Science.gov

Sample records for gluconate-induced dendritic cell

  1. Vitamin D Can Ameliorate Chlorhexidine Gluconate-Induced Peritoneal Fibrosis and Functional Deterioration through the Inhibition of Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    PubMed Central

    Lee, Yi-Che; Hung, Shih-Yuan; Liou, Hung-Hsiang; Lin, Tsun-Mei; Tsai, Chu-Hung; Lin, Sheng-Hsiang; Tsai, Yau-Sheng; Chang, Min-Yu; Wang, Hsi-Hao; Ho, Li-Chun; Chen, Yi-Ting; Wu, Ching-Fang; Chen, Ho-Ching; Chen, Hsin-Pao; Liu, Kuang-Wen; Chen, Chih-I.; She, Kuan Min; Wang, Hao-Kuang; Lin, Chi-Wei; Chiou, Yuan-Yow

    2015-01-01

    Background. Peritoneal dialysis (PD) can induce fibrosis and functional alterations in PD patients' peritoneal membranes, due to long-term unphysiological dialysate exposure, partially occurring via triggering of epithelial-to-mesenchymal transition (EMT) in peritoneal mesothelial cells (MCs). Vitamin D can ameliorate these negative effects; however, the mechanism remains unexplored. Therefore, we investigated its possible links to MCs EMT inhibition. Methods. Peritoneal fibrosis was established in Sprague-Dawley rats by chlorhexidine gluconate (CG) intraperitoneal injection for 21 days, with and without 1α,25(OH)2D3 treatment. Morphological and functional evaluation and western blot analysis of EMT marker were performed upon peritoneum tissue. In vitro study was also performed in a primary human peritoneal MC culture system; MCs were incubated with transforming growth factor-β1 (TGF-β1) in the absence or presence of 1α,25(OH)2D3. EMT marker expression, migration activities, and cytoskeleton redistribution of MCs were determined. Results. 1α,25(OH)2D3 ameliorated CG-induced morphological and functional deterioration in animal model, along with CG-induced upregulation of α-SMA and downregulation of E-cadherin expression. Meanwhile, 1α,25(OH)2D3 also ameliorated TGF-β1-induced decrease in E-cadherin expression, increase in Snai1 and α-SMA expression, intracellular F-actin redistribution, and migration activity in vitro. Conclusion. 1α,25(OH)2D3 can ameliorate CG-induced peritoneal fibrosis and attenuate functional deterioration through inhibiting MC EMT. PMID:26495304

  2. Follicular Dendritic Cell Sarcoma

    PubMed Central

    Udayakumar, Achandira M.; Al-Bahri, Maiya; Burney, Ikram A.; Al-Haddabi, Ibrahim

    2015-01-01

    Follicular dendritic cell sarcoma (FDCS) is a rare neoplasm with a non-specific and insidious presentation further complicated by the difficult diagnostic and therapeutic assessment. It has a low to intermediate risk of recurrence and metastasis. Unlike other soft tissue sarcomas or histiocytic and dendritic cell neoplasms, cytogenetic studies are very limited in FDCS cases. Although no specific chromosomal marker has yet been established, complex aberrations and different ploidy types have been documented. We report the case of a 39-year-old woman with FDCS who presented to the Sultan Qaboos University Hospital in Muscat, Oman, in February 2013. Ultrastructural, immunophenotypical and histological findings are reported. In addition, karyotypic findings showed deletions of the chromosomes 1p, 3q, 6q, 7q, 8q and 11q. To the best of the authors’ knowledge, these have not been reported previously in this tumour. Techniques such as spectral karyotyping may help to better characterise chromosomal abnormalities in this type of tumour. PMID:26355964

  3. Dendritic cells in asthma.

    PubMed

    van Helden, Mary J; Lambrecht, Bart N

    2013-12-01

    The lungs are constantly exposed to antigens, most of which are non-pathogenic and do not require the induction of an immune response. Dendritic cells (DCs) are situated at the basolateral site of the lungs and continuously scan the environment to detect the presence of pathogens and subsequently initiate an immune response. They are a heterogeneous population of antigen-presenting cells that exert specific functions. Compelling evidence is now provided that DCs are both sufficient and necessary to induce allergic responses against several inhaled harmless allergens. How various DC subsets exactly contribute to the induction of allergic asthma is currently a subject of intense investigation. We here review the current progress in this field. PMID:24455765

  4. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  5. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  6. Fate Mapping of Dendritic Cells

    PubMed Central

    Poltorak, Mateusz Pawel; Schraml, Barbara Ursula

    2015-01-01

    Dendritic cells (DCs) are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c, and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification. PMID:25999945

  7. Dendritic cells in lung immunopathology.

    PubMed

    Cook, Peter C; MacDonald, Andrew S

    2016-07-01

    Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease. PMID:27256370

  8. Dendritic cells in autoimmune thyroid disease.

    PubMed

    Kabel, P J; Voorbij, H A; van der Gaag, R D; Wiersinga, W M; de Haan, M; Drexhage, H A

    1987-01-01

    Dendritic cells form a morphologically distinct class of cells characterized by shape, reniform nucleus, absent to weak acid-phosphatase activity and strong Class II MHC determinant positivity. Functionally they are the most efficient cells in antigen presentation to T-lymphocytes which indicates their role in the initiation of an immune response. Using immunehistochemical techniques we studied the presence of dendritic cells in normal Wistar rat and human thyroids, in thyroids of BBW rats developing thyroid autoimmunity and in Graves' goitres. Dendritic cells could be identified in all thyroids studied and were positioned underneath the thyrocytes in between the follicles. Skin dendritic cells travel via lymphatics to draining lymph nodes, thus forming an antigen presenting cell system. It is likely that a similar cell system exists on the level of the thyroid for dendritic cells have also been detected in thyroid draining lymph nodes. In normal thyroid tissue of both human and rat dendritic cells were relatively scarce. During the initial phases of the thyroid autoimmune response in the BBW rat (before the appearance of Tg-antibodies in the circulation) numbers of thyroid dendritic cells increased. Intrathyroidal T-helper cells, B-cells or plasma cells could not be found. The thyroid draining lymph node contained large numbers of plasma cells. During the later stages of the thyroid autoimmune response in the BB/W rat (after the appearance of Tg-antibodies in the circulation) and in Graves' goitres dendritic cells were not only present in high number, but 20-30% were seen in contact with now-present intrathyroidal T-helper lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3475920

  9. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  10. Plasmacytoid Dendritic Cells in Atherosclerosis

    PubMed Central

    Döring, Yvonne; Zernecke, Alma

    2012-01-01

    Atherosclerosis, a chronic inflammatory disease of the vessel wall and the underlying cause of cardiovascular disease, is initiated and maintained by innate and adaptive immunity. Accumulating evidence suggests an important contribution of autoimmune responses to this disease. Plasmacytoid dendritic cells (pDCs), a specialized cell type known to produce large amounts of type I interferons (IFNs) in response to bacterial and viral infections, have recently been revealed to play important roles in atherosclerosis. For example, the development of autoimmune complexes consisting of self-DNA and antimicrobial peptides, which trigger chronic type I IFN production by pDCs, promote early atherosclerotic lesion formation. pDCs and pDC-derived type I IFNs can also induce the maturation of conventional DCs and macrophages, and the development of autoreactive B cells and antibody production. These mechanisms, known to play a role in the pathogenesis of other autoimmune diseases such as systemic lupus erythematosus and psoriasis, may also affect the development and progression of atherosclerotic lesion formation. This review discusses emerging evidence showing a contribution of pDCs in the onset and progression of atherosclerosis. PMID:22754539

  11. Regulation of Th2 Cell Immunity by Dendritic Cells

    PubMed Central

    Na, Hyeongjin

    2016-01-01

    Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells. PMID:26937227

  12. Dendritic Cells Stimulated by Cationic Liposomes.

    PubMed

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy. PMID:27398454

  13. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  14. The multifaceted biology of plasmacytoid dendritic cells

    PubMed Central

    Swiecki, Melissa; Colonna, Marco

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613

  15. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  16. [Application of dendritic cells in clinical tumor therapy].

    PubMed

    Li, Yan; Xian, Li-jian

    2002-04-01

    The active immunotherapy of dendritic cells is hot in tumor therapy research area. This article is a review of the source of dendritic cells, loading antigen, immunotherapy pathway, clinical application, choice of patients, and so on. It makes preparation for further research of dendritic cells. PMID:12452029

  17. Detecting Danger: The Dendritic Cell Algorithm

    NASA Astrophysics Data System (ADS)

    Greensmith, Julie; Aickelin, Uwe; Cayzer, Steve

    The "Dendritic Cell Algorithm" (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, an abstract model of dendritic cell (DC) behavior is developed and subsequently used to form an algorithm—the DCA. The abstraction process was facilitated through close collaboration with laboratory-based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population-based algorithm, with each agent in the system represented as an "artificial DC". Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter, the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of port scans and botnets, where it has produced impressive results with relatively low rates of false positives.

  18. Characterization of chicken dendritic cell markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  19. Follicular dendritic cell sarcoma of the tonsil

    PubMed Central

    Kara, Tuba; Serinsoz, Ebru; Arpaci, Rabia Bozdogan; Vayisoglu, Yusuf

    2013-01-01

    Follicular dendritic cell sarcoma (FDCS) is an uncommon tumour within the spectrum of histiocytic and dendritic cell neoplasms that can occur at nodal and extra-nodal sites. Besides being rare, these tumours are difficult to diagnose. A 72-year-old man with a painless mass in the right tonsil was admitted to the Mersin University Hospital. Tonsillectomy was performed. Microscopically, the tumour consisted of spindle-shaped cells with large oval to polygonal nuclei. Lymphocytes were scattered among the tumour cells. Immunohistochemically, the cells were positive for CD23 and vimentin. The tumour was diagnosed as FDCS with histological and immunohistochemical findings. Recognition of extranodal FDCS requires knowledge of this entity and to consider it during the diagnosis. Confirmatory immunohistochemical staining is essential for diagnosis. Correct characterisation of this neoplasm is important because of its potential for recurrence and metastasis. PMID:23365157

  20. Sensitivity of Dendritic Cells to Microenvironment Signals

    PubMed Central

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  1. Plasmacytoid dendritic cell role in cutaneous malignancies.

    PubMed

    Saadeh, Dana; Kurban, Mazen; Abbas, Ossama

    2016-07-01

    Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms. PMID:27236509

  2. Dendritic Cells in Systemic Lupus Erythematosus

    PubMed Central

    Seitz, Heather M.; Matsushima, Glenn K.

    2010-01-01

    Systemic lupus erythematosus (SLE) persists as a chronic inflammatory autoimmune disease and is characterized by the production of autoantibodies and immune complexes that affects multiple organs. The underlying mechanism that triggers and sustain disease are complex and involves certain susceptibility genes and environmental factors. There have been several immune mediators linked to SLE including cytokines and chemokines that have been reviewed elsewhere(1–3). A number of articles have reviewed the role of B cells and T cells in SLE(4–10). Here, we focus on role of dendritic cells (DC) and innate immune factors that may regulate autoreactive B cells. PMID:20367140

  3. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  4. Dendritic cell-based cancer therapeutic vaccines

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques

    2013-01-01

    The past decade has seen tremendous developments in novel cancer therapies, through targeting of tumor cell-intrinsic pathways whose activity is linked to genetic alterations, as well as the targeting of tumor cell-extrinsic factors such as growth factors. Furthermore, immunotherapies are entering the clinic at an unprecedented speed following the demonstration that T cells can efficiently reject tumors and that their anti-tumor activity can be enhanced with antibodies against immune regulatory molecules (checkpoints blockade). Current immunotherapy strategies include monoclonal antibodies against tumor cells or immune regulatory molecules, cell-based therapies such as adoptive transfer of ex vivo activated T cells and natural killer (NK) cells, and cancer vaccines. Herein, we discuss the immunological basis for therapeutic cancer vaccines and how the current understanding of dendritic cell (DC) and T cell biology might enable development of next-generation curative therapies for patients with cancer. PMID:23890062

  5. Galectin-1 Regulates Tissue Exit of Specific Dendritic Cell Populations*

    PubMed Central

    Thiemann, Sandra; Man, Jeanette H.; Chang, Margaret H.; Lee, Benhur; Baum, Linda G.

    2015-01-01

    During inflammation, dendritic cells emigrate from inflamed tissue across the lymphatic endothelium into the lymphatic vasculature and travel to regional lymph nodes to initiate immune responses. However, the processes that regulate dendritic cell tissue egress and migration across the lymphatic endothelium are not well defined. The mammalian lectin galectin-1 is highly expressed by vascular endothelial cells in inflamed tissue and has been shown to regulate immune cell tissue entry into inflamed tissue. Here, we show that galectin-1 is also highly expressed by human lymphatic endothelial cells, and deposition of galectin-1 in extracellular matrix selectively regulates migration of specific human dendritic cell subsets. The presence of galectin-1 inhibits migration of immunogenic dendritic cells through the extracellular matrix and across lymphatic endothelial cells, but it has no effect on migration of tolerogenic dendritic cells. The major galectin-1 counter-receptor on both dendritic cell populations is the cell surface mucin CD43; differential core 2 O-glycosylation of CD43 between immunogenic dendritic cells and tolerogenic dendritic cells appears to contribute to the differential effect of galectin-1 on migration. Binding of galectin-1 to immunogenic dendritic cells reduces phosphorylation and activity of the protein-tyrosine kinase Pyk2, an effect that may also contribute to reduced migration of this subset. In a murine lymphedema model, galectin-1−/− animals had increased numbers of migratory dendritic cells in draining lymph nodes, specifically dendritic cells with an immunogenic phenotype. These findings define a novel role for galectin-1 in inhibiting tissue emigration of immunogenic, but not tolerogenic, dendritic cells, providing an additional mechanism by which galectin-1 can dampen immune responses. PMID:26216879

  6. Mucosal dendritic cells shape mucosal immunity

    PubMed Central

    Chang, Sun-Young; Ko, Hyun-Jeong; Kweon, Mi-Na

    2014-01-01

    Dendritic cells (DCs) are key modulators that shape the immune system. In mucosal tissues, DCs act as surveillance systems to sense infection and also function as professional antigen-presenting cells that stimulate the differentiation of naive T and B cells. On the basis of their molecular expression, DCs can be divided into several subsets with unique functions. In this review, we focus on intestinal DC subsets and their function in bridging the innate signaling and adaptive immune systems to maintain the homeostasis of the intestinal immune environment. We also review the current strategies for manipulating mucosal DCs for the development of efficient mucosal vaccines to protect against infectious diseases. PMID:24626170

  7. Generation of regulatory dendritic cells after treatment with paeoniflorin.

    PubMed

    Chen, Dan; Li, Yingxi; Wang, Xiaodong; Li, Keqiu; Jing, Yaqing; He, Jinghua; Qiang, Zhaoyan; Tong, Jingzhi; Sun, Ke; Ding, Wen; Kang, Yi; Li, Guang

    2016-08-01

    Regulatory dendritic cells are a potential therapeutic tool for assessing a variety of immune overreaction diseases. Paeoniflorin, a bioactive glucoside extracted from the Chinese herb white paeony root, has been shown to be effective at inhibiting the maturation and immunostimulatory function of murine bone marrow-derived dendritic cells. However, whether paeoniflorin can program conventional dendritic cells toward regulatory dendritic cells and the underlying mechanism remain unknown. Here, our study demonstrates that paeoniflorin can induce the production of regulatory dendritic cells from human peripheral blood monocyte-derived immature dendritic cells in the absence or presence of lipopolysaccharide (LPS) but not from mature dendritic cells, thereby demonstrating the potential of paeoniflorin as a specific immunosuppressive drug with fewer complications and side effects. These regulatory dendritic cells treated with paeoniflorin exhibited high CD11b/c and low CD80, CD86 and CD40 expression levels as well as enhanced abilities to capture antigen and promote the proliferation of CD4(+)CD25(+) T cells and reduced abilities to migrate and promote the proliferation of CD4(+) T cells, which is associated with the upregulation of endogenous transforming growth factor (TGF)-β-mediated indoleamine 2,3-dioxygenase (IDO) expression. Collectively, paeoniflorin could program immature dendritic cells (imDCs) and imDCs stimulated with LPS toward a regulatory DC fate by upregulating the endogenous TGF-β-mediated IDO expression level, thereby demonstrating its potential as a specific immunosuppressive drug. PMID:26721806

  8. Immunometabolism governs dendritic cell and macrophage function

    PubMed Central

    2016-01-01

    Recent studies on intracellular metabolism in dendritic cells (DCs) and macrophages provide new insights on the functioning of these critical controllers of innate and adaptive immunity. Both cell types undergo profound metabolic reprogramming in response to environmental cues, such as hypoxia or nutrient alterations, but importantly also in response to danger signals and cytokines. Metabolites such as succinate and citrate have a direct impact on the functioning of macrophages. Immunogenicity and tolerogenicity of DCs is also determined by anabolic and catabolic processes, respectively. These findings provide new prospects for therapeutic manipulation in inflammatory diseases and cancer. PMID:26694970

  9. [Dendritic cells in cancer immunotherapy].

    PubMed

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  10. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor.

    PubMed

    Louis, Elan D; Lee, Michelle; Babij, Rachel; Ma, Karen; Cortés, Etty; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2014-12-01

    Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 µm (total dendrite length, P=0.01), 465.9 versus 592.5 µm (branch length, P=0.01), 22.5 versus 29.0 (maximum branch order, P=0.001), and 165.3 versus 311.7 (number of terminations, P=0.008). Furthermore, the dendritic spine density was reduced in essential tremor cases (medians=0.82 versus 1.02 µm(-1), P=0.03). Our demonstration of regressive changes in Purkinje cell dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their axon, cell body, dendrites and spines. PMID:25367027

  11. Immune Monitoring Using mRNA-Transfected Dendritic Cells.

    PubMed

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by mRNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA. PMID:27236804

  12. Dendritic cells as therapeutic targets in neuroinflammation.

    PubMed

    Lüssi, Felix; Zipp, Frauke; Witsch, Esther

    2016-07-01

    Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disorder of the central nervous system characterized by infiltration of immune cells and progressive damage to myelin sheaths and neurons. There is still no cure for the disease, but drug regimens can reduce the frequency of relapses and slightly delay progression. Myeloid cells or antigen-presenting cells (APCs) such as dendritic cells (DC), macrophages, and resident microglia, are key players in both mediating immune responses and inducing immune tolerance. Mounting evidence indicates a contribution of these myeloid cells to the pathogenesis of multiple sclerosis and to the effects of treatment, the understanding of which might provide strategies for more potent novel therapeutic interventions. Here, we review recent insights into the role of APCs, with specific focus on DCs in the modulation of neuroinflammation in MS. PMID:26970979

  13. Probiotics, dendritic cells and bladder cancer.

    PubMed

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  14. Transcriptional control of dendritic cell differentiation.

    PubMed

    Sasaki, Izumi; Kaisho, Tsuneyasu

    2014-01-01

    Dendritic cells (DCs) are professional antigen presenting cells involved critically not only in provoking innate immune responses but also in establishing adaptive immune responses. Dendritic cells are heterogenous and divided into several subsets, including plasmactyoid DCs (pDCs) and several types of conventional DCs (cDCs), which show subset-specific functions. Plasmactyoid DCs are featured by their ability to produce large amounts of type I interferons (IFNs) in response to nucleic acid sensors, TLR7 and TLR9 and involved in anti-viral immunity and pathogenesis of certain autoimmune disorders such as psoriasis. Conventional DCs include the DC subsets with high crosspresentation activity, which contributes to anti-viral and anti-tumor immunity. These subsets are generated from hematopoietic stem cells (HSCs) via several intermediate progenitors and the development is regulated by the transcriptional mechanisms in which subset-specific transcription factors play major roles. We have recently found that an Ets family transcription factor, SPI-B, which is abundantly expressed in pDCs among DC subsets, plays critical roles in functions and late stage development of pDCs. SPI-B functions in cooperation with other transcription factors, especially, interferon regulatory factor (IRF) family members. Here we review the transcription factor-based molecular mechanisms for generation and functions of DCs, mainly by focusing on the roles of SPI-B and its relatives. PMID:24875951

  15. Functions of fascin in dendritic cells.

    PubMed

    Yamashiro, Shigeko

    2012-01-01

    Fascin-1 is an actin-bundling protein that shares no homology with other actin-bundling proteins. It is greatly induced upon maturation of dendritic cells (DCs). However, fascin-1 is not expressed in other primary blood cells, including macrophages and neutrophils, indicating a unique role of fascin-1 in the function of DCs upon maturation. An increasing body of evidence has shown that fascin-1 plays critical roles in maturation-associated DC functions, including dynamic assembly of veil-like membrane protrusions, disassembly of podosomes, migration to lymph nodes, and the assembly of the immunological synapse. Pathological analyses of fascin-1 expression revealed that fascin-1 is a useful marker of diseases of immune cells, including Langerhans cell histiocytosis and Hodgkin diseases. Furthermore, attempts have been made to explore the use of a fascin-1 promoter for DNA vaccination because it is strong and specific to DCs. PMID:22428853

  16. Regulation of Dendritic Cell Function in Inflammation

    PubMed Central

    Said, André; Weindl, Günther

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy. PMID:26229971

  17. Comparative dendritic cell biology of veterinary mammals.

    PubMed

    Summerfield, Artur; Auray, Gael; Ricklin, Meret

    2015-01-01

    Dendritic cells (DC) have a main function in innate immunity in that they sense infections and environmental antigens at the skin and mucosal surfaces and thereby critically influence decisions about immune activation or tolerance. As professional antigen-presenting cells, they are essential for induction of adaptive immune responses. Consequently, knowledge on this cell type is required to understand the immune systems of veterinary mammals, including cattle, sheep, pigs, dogs, cats, and horses. Recent ontogenic studies define bona fide DC as an independent lineage of hematopoietic cells originating from a common precursor. Distinct transcription factors control the development into the two subsets of classical DC and plasmacytoid DC. These DC subsets express a distinguishable transcriptome, which differs from that of monocyte-derived DC. Using a comparative approach based on phenotype and function, this review attempts to classify DC of veterinary mammals and to describe important knowledge gaps. PMID:25387110

  18. Developmental mechanisms that regulate retinal ganglion cell dendritic morphology

    PubMed Central

    Tian, Ning

    2011-01-01

    One of the fundamental features of retinal ganglion cells (RGCs) is that dendrites of individual RGCs are confined to one or a few narrow strata within the inner plexiform layer (IPL), and each RGC synapses only with a small group of presynaptic bipolar and amacrine cells with axons/dendrites ramified in the same strata to process distinct visual features. The underlying mechanisms which control the development of this laminar-restricted distribution pattern of RGC dendrites have been extensively studied, and it is still an open question whether the dendritic pattern of RGCs is determined by molecular cues or by activity-dependent refinement. Accumulating evidence suggests that both molecular cues and activity-dependent refinement might regulate RGC dendrites in a cell subtype-specific manner. However, identification of morphological subtypes of RGCs before they have achieved their mature dendritic pattern is a major challenge in the study of RGC dendritic development. This problem is now being circumvented through the use of molecular markers in genetically engineered mouse lines to identify RGC subsets early during development. Another unanswered fundamental question in the study of activity-dependent refinement of RGC dendrites is how changes in synaptic activity lead to the changes in dendritic morphology. Recent studies have started to shed light on the molecular basis of activity-dependent dendritic refinement of RGCs by showing that some molecular cascades control the cytoskeleton reorganization of RGCs. PMID:21542137

  19. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    PubMed Central

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway. PMID:10590149

  20. Dendritic web silicon photovoltaic cell research

    SciTech Connect

    Easoz, J.A.; Rosey, R.; Campbell, R.B.; Rupnik, R.; Sprecace, R.P.; Piotrowski, P.A. . Advanced Energy Systems Div.); McHugh, J.P.; Seidensticker, R.G. . Science and Technology Center)

    1990-05-01

    This report summarizes the evaluation of a checkpoint demonstration of the throughout capability of the silicon dendritic web growth process as of January 1989. The demonstrated throughput of about 20,000 sq.cm/furnace/week was less than desired for a commercial production facility, however the results clearly indicated that the desired 35,000 sq.cm/furnace/week would be reached with continuous melt replenishment during growth. Improvements in seeding and increase in crystal length would increase the throughput even more. Solar cells subsequently fabricated on the material grown during the demonstration had average efficiency levels (14%) equivalent to cells fabricated on web produced prior to the demonstration run. Finally, a business analysis based on the present results gave estimated photovoltaic module costs in agreement with potential commercial viability. 5 figs., 8 tabs.

