradiol upregulates the expression of CBS and CSE in human BM stromal cells (hSCs), whereas an H2 S-releasing drug induces osteogenic differentiation of hSCs. In summary, regulation of H2 S levels is a novel mechanism by which estrogen stimulates osteoblastogenesis and bone formation in mice and human cells. Blunted production of H2 S contributes to ovx-induced bone loss in mice by limiting the compensatory increase in bone formation elicited by ovx. Restoration of H2 S levels is a potential novel therapeutic approach for postmenopausal osteoporosis. © 2015 American Society for Bone and Mineral Research. PMID:26614970

  5. Alcohol-induced bone loss is blocked in p47phox -/- mice lacking functional nadph oxidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic ethanol (EtOH) consumption produces bone loss. Previous data suggest a role for NADPH oxidase enzymes (Nox) since the pan-Nox inhibitor diphenylene iodonium (DPI) blocks EtOH-induced bone loss in rats. The current study utilized mice in which Nox enzymes 1,2,3 and 5 are inactivated as a resu...

  6. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model.

    PubMed

    Britton, Robert A; Irwin, Regina; Quach, Darin; Schaefer, Laura; Zhang, Jing; Lee, Taehyung; Parameswaran, Narayanan; McCabe, Laura R

    2014-11-01

    Estrogen deficiency is a major risk factor for osteoporosis that is associated with bone inflammation and resorption. Half of women over the age of 50 will experience an osteoporosis related fracture in their lifetime, thus novel therapies are needed to combat post-menopausal bone loss. Recent studies suggest an important role for gut-bone signaling pathways and the microbiota in regulating bone health. Given that the bacterium Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) secretes beneficial immunomodulatory factors, we examined if this candidate probiotic could reduce bone loss associated with estrogen deficiency in an ovariectomized (Ovx) mouse menopausal model. Strikingly, L. reuteri treatment significantly protected Ovx mice from bone loss. Osteoclast bone resorption markers and activators (Trap5 and RANKL) as well as osteoclastogenesis are significantly decreased in L. reuteri-treated mice. Consistent with this, L. reuteri suppressed Ovx-induced increases in bone marrow CD4+ T-lymphocytes (which promote osteoclastogenesis) and directly suppressed osteoclastogenesis in vitro. We also identified that L. reuteri treatment modifies microbial communities in the Ovx mouse gut. Together, our studies demonstrate that L. reuteri treatment suppresses bone resorption and loss associated with estrogen deficiency. Thus, L. reuteri treatment may be a straightforward and cost-effective approach to reduce post-menopausal bone loss. PMID:24677054

  7. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model

    PubMed Central

    Britton, Robert A.; Irwin, Regina; Quach, Darin; Schaefer, Laura; Zhang, Jing; Lee, Taehyung; Parameswaran, Narayanan; McCabe, Laura R.

    2014-01-01

    Estrogen deficiency is a major risk factor for osteoporosis that is associated with bone inflammation and resorption. Half of women over the age of 50 will experience an osteoporosis related fracture in their lifetime, thus novel therapies are needed to combat post-menopausal bone loss. Recent studies suggest an important role for gut-bone signaling pathways and the microbiota in regulating bone health. Given that the bacterium Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) secretes beneficial immunomodulatory factors, we examined if this candidate probiotic could reduce bone loss associated with estrogen deficiency in an ovariectomized (Ovx) mouse menopausal model. Strikingly, L. reuteri treatment significantly protected Ovx mice from bone loss. Osteoclast bone resorption markers and activators (Trap5 and RANKL) as well as osteoclastogenesis are significantly decreased in L. reuteri treated mice. Consistent with this, L. reuteri suppressed Ovx-induced increases in bone marrow CD4+ T-lymphocytes (which promote osteoclastogenesis) and directly suppressed osteoclastogenesis in vitro. We also identif ied that L. reuteri treatment modifies microbial communities in the Ovx mouse gut. Together, our studies demonstrate that L. reuteri treatment suppresses bone resorption and loss associated with estrogen deficiency. Thus, L. reuteri treatment may be a straightforward and cost-effective approach to reduce post-menopausal bone loss. PMID:24677054

  8. Bone loss during simulated weightlessness - Is it glucocorticoid mediated?

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.; Cone, C. M.; Morey-Holton, E.

    1985-01-01

    Elevating the hindquarters of a rat by the tail unweights the hind limbs but maintains normal weight-bearing by the forelimbs. This maneuver leads to a decrease in bone mass and calcium content in the unweighted bones (e.g., tibia and L1 vertebra), but not in the normally weighted bones (e.g., humerus and mandible). Potentially, the stress of the maneuver, mediated by increased glucocorticoid production and secretion, could explain the decreased bone formation, rather than the skeletal unweighting per se. To test this possibility, the effects of adrenalectomy on the response of bone to the unweighting of the hind limbs of normal rats were evaluated.

  9. Prognosis of implant longevity in terms of annual bone loss: a methodological finite element study.

    PubMed

    Demenko, Vladyslav; Linetskiy, Igor; Linetska, Larysa; Nesvit, Vitalij; Shevchenko, Andrii; Yefremov, Oleg; Weisskircher, Hans-Werner

    2016-01-01

    Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant-bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success. PMID:25847087

  10. Staphylococcus aureus Protein A Plays a Critical Role in Mediating Bone Destruction and Bone Loss in Osteomyelitis

    PubMed Central

    Widaa, Amro; Claro, Tania; Foster, Timothy J.; O’Brien, Fergal J.; Kerrigan, Steven W.

    2012-01-01

    Staphylococcus aureus is the most frequent causative organism of osteomyelitis. It is characterised by widespread bone loss and bone destruction. Previously we demonstrated that S. aureus protein A (SpA) is capable of binding to tumour necrosis factor receptor-1 expressed on pre-osteoblastic cells, which results in signal generation that leads to cell apoptosis resulting in bone loss. In the current report we demonstrate that upon S. aureus binding to osteoblasts it also inhibits de novo bone formation by preventing expression of key markers of osteoblast growth and division such as alkaline phosphatase, collagen type I, osteocalcin, osteopontin and osteocalcin. In addition, S. aureus induces secretion of soluble RANKL from osteoblasts which in turn recruits and activates the bone resorbing cells, osteoclasts. A strain of S. aureus defective in SpA failed to affect osteoblast growth or proliferation and most importantly failed to recruit or activate osteoclasts. These results suggest that S. aureus SpA binding to osteoblasts provides multiple coordinated signals that accounts for bone loss and bone destruction seen in osteomyelitis cases. A better understanding of the mechanisms through which S. aureus leads to bone infection may improve treatment or lead to the development of better therapeutic agents to treat this notoriously difficult disease. PMID:22792377

  11. Peptide-induced de novo bone formation after tooth extraction prevents alveolar bone loss in a murine tooth extraction model.

    PubMed

    Arai, Yuki; Aoki, Kazuhiro; Shimizu, Yasuhiro; Tabata, Yasuhiko; Ono, Takashi; Murali, Ramachandran; Mise-Omata, Setsuko; Wakabayashi, Noriyuki

    2016-07-01

    Tooth extraction causes bone resorption of the alveolar bone volume. Although recombinant human bone morphogenetic protein 2 (rhBMP-2) markedly promotes de novo bone formation after tooth extraction, the application of high-dose rhBMP-2 may induce side effects, such as swelling, seroma, and an increased cancer risk. Therefore, reduction of the necessary dose of rhBMP-2 which can still obtain sufficient bone mass is necessary by developing a new osteogenic reagent. Recently, we showed that the systemic administration of OP3-4 peptide, which was originally designed as a bone resorption inhibitor, had osteogenic ability both in vitro and in vivo. This study evaluated the ability of the local application of OP3-4 peptide to promote bone formation in a murine tooth extraction model with a very low-dose of BMP. The mandibular incisor was extracted from 10-week-old C57BL6/J male mice and a gelatin hydrogel containing rhBMP-2 with or without OP3-4 peptide (BMP/OP3-4) was applied to the socket of the incisor. Bone formation inside the socket was examined radiologically and histologically at 21 days after the extraction. The BMP/OP3-4-group showed significant bone formation inside the mandibular extraction socket compared to the gelatin-hydrogel-carrier-control group or rhBMP-2-applied group. The BMP/OP3-4-applied mice showed a lower reduction of alveolar bone and fewer osteoclast numbers, suggesting that the newly formed bone inside the socket may prevent resorption of the cortical bone around the extraction socket. Our data revealed that OP3-4 peptide promotes BMP-mediated bone formation inside the extraction socket of mandibular bone, resulting in preservation from the loss of alveolar bone. PMID:27118173

  12. Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice

    PubMed Central

    Bruscoli, Stefano; Biagioli, Michele; Sorcini, Daniele; Frammartino, Tiziana; Cimino, Monica; Sportoletti, Paolo; Mazzon, Emanuela; Bereshchenko, Oxana

    2015-01-01

    Glucocorticoids (GC) are widely used as antiinflammatory/immunosuppressive drugs and antitumor agents in several types of lymphoma and leukemia. Therapeutic doses of GC induce growth-suppressive and cytotoxic effects on various leukocytes including B cells. Molecular mechanisms of GC action include induction of GC target genes. Glucocorticoid-induced leucine zipper (GILZ) is a rapidly, potently, and invariably GC-induced gene. It mediates a number of GC effects, such as control of cell proliferation, differentiation, and apoptosis. Here we show that deletion of GILZ in mice leads to an accumulation of B lymphocytes in the bone marrow, blood, and lymphoid tissues. Gilz knockout (KO) mice develop a progressive nonlethal B lymphocytosis, with expansion of B220+ cells in the bone marrow and in the periphery, dependent on increased B-cell survival. Decreased B-cell apoptosis in mice lacking GILZ correlates with increased NF-κB transcriptional activity and Bcl-2 expression. B cell–specific gilz KO mice confirmed that the effect of GILZ deletion is B-cell self-intrinsic. These results establish GILZ as an important regulator of B-cell survival and suggest that the deregulation of GILZ expression could be implicated in the pathogenesis of B-cell disorders. PMID:26276664

  13. Alveolar bone loss in osteoporosis: a loaded and cellular affair?

    PubMed Central

    Jonasson, Grethe; Rythén, Marianne

    2016-01-01

    Maxillary and mandibular bone mirror skeletal bone conditions. Bone remodeling happens at endosteal surfaces where the osteoclasts and osteoblasts are situated. More surfaces means more cells and remodeling. The bone turnover rate in the mandibular alveolar process is probably the fastest in the body; thus, the first signs of osteoporosis may be revealed here. Hormones, osteoporosis, and aging influence the alveolar process and the skeletal bones similarly, but differences in loading between loaded, half-loaded, and unloaded bones are important to consider. Bone mass is redistributed from one location to another where strength is needed. A sparse trabeculation in the mandibular premolar region (large intertrabecular spaces and thin trabeculae) is a reliable sign of osteopenia and a high skeletal fracture risk. Having dense trabeculation (small intertrabecular spaces and well-mineralized trabeculae) is generally advantageous to the individual because of the low fracture risk, but may imply some problems for the clinician. PMID:27471408

  14. Low Dose Parathyroid Hormone Maintains Normal Bone Formation in Adult Male Rats During Rapid Weight Loss

    PubMed Central

    Turner, Russell T.; Iwaniec, Urszula T.