  1. Dendritic cell control of tolerogenic responses

    PubMed Central

    Manicassamy, Santhakumar; Pulendran, Bali

    2011-01-01

    Summary One of the most fundamental problems in immunology is the seemingly schizophrenic ability of the immune system to launch robust immunity against pathogens, while acquiring and maintaining a state of tolerance to the body’s own tissues and the trillions of commensal microorganisms and food antigens that confront it every day. A fundamental role for the innate immune system, particularly dendritic cells (DCs), in orchestrating immunological tolerance has been appreciated, but emerging studies have highlighted the nature of the innate receptors and the signaling pathways that program DCs to a tolerogenic state. Furthermore, several studies have emphasized the major role played by cellular interactions, and the microenvironment in programming tolerogenic DCs. Here we review these studies and suggest that the innate control of tolerogenic responses can be viewed as different hierarchies of organization, in which DCs, their innate receptors and signaling networks, and their interactions with other cells and local microenvironments represent different levels of the hierarchy. PMID:21488899

  2. Dendritic cell defects in the colorectal cancer

    PubMed Central

    Legitimo, Annalisa; Consolini, Rita; Failli, Alessandra; Orsini, Giulia; Spisni, Roberto

    2014-01-01

    Colorectal cancer (CRC) results from the accumulation of both genetic and epigenetic alterations of the genome. However, also the formation of an inflammatory milieu plays a pivotal role in tumor development and progression. Dendritic cells (DCs) play a relevant role in tumor by exerting differential pro-tumorigenic and anti-tumorigenic functions, depending on the local milieu. Quantitative and functional impairments of DCs have been widely observed in several types of cancer, including CRC, representing a tumor-escape mechanism employed by cancer cells to elude host immunosurveillance. Understanding the interactions between DCs and tumors is important for comprehending the mechanisms of tumor immune surveillance and escape, and provides novel approaches to therapy of cancer. This review summarizes updated information on the role of the DCs in colon cancer development and/or progression. PMID:25483675

  3. Alarmins Link Neutrophils and Dendritic Cells

    PubMed Central

    Yang, De; de la Rosa, Gonzalo; Tewary, Poonam; Oppenheim, Joost J.

    2009-01-01

    Neutrophils are the first major population of leukocyte to infiltrate infected or injured tissues and are crucial for initiating host innate defense and adaptive immunity. Although the contribution of neutrophils to innate immune defense is mediated predominantly by phagocytosis and killing of microorganisms, neutrophils also participate in the induction of adaptive immune responses. At sites of infection and/or injury, neutrophils release numerous mediators upon degranulation or death, among these are alarmins which have a characteristic dual capacity to mobilize and activate antigen-presenting cells. We describe here how alarmins released by neutrophil degranulation and/or death can link neutrophils to dendritic cells by promoting their recruitment and activation, resulting in the augmentation of innate and adaptive immune responses. PMID:19699678

  4. Follicular dendritic cells in health and disease

    PubMed Central

    El Shikh, Mohey Eldin M.; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  5. Follicular dendritic cells in health and disease.

    PubMed

    El Shikh, Mohey Eldin M; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  6. GATA2 regulates dendritic cell differentiation.

    PubMed

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  7. Strategies to reduce dendritic cell activation through functional biomaterial design

    PubMed Central

    Hume, Patrick S.; He, Jing; Haskins, Kathryn; Anseth, Kristi S.

    2012-01-01

    Dendritic cells play a key role in determining adaptive immunity, and there is growing interest in characterizing and manipulating the interactions between dendritic cells and biomaterial surfaces. Contact with several common biomaterials can induce the maturation of immature dendritic cells, but substrates that reduce dendritic cell maturation are of particular interest within the field of cell-based therapeutics where the goal is to reduce the immune response to cell-laden material carriers. In this study, we use a materials-based strategy to functionalize poly(ethylene glycol) hydrogels with immobilized immunosuppressive factors (TGF-β1 and IL-10) to reduce the maturation of immature dendritic cells. TGF-β1 and IL-10 are commonly employed as soluble factors to program dendritic cells in vitro, and we demonstrate that these proteins retain bioactivity towards dendritic cells when immobilized on hydrogel surfaces. Following stimulation with lipopolysaccharide (LPS) and/or cytokines, a dendritic cell line interacting with the surfaces of immunosuppressive hydrogels expressed reduced markers of maturation, including IL-12 and MHCII. The bioactivity of these immunomodulatory hydrogels was further confirmed with primary bone marrow dendritic cells (BMDCs) isolated from non-obese diabetic (NOD) mice, as quantified by a decrease in activation markers and a significantly reduced capacity to activate T cells. Furthermore, by introducing a second signal to promote BMDC-material interactions combined with the presentation of tolerizing signals, the mulitfunctional PEG hydrogels were found to further increase signaling towards BMDCs, as evidenced by greater reductions in maturation markers. PMID:22361099

  8. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration.

    PubMed

    Heiman, Maxwell G; Shaham, Shai

    2009-04-17

    Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, which act cooperatively at the time and place of anchoring. DEX-1 and DYF-7 contain, respectively, zonadhesin and zona pellucida domains, and DYF-7 self-associates into multimers important for anchoring. Thus, unlike other dendrites, amphid dendritic tips are positioned by DEX-1 and DYF-7 without the need for long-range guidance cues. In sequence and function, DEX-1 and DYF-7 resemble tectorins, which anchor stereocilia in the inner ear, suggesting that a sensory dendrite anchor may have evolved into part of a mechanosensor. PMID:19344940

  9. Magnetic Nanoparticles for Imaging Dendritic Cells

    PubMed Central

    Kobukai, Saho; Baheza, Richard; Cobb, Jared G.; Virostko, Jack; Xie, Jingping; Gillman, Amelie; Koktysh, Dmitry; Kerns, Denny; Does, Mark; Gore, John C.; Pham, Wellington

    2015-01-01

    We report the development of superparamagnetic iron oxide (SPIOs) nanoparticles and investigate the migration of SPIO-labeled dendritic cells (DCs) in a syngeneic mouse model using magnetic resonance (MR) imaging. The size of the dextran-coated SPIO is roughly 30 nm, and the DCs are capable of independent uptake of these particles, although not at levels comparable to particle uptake in the presence of a transfecting reagent. On average, with the assistance of polylysine, the particles were efficiently delivered inside DCs within one hour of incubation. The SPIO particles occupy approximately 0.35% of cell surface and are equivalent to 34.6 pg of iron per cell. In vivo imaging demonstrated that the labeled cells migrated from the injection site in the footpad to the corresponding popliteal lymph node. The homing of labeled cells in the lymph nodes resulted in a signal drop of up to 79%. Furthermore, labeling DCs with SPIO particles did not compromise cell function, we demonstrated that SPIO-enhanced MR imaging can be used to track the migration of DCs effectively in vivo. Magn Reson Med 63:1383–1390, 2010. PMID:20432309

  10. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  11. Dendritic Cells in the Cancer Microenvironment

    PubMed Central

    Ma, Yang; Shurin, Galina V.; Peiyuan, Zhu; Shurin, Michael R.

    2013-01-01

    The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs) represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer. PMID:23386903

  12. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    PubMed Central

    Sim, Wen Jing; Ahl, Patricia Jennifer; Connolly, John Edward

    2016-01-01

    Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential. PMID:26980944

  13. Brain dendritic cells: biology and pathology.

    PubMed

    D'Agostino, Paul M; Gottfried-Blackmore, Andres; Anandasabapathy, Niroshana; Bulloch, Karen

    2012-11-01

    Dendritic cells (DC) are the professional antigen-presenting cells of the immune system. In their quiescent and mature form, the presentation of self-antigens by DC leads to tolerance; whereas, antigen presentation by mature DC, after stimulation by pathogen-associated molecular patterns, leads to the onset of antigen-specific immunity. DC have been found in many of the major organs in mammals (e.g. skin, heart, lungs, intestines and spleen); while the brain has long been considered devoid of DC in the absence of neuroinflammation. Consequently, microglia, the resident immune cell of the brain, have been charged with many functional attributes commonly ascribed to DC. Recent evidence has challenged the notion that DC are either absent or minimal players in brain immune surveillance. This review will discuss the recent literature examining DC involvement within both the young and aged steady-state brain. We will also examine DC contributions during various forms of neuroinflammation resulting from neurodegenerative autoimmune disease, injury, and CNS infections. This review also touches upon DC trafficking between the central nervous system and peripheral immune compartments during viral infections, the new molecular technologies that could be employed to enhance our current understanding of brain DC ontogeny, and some potential therapeutic uses of DC within the CNS. PMID:22825593

  14. Dendritic cell interactions with Histoplasma and Paracoccidioides.

    PubMed

    Thind, Sharanjeet K; Taborda, Carlos P; Nosanchuk, Joshua D

    2015-01-01

    Fungi are among the most common microbes encountered by humans. More than 100, 000 fungal species have been described in the environment to date, however only a few species cause disease in humans. Fungal infections are of particular importance to immunocompromised hosts in whom disease is often more severe, especially in those with impaired cell-mediated immunity such as individuals with HIV infection, hematologic malignancies, or those receiving TNF-α inhibitors. Nevertheless, environmental disturbances through natural processes or as a consequence of deforestation or construction can expose immunologically competent people to a large number of fungal spores resulting in asymptomatic acquisition to life-threatening disease. In recent decades, the significance of the innate immune system and more importantly the role of dendritic cells (DC) have been found to play a fundamental role in the resolution of fungal infections, such as in dimorphic fungi like Histoplasma and Paracoccidioides. In this review article the general role of DCs will be illustrated as the bridge between the innate and adaptive immune systems, as well as their specific interactions with these 2 dimorphic fungi. PMID:25933034

  15. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  16. Transcriptional Regulation of Dendritic Cell Diversity

    PubMed Central

    Chopin, Michaël; Allan, Rhys S.; Belz, Gabrielle T.

    2012-01-01

    Dendritic cells (DCs) are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration, and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These findings open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now sets the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection. PMID:22566910

  17. Mechanisms regulating dendritic cell specification and development

    PubMed Central

    Watowich, Stephanie S.; Liu, Yong-Jun

    2010-01-01

    Summary Understanding the diversification of dendritic cell (DC) lineages is one of the last frontiers in mapping the developmental hierarchy of the hematopoietic system. DCs are a vital link between the innate and adaptive immune responses, thus elucidating their developmental pathways is crucial for insight into the generation of natural immunity and for learning how to regulate DCs in clinical settings. DCs arise from hematopoietic stem cells through specialized progenitor subsets under the direction of FMS-like tyrosine kinase 3 ligand (Flt3L) and Flt3L receptor (Flt3) signaling. Recent studies have revealed important contributions from granulocyte-macrophage colony-stimulating factor (GM-CSF) and type I interferons (IFNs) in vivo. Furthermore, DC development is guided by lineage-restricted transcription factors such as IRF8, E2-2, and Batf3. A critical question centers on how cytokines and lineage-restricted transcription factors operate molecularly to direct DC diversification. Here we review recent findings that provide new insight into the DC developmental process. PMID:20969586

  18. Select forms of tumor cell apoptosis induce dendritic cell maturation.

    PubMed

    Demaria, Sandra; Santori, Fabio R; Ng, Bruce; Liebes, Leonard; Formenti, Silvia C; Vukmanovic, Stanislav

    2005-03-01

    Dendritic cells (DC) play a crucial role in initiating immune responses to tumors. DC can efficiently present antigens from apoptotic tumor cells, but apoptotic cells are thought to lack the inflammatory signals required to induce DC maturation. Here, we show that apoptosis of 67NR mouse carcinoma cells via the Fas (CD95) pathway or induced by the anticancer drug bortezomib (PS-341) but not by ultraviolet irradiation is associated with the production of maturation signals for DC. These data have important implications for the effects of chemotherapy on antitumor immunity in solid and hematologic malignancies. PMID:15569694

  19. Dendritic cell reprogramming by the hypoxic environment.

    PubMed

    Bosco, Maria Carla; Varesio, Luigi

    2012-12-01

    Myeloid dendritic cells (DCs) are professional antigen-presenting cells central to the orchestration of innate and acquired immunity and the maintenance of self-tolerance. The local microenvironment contributes to the regulation of DC development and functions, and deregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. DC generation from monocytic precursors recruited at sites of inflammation, tissue damage, or neoplasia occurs under condition of low partial oxygen pressure (pO(2), hypoxia). We reviewed the literature addressing the phenotypic and functional changes triggered by hypoxia in monocyte-derived immature (i) and mature (m) DCs. The discussion will revolve around in vitro studies of gene expression profile, which give a comprehensive representation of the complexity of response of these cells to low pO(2). The gene expression pattern of hypoxic DC will be discussed to address the question of the relationship with a specific maturation stage. We will summarize data relative to the regulation of the chemotactic network, which points to a role for hypoxia in promoting a migratory phenotype in iDCs and a highly proinflammatory state in mDCs. Current knowledge of the strict regulatory control exerted by hypoxia on the expression of immune-related cell surface receptors will also be addressed, with a particular focus on a newly identified marker of hypoxic DCs endowed with proinflammatory properties. Furthermore, we discuss the literature on the transcription mechanisms underlying hypoxia-regulated gene expression in DCs, which support a major role for the HIF/HRE pathway. Finally, recent advances shedding light on the in vivo influence of the local hypoxic microenvironment on DCs infiltrating the inflamed joints of juvenile idiopathic arthritis patients are outlined. PMID:22901977

  20. Follicular dendritic cell function and murine AIDS.

    PubMed Central

    Masuda, A; Burton, G F; Fuchs, B A; Bhogal, B S; Rupper, R; Szakal, A K; Tew, J G

    1994-01-01

    Infection of mice with LP-BM5 elicits an immunodeficiency state referred to as murine acquired immune deficiency syndrome (MAIDS). Shortly after infection, retrovirus particles become associated with follicular dendritic cells (FDC) and this study was undertaken to determine whether retroviruses alter FDC functions. The FDC functions examined included the ability to: (1) retain antigen (Ag) trapped prior to infection; (2) trap new Ag after infection; (3) maintain specific IgG responses; and (4) provide co-stimulatory signals to B cells. Mice were infected with LP-BM5 and the ability of their FDC to trap and retain 125I-Ag (HSA) was assessed. Serum anti-HSA levels were monitored and FDC co-stimulatory activity was indicated by increased B-cell proliferation. HSA trapped on FDC prior to infection began to disappear by 3 weeks and was practically gone by 6 weeks. Serum anti-HSA titres were maintained normally for about 3 weeks after infection and then declined precipitously. The ability of FDC to trap new Ag began to disappear around the second and third week of infection and was markedly depressed by the fourth week. However, FDC recovered from infected mice retained their ability to co-stimulate anti-mu- and interleukin-4 (IL-4)-activated B cells throughout a 5-week period. In short, the ability of FDC to trap and retain specific Ag and maintain specific antibody levels was markedly depressed after retrovirus infection. However, FDC from infected mice continued to provide co-stimulatory signals and these signals may contribute to the lymphadenopathy and splenomegaly characteristic of MAIDS. Images Figure 4 PMID:8132218

  1. Dendritic cell-based therapy for mantle cell lymphoma.

    PubMed

    Munger, Corey M; Vose, Julie M; Joshi, Shantaram S

    2006-06-01

    Mantle cell lymphoma (MCL) is a B cell malignancy that is resistant to conventional therapies. High-dose therapy (HDT) followed by stem cell transplantation is effective in inducing remission. However, residual lymphoma cells are eventually responsible for the subsequent relapse. Effective therapeutic strategies to eliminate the residual lymphoma is required. In this study, we have examined the in vitro and in vivo anti-lymphoma effects of MCL-specific cytotoxic T lymphocytes (CTLs) that were generated using dendritic cells (DCs) fused with MCL cells for immunostimulation. Dendritic cells were generated in vitro using dendritic cell-specific medium, cytomorphology, immunophenotypes and functional capabilities of the generated DCs were studied. Such DCs were then used for the preparation of DC-MCL hybrids and the DC-MCL hybrids were used to generate CTLs against MCL cells and tested for their MCL-specific cytotoxicity in vitro and in vivo. The CTLs demonstrated MCL-specific cytotoxicity in vitro against GRANT-519, a human MCL cell line. These CTLs did not show significant effect against an irrelevant target. To test the in vivo therapeutic effect of DC-MCL hybrid-stimulated CTLs, a preclinical model consisting of NOD-SCID mice bearing Granta 519 was developed. The NOD-SCID mice bearing Granta-519 MCL tumors were treated with DC-MCL hybrids and the same donor T lymphocytes. There was an increase in survival (60% in mice treated with DC-MCL hybrid approach compared to 20% in the untreated group). Histological analysis of liver from control and treated mice displayed a decrease in the number of the tumor nodules in the treatment group. These results indicate the potential of DC-based therapy for the treatment of MCL. PMID:16685434

  2. Dendritic polymers: Universal glue for cells

    NASA Astrophysics Data System (ADS)

    Frey, Holger

    2012-05-01

    A dendritic polymer consisting of inversely oriented lipid head groups on a polyvalent polyglycerol scaffold makes an effective reversible biomembrane adhesive that may find use as a tissue sealant and a drug-delivery vehicle.

  3. Dendritic cells in inflammatory sinonasal diseases.

    PubMed

    Cao, P-P; Shi, L-L; Xu, K; Yao, Y; Liu, Z

    2016-07-01

    Dendritic cells (DCs) are critical in linking the innate and adaptive immune responses, which have been implicated in the pathogenesis of many immune and inflammatory diseases as well as the development of tumours. The role of DCs in the pathophysiology of lung diseases has been widely studied. However, the phenotype, subset and function of DCs in upper airways under physiological or pathological conditions remain largely undefined. Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two important upper airway diseases with a high worldwide prevalence. Aberrant innate and adaptive immune responses have been considered to play an important role in the pathogenesis of AR and CRS. To this end, understanding the function of DCs in shaping the immune responses in sinonasal mucosa is critical in exploring the pathogenic mechanisms underlying AR and CRS as well as in developing novel therapeutic strategies. This review summarizes the phenotype, subset, function and regulation of DCs in sinonasal mucosa, particularly in the setting of AR and CRS. Furthermore, this review discusses the perspectives for future research and potential clinical utility focusing on DC pathways in the context of AR and CRS. PMID:27159777

  4. Ion channels modulating mouse dendritic cell functions.

    PubMed

    Matzner, Nicole; Zemtsova, Irina M; Nguyen, Thi Xuan; Duszenko, Michael; Shumilina, Ekaterina; Lang, Florian

    2008-11-15

    Ca(2+)-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca(2+)](i) upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca(2+)](i), which was due to Ca(2+) release from intracellular stores and influx of extracellular Ca(2+) across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca(2+) release-activated Ca(2+) channels (CRAC). These currents were highly selective for Ca(2+), exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca(2+)-dependent inactivation. In addition, the LPS-induced increase of [Ca(2+)](i) was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K(+) (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-alpha and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the I(CRAC) inhibitor SKF-96365. Taken together, our results demonstrate that Ca(2+) influx in LPS-stimulated DCs occurs via Ca(2+) release-activated Ca(2+) channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions. PMID:18981098

  5. The effect of dendritic cells on the retinal cell transplantation

    SciTech Connect

    Oishi, Akio; Nagai, Takayuki; Mandai, Michiko Takahashi, Masayo; Yoshimura, Nagahisa

    2007-11-16

    The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy.

  6. In vivo imaging of dendritic pruning in dentate granule cells.

    PubMed

    Gonçalves, J Tiago; Bloyd, Cooper W; Shtrahman, Matthew; Johnston, Stephen T; Schafer, Simon T; Parylak, Sarah L; Tran, Thanh; Chang, Tina; Gage, Fred H

    2016-06-01

    We longitudinally imaged the developing dendrites of adult-born mouse dentate granule cells (DGCs) in vivo and found that they underwent over-branching and pruning. Exposure to an enriched environment and constraint of dendritic growth by disrupting Wnt signaling led to increased branch addition and accelerated growth, which were, however, counteracted by earlier and more extensive pruning. Our results indicate that pruning is regulated in a homeostatic fashion to oppose excessive branching and promote a similar dendrite structure in DGCs. PMID:27135217

  7. Dendritic Cell-Nerve Clusters Are Sites of T Cell Proliferation in Allergic Airway Inflammation

    PubMed Central

    Veres, Tibor Z.; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-01-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell–T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2′-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell–cell contacts in a semi-automated fashion. Dendritic cell–T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa. PMID:19179611

  8. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    PubMed Central

    Aliberti, Julio

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions. PMID:27034589

  9. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells.

    PubMed

    Aliberti, Julio

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions. PMID:27034589

  10. A Model of Dendritic Cell Therapy for Melanoma

    PubMed Central

    DePillis, Lisette; Gallegos, Angela; Radunskaya, Ami

    2013-01-01

    Dendritic cells are a promising immunotherapy tool for boosting an individual’s antigen-specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells, and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy. PMID:23516248

  11. Activation of B cells by antigens on follicular dendritic cells

    PubMed Central

    El Shikh, Mohey Eldin M.; El Sayed, Rania M.; Sukumar, Selvakumar; Szakal, Andras K.; Tew, John G.