    2011-01-01

    A persistent negative energy balance results in bone loss. It is not clear whether the bone loss associated with chronic negative energy balance can be prevented. The objective of this study was to assess the efficacy of intermittent low dose parathyroid hormone (PTH) treatment in maintaining normal bone formation during severe energy restriction. Six-month-old male Fisher 344 rats were divided into 4 treatment groups: (1) baseline, (2) ad libitum (ad lib)-fed control, (3) energy-restricted (to consume 40% ad lib caloric intake), or (4) energy-restricted + low dose (1 μg/kg/d) PTH. Severe energy restriction for 14 days decreased body weight and serum leptin levels. Compared to ad lib-fed controls, energy-restricted rats had lower cancellous bone formation, higher osteoclast perimeter/bone perimeter and higher bone marrow adiposity in the proximal tibial metaphysis. Also, the energy-restricted rats had a lower periosteal bone formation rate at the tibia-fibula synostosis. Administration of PTH to energy-restricted rats had no effect on weight loss or osteoclast perimeter/bone perimeter. In contrast, energy-restricted rats treated with PTH had higher rates of cancellous and cortical bone formation compared to energy-restricted rats, and did not differ from the ad lib-fed control animals. Furthermore, PTH treatment maintained normal bone marrow adiposity. In conclusion, rapid weight loss in adult male rats was accompanied by decreased bone formation and increased bone marrow adiposity and these changes were prevented by low dose PTH treatment. Taken together, the results suggest that the energy cost of bone formation in adult rats is low and PTH therapy is effective in preventing the reduced bone formation associated with rapid weight loss. PMID:21215827

  15. Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Li, Mei; Jee, Webster S. S.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher

  16. Delay of natural bone loss by higher intakes of specific minerals and vitamins.

    PubMed

    Schaafsma, A; de Vries, P J; Saris, W H

    2001-05-01

    For early prevention or inhibition of postmenopausal and age-related bone loss, nutritional interventions might be a first choice. For some vitamins and minerals an important role in bone metabolism is known or suggested. Calcium and vitamin D support bone mineral density and are basic components in most preventive strategies. Magnesium is involved in a number of activities supporting bone strength, preservation, and remodeling. Fluorine and strontium have bone-forming effects. However, high amounts of both elements may reduce bone strength. Boron is especially effective in case of vitamin D, magnesium, and potassium deficiency. Vitamin K is essential for the activation of osteocalcin. Vitamin C is an important stimulus for osteoblast-derived proteins. Increasing the recommended amounts (US RDA 1989), adequate intakes (US DRI 1997), or assumed normal intakes of mentioned food components may lead to a considerable reduction or even prevention of bone loss, especially in late postmenopausal women and the elderly. PMID:11401244

  17. Annual bone loss and success rates of dental implants based on radiographic measurements

    PubMed Central

    Zhang, L; Liu, Y; Wismeijer, D

    2014-01-01

    Objectives: Bone loss around dental implants is generally measured by monitoring changes in marginal bone level using radiographs. After the first year of implantation, an implant should have <0.2 mm annual loss of marginal bone level to satisfy the criteria of success. However, the process of measuring marginal bone level on radiographs has a precision of 0.2 mm (or more) owing to variations in exposure geometry, exposure time and observer perception. Therefore, the value of the annual loss may vary considerably, especially when short intervals are considered. This study investigates how the success rate of dental implants depends on the way annual bone loss is calculated. Methods: Panoramic radiographs of 82 implant patients with an average follow-up of 10.4 years were analysed. Marginal bone levels near the implants were indicated by one observer. The annual loss of marginal bone level was determined according to four different calculation methods. Results: The methods yielded success rates of 9%, 45%, 81% and 89%. Conclusions: The success rate of dental implants measured on radiographs greatly depends on the details of the calculation method. Without rigorous standardization, annual bone loss and implant success rate are not well defined. PMID:25030551

  18. Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice.

    PubMed

    Wendelboe, Mette Høegh; Thomsen, Jesper Skovhus; Henriksen, Kim; Vegger, Jens Bay; Brüel, Annemarie

    2016-06-01

    In rodents, lactation is associated with a considerable and very rapid bone loss, which almost completely recovers after weaning. The aim of the present study was to investigate whether the bisphosphonate Zoledronate (Zln) can inhibit lactation induced bone loss, and if Zln interferes with recovery of bone mass after lactation has ceased. Seventy-six 10-weeks-old NMRI mice were divided into the following groups: Baseline, Pregnant, Lactation, Lactation+Zln, Recovery, Recovery+Zln, and Virgin Control (age-matched). The lactation period was 12days, then the pups were removed, and thereafter recovery took place for 28days. Zln, 100μg/kg, was given s.c. on the day of delivery, and again 4 and 8days later. Mechanical testing, μCT, and dynamic histomorphometry were performed. At L4, lactation resulted in a substantial loss of bone strength (-55% vs. Pregnant, p<0.01), BV/TV (-40% vs. Pregnant, p<0.01), and trabecular thickness (Tb.Th) (-29% vs. Pregnant, p<0.001). Treatment with Zln completely prevented lactation induced loss of bone strength, BV/TV, and Tb.Th at L4. Full recovery of micro-architectural and mechanical properties was found 28days after weaning in vehicle-treated mice. Interestingly, the recovery group treated with Zln during the lactation period had higher BV/TV (+45%, p<0.01) and Tb.Th (+16%, p<0.05) compared with virgin controls. Similar results were found at the proximal tibia and femur. This indicates that Zln did not interfere with the bone formation taking place after weaning. On this background, we conclude that post-lactation bone formation is not dependent on a preceding lactation induced bone loss. PMID:27021151

  19. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  20. Bone Marrow Transplantation Improves Autoinflammation and Inflammatory Bone Loss in SH3BP2 Knock-In Cherubism Mice

    PubMed Central

    Yoshitaka, Teruhito; Kittaka, Mizuho; Ishida, Shu; Mizuno, Noriyoshi; Mukai, Tomoyuki; Ueki, Yasuyoshi

    2014-01-01

    Cherubism (OMIM#118400) is a genetic disorder in children characterized by excessive jawbone destruction with proliferation of fibro-osseous lesions containing a large number of osteoclasts. Mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for cherubism. Analysis of the knock-in (KI) mouse model of cherubism showed that homozygous cherubism mice (Sh3bp2KI/KI) spontaneously develop systemic autoinflammation and inflammatory bone loss and that cherubism is a TNF-α-dependent hematopoietic disorder. In this study, we investigated whether bone marrow transplantation (BMT) is effective for the treatment of inflammation and bone loss in Sh3bp2KI/KI mice. Bone marrow (BM) cells from wild-type (Sh3bp2+/+) mice were transplanted to 6-week-old Sh3bp2KI/KI mice with developing inflammation and to 10-week-old Sh3bp2KI/KI mice with established inflammation. Six-week-old Sh3bp2KI/KI mice transplanted with Sh3bp2+/+ BM cells exhibited improved body weight loss, facial swelling, and survival rate. Inflammatory lesions in the liver and lung as well as bone loss in calvaria and mandibula were ameliorated at 10 weeks after BMT compared to Sh3bp2KI/KI mice transplanted with Sh3bp2KI/KI BM cells. Elevation of serum TNF-α levels was not detected after BMT. BMT was effective for up to 20 weeks in 6-week-old Sh3bp2KI/KI mice transplanted with Sh3bp2+/+ BM cells. BMT also ameliorated the inflammation and bone loss in 10-week-old Sh3bp2KI/KI mice. Thus our study demonstrates that BMT improves the inflammation and bone loss in cherubism mice. BMT may be effective for the treatment of cherubism patients. PMID:25445458

  1. Anti-Transforming Growth Factor ß Antibody Treatment Rescues Bone Loss and Prevents Breast Cancer Metastasis to Bone

    PubMed Central

    Biswas, Swati; Nyman, Jeffry S.; Alvarez, JoAnn; Chakrabarti, Anwesa; Ayres, Austin; Sterling, Julie; Edwards, James; Rana, Tapasi; Johnson, Rachelle; Perrien, Daniel S.; Lonning, Scott; Shyr, Yu; Matrisian, Lynn M.; Mundy, Gregory R.

    2011-01-01

    Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors. PMID:22096521

  2. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  3. Male Astronauts Have Greater Bone Loss and Risk of Hip Fracture Following Long Duration Spaceflights than Females

    NASA Technical Reports Server (NTRS)

    Ellman, Rachel; Sibonga, Jean; Bouxsein, Mary

    2010-01-01

    This slide presentation reviews bone loss in males and compares it to female bone loss during long duration spaceflight. The study indicates that males suffer greater bone loss than females and have a greater risk of hip fracture. Two possible reason for the greater male bone loss are that the pre-menopausal females have the estrogen protection and the greater strength of men max out the exercise equipment that provide a limited resistance to 135 kg.

  4. Stemmed femoral knee prostheses: effects of prosthetic design and fixation on bone loss.

    PubMed

    van Lenthe, G Harry; Willems, Marieke M M; Verdonschot, Nico; de Waal Malefijt, Maarten C; Huiskes, Rik

    2002-12-01

    Although the revision rates for modern knee prostheses have decreased drastically, the total number of revisions a year is increasing because many more primary knee replacements are being done. At the time of revision, bone loss is common, which compromises prosthetic stability. To improve stability, intramedullary stems are often used. The aim of this study was to estimate the effects of a stem, its diameter and the interface bonding conditions on patterns of the bone remodeling in the distal femur. We created finite element models of the distal half of a femur in which 4 types of knee prostheses were placed. The bone remodeling process was simulated using a strain-adaptive bone remodeling theory. The amount of such remodeling was determined by calculating the changes in bone mineral density in 9 regions of interest from simulated DEXA scans. The computer simulation model showed that revision prostheses tend to cause more bone resorption than primary ones, especially in the most distal regions. Predicted long-term bone loss due to a revision prosthesis with a thin stem equalled that around a prosthesis with an intercondylar box. However, strong regional differences were found--the stemmed prostheses having more bone loss in the most distal areas and some bone gain in the more proximal ones. A prosthesis with a thick stem led to an increase in bone loss. When the prosthesis-cement interface was bonded, more bone loss was predicted than with an unbonded interface. These results suggest that a stem which increases stability initially may reduce stability in the long term. This is due to an increase in stress shielding and bone resorption. PMID:12553509

  5. Alfacalcidol prevents aromatase inhibitor (Letrozole)-induced bone mineral loss in young growing female rats.

    PubMed

    Mohamed, Idris; Yeh, James K

    2009-08-01

    Long-term aromatase inhibitor use causes bone loss and increases fracture risk secondary to induced estrogen deficiency. We postulated that alfacalcidol (A; vitamin D(3) analog) could help prevent the Letrozole (L)-induced mineral bone loss. Fifty intact 1-month-old female rats were randomly divided into basal group; age-matched control group (AMC); L group: oral administration of 2 mg/kg per day; A group: oral administration of 0.1 microg/kg per day; and group L+A for a period of 8 weeks. Eight-week administration of L resulted in a significant increase in body weight, bone length, bone area, bone formation, and bone resorption activities when compared with the AMC group. However, the bone mass and bone mineral density (BMD) were significantly lower than the AMC group. Serum levels of testosterone, LH, FSH, and IGF-1 were significantly higher and serum estrone and estradiol were lower along with a decrease in ovary+uterus horn weight, when compared with the AMC groups. None of those parameters were affected by A treatment, except suppression of bone resorption activities and increased trabecular bone mass and femoral BMD, when compared with the AMC group. Results of L+A combined intervention showed that bone length, bone area, and bone formation activities were higher than the AMC group, and the bone resorption activities were lower and BMD was significantly higher than that of the L group. This study demonstrates that the combined intervention of L and A not only enhances bone growth, but also increases bone density, and the effects of L and A are independent and additive. PMID:19420010

  6. Effects of antifracture drugs in postmenopausal, male and glucocorticoid-induced osteoporosis--usefulness of alendronate and risedronate.

    PubMed

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro

    2007-11-01

    The purpose of this paper is to discuss the effects of antifracture drugs on postmenopausal, male and glucocorticoid-induced osteoporosis, focussing on the efficacy and safety of alendronate and risedronate. A search of the literature was conducted using PubMed for strictly conducted systematic reviews published from 1995 to present with homogeneity, meta-analyses with homogeneity, and randomized controlled trials (RCTs) with a narrow confidence interval. According to the results of the systematic reviews and meta-analyses, alendronate and risedronate are useful for the prevention of vertebral and non-vertebral fractures in postmenopausal women with osteoporosis. The results of RCTs have shown the antifracture efficacy of raloxifene and ibandronate against vertebral fractures and that of strontium and parathyroid hormone against vertebral and non-vertebral fractures in postmenopausal women with osteoporosis. In addition, the long-term safety of alendronate, risedronate and raloxifene has been established. On the other hand, RCTs have shown that, only alendronate prevents vertebral fractures in men with osteoporosis, and that alendronate and risedronate can prevent vertebral fractures in patients receiving glucocorticoid treatment. There seems to be less evidence of the antifracture efficacy of the drugs in male and glucocorticoid-induced osteoporosis. They have limitations related to long-term compliance, gastrointestinal intolerance and poor and variable absorption form gastrointestinal tract. Thus, intermittent intravenous administration of bisphosphonates such as ibandronate and zoledronate or subcutaneous administration of denosumab might address some of these problems, although the antifracture efficacy of these drugs needs be established. However, antifracture efficacy and long-term safety are important points in the choice of drugs for the treatment of osteoporosis. Thus, the evidence derived from the literature, based on strict evidence-based medicine

  7. Non-steroidal anti-inflammatory drugs in the reduction of human alveolar bone loss.

    PubMed

    Feldman, R S; Szeto, B; Chauncey, H H; Goldhaber, P

    1983-03-01

    Aspirin (ASA) and indomethacin are inhibitors of prostaglandin synthesis and reduce bone resorption in tissue culture stimulated by preparations obtained from human gingival tissue. In a retrospective study, we attempted to determine whether ASA or ASA plus indomethacin exert a bone resorption inhibiting effect on human alveolar bone. Dental radiographs of 75 patients with a history of arthritis and long-term ingestion (greater than 5 years) of ASA were compared with dental radiographs of 75 healthy male volunteers from the VA Dental Longitudinal Study (DLS). Proximal bone loss was measured using a Schei Ruler graded on a 10-point scale. The data indicated that the ASA population presented with significantly fewer sites of 10% or greater mesial and distal bone loss than the healthy control population (P less than 0.05). Mean percentage bone loss for the entire dentition was also lower in the ASA group, although the difference was not statistically significant. As there is no evidence to suggest that inhibition of alveolar bone loss is a natural concomitant of the arthritic process, we conclude that the inhibition of bone loss found in this study was due to the chronic ingestion of ASA or ASA and indomethacin. PMID:6573339

  8. Salvianolic Acid B Prevents Bone Loss in Prednisone-Treated Rats through Stimulation of Osteogenesis and Bone Marrow Angiogenesis

    PubMed Central

    Cui, Liao; Li, Ting; Liu, Yuyu; Zhou, Le; Li, Pinghua; Xu, Bilian; Huang, Lianfang; Chen, Yan; Liu, Yanzhi; Tian, Xiaoyan; Jee, Webster S. S.; Wu, Tie

    2012-01-01

    Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10−6 mol/L to 10−7 mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with

  9. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse

    PubMed Central

    Kondo, Hisataka; Yumoto, Kenji; Alwood, Joshua S.; Mojarrab, Rose; Wang, Angela; Almeida, Eduardo A. C.; Searby, Nancy D.; Limoli, Charles L.

    2010-01-01

    Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure. Musculoskeletal disuse by hindlimb unloading (1 or 2 wk) or total body gamma irradiation (1 or 2 Gy of 137Cs) of 4-mo-old, male C57BL/6 mice each decreased cancellous bone volume fraction in the proximal tibiae and lumbar vertebrae. The extent of radiation-induced acute cancellous bone loss in tibiae and lumbar vertebrae was similar in normally loaded and hindlimb-unloaded mice. Similarly, osteoclast surface in the tibiae increased 46% as a result of irradiation, 47% as a result of hindlimb unloading, and 64% as a result of irradiation + hindlimb unloading compared with normally loaded mice. Irradiation, but not hindlimb unloading, reduced viability and increased apoptosis of marrow cells and caused oxidative damage to lipids within mineralized tissue. Irradiation also stimulated generation of reactive oxygen species in marrow cells. Furthermore, injection of α-lipoic acid, an antioxidant, mitigated the acute bone loss caused by irradiation. Together, these results showed that disuse and gamma irradiation, alone or in combination, caused a similar degree of acute cancellous bone loss and shared a common cellular mechanism of increased bone resorption. Furthermore, irradiation, but not disuse, may increase the number of osteoclasts and the extent of acute bone loss via increased reactive oxygen species production and ensuing oxidative damage, implying different molecular mechanisms. The finding that α-lipoic acid protected cancellous tissue from the

  10. The effect of whey acidic protein fractions on bone loss in the ovariectomised rat.

    PubMed

    Kruger, Marlena C; Plimmer, Gabrielle G; Schollum, Linda M; Haggarty, Neill; Ram, Satyendra; Palmano, Kate

    2005-08-01

    Bovine milk has been shown to contain bioactive components with bone-protective properties. Earlier studies on bovine milk whey protein showed that it suppressed bone resorption in the female ovariectomised rat. A new osteotropic component was subsequently identified in the whey basic protein fraction, but bone bioactivity may also be associated with other whey fractions. In the present study, we investigated whether acidic protein fractions isolated from bovine milk whey could prevent bone loss in mature ovariectomised female rats. Six-month-old female rats were ovariectomised (OVX) or left intact (sham). The OVX rats were randomised into four groups. One group remained the control (OVX), whereas three groups were fed various whey acidic protein fractions from milk whey as 3 g/kg diet for 4 months. Outcomes were bone mineral density, bone biomechanics and markers of bone turnover. Bone mineral density of the femurs indicated that one of the whey AF over time caused a recovery of bone lost from OVX. Plasma C-telopeptide of type I collagen decreased significantly in all groups except OVX control over time, indicating an anti-resorptive effect of whey acidic protein. Biomechanical data showed that the AF may affect bone architecture as elasticity was increased by one of the whey AF. The femurs of AF-supplemented rats all showed an increase in organic matter. This is the first report of an acidic whey protein fraction isolated from milk whey that may support the recovery of bone loss in vivo. PMID:16115359

  11. Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport.

    PubMed

    Lang, Florian; Vallon, Volker

    2012-02-01

    Serum- and glucocorticoid inducible-kinase 1 (SGK1) is an early gene transcriptionally upregulated by cell stress such as cell shrinkage and hypoxia and several hormones including gluco- and mineralocorticoids. It is activated by insulin and growth factors. SGK1 is a powerful regulator of a wide variety of channels and transporters. The present review describes the role of SGK1 in the regulation of potassium (K(+)) channels, K(+) transporters and K(+) homeostasis. SGK1-regulated K(+) channels include renal outer medullary K+ channel, Kv1.3, Kv1.5, KCNE1/KCNQ1, KCNQ4 and, via regulation of calcium (Ca(2+)) entry, Ca(2+)-sensitive K(+) channels. SGK1-sensitive transporters include sodium-potassium-chloride cotransporter 2 and sodium/potassium-adenosine triphosphatase. SGK1-dependent regulation of K(+) channels and K(+) transport contributes to the stimulation of renal K(+) excretion following high K(+) intake, to insulin-induced cellular K(+) uptake and hypokalemia, to inhibition of insulin release by glucocorticoids, to stimulation of mast cell degranulation and gastric acid secretion, and to cardiac repolarization. Thus, SGK1 has a profound effect on K(+) homeostasis and on a multitude of K(+)-sensitive cellular functions. PMID:22038256

  12. Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Vandenburgh, H. H.

    1992-01-01

    Glucocorticoids induce rapid atrophy of fast skeletal myofibers in vivo, and either weight lifting or endurance exercise reduces this atrophy by unknown mechanisms. We examined the effects of the synthetic glucocorticoid dexamethasone (Dex) on protein turnover in tissue-cultured avian fast skeletal myofibers and determined whether repetitive mechanical stretch altered the myofiber response to Dex. In static cultures after 3-5 days, 10(-8) M Dex decreased total protein content 42-74%, total protein synthesis rates 38-56%, mean myofiber diameter 35%, myosin heavy chain (MHC) content 86%, MHC synthesis rate 44%, and fibronectin synthesis rate 29%. Repetitive 10% stretch-relaxations of the cultured myofibers for 60 s every 5 min for 3-4 days prevented 52% of the Dex-induced decrease in protein content, 42% of the decrease in total protein synthesis rate, 77% of the decrease in MHC content, 42% of the decrease in MHC synthesis rate, and 67% of the decrease in fibronectin synthesis rate. This in vitro model system will complement in vivo studies in understanding the mechanism by which mechanical activity and glucocorticoids interact to regulate skeletal muscle growth.

  13. Inhibitory effects of morinda officinalis extract on bone loss in ovariectomized rats.

    PubMed

    Li, Nan; Qin, Lu-Ping; Han, Ting; Wu, Yan-Bin; Zhang, Qiao-Yan; Zhang, Hong

    2009-01-01

    The present study was undertaken to investigate the protective effects of ethanol extract from the root of Morinda Officinalis (RMO) on ovariectomy-induced bone loss. Administration of RMO extract increased trabecular bone mineral content and bone mineral density of tibia, improved the levels of phosphorus (P), calcium (Ca) and OPG, decreased the levels of DPD/Cr, TRAP, ACTH and corticosterone, but did not reverse the levels of ALP, TNF-alpha and IL-6 in serum of ovariectomized rats. These findings demonstrated that RMO extract reduced bone loss in ovariectomized rats, probably via the inhibition of bone resorption, but was not involved with bone formation. Anthraquinones and polysaccharides from Morinda officinals could be responsible for their antiosteoporotic activity, and the action mechanism of these constituents needs to be further studied. Therefore, RMO has the potential to develop a clinically useful antiosteoporotic agent. PMID:19513005

  14. Associations of genetic lactase non-persistence and sex with bone loss in young adulthood.

    PubMed

    Laaksonen, Marika M L; Impivaara, Olli; Sievänen, Harri; Viikari, Jorma S A; Lehtimäki, Terho J; Lamberg-Allardt, Christel J E; Kärkkäinen, Merja U M; Välimäki, Matti; Heikkinen, Jorma; Kröger, Liisa M; Kröger, Heikki P J; Jurvelin, Jukka S; Kähönen, Mika A P; Raitakari, Olli T

    2009-05-01

    Some studies have reported that after attainment of peak bone mass (PBM), slow bone loss may occur in both men and women; however, findings are inconsistent. Genetic factors play a significant role in bone loss, but the available evidence is conflicting. Genetic lactase non-persistence (lactase C/C(-13910) genotype) is suggested to increase risk for inadequate calcium intake predisposing to poorer bone health. We investigated whether this genotype is associated with PBM and bone loss in young Finnish adults. Subjects belong to the Cardiovascular Risk in Young Finns Study that is an ongoing multi-centre follow-up of atherosclerosis risk factors. From the original cohort, randomly selected subjects aged 20-29 participated in baseline bone mineral density (BMD) measurements (n=358), and in follow-up measurements 12 years later (n=157). Bone mineral content (BMC) and BMD at lumbar spine (LS) and femoral neck (FN) were measured at baseline and follow-up with dual energy X-ray absorptiometry (DXA). Lactase C/T(-13910) polymorphism was determined by PCR and allele-specific fluorogenic probes. Information on lifestyle was elicited with questionnaires. During the follow-up, bone loss at both bone sites was greater in males (LS BMD: -1.1%, FN BMD: -5.2%) than in females (LS BMD: +2.1%, FN BMD: -0.7%) (both bone sites p=0.001). Younger age predicted greater loss of FN BMC and BMD in females (p=0.013 and p=0.001, respectively). Increased calcium intake predicted FN BMD gain in both sexes (in females B=0.007 g/cm(2)/mg, p=0.002; in males B=0.006, p=0.045), and increased physical activity LS BMD gain in females (B=0.091 g/cm(2)/physical activity point, p=0.023). PBM did not differ between the lactase genotypes, but males with the CC(-13910) genotype seemed to be prone to greater bone loss during the follow-up (LS BMD: C/C vs. T/T p=0.081). In conclusion, bone loss in young adulthood was more common in males than in females and seemed to occur mainly at the femoral neck. Young

  15. Inflammation, bone loss and fracture risk in spondyloarthritis

    PubMed Central

    Briot, Karine; Roux, Christian

    2015-01-01

    Osteoporosis (ie, low bone mineral density) is common in ankylosing spondylitis, related to both systemic inflammation and decreased mobility. Vertebral fracture risk is increased; acute back pain in these patients is not always a flare-up of the disease, as it can be related to bone complications. Intervertebral disc fractures in the ankylosed spine are associated with severe neurological complications. As expected from pathophysiology, treatments effective against inflammation have a positive effect on bone, and prospective open studies have shown that tumour-necrosis-factor blockers can improve bone mineral density at the spine and the hip. There is so far no evidence of a decreased risk of fractures with such treatment. PMID:26509065

  16. Blockade of Glucocorticoid-Induced Tumor Necrosis Factor-Receptor-Related Protein Signaling Ameliorates Murine Collagen-Induced Arthritis by Modulating Follicular Helper T Cells.