    2010-01-01

    A need for antigen-processing and presentation to B cells is not widely appreciated. However, cross-linking of multiple B cell receptors (BCRs) by T-independent antigens delivers a potent signal that induces antibody responses. Such BCR cross-linking also occurs in germinal centers where follicular dendritic cells (FDCs) present multimerized antigens as periodically arranged antigen-antibody complexes (ICs). Unlike T cells that recognize antigens as peptide-MHC complexes, optimal B cell-responses are induced by multimerized FDC-ICs that simultaneously engage multiple BCRs. FDC-FcγRIIB mediates IC-periodicity and FDC-BAFF, -IL-6 and -C4bBP are co-stimulators. Remarkably, specific antibody responses can be induced by FDC-ICs in the absence of T cells, opening up the exciting possibility that people with T cell insufficiencies may be immunized with T-dependent vaccines via FDC-ICs. PMID:20418164

  12. How Follicular Dendritic Cells Shape the B-Cell Antigenome

    PubMed Central

    Kranich, Jan; Krautler, Nike Julia

    2016-01-01

    Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs. PMID:27446069

  13. Avian dendritic cells: Phenotype and ontogeny in lymphoid organs.

    PubMed

    Nagy, Nándor; Bódi, Ildikó; Oláh, Imre

    2016-05-01

    Dendritic cells (DC) are critically important accessory cells in the innate and adaptive immune systems. Avian DCs were originally identified in primary and secondary lymphoid organs by their typical morphology, displaying long cell processes with cytoplasmic granules. Several subtypes are known. Bursal secretory dendritic cells (BSDC) are elongated cells which express vimentin intermediate filaments, MHC II molecules, macrophage colony-stimulating factor 1 receptor (CSF1R), and produce 74.3+ secretory granules. Avian follicular dendritic cells (FDC) highly resemble BSDC, express the CD83, 74.3 and CSF1R molecules, and present antigen in germinal centers. Thymic dendritic cells (TDC), which express 74.3 and CD83, are concentrated in thymic medulla while interdigitating DC are found in T cell-rich areas of secondary lymphoid organs. Avian Langerhans cells are a specialized 74.3-/MHC II+ cell population found in stratified squamous epithelium and are capable of differentiating into 74.3+ migratory DCs. During organogenesis hematopoietic precursors of DC colonize the developing lymphoid organ primordia prior to immigration of lymphoid precursor cells. This review summarizes our current understanding of the ontogeny, cytoarchitecture, and immunophenotype of avian DC, and offers an antibody panel for the in vitro and in vivo identification of these heterogeneous cell types. PMID:26751596

  14. Manipulation of dendritic cell functions by human cytomegalovirus.

    PubMed

    Sinclair, John

    2008-01-01

    Dendritic cells are the most potent antigen-presenting cells of the mammalian immune system and are central to the initiation and maintenance of the adaptive immune response. They are crucial for the presentation of antigen to T cells and B cells, as well as the induction of chemokines and proinflammatory cytokines, which orchestrate the balance of the cell-mediated (Th1) and antibody (Th2) response. This ability of dendritic cells to present antigen and release chemokines and cytokines also bridges the innate and adaptive immune responses by driving T cell activation. These cells thus possess key immunological functions that make them the front line of defence for the targeting and clearance of any invading pathogen and, as such, they underpin the host immune response to infection. For efficient infection, invading pathogens often need to overcome these sentinel immune functions. It is therefore not surprising that pathogens have evolved numerous mechanisms to target dendritic cell functions directly or indirectly during infection, and at least one herpesvirus--human cytomegalovirus--has evolved a life cycle that hijacks dendritic cells for its long-term persistence in the infected host. PMID:19025715

  15. Plasmacytoid dendritic cells migrate in afferent skin lymph.

    PubMed

    Pascale, Florentina; Pascale, Florentia; Contreras, Vanessa; Bonneau, Michel; Courbet, Alexandre; Chilmonczyk, Stefan; Bevilacqua, Claudia; Epardaud, Mathieu; Eparaud, Mathieu; Niborski, Violeta; Riffault, Sabine; Balazuc, Anne-Marie; Foulon, Eliane; Guzylack-Piriou, Laurence; Riteau, Beatrice; Hope, Jayne; Bertho, Nicolas; Charley, Bernard; Schwartz-Cornil, Isabelle

    2008-05-01

    Conventional dendritic cells enter lymph nodes by migrating from peripheral tissues via the lymphatic route, whereas plasmacytoid dendritic cells (pDC), also called IFN-producing cells (IPC), are described to gain nodes from blood via the high endothelial venules. We demonstrate here that IPC/pDC migrate in the afferent lymph of two large mammals. In sheep, injection of type A CpG oligodinucleotide (ODN) induced lymph cells to produce type I IFN. Furthermore, low-density lymph cells collected at steady state produced type I IFN after stimulation with type A CpG ODN and enveloped viruses. Sheep lymph IPC were found within a minor B(neg)CD11c(neg) subset expressing CD45RB. They presented a plasmacytoid morphology, expressed high levels of TLR-7, TLR-9, and IFN regulatory factor 7 mRNA, induced IFN-gamma production in allogeneic CD4(pos) T cells, and differentiated into dendritic cell-like cells under viral stimulation, thus fulfilling criteria of bona fide pDC. In mini-pig, a CD4(pos)SIRP(pos) subset in afferent lymph cells, corresponding to pDC homologs, produced type I IFN after type A CpG-ODN triggering. Thus, pDC can link innate and acquired immunity by migrating from tissue to draining node via lymph, similarly to conventional dendritic cells. PMID:18424716

  16. Regulatory multitasking of tolerogenic dendritic cells - lessons taken from vitamin d3-treated tolerogenic dendritic cells.

    PubMed

    Nikolic, Tatjana; Roep, Bart O

    2013-01-01

    Tolerogenic dendritic cells (DCs) work through silencing of differentiated antigen-specific T cells, activation and expansion of naturally occurring T regulatory cells (Tregs), transfer of regulatory properties to T cells, and the differentiation of naïve T cells into Tregs. Due to an operational definition based on T cell activation assays, the identity of tolerogenic DCs has been a matter of debate and it need not represent a specialized DC subset. Human tolerogenic DCs generated in vitro using inhibitory cytokines, growth factors, natural immunomodulators, or genetic manipulation have been effective and several of these tolerogenic DCs are currently being tested for clinical use. Ex vivo generated tolerogenic DCs reduce activation of naïve T cells using various means, promote a variety of regulatory T cells and most importantly, frequently show stable inhibitory phenotypes upon repetitive maturation with inflammatory factors. Yet, tolerogenic DCs differ with respect to the phenotype or the number of regulatory mechanisms they employ to modulate the immune system. In our experience, tolerogenic DCs generated using the biologically active form of vitamin D (VD3-DCs), alone, or combined with dexamethasone are proficient in their immunoregulatory functions. These tolerogenic DCs show a stable maturation-resistant semi-mature phenotype with low expression of activating co-stimulatory molecules, no production of the IL-12 family of cytokines and high expression of inhibitory molecules and IL-10. VD3-DCs induce increased apoptosis of effector T cells and induce antigen-specific regulatory T cells, which work through linked suppression ensuring infectious tolerance. Lessons learned on VD3-DCs help understanding the contribution of different pattern-recognition receptors (PRRs) and secondary signals to the tolerogenic function and how a cross-talk between DCs and T cells translates into immune regulation. PMID:23717310

  17. Regulation of Dendritic Cell Function by Vitamin D

    PubMed Central

    Barragan, Myriam; Good, Misty; Kolls, Jay K.

    2015-01-01

    Studies over the last two decades have revealed profound immunomodulatory aspects of vitamin D on various aspects of the immune system. This review will provide an overview of Vitamin D metabolism, a description of dendritic cell subsets, and highlight recent advances on the effects of vitamin D on dendritic cell function, maturation, cytokine production and antigen presentation. The active form of vitamin D, 1,25(OH)2D3, has important immunoregulatory and anti-inflammatory effects. Specifically, the 1,25(OH)2D3-Vitamin D3 complex can affect the maturation and migration of many dendritic cell subsets, conferring a special immunoregulatory role as well as tolerogenic properties affecting cytokine and chemokine production. Furthermore, there have been many recent studies demonstrating the effects of Vitamin D on allergic disease and autoimmunity. A clear understanding of the effects of the various forms of Vitamin D will provide new opportunities to improve human health. PMID:26402698

  18. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  19. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A.

    PubMed

    Salvatore, Giulia; Bernoud-Hubac, Nathalie; Bissay, Nathalie; Debard, Cyrille; Daira, Patricia; Meugnier, Emmanuelle; Proamer, Fabienne; Hanau, Daniel; Vidal, Hubert; Aricò, Maurizio; Delprat, Christine; Mahtouk, Karène

    2015-06-01

    Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2-12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells "foamy DCs" and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A. PMID:25833686

  20. Imaging of plasmacytoid dendritic cell interactions with T cells.

    PubMed

    Mittelbrunn, María; Martínez del Hoyo, Gloria; López-Bravo, María; Martín-Cofreces, Noa B; Scholer, Alix; Hugues, Stéphanie; Fetler, Luc; Amigorena, Sebastián; Ardavín, Carlos; Sánchez-Madrid, Francisco

    2009-01-01

    Plasmacytoid dendritic cells (pDCs) efficiently produce type I interferon and participate in adaptive immune responses, although the molecular interactions between pDCs and antigen-specific T cells remain unknown. This study examines immune synapse (IS) formation between murine pDCs and CD4(+) T cells. Mature pDCs formed canonical ISs, involving relocation to the contact site of the microtubule-organizing center, F-actin, protein kinase C-, and pVav, and activation of early signaling molecules in T cells. However, immature pDCs were less efficient at forming conjugates with T cells and inducing IS formation, microtubule-organizing center translocation, and T-cell signaling and activation. Time-lapse videomicroscopy and 2-photon in vivo imaging of pDC-T-cell interactions revealed that immature pDCs preferentially mediated transient interactions, whereas mature pDCs promoted more stable contacts. Our data indicate that, under steady-state conditions, pDCs preferentially establish transient contacts with naive T cells and show a very modest immunogenic capability, whereas on maturation, pDCs are able to form long-lived contacts with T cells and significantly enhance their capacity to activate these lymphocytes. PMID:18818393

  1. T Cell Motility as Modulator of Interactions with Dendritic Cells

    PubMed Central

    Stein, Jens V.

    2015-01-01

    It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs) determines T cell transition from a naïve to an activated or tolerant/anergic status. Although many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting peptides presented on major histocompatibility complex with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8+ T cells to cognate DC–CD4+ T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for “optimal” DCs, while contributing to peripheral tolerance induction in the absence of inflammation. PMID:26579132

  2. Epidermal Viral Immunity Induced by CD8α+ Dendritic Cells But Not by Langerhans Cells

    NASA Astrophysics Data System (ADS)

    Allan, Rhys S.; Smith, Chris M.; Belz, Gabrielle T.; van Lint, Allison L.; Wakim, Linda M.; Heath, William R.; Carbone, Francis R.

    2003-09-01

    The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8α+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.

  3. Organ-derived dendritic cells have differential effects on alloreactive T cells

    PubMed Central

    Kim, Theo D.; Terwey, Theis H.; Zakrzewski, Johannes L.; Suh, David; Kochman, Adam A.; Chen, Megan E.; King, Chris G.; Borsotti, Chiara; Grubin, Jeremy; Smith, Odette M.; Heller, Glenn; Liu, Chen; Murphy, George F.; Alpdogan, Onder

    2008-01-01

    Dendritic cells (DCs) are considered critical for the induction of graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In addition to their priming function, dendritic cells have been shown to induce organ-tropism through induction of specific homing molecules on T cells. Using adoptive transfer of CFSE-labeled cells, we first demonstrated that alloreactive T cells differentially up-regulate specific homing molecules in vivo. Host-type dendritic cells from the GVHD target organs liver and spleen or skin- and gut-draining lymph nodes effectively primed naive allogeneic T cells in vitro with the exception of liver-derived dendritic cells, which showed less stimulatory capacity. Gut-derived dendritic cells induced alloreactive donor T cells with a gut-homing phenotype that caused increased GVHD mortality and morbidity compared with T cells stimulated with dendritic cells from spleen, liver, and peripheral lymph nodes in an MHC-mismatched murine BMT model. However, in vivo analysis demonstrated that the in vitro imprinting of homing molecules on alloreactive T cells was only transient. In conclusion, organ-derived dendritic cells can efficiently induce specific homing molecules on alloreactive T cells. A gut-homing phenotype correlates with increased GVHD mortality and morbidity after murine BMT, underlining the importance of the gut in the pathophysiology of GVHD. PMID:18178870

  4. Blastic plasmacytoid dendritic cell neoplasm (BPDCN): a rare entity.

    PubMed

    Lim, Ming Sheng; Lemmert, Karla; Enjeti, Anoop

    2016-01-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive haematological malignancy in the elderly, with a high frequency of cutaneous and bone marrow involvement and poor prognosis. We report a case of BPDCN with classic presentation and discuss its treatment and the value of different investigation tools used in diagnosis and response assessment. PMID:26791132

  5. Glucocorticoids Reduce Sepsis by Diminishing Dendritic Cell Responses.

    PubMed

    Robinson, Richard

    2015-10-01

    How does the body's immune system strike the delicate balance between under- and over-response? A new study shows that glucocorticoids limit the production of the proinflammatory cytokine interleukin-12 by dendritic cells in response to invading bacteria, thereby helping to avoid sepsis. Read the Research Article. PMID:26441144

  6. The role of human dendritic cells in HIV-1 infection.

    PubMed

    Ahmed, Zahra; Kawamura, Tatsuyoshi; Shimada, Shinji; Piguet, Vincent

    2015-05-01

    Dendritic cells (DCs) and their subsets have multifaceted roles in the early stages of HIV-1 transmission and infection. DC studies have led to remarkable discoveries, including identification of restriction factors, cellular structures promoting viral transmission including the infectious synapse or the interplay of the C-type lectins, Langerin on Langerhans cells (LCs), and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin on other DC subsets, limiting or facilitating HIV transmission to CD4(+) T cells, respectively. LCs/DCs are also exposed to encountering HIV-1 and other sexually transmitted infections (herpes simplex virus-2, bacteria, fungi), which reprogram HIV-1 interaction with these cells. This review will summarize advances in the role of DCs during HIV-1 infection and discuss their potential involvement in the development of preventive strategies against HIV-1 and other sexually transmitted infections. PMID:25407434

  7. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  8. Fascin1 promotes cell migration of mature dendritic cells.

    PubMed

    Yamakita, Yoshihiko; Matsumura, Fumio; Lipscomb, Michael W; Chou, Po-chien; Werlen, Guy; Burkhardt, Janis K; Yamashiro, Shigeko

    2011-03-01

    Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes. PMID:21263068

  9. Interactions of bacterial pathogens with dendritic cells during invasion of mucosal surfaces.

    PubMed

    Granucci, Francesca; Ricciardi-Castagnoli, Paola

    2003-02-01

    Recent studies of mucosal immunity suggest a key role for dendritic cells in the regulation of gut immune responses, in both physiological and pathological conditions. Dendritic cells are widely distributed in the lamina propria of the gut and are involved in direct bacterial uptake across mucosal surfaces, which questions the role of dendritic cells in innate mucosal responses. Approximately 400 commensal microbial species are present in the gut lumen. So how do dendritic cells distinguish pathogens from luminal microflora? Are the cytokines and chemokines induced in dendritic cells tailored to the class of microbes being recognized? Several very important questions still need to be addressed. PMID:12615223

  10. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  11. Tolerogenic Dendritic Cells for Regulatory T Cell Induction in Man

    PubMed Central

    Raker, Verena K.; Domogalla, Matthias P.; Steinbrink, Kerstin

    2015-01-01

    Dendritic cells (DCs) are highly specialized professional antigen-presenting cells that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, the inhibition of memory T cell responses, T cell anergy, and induction of regulatory T cells (Tregs). These properties have led to the analysis of human tolerogenic DCs as a therapeutic strategy for the induction or re-establishment of tolerance. In recent years, numerous protocols for the generation of human tolerogenic DCs have been developed and their tolerogenic mechanisms, including induction of Tregs, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DCs. Therefore, the scientific rationale for the use of tolerogenic DCs therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DCs with focus on IL-10-modulated DCs as inducers of Tregs and discuss their clinical applications and challenges faced in further developing this form of immunotherapy. PMID:26617604

  12. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    PubMed Central

    Svensson, Mattias; Chen, Puran; Hammarfjord, Oscar

    2010-01-01

    Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC). Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.

  13. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    PubMed

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease. PMID:20357073

  14. Variation of dorsal horn cell dendritic spread with map scale.

    PubMed

    Brown, P B; Millecchia, R; Culberson, J L; Gladfelter, W; Covalt-Dunning, D

    1996-10-21

    Cells in laminae III, IV, and V of cat dorsal horn were injected with horseradish peroxidase or neurobiotin. Dorsal views of the dendritic domains were constructed in order to measure their lengths, widths, areas, and length/width ratios in the horizontal plane (the plane of the somatotopic map). Dendritic domain width and area in the horizontal plane were negatively correlated with fractional distance between the medial and lateral edges of the dorsal horn. These results are consistent with the hypothesis that dendritic domain width varies with map scale, which is maximal in the medial dorsal horn. This is similar to the variation in widths of primary afferent bouton distributions. The parallel variation of dorsal horn cell dendritic domain width and primary afferent bouton distribution width with map scale suggests that there is a causal relation between morphology and map scale in the dorsal horn representation of the hindlimb. This variation of adult morphology with map scale must reflect mechanisms responsible for the assembly of receptive fields. PMID:8906504

  15. Self-Antigen Presentation by Dendritic Cells in Autoimmunity

    PubMed Central

    Hopp, Ann-Katrin; Rupp, Anne; Lukacs-Kornek, Veronika

    2014-01-01

    The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies. PMID:24592266

  16. Mast Cells Condition Dendritic Cells to Mediate Allograft Tolerance

    PubMed Central

    de Vries, Victor C.; Pino-Lagos, Karina; Nowak, Elizabeth C.; Bennett, Kathy A.; Oliva, Carla; Noelle, Randolph J.

    2013-01-01

    SUMMARY Peripheral tolerance orchestrated by regulatory T cells, dendritic cells (DCs), and mast cells (MCs) has been studied in several models including skin allograft tolerance. We now define a role for MCs in controlling DC behavior (“conditioning”) to facilitate tolerance. Under tolerant conditions, we show that MCs mediated a marked increase in tumor necrosis factor (TNFα)-dependent accumulation of graft-derived DCs in the dLN compared to nontolerant conditions. This increase of DCs in the dLN is due to the local production of granulocyte macrophage colony-stimulating factor (GM-CSF) by MCs that induces a survival advantage of graft-derived DCs. DCs that migrated to the dLN from the tolerant allograft were tolerogenic; i.e., they dominantly suppress T cell responses and control regional immunity. This study underscores the importance of MCs in conditioning DCs to mediate peripheral tolerance and shows a functional impact of peripherally produced TNFα and GM-CSF on the migration and function of tolerogenic DCs. PMID:22035846

  17. Blastic plasmacytoid dendritic cell neoplasm: diagnostic criteria and therapeutical approaches.

    PubMed

    Pagano, Livio; Valentini, Caterina G; Grammatico, Sara; Pulsoni, Alessandro

    2016-07-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare haematological malignancy derived from the precursors of plamacytoid dendritic cells, with an aggressive clinical course and high frequency of cutaneous and bone marrow involvement. Neoplastic cells express CD4, CD43 (also termed SPN), CD45RA and CD56 (also termed NCAM1), as well as the plasmacytoid dendritic cell-associated antigens CD123 (also termed IL3RA), BDCA-2 (also termed CD303, CLEC4E) TCL1 and CTLA1 (also termed GZMB). The median survival is only a few months as the tumour exhibits a progressive course despite initial response to chemotherapy. The best modality of treatment remains to be defined. Generally, patients receive acute leukaemia-like induction, according to acute myeloid leukaemia (AML)-type or acute lymphoid leukaemia (ALL)-type regimens. The frequent neuromeningeal involvement indicates systematic pre-emptive intrathecal chemotherapy in addition to intensive chemotherapy. Allogeneic haematopoietic stem cell transplantation (HSCT), particularly when performed in first remission, may improve the survival. Preliminary data suggest a potential role for immunomodulatory agents and novel targeted drugs. Herein epidemiology, clinical manifestations, diagnosis and management of BPDCN will be presented. In detail, this review focuses on the therapeutic aspects of BPDCN, proposing a treatment algorithm for the management of the disease, including induction chemotherapy, allogeneic HSCT and intrathecal prophylaxis at different steps of treatment, according to compliance, biological and clinical characteristics of patients. PMID:27264021

  18. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    PubMed

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  19. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems.

    PubMed

    Selmeczi, David; Hansen, Thomas Steen; Met, Özcan; Svane, Inge Marie; Larsen, Niels B

    2016-01-01

    Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes the instrumentation and methods needed for the efficient transfection by electroporation of millions of dendritic cells in one continuous flow process. PMID:27236798

  20. Novel Murine Dendritic Cell Lines: A Powerful Auxiliary Tool for Dendritic Cell Research

    PubMed Central

    Fuertes Marraco, Silvia A.; Grosjean, Frédéric; Duval, Anaïs; Rosa, Muriel; Lavanchy, Christine; Ashok, Devika; Haller, Sergio; Otten, Luc A.; Steiner, Quynh-Giao; Descombes, Patrick; Luber, Christian A.; Meissner, Felix; Mann, Matthias; Szeles, Lajos; Reith, Walter; Acha-Orbea, Hans

    2012-01-01

    Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research. PMID:23162549

  1. Targeting Dendritic Cells in vivo for Cancer Therapy

    PubMed Central

    Caminschi, Irina; Maraskovsky, Eugene; Heath, William Ross

    2012-01-01

    Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo. PMID:22566899

  2. Dextromethorphan inhibits activations and functions in dendritic cells.

    PubMed

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN- γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF- κ B translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  3. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    PubMed Central

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  4. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila

    PubMed Central

    Xiao, Hui; Wang, Denan; Franc, Nathalie C.; Jan, Lily Yeh; Jan, Yuh-Nung

    2014-01-01

    SUMMARY During developmental remodeling, neurites destined for pruning often degenerate on-site. Physical injury also induces degeneration of neurites distal to the injury site. Prompt clearance of degenerating neurites is important for maintaining tissue homeostasis and preventing inflammatory responses. Here we show that in both dendrite pruning and dendrite injury of Drosophila sensory neurons, epidermal cells rather than hemocytes are the primary phagocytes in clearing degenerating dendrites. Epidermal cells act via Draper-mediated recognition to facilitate dendrite degeneration and to engulf and degrade degenerating dendrites. Using multiple dendritic membrane markers to trace phagocytosis, we show that two members of the CD36 family, croquemort (crq) and debris buster (dsb), act at distinct stages of phagosome maturation for dendrite clearance. Our finding reveals the physiological importance of coordination between neurons and their surrounding epidermis, for both dendrite fragmentation and clearance. PMID:24412417

  5. Viral piracy: HIV-1 targets dendritic cells for transmission.

    PubMed

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse. PMID:16611055

  6. Dendritic web-type solar cell mini-modules

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1985-01-01

    Twenty-five minimodules composed of dendritic web solar cells with nominal glass size of 12 by 40 cm were provided for study. The modules were identical with respect to design, materials, and manufacturing and assembly processes to full scale modules. The modules were also electrically functional. These minimodules were fabricated to provide test vehicle for environmental testing and to assess reliability of process and design procedures. The module design and performance are outlined.