    PubMed

    Ma, Jie; Feng, Dingqi; Wei, Yancai; Tian, Jie; Tang, Xinyi; Rui, Ke; Lu, Liwei; Xu, Huaxi; Wang, Shengjun

    2016-06-01

    Recent studies have shown that glucocorticoid-induced tumor necrosis factor-receptor-related protein (GITR) and its ligand (GITRL) are critically involved in the pathogenesis of autoimmune arthritis, but the role of GITRL/GITR signaling in modulating CD4(+) follicular helper T (Tfh) cell response during autoimmune arthritis remains largely unclear. We showed that splenic Tfh cells from mice with collagen-induced arthritis expressed higher levels of GITR compared with non-Tfh cells. In vitro, GITRL treatment markedly enhanced the percentage and number of Tfh cells. The administration of GITR fused to fragment crystallizable of IgG protein in mice with collagen-induced arthritis suppressed the Tfh cell response, resulting in ameliorated disease severity, and reduced production of autoantibody and the number of autoantibody-secreting cells in both the spleen and bone marrow. Together, these results indicate that blockade of GITR signaling can ameliorate arthritis progression mainly by modulating the Tfh cell response. PMID:27106763

  17. Sclerostin antibody prevented progressive bone loss in combined ovariectomized and concurrent functional disuse.

    PubMed

    Zhang, Dongye; Hu, Minyi; Chu, Timothy; Lin, Liangjun; Wang, Jingyu; Li, Xiaodong; Ke, Hua Zhu; Qin, Yi-Xian

    2016-06-01

    Osteoporosis is characterized by low bone mass and compromised trabecular architecture, and is commonly occurred in post-menopausal women with estrogen deficiency. In addition, prolonged mechanical unloading, i.e., long term bed rest, can exaggerate the bone loss. Sclerostin is a Wnt signaling antagonist and acts as a negative regulator for bone formation. A sclerostin-neutralizing antibody (Scl-Ab) increased bone mineral density in women with postmenopausal osteoporosis and healthy men. The objective of this study was to characterize the condition of bone loss in ovariectomized (OVX) rats with concurrent mechanical unloading and evaluate the effect of sclerostin antibody treatment in mitigating the prospective severe bone loss conditions in this model. Four-month-old OVX- or sham-operated female SD rats were used in this study. They were subjected to functional disuse induced by hind-limb suspension (HLS) or free ambulance after 2days of arrival. Subcutaneous injections with either vehicle or Scl-Ab at 25mg/kg were made twice per week for 5weeks from the time of HLS. μCT analyses demonstrated a significant decrease in distal metaphyseal trabecular architecture integrity with HLS, OVX and HLS+OVX (bone volume fraction decreased by 29%, 71% and 87% respectively). The significant improvements of various trabecular bone parameters (bone volume fraction increased by 111%, 229% and 297% respectively as compared with placebo group) with the administration of Scl-Ab are associated with stronger mechanical property and increased bone formation by histomorphometry. These results together indicate that Scl-Ab prevented the loss of trabecular bone mass and cortical bone strength in OVX rat model with concurrent mechanical unloading. The data suggested that monoclonal sclerostin-neutralizing antibody represents a promising therapeutic approach for severe osteoporosis induced by estrogen deficiency with concurrent mechanical unloading. PMID:26868528

  18. Accuracy of Cone Beam Computed Tomography for Detection of Bone Loss

    PubMed Central

    Goodarzi Pour, Daryoush; Soleimani Shayesteh, Yadollah

    2015-01-01

    Objectives: Bone assessment is essential for diagnosis, treatment planning and prediction of prognosis of periodontal diseases. However, two-dimensional radiographic techniques have multiple limitations, mainly addressed by the introduction of three-dimensional imaging techniques such as cone beam computed tomography (CBCT). This study aimed to assess the accuracy of CBCT for detection of marginal bone loss in patients receiving dental implants. Materials and Methods: A study of diagnostic test accuracy was designed and 38 teeth from candidates for dental implant treatment were selected. On CBCT scans, the amount of bone resorption in the buccal, lingual/palatal, mesial and distal surfaces was determined by measuring the distance from the cementoenamel junction to the alveolar crest (normal group: 0–1.5mm, mild bone loss: 1.6–3mm, moderate bone loss: 3.1–4.5mm and severe bone loss: >4.5mm). During the surgical phase, bone loss was measured at the same sites using a periodontal probe. The values were then compared by McNemar’s test. Results: In the buccal, lingual/palatal, mesial and distal surfaces, no significant difference was observed between the values obtained using CBCT and the surgical method. The correlation between CBCT and surgical method was mainly based on the estimation of the degree of bone resorption. CBCT was capable of showing various levels of resorption in all surfaces with high sensitivity, specificity, positive predictive value and negative predictive value compared to the surgical method. Conclusion: CBCT enables accurate measurement of bone loss comparable to surgical exploration and can be used for diagnosis of bone defects in periodontal diseases in clinical settings. PMID:26877741

  19. NADPH oxidases are critical targets for prevention of ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms through which chronic alcohol consumption induce bone loss and osteoporosis are largely unknown. Ethanol increases expression and activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzymes (Nox) in osteoblasts leading to accumulation of reactive oxygen spe...

  20. Effect of Vitamin K Supplementation on Bone Loss in Elderly Men and Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Vitamin K has been implicated in bone health, primarily in observational studies. However, little is known about the role of phylloquinone supplementation on prevention of bone loss in men and women. The objective of this study was to determine the effect of three-year phylloquinone ...

  1. ESTRADIOL PROTECTS AGAINST ETHANOL-INDUCED BONE LOSS BY INHIBITING UP REGULATION OF RANKL IN OSTEOBLASTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactation-induced bone loss is promptly restored in the post-weaning period by a process of anabolic rebuilding, the endocrine and molecular basis of which still remains enigmatic. Ethanol (EtOH) consumption during this post-weaning period prevents the recovery of bone density and may be a significa...

  2. Vitamin D receptor overexpression in osteoblasts and osteocytes prevents bone loss during vitamin D-deficiency.

    PubMed

    Lam, Nga N; Triliana, Rahma; Sawyer, Rebecca K; Atkins, Gerald J; Morris, Howard A; O'Loughlin, Peter D; Anderson, Paul H

    2014-10-01

    There are several lines of evidence that demonstrate the ability of 1,25-dihydroxyvitamin D (1,25(OH)2D3), acting via the vitamin D receptor (VDR) to mediate negative or positive effects in bone. Transgenic over-expression of VDR in osteoblasts and osteocytes in a mouse model (OSVDR) has been previously shown to inhibit processes of bone resorption and enhance bone formation, under conditions of adequate calcium intake. While these findings suggest that vitamin D signalling in osteoblasts and osteocytes promotes bone mineral accrual, the vitamin D requirement for this action is not well understood. In this study, 4 week old female OSVDR and wild-type (WT) mice were fed either a vitamin D-replete (1000IU/kg diet, D+) or vitamin D-deficient (D-) diet for 4 months to observe changes to bone mineral homeostasis. Tibial bone mineral volume was analysed by micro-CT and changes to bone cell activities were measured using standard dynamic histomorphometric techniques. While vitamin D-deplete WT mice demonstrated a reduction in periosteal bone accrual and overall bone mineral volume, OSVDR mice, however, displayed increased cortical and cancellous bone volume in mice which remained higher during vitamin D-depletion due to a reduced osteoclast number and increased bone formation rate. These data suggest that increased VDR-mediated activity in osteoblast and osteocytes prevents bone loss due to vitamin D-deficiency. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. PMID:24434283

  3. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  4. Antiresorptive therapy in the management of cancer treatment-induced bone loss.

    PubMed

    Garg, Ashwani; Leitzel, Kim; Ali, Suhail; Lipton, Allan

    2015-04-01

    Cancer treatment-induced bone loss treatment has an important role to prevent bone loss-related events like fracture, significant morbidity, mortality, disfigurement and loss of self-esteem, and health-care expenditure. Numerous factors, including treatment regimens and bone metastasis, increase the risk of osteoporosis or local bone destruction in most breast and prostate cancer patients. Cytotoxic chemotherapies, radiation, and hormonal therapies can lead to premature menopause and decrease bone mineral density. Over 60 % of breast cancer patients within 1 year of beginning postoperative adjuvant chemotherapy experience ovarian failure. Also, ovarian ablation and aromatase inhibitors used to treat breast cancer and orchiectomy and androgen deprivation therapy (ADT; to treat prostate cancer) cause substantial bone loss. In this article, we will focus mainly on antiresorptive therapy in the management of cancer treatment-induced bone loss (CTIBL). An understanding of CTIBL is critical for determining how to assess the risk and identify which patients may benefit from preventive therapy. PMID:25575469

  5. Correlation of the interdental and the interradicular bone loss: A radiovisuographic analysis

    PubMed Central

    Grover, Vishakha; Malhotra, Ranjan; Kapoor, Anoop; Mankotia, Chahat Singh; Bither, Rupika

    2014-01-01

    Background: Presence of furcation involvement indicates advanced periodontitis, and a potentially less-favorable prognosis, for the affected tooth and its diagnosis has always been an enigma. The present study was carried out to measure and correlate the interdental and interradicular bone loss in patients suffering from periodontitis using radiovisuography (RVG) for the purpose of early furcation diagnosis. Materials and Methods: A total of 50 patients suffering from chronic generalized periodontitis and with furcation involvement in mandibular molars were selected. Under standardized conditions, RVGs were taken and the morphologic measurements defining the furcation areas were recorded and analyzed. Result: Interradicular bone loss of about 0.8 mm or more, was observed in the study subjects only when the bone loss at the interdental area was minimal of 3.7 mm. The correlation between the interradicular and the interdental bone loss was statistically highly significant (T-test, P < 0.001). A stronger correlation was observed in subjects above 40 years of age as compared with the younger subjects. There was not much difference in the degree of correlation between the interradicular and the interdental bone loss when compared in the context of gender. Conclusion: The very first millimeter of interradicular bone loss was seen when the interdental bone loss was around 4 mm. Therefore, to detect the earliest lesions of furcations, the interdental bone loss can be kept as an approximate guide for the comprehensive diagnosis and management of such sites/patients. The current investigation paves the path for future longitudinal studies with larger samples to ascertain these findings. PMID:25210264

  6. Adipose-Derived Mesenchymal Stem Cells Prevent Systemic Bone Loss in Collagen-Induced Arthritis.

    PubMed

    Garimella, Manasa G; Kour, Supinder; Piprode, Vikrant; Mittal, Monika; Kumar, Anil; Rani, Lekha; Pote, Satish T; Mishra, Gyan C; Chattopadhyay, Naibedya; Wani, Mohan R

    2015-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis leading to joint destruction and systemic bone loss. The inflammation-induced bone loss is mediated by increased osteoclast formation and function. Current antirheumatic therapies primarily target suppression of inflammatory cascade with limited or no success in controlling progression of bone destruction. Mesenchymal stem cells (MSCs) by virtue of their tissue repair and immunomodulatory properties have shown promising results in various autoimmune and degenerative diseases. However, the role of MSCs in prevention of bone destruction in RA is not yet understood. In this study, we investigated the effect of adipose-derived MSCs (ASCs) on in vitro formation of bone-resorbing osteoclasts and pathological bone loss in the mouse collagen-induced arthritis (CIA) model of RA. We observed that ASCs significantly inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in both a contact-dependent and -independent manner. Additionally, ASCs inhibited RANKL-induced osteoclastogenesis in the presence of proinflammatory cytokines such as TNF-α, IL-17, and IL-1β. Furthermore, treatment with ASCs at the onset of CIA significantly reduced clinical symptoms and joint pathology. Interestingly, ASCs protected periarticular and systemic bone loss in CIA mice by maintaining trabecular bone structure. We further observed that treatment with ASCs reduced osteoclast precursors in bone marrow, resulting in decreased osteoclastogenesis. Moreover, ASCs suppressed autoimmune T cell responses and increased the percentages of peripheral regulatory T and B cells. Thus, we provide strong evidence that ASCs ameliorate inflammation-induced systemic bone loss in CIA mice by reducing osteoclast precursors and promoting immune tolerance. PMID:26538398

  7. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  8. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  9. Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss

    PubMed Central

    Cheng, Tsung-Lin; Lai, Chao-Han; Shieh, Shyh-Jou; Jou, Yin-Bo; Yeh, Jwu-Lai; Yang, Ai-Lun; Wang, Yan-Hsiung; Wang, Chau-Zen; Chen, Chung-Hwan; Shi, Guey-Yueh; Ho, Mei-Ling; Wu, Hua-Lin

    2016-01-01

    Osteoclastogenesis is an essential process during bone metabolism which can also be promoted by inflammatory signals. Thrombomodulin (TM), a transmembrane glycoprotein, exerts anti-inflammatory activities such as neutralization of proinflammatory high-mobility group box 1 (HMGB1) through TM lectin-like domain. This study aimed to identify the role of myeloid TM (i.e., endogenous TM expression on the myeloid lineage) in osteoclastogenesis and inflammatory bone loss. Using human peripheral blood mononuclear cells and mouse bone marrow-derived macrophages, we observed that the protein levels of TM were dramatically reduced as these cells differentiated into osteoclasts. In addition, osteoclastogenesis and extracellular HMGB1 accumulation were enhanced in primary cultured monocytes from myeloid-specific TM-deficient mice (LysMcre/TMflox/flox) and from TM lectin-like domain deleted mice (TMLeD/LeD) compared with their respective controls. Micro-computerized tomography scans showed that ovariectomy-induced bone loss was more pronounced in TMLeD/LeD mice compared with controls. Finally, the inhibiting effects of recombinant TM lectin-like domain (rTMD1) on bone resorption in vitro, and bone loss in both the ovariectomized model and collagen antibody-induced arthritis model has been detected. These findings suggested that the myeloid TM lectin-like domain may inhibit osteoclastogenesis by reducing HMGB1 signaling, and rTMD1 may hold therapeutic potential for inflammatory bone loss. PMID:27311356

  10. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway.

    PubMed

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  11. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway

    PubMed Central

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  12. Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss.

    PubMed

    Cheng, Tsung-Lin; Lai, Chao-Han; Shieh, Shyh-Jou; Jou, Yin-Bo; Yeh, Jwu-Lai; Yang, Ai-Lun; Wang, Yan-Hsiung; Wang, Chau-Zen; Chen, Chung-Hwan; Shi, Guey-Yueh; Ho, Mei-Ling; Wu, Hua-Lin

    2016-01-01

    Osteoclastogenesis is an essential process during bone metabolism which can also be promoted by inflammatory signals. Thrombomodulin (TM), a transmembrane glycoprotein, exerts anti-inflammatory activities such as neutralization of proinflammatory high-mobility group box 1 (HMGB1) through TM lectin-like domain. This study aimed to identify the role of myeloid TM (i.e., endogenous TM expression on the myeloid lineage) in osteoclastogenesis and inflammatory bone loss. Using human peripheral blood mononuclear cells and mouse bone marrow-derived macrophages, we observed that the protein levels of TM were dramatically reduced as these cells differentiated into osteoclasts. In addition, osteoclastogenesis and extracellular HMGB1 accumulation were enhanced in primary cultured monocytes from myeloid-specific TM-deficient mice (LysMcre/TM(flox/flox)) and from TM lectin-like domain deleted mice (TM(LeD/LeD)) compared with their respective controls. Micro-computerized tomography scans showed that ovariectomy-induced bone loss was more pronounced in TM(LeD/LeD) mice compared with controls. Finally, the inhibiting effects of recombinant TM lectin-like domain (rTMD1) on bone resorption in vitro, and bone loss in both the ovariectomized model and collagen antibody-induced arthritis model has been detected. These findings suggested that the myeloid TM lectin-like domain may inhibit osteoclastogenesis by reducing HMGB1 signaling, and rTMD1 may hold therapeutic potential for inflammatory bone loss. PMID:27311356

  13. TLR5, a novel mediator of innate immunity-induced osteoclastogenesis and bone loss.

    PubMed

    Kassem, Ali; Henning, Petra; Kindlund, Bert; Lindholm, Catharina; Lerner, Ulf H

    2015-11-01

    Accumulating evidence points to the importance of the innate immune system in inflammation-induced bone loss in infectious and autoimmune diseases. TLRs are well known for being activated by ligands expressed by bacteria, viruses, and fungi. Recent findings indicate that also endogenous ligands in inflammatory processes are important, one being a TLR5 agonist present in synovial fluid from patients with rheumatoid arthritis (RA). We found that activation of TLR5 by its specific ligand, flagellin, caused robust osteoclast formation and bone loss in cultured mouse neonatal parietal bones dependent on increased receptor activator of NF-κB ligand (RANKL):osteoprotegerin ratio, with half-maximal stimulation at 0.01 μg/ml. Flagellin enhanced Rankl mRNA in isolated osteoblasts by a myeloid differentiation primary response gene 88 and NF-κB-dependent mechanism. Injection of flagellin locally over skull bones in 5-wk-old mice resulted in increased mRNA expression of Rankl and osteoclastic genes, robust osteoclast formation, and bone loss. The effects in vitro and in vivo were absent in Tlr5(-/-) mice. These data show that TLR5 is a novel activator of RANKL and osteoclast formation and, therefore, a potential key factor in inflammation-induced bone erosions in diseases like RA, reactive arthritis, and periodontitis. TLR5 might be a promising novel treatment target for prevention of inflammatory bone loss. PMID:26207027

  14. Spaceflight-induced Bone Loss: Is there a Risk for Accelerated Osteoporosis after Return?

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2008-01-01

    The evidence-to to-date suggests that the rapid rate of site-specific bone loss in space, due to the unbalanced stimulation of bone resorption, may predispose crew members to irreversible changes in bone structure and microarchitecture. No analyses conducted in the postflight period to assess microarchitectural changes. There is no complete analysis of skeletal recovery in the postflight period to evaluate the structural changes that accompany increases in DXA aBMD. Postflight analyses based upon QCT scans performed on limited crew members indicate reductions in hip bone strength and incomplete recovery at 1 year. No recovery of trabecular vBMD after 1 year return (HRP IWG). Time course of bone loss in space unknown.

  15. Serum- and glucocorticoid-inducible kinase 1 in doxorubicin-induced nephrotic syndrome.

    PubMed

    Artunc, Ferruh; Nasir, Omaima; Amann, Kerstin; Boini, Krishna M; Häring, Hans-Ulrich; Risler, Teut; Lang, Florian

    2008-12-01

    Doxorubicin-induced nephropathy leads to epithelial sodium channel (ENaC)-dependent volume retention and renal fibrosis. The aldosterone-sensitive serum- and glucocorticoid-inducible kinase SGK1 has been shown to participate in the stimulation of ENaC and to mediate renal fibrosis following mineralocorticoid and salt excess. The present study was performed to elucidate the role of SGK1 in the volume retention and fibrosis during nephrotic syndrome. To this end, doxorubicin (15 mug/g body wt) was injected intravenously into gene-targeted mice lacking SGK1 (sgk1(-/-)) and their wild-type littermates (sgk1(+/+)). Doxorubicin treatment resulted in heavy proteinuria (>100 mg protein/mg crea) in 15/44 of sgk1(+/+) and 15/44 of sgk1(-/-) mice leading to severe nephrotic syndrome with ascites, lipidemia, and hypoalbuminemia in both genotypes. Plasma aldosterone levels increased in nephrotic mice of both genotypes and was followed by increased SGK1 protein expression in sgk1(+/+) mice. Urinary sodium excretion reached signficantly lower values in sgk1(+/+) mice (15 +/- 5 mumol/mg crea) than in sgk1(-/-) mice (35 +/- 5 mumol/mg crea) and was associated with a significantly higher body weight gain in sgk1(+/+) compared with sgk1(-/-) mice (+6.6 +/- 0.7 vs. +4.1 +/- 0.8 g). During the course of nephrotic syndrome, serum urea concentrations increased significantly faster in sgk1(-/-) mice than in sgk1(+/+) mice leading to uremia and a reduced median survival in sgk1(-/-) mice (29 vs. 40 days in sgk1(+/+) mice). In conclusion, gene-targeted mice lacking SGK1 showed blunted volume retention, yet were not protected against renal fibrosis during experimental nephrotic syndrome. PMID:18768591

  16. Conception on the Cell Mechanisms of Bone Tissue Loss

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.

    2008-06-01

    Basing on the analysis of available literature, the results of our own electron microscopic and radioautographic researches the data are presented about the morphofunctional peculiarities and succession of cellular interactions in adaptive remodeling of bone structures after exposure of animals (rats, monkeys) to microgravity (station SLS-2, Bion-11). The probable cellular mechanisms of the development of osteopenia and osteoporosis are considered.

  17. Twelve-Minute Daily Yoga Regimen Reverses Osteoporotic Bone Loss

    PubMed Central

    Lu, Yi-Hsueh; Rosner, Bernard; Chang, Gregory

    2016-01-01

    Objective: Assess the effectiveness of selected yoga postures in raising bone mineral density (BMD). Methods: Ten-year study of 741 Internet-recruited volunteers comparing preyoga BMD changes with postyoga BMD changes. Outcome Measures: Dual-energy x-ray absorptiometric scans. Optional radiographs of hips and spine and bone quality study (7 Tesla). Results: Bone mineral density improved in spine, hips, and femur of the 227 moderately and fully compliant patients. Monthly gain in BMD was significant in spine (0.0029 g/cm2, P = .005) and femur (0.00022 g/cm2, P = .053), but in 1 cohort, although mean gain in hip BMD was 50%, large individual differences raised the confidence interval and the gain was not significant for total hip (0.000357 g/cm2). No yoga-related serious injuries were imaged or reported. Bone quality appeared qualitatively improved in yoga practitioners. Conclusion: Yoga appears to raise BMD in the spine and the femur safely. PMID:27226695

  18. Protective effect of Pycnogenol® on ovariectomy-induced bone loss in rats.

    PubMed

    Mei, Lin; Mochizuki, Miyako; Hasegawa, Noboru

    2012-01-01

    Pycnogenol® (PYC) is a natural plant extract from the bark of Pinus pinaster and has potent antioxidant activities. The protective effect of PYC on bone loss was studied in multiparous ovariectomized (OVX) female rats. Pycnogenol® (30 or 15 mg/kg body weight/day) was administered orally to 8-month-old OVX rats for 3 months. At the end of the experiment, bone strength was measured by a three-point bending test and bone mineral density was estimated by peripheral quantitative computed tomography. Ovariectomy significantly decreased femur bone strength and bone density. Supplementation with PYC suppressed the bone loss induced by OVX. The OVX treatment significantly increased serum osteocalcin (OC) and C-terminal telopeptide of type I collagen (CTx). Supplementation with PYC reduced the serum OC and CTx in OVX rats to a level similar to that of the sham-operated group. The results indicated that orally administered PYC can decrease the bone turnover rate in OVX rats, resulting in positive effects on the biomechanical strength of bone and bone mineral density. PMID:21710590

  19. Tenofovir treatment of primary osteoblasts alters gene expression profiles: implications for bone mineral density loss

    PubMed Central

    Grigsby, Iwen F.; Pham, Lan; Mansky, Louis M.; Gopalakrishnan, Raj; Carlson, Ann E.; Mansky, Kim C.

    2010-01-01

    There is strong clinical evidence that implicates tenofovir in the loss of bone mineral density during treatment of human immunodeficiency virus infection. In this study, we sought to test the hypothesis that tenofovir treatment of osteoblasts causes changes in the gene expression profile that would impact osteoblast function during bone formation. Primary osteoblasts were isolated and then treated with the tenofovir prodrug, tenofovir disoproxil fumarate (TDF). Total RNA from TDF-treated and untreated osteoblasts were extracted and used for microarray analysis to assess TDF-associated changes in the gene expression profile. Strikingly, the changes in gene expression profiles involved in cell signaling, cell cycle and amino acid metabolism, which would likely impact osteoblast function in bone formation. Our findings demonstrate for the first time that tenofovir treatment of primary osteoblasts results in gene expression changes that implicate loss of osteoblast function in tenofovir-associated bone mineral density loss. PMID:20171173

  20. Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics

    PubMed Central

    Li, Jau-Yi; Chassaing, Benoit; Tyagi, Abdul Malik; Vaccaro, Chiara; Luo, Tao; Adams, Jonathan; Darby, Trevor M.; Weitzmann, M. Neale; Mulle, Jennifer G.; Gewirtz, Andrew T.; Jones, Rheinallt M.

    2016-01-01

    A eubiotic microbiota influences many physiological processes in the metazoan host, including development and intestinal homeostasis. Here, we have shown that the intestinal microbiota modulates inflammatory responses caused by sex steroid deficiency, leading to trabecular bone loss. In murine models, sex steroid deficiency increased gut permeability, expanded Th17 cells, and upregulated the osteoclastogenic cytokines TNFα (TNF), RANKL, and IL-17 in the small intestine and the BM. In germ-free (GF) mice, sex steroid deficiency failed to increase osteoclastogenic cytokine production, stimulate bone resorption, and cause trabecular bone loss, demonstrating that the gut microbiota is central in sex steroid deficiency–induced trabecular bone loss. Furthermore, we demonstrated that twice-weekly treatment of sex steroid–deficient mice with the probiotics Lactobacillus rhamnosus GG (LGG) or the commercially available probiotic supplement VSL#3 reduces gut permeability, dampens intestinal and BM inflammation, and completely protects against bone loss. In contrast, supplementation with a nonprobiotic strain of E. coli or a mutant LGG was not protective. Together, these data highlight the role that the gut luminal microbiota and increased gut permeability play in triggering inflammatory pathways that are critical for inducing bone loss in sex steroid–deficient mice. Our data further suggest that probiotics that decrease gut permeability have potential as a therapeutic strategy for postmenopausal osteoporosis. PMID:27111232

  1. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics.