  7. Induction and identification of rabbit peripheral blood derived dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  8. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells

    PubMed Central

    Felts, Richard L.; Narayan, Kedar; Estes, Jacob D.; Shi, Dan; Trubey, Charles M.; Fu, Jing; Hartnell, Lisa M.; Ruthel, Gordon T.; Schneider, Douglas K.; Nagashima, Kunio; Bess, Julian W.; Bavari, Sina; Lowekamp, Bradley C.; Bliss, Donald; Lifson, Jeffrey D.; Subramaniam, Sriram

    2010-01-01

    The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission. PMID:20624966

  9. Nectin-1 spots regulate the branching of olfactory mitral cell dendrites.

    PubMed

    Fujiwara, Takeshi; Inoue, Takahito; Maruo, Tomohiko; Rikitake, Yoshiyuki; Ieki, Nao; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Takai, Yoshimi; Mizoguchi, Akira

    2015-09-01

    Olfactory mitral cells extend lateral secondary dendrites that contact the lateral secondary and apical primary dendrites of other mitral cells in the external plexiform layer (EPL) of the olfactory bulb. The lateral dendrites further contact granule cell dendrites, forming dendrodendritic reciprocal synapses in the EPL. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. We recently showed that the immunoglobulin-like cell adhesion molecule nectin-1 constitutes a novel adhesion apparatus at the contacts between mitral cell lateral dendrites, between mitral cell lateral and apical dendrites, and between mitral cell lateral dendrites and granule cell dendritic spine necks in the deep sub-lamina of the EPL of the developing mouse olfactory bulb and named them nectin-1 spots. We investigated here the role of the nectin-1 spots in the formation of dendritic structures in the EPL of the mouse olfactory bulb. We showed that in cultured nectin-1-knockout mitral cells, the number of branching points of mitral cell dendrites was reduced compared to that in the control cells. In the deep sub-lamina of the EPL in the nectin-1-knockout olfactory bulb, the number of branching points of mitral cell lateral dendrites and the number of dendrodendritic reciprocal synapses were reduced compared to those in the control olfactory bulb. These results indicate that the nectin-1 spots regulate the branching of mitral cell dendrites in the deep sub-lamina of the EPL and suggest that the nectin-1 spots are required for odor information processing in the olfactory bulb. PMID:26169026

  10. Antigen loading of dendritic cells with whole tumor cell preparations.

    PubMed

    Thumann, Peter; Moc, Isabelle; Humrich, Jens; Berger, Thomas G; Schultz, Erwin S; Schuler, Gerold; Jenne, Lars

    2003-06-01

    Dendritic cells (DC) based vaccinations have been widely used for the induction of anti-tumoral immunity in clinical studies. Antigen loading of DC with whole tumor cell preparations is an attractive method whenever tumor cell material is available. In order to determine parameters for the loading procedure, we performed dose finding and timing experiments. We found that apoptotic and necrotic melanoma cells up to a ratio of one-to-one, equivalent to 1mg/ml protein per 1 x 10(6) DC, can be added to monocyte derived DC without effecting DC recovery extensively. Using the isolated protein content of tumor cells (lysate) as a parameter, up to 5 mg/ml protein per 1 x 10(6) DC can be added. To achieve significant protein uptake at least 1 mg/ml of protein have to be added for more than 24 h as tested with FITC-labelled ovalbumin. Maturation inducing cytokines can be added simultaneously with the tumor cell preparations to immature DC without affecting the uptake. Furthermore, we tested the feasibility of cryopreservation of loaded and matured DC to facilitate the generation of ready to use aliquots. DC were cryopreserved in a mix of human serum albumin, DMSO and 5% glucose. After thawing, surface expression of molecules indicating the mature status (CD83, costimulatory and MHC molecules), was found to be unaltered. Furthermore, cryopreserved DC kept the capability to stimulate allogenic T-cell proliferation in mixed leukocyte reactions at full level. Loaded and matured DC pulsed with influenza matrix peptide (IMP) retained the capacity to induce the generation of IMP-specific cytotoxic T-lymphocytes after cryopreservation as measured by ELISPOT and tetramer staining. The expression of the chemokine receptor CXCR-4 and CCR-7 remained unaltered during cryopreservation and the migratory responsiveness towards MIP-3beta was unaltered as measured in a migration assay. Thus we conclude that the large scale loading and maturation of DC with whole tumor cell preparations can be

  11. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    PubMed

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-01

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation. PMID:27147029

  12. Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.

    PubMed

    Szoboszlay, Miklos; Lőrincz, Andrea; Lanore, Frederic; Vervaeke, Koen; Silver, R Angus; Nusser, Zoltan

    2016-06-01

    The strength and variability of electrical synaptic connections between GABAergic interneurons are key determinants of spike synchrony within neuronal networks. However, little is known about how electrical coupling strength is determined due to the inaccessibility of gap junctions on the dendritic tree. We investigated the properties of gap junctions in cerebellar interneurons by combining paired somato-somatic and somato-dendritic recordings, anatomical reconstructions, immunohistochemistry, electron microscopy, and modeling. By fitting detailed compartmental models of Golgi cells to their somato-dendritic voltage responses, we determined their passive electrical properties and the mean gap junction conductance (0.9 nS). Connexin36 immunofluorescence and freeze-fracture replica immunogold labeling revealed a large variability in gap junction size and that only 18% of the 340 channels are open in each plaque. Our results establish that the number of gap junctions per connection is the main determinant of both the strength and variability in electrical coupling between Golgi cells. PMID:27133465

  13. Unique immunomodulatory effects of azelastine on dendritic cells in vitro.

    PubMed

    Schumacher, S; Kietzmann, M; Stark, H; Bäumer, W

    2014-11-01

    Allergic contact dermatitis and atopic dermatitis are among the most common inflammatory skin diseases in western countries, and antigen-presenting cells like dendritic cells (DC) are key players in their pathophysiology. Histamine, an important mediator of allergic reactions, influences DC maturation and cytokine secretion, which led us to investigate the immunomodulatory potential of the well-known histamine H1 receptor antagonists: azelastine, olopatadine, cetirizine, and pyrilamine. Unlike other H1 antihistamines, azelastine decreased lipopolysaccharide-induced tumor necrosis factor α and interleukin-12 secretion from murine bone marrow-derived DC. This effect was independent of histamine receptors H1, H2, or H4 and may be linked to inhibition of the nuclear factor kappa B pathway. Moreover, only azelastine reduced proliferation of allogenic T cells in a mixed leukocyte reaction. We then tested topical application of the H1 antihistamines on mice sensitized against toluene-2,4-diisocyanate, a model of Th2-mediated allergic contact dermatitis. In contrast to the in vitro results, all investigated substances were efficacious in reducing allergic ear swelling. Azelastine has unique effects on dendritic cells and T cell interaction in vitro. However, this did not translate into superior in vivo efficacy for Th2-mediated allergic dermatitis, possibly due to the effects of the antihistamines on other cell types involved in skin inflammation. Future research will have to clarify whether these properties are relevant to in vivo models of allergic inflammation with a different T cell polarization. PMID:25119779

  14. Directing dendritic cell immunotherapy towards successful cancer treatment

    PubMed Central

    Sabado, Rachel Lubong; Bhardwaj, Nina

    2010-01-01

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes. PMID:20473346

  15. Tolerogenic dendritic cells and their applications in transplantation

    PubMed Central

    Li, Haibin; Shi, Bingyi

    2015-01-01

    In transplantation immunology, the ultimate goal is always to successfully and specifically induce immune tolerance of allografts. Tolerogenic dendritic cells (tol-DCs) with immunoregulatory functions have attracted much attention as they play important roles in inducing and maintaining immune tolerance. Here, we focused on tol-DCs that have the potential to promote immune tolerance after solid-organ transplantation. We focus on their development and interactions with other regulatory cells, and we also explore various tol-DC engineering protocols. Harnessing tol-DCs represents a promising cellular therapy for promoting long-term graft functional survival in transplant recipients that will most likely be achieved in the future. PMID:25109681

  16. Dendritic cells in progression and pathology of HIV infection

    PubMed Central

    Manches, Olivier; Frleta, Davor; Bhardwaj, Nina

    2014-01-01

    Although the major targets of HIV infection are CD4+ T cells, dendritic cells (DC) represent a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation of HIV antigens. DC are potent antigen presenting cells that can modulate anti-viral immune responses. Through secretion of inflammatory cytokines and interferons (IFN), DC also alter T cell proliferation and differentiation, participating in the immune dysregulation characteristic of chronic HIV infection. Their wide distribution in close proximity with the mucosal epithelia makes them one of the first cell types to encounter HIV during sexual transmission [1]. We will discuss here the multiple roles that DC play at different stages of HIV infection, emphasizing their relevance to HIV pathology and progression. PMID:24246474

  17. Targeting Antigens to Dendritic Cell Receptors for Vaccine Development

    PubMed Central

    Apostolopoulos, Vasso; Thalhammer, Theresia; Tzakos, Andreas G.

    2013-01-01

    Dendritic cells (DCs) are highly specialized antigen presenting cells of the immune system which play a key role in regulating immune responses. Depending on the method of antigen delivery, DCs stimulate immune responses or induce tolerance. As a consequence of the dual function of DCs, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. In vaccine development, a major aim is to induce strong, specific T-cell responses. This is achieved by targeting antigen to cell surface molecules on DCs that efficiently channel the antigen into endocytic compartments for loading onto MHC molecules and stimulation of T-cell responses. The most attractive cell surface receptors, expressed on DCs used as targets for antigen delivery for cancer and other diseases, are discussed. PMID:24228179

  18. Dendritic Cell Cancer Vaccines: From the Bench to the Bedside

    PubMed Central

    Katz, Tamar; Avivi, Irit; Benyamini, Noam; Rosenblatt, Jacalyn; Avigan, David

    2014-01-01

    The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both “passive” (e.g. strategies relying on the administration of specific T cells) and “active” vaccines (e.g. peptide-directed or whole-cell vaccines) have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines) are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target “immunosuppressive checkpoints” (anti-CTLA-4, PD-1, etc.) is likely to improve and maintain immune response induced by vaccination. PMID:25386340

  19. Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials.

    PubMed

    Zhou, Xin; Fu, Quan H; Zhao, Jing; Yang, Yang; Zhao, Xiao P

    2006-08-01

    We present the design for a hexagonal cell made of quasi-periodic dendritic arranged collections of plasmonic metallic wires that may exhibit a resonant magnetic collective response. When such quasi-periodic dendritic cells are etched on a host medium, they may provide metamaterials with negative effective permeability. We also show that a clear point image is observed, as expected, with our left-handed metamaterials (LHMs) lens composed of metallic dendritic cells and wire strips. These prominent characteristics of quasi-periodic dendritic cells potentially enable us to prepare infrared or visible domain LHMs by using a general chemical method. PMID:19529087

  20. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions

    PubMed Central

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and

  1. Human Decidua Contains Potent Immunostimulatory CD83+ Dendritic Cells

    PubMed Central

    Kämmerer, Ulrike; Schoppet, Michael; McLellan, Alexander D.; Kapp, Michaela; Huppertz, Hans-Iko; Kämpgen, Eckhart; Dietl, Johannes

    2000-01-01

    Dendritic cells (DCs) are sentinel cells of the immune system important in initiating antigen-specific T-cell responses to microbial and transplantation antigens. DCs are particularly found in surface tissues such as skin and mucosa, where the organism is threatened by infectious agents. The human decidua, despite its proposed immunosuppressive function, hosts a variety of immunocompetent CD45 cells such as natural killer cells, macrophages, and T cells. Here we describe the detection, isolation, and characterization of CD45+, CD40+, HLA-DR++, and CD83+ cells from human early pregnancy decidua with typical DC morphology. CD83+ as well as CD1a+ cells were found in close vicinity to endometrial glands, with preference to the basal layer of the decidua. In vitro, decidual CD83+ cells could be enriched to ∼30%, with the remainder of cells encompassing DC-bound CD3+ T cells. Stimulation of allogeneic T cells in a mixed leukocyte reaction by the decidual cell fraction enriched for CD83+ cells, was similar to that obtained with blood monocyte-derived DCs, demonstrating the potent immunostimulatory capacity of these cells. Decidual DCs with morphological, phenotypic, and functional characteristics of immunostimulatory DCs might be important mediators in the regulation of immunological balance between maternal and fetal tissue, leading to successful pregnancy. PMID:10880386

  2. Regulation of Intestinal Immune System by Dendritic Cells

    PubMed Central

    Ko, Hyun-Jeong

    2015-01-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell. PMID:25713503

  3. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  4. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  5. Interaction of Salmonella Typhimurium with Dendritic Cells Derived from Pluripotent Embryonic Stem Cells

    PubMed Central

    Rossi, Raffaella; Hale, Christine; Goulding, David; Andrews, Robert; Abdellah, Zarah; Fairchild, Paul J.; Dougan, Gordon

    2012-01-01

    Using an in vitro differentiation protocol we isolated cells with the properties of dendritic cells (DCs) from immunologically refractive pluripotent murine embryonic stem cells (ESCs). These ES-derived dendritic cells (ESDCs) expressed cytokines and were able to present antigen to a T cell line. Infection of ESDCs with Salmonella Typhimurium stimulated the expression of immune cell markers and thousands of murine genes, many associated with the immune response. Consequently, this system provides a novel in vitro model, amenable to genetic modification, for monitoring host/pathogen interactions. PMID:23284947

  6. Gangliosides inhibit the development from monocytes to dendritic cells

    PubMed Central

    WÖLFL, M; BATTEN, W Y; POSOVSZKY, C; BERNHARD, H; BERTHOLD, F

    2002-01-01

    Dendritic cell (DC) development and function is critical in the initiation phase of any antigen-specific immune response against tumours. Impaired function of DC is one explanation as to how tumours escape immunosurveillance. In the presence of various soluble tumour-related factors DC precursors lose their ability to differentiate into mature DC and to activate T cells. Gangliosides are glycosphingolipids shed by tumours of neuroectodermal origin such as melanoma and neuroblastoma. In this investigation we address the question of whether gangliosides suppress the development and function of monocyte-derived DC in vitro. In the presence of gangliosides, the monocytic DC precursors showed increased adherence, cell spreading and a reduced number of dendrites. The expression of MHC class II molecules, co-stimulatory molecules and the GM-CSF receptor (CD116) on the ganglioside-treated DC was significantly reduced. Furthermore, the function of ganglioside-treated DC was impaired as observed in endocytosis, chemotactic and T cell proliferation assays. In contrast to monocytic DC precursors, mature DC were unaffected even when higher doses of gangliosides were added to the culture. With regard to their carbohydrate structure, five different gangliosides (GM2, GM3, GD2, GD3, GT1b), which are typically shed by melanoma and neuroblastoma, were tested for their ability to suppress DC development and function. Suppression was induced by GM2, but not by the other gangliosides. These data suggest that certain gangliosides impair DC precursors, implying a possible mechanism for tumour escape. PMID:12452834

  7. Resistivity and thickness effects in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  8. Resistivity and thickness effects in dendritic web silicon solar cells

    NASA Astrophysics Data System (ADS)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  9. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

    PubMed

    Inoue, Takahito; Fujiwara, Takeshi; Rikitake, Yoshiyuki; Maruo, Tomohiko; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Mizoguchi, Akira; Takai, Yoshimi

    2015-08-15

    Mitral cells project lateral dendrites that contact the lateral and primary dendrites of other mitral cells and granule cell dendrites in the external plexiform layer (EPL) of the olfactory bulb. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. In immunofluorescence microscopy, the immunofluorescence signal for the cell adhesion molecule nectin-1 was concentrated on mitral cell lateral dendrites in the EPL of the developing mouse olfactory bulb. In electron microscopy, the immunogold particles for nectin-1 were symmetrically localized on the plasma membranes at the contacts between mitral cell lateral dendrites, which showed bilateral darkening without dense cytoskeletal undercoats characteristic of puncta adherentia junctions. We named the contacts where the immunogold particles for nectin-1 were symmetrically accumulated "nectin-1 spots." The nectin-1 spots were 0.21 μm in length on average and the distance between the plasma membranes was 20.8 nm on average. In 3D reconstruction of serial sections, clusters of the nectin-1 spots formed a disc-like structure. In the mitral cell lateral dendrites of nectin-1-knockout mice, the immunogold particles for nectin-1 were undetectable and the plasma membrane darkening was electron-microscopically normalized, but the plasma membranes were partly separated from each other. The nectin-1 spots were further identified between mitral cell lateral and primary dendrites and between mitral cell lateral dendrites and granule cell dendritic spine necks. These results indicate that the nectin-1 spots constitute a novel adhesion apparatus that tethers mitral cell dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb. PMID:25967681

  10. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  11. Follicular Dendritic Cell Sarcoma Mediastinum - a case report.

    PubMed

    Bushan, Kirti

    2014-12-01

    Follicular dendritic cell tumor (FDCT) are extremely rare difficult to diagnose category tumors.There has been a considerable controversy in medical community regarding precise classification and optimal management of this tumor with some treating it as a form of non Hodgkins lymphoma and some as soft tissue sarcomas.The number of published cases are still low and documentation too heterogenous to give statistically ified therapeutic recommendation of these tumors.This case report aims to highlight various aspects of diagnosing and treating this rare entity. PMID:25767341

  12. Dendritic cell-based cancer immunotherapy for colorectal cancer

    PubMed Central

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  13. Targeting dendritic cells: a promising strategy to improve vaccine effectiveness

    PubMed Central

    Macri, Christophe; Dumont, Claire; Johnston, Angus PR; Mintern, Justine D

    2016-01-01

    Dendritic cell (DC) targeting is a novel strategy to enhance vaccination efficacy. This approach is based on the in situ delivery of antigen via antibodies that are specific for endocytic receptors expressed at the surface of DCs. Here we review the complexity of the DC subsets and the antigen presentation pathways that need to be considered in the settings of DC targeting. We also summarize current knowledge about antigen delivery to DCs via DEC-205, Clec9A and Clec12A, receptor targets that strongly enhance cellular and humoral immune responses. Finally, we discuss the intracellular trafficking criteria of the targeted receptors that may impact their effectiveness as DC targets. PMID:27217957

  14. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens. PMID:23426134

  15. Modulation of dendritic cell maturation and function by B lymphocytes.

    PubMed

    Bayry, Jagadeesh; Lacroix-Desmazes, Sébastien; Kazatchkine, Michel D; Hermine, Olivier; Tough, David F; Kaveri, Srini V

    2005-07-01

    Investigating the signals that regulate the function of dendritic cells (DC), the sentinels of the immune system, is critical to understanding the role of DC in the regulation of immune responses. Accumulating lines of evidence indicate that in addition to innate stimuli and T cell-derived signals, B lymphocytes exert a profound regulatory effect in vitro and in vivo on the Ag-presenting function of DC. The identification of B cells as a cellular source of cytokines, chemokines, and autoantibodies that are critically involved in the process of maturation, migration, and function of DC provides a rationale for immunotherapeutic intervention of autoimmune and inflammatory conditions by targeting B cells. Conversely, efficient cross-presentation of Ags by DC pulsed with immune complexes provides an alternative approach in the immunotherapy of cancer and infectious diseases. PMID:15972625

  16. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  17. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  18. Immunohistochemical detection of dendritic cell markers in cattle.

    PubMed

    Romero-Palomo, F; Risalde, M A; Molina, V; Sánchez-Cordón, P J; Pedrera, M; Gómez-Villamandos, J C

    2013-11-01

    Dendritic cells (DCs) are "professional" antigen-presenting cells with a critical role in the regulation of innate and adaptive immune responses and thus have been considered of great interest in the study of a variety of infectious diseases. The objective of this investigation was to characterize the in vivo distribution of DCs in bovine tissues by using potential DC markers to establish a basis for the study of DCs in diseased tissues. Markers evaluated included MHCII, CD208, CD1b, CD205, CNA.42, and S100 protein, the latter 2 being expressed by follicular dendritic cells whose origin and role are different from the rest of hematopoietic DCs. Paraffin wax-embedded tissues from 6 healthy Friesian calves were subjected to the avidin-biotin-peroxidase method, and the most appropriate fixatives, dilutions, and antigen retrieval pretreatments were studied for each of the primary antibodies. The most significant results included the localization of CD208-positive cells not only in the T zone of lymphoid organs but also within lymphoid follicles; CD1b-positive cells were mainly found in thymus and interfollicular areas of some lymph nodes; cells stained with anti-CD205 antibody were scarce, and their location was mainly in nonlymphoid tissues; and CNA.42- and S100 protein-positive cells localized in primary lymphoid follicles and light zones of germinal centers, although showing differences in the staining pattern. Furthermore, MHCII was established as one of the most sensitive markers for any DC of hematopoietic origin. These results increase our understanding of DC immunolabeling and will help in future DC studies of both healthy and diseased tissues. PMID:23528943

  19. Ragweed subpollen particles of respirable size activate human dendritic cells.

    PubMed

    Pazmandi, Kitti; Kumar, Brahma V; Szabo, Krisztina; Boldogh, Istvan; Szoor, Arpad; Vereb, Gyorgy; Veres, Agota; Lanyi, Arpad; Rajnavolgyi, Eva; Bacsi, Attila

    2012-01-01

    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-α, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naïve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3(+) pan-T cells resulted in increased secretion of IFN-γ and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL-4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs' NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins. PMID:23251688

  20. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition.

    PubMed

    Kiermaier, Eva; Moussion, Christine; Veldkamp, Christopher T; Gerardy-Schahn, Rita; de Vries, Ingrid; Williams, Larry G; Chaffee, Gary R; Phillips, Andrew J; Freiberger, Friedrich; Imre, Richard; Taleski, Deni; Payne, Richard J; Braun, Asolina; Förster, Reinhold; Mechtler, Karl; Mühlenhoff, Martina; Volkman, Brian F; Sixt, Michael

    2016-01-01

    The addition of polysialic acid to N- and/or O-linked glycans, referred to as polysialylation, is a rare posttranslational modification that is mainly known to control the developmental plasticity of the nervous system. Here we show that CCR7, the central chemokine receptor controlling immune cell trafficking to secondary lymphatic organs, carries polysialic acid. This modification is essential for the recognition of the CCR7 ligand CCL21. As a consequence, dendritic cell trafficking is abrogated in polysialyltransferase-deficient mice, manifesting as disturbed lymph node homeostasis and unresponsiveness to inflammatory stimuli. Structure-function analysis of chemokine-receptor interactions reveals that CCL21 adopts an autoinhibited conformation, which is released upon interaction with polysialic acid. Thus, we describe a glycosylation-mediated immune cell trafficking disorder and its mechanistic basis. PMID:26657283

  1. Follicular Dendritic Cells Retain Infectious HIV in Cycling Endosomes

    PubMed Central

    Heesters, Balthasar A.; Lindqvist, Madelene; Vagefi, Parsia A.; Scully, Eileen P.; Schildberg, Frank A.; Altfeld, Marcus; Walker, Bruce D.; Kaufmann, Daniel E.; Carroll, Michael C.

    2015-01-01

    Despite the success of antiretroviral therapy (ART), it does not cure Human Immunodeficiency Virus (HIV) and discontinuation results in viral rebound. Follicular dendritic cells (FDC) are in direct contact with CD4+ T cells and they retain intact antigen for prolonged periods. We found that human FDC isolated from patients on ART retain infectious HIV within a non-degradative cycling compartment and transmit infectious virus to uninfected CD4 T cells in vitro. Importantly, treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission in vitro. Our results provide an explanation for how FDC can retain infectious HIV for extended periods and suggest a therapeutic strategy to achieve cure in HIV-infected humans. PMID:26623655

  2. Dendritic cells and macrophages in the genitourinary tract

    PubMed Central

    Iijima, N; Thompson, JM; Iwasaki, A

    2009-01-01

    Dendritic cells (DCs) and macrophages are antigen-presenting cells (APCs) that are important in innate immune defense as well as in the generation and regulation of adaptive immunity against a wide array of pathogens. The genitourinary (GU) tract, which serves an important reproductive function, is constantly exposed to numerous agents of sexually transmitted infections (STIs). To combat these STIs, several subsets of DCs and macrophages are strategically localized within the GU tract. In the female genital mucosa, recruitment and function of these APCs are uniquely governed by sex hormones. This review summarizes the latest advances in our understanding of DCs and macrophages in the GU tract with respect to their subsets, lineage, and function. In addition, we discuss the divergent roles of these cells in immune defense against STIs as well as in maternal tolerance to the fetus. PMID:19079212

  3. Resident and “inflammatory” dendritic cells in human skin

    PubMed Central

    Zaba, Lisa C.; Krueger, James G; Lowes, Michelle A.

    2009-01-01

    Dendritic cells (DCs) are a heterogeneous group of antigen-presenting leukocytes that play an important role in activation of both the innate and acquired arms of the immune system. While there are several different DC populations in the body, DCs are globally defined by their capacity for potent antigen presentation and naive T cell activation. In non-inflamed human skin during steady-state, there are three main cutaneous DC populations: epidermal Langerhans cells (LCs), dermal myeloid DCs, and dermal plasmacytoid DCs (pDCs). In psoriasis, a model for cutaneous inflammation, there is an additional population of myeloid dermal DCs – “inflammatory DCs” – which appear to be critical for disease pathogenesis. PMID:18685620

  4. Dendritic Cells in the Gut: Interaction with Intestinal Helminths

    PubMed Central

    Mendlovic, Fela; Flisser, Ana

    2010-01-01

    The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs) orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs) as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes. PMID:20224759

  5. Dendritic cell development-History, advances, and open questions.

    PubMed

    Puhr, Sarah; Lee, Jaeyop; Zvezdova, Ekaterina; Zhou, Yu J; Liu, Kang

    2015-12-01

    Dendritic cells (DCs) are uniquely potent in orchestrating T cell immune response, thus they are indispensable immune sentinels. They originate from progenitors in the bone marrow through hematopoiesis, a highly regulated developmental process involving multiple cellular and molecular events. This review highlights studies of DC development-from the discovery of DCs as glass-adherent antigen presenting cells to the debate and resolution of their origin and lineage map. In particular, we summarize the roles of lineage-specific cytokines, the placement of distinct hematopoietic progenitors within the DC lineage and transcriptional programs governing DC development, which together have allowed us to diagram the current view of DC hematopoiesis. Important open questions and debates on the DC development and relevant models are also discussed. PMID:27040276

  6. CT findings associated with blastic plasmacytoid dendritic cell neoplasm: a case report

    PubMed Central

    Choi, Jung W; Jeong, Katherine; Sokol, Lubomir

    2016-01-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that is frequently misdiagnosed. We present a case of a 53-year-old man diagnosed with blastic plasmacytoid dendritic cell neoplasm with extensive computed tomography (CT) findings and provide an imaging focused review of this uncommon malignancy. PMID:27504192

  7. β-III spectrin is critical for development of purkinje cell dendritic tree and spine morphogenesis.

    PubMed

    Gao, Yuanzheng; Perkins, Emma M; Clarkson, Yvonne L; Tobia, Steven; Lyndon, Alastair R; Jackson, Mandy; Rothstein, Jeffrey D

    2011-11-16

    Mutations in the gene encoding β-III spectrin give rise to spinocerebellar ataxia type 5, a neurodegenerative disease characterized by progressive thinning of the molecular layer, loss of Purkinje cells and increasing motor deficits. A mouse lacking full-length β-III spectrin (β-III⁻/⁻) displays a similar phenotype. In vitro and in vivo analyses of Purkinje cells lacking β-III spectrin, reveal a critical role for β-III spectrin in Purkinje cell morphological development. Disruption of the normally well ordered dendritic arborization occurs in Purkinje cells from β-III⁻/⁻ mice, specifically showing a loss of monoplanar organization, smaller average dendritic diameter and reduced densities of Purkinje cell spines and synapses. Early morphological defects appear to affect distribution of dendritic, but not axonal, proteins. This study confirms that thinning of the molecular layer associated with disease pathogenesis is a consequence of Purkinje cell dendritic degeneration, as Purkinje cells from 8-month-old β-III⁻/⁻ mice have drastically reduced dendritic volumes, surface areas and total dendritic lengths compared with 5- to 6-week-old β-III⁻/⁻ mice. These findings highlight a critical role of β-III spectrin in dendritic biology and are consistent with an early developmental defect in β-III⁻/⁻ mice, with abnormal Purkinje cell dendritic morphology potentially underlying disease pathogenesis. PMID:22090485

  8. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    SciTech Connect

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  9. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine.

    PubMed

    Jeon, Young-Tae; Na, Hyeongjin; Ryu, Heeju; Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL-6, TNFα and IL-12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  10. Dendritic cells and oral transmission of prion diseases.

    PubMed

    Huang, Fang-Ping; MacPherson, G Gordon

    2004-04-19

    Transmissible spongiform encephalopathies (scrapie, BSE, Kuru) develop as central nervous system (CNS) diseases after long incubation periods, and many of which may arise following the consumption of infected material. The infectious agent is thought to be a misfolded form (scrapie associated PrP (PrP(Sc))) of a normal host protein (cellular isoform of PrP (PrP(C))), which is relatively resistant to proteolytic degradation and which serves as a template, directing host prion protein (PrP) to accumulate in the misfolded form. Animal experiments have shown that CNS disease is preceded by a period in which the agent accumulates in secondary lymphoid organs (Peyer's patches (PP), lymph nodes, spleen), particularly follicular dendritic cells (FDCs) in the B cell areas of these organs. How the agent is transmitted from the intestinal lumen to the FDCs is largely unknown. Dendritic cells (DCs, cells quite distinct from FDCs) are cells that are specialised to acquire antigens from peripheral tissues and to transport them to secondary lymphoid organs for presentation to T and B lymphocytes. We have shown that DCs can acquire PrP(Sc) from the intestinal lumen and deliver it to mesenteric lymph nodes. In this review we discuss the different stages involved in the migration of PrP(Sc) from the intestine to FDCs and consider the different stages and barriers involved in this process. We conclude that transport of the causative agent, using PrP(Sc) as a biomarker, from the intestine to FDCs is a very inefficient process, which may help to account for the apparent low frequency of individuals who have consumed infected material that go on to develop clinical disease. PMID:15063597

  11. GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells

    PubMed Central

    Greter, Melanie; Helft, Julie; Chow, Andrew; Hashimoto, Daigo; Mortha, Arthur; Agudo-Cantero, Judith; Bogunovic, Milena; Gautier, Emmanuel L.; Miller, Jennifer; Leboeuf, Marylene; Lu, Geming; Aloman, Costica; Brown, Brian D.; Pollard, Jeffrey W.; Xiong, Huabao; Randolph, Gwendalyn J.; Chipuk, Jerry E.; Frenette, Paul S.; Merad, Miriam

    2012-01-01

    SUMMARY GM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103+ DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103+ and CD11b+ DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8+ T cell immunity after immunization with particulate antigens. In contrast, Csf-2 receptor was dispensable for the differentiation and innate function of inflammatory DCs during acute injuries. Instead, inflammatory DCs required Csf-1 receptor for their development. Thus, Csf-2 is important in vaccine-induced CD8+ T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo. PMID:22749353

  12. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming.

    PubMed

    Allan, Rhys S; Waithman, Jason; Bedoui, Sammy; Jones, Claerwen M; Villadangos, Jose A; Zhan, Yifan; Lew, Andrew M; Shortman, Ken; Heath, William R; Carbone, Francis R

    2006-07-01

    Skin dendritic cells (DCs) are thought to act as key initiators of local T cell immunity. Here we show that after skin infection with herpes simplex virus (HSV), cytotoxic T lymphocyte (CTL) activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs. Despite a lack of direct presentation by migratory DCs, blocking their egress from infected skin substantially inhibited class I-restricted presentation and HSV-specific CTL responses. These results support the argument for initial transport of antigen by migrating DCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming. Given that relatively robust CTL responses were seen with small numbers of skin-emigrant DCs, we propose that this inter-DC antigen transfer functions to amplify presentation across a larger network of lymphoid-resident DCs for efficient T cell activation. PMID:16860764

  13. Dendritic and Langerhans cells respond to Aβ peptides differently: implication for AD immunotherapy.

    PubMed

    Cheng, Jiang; Lin, Xiaoyang; Morgan, David; Gordon, Marcia; Chen, Xi; Wang, Zhen-Hai; Li, Hai-Ning; He, Lan-Jie; Zhou, Shu-Feng; Cao, Chuanhai

    2015-11-01

    Both wild-type and mutated beta-amyloid (Aβ) peptides can elicit an immune response when delivered subcutaneously. However, only mutated forms of Aβ can sensitize dendritic cells when administered intravenously or intraperitoneally. To understand the role of mutation and delivery routes in creating immune responses, and the function of dendritic cells as therapeutic agents, we used fluorescent-conjugated WT Aβ1-40 (WT40) and artificially mutated Aβ1-40 (22W40) peptides to treat dendritic and Langerhans cells from young and/or old mice at different time points. The cell types were analyzed by flow cytometry and confocal microscopy to identify differences in function and antigen presentation, and Luminex and Western blots for cell activation and associated mechanisms. Our results demonstrated that the artificial mutant, 22W40, enhanced dendritic cell's phagocytosis and antigen presentation better than the WT40. Interestingly, Langerhans cells were more effective at early presentation. The artificial mutant 22W40 increased CD8α+ dendritic cells, CD8+ T-cells, and IFN-γ production when co-cultured with self-lymphocytes and dendritic cells from aged mice (30-month-old). Here, the 22W40 mutant peptide has been found to be potent enough to activate DCs, and that dendritic cell-based therapy may be a more effective treatment for age-related diseases, such as Alzheimer's disease (AD). PMID:26473448

  14. Dendritic and Langerhans cells respond to Aβ peptides differently: implication for AD immunotherapy

    PubMed Central

    Cheng, Jiang; Lin, Xiaoyang; Morgan, David; Gordon, Marcia; Chen, Xi; Wang, Zhen-Hai; Li, Hai-Ning; He, Lan-Jie; Zhou, Shu-Feng; Cao, Chuanhai

    2015-01-01

    Both wild-type and mutated beta-amyloid (Aβ) peptides can elicit an immune response when delivered subcutaneously. However, only mutated forms of Aβ can sensitize dendritic cells when administered intravenously or intraperitoneally. To understand the role of mutation and delivery routes in creating immune responses, and the function of dendritic cells as therapeutic agents, we used fluorescent-conjugated WT Aβ1-40 (WT40) and artificially mutated Aβ1-40 (22W40) peptides to treat dendritic and Langerhans cells from young and/or old mice at different time points. The cell types were analyzed by flow cytometry and confocal microscopy to identify differences in function and antigen presentation, and Luminex and Western blots for cell activation and associated mechanisms. Our results demonstrated that the artificial mutant, 22W40, enhanced dendritic cell's phagocytosis and antigen presentation better than the WT40. Interestingly, Langerhans cells were more effective at early presentation. The artificial mutant 22W40 increased CD8α+ dendritic cells, CD8+ T-cells, and IFN-γ production when co-cultured with self-lymphocytes and dendritic cells from aged mice (30-month-old). Here, the 22W40 mutant peptide has been found to be potent enough to activate DCs, and that dendritic cell-based therapy may be a more effective treatment for age-related diseases, such as Alzheimer's disease (AD). PMID:26473448

  15. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    PubMed Central

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  16. Mechanisms of dendritic cell lysosomal killing of Cryptococcus.

    PubMed

    Hole, Camaron R; Bui, Hoang; Wormley, Floyd L; Wozniak, Karen L

    2012-01-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death. PMID:23074646

  17. Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy

    PubMed Central

    Datta, Jashodeep; Terhune, Julia H.; Lowenfeld, Lea; Cintolo, Jessica A.; Xu, Shuwen; Roses, Robert E.; Czerniecki, Brian J.

    2014-01-01

    Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes. PMID:25506283

  18. Blue light irradiation suppresses dendritic cells activation in vitro.

    PubMed

    Fischer, Michael R; Abel, Manuela; Lopez Kostka, Susanna; Rudolph, Berenice; Becker, Detlef; von Stebut, Esther

    2013-08-01

    Blue light is a UV-free irradiation suitable for treating chronic skin inflammation, for example, atopic dermatitis, psoriasis, and hand- and foot eczema. However, a better understanding of the mode of action is still missing. For this reason, we investigated whether dendritic cells (DC) are directly affected by blue light irradiation in vitro. Here, we report that irradiation neither induced apoptosis nor maturation of monocyte-derived and myeloid DC. However, subsequent DC maturation upon LPS/IFNγ stimulation was impaired in a dose-dependent manner as assessed by maturation markers and cytokine release. Moreover, the potential of this DC to induce cytokine secretion from allogeneic CD4 T cells was reduced. In conclusion, unlike UV irradiation, blue light irradiation at high and low doses only resulted in impaired DC maturation upon activation and a reduced subsequent stimulatory capacity in allogeneic MLRs with strongest effects at higher doses. PMID:23879817

  19. Dendritic Cells and Their Multiple Roles during Malaria Infection

    PubMed Central

    Amorim, Kelly N. S.; Chagas, Daniele C. G.; Sulczewski, Fernando B.

    2016-01-01

    Dendritic cells (DCs) play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation. PMID:27110574

  20. Curcumin prevents human dendritic cell response to immune stimulants

    SciTech Connect

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-09-26

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14{sup +} monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4{sup +} T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.

  1. Curcumin prevents human dendritic cell response to immune stimulants

    PubMed Central

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2012-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing naïve CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant. PMID:18639521

  2. Dendritic cell maturation and cross-presentation: timing matters!

    PubMed

    Alloatti, Andrés; Kotsias, Fiorella; Magalhaes, Joao Gamelas; Amigorena, Sebastian

    2016-07-01

    As a population, dendritic cells (DCs) appear to be the best cross-presenters of internalized antigens on major histocompatibility complex class I molecules in the mouse. To do this, DCs have developed a number of unique and dedicated means to control their endocytic and phagocytic pathways: among them, the capacity to limit acidification of their phagosomes, to prevent proteolytic degradation, to delay fusion of phagosomes to lysosomes, to recruit ER proteins to phagosomes, and to export phagocytosed antigens to the cytosol. The regulation of phagocytic functions, and thereby of antigen processing and presentation by innate signaling, represents a critical level of integration of adaptive and innate immune responses. Understanding how innate signals control antigen cross-presentation is critical to define effective vaccination strategies for CD8(+) T-cell responses. PMID:27319345

  3. Engineered Lentivector Targeting of Dendritic Cells for In Vivo Immunization

    PubMed Central

    Yang, Lili; Yang, Haiguang; Rideout, Kendra; Cho, Taehoon; Joo, Kye il; Ziegler, Leslie; Elliot, Abigail; Walls, Anthony; Yu, Dongzi; Baltimore, David; Wang, Pin

    2008-01-01

    We report a method of inducing antigen production in dendritic cells (DCs) by in vivo targeting with lentiviral vectors that specifically bind to the DC surface protein, DC-SIGN. To target the DCs, the lentivector was enveloped with a viral glycoprotein from Sindbis virus, engineered to be DC-SIGN-specific. In vitro, this lentivector specifically transduced DCs and induced DC maturation. A remarkable frequency (up to 12%) of ovalbumin (OVA)-specific CD8+ T cells and a significant antibody response were observed 2 weeks following injection of a targeted lentiviral vector encoding an OVA transgene into naïve mice. These mice were solidly protected against the growth of the OVA-expressing E.G7 tumor and this methodology could even induce regression of an established tumor. Thus, lentiviral vectors targeting DCs provide a simple method of producing effective immunity and may provide an alternative route for immunization with protein antigens. PMID:18297056

  4. The role of dendritic cells in male reproductive tract.

    PubMed

    Wang, Peng; Duan, Yong-Gang

    2016-09-01

    Dendritic cells (DCs) are the most potent professional antigen-presenting cells. The central role of various DC subsets as bridges between innate and adaptive immunity has become more and more evident. However, the role of DC subsets in male reproductive tract remains largely unexplored, in particular distinct DC subsets (including myeloid and plasmacytoid DCs), their maturation stage, and tissue distribution, as well as state of health or disease. Furthermore, infection and inflammation of male genital tract are thought to be a primary etiological factor of male infertility. This review sheds some light on this complex and rapidly growing field. It summarized the recent findings and deals with the characterization and role of DCs in male reproductive tract, that is, testis, epididymis, prostate, seminal vesicle, semen, and foreskin, which might help to understand the immunopathological mechanisms of male infertility and design effective vaccines for male reproductive health. PMID:27353336

  5. Cochlin produced by follicular dendritic cells promotes antibacterial innate immunity.

    PubMed

    Py, Bénédicte F; Gonzalez, Santiago F; Long, Kai; Kim, Mi-Sung; Kim, Young-A; Zhu, Hong; Yao, Jianhua; Degauque, Nicolas; Villet, Régis; Ymele-Leki, Patrick; Gadjeva, Mihaela; Pier, Gerald B; Carroll, Michael C; Yuan, Junying

    2013-05-23

    Cochlin, an extracellular matrix protein, shares homologies with the Factor C, a serine protease found in horseshoe crabs, which is critical for antibacterial responses. Mutations in the COCH gene are responsible for human DFNA9 syndrome, a disorder characterized by neurodegeneration of the inner ear that leads to hearing loss and vestibular impairments. The physiological function of cochlin, however, is unknown. Here, we report that cochlin is specifically expressed by follicular dendritic cells and selectively localized in the fine extracellular network of conduits in the spleen and lymph nodes. During inflammation, cochlin was cleaved by aggrecanases and secreted into blood circulation. In models of lung infection with Pseudomonas aeruginosa and Staphylococcus aureus, Coch(-/-) mice show reduced survival linked to defects in local cytokine production, recruitment of immune effector cells, and bacterial clearance. By producing cochlin, FDCs thus contribute to the innate immune response in defense against bacteria. PMID:23684986

  6. Dendritic cells and cytokines in immune rejection of cancer.

    PubMed

    Ferrantini, Maria; Capone, Imerio; Belardelli, Filippo

    2008-02-01

    Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity and, thus, in the generation of a protective immune response against both infectious diseases and tumors. The ability of DCs to prime and expand an immune response is regulated by signals acting through soluble mediators, mainly cytokines and chemokines. Understanding how cytokines influence DC functions and orchestrate the interactions of DCs with other immune cells is strictly instrumental to the progress in cancer immunotherapy. Herein, we will illustrate how certain cytokines and immune stimulating molecules can induce and sustain the antitumor immune response by acting on DCs. We will also discuss these cytokine-DC interactions in the light of clinical results in cancer patients. PMID:18054517

  7. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    PubMed Central

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-01-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death. PMID:23074646

  8. Dendritic Cells and Their Multiple Roles during Malaria Infection.

    PubMed

    Amorim, Kelly N S; Chagas, Daniele C G; Sulczewski, Fernando B; Boscardin, Silvia B

    2016-01-01

    Dendritic cells (DCs) play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation. PMID:27110574

  9. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  10. Modulation of Dendritic Cells by Nanotechnology-Based Immunotherapeutic Strategies.

    PubMed

    Mogrão, Joana; da Costa, Catarina A; Gaspar, Rogério; Florindo, Helena F

    2016-03-01

    In preceding decades, different mechanisms have been proposed to "instruct" dendritic cells (DCs) to induce immune responses against tumor antigens (TAs), thus breaking immune tolerance. Immunotherapy has been, for the last two decades, an attractive and promising therapeutic approach to fight cancer. This review will approach the nature of the immune response during cancer development and its correlation with DC function, as well as cancer vaccine principles and limitations. An overview of several delivery strategies used for in vivo modulation of DCs and direct activation of T cells will be provided, highlighting their advantages, limitations, and optimization strategies. This manuscript also presents a critical and systematic review of recent clinical trials that are investigating the therapeutic effect of these approaches, discussing prognostic outcomes of combined-treatment modalities. PMID:27280242

  11. Metabolic reprogramming in macrophages and dendritic cells in innate immunity

    PubMed Central

    Kelly, Beth; O'Neill, Luke AJ

    2015-01-01

    Activation of macrophages and dendritic cells (DCs) by pro-inflammatory stimuli causes them to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS), similar to the Warburg effect in tumors. However, it is only recently that the mechanisms responsible for this metabolic reprogramming have been elucidated in more detail. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays an important role under conditions of both hypoxia and normoxia. The withdrawal of citrate from the tricarboxylic acid (TCA) cycle has been shown to be critical for lipid biosynthesis in both macrophages and DCs. Interference with this process actually abolishes the ability of DCs to activate T cells. Another TCA cycle intermediate, succinate, activates HIF-1α and promotes inflammatory gene expression. These new insights are providing us with a deeper understanding of the role of metabolic reprogramming in innate immunity. PMID:26045163

  12. The Role of Dendritic Cells in Central Tolerance.

    PubMed

    Oh, Jaehak; Shin, Jeoung-Sook

    2015-06-01

    Dendritic cells (DCs) play a significant role in establishing self-tolerance through their ability to present self-antigens to developing T cells in the thymus. DCs are predominantly localized in the medullary region of thymus and present a broad range of self-antigens, which include tissue-restricted antigens expressed and transferred from medullary thymic epithelial cells, circulating antigens directly captured by thymic DCs through coticomedullary junction blood vessels, and peripheral tissue antigens captured and transported by peripheral tissue DCs homing to the thymus. When antigen-presenting DCs make a high affinity interaction with antigen-specific thymocytes, this interaction drives the interacting thymocytes to death, a process often referred to as negative selection, which fundamentally blocks the self-reactive thymocytes from differentiating into mature T cells. Alternatively, the interacting thymocytes differentiate into the regulatory T (Treg) cells, a distinct T cell subset with potent immune suppressive activities. The specific mechanisms by which thymic DCs differentiate Treg cells have been proposed by several laboratories. Here, we review the literatures that elucidate the contribution of thymic DCs to negative selection and Treg cell differentiation, and discusses its potential mechanisms and future directions. PMID:26140042

  13. The role of dendritic cells in CNS autoimmunity

    PubMed Central

    Zozulya, Alla L.; Clarkson, Benjamin D.; Ortler, Sonja; Fabry, Zsuzsanna

    2010-01-01

    Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation. PMID:20217033

  14. Dendritic-Tumor Fusion Cell-Based Cancer Vaccines

    PubMed Central

    Koido, Shigeo

    2016-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play a critical role in the induction of antitumor immunity. Therefore, various strategies have been developed to deliver tumor-associated antigens (TAAs) to DCs as cancer vaccines. The fusion of DCs and whole tumor cells to generate DC-tumor fusion cells (DC-tumor FCs) is an alternative strategy to treat cancer patients. The cell fusion method allows DCs to be exposed to the broad array of TAAs originally expressed by whole tumor cells. DCs then process TAAs endogenously and present them through major histocompatibility complex (MHC) class I and II pathways in the context of costimulatory molecules, resulting in simultaneous activation of both CD4+ and CD8+ T cells. DC-tumor FCs require optimized enhanced immunogenicity of both DCs and whole tumor cells. In this context, an effective fusion strategy also needs to produce immunogenic DC-tumor FCs. We discuss the potential ability of DC-tumor FCs and the recent progress in improving clinical outcomes by DC-tumor FC-based cancer vaccines. PMID:27240347

  15. Time-Lapse Retinal Ganglion Cell Dendritic Field Degeneration Imaged in Organotypic Retinal Explant Culture

    PubMed Central

    Johnson, Thomas V.; Oglesby, Ericka N.; Steinhart, Matthew R.; Cone-Kimball, Elizabeth; Jefferys, Joan; Quigley, Harry A.

    2016-01-01

    Purpose To develop an ex vivo organotypic retinal explant culture system suitable for multiple time-point imaging of retinal ganglion cell (RGC) dendritic arbors over a period of 1 week, and capable of detecting dendrite neuroprotection conferred by experimental treatments. Methods Thy1-YFP mouse retinas were explanted and maintained in organotypic culture. Retinal ganglion cell dendritic arbors were imaged repeatedly using confocal laser scanning microscopy. Maximal projection z-stacks were traced by two masked investigators and dendritic fields were analyzed for characteristics including branch number, size, and complexity. One group of explants was treated with brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) added to the culture media. Changes in individual dendritic fields over time were detected using pair-wise comparison testing. Results Retinal ganglion cells in mouse retinal explant culture began to degenerate after 3 days with 52.4% surviving at 7 days. Dendritic field parameters showed minimal change over 8 hours in culture. Intra- and interobserver measurements of dendrite characteristics were strongly correlated (Spearman rank correlations consistently > 0.80). Statistically significant (P < 0.001) dendritic tree degeneration was detected following 7 days in culture including: 40% to 50% decreases in number of branch segments, number of junctions, number of terminal branches, and total branch length. Scholl analyses similarly demonstrated a significant decrease in dendritic field complexity. Treatment of explants with BDNF+CNTF significantly attenuated dendritic field degeneration. Conclusions Retinal explant culture of Thy1-YFP tissue provides a useful model for time-lapse imaging of RGC dendritic field degeneration over a course of several days, and is capable of detecting neuroprotective amelioration of dendritic pruning within individual RGCs. PMID:26811145

  16. Direct Transfection of Dendritic Cells in the Epidermis After Plasmid Delivery Enhanced by Surface Electroporation

    PubMed Central

    Amante, Dinah H.; Smith, Trevor R.F.; Kiosses, Bill B.; Sardesai, Niranjan Y.; Humeau, Laurent M.P.F.

    2014-01-01

    Abstract The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system. PMID:25470335

  17. Direct transfection of dendritic cells in the epidermis after plasmid delivery enhanced by surface electroporation.

    PubMed

    Amante, Dinah H; Smith, Trevor R F; Kiosses, Bill B; Sardesai, Niranjan Y; Humeau, Laurent M P F; Broderick, Kate E

    2014-12-01

    The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system. PMID:25470335

  18. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  19. Role of regulatory dendritic cells in allergy and asthma.

    PubMed

    Akbari, Omid; Umetsu, Dale T

    2005-01-01

    Dendritic cells (DCs) are the most efficient inducers of all immune responses, and are capable of either inducing productive immunity or maintaining the state of tolerance to self antigens and allergens. In this review, we summarize the emerging literature on DCs, with emphasis on the regulatory function of DCs in allergy and asthma. In particular, we summarize recent data regarding the relationship between DC subsets and TH1, TH2, and regulatory T (TReg) cells. The diverse functions of DCs have been attributed to distinct lineages of DCs, which arise from common immature precursor cells that differentiate in response to specific maturation-inducing or local microenvironment conditions. These subsets of DCs induce different lineages of T cells, such as TH1, TH2, and TReg cells, including Th1Reg and Th2Reg cells, which regulate allergic diseases and asthma. Subsets of DCs regulate the induction of a variety of T-cell subtypes, which suppress the development of allergy and asthma, thus providing anti-inflammatory responses and protective immunity. PMID:15659264

  20. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees.

    PubMed

    Dobrin, Scott E; Herlihy, J Daniel; Robinson, Gene E; Fahrbach, Susan E

    2011-09-01

    The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells. PMID:21262388

  1. Defining human dendritic cell progenitors by multiparametric flow cytometry

    PubMed Central

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-01-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3–7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  2. Dendritic cell targeted vaccines: Recent progresses and challenges.

    PubMed

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-03-01

    Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  3. Follicular dendritic cells emerge from ubiquitous perivascular precursors.

    PubMed

    Krautler, Nike Julia; Kana, Veronika; Kranich, Jan; Tian, Yinghua; Perera, Dushan; Lemm, Doreen; Schwarz, Petra; Armulik, Annika; Browning, Jeffrey L; Tallquist, Michelle; Buch, Thorsten; Oliveira-Martins, José B; Zhu, Caihong; Hermann, Mario; Wagner, Ulrich; Brink, Robert; Heikenwalder, Mathias; Aguzzi, Adriano

    2012-07-01

    The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ(+)-derived cells abolished FDC, indicating that FDC originate from PDGFRβ(+) cells. Lymphotoxin-α-overexpressing prion protein (PrP)(+) kidneys developed PrP(+) FDC after transplantation into PrP(-) mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ(+) stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR)(-) kidney capsules, differentiated into Mfge8(+)CD21/35(+)FcγRIIβ(+)PrP(+) FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ(+) FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation. PMID:22770220

  4. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation

    PubMed Central

    Chistiakov, Dimitry A.; Orekhov, Alexander N.; Sobenin, Igor A.; Bobryshev, Yuri V.

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines. PMID:25120492

  5. Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors

    PubMed Central

    Krautler, Nike Julia; Kana, Veronika; Kranich, Jan; Tian, Yinghua; Perera, Dushan; Lemm, Doreen; Schwarz, Petra; Armulik, Annika; Browning, Jeffrey L.; Tallquist, Michelle; Buch, Thorsten; Oliveira-Martins, José B.; Zhu, Caihong; Hermann, Mario; Wagner, Ulrich; Brink, Robert; Heikenwalder, Mathias; Aguzzi, Adriano

    2013-01-01

    Summary The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ+-derived cells abolished FDC, indicating that FDC originate from PDGFRβ+ cells. Lymphotoxin-α-overexpressing prion protein (PrP)+ kidneys developed PrP+ FDC after transplantation into PrP mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ+ stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR) kidney capsules, differentiated into Mfge8+CD21/35+ FcγRIIβ+PrP+ FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ+ FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation. PMID:22770220

  6. Defining human dendritic cell progenitors by multiparametric flow cytometry.

    PubMed

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-09-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3-7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  7. Aging and the Dendritic Cell System: Implications for Cancer

    PubMed Central

    Shurin, Michael R.; Shurin, Galina V.; Chatta, Gurkamal S.

    2007-01-01

    The immune system shows a decline in responsiveness to antigens both with aging, as well as in the presence of tumors. The malfunction of the immune system with age can be attributed to developmental and functional alterations in several cell populations. Previous studies have shown defects in humoral responses and abnormalities in T cell function in aged individuals, but have not distinguished between abnormalities in antigen presentation and intrinsic T cell or B cell defects in aged individuals. Dendritic cells (DC) play a pivotal role in regulating immune responses by presenting antigens to naïve T lymphocytes, modulating Th1/Th2/Treg balance, producing numerous regulatory cytokines and chemokines, and modifying survival of immune effectors. DC are receiving increased attention due to their involvement in the immunobiology of tolerance and autoimmunity, as well as their potential role as biological adjuvants in tumor vaccines. Recent advances in the molecular and cell biology of different DC populations allow for addressing the issue of DC and aging both in rodents and humans. Since DC play a crucial role in initiating and regulating immune responses, it is reasonable to hypothesize that they are directly involved in altered antitumor immunity in aging. However, the results of studies focusing on DC in the elderly are conflicting. The present review summarizes the available human and experimental animal data on quantitative and qualitative alterations of DC in aging and discusses the potential role of the DC system in the increased incidence of cancer in the elderly. PMID:17446082

  8. Targeting Skin Dendritic Cells to Improve Intradermal Vaccination

    PubMed Central

    Romani, N.; Flacher, V.; Tripp, C. H.; Sparber, F.; Ebner, S.; Stoitzner, P.

    2014-01-01

    Vaccinations in medicine are typically administered into the muscle beneath the skin or into the subcutaneous fat. As a consequence, the vaccine is immunologically processed by antigen-presenting cells of the skin or the muscle. Recent evidence suggests that the clinically seldom used intradermal route is effective and possibly even superior to the conventional subcutaneous or intramuscular route. Several types of professional antigen-presenting cells inhabit the healthy skin. Epidermal Langerhans cells (CD207/langerin+), dermal langerinneg, and dermal langerin+ dendritic cells (DC) have been described, the latter subset so far only in mouse skin. In human skin langerinneg dermal DC can be further classified based on their reciprocal expression of CD1a and CD14. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Yet, specializations of these different populations have become apparent. Langerhans cells in human skin appear to be specialized for induction of cytotoxic T lymphocytes; human CD14+ dermal DC can promote antibody production by B cells. It is currently attempted to rationally devise and improve vaccines by harnessing such specific properties of skin DC. This could be achieved by specifically targeting functionally diverse skin DC subsets. We discuss here advances in our knowledge on the immunological properties of skin DC and strategies to significantly improve the outcome of vaccinations by applying this knowledge. PMID:21253784

  9. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis.

    PubMed

    Ait-Oufella, Hafid; Sage, Andrew P; Mallat, Ziad; Tedgui, Alain

    2014-05-01

    Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity. PMID:24812352

  10. Spherical Lactic Acid Bacteria Activate Plasmacytoid Dendritic Cells Immunomodulatory Function via TLR9-Dependent Crosstalk with Myeloid Dendritic Cells

    PubMed Central

    Jounai, Kenta; Ikado, Kumiko; Sugimura, Tetsu; Ano, Yasuhisa; Braun, Jonathan; Fujiwara, Daisuke

    2012-01-01

    Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-α that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-α production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-α, -β, and λ). IFN-α induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4-/- cells. While these responses occurred with purified pDC, IFN-α production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4+CD25+FoxP3+ Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease. PMID:22505996

  11. Molecular Mechanisms of Induction of Tolerant and Tolerogenic Intestinal Dendritic Cells in Mice

    PubMed Central

    Steimle, Alex; Frick, Julia-Stefanie

    2016-01-01

    How does the host manage to tolerate its own intestinal microbiota? A simple question leading to complicated answers. In order to maintain balanced immune responses in the intestine, the host immune system must tolerate commensal bacteria in the gut while it has to simultaneously keep the ability to fight pathogens and to clear infections. If this tender equilibrium is disturbed, severe chronic inflammatory reactions can result. Tolerogenic intestinal dendritic cells fulfil a crucial role in balancing immune responses and therefore creating homeostatic conditions and preventing from uncontrolled inflammation. Although several dendritic cell subsets have already been characterized to play a pivotal role in this process, less is known about definite molecular mechanisms of how intestinal dendritic cells are converted into tolerogenic ones. Here we review how gut commensal bacteria interact with intestinal dendritic cells and why this bacteria-host cell interaction is crucial for induction of dendritic cell tolerance in the intestine. Hereby, different commensal bacteria can have distinct effects on the phenotype of intestinal dendritic cells and these effects are mainly mediated by impacting toll-like receptor signalling in dendritic cells. PMID:26981546

  12. Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns.

    PubMed

    Schilling, K; Dickinson, M H; Connor, J A; Morgan, J I

    1991-12-01

    In primary dissociated cultures of mouse cerebellum a number of Purkinje cell-specific marker proteins and characteristic ionic currents appear at the appropriate developmental time. During the first week after plating, Purkinje cell dendrites elongate, but as electrical activity emerges the dendrites stop growing and branch. If endogenous electrical activity is inhibited by chronic tetrodotoxin or high magnesium treatment, dendrites continue to elongate, as if they were still immature. At the time that branching begins, intracellular calcium levels become sensitive to tetrodotoxin, suggesting that this cation may be involved in dendrite growth. Even apparently mature Purkinje cells alter their dendritic growth in response to changes in activity, suggesting long-term plasticity. PMID:1684902

  13. Dendritic cells in humans--from fetus to adult.

    PubMed

    McGovern, Naomi; Chan, Jerry K Y; Ginhoux, Florent

    2015-02-01

    The human immune system evolves continuously during development from the embryo into the adult, reflecting the ever-changing environment and demands of our body. This ability of our immune system to sense external cues and adapt as we develop is just as important in the early tolerogenic environment of the fetus, as it is in the constantly pathogen-challenged adult. Dendritic cells (DCs), the professional antigen-sensing and antigen-presenting components of the immune system, play a crucial role in this process where they act as sentinels, both initiating and regulating immune responses. Here, we provide an overview of the human immune system in the developing fetus and the adult, with a focus on DC ontogeny and function during these discrete but intimately linked life stages. PMID:25323843

  14. Dendritic Cells Are the Major Antigen Presenting Cells in Inflammatory Lesions of Murine Mycoplasma Respiratory Disease

    PubMed Central

    Sun, Xiangle; Jones, Harlan P.; Dobbs, Nicole; Bodhankar, Sheetal; Simecka, Jerry W.

    2013-01-01

    Mycoplasmas cause chronic respiratory diseases in animals and humans, and to date, development of vaccines have been problematic. Using a murine model of mycoplasma pneumonia, lymphocyte responses, specifically T cells, were shown to confer protection as well as promote immunopathology in mycoplasma disease. Because T cells play such a critical role, it is important to define the role of antigen presenting cells (APC) as these cells may influence either exacerbation of mycoplasma disease pathogenesis or enhancement of protective immunity. The roles of APC, such as dendritic cells and/or macrophages, and their ability to modulate adaptive immunity in mycoplasma disease are currently unknown. Therefore, the purpose of this study was to identify individual pulmonary APC populations that may contribute to the activation of T cell responses during mycoplasma disease pathogenesis. The present study indeed demonstrates increasing numbers of CD11c− F4/80+ cells, which contain macrophages, and more mature/activated CD11c+ F4/80− cells, containing DC, in the lungs after infection. CD11c− F4/80+ macrophage-enriched cells and CD11c+ F4/80− dendritic cell-enriched populations showed different patterns of cytokine mRNA expression, supporting the idea that these cells have different impacts on immunity in response to infection. In fact, DC containing CD11c+ F4/80− cell populations from the lungs of infected mice were most capable of stimulating mycoplasma-specific CD4+ Th cell responses in vitro. In vivo, these CD11c+F4/80− cells were co-localized with CD4+ Th cells in inflammatory infiltrates in the lungs of mycoplasma-infected mice. Thus, CD11c+F4/80− dendritic cells appear to be the major APC population responsible for pulmonary T cell stimulation in mycoplasma-infected mice, and these dendritic cells likely contribute to responses impacting disease pathogenesis. PMID:23390557

  15. Dendritic cell vaccination in glioblastoma after fluorescence-guided resection

    PubMed Central

    Valle, Ricardo Diez; de Cerio, Ascension Lopez-Diaz; Inoges, Susana; Tejada, Sonia; Pastor, Fernando; Villanueva, Helena; Gallego, Jaime; Espinos, Jaime; Aristu, Javier; Idoate, Miguel Angel; Andreu, Enrique; Bendandi, Maurizio

    2012-01-01

    AIM: To assess whether the addition of a customized, active immunotherapy to standard of care including fluorescence-guided surgery, may provide hints of an improved survival for patients with poor-prognosis, incurable glioblastoma multiform. METHODS: Preliminary to our ongoing, phase-II clinical trial, we conducted a small pilot study enrolling five consecutive patients with resectable glioblastoma. In terms of Recursive Partitioning Analysis, four patients were class V and one was class IV. In all five cases, fluorescence-guided surgery was employed, followed by rapid steroid discontinuation. Patients were then treated with a combination of standard radio-chemotherapy with temozolomide and tumor lysate-pulsed, mature dendritic cell-based vaccinations. RESULTS: Though all five patients ultimately progressed, with any further treatment left to the sole decision of the treating oncologist, active immunotherapy was very well tolerated and induced specific immune responses in all three patients for whom enough material was available for such an assessment. Median progression-free survival was 16.1 mo. Even more important, median and mean overall survival were 27 mo and 26 mo, respectively. Three patients have died with an overall survival of 9 mo, 27 mo and 27.4 mo, while the other two are still alive at 32 mo and 36 mo, the former receiving treatment with bevacizumab, while the latter has now been off therapy for 12 mo. Four of five patients were alive at two years. CONCLUSION: Active immunotherapy with tumor lysate-pulsed, autologous dendritic cells is feasible, safe, well tolerated and biologically efficacious. A phase-II study is ongoing to possibly improve further on our very encouraging clinical results. PMID:23293753

  16. Costimulatory Molecules on Immunogenic Versus Tolerogenic Human Dendritic Cells

    PubMed Central

    Hubo, Mario; Trinschek, Bettina; Kryczanowsky, Fanny; Tuettenberg, Andrea; Steinbrink, Kerstin; Jonuleit, Helmut

    2013-01-01

    Dendritic cells (DC) are sentinels of immunity, essential for homeostasis of T cell-dependent immune responses. Both functions of DC, initiation of antigen-specific T cell immunity and maintenance of tissue-specific tolerance originate from distinct stages of differentiation, immunogenic versus tolerogenic. Dependent on local micro milieu and inflammatory stimuli, tissue resident immature DC with functional plasticity differentiate into tolerogenic or immunogenic DC with stable phenotypes. They efficiently link innate and adaptive immunity and are ideally positioned to modify T cell-mediated immune responses. Since the T cell stimulatory properties of DC are significantly influenced by their expression of signal II ligands, it is critical to understand the impact of distinct costimulatory pathways on DC function. This review gives an overview of functional different human DC subsets with unique profiles of costimulatory molecules and outlines how different costimulatory pathways together with the immunosuppressive cytokine IL-10 bias immunogenic versus tolerogenic DC functions. Furthermore, we exemplarily describe protocols for the generation of two well-defined monocyte-derived DC subsets for their clinical use, immunogenic versus tolerogenic. PMID:23565116

  17. Tissue dendritic cells as portals for HIV entry.

    PubMed

    Harman, Andrew N; Kim, Min; Nasr, Najla; Sandgren, Kerrie J; Cameron, Paul U

    2013-09-01

    Dendritic cells (DCs) are found at the portals of pathogen entry such as the mucosal surfaces of the respiratory, gastrointestinal and genital tracts where they represent the first line of contact between the immune system and the foreign invaders. They are found throughout the body in multiple subsets where they express unique combinations of C-type lectin receptors to best aid them in detection of pathogens associated with their anatomical location. DCs are important in the establishment in HIV infection for two reasons. Firstly, they are one of the first cells to encounter the virus, and the specific interaction that occurs between these cells and HIV is critical to HIV establishing a foothold infection. Secondly and most importantly, HIV is able to efficiently transfer the virus to its primary target cell, the CD4(+) T lymphocyte, in which it replicates explosively. Infection of CD4(+) T lymphocytes via DCs is far more efficient than direct infection. This review surveys the various DCs subsets found within the human sexual mucosa and their interactions with HIV. Mechanisms of HIV uptake are discussed as well as how the virus then traffics through the DC and is transferred to T cells. Until recently, most research has focussed on vaginal transmission despite the increased transmission rate associated with anal intercourse. Here, we also discuss recent advances in our understanding of HIV transmission in the colon. PMID:23908074

  18. Probiotic modulation of dendritic cell function is influenced by ageing.

    PubMed

    You, Jialu; Dong, Honglin; Mann, Elizabeth R; Knight, Stella C; Yaqoob, Parveen

    2014-02-01

    Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and L. casei Shirota (LcS), on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while B. longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR. PMID:24094416

  19. Role of Dendritic Cells in the Pathogenesis of Whipple's Disease

    PubMed Central

    Schinnerling, Katina; Geelhaar-Karsch, Anika; Allers, Kristina; Friebel, Julian; Conrad, Kristina; Loddenkemper, Christoph; Kühl, Anja A.; Erben, Ulrike; Ignatius, Ralf; Schneider, Thomas

    2014-01-01

    Accumulation of Tropheryma whipplei-stuffed macrophages in the duodenum, impaired T. whipplei-specific Th1 responses, and weak secretion of interleukin-12 (IL-12) are hallmarks of classical Whipple's disease (CWD). This study addresses dendritic cell (DC) functionality during CWD. We documented composition, distribution, and functionality of DC ex vivo or after in vitro maturation by fluorescence-activated cell sorting (FACS) and by immunohistochemistry in situ. A decrease in peripheral DC of untreated CWD patients compared to healthy donors was due to reduced CD11chigh myeloid DC (M-DC). Decreased maturation markers CD83, CD86, and CCR7, as well as low IL-12 production in response to stimulation, disclosed an immature M-DC phenotype. In vitro-generated monocyte-derived DC from CWD patients showed normal maturation and T cell-stimulatory capacity under proinflammatory conditions but produced less IL-12 and failed to activate T. whipplei-specific Th1 cells. In duodenal and lymphoid tissues, T. whipplei was found within immature DC-SIGN+ DC. DC and proliferating lymphocytes were reduced in lymph nodes of CWD patients compared to levels in controls. Our results indicate that dysfunctional IL-12 production by DC provides suboptimal conditions for priming of T. whipplei-specific T cells during CWD and that immature DC carrying T. whipplei contribute to the dissemination of the bacterium. PMID:25385798

  20. Dendritic Cell-Based Immunotherapy Treatment for Glioblastoma Multiforme

    PubMed Central

    Yang, Liu; Guo, Geng; Niu, Xiao-yuan; Liu, Jing

    2015-01-01

    Glioblastoma multiforme (GBM) is the most malignant glioma and patients diagnosed with this disease had poor outcomes even treated with the combination of conventional treatment (surgery, chemotherapy, and radiation). Dendritic cells (DCs) are the most powerful antigen presenting cells and DC-based vaccination has the potential to target and eliminate GBM cells and enhance the responses of these cells to the existing therapies with minimal damage to the healthy tissues around them. It can enhance recognition of GBM cells by the patients' immune system and activate vast, potent, and long-lasting immune reactions to eliminate them. Therefore, this therapy can prolong the survival of GBM patients and has wide and bright future in the treatment of GBM. Also, the efficacy of this therapy can be strengthened in several ways at some degree: the manipulation of immune regulatory components or costimulatory molecules on DCs; the appropriate choices of antigens for loading to enhance the effectiveness of the therapy; regulation of positive regulators or negative regulators in GBM microenvironment. PMID:26167495

  1. Thrombin regulates the function of human blood dendritic cells

    SciTech Connect

    Yanagita, Manabu; Kobayashi, Ryohei; Kashiwagi, Yoichiro; Shimabukuro, Yoshio; Murakami, Shinya E-mail: ipshinya@dent.osaka-u.ac.jp

    2007-12-14

    Thrombin is the key enzyme in the coagulation cascade and activates endothelial cells, neutrophils and monocytes via protease-activated receptors (PARs). At the inflammatory site, immune cells have an opportunity to encounter thrombin. However little is known about the effect of thrombin for dendritic cells (DC), which are efficient antigen-presenting cells and play important roles in initiating and regulating immune responses. The present study revealed that thrombin has the ability to stimulate blood DC. Plasmacytoid DC (PDC) and myeloid DC (MDC) isolated from PBMC expressed PAR-1 and released MCP-1, IL-10, and IL-12 after thrombin stimulation. Unlike blood DC, monocyte-derived DC (MoDC), differentiated in vitro did not express PAR-1 and were unresponsive to thrombin. Effects of thrombin on blood DC were significantly diminished by the addition of anti-PAR-1 Ab or hirudin, serine protease inhibitor. Moreover, thrombin induced HLA-DR and CD86 expression on DC and the thrombin-treated DC induced allogenic T cell proliferation. These findings indicate that thrombin plays a role in the regulation of blood DC functions.

  2. Antihelminthic niclosamide modulates dendritic cells activation and function.

    PubMed

    Wu, Chieh-Shan; Li, Yi-Rong; Chen, Jeremy J W; Chen, Ying-Che; Chu, Chiang-Liang; Pan, I-Hong; Wu, Yu-Shan; Lin, Chi-Chen

    2014-01-01

    Dendritic cells (DCs) link the sensing of the environment by the innate immune system to the initiation of adaptive immune responses. Accordingly, DCs are considered to be a major target in the development of immunomodulating compounds. In this study, the effect of niclosamide, a Food and Drug Administration-approved antihelminthic drug, on the activation of lipopolysaccharide (LPS)-stimulated murine bone marrow-derived DCs was examined. Our experimental results show that niclosamide reduced the pro-inflammatory cytokine and chemokine expression of LPS-activated DCs. In addition, niclosamide also affected the expression of MHC and costimulatory molecules and influenced the ability of the cells to take up antigens. Therefore, in mixed cell cultures composed of syngeneic OVA-specific T cells and DCs, niclosamide-treated DCs showed a decreased ability to stimulate T cell proliferation and IFN-γ production. Furthermore, intravenous injection of niclosamide also attenuated contact hypersensitivity (CHS) in mice during sensitization with 2,4-dinitro-1-fluorobenzene. Blocking the LPS-induced activation of MAPK-ERK, JNK and NF-κB may contribute to the inhibitory effect of niclosamide on DC activation. Collectively, our findings suggest that niclosamide can manipulate the function of DCs. These results provide new insight into the immunopharmacological role of niclosamide and suggest that it may be useful for the treatment of chronic inflammatory disorders or DC-mediated autoimmune diseases. PMID:24561310

  3. Taxifolin glycoside inhibits dendritic cell responses stimulated by lipopolysaccharide and lipoteichoic acid.

    PubMed

    Kim, Yun Jeong; Choi, Sun Eun; Lee, Min Won; Lee, Chung Soo

    2008-11-01

    Antigen-presenting dendritic cells may play an important role in the pathogenesis of atopic dermatitis. Taxifolin is demonstrated to have anti-inflammatory effects. The present study was designed to assess the effect of taxifolin glycoside against stimulated responses of dendritic cells isolated from mouse bone marrow and spleen. Dendritic cells exposed to lipopolysaccharide, lipoteichoic acid or interleukin (IL)-1beta exhibited increased production of IL-12 p70 and tumour necrosis factor alpha, increased formation of reactive oxygen species (ROS) and nitric oxide (NO), and elevation of intracellular Ca2+ levels. Treatment with taxifolin glycoside inhibited responses stimulated by the microbial products or IL-1beta in dendritic cells in a dose-dependent manner. Taxifolin glycoside had a significant inhibitory effect on the production of cytokines, formation of ROS and NO, and change in intracellular Ca2+ levels in dendritic cells of bone marrow and spleen. The results show that taxifolin glycoside seems to inhibit the dendritic cell responses stimulated by microbial products and IL-1beta, suggesting that taxifolin glycoside may exert an inhibitory effect against dendritic-cell-mediated immune responses. PMID:18957167

  4. Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation.

    PubMed

    Rampal, Ritika; Awasthi, Amit; Ahuja, Vineet

    2016-07-01

    All-trans-retinoic acid plays a central role in mucosal immunity, where it promotes its synthesis by up-regulating CD103 expression on dendritic cells, induces gut tropic (α4β7(+) and CCR9(+)) T cells, and inhibits Th1/Th17 differentiation. Recently, murine studies have highlighted the proinflammatory role of retinoic acid in maintaining inflammation under a variety of pathologic conditions. However, as a result of limited human data, we investigated the effect of retinoic acid on human dendritic cells and CD4(+) T cell responses in the presence of polarizing (Th1/Th9/Th17) and inflammatory (LPS-induced dendritic cells) conditions. We report a novel role of retinoic acid in an inflammatory setup, where retinoic acid-primed dendritic cells (retinoic acid-monocyte-derived dendritic cells) up-regulated CCR9(+)T cells, which were observed to express high levels of IFN-γ in the presence of Th1/Th17 conditions. Retinoic acid-monocyte-derived dendritic cells, under Th17 conditions, also favored the induction of IL-17(+) T cells. Furthermore, in the presence of TGF-β1 and IL-4, retinoic acid-monocyte-derived dendritic cells inhibited IL-9 and induced IFN-γ expression on T cells. Experiments with naïve CD4(+) T cells, activated in the presence of Th1/Th17 conditions and absence of DCs, indicated that retinoic acid inhibited IFN-γ and IL-17 expression on T cells. These data revealed that in the face of inflammatory conditions, retinoic acid, in contrast from its anti-inflammatory role, could maintain or aggravate the intestinal inflammation. PMID:26980802

  5. Passive carriage of rabies virus by dendritic cells.

    PubMed

    Senba, Kazuyo; Matsumoto, Takashi; Yamada, Kentaro; Shiota, Seiji; Iha, Hidekatsu; Date, Yukari; Ohtsubo, Motoaki; Nishizono, Akira

    2013-01-01

    The rabies virus (RABV) is highly neurotropic and it uses evasive strategies to successfully evade the host immune system. Because rabies is often fatal, understanding the basic processes of the virus-host interactions, particularly in the initial events of infection, is critical for the design of new therapeutic approaches to target RABV. Here, we examined the possible role of dendritic cells (DCs) in the transmission of RABV to neural cells at peripheral site of exposure. Viral replication only occurred at a low level in the DC cell line, JAWS II, after its infection with either pathogenic RABV (CVS strain) or low-pathogenic RABV (ERA strain), and no progeny viruses were produced in the culture supernatants. However, both viral genomic RNAs were retained in the long term after infection and maintained their infectivity. The biggest difference between CVS and ERA was in their ability to induce type I interferons. Although the ERA-infected JAWS II cells exhibited cytopathic effect and were apparently killed by normal spleen cells in vitro, the CVS-infected JAWS II cells showed milder cytopathic effect and less lysis when cocultured with spleen cells. Strongly increased expression of major histocompatibility complex classes I, costimulatory molecules (CD80 and CD86), type I interferons and Toll- like receptor 3, and was observed only in the ERA-inoculated JAWS II cells and not in those inoculated with CVS. During the silencing of the cellular immune response in the DCs, the pathogenic CVS strain cryptically maintained an infectious viral genome and was capable of transmitting infectious RABV to permissive neural cells. These findings demonstrate that DCs may play a role in the passive carriage of RABV during natural rabies infections. PMID:24024103

  6. Interaction of Rotavirus with Human Myeloid Dendritic Cells

    PubMed Central

    Narváez, Carlos F.; Angel, Juana; Franco, Manuel A.

    2005-01-01

    We have previously shown that very few rotavirus (RV)-specific T cells that secrete gamma interferon circulate in recently infected and seropositive adults and children. Here, we have studied the interaction of RV with myeloid immature (IDC) and mature dendritic cells (MDC) in vitro. RV did not induce cell death of IDC or MDC and induced maturation of between 12 and 48% of IDC. Nonetheless, RV did not inhibit the maturation of IDC or change the expression of maturation markers on MDC. After treatment with RV, few IDC expressed the nonstructural viral protein NSP4. In contrast, a discrete productive viral infection was shown in MDC of a subset of volunteers, and between 3 and 46% of these cells expressed NSP4. RV-treated IDC secreted interleukin 6 (IL-6) (but not IL-1β, IL-8, IL-10, IL-12, tumor necrosis factor alpha, or transforming growth factor beta), and MDC released IL-6 and small amounts of IL-10 and IL-12p70. The patterns of cytokines secreted by T cells stimulated by staphylococcal enterotoxin B presented by MDC infected with RV or uninfected were comparable. The frequencies and patterns of cytokines secreted by memory RV-specific T cells evidenced after stimulation of peripheral blood mononuclear cells (PBMC) with RV were similar to those evidenced after stimulation of PBMC with RV-infected MDC. Finally, IDC treated with RV strongly stimulated naive allogeneic CD4+ T cells to secrete Th1 cytokines. Thus, although RV does not seem to be a strong maturing stimulus for DC, it promotes their capacity to prime Th1 cells. PMID:16282452

  7. Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment.

    PubMed

    Hotta-Iwamura, Chie; Tarbell, Kristin V

    2016-07-01

    Type 1 diabetes is an autoimmune disease that results from the defective induction or maintenance of T cell tolerance against islet β cell self-antigens. Under steady-state conditions, dendritic cells with tolerogenic properties are critical for peripheral immune tolerance. Tolerogenic dendritic cells can induce T cell anergy and deletion and, in some contexts, induce or expand regulatory T cells. Dendritic cells contribute to both immunomodulatory effects and triggering of pathogenesis in type 1 diabetes. This immune equilibrium is affected by both genetic and environmental factors that contribute to the development of type 1 diabetes. Genome-wide association studies and disease association studies have identified >50 polymorphic loci that lend susceptibility or resistance to insulin-dependent diabetes mellitus. In parallel, diabetes susceptibility regions known as insulin-dependent diabetes loci have been identified in the nonobese diabetic mouse, a model for human type 1 diabetes, providing a better understanding of potential immunomodulatory factors in type 1 diabetes risk. Most genetic candidates have annotated immune cell functions, but the focus has been on changes to T and B cells. However, it is likely that some of the genomic susceptibility in type 1 diabetes directly interrupts the tolerogenic potential of dendritic cells in the pathogenic context of ongoing autoimmunity. Here, we will review how gene polymorphisms associated with autoimmune diabetes may influence dendritic cell development and maturation processes that could lead to alterations in the tolerogenic function of dendritic cells. These insights into potential tolerogenic and pathogenic roles for dendritic cells have practical implications for the clinical manipulation of dendritic cells toward tolerance to prevent and treat type 1 diabetes. PMID:26792821

  8. Dendritic patch-clamp recordings from cerebellar granule cells demonstrate electrotonic compactness

    PubMed Central

    Delvendahl, Igor; Straub, Isabelle; Hallermann, Stefan

    2015-01-01

    Cerebellar granule cells (GCs), the smallest neurons in the brain, have on average four short dendrites that receive high-frequency mossy fiber inputs conveying sensory information. The short length of the dendrites suggests that GCs are electrotonically compact allowing unfiltered integration of dendritic inputs. The small average diameter of the dendrites (~0.7 µm), however, argues for dendritic filtering. Previous studies based on somatic recordings and modeling indicated that GCs are electrotonically extremely compact. Here, we performed patch-clamp recordings from GC dendrites in acute brain slices of mice to directly analyze the electrotonic properties of GCs. Strikingly, the input resistance did not differ significantly between dendrites and somata of GCs. Furthermore, spontaneous excitatory postsynaptic potentials (EPSP) were similar in amplitude at dendritic and somatic recording sites. From the dendritic and somatic input resistances we determined parameters characterizing the electrotonic compactness of GCs. These data directly demonstrate that cerebellar GCs are electrotonically compact and thus ideally suited for efficient high-frequency information transfer. PMID:25852483

  9. Tumor-derived factors modulating dendritic cell function.

    PubMed

    Zong, Jinbao; Keskinov, Anton A; Shurin, Galina V; Shurin, Michael R

    2016-07-01

    Dendritic cells (DC) play unique and diverse roles in the tumor occurrence, development, progression and response to therapy. First of all, DC can actively uptake tumor-associated antigens, process them and present antigenic peptides to T cells inducing and maintaining tumor-specific T cell responses. DC interaction with different immune effector cells may also support innate antitumor immunity, as well as humoral responses also known to inhibit tumor development in certain cases. On the other hand, DC are recruited to the tumor site by specific tumor-derived and stroma-derived factors, which may also impair DC maturation, differentiation and function, thus resulting in the deficient formation of antitumor immune response or development of DC-mediated tolerance and immune suppression. Identification of DC-stimulating and DC-suppressing/polarizing factors in the tumor environment and the mechanism of DC modulation are important for designing effective DC-based vaccines and for recovery of immunodeficient resident DC responsible for maintenance of clinically relevant antitumor immunity in patients with cancer. DC-targeting tumor-derived factors and their effects on resident and administered DC in the tumor milieu are described and discussed in this review. PMID:26984847

  10. Dendritic cell-based in vitro assays for vaccine immunogenicity

    PubMed Central

    Vandebriel, Rob J.; Hoefnagel, Marcel H.N.

    2012-01-01

    Dendritic cells (DC) are pivotal in the induction of adaptive immune responses because they can activate naive T-cells. Moreover, they steer these adaptive immune responses by integrating various stimuli, such as from different pathogen associated molecular patterns and the cytokine milieu. Immature DC are very well capable of ingesting protein antigens, whereas mature DC are efficient presenters of peptides to naive T cells. Human DC can be readily cultured from peripheral blood mononuclear cells, which are isolated from human blood. There is a strong need to monitor in a high-throughput fashion the immunogenicity of candidate vaccines during the process of vaccine development. Furthermore, regulators require efficacy and safety testing for batch release. For some vaccines, these tests require animal testing, causing pain and discomfort, which cannot be contested because it would interfere with the test results. With the aims of promoting vaccine development and reducing the number of animals for batch release testing, we propose to use more broadly human DC for vaccine immunogenicity testing. In this commentary, this proposition is illustrated by several examples in which the maturation of human DC was successfully used to test for vaccine and adjuvant immunogenicity. PMID:22951585

  11. Macrophages and dendritic cells in the post-testicular environment.

    PubMed

    Da Silva, Nicolas; Barton, Claire R

    2016-01-01

    Macrophages (MΦ) and dendritic cells (DCs) are heterogeneous families of functionally and developmentally related immune cells that play crucial roles in tissue homeostasis and the regulation of immune responses. During the past 5 years, immunologists have generated a considerable amount of data that challenge dogmas about the ontogeny and functions of these highly versatile cells. The male excurrent duct system plays a critical role in the establishment of fertility by allowing sperm maturation, transport and storage. In addition, it is challenged by pathogens and must establish a protective and tolerogenic environment for a continuous flow of autoantigenic spermatozoa. The post-testicular environment and, in particular, the epididymis contain an intricate network of DCs and MΦ; however, the immunophysiology of this intriguing and highly specialized mucosal system is poorly understood. This review summarizes the current trends in mouse MΦ and DC biology and speculates about their roles in the steady-state epididymis. Unraveling immune cell functions in the male reproductive tract is an essential prerequisite for the design of innovative strategies aimed at controlling male fertility and treating infertility. PMID:26337514

  12. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    PubMed Central

    Mackern-Oberti, Juan P.; Vega, Fabián; Llanos, Carolina; Bueno, Susan M.; Kalergis, Alexis M.

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  13. Targeting dendritic cell function during systemic autoimmunity to restore tolerance.

    PubMed

    Mackern-Oberti, Juan P; Vega, Fabián; Llanos, Carolina; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  14. CXCR4 engagement promotes dendritic cell survival and maturation

    SciTech Connect

    Kabashima, Kenji Sugita, Kazunari; Shiraishi, Noriko; Tamamura, Hirokazu; Fujii, Nobutaka; Tokura, Yoshiki

    2007-10-05

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.

  15. Role of Dendritic Cells in the Induction of Lymphocyte Tolerance

    PubMed Central

    Osorio, Fabiola; Fuentes, Camila; López, Mercedes N.; Salazar-Onfray, Flavio; González, Fermín E.

    2015-01-01

    The ability of dendritic cells (DCs) to trigger tolerance or immunity is dictated by the context in which an antigen is encountered. A large body of evidence indicates that antigen presentation by steady-state DCs induces peripheral tolerance through mechanisms such as the secretion of soluble factors, the clonal deletion of autoreactive T cells, and feedback control of regulatory T cells. Moreover, recent understandings on the function of DC lineages and the advent of murine models of DC depletion have highlighted the contribution of DCs to lymphocyte tolerance. Importantly, these findings are now being applied to human research in the contexts of autoimmune diseases, allergies, and transplant rejection. Indeed, DC-based immunotherapy research has made important progress in the area of human health, particularly in regards to cancer. A better understanding of several DC-related aspects including the features of DC lineages, milieu composition, specific expression of surface molecules, the control of signaling responses, and the identification of competent stimuli able to trigger and sustain a tolerogenic outcome will contribute to the success of DC-based immunotherapy in the area of lymphocyte tolerance. This review will discuss the latest advances in the biology of DC subtypes related to the induction of regulatory T cells, in addition to presenting current ex vivo protocols for tolerogenic DC production. Particular attention will be given to the molecules and signals relevant for achieving an adequate tolerogenic response for the treatment of human pathologies. PMID:26539197

  16. Dendritic Cell Activation by Glucan Isolated from Umbilicaria Esculenta

    PubMed Central

    Kim, Hyung Sook; Kim, Jee Youn; Lee, Hong Kyung; Kim, Moo Sung; Lee, Sang Rin; Kang, Jong Soon; Kim, Hwan Mook; Lee, Kyung-Ae; Hong, Jin Tae; Kim, Youngsoo

    2010-01-01

    Background Lichen-derived glucans have been known to stimulate the functions of immune cells. However, immunostimulatory activity of glucan obtained from edible lichen, Umbilicaria esculenta, has not been reported. Thus we evaluated the phenotype and functional maturation of dendritic cells (DCs) following treatment of extracted glucan (PUE). Methods The phenotypic and functional maturation of PUE-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. PUE-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity. Finally we detected the activation of MAPK and NF-κB by immunoblot. Results Phenotypic maturation of DCs was shown by the elevated expressions of CD40, CD80, CD86, and MHC class I/II molecules. Functional activation of DCs was proved by increased cytokine production of IL-12, IL-1β, TNF-α, and IFN-α/β, decreased endocytosis, and enhanced proliferation of allogenic T cells. Polymyxin B, specific inhibitor of lipopolysaccharide (LPS), did not affect PUE activity, which suggested that PUE was free of LPS contamination. As a mechanism of action, PUE increased phosphorylation of ERK, JNK, and p38 MAPKs, and enhanced nuclear translocation of NF-κB p50/p65 in DCs. Conclusion These results indicate that PUE induced DC maturation via MAPK and NF-κB signaling pathways. PMID:21286379

  17. Influence of follicular dendritic cells on HIV dynamics.

    PubMed Central

    Hlavacek, W S; Stilianakis, N I; Perelson, A S

    2000-01-01

    In patients infected with human immunodeficiency virus type 1 (HIV-1), a large amount of virus is associated with follicular dendritic cells (FDCs) in lymphoid tissue. To assess the influence of FDCs on viral dynamics during antiretroviral therapy we have developed a mathematical model for treatment of HIV-1 infection that includes FDCs. Here, we use this model to analyse measurements of HIV-1 dynamics in the blood and lymphoid tissue of a representative patient, who was treated with a combination of HIV-1 reverse transcriptase and protease inhibitors. We show that loss of virus from FDCs during therapy can make a much larger contribution to plasma virus than production of virus by infected cells. This result challenges the notion that long-lived infected cells are a significant source of HIV-1 during drug therapy. Due to release of FDC-associated virus, we find that it is necessary to revise upward previous estimates of c, the rate at which free virus is cleared, and delta, the rate at which productively infected cells die. Furthermore, we find that potentially infectious virus, present before treatment, is released from FDCs during therapy and that the persistence of this virus can be affected by whether therapy includes reverse transcriptase inhibitors. PMID:11186306

  18. Regulatory Multitasking of Tolerogenic Dendritic Cells – Lessons Taken from Vitamin D3-Treated Tolerogenic Dendritic Cells

    PubMed Central

    Nikolic, Tatjana; Roep, Bart O.

    2013-01-01

    Tolerogenic dendritic cells (DCs) work through silencing of differentiated antigen-specific T cells, activation and expansion of naturally occurring T regulatory cells (Tregs), transfer of regulatory properties to T cells, and the differentiation of naïve T cells into Tregs. Due to an operational definition based on T cell activation assays, the identity of tolerogenic DCs has been a matter of debate and it need not represent a specialized DC subset. Human tolerogenic DCs generated in vitro using inhibitory cytokines, growth factors, natural immunomodulators, or genetic manipulation have been effective and several of these tolerogenic DCs are currently being tested for clinical use. Ex vivo generated tolerogenic DCs reduce activation of naïve T cells using various means, promote a variety of regulatory T cells and most importantly, frequently show stable inhibitory phenotypes upon repetitive maturation with inflammatory factors. Yet, tolerogenic DCs differ with respect to the phenotype or the number of regulatory mechanisms they employ to modulate the immune system. In our experience, tolerogenic DCs generated using the biologically active form of vitamin D (VD3-DCs), alone, or combined with dexamethasone are proficient in their immunoregulatory functions. These tolerogenic DCs show a stable maturation-resistant semi-mature phenotype with low expression of activating co-stimulatory molecules, no production of the IL-12 family of cytokines and high expression of inhibitory molecules and IL-10. VD3-DCs induce increased apoptosis of effector T cells and induce antigen-specific regulatory T cells, which work through linked suppression ensuring infectious tolerance. Lessons learned on VD3-DCs help understanding the contribution of different pattern-recognition receptors (PRRs) and secondary signals to the tolerogenic function and how a cross-talk between DCs and T cells translates into immune regulation. PMID:23717310

  19. Group 2 innate lymphoid cells license dendritic cells to potentiate memory T helper 2 cell responses

    PubMed Central

    Halim, Timotheus YF; Hwang, You Yi; Scanlon, Seth T; Zaghouani, Habib; Garbi, Natalio; Fallon, Padraic G; McKenzie, Andrew NJ

    2015-01-01

    Rapid memory CD4+ T helper 2 (TH2) cell activation during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid cells (ILC2) play a critical role in memory TH2 cell responses, with targeted ILC2 depletion profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin-13 (IL-13) is critical for eliciting IRF4+CD11b+CD103− dendritic cells (DCs) to produce the TH2 cell-attracting chemokine CCL17. Consequently, the sentinel function of DCs is contingent on ILC2s for the generation of an efficient memory TH2 cell response. These results elucidate a key new innate mechanism in the regulation of the immune memory response to allergens. PMID:26523868

  20. Membrane specializations and endosome maturation in dendritic cells and B cells.

    PubMed

    Boes, Marianne; Cuvillier, Armelle; Ploegh, Hidde

    2004-04-01

    Interest in the cell biology of antigen presentation is centered on dendritic cells (DCs) as initiators of the immune response. The ability to examine primary antigen-presenting cells, as opposed to cell lines, has opened a new window for study of antigen processing and peptide acquisition by Class II major histocompatibility complex (MHC) products, especially where intracellular trafficking of peptide-Class-II complexes is concerned. Here, we review the dynamics of Class II MHC-positive intracellular structures in dendritic cells as well as B cells. We focus on the generation of multivesicular bodies, where Class II MHC products acquire antigenic peptide, on the endosomal transport of peptide-loaded Class II MHC to the cell surface and on the importance of Class II MHC localization in membrane microdomains. PMID:15066635

  1. CD45 negatively regulates tumour necrosis factor and interleukin-6 production in dendritic cells.

    PubMed

    Piercy, Jenny; Petrova, Svetla; Tchilian, Elma Z; Beverley, Peter C L

    2006-06-01

    CD45 is known to regulate signalling through many different surface receptors in diverse haemopoietic cell types. Here we report for the first time that CD45-/- bone marrow dendritic cells (BMDC) are more activated than CD45+/+ cells and that tumour necrosis factor (TNF) and interleukin-6 (IL-6) production by BMDC and splenic dendritic cells (sDC), is increased following stimulation via Toll-like receptor (TLR)3 and TLR9. Nuclear factor-kappaB activation, an important downstream consequence of TLR3 and TLR9 signalling, is also increased in CD45-/- BMDC. BMDC of CD45-/- mice also produce more TNF and IL-6 following stimulation with the cytokines TNF and interferon-alpha. These results show that TLR signalling is increased in CD45-/- dendritic cells and imply that CD45 is a negative regulator of TLR and cytokine receptor signalling in dendritic cells. PMID:16771860

  2. Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells.

    PubMed

    Bloss, Erik B; Cembrowski, Mark S; Karsh, Bill; Colonell, Jennifer; Fetter, Richard D; Spruston, Nelson

    2016-03-01

    Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation. VIDEO ABSTRACT. PMID:26898780

  3. Clusters of synaptic inputs on dendrites of layer 5 pyramidal cells in mouse visual cortex

    PubMed Central

    Gökçe, Onur; Bonhoeffer, Tobias; Scheuss, Volker

    2016-01-01

    The spatial organization of synaptic inputs on the dendritic tree of cortical neurons plays a major role for dendritic integration and neural computations, yet, remarkably little is known about it. We mapped the spatial organization of glutamatergic synapses between layer 5 pyramidal cells by combining optogenetics and 2-photon calcium imaging in mouse neocortical slices. To mathematically characterize the organization of inputs we developed an approach based on combinatorial analysis of the likelihoods of specific synapse arrangements. We found that the synapses of intralaminar inputs form clusters on the basal dendrites of layer 5 pyramidal cells. These clusters contain 4 to 14 synapses within ≤30 µm of dendrite. According to the spatiotemporal characteristics of synaptic summation, these numbers suggest that there will be non-linear dendritic integration of synaptic inputs during synchronous activation. DOI: http://dx.doi.org/10.7554/eLife.09222.001 PMID:27431612

  4. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  5. Modulation of Dendritic Cell Responses by Parasites: A Common Strategy to Survive

    PubMed Central

    Terrazas, César A.; Terrazas, Luis I.; Gómez-García, Lorena

    2010-01-01

    Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have developed to interfere with dendritic cell activities as well as in the possible mechanisms involved. PMID:20204070

  6. Blastic Plasmacytoid Dendritic Cell Neoplasm: From Origin of the Cell to Targeted Therapies.

    PubMed

    Laribi, Kamel; Denizon, Nathalie; Besançon, Anne; Farhi, Jonathan; Lemaire, Pierre; Sandrini, Jeremy; Truong, Catherine; Ghnaya, Habib; Baugier de Materre, Alix

    2016-08-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy with an aggressive clinical course. It is grouped with acute myeloid leukemia-related precursor neoplasms in the 2008 World Health Organization classification. Most patients with BPDCN have skin lesions at diagnosis and subsequent or simultaneous involvement of the bone marrow, peripheral blood, and lymph nodes. Patients usually respond to initial chemotherapy but often relapse. Stem cell transplantation may improve survival. This neoplasm is derived from precursors of plasmacytoid dendritic cells and is characterized by the coexpression of the immunophenotypic markers CD4, CD56, CD123, blood dendritic cell antigen-2, blood dendritic cell antigen-4, CD2AP, and lineage(-). Atypical immunophenotype expression may be present, making diagnosis difficult. BPDCN is often associated with a complex karyotype, frequent deletions of tumor suppressor genes, and mutations affecting either the DNA methylation or chromatin remodeling pathways. A better understanding of the etiology and pathophysiology of this neoplasm could open the way to new therapies targeting specific signaling pathways or involving epigenetics. PMID:27026248

  7. Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    PubMed Central

    Biedma, Marina Elizabeth; Lederle, Alexandre; Peressin, Maryse; Lambotin, Mélanie; Proust, Alizé; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing. PMID:24574390

  8. Monocyte-Derived Dendritic Cells Exhibit Increased Levels of Lysosomal Proteolysis as Compared to Other Human Dendritic Cell Populations

    PubMed Central

    McCurley, Nathanael; Mellman, Ira

    2010-01-01

    Background Fine control of lysosomal degradation for limited processing of internalized antigens is a hallmark of professional antigen presenting cells. Previous work in mice has shown that dendritic cells (DCs) contain lysosomes with remarkably low protease content. Combined with the ability to modulate lysosomal pH during phagocytosis and maturation, murine DCs enhance their production of class II MHC-peptide complexes for presentation to T cells. Methodology/Principal Findings In this study we extend these findings to human DCs and distinguish between different subsets of DCs based on their ability to preserve internalized antigen. Whereas DCs derived in vitro from CD34+ hematopoietic progenitor cells or isolated from peripheral blood of healthy donors are protease poor, DCs derived in vitro from monocytes (MDDCs) are more similar to macrophages (MΦs) in protease content. Unlike other DCs, MDDCs also fail to reduce their intralysosomal pH in response to maturation stimuli. Indeed, functional characterization of lysosomal proteolysis indicates that MDDCs are comparable to MΦs in the rapid degradation of antigen while other human DC subtypes are attenuated in this capacity. Conclusions/Significance Human DCs are comparable to murine DCs in exhibiting a markedly reduced level of lysosomal proteolysis. However, as an important exception to this, human MDDCs stand apart from all other DCs by a heightened capacity for proteolysis that resembles that of MΦs. Thus, caution should be exercised when using human MDDCs as a model for DC function and cell biology. PMID:20689855

  9. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    PubMed

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity. PMID:27234553

  10. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins

    PubMed Central

    Heintz, Tristan G.; Eva, Richard; Fawcett, James W.

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling. PMID:27518800

  11. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins.

    PubMed

    Heintz, Tristan G; Eva, Richard; Fawcett, James W

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling. PMID:27518800

  12. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts.

    PubMed

    Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J

    2016-05-01

    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. PMID:26590149

  13. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas

    2009-05-01

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  14. Analysis of proteomic profiles and functional properties of human peripheral blood myeloid dendritic cells, monocyte-derived dendritic cells and the dendritic cell-like KG-1 cells reveals distinct characteristics

    PubMed Central

    2007-01-01

    Background Dendritic cells (DCs) are specialized antigen presenting cells that play a pivotal role in bridging innate and adaptive immune responses. Given the scarcity of peripheral blood myeloid dendritic cells (mDCs) investigators have used different model systems for studying DC biology. Monocyte-derived dendritic cells (moDCs) and KG-1 cells are routinely used as mDC models, but a thorough comparison of these cells has not yet been carried out, particularly in relation to their proteomes. We therefore sought to run a comparative study of the proteomes and functional properties of these cells. Results Despite general similarities between mDCs and the model systems, moDCs and KG-1 cells, our findings identified some significant differences in the proteomes of these cells, and the findings were confirmed by ELISA detection of a selection of proteins. This was particularly noticeable with proteins involved in cell growth and maintenance (for example, fibrinogen γ chain (FGG) and ubiquinol cytochrome c) and cell-cell interaction and integrity (for example, fascin and actin). We then examined the surface phenotype, cytokine profile, endocytic and T-cell-activation ability of these cells in support of the proteomic data, and obtained confirmatory evidence for differences in the maturation status and functional attributes between mDCs and the two DC models. Conclusion We have identified important proteomic and functional differences between mDCs and two DC model systems. These differences could have major functional implications, particularly in relation to DC-T cell interactions, the so-called immunological synapse, and, therefore, need to be considered when interpreting data obtained from model DC systems. PMID:17331236

  15. Epigenetic program and transcription factor circuitry of dendritic cell development.

    PubMed

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G; Gusmao, Eduardo G; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-11-16

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  16. Adiponectin Receptor Signaling on Dendritic Cells Blunts Antitumor Immunity

    PubMed Central

    Tan, Peng H.; Tyrrell, Helen E.J.; Gao, Liquan; Xu, Danmei; Quan, Jianchao; Gill, Dipender; Rai, Lena; Ding, Yunchuan; Plant, Gareth; Chen, Yuan; Xue, John Z.; Handa, Ashok I.; Greenall, Michael J.; Walsh, Kenneth; Xue, Shao-An

    2015-01-01

    Immune escape is a fundamental trait of cancer. Dendritic cells (DC) that interact with T cells represent a crucial site for the development of tolerance to tumor antigens, but there remains incomplete knowledge about how DC-tolerizing signals evolve during tumorigenesis. In this study, we show that DCs isolated from patients with metastatic or locally advanced breast cancer express high levels of the adiponectin receptors AdipoR1 and AdipoR2, which are sufficient to blunt antitumor immunity. Mechanistic investigations of ligand–receptor interactions on DCs revealed novel signaling pathways for each receptor. AdipoR1 stimulated IL10 production by activating the AMPK and MAPKp38 pathways, whereas AdipoR2 modified inflammatory processes by activating the COX-2 and PPARγ pathways. Stimulation of these pathways was sufficient to block activation of NF-κB in DC, thereby attenuating their ability to stimulate antigen-specific T-cell responses. Together, our findings reveal novel insights into how DC-tolerizing signals evolve in cancer to promote immune escape. Furthermore, by defining a critical role for adiponectin signaling in this process, our work suggests new and broadly applicable strategies for immunometabolic therapy in patients with cancer. PMID:25261236

  17. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  18. Human cytomegalovirus tropism for mucosal myeloid dendritic cells

    PubMed Central

    Hertel, Laura

    2014-01-01

    SUMMARY Human CMV infections are a serious source of morbidity and mortality for immunocompromised patients and for the developing fetus. Because of this, the development of new strategies to prevent CMV acquisition and transmission is a top priority. Myeloid dendritic cells (DC) residing in the oral and nasal mucosae are among the first immune cells to encounter CMV during entry, and greatly contribute to virus dissemination, reactivation from latency, and horizontal spread. Albeit affected by the immunoevasive tactics of CMV, mucosal DC remain potent inducers of cellular and humoral immune responses against this virus. Their natural functions could thus be exploited to generate long-lasting protective immunity against CMV by vaccination via the oro-nasal mucosae. Although related, epithelial Langerhans-type DC (LC) and dermal monocyte-derived DC (MDDC) interact with CMV in dramatically different ways. While immature MDDC are fully permissive to infection, for instance, immature LC are completely resistant. Understanding these differences is essential to design innovative vaccines and new antiviral compounds to protect these cells from CMV infection in vivo. PMID:24888709

  19. Generation of immunogenic and tolerogenic clinical-grade dendritic cells.

    PubMed

    Kalantari, Tahereh; Kamali-Sarvestani, Eskandar; Ciric, Bogoljub; Karimi, Mohamad H; Kalantari, Mohsen; Faridar, Alireza; Xu, Hui; Rostami, Abdolmohamad

    2011-12-01

    Immunotherapy with dendritic cells (DCs), which have been manipulated ex vivo to become immunogenic or tolerogenic, has been tested in clinical trials for disease therapy. DCs are sentinels of the immune system, which after exposure to antigenic or inflammatory signals and crosstalk with effector CD4(+) T cells express high levels of costimulatory molecules and cytokines. Upregulation of either costimulatory molecules or cytokines promotes immunologic DCs, whereas their downregulation generates tolerogenic DCs (TDCs), which induce T regulatory cells (Tregs) and a state of tolerance. Immunogenic DCs are used for the therapy of infectious diseases such as HIV-1 and cancer, whereas tolerogenic DCs are used in treating various autoimmune diseases and in transplantation. DC vaccination is still at an early stage, and improvements are mainly needed in quality control of monitoring assays to generate clinical-grade DC products and to assess the effect of DC vaccination in future clinical trials. Here, we review the recent work in DC generation and monitoring approaches for DC-based trials with immunogenic or tolerogenic DCs. PMID:22105838

  20. Targeting dendritic cells for improved HIV-1 vaccines.

    PubMed

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen. PMID:22975879

  1. Dendritic Cell Responses to Surface Properties of Clinical Titanium Surfaces

    PubMed Central

    Kou, Peng Meng; Schwartz, Zvi; Boyan, Barbara D.

    2010-01-01

    Dendritic cells (DCs) play pivotal roles in responding to foreign entities during an innate immune response and initiating effective adaptive immunity as well as maintaining immune tolerance. The sensitivity of DCs to foreign stimuli also makes them useful cells to assess the inflammatory response to biomaterials. Elucidating the material property-DC phenotype relationships using a well-defined biomaterial system is expected to provide criteria for immuno-modulatory biomaterial design. Clinical titanium (Ti) substrates, including pretreatment (PT), sand-blasted and acid-etched (SLA), and modified SLA (modSLA), with different roughness and surface energy were used to treat DCs and resulted in differential DC responses. PT and SLA induced a mature DC (mDC) phenotype, while modSLA promoted a non-inflammatory environment by supporting an immature DC (iDC) phenotype based on surface marker expression, cytokine production profiles and cell morphology. Principal component analysis (PCA) confirmed these experimental results, and it also indicated that the non-stimulating property of modSLA covaried with certain surface properties, such as high surface hydrophilicity, % oxygen and % Ti of the substrates. In addition to the previous research that demonstrated the superior osteogenic property of modSLA compared to PT and SLA, the result reported herein indicates that modSLA may further benefit implant osteo-integration by reducing local inflammation and its associated osteoclastogenesis. PMID:20977948

  2. ASB2α regulates migration of immature dendritic cells.

    PubMed

    Lamsoul, Isabelle; Métais, Arnaud; Gouot, Emmanuelle; Heuzé, Mélina L; Lennon-Duménil, Ana-Maria; Moog-Lutz, Christel; Lutz, Pierre G

    2013-07-25

    The actin-binding protein filamins (FLNs) are major organizers of the actin cytoskeleton. They control the elasticity and stiffness of the actin network and provide connections with the extracellular microenvironment by anchoring transmembrane receptors to the actin filaments. Although numerous studies have revealed the importance of FLN levels, relatively little is known about the regulation of its stability in physiological relevant settings. Here, we show that the ASB2α cullin 5-ring E3 ubiquitin ligase is highly expressed in immature dendritic cells (DCs) and is down-regulated after DC maturation. We further demonstrate that FLNs are substrates of ASB2α in immature DCs and therefore are not stably expressed in these cells, whereas they exhibit high levels of expression in mature DCs. Using ASB2 conditional knockout mice, we show that ASB2α is a critical regulator of cell spreading and podosome rosette formation in immature DCs. Furthermore, we show that ASB2(-/-) immature DCs exhibit reduced matrix-degrading function leading to defective migration. Altogether, our results point to ASB2α and FLNs as newcomers in DC biology. PMID:23632887

  3. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation

    PubMed Central

    Thomson, Angus W.; Zahorchak, Alan F.; Ezzelarab, Mohamed B.; Butterfield, Lisa H.; Lakkis, Fadi G.; Metes, Diana M.

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering the incidence and severity of rejection and reducing patients’ dependence on anti-rejection drugs. Generation of donor- or recipient-derived DCreg that suppress T cell responses and prolong transplant survival in rodents or non-human primates has been well-described. Recently, good manufacturing practice (GMP)-grade DCreg have been produced at our Institution for prospective use in human organ transplantation. We briefly review experience of regulatory immune therapy in organ transplantation and describe our experience generating and characterizing human monocyte-derived DCreg. We propose a phase I/II safety study in which the influence of donor-derived DCreg combined with conventional immunosuppression on subclinical and clinical rejection and host alloimmune responses will be examined in detail. PMID:26858719

  4. Immunomodulation of phloretin by impairing dendritic cell activation and function.

    PubMed

    Lin, Chi-Chen; Chu, Ching-Liang; Ng, Chin-Sheng; Lin, Ching-Yen; Chen, Der-Yuan; Pan, I-Hong; Huang, Kao-Jean

    2014-05-01

    Dietary compounds in fruits and vegetables have been shown to exert many biological activities. In addition to antioxidant effects, a number of flavonoids are able to modulate inflammatory responses. Here, we demonstrated that phloretin (PT), a natural dihydrochalcone found in many fruits, suppressed the activation and function of mouse dendritic cells (DCs). Phloretin disturbed the multiple intracellular signaling pathways in DCs induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS), including ROS, MAPKs (ERK, JNK, p38 MAPK), and NF-κB, and thereby reducing the production of inflammatory cytokines and chemokines. Phloretin also effectively suppressed the activation of DCs treated with different dosages of LPS or various TLR agonists. The LPS-induced DC maturation was attenuated by phloretin because the expression levels of the MHC class II and the co-stimulatory molecules were down-regulated, which then inhibited the LPS-stimulating DCs and the subsequent naïve T cell activation in a mixed lymphocyte reaction. Moreover, in vivo administration of phloretin suppressed the phenotypic maturation of the LPS-challenged splenic DCs and decreased the IFN-γ production from the activated CD4 T cells. Thus, we suggest that phloretin may potentially be an immunomodulator by impairing the activation and function of DCs and phloretin-contained fruits may be helpful in the improvement of inflammation and autoimmune diseases. PMID:24651121

  5. Natural antibodies sustain differentiation and maturation of human dendritic cells

    PubMed Central

    Bayry, Jagadeesh; Lacroix-Desmazes, Sébastien; Donkova-Petrini, Vladimira; Carbonneil, Cédric; Misra, Namita; Lepelletier, Yves; Delignat, Sandrine; Varambally, Sooryanarayana; Oksenhendler, Eric; Lévy, Yves; Debré, Marianne; Kazatchkine, Michel D.; Hermine, Olivier; Kaveri, Srini V.

    2004-01-01

    The differentiation and maturation of dendritic cells (DCs) is governed by various signals in the microenvironment. Monocytes and DCs circulate in peripheral blood, which contains high levels of natural antibodies (NAbs). NAbs are germ-line-encoded and occur in the absence of deliberate immunization or microbial aggression. To assess the importance of NAbs in the milieu on DC development, we examined the status of DCs in patients with X-linked agammaglobulinemia, a disease characterized by paucity of B cells and circulating antibodies. We demonstrate that the in vitro differentiation of DCs is severely impaired in these patients, at least in part because of low levels of circulating NAbs. We identified NAbs reactive with the CD40 molecule as an important component that participates in the development of DCs. CD40-reactive NAbs restored normal phenotypes of DCs in patients. The maturation process induced by CD40-reactive NAbs was accompanied by an increased IL-10 and decreased IL-12 production. The transcription factor analysis revealed distinct signaling pathways operated by CD40-reactive NAbs compared to those by CD40 ligand. These results suggest that B cells promote bystander DC development through NAbs and the interaction between NAbs and DCs may play a role in steady-state migration of DCs. PMID:15381781

  6. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850576

  7. Paraneoplastic pemphigus associated with follicular dendritic cell sarcoma: report of a case and review of literature

    PubMed Central

    Su, Zheng; Liu, Gaojie; Liu, Jianping; Fang, Tingfeng; Zeng, Yunjie; Zhang, Huayao; Yang, Shanglin; Wang, Yang; Zhang, Junmin; Wei, Jinxing; Li, Yingru; Guo, Youfeng

    2015-01-01

    Follicular dendritic cell sarcoma (FDCS) is a rare tumor associated with paraneoplastic pemphigus. It is Blame drenchs auxiliary cell tumor which is derived from the peripheral lymphoid tissues. Throughout the world, several patients of paraneoplastic pemphigus associated follicular dendritic cell sarcoma were reported in the literature, but mostly originated from the neck lymph nodes, and extranodal origin of follicular dendritic sarcoma was rarely reported. Also, so far we have found that the malignant degree of all patients diagnosed with malignant tumors have been reported were low and after combined treatment of surgery, radiotherapy and chemotherapy, most of the prognosis was good. However, here we present a patient of paraneoplastic pemphigus associated with follicular dendritic cell sarcoma origined from outside of the lymph nodes and had high tumor malignant degree for its unclear cell boundaries, obvious atypia and mitoses and the patient’s state became progressively deteriorate after operation. PMID:26722384

  8. Exploiting the Role of Endogenous Lymphoid-Resident Dendritic Cells in the Priming of NKT Cells and CD8+ T Cells to Dendritic Cell-Based Vaccines

    PubMed Central

    Petersen, Troels R.; Sika-Paotonu, Dianne; Knight, Deborah A.; Simkins, Helen M. A.; Hermans, Ian F.

    2011-01-01

    Transfer of antigen between antigen-presenting cells (APCs) is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs), were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs), suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer) to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT) cells. In fact, injection of α-GalCer-loaded CD1d−/− BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose. PMID:21483862

  9. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells.

    PubMed

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko

    2016-03-01

    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells. PMID:26689905

  10. Completely resected follicular dendritic cell sarcoma of the posterior mediastinum: report of a case.

    PubMed

    Miyoshi, Ryo; Sonobe, Makoto; Miyamoto, Ei; Date, Hiroshi

    2016-12-01

    Follicular dendritic cell sarcoma is a rare malignant neoplasm originating from follicular dendritic cells, and most of them develop in lymph nodes of the head and neck. One third of follicular dendritic cell sarcomas occur in the extranodal sites such as the tonsils, mesentery, and retroperitoneal organs, but those of mediastinal origin are rare. Here, we present the case of a 16-year-old female with a large follicular dendritic cell sarcoma of posterior mediastinal origin. The tumor was found by a chest X-ray mass examination at her high school, and she had no subjective symptoms or significant past medical history. The tumor was diagnosed as a follicular dendritic cell sarcoma by computed tomography-guided needle biopsy. Although the tumor compressed the mediastinal organs and showed moderate uptake in 18-fluorodeoxyglucose positron emission tomography imaging, it was completely resected through posterolateral incision. Histological examination revealed that spindle-shaped tumor cells formed fascicular or storiform pattern with cellular pleomorphism. By immunohistochemical examination, the tumor cells were found to be positive for CD21 and follicular dendritic cell antigen. Two years after surgery, the patient remains alive with no signs of tumor recurrence. PMID:27001632