    PubMed

    Li, Jau-Yi; Chassaing, Benoit; Tyagi, Abdul Malik; Vaccaro, Chiara; Luo, Tao; Adams, Jonathan; Darby, Trevor M; Weitzmann, M Neale; Mulle, Jennifer G; Gewirtz, Andrew T; Jones, Rheinallt M; Pacifici, Roberto

    2016-06-01

    A eubiotic microbiota influences many physiological processes in the metazoan host, including development and intestinal homeostasis. Here, we have shown that the intestinal microbiota modulates inflammatory responses caused by sex steroid deficiency, leading to trabecular bone loss. In murine models, sex steroid deficiency increased gut permeability, expanded Th17 cells, and upregulated the osteoclastogenic cytokines TNFα (TNF), RANKL, and IL-17 in the small intestine and the BM. In germ-free (GF) mice, sex steroid deficiency failed to increase osteoclastogenic cytokine production, stimulate bone resorption, and cause trabecular bone loss, demonstrating that the gut microbiota is central in sex steroid deficiency-induced trabecular bone loss. Furthermore, we demonstrated that twice-weekly treatment of sex steroid-deficient mice with the probiotics Lactobacillus rhamnosus GG (LGG) or the commercially available probiotic supplement VSL#3 reduces gut permeability, dampens intestinal and BM inflammation, and completely protects against bone loss. In contrast, supplementation with a nonprobiotic strain of E. coli or a mutant LGG was not protective. Together, these data highlight the role that the gut luminal microbiota and increased gut permeability play in triggering inflammatory pathways that are critical for inducing bone loss in sex steroid-deficient mice. Our data further suggest that probiotics that decrease gut permeability have potential as a therapeutic strategy for postmenopausal osteoporosis. PMID:27111232

  2. Low Magnitude, High Frequency Signals Could Reduce Bone Loss During Spaceflight

    NASA Astrophysics Data System (ADS)

    Hawkey, A.

    The removal of gravitational loading results in a loss of homeostasis of the skeleton. This leads to significant losses of bone mass during long-duration missions in space. Conventional exercise countermeasures, such as running and resistance training, have only limited effectiveness in reducing the rate at which bone is demineralised in microgravity. Bone loss, therefore, remains a major concern and if not annulled could be so severe as to jeopardise an extended human presence in space. In addition, current exercise regimes occupy valuable crew time, and astronauts often find the equipment cumbersome and uncomfortable to use. Recent studies suggest that exposing the body to short periods (<20mins) of low magnitude (<1g), high frequency (15-35Hz) signals (vibration) everyday could reduce, even prevent, bone loss during conditions such as osteoporo- sis on earth. The new vibration therapy treatment could also have several advantages over existing exercise countermeasures used in spaceflight due to it being very simple to operate, relatively inexpensive, and requiring only short periods of time `training', unlike the complicated, expensive and time-consuming devices currently used. This review highlights the detrimen- tal effects that microgravity has on the strength and integrity of bone, how current countermeasures are ineffective at stemming this level of deterioration, and how new vibration techniques could significantly reduce space-induced bone loss.

  3. Baseline observations from the POSSIBLE EU® study: characteristics of postmenopausal women receiving bone loss medications

    PubMed Central

    Cooper, Cyrus; Roux, Christian; Díez-Pérez, Adolfo; Guillemin, Francis; Jonsson, Bengt; Ortolani, Sergio; Pfeilschifter, Johannes; Horne, Rob; Kakad, Shilpa; Shepherd, Susan; Möller, Gerd; Marciniak, Anne; Martinez, Luc

    2010-01-01

    Summary Prospective Observational Scientific Study Investigating Bone Loss Experience in Europe (POSSIBLE EU®) is an ongoing longitudinal cohort study that utilises physician- and patient-reported measures to describe the characteristics and management of postmenopausal women on bone loss therapies. We report the study design and baseline characteristics of 3,402 women recruited from general practice across five European countries. Purpose The POSSIBLE EU® is a study describing the characteristics and management of postmenopausal women receiving bone loss medications. Methods Between 2005 and 2008, general practitioners enrolled postmenopausal women initiating, switching or continuing treatment with bone loss treatment in France, Germany, Italy, Spain and the UK. Patients and physicians completed questionnaires at study entry and at 3-month intervals, for 1 year. Results Of 3,402 women enrolled (mean age 68.2 years [SD] 9.83), 96% were diagnosed with low bone mass; 55% of these using dual energy X-ray absorptiometry. Most women (92%) had comorbidities. Mean minimum T score (hip or spine) at diagnosis was −2.7 (SD 0.89; median −2.7 [interquartile range, −3.2, −2.2]) indicating low bone mineral density. Almost 40% of the women had prior fractures in adulthood, mostly non-vertebral, non-hip in nature, 30% of whom had at least two fractures and more than half experienced moderate/severe pain or fatigue. Bisphosphonates were the most common type of bone loss treatment prescribed in the 12 months preceding the study. Conclusions POSSIBLE EU® characterises postmenopausal women with low bone mass, exhibiting a high rate of prevalent fracture, substantial bone fragility and overall comorbidity burden. Clinical strategies for managing osteoporosis in this population varied across the five participating European countries, reflecting their different guidelines, regulations and standards of care. PMID:21258637

  4. Effects of chronic estrogen treatment on modulating age-related bone loss in female mice.

    PubMed

    Syed, Farhan A; Mödder, Ulrike Il; Roforth, Matthew; Hensen, Ira; Fraser, Daniel G; Peterson, James M; Oursler, Merry Jo; Khosla, Sundeep

    2010-11-01

    While female mice do not have the equivalent of a menopause, they do undergo reproductive senescence. Thus, to dissociate the effects of aging versus estrogen deficiency on age-related bone loss, we sham-operated, ovariectomized, or ovariectomized and estrogen-replaced female C57/BL6 mice at 6 months of age and followed them to age 18 to 22 months. Lumbar spines and femurs were excised for analysis, and bone marrow hematopoietic lineage negative (lin-) cells (enriched for osteoprogenitor cells) were isolated for gene expression studies. Six-month-old intact control mice were euthanized to define baseline parameters. Compared with young mice, aged/sham-operated mice had a 42% reduction in lumbar spine bone volume/total volume (BV/TV), and maintaining constant estrogen levels over life in ovariectomized/estrogen-treated mice did not prevent age-related trabecular bone loss at this site. By contrast, lifelong estrogen treatment of ovariectomized mice completely prevented the age-related reduction in cortical volumetric bone mineral density (vBMD) and thickness at the tibial diaphysis present in the aged/sham-operated mice. As compared with cells from young mice, lin- cells from aged/sham-operated mice expressed significantly higher mRNA levels for osteoblast differentiation and proliferation marker genes. These data thus demonstrate that, in mice, age-related loss of cortical bone in the appendicular skeleton, but not loss of trabecular bone in the spine, can be prevented by maintaining constant estrogen levels over life. The observed increase in osteoblastic differentiation and proliferation marker gene expression in progenitor bone marrow cells from aged versus young mice may represent a compensatory mechanism in response to ongoing bone loss. PMID:20499336

  5. Does a high dietary acid content cause bone loss, and can bone loss be prevented with an alkaline diet?

    PubMed

    Hanley, David A; Whiting, Susan J

    2013-01-01

    A popular concept in nutrition and lay literature is that of the role of a diet high in acid or protein in the pathogenesis of osteoporosis. A diet rich in fruit and vegetable intake is thought to enhance bone health as the result of its greater potassium and lower "acidic" content than a diet rich in animal protein and sodium. Consequently, there have been a number of studies of diet manipulation to enhance potassium and "alkaline" content of the diet to improve bone density or other parameters of bone health. Although acid loading or an acidic diet featuring a high protein intake may be associated with an increase in calciuria, the evidence supporting a role of these variables in the development of osteoporosis is not consistent. Similarly, intervention studies with a more alkaline diet or use of supplements of potassium citrate or bicarbonate have not consistently shown a bone health benefit. In the elderly, inadequate protein intake is a greater problem for bone health than protein excess. PMID:24094472

  6. Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation.

    PubMed

    Lennox, Alanda R; Goodship, Allen E

    2008-02-01

    Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.© 2008 Elsevier Inc. All rights reserved. PMID:18249018

  7. The Role of IL-1β in the Bone Loss during Rheumatic Diseases

    PubMed Central

    Ruscitti, Piero; Cipriani, Paola; Carubbi, Francesco; Liakouli, Vasiliki; Di Benedetto, Paola; Berardicurti, Onorina; Alesse, Edoardo; Giacomelli, Roberto

    2015-01-01

    Several inflammatory diseases have been associated with increased bone resorption and fracture rates and different studies supported the relation between inflammatory cytokines and osteoclast activity. The main factor required for osteoclast activation is the stimulation by receptor activator of nuclear factor kappa-B ligand (RANKL) expressed on osteoblasts. In this context, interleukin- (IL-) 1β, one of the most powerful proinflammatory cytokines, is a strong stimulator of in vitro and in vivo bone resorption via upregulation of RANKL that stimulates the osteoclastogenesis. The resulting effects lead to an imbalance in bone metabolism favouring bone resorption and osteoporosis. In this paper, we review the available literature on the role of IL-1β in the pathogenesis of bone loss. Furthermore, we analysed the role of IL-1β in bone resorption during rheumatic diseases and, when available, we reported the efficacy of anti-IL-1β therapy in this field. PMID:25954061

  8. Comparative study between two techniques for alveolar bone loss assessment: A pilot study

    PubMed Central

    Lira-Júnior, Ronaldo; Freires, Irlan de Almeida; de Oliveira, Isabelle LinsMacêdo; da Silva, Ennyo Sobral Crispim; da Silva, SeverinoCelestino; de Brito, Roberto Lira

    2013-01-01

    Objective: To conduct a comparative study between two techniques for assessment of alveolar bone loss. Materials and Methods: Absolute and relative techniques were evaluated. The sample consisted of 16 radiographs supposed to meet a single criterion: The reference points applied (Cementum-enamel junction (CEJ) alveolar bone crest and root apex) should be visible. Bone height was measured in the selected radiographs as the percentage of root length through both techniques. Data were submitted to the Statistical Package for Social Science software. Results obtained by both methods were converted into bone loss index values and then categorized. Sensitivity and specificity of the relative technique, compared to the absolute technique, were calculated. Wilcoxon test and the Bland and Altman's method were employed for comparisons. Significance level was set at 5%. Results: For the absolute and relative techniques, means of bone loss index were respectively of 4.81 (±2.25) and 4.75 (±1.80). Bone loss index ≥6 (alveolar bone loss ≥50%) was found in 5 (31.2%) teeth, in the absolute technique, and in 4 (25%) teeth, according to the relative technique. There was no statistically significant difference between both methods (P>0.05). According to the Bland and Altman's method, it was verified a bias of 0.06, and limits of upper and lower agreement of, respectively, 1.58 and –1.45. Sensitivity of 0.8 and specificity of 1 were found for the relative technique compared to the absolute one. Conclusion: There was no significant difference between the techniques evaluated, and the relative technique was found to be reliable for measuring alveolar bone loss. PMID:23633780

  9. Weight-Loss Surgery Doesn't Boost Bone Health: Study

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160161.html Weight-Loss Surgery Doesn't Boost Bone Health: Study Increased ... 29, 2016 FRIDAY, July 29, 2016 (HealthDay News) -- Weight-loss surgery helps severely obese patients shed pounds and ...

  10. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis. PMID:19703606

  11. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss.

    PubMed

    Wang, Chunyu; Tian, Li; Zhang, Kun; Chen, Yaxi; Chen, Xiang; Xie, Ying; Zhao, Qian; Yu, Xijie

    2016-10-01

    The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss. PMID:27493246

  12. Structural basis of growth-related gain and age-related loss of bone strength

    PubMed Central

    2008-01-01

    If bone strength was the only requirement of skeleton, it could be achieved with bulk, but bone must also be light. During growth, bone modelling and remodelling optimize strength, by depositing bone where it is needed, and minimize mass, by removing it from where it is not. The population variance in bone traits is established before puberty and the position of an individual's bone size and mass tracks in the percentile of origin. Larger cross-sections have a comparably larger marrow cavity, which results in a lower volumetric BMD (vBMD), thereby avoiding bulk. Excavation of a marrow cavity thus minimizes mass and shifts the cortex radially, increasing rigidity. Smaller cross-sections are assembled by excavating a smaller marrow cavity leaving a relatively thicker cortex producing a higher vBMD, avoiding the fragility of slenderness. Variation in cellular activity around the periosteal and endocortical envelopes fashions the diverse shapes of adjacent cross-sections. Advancing age is associated with a decline in periosteal bone formation, a decline in the volume of bone formed by each basic multicellular unit (BMU), continued resorption by each BMU, and high remodelling after menopause. Bone loss in young adulthood has modest structural and biomechanical consequences because the negative BMU balance is driven by reduced bone formation, remodelling is slow and periosteal apposition continues shifting the thinned cortex radially. But after the menopause, increased remodelling, worsening negative BMU balance and a decline in periosteal apposition accelerate cortical thinning and porosity, trabecular thinning and loss of connectivity. Interstitial bone, unexposed to surface remodelling becomes more densely mineralized, has few osteocytes and greater collagen cross-linking, and accumulates microdamage. These changes produce the material and structural abnormalities responsible for bone fragility. PMID:18556646

  13. A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women.

    PubMed

    Villalon, Karen L; Gozansky, Wendolyn S; Van Pelt, Rachael E; Wolfe, Pam; Jankowski, Catherine M; Schwartz, Robert S; Kohrt, Wendy M

    2011-12-01

    Previously, we reported significant bone mineral density (BMD) loss in postmenopausal women after modest weight loss. It remains unclear whether the magnitude of BMD change in response to weight loss is appropriate (i.e., proportional to weight loss) and whether BMD is recovered with weight regain. We now report changes in BMD after a 1-year follow-up. Subjects (n = 23) in this secondary analysis were postmenopausal women randomized to placebo as part of a larger trial. They completed a 6-month exercise-based weight loss program and returned for follow-up at 18 months. Dual-energy X-ray absorptiometry (DXA) was performed at baseline, 6, and 18 months. At baseline, subjects were aged 56.8 ± 5.4 years (mean ± s.d.), 10.0 ± 9.2 years postmenopausal, and BMI was 29.6 ± 4.0 kg/m(2). They lost 3.9 ± 3.5 kg during the weight loss intervention. During follow-up, they regained 2.9 ± 3.9 kg. Six months of weight loss resulted in a significant decrease in lumbar spine (LS) (-1.7 ± 3.5%; P = 0.002) and hip (-0.04 ± 3.5%; P = 0.03) BMD that was accompanied by an increase in a biomarker of bone resorption (serum C-terminal telopeptide of type I collagen, CTX: 34 ± 54%; P = 0.08). However, weight regain was not associated with LS (0.05 ± 3.8%; P = 0.15) or hip (-0.6 ± 3.0%; P = 0.81) bone regain or decreased bone resorption (CTX: -3 ± 37%; P = 0.73). The findings suggest that BMD lost during weight reduction may not be fully recovered with weight regain in hormone-deficient, postmenopausal women. Future studies are needed to identify effective strategies to prevent bone loss during periods of weight loss. PMID:21852813

  14. Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model

    PubMed Central

    Zhang, Yuelei; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, You-Shui

    2016-01-01

    Glucocorticoid has been reported to decrease blood vessel number and harm the blood supply in the femoral head, which is recognized to be an important mechanism of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). To prevent glucocorticoid-induced ONFH, medication that promotes both bone formation and angiogenesis would be ideal. Vitamin K2 has been revealed to play an important role in bone metabolism; however, few studies have focused on the effect of Vitamin K2 on new vascular formation. Thus, this study aimed to investigate whether Vitamin K2 promoted new blood vessel formation in the presence of glucocorticoids, both in vitro and in vivo. The effect of Vitamin K2 on viability, migration, in vitro tube formation, and VEGF, vWF, CD31, KDR, Flt and PDGFB in EAhy926 incubated with or without dexamethasone were elucidated. VEGF, TGF-β and BMP-2, angiogenesis-related proteins secreted by osteoblasts, were also detected in the osteoblast-like cell line of MG63. In addition, blood vessels of the femoral head in rats administered with or without methylprednisolone and Vitamin K2 were evaluated using angiography and CD31 staining. In vitro studies showed that Vitamin K2 significantly protected endothelial cells from dexamethasone-induced apoptosis, promoted endothelial cell migration and in vitro tube formation. Angiogenesis-related proteins both in EAhy926 and MG63 were also upregulated by Vitamin K2 when cotreated with dexamethasone. In vivo studies showed enhanced blood vessel volume and CD31-positive staining cells in rats cotreated with VK2 and methylprednisolone compared to rats treated with methylprednisolone only. Collectively, Vitamin K2 has the ability to promote angiogenesis in vitro and to ameliorate vessels of the femoral head in glucocorticoid-treated rats in vivo, indicating that Vitamin K2 is a promising drug that may be used to prevent steroid-induced ONFH. PMID:27313492

  15. The combined effects of X-ray radiation and hindlimb suspension on bone loss

    PubMed Central

    Xu, Dan; Zhao, Xin; Li, Yi; Ji, Yinli; Zhang, Jiangyan; Wang, Jufang; Xie, Xiaodong; Zhou, Guangming

    2014-01-01

    Outer space is a complex environment with various phenomena that negatively affect bone metabolism, including microgravity and highly energized ionizing radiation. In the present study, we used four groups of male Wistar rats treated with or without four-week hindlimb suspension after 4 Gy of X-rays to test whether there is a combined effect for hindlimb suspension and X-ray radiation. We tested trabecular parameters and some cytokines of the bone as leading indicators of bone metabolism. The results showed that hindlimb suspension and X-ray radiation could cause a significant increase in bone loss. Hindlimb suspension caused a 56.6% bone loss (P = 0.036), while X-ray radiation caused a 30.7% (P = 0.041) bone loss when compared with the control group. The combined factors of hindlimb suspension and X-rays exerted a combined effect on bone mass, with a reduction of 64.8% (P = 0.003). PMID:24699002

  16. Alendronate and Resistive Exercise Countermeasures Against Bed Rest-Induced Bone Loss: Biochemical Markers of Bone and Calcium Metabolism

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Nillen, Jeannie L.; Davis-Street, Janis E.; DeKerlegand, Diane E.; LeBlanc, Adrian; Shackelford, Linda C.

    2001-01-01

    Weightlessness-induced bone loss must be counteracted to ensure crew health during extendedduration space missions. Studies were conducted to assess two bone loss countermeasures in a ground-based model: horizontal bed rest. Following a 3-wk ambulatory adaptation period, male and female subjects (aged 21-56 y) completed a 17-wk bed rest protocol. Subjects were assigned to one of three treatments: alendronate (ALEN; 10 mg/d, n=6), resistive exercise (RE; 1.5 h/d, 6 d/wk, n=8), or control (CN; no countermeasure, n=8). Dietary intake was adjusted to maintain body weight. Endocrine and biochemical indices were measured in blood and urine using standard laboratory methods. All data reported are expressed as percent change from individual pre-bedrest data. Serum calcium changed little during bed rest, and tended to decrease (4-8%) in ALEN subjects. In RE subjects, bone alkaline phosphatase and osteocalcin were increased >65 and >30%, respectively, during bed rest, while these were unchanged or decreased in ALEN and CN subjects. Urinary calcium was increased 50% in CN subjects, but was unchanged or decreased in both ALEN and RE groups. Urinary n-telopeptide excretion was increased 40-50% in CN and RE subjects, but decreased 20% in ALEN subjects. Pyridinium crosslink and deoxypyridinoline excretion were increased 20-50% during bed rest. These data suggest that RE countermeasures are effective at increasing markers of bone formation in an analog of weightlessness, while ALEN reduces markers of bone resorption. Counteracting the bone loss of space flight may require both pharmacologic and exercise countermeasures.

  17. Combined Oral Administration of Bovine Collagen Peptides with Calcium Citrate Inhibits Bone Loss in Ovariectomized Rats

    PubMed Central

    Liu, JunLi; Wang, YiHu; Song, ShuJun; Wang, XiJie; Qin, YaYa; Si, ShaoYan; Guo, YanChuan

    2015-01-01

    Purpose Collagen peptides (CPs) and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone. Methods Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8) for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX) as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg); OVX + calcium citrate (75 mg/kg). After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers. Results OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels. Conclusions Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women. PMID:26258559

  18. Ladder-Climbing Training Prevents Bone Loss and Microarchitecture Deterioration in Diet-Induced Obese Rats.

    PubMed

    Tang, Liang; Gao, Xiaohang; Yang, Xiaoying; Liu, Chentao; Wang, Xudan; Han, Yanqi; Zhao, Xinjuan; Chi, Aiping; Sun, Lijun

    2016-01-01

    Resistance exercise has been proved to be effective in improving bone quality in both animal and human studies. However, the issue about whether resistance exercise can inhibit obesity-induced bone loss has not been previously investigated. In the present study, we have evaluated the effects of ladder-climbing training, one of the resistance exercises, on bone mechanical properties and microarchitecture in high-fat (HF) diet-induced obese rats. Twenty-four rats were randomly assigned to the Control, HF + sedentary (HF-S) and HF + ladder-climbing training (HF-LCT) groups. Rats in the HF-LCT group performed ladder-climbing training for 8 weeks. The results showed that ladder-climbing training significantly reduced body and fat weight, and increased muscle mass along with a trend toward enhanced muscle strength in diet-induced obese rats. MicroCT analysis demonstrated that obesity-induced bone loss and architecture deterioration were significantly mitigated by ladder-climbing training, as evidenced by increased trabecular bone mineral density, bone volume over total volume, trabecular number and thickness, and decreased trabecular separation and structure model index. However, neither HF diet nor ladder-climbing training had an impact on femoral biomechanical properties. Moreover, ladder-climbing training significantly increased serum adiponectin, decreased serum leptin, TNF-α, IL-6 levels, and downregulated myostatin (MSTN) expression in diet-induced obese rats. Taken together, ladder-climbing training prevents bone loss and microarchitecture deterioration in diet-induced obese rats through multiple mechanisms including increasing mechanical loading on bone due to improved skeletal muscle mass and strength, regulating the levels of myokines and adipokines, and suppressing the release of pro-inflammatory cytokines. It indicates that resistance exercise may be a promising therapy for treating obesity-induced bone loss. PMID:26410845

  19. Androgen receptors and experimental bone loss - an in vivo and in vitro study.

    PubMed

    Steffens, Joao Paulo; Coimbra, Leila Santana; Rossa, Carlos; Kantarci, Alpdogan; Van Dyke, Thomas E; Spolidorio, Luis Carlos

    2015-12-01

    Testosterone is a sex hormone that exhibits many functions beyond reproduction; one such function is the regulation of bone metabolism. The role played by androgen receptors during testosterone-mediated biological processes associated with bone metabolism is largely unknown. This study aims to use a periodontal disease model in vivo in order to assess the involvement of androgen receptors on microbial-induced inflammation and alveolar bone resorption in experimental bone loss. The impact of hormone deprivation was tested through both orchiectomy and chemical blockage of androgen receptor using flutamide (FLU). Additionally, the direct effect of exogenous testosterone, and the role of the androgen receptor, on osteoclastogenesis were investigated. Thirty male adult rats (n=10/group) were subjected to: 1-orchiectomy (OCX); 2-OCX sham surgery; or 3-OCX sham surgery plus FLU, four weeks before the induction of experimental bone loss. Ten OCX sham-operated rats were not subjected to experimental bone loss and served as healthy controls. The rats were euthanized two weeks later, so as to assess bone resorption and the production of inflammatory cytokines in the gingival tissue and serum. In order to study the in vitro impact of testosterone, osteoclasts were differentiated from RAW264.7 cells and testosterone was added at increasing concentrations. Both OCX and FLU increased bone resorption, but OCX alone was observed to increase osteoclast count. IL-1β production was increased only in the gingival tissue of OCX animals, whereas FLU-treated animals presented a decreased expression of IL-6. Testosterone reduced the osteoclast formation in a dose-dependent manner, and significantly impacted the production of TNF-α; FLU partially reversed these actions. When taken together, our results indicate that testosterone modulates experimental bone loss, and that this action is mediated, at least in part, via the androgen receptor. PMID:26450018

  20. Preventing bone loss and weight gain with combinations of vitamin D and phytochemicals.

    PubMed

    Lai, Ching-Yi; Yang, Jeong-Yeh; Rayalam, Srujana; Della-Fera, Mary Anne; Ambati, Suresh; Lewis, Richard D; Hamrick, Mark W; Hartzell, Diane L; Baile, Clifton A

    2011-11-01

    Vitamin D and certain natural compounds have been shown to regulate both lipid metabolism and bone formation. Treatments that prevent or reverse age-related increase in bone marrow adiposity could both increase new bone formation and inhibit bone destruction. We tested the hypothesis that dietary supplementation with combinations of vitamin D and phytochemicals inhibits bone loss and decreases adiposity to a greater extent than control or vitamin D-alone diets. Aged ovariectomized female rats (12 months old, n=50, initial body weight=240 g) were given control (AIN-93M diet), vitamin D (2,400 IU/kg), or vitamin D plus resveratrol (16, 80, or 400 mg/kg of diet [low, medium, and high dose, respectively]), quercetin (80, 400, or 2,000 mg/kg of diet), and genistein (64, 256, or 1,040 mg/kg of diet) for 8 weeks. The high-dose treatment (vitamin D+400 mg/kg resveratrol+2,000 mg/kg quercetin+1,040 mg/kg genistein) reduced body weight gain (P<.05) and the fat pad weights (P<.05). This treatment also increased the serum concentration of insulin-like growth factor-1 (P<.05) and the bone mineral content of the femur. Micro-computed tomography and histomorphometric analyses indicated that the high-dose treatment prevented loss of trabecular bone (P<.05) and reduced marrow adipocytes (P<.001) and osteoclasts (P<.05) compared with the control and vitamin D alone (P<.05). We conclude that aged ovariectomized female rats supplemented with vitamin D combined with genistein, quercetin, and resveratrol had improved bone mineral density and reduced body weight gain and a significant decrease in bone marrow adipocytes. The synergistic effects of a combination of phytochemicals with vitamin D may be effective in reducing bone loss and weight gain after menopause. PMID:21663481

  1. Radiographic Vertical Bone Loss Evaluation around Dental Implants Following One Year of Functional Loading

    PubMed Central

    Rasouli Ghahroudi, AAR.; Talaeepour, AR; Mesgarzadeh, A.; Rokn, AR.; Khorsand, A.; Mesgarzadeh, NN.; Kharazi Fard, MJ.

    2010-01-01

    Objective: Vertical bone loss evaluations in the Nobel Biocare Replace® Select Tapered ™ implant system in the human after one-year loading time. Materials and Methods: This retrospective cross-sectional study was performed on 31 patients (14 men, 17 women; mean age, 60.39 years) receiving 170 implants (mean, 5.48 for each patient) of Groovy and Non-groovy designs in the Nobel Biocare Replace® Select Tapered ™ system. The marginal bone loss was measured at mesial and distal aspects of the implants on OPG x-rays after one-year follow-up. The data regarding the patient’s gender, age, history of disease, smoking, bone type at implant location, loading time of prosthesis and implant, implant design, diameter and length were recorded by the patients’ records and interview. The data were subjected to multiple linear regression and Pearson coefficient ratio regarding different factors. Results: The mean (standard deviation) distal, mesial and overall bone loss was 0.688 mm (0.851), 0.665 mm (0.849) and 0.935 mm (0.905), respectively in the studied implants. No significant differences were found regarding implant location, bone quality at the implant region, implant design and bone graft reception. In addition, no significant correlation was found between the occurred bone loss and implant diameter, length and number of used splints. Conclusion: Due to the criteria mentioned for implant success in term of bone loss values after one-year loading time, Noble Biocare Replace® Select Tapered ™ implant system is an acceptable treatment option for implant restorations in this regard. PMID:21998781

  2. Modeling of Blood Lead Levels in Astronauts Exposed to Lead from Microgravity-Accelerated Bone Loss

    NASA Technical Reports Server (NTRS)

    Garcia, H.; James, J.; Tsuji, J.

    2014-01-01

    Human exposure to lead has been associated with toxicity to multiple organ systems. Studies of various population groups with relatively low blood lead concentrations (<10 µg/dL) have indicated associations of blood lead level with lower cognitive test scores in children, later onset of puberty in girls, and increased blood pressure and cardiovascular mortality rates in adults. Cognitive effects are considered by regulatory agencies to be the most sensitive endpoint at low doses. Although 95% of the body burden of lead is stored in the bones, the adverse effects of lead correlate with the concentration of lead in the blood better than with that in the bones. NASA has found that prolonged exposure to microgravity during spaceflight results in a significant loss of bone minerals, the extent of which varies from individual to individual and from bone to bone, but generally averages about 0.5% per month. During such bone loss, lead that had been stored in bones would be released along with calcium. The effects on the concentration of lead in the blood (PbB) of various concentrations of lead in drinking water (PbW) and of lead released from bones due to accelerated osteoporosis in microgravity, as well as changes in exposure to environmental lead before, during, and after spaceflight were evaluated using a physiologically based pharmacokinetic (PBPK) model that incorporated exposure to environmental lead both on earth and in flight and included temporarily increased rates of osteoporosis during spaceflight.

  3. Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.

    PubMed

    Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung

    2016-03-01

    Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption. PMID:26825541

  4. Short-Term Hypoxia Accelerates Bone Loss in Ovariectomized Rats by Suppressing Osteoblastogenesis but Enhancing Osteoclastogenesis.

    PubMed

    Wang, Guixin; Wang, Jia; Sun, Dawei; Xin, Jingyi; Wang, Liping; Huang, Dong; Wu, Weichi; Xian, Cory J

    2016-01-01

    BACKGROUND Although it has been reported that hypoxic exposure can attenuate hypertension, heart disease, diabetes, and some other diseases, effects of hypoxia on osteoporosis are still unknown. MATERIAL AND METHODS The current study investigated whether short-term hypoxic exposure (in comparison with normoxic conditions) affects bone metabolism in normal or ovariectomized (OVX) adult female rats in an vivo study. Micro-computed tomography bone volume/structural analyses, histological examination, and serum bone turnover biochemical assays were used. In addition, the expressions of some associated major regulatory molecules were measured in osteoblastic cultures. RESULTS While the 14-day hypoxic exposure did not change the bone-remodeling process in normal adult female rats, it decreased bone volume, osteoclast density, and serum bone formation marker (alkaline phosphatase) level, but increased osteoclast density and serum bone resorption marker (C-telopeptide of collagen) level in OVX rats. The bone marrow adipocyte number and serum fatty acid binding protein-4 level were increased in OVX-hypoxic rats compared with OVX-normoxic rats. Consistently, in human MG-63 osteoblastic cultures, the hypoxic condition suppressed protein expression of osteogenic transcriptional factors Runx2 and osterix, elevated protein expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand, but reduced that of osteoclastogenic inhibitor osteoprotegerin. CONCLUSIONS Our results suggest that, although no change occurred in the bone-remodeling process in normal adult female rats after hypoxic exposure, under the estrogen-deficient osteoporotic condition, the hypoxic condition can alter the bone microenvironment so that it may further impair osteoblastic differentiation and enhance osteoclastic formation, and thus reduce bone formation, enhance bone resorption, and accelerate bone loss. PMID:27550548

  5. Short-Term Hypoxia Accelerates Bone Loss in Ovariectomized Rats by Suppressing Osteoblastogenesis but Enhancing Osteoclastogenesis

    PubMed Central

    Wang, Guixin; Wang, Jia; Sun, Dawei; Xin, Jingyi; Wang, Liping; Huang, Dong; Wu, Weichi; Xian, Cory J.

    2016-01-01

    Background Although it has been reported that hypoxic exposure can attenuate hypertension, heart disease, diabetes, and some other diseases, effects of hypoxia on osteoporosis are still unknown. Material/Methods The current study investigated whether short-term hypoxic exposure (in comparison with normoxic conditions) affects bone metabolism in normal or ovariectomized (OVX) adult female rats in an vivo study. Micro-computed tomography bone volume/structural analyses, histological examination, and serum bone turnover biochemical assays were used. In addition, the expressions of some associated major regulatory molecules were measured in osteoblastic cultures. Results While the 14-day hypoxic exposure did not change the bone-remodeling process in normal adult female rats, it decreased bone volume, osteoclast density, and serum bone formation marker (alkaline phosphatase) level, but increased osteoclast density and serum bone resorption marker (C-telopeptide of collagen) level in OVX rats. The bone marrow adipocyte number and serum fatty acid binding protein-4 level were increased in OVX-hypoxic rats compared with OVX-normoxic rats. Consistently, in human MG-63 osteoblastic cultures, the hypoxic condition suppressed protein expression of osteogenic transcriptional factors Runx2 and osterix, elevated protein expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand, but reduced that of osteoclastogenic inhibitor osteoprotegerin. Conclusions Our results suggest that, although no change occurred in the bone-remodeling process in normal adult female rats after hypoxic exposure, under the estrogen-deficient osteoporotic condition, the hypoxic condition can alter the bone microenvironment so that it may further impair osteoblastic differentiation and enhance osteoclastic formation, and thus reduce bone formation, enhance bone resorption, and accelerate bone loss. PMID:27550548

  6. Effect of venlafaxine on bone loss associated with ligature-induced periodontitis in Wistar rats

    PubMed Central

    2010-01-01

    Background The present study investigated the effects of venlafaxine, an antidepressant drug with immunoregulatory properties on the inflammatory response and bone loss associated with experimental periodontal disease (EPD). Materials and Methods Wistar rats were subjected to a ligature placement around the second upper left molar. The treated groups received orally venlafaxine (10 or 50 mg/kg) one hour before the experimental periodontal disease induction and daily for 10 days. Vehicle-treated experimental periodontal disease and a sham-operated (SO) controls were included. Bone loss was analyzed morphometrically and histopathological analysis was based on cell influx, alveolar bone, and cementum integrity. Lipid peroxidation quantification and immunohistochemistry to TNF-α and iNOS were performed. Results Experimental periodontal disease rats showed an intense bone loss compared to SO ones (SO = 1.61 ± 1.36; EPD = 4.47 ± 1.98 mm, p < 0.001) and evidenced increased cellular infiltration and immunoreactivity for TNF-α and iNOS. Venlafaxine treatment while at low dose (10 mg/kg) afforded no significant protection against bone loss (3.25 ± 1.26 mm), a high dose (50 mg/kg) caused significantly enhanced bone loss (6.81 ± 3.31 mm, p < 0.05). Venlafaxine effectively decreased the lipid peroxidation but showed no significant change in TNF-α or iNOS immunoreactivity. Conclusion The increased bone loss associated with high dose venlafaxine may possibly be a result of synaptic inhibition of serotonin uptake. PMID:20546603

  7. Effects of increased hypothalamic leptin gene expression on ovariectomy-induced bone loss in rats

    PubMed Central

    Jackson, M.A.; Iwaniec, U.T.; Turner, R.T.; Wronski, T.J.; Kalra, S.P.

    2011-01-01

    Estrogen deficiency results in accelerated bone turnover with a net increase in bone resorption. Subcutaneous administration of leptin attenuates bone loss in ovariectomized (ovx) rats by reducing bone resorption. However, in addition to its direct beneficial effects, leptin has been reported to have indirect (central nervous system-mediated) antiosteogenic effects on bone, which may limit the efficacy of elevated serum leptin to prevent estrogen deficiency-associated bone loss. The present study evaluated the long-term effects of increased hypothalamic leptin transgene expression, using recombinant adeno-associated virus-leptin (rAAV-Lep) gene therapy, on bone mass, architecture, and cellular endpoints in sexually mature ovx Sprague-Dawley rats. Ovx rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either rAAV-Lep or rAAV-GFP (control vector encoding green fluorescent protein) and maintained for 10 weeks. Additional controls consisted of ovary-intact rats and ovx rats pair-fed to rAAV-Lep rats. Lumbar vertebrae were analyzed by micro-computed tomography and tibiae by histomorphometry. Cancellous bone volume was lower and osteoclast perimeter, osteoblast perimeter, and bone marrow adipocyte density were greater in ovx rats compared to ovary-intact controls. In contrast, differences among ovx groups were not detected for any endpoint evaluated. In conclusion, whereas estrogen deficiency resulted in marked cancellous osteopenia, increased bone turnover and marrow adiposity, increasing hypothalamic leptin transgene expression in ovx rats had neither detrimental nor beneficial effects on bone mass, architecture, or cellular endpoints. These findings demonstrate that the antiresorptive effects of subcutaneous leptin administration in ovx rats are mediated through leptin targets in the periphery. PMID:21640774

  8. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss.

    PubMed

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2015-11-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts. PMID:26553637

  9. Characteristics and prediction of the alveolar bone loss: essay of modeling.

    PubMed

    Ruquet, M; Bonfil, J J; Tardivo, D; Tavitian, P; Sastre, J; Tosello, A; Foti, B

    2009-12-01

    The alveolar bone loss is a phenomenon which intervenes throughout the life and which can be aggravated by the action of individual and behavioural factors. From this observation we shall try to characterize it and to propose formulas of prediction of the alveolar bone loss according to the age of the patient. We shall expose an analysis of factors bound to the alveolar bone loss and propose a modeling of the alveolar bone loss according to the age in an essentially predictive purpose. The methodology is based on the medical exploitation of CT-dentascanners and medical questionnaire as well as administrative questionnaire used in odontology. Measures of the distance ECJ and the summit of crest are made on the radiology and the individual factors and behavioural factors are scored. The descriptive analysis of the data allowed us to characterize the phenomenon of alveolar bone loss in a therapeutic purpose. The statistical treatment of these data will establish various models according to gender. The described method is simple and its applications seem numerous in the several domains: prevention, improvement of prosthetic and periodontal therapeutics. PMID:20614694

  10. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2015-11-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts.