Science.gov

Sample records for glutamate dehydrogenase activity

  1. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  2. Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity?

    PubMed Central

    McKenna, Mary C.

    2011-01-01

    Metabolism of glutamate, the primary excitatory neurotransmitter in brain, is complex and of paramount importance to overall brain function. Thus, understanding the regulation of enzymes involved in formation and disposal of glutamate and related metabolites is crucial to understanding glutamate metabolism. Glutamate dehydrogenase (GDH) is a pivotal enzyme that links amino acid metabolism and TCA cycle activity in brain and other tissues. The allosteric regulation of GDH has been extensively studied and characterized. Less is known about the influence of lipid modifications on GDH activity, and the participation of GDH in transient heteroenzyme complexes (metabolons) that can greatly influence metabolism by altering kinetic parameters and lead to channeling of metabolites. This review summarizes evidence for palmitoylation and acylation of GDH, information on protein binding, and information regarding the participation of GDH in transient heteroenzyme complexes. Recent studies suggest that a number of other proteins can bind to GDH altering activity and overall metabolism. It is likely that these modifications and interactions contribute additional levels of regulation of GDH activity and glutamate metabolism. PMID:21771624

  3. Unexpected Histone H3 Tail-clipping Activity of Glutamate Dehydrogenase*

    PubMed Central

    Mandal, Papita; Verma, Naveen; Chauhan, Sakshi; Tomar, Raghuvir S.

    2013-01-01

    Clipping of histone tails has been reported in several organisms. However, the significance and regulation of histone tail clipping largely remains unclear. According to recent discoveries H3 clipping has been found to be involved in regulation of gene expression and chromatin dynamics. Earlier we had provided evidence of tissue-specific proteolytic processing of histone H3 in White Leghorn chicken liver nuclei. In this study we identify a novel activity of glutamate dehydrogenase (GDH) as a histone H3-specific protease in chicken liver tissue. This protease activity is regulated by divalent ions and thiol-disulfide conversion in vitro. GDH specifically clips H3 in its free as well as chromatin-bound form. Furthermore, we have found an inhibitor that inhibits the H3-clipping activity of GDH. Like previously reported proteases, GDH too may have the potential to regulate/modulate post-translational modifications of histone H3 by removing the N-terminal residues of the histone. In short, our findings identify an unexpected proteolytic activity of GDH specific to histone H3 that is regulated by redox state, ionic concentrations, and a cellular inhibitor in vitro. PMID:23673664

  4. Determination of Glutamate Dehydrogenase Activity and Its Kinetics in Mouse Tissues using Metabolic Mapping (Quantitative Enzyme Histochemistry)

    PubMed Central

    Botman, Dennis; Tigchelaar, Wikky

    2014-01-01

    Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)+ to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we assessed the effects of various glutamate concentrations in combination with either the coenzyme NAD+ or NADP+ on GDH activity in mouse liver cryostat sections using metabolic mapping. NAD+-dependent GDH Vmax was 2.5-fold higher than NADP+-dependent Vmax, whereas the Km was similar, 1.92 mM versus 1.66 mM, when NAD+ or NADP+ was used, respectively. With either coenzyme, Vmax was determined at 10 mM glutamate and substrate inhibition was observed at higher glutamate concentrations with a Ki of 12.2 and 3.95 for NAD+ and NADP+ used as coenzyme, respectively. NAD+- and NADP+-dependent GDH activities were examined in various mouse tissues. GDH activity was highest in liver and much lower in other tissues. In all tissues, the highest activity was found when NAD+ was used as a coenzyme. In conclusion, GDH activity in mice is highest in the liver with NAD+ as a coenzyme and highest GDH activity was determined at a glutamate concentration of 10 mM. PMID:25124006

  5. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.

    PubMed Central

    Zammit, V A; Newsholme, E A

    1976-01-01

    Comparison of the activities of hexokinase, phosphorylase and phosphofructokinase in muscles from marine invertebrates indicates that they can be divided into three groups. First, the activities of the three enzymes are low in coelenterate muscles, catch muscles of molluscs and muscles of echinoderms; this indicates a low rate of carbohydrate (and energy) utilization by these muscles. Secondly, high activities of phosphorylase and phosphofructokinase relative to those of hexokinase are found in, for example, lobster abdominal and scallop snap muscles; this indicates that these muscles depend largely on anaerobic degradation of glycogen for energy production. Thirdly, high activities of hexokinase are found in the radular muscles of prosobranch molluscs and the fin muscles of squids; this indicates a high capacity for glucose utilization, which is consistent with the high activities of enzymes of the tricarboxylic acid cycle in these muscles [Alp, Newsholme & Zammit (1976) Biochem. J. 154, 689-700]. 2. The activities of lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase and glutamate-oxaloacetate transaminase were measured in order to provide a qualitative indication of the importance of different processes for oxidation of glycolytically formed NADH. The muscles are divided into four groups: those that have a high activity of lactate dehydrogenase relative to the activities of phosphofructokinase (e.g. crustacean muscles); those that have high activities of octopine dehydrogenase but low activities of lactate dehydrogenase (e.g. scallop snap muscle); those that have moderate activities of both lactate dehydrogenase and octopine dehydrogenase (radular muscles of prosobranchs), and those that have low activities of both lactate dehydrogenase and octopine dehydrogenase, but which possess activities of phosphoenolpyruvate carboxykinase (oyster adductor muscles). It is

  6. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    SciTech Connect

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J.

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  7. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface.

    PubMed

    Lebbink, J H; Knapp, S; van der Oost, J; Rice, D; Ladenstein, R; de Vos, W M

    1999-06-01

    The role of an 18-residue ion-pair network, that is present in the glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus, in conferring stability to other, less stable homologous enzymes, has been studied by introducing four new charged amino acid residues into the subunit interface of glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. These two GDHs are 55 % identical in amino acid sequence, differ greatly in thermo-activity and stability and derive from microbes with different phylogenetic positions. Amino acid substitutions were introduced as single mutations as well as in several combinations. Elucidation of the crystal structure of the quadruple mutant S128R/T158E/N117R/S160E T. maritima glutamate dehydrogenase showed that all anticipated ion-pairs are formed and that a 16-residue ion-pair network is present. Enlargement of existing networks by single amino acid substitutions unexpectedly resulted in a decrease in resistance towards thermal inactivation and thermal denaturation. However, combination of destabilizing single mutations in most cases restored stability, indicating the need for balanced charges at subunit interfaces and high cooperativity between the different members of the network. Combination of the three destabilizing mutations in triple mutant S128R/T158E/N117R resulted in an enzyme with a 30 minutes longer half-life of inactivation at 85 degrees C, a 3 degrees C higher temperature optimum for catalysis, and a 0.5 degrees C higher apparent melting temperature than that of wild-type glutamate dehydrogenase. These findings confirm the hypothesis that large ion-pair networks do indeed stabilize enzymes from hyperthermophilic organisms. PMID:10366510

  8. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    PubMed

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. PMID:26221781

  9. Isocitrate Dehydrogenase and Glutamate Synthesis in Acetobacter suboxydans1

    PubMed Central

    Greenfield, Seymour; Claus, G. W.

    1969-01-01

    Acetobacter suboxydans is an obligate aerobe for which an operative tricarboxylic acid cycle has not been demonstrated. Glutamate synthesis has been reported to occur by mechanisms other than those utilizing isocitrate dehydrogenase, a tricarboxylic acid cycle enzyme not previously detected in this organism. We have recovered α-ketoglutarate and glutamate from a system containing citrate, nicotinamide adenine dinucleotide (NAD), a divalent cation, pyridoxal phosphate, an amino donor, and dialyzed, cell-free extract. Aconitase activity was readily detected in these extracts, but isocitrate dehydrogenase activity, measured by NAD reduction, was masked by a cyanide-resistant, particulate, reduced NAD oxidase. Isocitrate dehydrogenase activity could be demonstrated after centrifuging the extracts at 150,000 × g for 3 hr and treating the supernatant fluid with 2-heptyl-4-hydroxyquinoline N-oxide. It is concluded that A. suboxydans can utilize the conventional tricarboxylic acid cycle enzymes to convert citrate to α-ketoglutarate which can then undergo a transamination to glutamate. Images PMID:5361215

  10. A membrane-bound form of glutamate dehydrogenase possesses an ATP-dependent high-affinity microtubule-binding activity.

    PubMed Central

    Rajas, F; Rousset, B

    1993-01-01

    We previously identified a 50 kDa membrane protein which bound to in vitro assembled microtubules [Mithieux and Rousset (1989) J. Biol. Chem. 264, 4664-4668]. This protein exhibited the expected properties for mediating the ATP-dependent association of vesicles with microtubules [Mithieux, Audebet and Rousset (1988) Biochim. Biophys. Acta 969, 121-130]. The 50 kDa membrane protein (MP50), initially extracted in very low amount from isolated pig thyroid lysosomes/endosomes, has now been purified from membrane preparations of crude vesicle fractions from pig liver and brain. MP50 was isolated from detergent-solubilized membrane protein by affinity chromatography on immobilized ATP; 3-5 mg of MP50 was obtained from 100 g of liver tissue. Phase partitioning in Triton X-114 indicated that MP50 is a peripheral membrane protein. Radioiodinated liver MP50 bound to microtubules assembled in vitro. The binding was inhibited by ATP (Ki = 0.76 mM) and displaced by unlabelled liver or brain MP50. Equilibrium binding studies yielded KD values of 1.8 x 10(-7) M. By N-terminal amino acid sequence analysis, MP50 was identified as glutamate dehydrogenase (GDH), by comparison of V8 protease peptide maps of MP50 with purified liver GDH. Liver MP50 exhibited a low GDH activity; 4-5 units/mg compared with 18 and 34 units/mg for purified bovine and rat liver GDH respectively. Bovine and rat liver GDH yielded six spots from pI 5.7 to 7.2 when analysed by two-dimensional electrophoresis; in contrast, MP50 gave one main spot (corresponding to spot 2 of liver GDH) with a pI of approx. 6.5. Soluble liver GDH from commercial sources exhibited a very low or no microtubule-binding activity. In conclusion, we have found a membrane-bound form of GDH capable of specific and nucleotide-sensitive interaction with microtubules. Our data suggest that GDH isoproteins, the number of which has been undervalued up to now, could have cellular functions other than that of an enzyme. Images Figure 1 Figure 3

  11. Crystal structure of a chimaeric bacterial glutamate dehydrogenase.

    PubMed

    Oliveira, Tânia; Sharkey, Michael A; Engel, Paul C; Khan, Amir R

    2016-06-01

    Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)(+) as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD(+) versus NADP(+), but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase from Clostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia coli enzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP(+) cofactor from the parent E. coli domain II, although there are subtle differences in catalytic activity. PMID:27303899

  12. Glutamate dehydrogenase: genetic mapping and isolation of regulatory mutants of Klebsiella aerogenes.

    PubMed Central

    Bender, R A; Macaluso, A; Magasanik, B

    1976-01-01

    The gene for glutamate dehydrogenase (gdhD) has been mapped in Klebsiella aerogenes by P1 transduction. It is linked to pyrF and trp with the order pyrF-trp-gdh. Complementation analysis using F' episomes from Escherichia coli suggests an analogous location in E. coli. Two mutants able to produce glutamate dehydrogenase in the presence of high levels of glutamine synthetase have been isolated. One, tightly linked to gdhD, shows normal repression control by glutamine synthetase but produces four times as much glutamate dehydrogenase activity as does the wild type under all conditions tested. The other revertant is not linked to gdhD or glnA. PMID:6429

  13. The asymmetric distribution of enzymic activity between the six subunits of bovine liver glutamate dehydrogenase. Use of D- and L-glutamyl alpha-chloromethyl ketones (4-amino-6-chloro-5-oxohexanoic acid.

    PubMed Central

    Rasool, C G; Nicolaidis, S; Akhtar, M

    1976-01-01

    A method for the preparation of D- and L-glutamyl alpha-chloromethyl ketones (4-amino-6-chloro-5-oxohexanoic acid) is described. These chloromethyl ketones irreversibly inactivated bovine glutamate dehydrogenase, whereas several other related compounds had no adverse effect on the activity of the enzyme. The inactivation process was shown to be due to the modification of lysine-126. The time-courses for the inactivation and the incorporation of radioactivity from tritiated L-glutamyl alpha-chloromethyl ketone into the glutamate dehydrogenase were biphasic. The results were interpreted to suggest the involvement of 'negative co-operative' interactions in the reactivity of lysine-126. From the cumulative evidence it is argued that the first subunit of the enzyme, which takes part in catalysis, makes the largest, and the last the smallest, contribution to the overall catalysis. It is emphasized that three of the six subunits of the enzyme may possess as much as 80% of the total activity of bovine glutamate dehydrogenase. PMID:10889

  14. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase.

    PubMed

    Li, Changhong; Allen, Aron; Kwagh, Jae; Doliba, Nicolai M; Qin, Wei; Najafi, Habiba; Collins, Heather W; Matschinsky, Franz M; Stanley, Charles A; Smith, Thomas J

    2006-04-14

    Insulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP. Here we report the effects of green tea polyphenols on GDH and insulin secretion. Of the four compounds tested, epigallocatechin gallate (EGCG) and epicatechin gallate were found to inhibit GDH with nanomolar ED(50) values and were therefore found to be as potent as the physiologically important inhibitor GTP. Furthermore, we have demonstrated that EGCG inhibits BCH-stimulated insulin secretion, a process that is mediated by GDH, under conditions where GDH is no longer inhibited by high energy metabolites. EGCG does not affect glucose-stimulated insulin secretion under high energy conditions where GDH is probably fully inhibited. We have further shown that these compounds act in an allosteric manner independent of their antioxidant activity and that the beta-cell stimulatory effects are directly correlated with glutamine oxidation. These results demonstrate that EGCG, much like the activator of GDH (BCH), can facilitate dissecting the complex regulation of insulin secretion by pharmacologically modulating the effects of GDH. PMID:16476731

  15. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    PubMed

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. PMID:26073813

  16. The unique kinetic behavior of the very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum.

    PubMed

    Kawakami, Ryushi; Oyama, Masaki; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2010-01-01

    The kinetics of a very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum showed positive cooperativity toward alpha-ketoglutarate and NADH, and the Michaelis-Menten type toward ammonium chloride in the absence of the catalytic activator, L-aspartate. An increase in the maximum activity accompanied the decrease in the S(0.5) values for alpha-ketoglutarate and NADH with the addition of L-aspartate, and the kinetic response for alpha-ketoglutarate changed completely to a typical Michaelis-Menten type in the presence of 10 mM L-aspartate. PMID:20378971

  17. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth

    PubMed Central

    Jin, Lingtao; Li, Dan; Alesi, Gina N.; Fan, Jun; Kang, Hee-Bum; Lu, Zhou; Boggon, Titus J.; Jin, Peng; Yi, Hong; Wright, Elizabeth R.; Duong, Duc; Seyfried, Nicholas T.; Egnatchik, Robert; DeBerardinis, Ralph J.; Magliocca, Kelly R.; He, Chuan; Arellano, Martha L.; Khoury, Hanna J.; Shin, Dong M.; Khuri, Fadlo R.; Kang, Sumin

    2015-01-01

    SUMMARY How mitochondrial glutaminolysis contributes to redox homeostasis in cancer cells remains unclear. Here we report that the mitochondrial enzyme glutamate dehydrogenase 1 (GDH1) is commonly upregulated in human cancers. GDH1 is important for redox homeostasis in cancer cells by controlling the intracellular levels of its product alpha-ketoglutarate (α-KG) and subsequent metabolite fumarate. Mechanistically, fumarate binds to and activates a ROS scavenging enzyme glutathione peroxidase 1 (GPx1). Targeting GDH1 by shRNA or a small molecule inhibitor R162 resulted in imbalanced redox homeostasis, leading to attenuated cancer cell proliferation and tumor growth. PMID:25670081

  18. The NAD(P)H-utilizing glutamate dehydrogenase of Bacteroides thetaiotaomicron belongs to enzyme family I, and its activity is affected by trans-acting gene(s) positioned downstream of gdhA.

    PubMed Central

    Baggio, L; Morrison, M

    1996-01-01

    Previous studies have suggested that regulation of the enzymes of ammonia assimilation in human colonic Bacteroides species is coordinated differently than in other eubacteria. The gene encoding an NAD(P)H-dependent glutamate dehydrogenase (gdhA) in Bacteroides thetaiotaomicron was cloned and expressed in Escherichia coli by mutant complementation from the recombinant plasmid pANS100. Examination of the predicted GdhA amino acid sequence revealed that this enzyme possesses motifs typical of the family I-type hexameric GDH proteins. Northern blot analysis with a gdhA-specific probe indicated that a single transcript with an electrophoretic mobility of approximately 1.6 kb was produced in both B. thetaiotaomicron and E. coli gdhA+ transformants. Although gdhA transcription was unaffected, no GdhA enzyme activity could be detected in E. coli transformants when smaller DNA fragments from pANS100, which contained the entire gdhA gene, were analyzed. Enzyme activity was restored if these E. coli strains were cotransformed with a second plasmid, which contained a 3-kb segment of DNA located downstream of the gdhA coding region. Frameshift mutagenesis within the DNA downstream of gdhA in pANS100 also resulted in the loss of GdhA enzyme activity. Collectively, these results are interpreted as evidence for the role of an additional gene product(s) in modulating the activity of GDH enzyme activity. Insertional mutagenesis experiments which led to disruption of the gdhA gene on the B. thetaiotaomicron chromosome indicated that gdhA mutants were not glutamate auxotrophs, but attempts to isolate similar mutants with insertion mutations in the region downstream of the gdhA gene were unsuccessful. PMID:8955404

  19. Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate.

    PubMed

    Gholizadeh, Azam; Shahrokhian, Saeed; zad, Azam Iraji; Mohajerzadeh, Shamsoddin; Vosoughi, Manouchehr; Darbari, Sara; Sanaee, Zeinab

    2012-01-15

    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate. PMID:22040749

  20. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus

    PubMed Central

    Beaufay, François; Coppine, Jérôme; Mayard, Aurélie; Laloux, Géraldine; De Bolle, Xavier; Hallez, Régis

    2015-01-01

    Coupling cell cycle with nutrient availability is a crucial process for all living cells. But how bacteria control cell division according to metabolic supplies remains poorly understood. Here, we describe a molecular mechanism that coordinates central metabolism with cell division in the α-proteobacterium Caulobacter crescentus. This mechanism involves the NAD-dependent glutamate dehydrogenase GdhZ and the oxidoreductase-like KidO. While enzymatically active GdhZ directly interferes with FtsZ polymerization by stimulating its GTPase activity, KidO bound to NADH destabilizes lateral interactions between FtsZ protofilaments. Both GdhZ and KidO share the same regulatory network to concomitantly stimulate the rapid disassembly of the Z-ring, necessary for the subsequent release of progeny cells. Thus, this mechanism illustrates how proteins initially dedicated to metabolism coordinate cell cycle progression with nutrient availability. PMID:25953831

  1. The Role of Glutamine Oxoglutarate Aminotransferase and Glutamate Dehydrogenase in Nitrogen Metabolism in Mycobacterium bovis BCG

    PubMed Central

    Viljoen, Albertus J.; Kirsten, Catriona J.; Baker, Bienyameen; van Helden, Paul D.; Wiid, Ian J. F.

    2013-01-01

    Recent evidence suggests that the regulation of intracellular glutamate levels could play an important role in the ability of pathogenic slow-growing mycobacteria to grow in vivo. However, little is known about the in vitro requirement for the enzymes which catalyse glutamate production and degradation in the slow-growing mycobacteria, namely; glutamine oxoglutarate aminotransferase (GOGAT) and glutamate dehydrogenase (GDH), respectively. We report that allelic replacement of the Mycobacterium bovis BCG gltBD-operon encoding for the large (gltB) and small (gltD) subunits of GOGAT with a hygromycin resistance cassette resulted in glutamate auxotrophy and that deletion of the GDH encoding-gene (gdh) led to a marked growth deficiency in the presence of L-glutamate as a sole nitrogen source as well as reduction in growth when cultured in an excess of L-asparagine. PMID:24367660

  2. Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways.

    PubMed

    Hutson, Susan M; Islam, Mohammad Mainul; Zaganas, Ioannis

    2011-09-01

    Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5'-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5'-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations. PMID:21621574

  3. Using Cryo-EM to Map Small Ligands on Dynamic Metabolic Enzymes: Studies with Glutamate Dehydrogenase

    PubMed Central

    Borgnia, Mario J.; Banerjee, Soojay; Merk, Alan; Matthies, Doreen; Bartesaghi, Alberto; Rao, Prashant; Pierson, Jason; Earl, Lesley A.; Falconieri, Veronica

    2016-01-01

    Cryo-electron microscopy (cryo-EM) methods are now being used to determine structures at near-atomic resolution and have great promise in molecular pharmacology, especially in the context of mapping the binding of small-molecule ligands to protein complexes that display conformational flexibility. We illustrate this here using glutamate dehydrogenase (GDH), a 336-kDa metabolic enzyme that catalyzes the oxidative deamination of glutamate. Dysregulation of GDH leads to a variety of metabolic and neurologic disorders. Here, we report near-atomic resolution cryo-EM structures, at resolutions ranging from 3.2 Å to 3.6 Å for GDH complexes, including complexes for which crystal structures are not available. We show that the binding of the coenzyme NADH alone or in concert with GTP results in a binary mixture in which the enzyme is in either an “open” or “closed” state. Whereas the structure of NADH in the active site is similar between the open and closed states, it is unexpectedly different at the regulatory site. Our studies thus demonstrate that even in instances when there is considerable structural information available from X-ray crystallography, cryo-EM methods can provide useful complementary insights into regulatory mechanisms for dynamic protein complexes. PMID:27036132

  4. Using Cryo-EM to Map Small Ligands on Dynamic Metabolic Enzymes: Studies with Glutamate Dehydrogenase.

    PubMed

    Borgnia, Mario J; Banerjee, Soojay; Merk, Alan; Matthies, Doreen; Bartesaghi, Alberto; Rao, Prashant; Pierson, Jason; Earl, Lesley A; Falconieri, Veronica; Subramaniam, Sriram; Milne, Jacqueline L S

    2016-06-01

    Cryo-electron microscopy (cryo-EM) methods are now being used to determine structures at near-atomic resolution and have great promise in molecular pharmacology, especially in the context of mapping the binding of small-molecule ligands to protein complexes that display conformational flexibility. We illustrate this here using glutamate dehydrogenase (GDH), a 336-kDa metabolic enzyme that catalyzes the oxidative deamination of glutamate. Dysregulation of GDH leads to a variety of metabolic and neurologic disorders. Here, we report near-atomic resolution cryo-EM structures, at resolutions ranging from 3.2 Å to 3.6 Å for GDH complexes, including complexes for which crystal structures are not available. We show that the binding of the coenzyme NADH alone or in concert with GTP results in a binary mixture in which the enzyme is in either an "open" or "closed" state. Whereas the structure of NADH in the active site is similar between the open and closed states, it is unexpectedly different at the regulatory site. Our studies thus demonstrate that even in instances when there is considerable structural information available from X-ray crystallography, cryo-EM methods can provide useful complementary insights into regulatory mechanisms for dynamic protein complexes. PMID:27036132

  5. Importance of Glutamate Dehydrogenase (GDH) in Clostridium difficile Colonization In Vivo

    PubMed Central

    Girinathan, Brintha Parasumanna; Braun, Sterling; Sirigireddy, Apoorva Reddy; Lopez, Jose Espinola; Govind, Revathi

    2016-01-01

    Clostridium difficile is the principal cause of antibiotic-associated diarrhea. Major metabolic requirements for colonization and expansion of C. difficile after microbiota disturbance have not been fully determined. In this study, we show that glutamate utilization is important for C. difficile to establish itself in the animal gut. When the gluD gene, which codes for glutamate dehydrogenase (GDH), was disrupted, the mutant C. difficile was unable to colonize and cause disease in a hamster model. Further, from the complementation experiment it appears that extracellular GDH may be playing a role in promoting C. difficile colonization and disease progression. Quantification of free amino acids in the hamster gut during C. difficile infection showed that glutamate is among preferred amino acids utilized by C. difficile during its expansion. This study provides evidence of the importance of glutamate metabolism for C. difficile pathogenesis. PMID:27467167

  6. Biochemical characterization of two glutamate dehydrogenases with different cofactor specificities from a hyperthermophilic archaeon Pyrobaculum calidifontis.

    PubMed

    Wakamatsu, Taisuke; Higashi, Chisato; Ohmori, Taketo; Doi, Katsumi; Ohshima, Toshihisa

    2013-05-01

    Two putative glutamate dehydrogenase (GDH) genes (pcal_1031 and pcal_1606) were found in a sulfur-dependent hyperthermophilic archaeon, Pyrobaculum calidifontis. The two genes were then expressed in Escherichia coli, and both of the recombinant gene products showed GDH activity. The two enzymes were then purified to homogeneity and characterized in detail. Although both purified GDHs had a hexameric structure and neither exhibited allosteric regulation, they showed different coenzyme specificities: one was specific for NAD(+), the other for NADP(+) and different heat activation mechanisms. In addition, there was little difference in the kinetic constants, optimal temperature, thermal stability, optimal pH and pH stability between the two enzymes. The overall sequence identity between the two proteins was very high (81%), but was not high in the region recognizing the 2' position of the adenine ribose moiety, which is responsible for coenzyme specificity. This is the first report on the identification of two GDHs with different coenzyme specificities from a single hyperthermophilic archaeon and the definition of their basic in vitro properties. PMID:23508687

  7. Structure of NADP+-dependent glutamate dehydrogenase from Escherichia coli - reflections on the basis of coenzyme specificity in the family of glutamate dehydrogenases

    SciTech Connect

    Sharkey, Michael A.; Oliveira, Tânia F.; Engel, Paul C.; Khan, Amir R.

    2013-09-05

    Glutamate dehydrogenases catalyse the oxidative deamination of L-glutamate to α-ketoglutarate, using NAD+ and/or NADP+ as a cofactor. Subunits of homo-hexameric bacterial enzymes comprise a substrate-binding domain I followed by a nucleotide-binding domain II. The reaction occurs in a catalytic cleft between the two domains. Although conserved residues in the nucleotide-binding domains of various dehydrogenases have been linked to cofactor preferences, the structural basis for specificity in the GDH family remains poorly understood. Here, the refined crystal structure of Escherichia coli GDH in the absence of reactants is described at 2.5-Å resolution. Modelling of NADP+ in domain II reveals the potential contribution of positively charged residues from a neighbouring α-helical hairpin to phosphate recognition. In addition, a serine that follows the P7 aspartate is presumed to form a hydrogen bond with the 2'-phosphate. Mutagenesis and kinetic analysis confirms the importance of these residues in NADP+ recognition. Surprisingly, one of the positively charged residues is conserved in all sequences of NAD+-dependent enzymes, but the conformations adopted by the corresponding regions in proteins whose structure has been solved preclude their contribution to the coordination of the 2'-ribose phosphate of NADP+. These studies clarify the sequence–structure relationships in bacterial GDHs, revealing that identical residues may specify different coenzyme preferences, depending on the structural context. Primary sequence alone is therefore not a reliable guide for predicting coenzyme specificity. We also consider how it is possible for a single sequence to accommodate both coenzymes in the dual-specificity GDHs of animals.

  8. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations.

    PubMed Central

    Fang, Jie; Hsu, Betty Y L; MacMullen, Courtney M; Poncz, Mortimer; Smith, Thomas J; Stanley, Charles A

    2002-01-01

    Glutamate dehydrogenase (GDH) catalyses the reversible oxidative deamination of l-glutamate to 2-oxoglutarate in the mitochondrial matrix. In mammals, this enzyme is highly regulated by allosteric effectors. The major allosteric activator and inhibitor are ADP and GTP, respectively; allosteric activation by leucine may play an important role in amino acid-stimulated insulin secretion. The physiological significance of this regulation has been highlighted by the identification of children with an unusual hyperinsulinism/hyperammonaemia syndrome associated with dominant mutations in GDH that cause a loss in GTP inhibition. In order to determine the effects of these mutations on the function of the human GDH homohexamer, we studied the expression, purification and characterization of two of these regulatory mutations (H454Y, which affects the putative GTP-binding site, and S448P, which affects the antenna region) and a mutation designed to alter the putative binding site for ADP (R463A). The sensitivity to GTP inhibition was impaired markedly in the purified H454Y (ED(50), 210 microM) and S448P (ED(50), 3.1 microM) human GDH mutants compared with the wild-type human GDH (ED(50), 42 nM) or GDH isolated from heterozygous patient cells (ED(50), 290 and 280 nM, respectively). Sensitivity to ADP or leucine stimulation was unaffected by these mutations, confirming that they interfere specifically with the inhibitory GTP-binding site. Conversely, the R463A mutation completely eliminated ADP activation of human GDH, but had little effect on either GTP inhibition or leucine activation. The effects of these three mutations on ATP regulation indicated that this nucleotide inhibits human GDH through binding of its triphosphate tail to the GTP site and, at higher concentrations, activates the enzyme through binding of the nucleotide to the ADP site. These data confirm the assignment of the GTP and ADP allosteric regulatory sites on GDH based on X-ray crystallography and provide

  9. Single motoneuron succinate dehydrogenase activity.

    PubMed

    Chalmers, G R; Edgerton, V R

    1989-07-01

    We have developed a quantitative histochemical assay for measurement of succinate dehydrogenase (SDH) activity in single motoneurons. A computer image processing system was used to quantify the histochemical enzyme reaction product and to follow the time course of the reaction. The optimal concentration for each of the ingredients of the incubation medium for the SDH reaction was determined and the importance of using histochemical "blanks" in the determination of enzymatic activity was demonstrated. The enzymatic activity was linear with respect to reaction time and tissue thickness. The procedure described meets the criteria generally considered essential for establishment of a quantitative histochemical assay. The assay was then used to examine the SDH activity of cat and rat motoneurons. It was found that motoneurons with a small soma size had a wide range of SDH activity, whereas those with a large soma size were restricted to low SDH activity. PMID:2732457

  10. Reduced levels of NADH-dependent glutamate dehydrogenase decrease the glutamate content of ripe tomato fruit but have no effect on green fruit or leaves.

    PubMed

    Ferraro, Gisela; D'Angelo, Matilde; Sulpice, Ronan; Stitt, Mark; Valle, Estela M

    2015-06-01

    Glutamate (Glu) is a taste enhancer that contributes to the characteristic flavour of foods. In fruit of tomato (Solanum lycopersicum L.), the Glu content increases dramatically during the ripening process, becoming the most abundant free amino acid when the fruit become red. There is also a concomitant increase in NADH-dependent glutamate dehydrogenase (GDH) activity during the ripening transition. This enzyme is located in the mitochondria and catalyses the reversible amination of 2-oxoglutarate to Glu. To investigate the potential effect of GDH on Glu metabolism, the abundance of GDH was altered by artificial microRNA technology. Efficient silencing of all the endogenous SlGDH genes was achieved, leading to a dramatic decrease in total GDH activity. This decrease in GDH activity did not lead to any clear morphological or metabolic phenotype in leaves or green fruit. However, red fruit on the transgenic plants showed markedly reduced levels of Glu and a large increase in aspartate, glucose and fructose content in comparison to wild-type fruit. These results suggest that GDH is involved in the synthesis of Glu in tomato fruit during the ripening processes. This contrasts with the biological role ascribed to GDH in many other tissues and species. Overall, these findings suggest that GDH has a major effect on the control of metabolic composition during tomato fruit ripening, but not at other stages of development. PMID:25878356

  11. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH).

    PubMed

    Diab, Houssein; Limami, Anis M

    2016-01-01

    In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants' growth and yield-even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD⁺ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. PMID:27258319

  12. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH)

    PubMed Central

    Diab, Houssein; Limami, Anis M.

    2016-01-01

    In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. PMID:27258319

  13. The Role of Glutamine Synthetase and Glutamate Dehydrogenase in Cerebral Ammonia Homeostasis

    PubMed Central

    Cooper, Arthur J. L.

    2012-01-01

    In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: L-Aspartate + GTP + H2O → Fumarate + GDP + Pi + NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research. PMID:22618691

  14. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  15. Identification of catalytic residues of a very large NAD-glutamate dehydrogenase from Janthinobacterium lividum by site-directed mutagenesis.

    PubMed

    Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2014-01-01

    We previously found a very large NAD-dependent glutamate dehydrogenase with approximately 170 kDa subunit from Janthinobacterium lividum (Jl-GDH) and predicted that GDH reaction occurred in the central domain of the subunit. To gain further insights into the role of the central domain, several single point mutations were introduced. The enzyme activity was completely lost in all single mutants of R784A, K810A, K820A, D885A, and S1142A. Because, in sequence alignment analysis, these residues corresponded to the residues responsible for glutamate binding in well-known small GDH with approximately 50 kDa subunit, very large GDH and well-known small GDH may share the same catalytic mechanism. In addition, we demonstrated that C1141, one of the three cysteine residues in the central domain, was responsible for the inhibition of enzyme activity by HgCl2, and HgCl2 functioned as an activating compound for a C1141T mutant. At low concentrations, moreover, HgCl2 was found to function as an activating compound for a wild-type Jl-GDH. This suggests that the mechanism for the activation is entirely different from that for the inhibition. PMID:25126984

  16. Glutamate Dehydrogenase Is Required by Mycobacterium bovis BCG for Resistance to Cellular Stress

    PubMed Central

    Gallant, James L.; Viljoen, Albertus J.; van Helden, Paul D.; Wiid, Ian J. F.

    2016-01-01

    We recently reported on our success to generate deletion mutants of the genes encoding glutamate dehydrogenase (GDH) and glutamine oxoglutarate aminotransferase (GOGAT) in M. bovis BCG, despite their in vitro essentiality in M. tuberculosis. We could use these mutants to delineate the roles of GDH and GOGAT in mycobacterial nitrogen metabolism by using M. bovis BCG as a model for M. tuberculosis specifically. Here, we extended our investigation towards the involvement of GDH and GOGAT in other aspects of M. bovis BCG physiology, including the use of glutamate as a carbon source and resistance to known phagosomal stresses, as well as in survival inside macrophages. We find that gdh is indispensable for the utilization of glutamate as a major carbon source, in low pH environments and when challenged with nitric oxide. On the other hand, the gltBD mutant had increased viability under low pH conditions and was unaffected by a challenge with nitric oxide. Strikingly, GDH was required to sustain M. bovis BCG during infection of both murine RAW 264.7 and bone-marrow derived and macrophages, while GOGAT was not. We conclude that the catabolism of glutamate in slow growing mycobacteria may be a crucial function during infection of macrophage cells and demonstrate a novel requirement for M. bovis BCG GDH in the protection against acidic and nitrosative stress. These results provide strong clues on the role of GDH in intracellular survival of M. tuberculosis, in which the essentiality of the gdh gene complicates knock out studies making the study of the role of this enzyme in pathogenesis difficult. PMID:26824899

  17. Transgenic Expression of Glud1 (Glutamate Dehydrogenase 1) in Neurons: In Vivo Model of Enhanced Glutamate Release, Altered Synaptic Plasticity, and Selective Neuronal Vulnerability

    PubMed Central

    Bao, Xiaodong; Pal, Ranu; Hascup, Kevin N.; Wang, Yongfu; Wang, Wen-Tung; Xu, Wenhao; Hui, Dongwei; Agbas, Abdulbaki; Wang, Xinkun; Michaelis, Mary L.; Choi, In-Young; Belousov, Andrei B.; Gerhardt, Greg A.; Michaelis, Elias K.

    2010-01-01

    The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes. PMID:19890003

  18. Clostridium difficile glutamate dehydrogenase is a secreted enzyme that confers resistance to H2O2

    PubMed Central

    Girinathan, Brintha Prasummanna; Braun, Sterling E.

    2014-01-01

    Clostridium difficile produces an NAD-specific glutamate dehydrogenase (GDH), which converts l-glutamate into α-ketoglutarate through an irreversible reaction. The enzyme GDH is detected in the stool samples of patients with C. difficile-associated disease and serves as one of the diagnostic tools to detect C. difficile infection (CDI). We demonstrate here that supernatant fluids of C. difficile cultures contain GDH. To understand the role of GDH in the physiology of C. difficile, an isogenic insertional mutant of gluD was created in strain JIR8094. The mutant failed to produce and secrete GDH as shown by Western blot analysis. Various phenotypic assays were performed to understand the importance of GDH in C. difficile physiology. In TY (tryptose yeast extract) medium, the gluD mutant grew slower than the parent strain. Complementation of the gluD mutant with the functional gluD gene reversed the growth defect in TY medium. The presence of extracellular GDH may have a functional role in the pathogenesis of CDI. In support of this assumption we found higher sensitivity to H2O2 in the gluD mutant as compared to the parent strain. Complementation of the gluD mutant with the functional gluD gene reversed the H2O2 sensitivity. PMID:24145018

  19. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    SciTech Connect

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  20. Pivotal Enzyme in Glutamate Metabolism of Poly-γ-Glutamate-Producing Microbes

    PubMed Central

    Ashiuchi, Makoto; Yamamoto, Takashi; Kamei, Tohru

    2013-01-01

    The extremely halophilic archaeon Natrialba aegyptiaca secretes the L-homo type of poly-γ-glutamate (PGA) as an extremolyte. We examined the enzymes involved in glutamate metabolism and verified the presence of L-glutamate dehydrogenases, L-aspartate aminotransferase, and L-glutamate synthase. However, neither glutamate racemase nor D-amino acid aminotransferase activity was detected, suggesting the absence of sources of D-glutamate. In contrast, D-glutamate-rich PGA producers mostly possess such intracellular sources of D-glutamate. The results of our present study indicate that the D-glutamate-anabolic enzyme “glutamate racemase” is pivotal in the biosynthesis of PGA. PMID:25371338

  1. NAD(+)-specific glutamate dehydrogenase (EC.1.4.1.2) in Streptomyces coelicolor; in vivo characterization and the implication for nutrient-dependent secondary metabolism.

    PubMed

    Kim, Songhee H; Kim, Byung-Gee

    2016-06-01

    While glutamate and glutamate-rich compounds are widely used for culturing Streptomyces sp., little is known regarding glutamate catabolism at molecular level. Noting the presence of two distinct putative glutamate dehydrogenases (GDH), we constructed knockout mutants of each gene with Streptomyces coelicolor M145 and examined the functionality related to antibiotic production. Out of the two, the sco2999 knockout (ΔgdhB, NAD(+)-specific) showed outstanding effects; it decreased the growth sevenfold but initiated the undecylprodigiosin (RED) production in complex Difco nutrient media which otherwise does not support the production from M145. With glucose supplementation, the growth difference by ΔgdhB disappeared but we could obtain significantly increased actinorhodin (ACT) and RED biosynthesis with the mutant by limiting the glucose content (0.5∼1.0 %, w/v). Complementing the gene to the knockout mutant inhibited the production, confirming its gene specificity. Along with the extended impacts on overall nitrogen metabolism based on the intracellular metabolite analysis and enzyme assays, GdhB and glutamate utilization were shown to interfere with N-acetylglucosamine metabolism and the activity of its associated global transcriptional regulator (DasR). Taken together, GdhB-subjected to the nutritional context-dependent regulation-is proposed as a key member of central nitrogen metabolism to control the secondary metabolism initiation in exploiting the organic nitrogen sources. PMID:26969038

  2. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    PubMed Central

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  3. Chitosan promotes immune responses, ameliorates glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, but enhances lactate dehydrogenase levels in normal mice in vivo

    PubMed Central

    YEH, MING-YANG; SHIH, YUNG-LUEN; CHUNG, HSUEH-YU; CHOU, JASON; LU, HSU-FENG; LIU, CHIA-HUI; LIU, JIA-YOU; HUANG, WEN-WEN; PENG, SHU-FEN; WU, LUNG-YUAN; CHUNG, JING-GUNG

    2016-01-01

    Chitosan, a naturally derived polymer, has been shown to possess antimicrobial and anti-inflammatory properties; however, little is known about the effect of chitosan on the immune responses and glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) activities in normal mice. The aim of the present study was to investigate whether chitosan has an effect on the immune responses and GOT, GPT and LDH activities in mice in vivo. BALB/c mice were divided into four groups. The negative control group was treated with a normal diet; the positive control group was treated with a normal diet plus orally administered acetic acid and two treatment groups were treated with a normal diet plus orally administered chitosan in acetic acid at doses of 5 and 20 mg/kg, respectively, every other day for 24 days. Mice were weighed during the treatment, and following the treatment, blood was collected, and liver and spleen samples were isolated and weighted. The blood samples were used for measurement of white blood cell markers, and the spleen samples were used for analysis of phagocytosis, natural killer (NK) cell activity and cell proliferation using flow cytometry. The results indicated that chitosan did not markedly affect the body, liver and spleen weights at either dose. Chitosan increased the percentages of CD3 (T-cell marker), CD19 (B-cell marker), CD11b (monocytes) and Mac-3 (macrophages) when compared with the control group. However, chitosan did not affect the phagocytic activity of macrophages in peripheral blood mononuclear cells, although it decreased it in the peritoneal cavity. Treatment with 20 mg/kg chitosan led to a reduction in the cytotoxic activity of NK cells at an effector to target ratio of 25:1. Chitosan did not significantly promote B-cell proliferation in lipopolysaccharide-pretreated cells, but significantly decreased T-cell proliferation in concanavalin A-pretreated cells, and decreased the activity of

  4. Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum.

    PubMed

    Pérez-Pomares, F; Ferrer, J; Camacho, M; Pire, C; LLorca, F; Bonete, M J

    1999-02-01

    The pH dependence of kinetic parameters for a competitive inhibitor (glutarate) was determined in order to obtain information on the chemical mechanism for NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. The maximum velocity is pH dependent, decreasing at low pHs giving a pK value of 7.19+/-0.13, while the V/K for l-glutamate at 30 degrees C decreases at low and high pHs, yielding pK values of 7.9+/-0.2 and 9.8+/-0.2, respectively. The glutarate pKis profile decreases at high pHs, yielding a pK of 9. 59+/-0.09 at 30 degrees C. The values of ionization heat calculated from the change in pK with temperature are: 1.19 x 10(4), 5.7 x 10(3), 7 x 10(3), 6.6 x 10(3) cal mol-1, for the residues involved. All these data suggest that the groups required for catalysis and/or binding are lysine, histidine and tyrosine. The enzyme shows a time-dependent loss in glutamate oxidation activity when incubated with diethyl pyrocarbonate (DEPC). Inactivation follows pseudo-first-order kinetics with a second-order rate constant of 53 M-1min-1. The pKa of the titratable group was pK1=6.6+/-0.6. Inactivation with ethyl acetimidate also shows pseudo-first-order kinetics as well as inactivation with TNM yielding second-order constants of 1.2 M-1min-1 and 2.8 M-1min-1, and pKas of 8.36 and 9.0, respectively. The proposed mechanism involves hydrogen binding of each of the two carboxylic groups to tyrosyl residues; histidine interacts with one of the N-hydrogens of the l-glutamate amino group. We also corroborate the presence of a conservative lysine that has a remarkable ability to coordinate a water molecule that would act as general base. PMID:10076069

  5. A novel mechanism of V-type zinc inhibition of glutamate dehydrogenase results from disruption of subunit interactions necessary for efficient catalysis.

    PubMed

    Bailey, Jaclyn; Powell, Lakeila; Sinanan, Leander; Neal, Jacob; Li, Ming; Smith, Thomas; Bell, Ellis

    2011-09-01

    Bovine glutamate dehydrogenase is potently inhibited by zinc and the major impact is on V(max) suggesting a V-type effect on catalysis or product release. Zinc inhibition decreases as glutamate concentrations decrease suggesting a role for subunit interactions. With the monocarboxylic amino acid norvaline, which gives no evidence of subunit interactions, zinc does not inhibit. Zinc significantly decreases the size of the pre-steady state burst in the reaction but does not affect NADPH binding in the enzyme-NADPH-glutamate complex that governs the steady state turnover, again suggesting that zinc disrupts subunit interactions required for catalytic competence. While differential scanning calorimetry suggests zinc binds and induces a slightly conformationally more rigid state of the protein, limited proteolysis indicates that regions in the vicinity of the antennae regions and the trimer-trimer interface become more flexible. The structures of glutamate dehydrogenase bound with zinc and europium show that zinc binds between the three dimers of subunits in the hexamer, a region shown to bind novel inhibitors that block catalytic turnover, which is consistent with the above findings. In contrast, europium binds to the base of the antenna region and appears to abrogate the inhibitory effect of zinc. Structures of various states of the enzyme have shown that both regions are heavily involved in the conformational changes associated with catalytic turnover. These results suggest that the V-type inhibition produced with glutamate as the substrate results from disruption of subunit interactions necessary for efficient catalysis rather than by a direct effect on the active site conformation. PMID:21749647

  6. E1 of α-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress

    PubMed Central

    Maksymiuk, Christina; Balakrishnan, Anand; Bryk, Ruslana; Rhee, Kyu Y.; Nathan, Carl F.

    2015-01-01

    Enzymes of central carbon metabolism (CCM) in Mycobacterium tuberculosis (Mtb) make an important contribution to the pathogen’s virulence. Evidence is emerging that some of these enzymes are not simply playing the metabolic roles for which they are annotated, but can protect the pathogen via additional functions. Here, we found that deficiency of 2-hydroxy-3-oxoadipate synthase (HOAS), the E1 component of the α-ketoglutarate (α-KG) dehydrogenase complex (KDHC), did not lead to general metabolic perturbation or growth impairment of Mtb, but only to the specific inability to cope with glutamate anaplerosis and nitroxidative stress. In the former role, HOAS acts to prevent accumulation of aldehydes, including growth-inhibitory succinate semialdehyde (SSA). In the latter role, HOAS can participate in an alternative four-component peroxidase system, HOAS/dihydrolipoyl acetyl transferase (DlaT)/alkylhydroperoxide reductase colorless subunit gene (ahpC)-neighboring subunit (AhpD)/AhpC, using α-KG as a previously undescribed source of electrons for reductase action. Thus, instead of a canonical role in CCM, the E1 component of Mtb’s KDHC serves key roles in situational defense that contribute to its requirement for virulence in the host. We also show that pyruvate decarboxylase (AceE), the E1 component of pyruvate dehydrogenase (PDHC), can participate in AceE/DlaT/AhpD/AhpC, using pyruvate as a source of electrons for reductase action. Identification of these systems leads us to suggest that Mtb can recruit components of its CCM for reactive nitrogen defense using central carbon metabolites. PMID:26430237

  7. A plastidial localization and origin of L-glutamate dehydrogenase in a soybean cell culture. [Glycine max

    SciTech Connect

    Bhadula, S.K.; Shargool, P.D. )

    1991-01-01

    The subcellular distribution of L-glutamate dehydrogenase (GDH, EC 1.4.1.3.) was studied in SB3 soybean (Glycine max) cells using subcellular fractionation techniques. Compounds that inhibit protein synthesis either on 80s or 70s ribosomes were also used to give a preliminary idea of which subcellular fraction is involved in GDH synthesis. It was found that whereas cycloheximide and puromycin considerably reduced the total amount of protein synthesized by the cells, they did not appear to inhibit the synthesis of GDH. In the presence of chloramphenicol, both GDH activity and protein level in the cells were considerably reduced, suggesting that this enzyme was synthesized in organelles and not in the cytosol. Streptomycin, which inhibits plastid protein synthesis, also inhibited synthesis of GDH, indicating that a fraction of GDH activity was plastidial in origin. This is supported by the data on subcellular distribution of the enzyme, which showed that a major fraction of GDH is found in the plastidial fraction, although some activity is found associated with the mitochondrial fraction also. Since a major fraction of GDH activity was found in the plastidial fraction, the authors studied protein synthesis using isolated plastids and {sup 35}S-methionine. Using antibodies raised against purified GDH, they identified a {sup 35}S-labeled 41-kilodalton polypeptide synthesized by plastids as GDH.

  8. Diagnostic test accuracy of glutamate dehydrogenase for Clostridium difficile: Systematic review and meta-analysis

    PubMed Central

    Arimoto, Jun; Horita, Nobuyuki; Kato, Shingo; Fuyuki, Akiko; Higurashi, Takuma; Ohkubo, Hidenori; Endo, Hiroki; Takashi, Nonaka; Kaneko, Takeshi; Nakajima, Atsushi

    2016-01-01

    We performed this systematic review and meta-analysis to assess the diagnostic accuracy of detecting glutamate dehydrogenase (GDH) for Clostridium difficile infection (CDI) based on the hierarchical model. Two investigators electrically searched four databases. Reference tests were stool cell cytotoxicity neutralization assay (CCNA) and stool toxigenic culture (TC). To assess the overall accuracy, we calculated the diagnostic odds ratio (DOR) using a DerSimonian-Laird random-model and area the under hierarchical summary receiver operating characteristics (AUC) using Holling’s proportional hazard models. The summary estimate of the sensitivity and the specificity were obtained using the bivariate model. According to 42 reports consisting of 3055 reference positive comparisons, and 26188 reference negative comparisons, the DOR was 115 (95%CI: 77–172, I2 = 12.0%) and the AUC was 0.970 (95%CI: 0.958–0.982). The summary estimate of sensitivity and specificity were 0.911 (95%CI: 0.871–0.940) and 0.912 (95%CI: 0.892–0.928). The positive and negative likelihood ratios were 10.4 (95%CI 8.4–12.7) and 0.098 (95%CI 0.066–0.142), respectively. Detecting GDH for the diagnosis of CDI had both high sensitivity and specificity. Considering its low cost and prevalence, it is appropriate for a screening test for CDI. PMID:27418431

  9. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  10. Diagnostic test accuracy of glutamate dehydrogenase for Clostridium difficile: Systematic review and meta-analysis.

    PubMed

    Arimoto, Jun; Horita, Nobuyuki; Kato, Shingo; Fuyuki, Akiko; Higurashi, Takuma; Ohkubo, Hidenori; Endo, Hiroki; Takashi, Nonaka; Kaneko, Takeshi; Nakajima, Atsushi

    2016-01-01

    We performed this systematic review and meta-analysis to assess the diagnostic accuracy of detecting glutamate dehydrogenase (GDH) for Clostridium difficile infection (CDI) based on the hierarchical model. Two investigators electrically searched four databases. Reference tests were stool cell cytotoxicity neutralization assay (CCNA) and stool toxigenic culture (TC). To assess the overall accuracy, we calculated the diagnostic odds ratio (DOR) using a DerSimonian-Laird random-model and area the under hierarchical summary receiver operating characteristics (AUC) using Holling's proportional hazard models. The summary estimate of the sensitivity and the specificity were obtained using the bivariate model. According to 42 reports consisting of 3055 reference positive comparisons, and 26188 reference negative comparisons, the DOR was 115 (95%CI: 77-172, I(2) = 12.0%) and the AUC was 0.970 (95%CI: 0.958-0.982). The summary estimate of sensitivity and specificity were 0.911 (95%CI: 0.871-0.940) and 0.912 (95%CI: 0.892-0.928). The positive and negative likelihood ratios were 10.4 (95%CI 8.4-12.7) and 0.098 (95%CI 0.066-0.142), respectively. Detecting GDH for the diagnosis of CDI had both high sensitivity and specificity. Considering its low cost and prevalence, it is appropriate for a screening test for CDI. PMID:27418431

  11. Enzymic assay of creatinine in serum and urine with creatinine iminohydrolase and glutamate dehydrogenase.

    PubMed

    Tanganelli, E; Prencipe, L; Bassi, D; Cambiaghi, S; Murador, E

    1982-07-01

    We describe an assay for creatinine in which it is converted by creatinine iminohydrolase (EC 3.5.4.21) into ammonia and N-methylhydantoin. The ammonia is subsequently assayed by use of alpha-ketoglutarate and glutamate dehydrogenase (EC 1.4.1.3). Use of NADPH as coenzyme eliminates all interferences from endogenous reactions. Endogenous ammonia in the sample is eliminated during a preincubation. The reaction reaches the endpoint in 15 min at working temperatures of 20-37 degrees C. No sample blank or reagent blank is needed. The standard curve is linear at least to 884 mumol (100 mg) of creatinine per liter. Average analytical recovery of creatinine in serum and urine is 99%. Within-run and between-run CVs are less than or equal to 2% and less than or equal to 6% for creatinine values of 335 mumol/L (38 mg/L) and 80 mumol/L (0 mg/L), respectively. Results by the described method (y) compare well with those by Jaffé's kinetic test (y = 1.01x -- 12.8), Berthelot/AutoAnalyzer method after treatment with immobilized creatinine iminohydrolase (y = 0.987x -- 13.2), Jaffé's test run on the SMA 12/60 (y = 1.011x -- 5.8), the Wahlefeld method (y = 1.014x -- 0.88), and Jaffé's test after deproteinization and absorption on fuller's earth (y = 0.985x -- 3.08). The method may be suitable for discrete, including centrifugal, automation. PMID:7083556

  12. Activation Requirements for Metabotropic Glutamate Receptors

    PubMed Central

    Viaene, Angela N.; Petrof, Iraklis; Sherman, S. Murray

    2013-01-01

    It has been common experimentally to use high frequency, tetanic, stimulation to activate metabotropic glutamate receptors (mGluRs) in cortex and thalamus. To determine what type of stimulation is actually necessary to activate mGluRs we examined the effects of varying stimulation duration and intensity on activating mGluR responses. We used a thalamocortical and an intracortical slice preparation from mice and performed whole cell recordings from neurons in the ventral posterior medial nucleus or in layer 4 of primary somatosensory cortex (S1) while electrically stimulating in layer 6 of S1. Extracellular ionotropic glutamate receptor antagonists and GABAA receptor antagonists were used to isolate Group I or Group II mGluR responses. We observed that high frequency stimulation is not necessary for the activation of either Group I or Group II mGluRs. Either could be activated with as few as 2-3 pulses at stimulation frequencies around 15-20Hz. Additionally, increasing the number of pulses, intensity of stimulation, or stimulation frequency increased amplitude and duration of the mGluR response. PMID:23416319

  13. The NAD(P)H-dependent glutamate dehydrogenase activities of Prevotella ruminicola B(1)4 can be attributed to one enzyme (GdhA), and gdhA expression is regulated in response to the nitrogen source available for growth.

    PubMed Central

    Wen, Z; Morrison, M

    1996-01-01

    Prevotella ruminicola B(1)4 possesses both NADPH- and NADH-linked glutamate dehydrogenase (GDH) activities, with the greatest specific activity being measured from ammonia-limited cultures. Relative to cells grown in the presence of 1 mM ammonium chloride, the NADPH-dependent activity was decreased approximately 10-fold when peptides were provided as a nitrogen source. Nondenaturing polyacrylamide gel electrophoresis (PAGE) was used to visualize the GDH protein(s) in cell extracts of P. ruminicola. For all growth conditions tested, only one GDH protein was detectable, and its relative abundance, as well as its reactivity with either NAD(P)+ or NAD(P)H, correlated well with the specific activities measured from whole-cell assays. Consistent with the findings from enzyme assays and PAGE activity gels, Northern (RNA) blot analysis revealed that expression of a gene encoding NAD(P)H-GDH activity was greatest in ammonia-grown cultures and that GDH activity is regulated in response to nitrogen source (ammonia versus peptides), probably at the level of transcription. A gene encoding the NAD(P)H-utilizing GDH activity (gdhA) was cloned, and its nucleotide sequence was determined and shown to contain an open reading frame of 1,332 bp which would encode a polypeptide of 48.8 kDa. The deduced amino acid sequence possesses three highly conserved motifs typical of family I GDHs, but several unique amino acid substitutions within these motifs were evident. These results are discussed within the context of ruminal nitrogen metabolism and the growth efficiency of succinate- and propionate-producing anaerobic bacteria. PMID:8837439

  14. A high-frequency mutation in Bacillus subtilis: requirements for the decryptification of the gudB glutamate dehydrogenase gene.

    PubMed

    Gunka, Katrin; Tholen, Stefan; Gerwig, Jan; Herzberg, Christina; Stülke, Jörg; Commichau, Fabian M

    2012-03-01

    Common laboratory strains of Bacillus subtilis encode two glutamate dehydrogenases: the enzymatically active protein RocG and the cryptic enzyme GudB that is inactive due to a duplication of three amino acids in its active center. The inactivation of the rocG gene results in poor growth of the bacteria on complex media due to the accumulation of toxic intermediates. Therefore, rocG mutants readily acquire suppressor mutations that decryptify the gudB gene. This decryptification occurs by a precise deletion of one part of the 9-bp direct repeat that causes the amino acid duplication. This mutation occurs at the extremely high frequency of 10(-4). Mutations affecting the integrity of the direct repeat result in a strong reduction of the mutation frequency; however, the actual sequence of the repeat is not essential. The mutation frequency of gudB was not affected by the position of the gene on the chromosome. When the direct repeat was placed in the completely different context of an artificial promoter, the precise deletion of one part of the repeat was also observed, but the mutation frequency was reduced by 3 orders of magnitude. Thus, transcription of the gudB gene seems to be essential for the high frequency of the appearance of the gudB1 mutation. This idea is supported by the finding that the transcription-repair coupling factor Mfd is required for the decryptification of gudB. The Mfd-mediated coupling of transcription to mutagenesis might be a built-in precaution that facilitates the accumulation of mutations preferentially in transcribed genes. PMID:22178973

  15. A High-Frequency Mutation in Bacillus subtilis: Requirements for the Decryptification of the gudB Glutamate Dehydrogenase Gene

    PubMed Central

    Gunka, Katrin; Tholen, Stefan; Gerwig, Jan; Herzberg, Christina; Stülke, Jörg

    2012-01-01

    Common laboratory strains of Bacillus subtilis encode two glutamate dehydrogenases: the enzymatically active protein RocG and the cryptic enzyme GudB that is inactive due to a duplication of three amino acids in its active center. The inactivation of the rocG gene results in poor growth of the bacteria on complex media due to the accumulation of toxic intermediates. Therefore, rocG mutants readily acquire suppressor mutations that decryptify the gudB gene. This decryptification occurs by a precise deletion of one part of the 9-bp direct repeat that causes the amino acid duplication. This mutation occurs at the extremely high frequency of 10−4. Mutations affecting the integrity of the direct repeat result in a strong reduction of the mutation frequency; however, the actual sequence of the repeat is not essential. The mutation frequency of gudB was not affected by the position of the gene on the chromosome. When the direct repeat was placed in the completely different context of an artificial promoter, the precise deletion of one part of the repeat was also observed, but the mutation frequency was reduced by 3 orders of magnitude. Thus, transcription of the gudB gene seems to be essential for the high frequency of the appearance of the gudB1 mutation. This idea is supported by the finding that the transcription-repair coupling factor Mfd is required for the decryptification of gudB. The Mfd-mediated coupling of transcription to mutagenesis might be a built-in precaution that facilitates the accumulation of mutations preferentially in transcribed genes. PMID:22178973

  16. Resolving the Role of Plant Glutamate Dehydrogenase. I. in vivo Real Time Nuclear Magnetic Resonance Spectroscopy Experiments

    PubMed Central

    Labboun, Soraya; Tercé-Laforgue, Thérèse; Roscher, Albrecht; Bedu, Magali; Restivo, Francesco M.; Velanis, Christos N.; Skopelitis, Damianos S.; Moshou, Panagiotis N.; Roubelakis-Angelakis, Kalliopi A.; Suzuki, Akira; Hirel, Bertrand

    2009-01-01

    In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time 15N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [15N]Glu or 15NH4+ respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants. PMID:19690000

  17. Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity

    PubMed Central

    Richards, Erica M.; Rosenthal, Robert E.; Kristian, Tibor; Fiskum, Gary

    2008-01-01

    The pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme that catalyzes the oxidative decarboxylation of pyruvate and represents the sole bridge between anaerobic and aerobic cerebral energy metabolism. Previous studies demonstrating loss of PDHC enzyme activity and immunoreactivity during reperfusion after cerebral ischemia suggest that oxidative modifications are involved. This study tested the hypothesis that hyperoxic reperfusion exacerbates loss of PDHC enzyme activity, possibly due to tyrosine nitration or S-nitrosation. We used a clinically relevant canine ventricular fibrillation cardiac arrest model in which, after resuscitation and ventilation on either 100% O2 (hyperoxic) or 21–30% O2 (normoxic), animals were sacrificed at 2 h reperfusion and the brains removed for enzyme activity and immunoreactivity measurements. Animals resuscitated under hyperoxic conditions exhibited decreased PDHC activity and elevated 3-nitrotyrosine immunoreactivity in the hippocampus but not the cortex, compared to nonischemic controls. These measures were unchanged in normoxic animals. In vitro exposure of purified PDHC to peroxynitrite resulted in a dose-dependent loss of activity and increased nitrotyrosine immunoreactivity. These results support the hypothesis that oxidative stress contributes to loss of hippocampal PDHC activity during cerebral ischemia and reperfusion and suggest that PDHC is a target of peroxynitrite. PMID:16716897

  18. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).

    PubMed

    Rueda, Carlos B; Llorente-Folch, Irene; Traba, Javier; Amigo, Ignacio; Gonzalez-Sanchez, Paloma; Contreras, Laura; Juaristi, Inés; Martinez-Valero, Paula; Pardo, Beatriz; Del Arco, Araceli; Satrustegui, Jorgina

    2016-08-01

    Glutamate elicits Ca(2+) signals and workloads that regulate neuronal fate both in physiological and pathological circumstances. Oxidative phosphorylation is required in order to respond to the metabolic challenge caused by glutamate. In response to physiological glutamate signals, cytosolic Ca(2+) activates respiration by stimulation of the NADH malate-aspartate shuttle through Ca(2+)-binding to the mitochondrial aspartate/glutamate carrier (Aralar/AGC1/Slc25a12), and by stimulation of adenine nucleotide uptake through Ca(2+) binding to the mitochondrial ATP-Mg/Pi carrier (SCaMC-3/Slc25a23). In addition, after Ca(2+) entry into the matrix through the mitochondrial Ca(2+) uniporter (MCU), it activates mitochondrial dehydrogenases. In response to pathological glutamate stimulation during excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), mitochondrial dysfunction and delayed Ca(2+) deregulation (DCD) lead to neuronal death. Glutamate-induced respiratory stimulation is rapidly inactivated through a mechanism involving Poly (ADP-ribose) Polymerase-1 (PARP-1) activation, consumption of cytosolic NAD(+), a decrease in matrix ATP and restricted substrate supply. Glutamate-induced Ca(2+)-activation of SCaMC-3 imports adenine nucleotides into mitochondria, counteracting the depletion of matrix ATP and the impaired respiration, while Aralar-dependent lactate metabolism prevents substrate exhaustion. A second mechanism induced by excitotoxic glutamate is permeability transition pore (PTP) opening, which critically depends on ROS production and matrix Ca(2+) entry through the MCU. By increasing matrix content of adenine nucleotides, SCaMC-3 activity protects against glutamate-induced PTP opening and lowers matrix free Ca(2+), resulting in protracted appearance of DCD and protection against excitotoxicity in vitro and in vivo, while the lack of lactate protection during in vivo excitotoxicity explains increased vulnerability to kainite-induced toxicity in Aralar

  19. NEURONAL ACTIVITY REGULATES GLUTAMATE TRANSPORTER DYNAMICS IN DEVELOPING ASTROCYTES

    PubMed Central

    Benediktsson, A.M.; Marrs, G.S.; Tu, J.C.; Worley, P.F.; Rothstein, J.D.; Bergles, D.E.; Dailey, M.E.

    2011-01-01

    Glutamate transporters maintain a low ambient level of glutamate in the CNS and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here we examined the subcellular distribution and dynamic remodeling of the predominant glutamate transporter GLT-1 (EAAT2) in developing hippocampal astrocytes. Immunolabeling revealed that endogenous GLT-1 is concentrated into discrete clusters along branches of developing astrocytes that were apposed preferentially to synapsin-1 positive synapses. GFP-GLT-1 fusion proteins expressed in astrocytes also formed distinct clusters that lined the edges of astrocyte processes, as well as the tips of filopodia and spine-like structures. Time-lapse 3D confocal imaging in tissue slices revealed that GFP-GLT-1 clusters were dynamically remodeled on a timescale of minutes. Some transporter clusters moved within developing astrocyte branches as filopodia extended and retracted, while others maintained stable positions at the tips of spine-like structures. Blockade of neuronal activity with tetrodotoxin reduced both the density and perisynaptic localization of GLT-1 clusters. Conversely, enhancement of neuronal activity increased the size of GLT-1 clusters and their proximity to synapses. Together, these findings indicate that neuronal activity influences both the organization of glutamate transporters in developing astrocyte membranes and their position relative to synapses. PMID:22052455

  20. Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil.

    PubMed

    Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2007-08-01

    NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids. PMID:17526698

  1. A nuclear gene with many introns encoding ammonium-inducible chloroplastic NADP-specific glutamate dehydrogenase(s) in Chlorella sorokiniana.

    PubMed

    Cock, J M; Kim, K D; Miller, P W; Hutson, R G; Schmidt, R R

    1991-11-01

    Chlorella sorokiniana possesses ammonium-inducible, chloroplastic, NADP-specific glutamate dehydrogenase (NADP-GDH) homo- or heterohexamers composed of alpha- and/or beta-subunits which were previously shown to derive from precursor protein(s) of identical size. From the present studies, data are consistent with these two subunits being encoded by a single nuclear gene. The NADP-GDH gene is greater than 7 kb in length due to the presence of at least 21 introns, an unusually large number for a eukaryotic microorganism. The exons, identified by comparison with sequences of NADP-GDH cDNA clones, include a region which is highly conserved among NADP-GDH genes. This region in the C. sorokiniana gene is 77% and 73% identical to the corresponding regions in the Escherichia coli and Neurospora crassa NADP-GDH genes, respectively. Seventeen independent NADP-GDH cDNA clones were analyzed by restriction mapping and partial sequencing, and no differences were detected among them. The longest cDNA was fused in frame with lacZ in a Bluescript vector and was expressed in E. coli as NADP-GDH antigen. During a 240 min induction period, under conditions in which both types of subunits were synthesized, only a single (2.2 kb) NADP-GDH mRNA band was detected on northern blots using cDNA probes from the highly conserved and 3'-untranslated regions. Collectively, these results are consistent with a single mRNA encoding a precursor-protein which is differentially processed to yield either an alpha- or beta-subunit. PMID:1718478

  2. Metabolism changes during aging in the hippocampus and striatum of glud1 (glutamate dehydrogenase 1) transgenic mice.

    PubMed

    Choi, In-Young; Lee, Phil; Wang, Wen-Tung; Hui, Dongwei; Wang, Xinkun; Brooks, William M; Michaelis, Elias K

    2014-01-01

    The decline in neuronal function during aging may result from increases in extracellular glutamate (Glu), Glu-induced neurotoxicity, and altered mitochondrial metabolism. To study metabolic responses to persistently high levels of Glu at synapses during aging, we used transgenic (Tg) mice that over-express the enzyme Glu dehydrogenase (GDH) in brain neurons and release excess Glu in synapses. Mitochondrial GDH is important in amino acid and carbohydrate metabolism and in anaplerotic reactions. We monitored changes in nineteen neurochemicals in the hippocampus and striatum of adult, middle aged, and aged Tg and wild type (wt) mice, in vivo, using proton ((1)H) magnetic resonance spectroscopy. Significant differences between adult Tg and wt were higher Glu, N-acetyl aspartate (NAA), and NAA + NAA-Glu (NAAG) levels, and lower lactate in the Tg hippocampus and striatum than those of wt. During aging, consistent changes in Tg and wt hippocampus and striatum included increases in myo-inositol and NAAG. The levels of glutamine (Gln), a key neurochemical in the Gln-Glu cycle between neurons and astroglia, increased during aging in both the striatum and hippocampus of Tg mice, but only in the striatum of the wt mice. Age-related increases of Glu were observed only in the striatum of the Tg mice. PMID:24442550

  3. Trehalose and sorbitol alter the kinetic pattern of inactivation of glutamate dehydrogenase during drying in levitated microdroplets.

    PubMed

    Lorenzen, Elke; Lee, Geoffrey

    2013-12-01

    A single-droplet acoustic levitator was used to determine the drying rate and the kinetics of inactivation of glutamate dehydrogenase in the presence of added trehalose or sorbitol. The solution was also spray dried under the same process condition of drying gas temperature on a bench-top machine. Both trehalose and sorbitol delay the point of onset of enzyme inactivation which lies after the critical point of drying. Both carbohydrates also reduce the apparent rate constant of inactivation calculated during the subsequent inactivation phase. The carbohydrates stabilise, therefore, the enzyme during droplet drying and particle formation mainly during the falling rate drying period. There is no difference between the stabilising effects of the two carbohydrates when examined as levitated single droplets. This suggests the importance of water replacement as a stabilising mechanism in the levitated droplets/particles. On spray drying, the trehalose stabilises the enzyme better than does the sorbitol at a drying gas (outlet) temperature of 60°C. This suggests glass formation with the trehalose but not the sorbitol during the very rapid drying process of small-atomised droplets in the spray dryer. PMID:24122651

  4. Metabolism Changes During Aging in the Hippocampus and Striatum of Glud1 (Glutamate Dehydrogenase 1) Transgenic Mice

    PubMed Central

    Choi, In-Young; Lee, Phil; Wang, Wen-Tung; Hui, Dongwei; Wang, Xinkun; Brooks, William M.

    2014-01-01

    The decline in neuronal function during aging may result from increases in extracellular glutamate (Glu), Glu-induced neurotoxicity, and altered mitochondrial metabolism. To study metabolic responses to persistently high levels of Glu at synapses during aging, we used transgenic (Tg) mice that over-express the enzyme Glu dehydrogenase (GDH) in brain neurons and release excess Glu in synapses. Mitochondrial GDH is important in amino acid and carbohydrate metabolism and in anaplerotic reactions. We monitored changes in nineteen neurochemicals in the hippocampus and striatum of adult, middle aged, and aged Tg and wild type (wt) mice, in vivo, using proton (1H) magnetic resonance spectroscopy. Significant differences between adult Tg and wt were higher Glu, N-acetyl aspartate (NAA), and NAA + NAA−Glu (NAAG) levels, and lower lactate in the Tg hippocampus and striatum than those of wt. During aging, consistent changes in Tg and wt hippocampus and striatum included increases in myo-inositol and NAAG. The levels of glutamine (Gln), a key neurochemical in the Gln-Glu cycle between neurons and astroglia, increased during aging in both the striatum and hippocampus of Tg mice, but only in the striatum of the wt mice. Age-related increases of Glu were observed only in the striatum of the Tg mice. PMID:24442550

  5. Mechanism of pressure-induced thermostabilization of proteins: Studies of glutamate dehydrogenases from the hyperthermophile Thermococcus litoralis

    PubMed Central

    Sun, Michael M.C.; Caillot, Raphaele; Mak, Gary; Robb, Frank T.; Clark, Douglas S.

    2001-01-01

    In this study, we investigated the effect of pressure on protein structure and stability at high temperature. Thermoinactivation experiments at 5 and 500 atm were performed using the wild-type (WT) enzyme and two single mutants (D167T and T138E) of the glutamate dehydrogenase (GDH) from the hyperthermophile Thermococcus litoralis. All three GDHs were stabilized, although to different degrees, by the application of 500 atm. Interestingly, the degree of pressure stabilization correlated with GDH stability as well as the magnitude of electrostatic repulsion created by residues at positions 138 and 167. Thermoinactivation experiments also were performed in the presence of trehalose. Addition of the sugar stabilized all three GDHs; the degree of sugar-induced thermostabilization followed the same order as pressure stabilization. Previous studies suggested a mechanism whereby the enzyme adopts a more compact and rigid structure and volume fluctuations away from the native state are diminished under pressure. The present results on the three GDHs allowed us to further confirm and refine the proposed mechanism for pressure-induced thermostabilization. In particular, we propose that pressure stabilizes against thermoinactivation by shifting the equilibrium between conformational substates of the GDH hexamer, thus inhibiting irreversible aggregation. PMID:11514665

  6. Role of the glutamate dehydrogenase reaction in furnishing aspartate nitrogen for urea synthesis: studies in perfused rat liver with 15N.

    PubMed Central

    Nissim, Itzhak; Horyn, Oksana; Luhovyy, Bohdan; Lazarow, Adam; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc

    2003-01-01

    The present study was designed to determine: (i) the role of the reductive amination of alpha-ketoglutarate via the glutamate dehydrogenase reaction in furnishing mitochondrial glutamate and its transamination into aspartate; (ii) the relative incorporation of perfusate 15NH4Cl, [2-15N]glutamine or [5-15N]glutamine into carbamoyl phosphate and aspartate-N and, thereby, [15N]urea isotopomers; and (iii) the extent to which perfusate [15N]aspartate is taken up by the liver and incorporated into [15N]urea. We used a liver-perfusion system containing a physiological mixture of amino acids and ammonia similar to concentrations in vivo, with 15N label only in glutamine, ammonia or aspartate. The results demonstrate that in perfusions with a physiological mixture of amino acids, approx. 45 and 30% of total urea-N output was derived from perfusate ammonia and glutamine-N respectively. Approximately two-thirds of the ammonia utilized for carbamoyl phosphate synthesis was derived from perfusate ammonia and one-third from glutamine. Perfusate [2-15N]glutamine, [5-15N]glutamine or [15N]aspartate provided 24, 10 and 10% respectively of the hepatic aspartate-N pool, whereas perfusate 15NH4Cl provided approx. 37% of aspartate-N utilized for urea synthesis, secondary to the net formation of [15N]glutamate via the glutamate dehydrogenase reaction. The results suggest that the mitochondrial glutamate formed via the reductive amination of alpha-ketoglutarate may have a key role in ammonia detoxification by the following processes: (i) furnishing aspartate-N for ureagenesis; (ii) serving as a scavenger for excess ammonia; and (iii) improving the availability of the mitochondrial [glutamate] for synthesis of N -acetylglutamate. In addition, the current findings suggest that the formation of aspartate via the mitochondrial aspartate aminotransferase reaction may play an important role in the synthesis of cytosolic argininosuccinate. PMID:12935293

  7. Characterization of a NADH-Dependent Glutamate Dehydrogenase Mutant of Arabidopsis Demonstrates the Key Role of this Enzyme in Root Carbon and Nitrogen Metabolism[W

    PubMed Central

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J.; Hirel, Bertrand; Dubois, Frédéric

    2012-01-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism. PMID:23054470

  8. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism.

    PubMed

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J; Hirel, Bertrand; Dubois, Frédéric

    2012-10-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism. PMID:23054470

  9. Different rates of synthesis and degradation of two chloroplastic ammonium-inducible NADP-specific glutamate dehydrogenase isoenzymes during induction and deinduction in Chlorella sorokiniana cells

    SciTech Connect

    Bascomb, N.F.; Prunkard, D.E.; Schmidt, R.R.

    1987-01-01

    The kinetics of accumulation (per milliliter of culture) of the ..cap alpha..- and ..beta..-subunits, associated with chloroplast-localized ammonium inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) isoenzymes, were measured during a 3 hour induction of synchronized daughter cells of Chlorella sorokiniana in 29 millimolar ammonium medium under photoautotrophic conditions. The ..beta..-subunit holoenzyme(s) accumulated in a linear manner for 3 hours without an apparent induction lag. A 40 minute induction lag preceded the accumulation of the ..cap alpha..-subunit holoenzyme(s). After 120 minutes, the ..cap alpha..-subunit ceased accumulating and thereafter remained at a constant level. From pulse-chase experiments, using /sup 35/SO/sub 4/ and immunochemical procedures, the rate of synthesis of the ..cap alpha..-subunit was shown to be greater than the ..beta..-subunit during the first 80 minutes of induction. The ..cap alpha..- and ..beta..-subunits had different rates of degradation during the induction period (t/sub 1/2/ = 50 versus 150 minutes, respectively) and during the deinduction period (t/sub 1/2/ = 5 versus 13.5 minutes) after removal of ammonium from the culture. During deinduction, total NADP-GDH activity decreased with a half-time of 9 minutes. Cycloheximide completely inhibited the synthesis and degradation of both subunits. A model for regulation of expression of the NADP-GDH gene was proposed.

  10. Comparisons of mammalian Giardia duodenalis assemblages based on the β-giardin, glutamate dehydrogenase and triose phosphate isomerase genes.

    PubMed

    Scorza, Andrea V; Ballweber, Lora R; Tangtrongsup, Sahatchai; Panuska, Carla; Lappin, Michael R

    2012-10-26

    The objective of this study was to determine and compare the assemblages of Giardia duodenalis isolated from mammalian fecal samples using the β-giardin (bg), glutamate dehydrogenase (gdh) and triosephosphate isomerase (tpi) genes. A total of 202 samples, either submitted to the Veterinary Diagnostic Laboratory (Parasitology) at Colorado State University or part of ongoing research studies, were typed. A subset of 50 dog samples were also assessed by the tpi-D-specific primers. Of these, 183 were from dogs, 13 were from cats, two were from llamas, and one each was from a calf, an alpaca, a sheep, and a horse. The majority of the dogs (171 of 183 isolates) in this study were infected with only dog-adapted Assemblage C or D. The tpi-D-specific primers confirmed that 28 of the samples that typed as Assemblage D by the bg and gdh genes were also Assemblage D by the tpi-D-specific primers. Only 12 isolates were Assemblage A alone or Assemblage A and Assemblage C or D. Of the 13 cat isolates, seven were Assemblage F, two were Assemblage D, three were Assemblage A and 1 contained both Assemblages C and D. The calf isolate was Assemblage E (gdh, tpi) and the alpaca (bg, gdh), llamas (gdh), sheep (bg, gdh, tpi) and horse (tpi) isolates were all Assemblage A. When the assemblage could be determined for more than one gene, 91 of 117 dog isolates gave consistent results and 8 of 9 cat isolates gave consistent results. PMID:22652427

  11. Assessment of toxicity using dehydrogenases activity and mathematical modeling.

    PubMed

    Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz

    2016-07-01

    Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434

  12. Structure-activity relationships of glutamate carboxypeptidase II (GCPII) inhibitors.

    PubMed

    Ferraris, D V; Shukla, K; Tsukamoto, T

    2012-01-01

    Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc metallopeptidase that hydrolyzes N-acetylaspartylglutamate (NAAG) into N-acetylaspartate (NAA) and glutamate in the nervous system. Inhibition of GCPII has the potential to reduce extracellular glutamate and represents an opportune target for treating neurological disorders in which excess glutamate is considered pathogenic. Furthermore, GCPII was found to be identical to a tumor marker, prostate-specific membrane antigen (PSMA), and has drawn significant interest as a diagnostic and/or therapeutic target in oncology. Over the past 15 years, tremendous efforts have been made in the discovery of potent GCPII inhibitors, particularly those with phosphorus-, urea- and thiol-based zinc binding groups. In addition, significant progress has been made in understanding the three-dimensional structural characteristics of GCPII in complex with various ligands. The purpose of this review article is to analyze the structure-activity relationships (SAR) of GCPII inhibitors reported to date, which are classified on the basis of their zinc-binding group. SAR and crystallographic data are evaluated in detail for each of these series to highlight the future challenges and opportunities to identify clinically viable GCPII inhibitors. PMID:22304717

  13. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  14. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels

    NASA Astrophysics Data System (ADS)

    Li, Erchao; Arena, Leticia; Lizama, Gabriel; Gaxiola, Gabriela; Cuzon, Gerard; Rosas, Carlos; Chen, Liqiao; van Wormhoudt, Alain

    2011-03-01

    Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp ( L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40%, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1 and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control. Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control. Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index, which increased in the first week and then recovered to a relatively normal level, as in the control, after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregulation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.

  15. Involvement of GDH3-encoded NADP+-dependent Glutamate Dehydrogenase in Yeast Cell Resistance to Stress-induced Apoptosis in Stationary Phase Cells*

    PubMed Central

    Lee, Yong Joo; Kim, Kyung Jin; Kang, Hong Yong; Kim, Hye-Rim; Maeng, Pil Jae

    2012-01-01

    Glutamate metabolism is linked to a number of fundamental metabolic pathways such as amino acid metabolism, the TCA cycle, and glutathione (GSH) synthesis. In the yeast Saccharomyces cerevisiae, glutamate is synthesized from α-ketoglutarate by two NADP+-dependent glutamate dehydrogenases (NADP-GDH) encoded by GDH1 and GDH3. Here, we report the relationship between the function of the NADP-GDH and stress-induced apoptosis. Gdh3-null cells showed accelerated chronological aging and hypersusceptibility to thermal and oxidative stress during stationary phase. Upon exposure to oxidative stress, Gdh3-null strains displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e. reactive oxygen species accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation. In addition, Gdh3-null cells, but not Gdh1-null cells, had a higher tendency toward GSH depletion and subsequent reactive oxygen species accumulation than did WT cells. GSH depletion was rescued by exogenous GSH or glutamate. The hypersusceptibility of stationary phase Gdh3-null cells to stress-induced apoptosis was suppressed by deletion of GDH2. Promoter swapping and site-directed mutagenesis of GDH1 and GDH3 indicated that the necessity of GDH3 for the resistance to stress-induced apoptosis and chronological aging is due to the stationary phase-specific expression of GDH3 and concurrent degradation of Gdh1 in which the Lys-426 residue plays an essential role. PMID:23105103

  16. Identification and characterization of kinetically competent carbinolamine and alpha-iminoglutarate complexes in the glutamate dehydrogenase-catalyzed oxidation of L-glutamate using a multiwavelength transient state approach.

    PubMed

    Maniscalco, S J; Saha, S K; Fisher, H F

    1998-10-13

    A highly constrained and heavily overdetermined multiwavelength transient state kinetic approach has been used to study the oxidative deamination of L-glutamate catalyzed by beef liver glutamate dehydrogenase. Spectra generated using the known enzyme-reduced coenzyme-substrate spectrum served as models for deconvolution of kinetic scan data. Deconvolution of the multiwavelength time course array shows formation of three distinguishable intermediates in the reaction sequence, an ultrablue-shifted complex, an ultrared-shifted complex, and a blue-shifted complex. The ultrablue-shifted entity is identified as the enzyme-NADPH-alpha-iminoglutarate complex (ERI) and the ultrared as the enzyme-NADPH-alpha-carbinolamine complex (ERC). The blue-shifted complex is characterized as the E-NADPH-ketoglutarate species (ERK). The location of these species along the reaction coordinate has been determined and their kinetic competency in the reaction sequence has been established by fitting the concentration time courses of the components for both the alpha-deuterio- and the alpha-protio-L-glutamate reactions to the now highly constrained differential equations derived from a kinetic scheme involving the sequential formation of alpha-iminoglutarate, alpha-carbinolamine, and alpha-ketoglutarate-reduced coenzyme complexes, following the formation of two prehydride transfer complexes. PMID:9772187

  17. Slow motion picture of protein inactivation during single-droplet drying: a study of inactivation kinetics of L-glutamate dehydrogenase dried in an acoustic levitator.

    PubMed

    Lorenzen, Elke; Lee, Geoffrey

    2012-06-01

    A novel technique is presented to allow measurement of the kinetics of protein inactivation during drying of an acoustically levitated single droplet. Droplets/particles are removed from the acoustic field after various times during drying, and the state of the protein within them is analyzed. The influence of drying air temperature, relative humidity, buffer concentration, and the presence of a substrate on the inactivation of glutamate dehydrogenase is described. The kinetics of inactivation showed three distinct phases. The first phase of constant drying rate demonstrated little protein inactivation in the solution droplet. After the critical point of drying, a second phase was distinguishable when the surface temperature has risen sharply, but there is still only little inactivation of the protein in the solid particle. An onset point of rapid inactivation of the protein marked the start of the third phase that proceeded with approximately first-order rate kinetics. In the case of L-glutamate dehydrogenase, the evidence suggests that the residual moisture content of the solid and not the temperature alone determines the point of onset of protein inactivation. PMID:22447570

  18. Spatial variability of the dehydrogenase activity in forest soils

    NASA Astrophysics Data System (ADS)

    Błońska, Ewa; Lasota, Jarosław

    2014-05-01

    The aim of this study was to assess the spatial variability of the dehydrogenase activity (DH) in forest soils using geostatistics. We have studied variability soil dehydrogenase and their relationship with variability of some physic-chemical properties. Two study areas (A and B) were set up in southern Poland in the Zlotoryja Forest District. Study areas were covered by different types of vegetation (A- broadleaf forest with beech, ash and sycamore), B- coniferous forest with Norway spruce). The soils were classified as Dystric Cambisols (WRB 2006). The samples for laboratory testing were collected from 49 places on each areas. 15 cm of surface horizon of soil were taken (with previously removed litter). Dehydrogenase activity was marked with Lenhard's method according to the Casida procedure. Soil pH, nitrogen (N) and soil organic carbon (C) content (by LECO CNS 2000 carbon analyzer) was marked. C/N ratio was calculated. Particle size composition was determined using laser diffraction. Statistical analysis were performed using STATISTICA 10 software. Geostatistical analysis and mapping were done by application of GS 9+ (Gamma Design) and Surfer 11 (Golden Software). The activity of DH ranged between 5,02 and 71,20 mg TPP• kg-1 •24 h-1 on the A area and between 0,94 and 16,47 mg TPP• kg-1 •24 h-1. Differences in spatial variability of the analised features were noted. The variability of dehydrogenase activity on the A study area was described by an exponential model, whereas on the B study area the spatial correlation has not been noted. The relationship of dehydrogenase activity with the remaining parameters of soil was noted only in the case of A study area. The variability of organic carbon content on the A and B study areas were described by an exponential model. The variability of nitrogen content on both areas were described by an spherical model.

  19. The odyssey of a young gene: structure-function studies in human glutamate dehydrogenases reveal evolutionary-acquired complex allosteric regulation mechanisms.

    PubMed

    Zaganas, Ioannis V; Kanavouras, Konstantinos; Borompokas, Nikolas; Arianoglou, Giovanna; Dimovasili, Christina; Latsoudis, Helen; Vlassi, Metaxia; Mastorodemos, Vasileios

    2014-01-01

    Mammalian glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia, interconnecting carbon skeleton and nitrogen metabolism. In addition, it functions as an energy switch by its ability to fuel the Krebs cycle depending on the energy status of the cell. As GDH lies at the intersection of several metabolic pathways, its activity is tightly regulated by several allosteric compounds that are metabolic intermediates. In contrast to other mammals that have a single GDH-encoding gene, humans and great apes possess two isoforms of GDH (hGDH1 and hGDH2, encoded by the GLUD1 and GLUD2 genes, respectively) with distinct regulation pattern, but remarkable sequence similarity (they differ, in their mature form, in only 15 of their 505 amino-acids). The GLUD2 gene is considered a very young gene, emerging from the GLUD1 gene through retro-position only recently (<23 million years ago). The new hGDH2 iso-enzyme, through random mutations and natural selection, is thought to have conferred an evolutionary advantage that helped its persistence through primate evolution. The properties of the two highly homologous human GDHs have been studied using purified recombinant hGDH1 and hGDH2 proteins obtained by expression of the corresponding cDNAs in Sf21 cells. According to these studies, in contrast to hGDH1 that maintains basal activity at 35-40 % of its maximal, hGDH2 displays low basal activity that is highly responsive to activation by rising levels of ADP and/or L-leucine which can also act synergistically. While hGDH1 is inhibited potently by GTP, hGDH2 shows remarkable GTP resistance. Furthermore, the two iso-enzymes are differentially inhibited by estrogens, polyamines and neuroleptics, and also differ in heat-lability. To elucidate the molecular mechanisms that underlie these different regulation patterns of the two iso-enzymes (and consequently the evolutionary adaptation of hGDH2 to a new functional role), we have

  20. A Polarographic Study of Glutamate Synthase Activity in Isolated Chloroplasts 1

    PubMed Central

    Anderson, John W.; Done, James

    1977-01-01

    Illuminated pea (Pisum sativum) chloroplasts actively catalyzed (glutamine plus α-ketoglutarate)-dependent O2 evolution (average of 12 preparations 10.6 μmole mg chlorophyll per hour). The reaction was specific for glutamine and α-ketoglutarate; concentrations of 0.2 mm α-ketoglutarate and 0.6 mm glutamine, respectively, effected half-maximum rates of O2 evolution. The reaction was inhibited by 3-(3,4-dichlorophenyl)-1-1-dimethylurea and did not occur in the dark. After osmotic shock chloroplasts did not catalyze O2 evolution. The reaction was inhibited by azaserine and glutamate but not by 10 mm ammonia, 2.5 mm methionine sulfoximine, or 5 mm amino-oxyacetate; addition of amino-oxyacetate together with aspartate inhibited O2 evolution. Arsenate (3 mm) enhanced O2 evolution. The highest molar ratio for O2 evolved per mole of α-ketoglutarate supplied was 0.40; the corresponding values for glutamine in the absence and presence of 3 mm arsenate were 0.20 and 0.24, respectively. The (glutamine plus α-ketoglutarate)-dependent O2 evolution is attributed to photosynthetically coupled glutamate synthase activity and the activity is sufficient to account for the assimilation of inorganic nitrogen. The low molar ratio for glutamine is discussed. Chloroplasts also catalyzed (aspartate plus α-ketoglutarate)-dependent O2 evolution but this reaction was inhibited by 5 mm amino-oxyacetate and it was insensitive to azaserine and methionine sulfoximine. This reaction was attributed to transaminase and photosynthetically coupled malate dehydrogenase activities. PMID:16660092

  1. Evaluation of NAD(P)-Dependent Dehydrogenase Activities in Neutrophilic Granulocytes by the Bioluminescent Method.

    PubMed

    Savchenko, A A

    2015-09-01

    Bioluminescent method for measurements of the neutrophilic NAD(P)-dependent dehydrogenases (lactate dehydrogenase, NAD-dependent malate dehydrogenase, NADP-dependent decarboxylating malate dehydrogenase, NAD-dependent isocitrate dehydrogenase, and glucose- 6-phosphate dehydrogenase) is developed. The sensitivity of the method allows minimization of the volume of biological material for measurements to 104 neutrophils per analysis. The method is tried in patients with diffuse purulent peritonitis. Low levels of NADPH synthesis enzymes and high levels of enzymes determining the substrate flow by the Krebs cycle found in these patients can lead to attenuation of functional activity of cells. PMID:26468025

  2. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance

    PubMed Central

    Cheung, Giselle; Sibille, Jérémie; Zapata, Jonathan; Rouach, Nathalie

    2015-01-01

    Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis. PMID:26346563

  3. Novel yeast cell dehydrogenase activity assay in situ.

    PubMed

    Berłowska, Joanna; Kregiel, Dorota; Klimek, Leszek; Orzeszyna, Bartosz; Ambroziak, Wojciech

    2006-01-01

    The aim of this research was to develop a suitable method of succinate dehydrogenase activity assay in situ for different industrial yeast strains. For this purpose different compounds: EDTA, Triton X-100, sodium deoxycholate, digitonin, nystatin and beta-mercaptoethanol were used. The permeabilization process was controlled microscopically by primuline staining. Enzyme assay was conducted in whole yeast cells with Na-succinate as substrate, phenazine methosulfate (PMS) as electron carrier and in the presence one of two different tetrazolium salts: tetrazolium blue chloride (BT) or cyanoditolyl tetrazolium chloride (CTC) reduced during the assay. In comparabile studies of yeast vitality the amount of intracellular ATP was determined according to luciferin/luciferase method. During the succinate dehydrogenase assay in intact yeast cells without permeabilization, BT formazans were partially visualized in the cells, but CTC formazans appeared to be totally extracellular or associated with the plasma membrane. Under these conditions there was no linear relationship between formazan color intensity signal and yeast cell density. From all chemical compounds tested, only digitonin was effective in membrane permeabilization without negative influence on cell morphology. Furthermore, with digitonin-treated cells a linear relationship between formazan color intensity signal and yeast cell number was noticed. Significant decreasing of succinate dehydrogenase activity and ATP content were observed during aging of the tested yeast strains. PMID:17419290

  4. Structural mechanism of glutamate receptor activation and desensitization.

    PubMed

    Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar; Rao, Prashant; Pierson, Jason; Bartesaghi, Alberto; Mayer, Mark L; Subramaniam, Sriram

    2014-10-16

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating. PMID:25119039

  5. Serotonin impairs copulation and attenuates ejaculation-induced glutamate activity in the medial preoptic area.

    PubMed

    Dominguez, Juan M; Hull, Elaine M

    2010-08-01

    The medial preoptic area (MPOA) is critical for male sexual behavior. Glutamate is released in the MPOA of male rats during copulation, and increasing glutamate levels by reverse dialysis of glutamate uptake inhibitors facilitates mating. Conversely, increased release of serotonin (5-HT) inhibits sexual behavior. In both rats and men, selective serotonin reuptake inhibitors (SSRIs) impair erection, ejaculation, and libido. Here we reverse-dialyzed 5-HT through concentric microdialysis probes in the MPOA of male rats; concurrently we collected 2-min samples for analysis of glutamate and measured sexual behavior. Sexual activity, and especially ejaculation, increased levels of glutamate in the MPOA. However, reverse dialysis of 5-HT into the MPOA impaired ejaculatory ability and attenuated glutamate release. Implications of these results for impairment of sexual behavior that results from administration of SSRIs are discussed. PMID:20695654

  6. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors

    PubMed Central

    Gautier, Hélène O. B.; Evans, Kimberley A.; Volbracht, Katrin; James, Rachel; Sitnikov, Sergey; Lundgaard, Iben; James, Fiona; Lao-Peregrin, Cristina; Reynolds, Richard; Franklin, Robin J. M.; Káradóttir, Ragnhildur T

    2015-01-01

    Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. PMID:26439639

  7. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors.

    PubMed

    Gautier, Hélène O B; Evans, Kimberley A; Volbracht, Katrin; James, Rachel; Sitnikov, Sergey; Lundgaard, Iben; James, Fiona; Lao-Peregrin, Cristina; Reynolds, Richard; Franklin, Robin J M; Káradóttir, Ragnhildur T

    2015-01-01

    Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. PMID:26439639

  8. [Cooperative inactivation of glutamate dehydrogenase of 2,2,6,6- tetramethyl-4-oxopiperidine-1-oxyl. Interpretation of results within the scope of a hexamer model with equivalent subunit orientation].

    PubMed

    Karabashian, L V; Agadzhanian, S A

    1988-01-01

    It was shown that the blockage of epsilon-amino group of Lis-126 residue by 2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl (TMPO) leads to the cooperative inactivation of glutamate dehydrogenase (L-glutamate-NAD(P)-oxidoreductase, EC 1.4.1.3). The data concerning cooperative inactivation of the enzyme are interpreted by the model of hexamer with identical orientation of subunits. It was shown that the modification of any of enzyme subunits is accompanied by an inactivation of the hexamer's fragment which is a dimer, with subunits interacting reciprocally by means of isological contacts. PMID:3252150

  9. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  10. Resolving the Role of Plant NAD-Glutamate Dehydrogenase: III. Overexpressing Individually or Simultaneously the Two Enzyme Subunits Under Salt Stress Induces Changes in the Leaf Metabolic Profile and Increases Plant Biomass Production.

    PubMed

    Tercé-Laforgue, Thérèse; Clément, Gilles; Marchi, Laura; Restivo, Francesco M; Lea, Peter J; Hirel, Bertrand

    2015-10-01

    NAD-dependent glutamate dehydrogenase (NAD-GDH) of higher plants has a central position at the interface between carbon and nitrogen metabolism due to its ability to carry out the deamination of glutamate. In order to obtain a better understanding of the physiological function of NAD-GDH under salt stress conditions, transgenic tobacco (Nicotiana tabacum L.) plants that overexpress two genes from Nicotiana plumbaginifolia individually (GDHA and GDHB) or simultaneously (GDHA/B) were grown in the presence of 50 mM NaCl. In the different GDH overexpressors, the NaCl treatment induced an additional increase in GDH enzyme activity, indicating that a post-transcriptional mechanism regulates the final enzyme activity under salt stress conditions. A greater shoot and root biomass production was observed in the three types of GDH overexpressors following growth in 50 mM NaCl, when compared with the untransformed plants subjected to the same salinity stress. Changes in metabolites representative of the plant carbon and nitrogen status were also observed. They were mainly characterized by an increased amount of starch present in the leaves of the GDH overexpressors as compared with the wild type when plants were grown in 50 mM NaCl. Metabolomic analysis revealed that overexpressing the two genes GDHA and GDHB, individually or simultaneously, induced a differential accumulation of several carbon- and nitrogen-containing molecules involved in a variety of metabolic, developmental and stress-responsive processes. An accumulation of digalactosylglycerol, erythronate and porphyrin was found in the GDHA, GDHB and GDHA/B overexpressors, suggesting that these molecules could contribute to the improved performance of the transgenic plants under salinity stress conditions. PMID:26251210

  11. Reductive half-reaction of nitroalkane oxidase: effect of mutation of the active site aspartate to glutamate.

    PubMed

    Valley, Michael P; Fitzpatrick, Paul F

    2003-05-20

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the respective aldehydes or ketones, releasing nitrite. The enzyme has recently been identified as being homologous to the acyl-CoA dehydrogenase family of enzymes [Daubner, S. C., Gadda, G., Valley, M. P., and Fitzpatrick, P. F. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 2702-2707]. The glutamate which acts as an active site base in that family of enzymes aligns with Asp402 of nitroalkane oxidase. To evaluate the identification of Asp402 as an active site base, the effect of mutation of Asp402 to glutamate on the rate of cleavage of the nitroalkane C-H bond has been determined. Deuterium kinetic isotope effects on steady state kinetic parameters and direct measurement of the rate of flavin reduction establish that the mutation increases the DeltaG(++) for C-H bond cleavage by 1.6-1.9 kcal/mol. There is no effect on the rate of reaction of the reduced enzyme with oxygen. These results support the assignment of Asp402 as the active site base in nitroalkane oxidase. PMID:12741843

  12. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  13. Identification of genotypes of Giardia intestinalis isolates from dogs in Japan by direct sequencing of the PCR amplified glutamate dehydrogenase gene.

    PubMed

    Abe, Niichiro; Kimata, Isao; Iseki, Motohiro

    2003-01-01

    Giardia has been detected in domestic dogs in Japan, but the genotype of isolates has remained unclear because identification has relied on conventional microscopy. Here we tried to identify the genotypes of four isolates from dogs in Japan by direct sequencing of the PCR amplified Giardia glutamate dehydrogenase (GDH) gene. The primer pair GDHF3 and GDHB5, targeting the GDH gene, was designed to prime a region of the GDH gene sequence conserved in the strains found to have the dog-specific genotype. The specific PCR product (approximately 220 bp), amplified with this primer pair, was only observed when Giardia DNA was used as the template. The sequences of the diagnostic fragments were identical among the isolates from dogs, and were differed by 15 bp or 1 bp from the strains, which were found to be the dog-specific genotypes, Assemblage C or D respectively. To verify the identity of the amplified DNA, a phylogenetic analysis was performed. Consequently, the sequence of the isolates from dogs clearly clustered with the strain found to be Assemblage D with neighbor-joining analyses. Therefore, all the isolates from dogs examined were identified as the dog-specific genotype, Assemblage D. In the present study, we revealed the genotype of Giardia isolates in Japan, and showed that direct sequencing of the PCR product amplified with the primer pair GDHF3 and GDHB5 was a useful tool for distinguishing between the zoonotic and dog-specific genotypes. PMID:12576701

  14. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    PubMed Central

    Nagaharu, Keiki; Ikemura, Kenji; Yamashita, Yoshiki; Oda, Hiroyasu; Ishihara, Mikiya; Sugawara, Yumiko; Tamaru, Satoshi; Mizuno, Toshiro; Katayama, Naoyuki

    2016-01-01

    Over the past decades, 5-Fluorouracil (5-FU) has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD) activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment. PMID:27195162

  15. 17 beta-hydroxysteroid dehydrogenase activity in canine pancreas

    SciTech Connect

    Mendoza-Hernandez, G.; Lopez-Solache, I.; Rendon, J.L.; Diaz-Sanchez, V.; Diaz-Zagoya, J.C.

    1988-04-15

    The mitochondrial fraction of the dog pancreas showed NAD(H)-dependent enzyme activity of 17 beta-hydroxysteroid dehydrogenase. The enzyme catalyzes oxidoreduction between androstenedione and testosterone. The apparent Km value of the enzyme for androstenedione was 9.5 +/- 0.9 microM, the apparent Vmax was determined as 0.4 nmol mg-1 min-1, and the optimal pH was 6.5. In phosphate buffer, pH 7.0, maximal rate of androstenedione reduction was observed at 37 degrees C. The oxidation of testosterone by the enzyme proceeded at the same rate as the reduction of the androstenedione at a pH of 6.8-7.0. The apparent Km value and the optimal pH of the enzyme for testosterone were 3.5 +/- 0.5 microM and 7.5, respectively.

  16. [Effect Of Polyelectrolytes on Catalytic Activity of Alcohol Dehydrogenase].

    PubMed

    Dubrovsky, A V; Musina, E V; Kim, A L; Tikhonenko, S A

    2016-01-01

    Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 M and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect. PMID:27266256

  17. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity.

    PubMed

    Nagaharu, Keiki; Ikemura, Kenji; Yamashita, Yoshiki; Oda, Hiroyasu; Ishihara, Mikiya; Sugawara, Yumiko; Tamaru, Satoshi; Mizuno, Toshiro; Katayama, Naoyuki

    2016-01-01

    Over the past decades, 5-Fluorouracil (5-FU) has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD) activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment. PMID:27195162

  18. The real-time resolution of proton-related transient-state steps in an enzymatic reaction. The early steps in the oxidative deamination reaction of bovine liver glutamate dehydrogenase.

    PubMed

    Singh, N; Maniscalco, S J; Fisher, H F

    1993-01-01

    We introduce a novel transient-state kinetic approach which can resolve proton and product time courses into a series of individual steps that comprise the reaction path. We have applied this approach to the oxidative deamination reaction catalyzed by bovine liver glutamate dehydrogenase, measuring both the product (NADPH) and proton time courses at various pH values. The global treatment (over all pH values) resolves the very early portion of this reaction quantitatively and provides a continuous time course for each of the six protonic species. We propose the following mechanism: L-glutamate binds to an open conformation of the enzyme-NADP complex, forming salt bridges between its alpha- and gamma-carboxyl groups and the protonated forms of enzyme lysine residues 114 and 90, respectively. In this position, the alpha-H atom of the substrate is too far from the nicotinamide ring for hydride transfer to occur. In the next step, three events occur in a concerted manner: lysine 126 loses a proton and acquires a single water molecule; the active site cleft closes; bulk water is expelled; the substrate and coenzyme are forced closer together and remain in a nonaqueous environment during the ensuing chemical events, returning to an open conformation only in time to allow the product release steps to occur. Thus, substrate binding accomplishes a number of important tasks which are themselves an integral part of the catalytic mechanism. Combining the novel transient state approach developed here with steady-state kinetic information can produce a detailed mechanistic resolution of otherwise hidden steps. PMID:8093240

  19. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    PubMed Central

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  20. Analysis of rat cytosolic 9-cis-retinol dehydrogenase activity and enzymatic characterization of rat ADHII.

    PubMed

    Popescu, G; Napoli, J L

    2000-01-01

    We report the characterization of two enzymes that catalyze NAD(+)-dependent 9-cis-retinol dehydrogenase activity in rat liver cystol. Alcohol dehydrogenase class I (ADHI) contributes > 80% of the NA D+-dependent 9-cis-retinol dehydrogenase activity recovered, whereas alcohol dehydrogenase class II (ADHII), not identified previously at the protein level, nor characterized enzymatically in rat, accounts for approximately 2% of the activity. Rat ADHII exhibits properties different from those described for human ADHII. Moreover, rat ADHII-catalyzed rates of ethanol dehydrogenation are markedly lower than octanol or retinoid dehydrogenation rates. Neither ethanol nor 4-methylpyrazole inhibits the 9-cis-retinol dehydrogenase activity of rat ADHII. We propose that ADHII represents the previously observed additional retinoid oxidation activity of rat liver cytosol which occurred in the presence of either ethanol or 4-methylpyrazole. We also show that human and rat ADHII differ considerably in enzymatic properties. PMID:10606766

  1. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  2. Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus.

    PubMed

    Saftenku, E E

    2005-06-01

    Synaptic conductances are influenced markedly by the geometry of the space surrounding the synapse since the transient glutamate concentration in the synaptic cleft is determined by this geometry. Our paper is an attempt to understand the reasons for slow glutamate diffusion in the cerebellar glomerulus, a structure situated around the enlarged mossy fiber terminal in the cerebellum and surrounded by a glial sheath. For this purpose, analytical expressions for glutamate diffusion in the glomerulus were considered in models with two-, three-, and fractional two-three-dimensional (2D-3D) geometry with an absorbing boundary. The time course of average glutamate concentration in the synaptic cleft of the mossy fiber-granule cell connection was calculated for both direct release of glutamate from the same synaptic unit, and for cumulative spillover of glutamate from neighboring release sites. Several kinetic schemes were examined, and the parameters of the diffusion models were estimated by identifying theoretical activation of AMPA receptors with direct release and spillover components of published experimental AMPA receptor-mediated EPSCs. For model selection, the correspondence of simulated paired-pulse ratio and EPSC increase after prevention of desensitization to experimental values were also taken into consideration. Our results suggest at least a 7- to 10-fold lower apparent diffusion coefficient of glutamate in the porous medium of the glomerulus than in water. The modeling of glutamate diffusion in the 2D-3D geometry gives the best fit of experimental EPSCs. We show that it could be only partly explained by normal diffusion of glutamate in the complex geometry of the glomerulus. We assume that anomalous diffusion of glutamate occurs in the glomerulus. A good match of experimental estimations and theoretical parameters, obtained in the simulations that use an approximation of anomalous diffusion by a solution for fractional Brownian motion, confirms our

  3. Accelerated Lactate Dehydrogenase Activity Potentiates Osteoclastogenesis via NFATc1 Signaling

    PubMed Central

    Kim, Jin Man; Kwon, So Hyun; Lee, Seoung Hoon; Lee, Soo Young; Jeong, Daewon

    2016-01-01

    Osteoclasts seem to be metabolic active during their differentiation and bone-resorptive activation. However, the functional role of lactate dehydrogenase (LDH), a tetrameric enzyme consisting of an A and/or B subunit that catalyzes interconversion of pyruvate to lactate, in RANKL-induced osteoclast differentiation is not known. In this study, RANKL treatment induced gradual gene expression and activation of the LDH A2B2 isotype during osteoclast differentiation as well as the LDH A1B3 and B4 isotypes during osteoclast maturation after pre-osteoclast formation. Glucose consumption and lactate production in growth media were accelerated during osteoclast differentiation, together with enhanced expression of H+-lactate co-transporter and increased extracellular acidification, demonstrating that glycolytic metabolism was stimulated during differentiation. Further, oxygen consumption via mitochondria was stimulated during osteoclast differentiation. On the contrary, depletion of LDH-A or LDH-B subunit suppressed both glycolytic and mitochondrial metabolism, resulting in reduced mature osteoclast formation via decreased osteoclast precursor fusion and down-regulation of the osteoclastogenic critical transcription factor NFATc1 and its target genes. Collectively, our findings suggest that RANKL-induced LDH activation stimulates glycolytic and mitochondrial respiratory metabolism, facilitating mature osteoclast formation via osteoclast precursor fusion and NFATc1 signaling. PMID:27077737

  4. Importance of glutamate 87 and the substrate α-amine for the reaction catalyzed by D-arginine dehydrogenase.

    PubMed

    Ball, Jacob; Bui, Quan V V; Gannavaram, Swathi; Gadda, Giovanni

    2015-02-15

    Pseudomonas aeruginosa D-arginine dehydrogenase (PaDADH) catalyzes the oxidation of D-arginine to iminoarginine, which is non-enzymatically hydrolyzed to 2-ketoarginine and ammonia. Here, site-directed mutagenesis and pH effects were used to investigate binding and catalysis of zwitterionic and cationic substrates for the enzyme. An unprotonated group with apparent pKa value ⩾7.9 is required for binding D-arginine or D-lysine, but not D-methionine or D-leucine. This group is E87, as suggested by its replacement with leucine. An unprotonated group with pKa of 9.5, which persists in the H48F and E87L variants, is required for amine oxidation with all substrates. Since Y53 and Y249 were previously ruled out, the pKa is assigned to the substrate α-NH3(+) group, which previous QM/MM and Kd pH-profile demonstrated to be protonated for preferred binding to the enzyme. Lack of pH effects on the (D)kred with D-leucine established 9.5 as the intrinsic pKa, and D-leucine as a non-sticky substrate. D-Arginine, D-lysine and D-methionine and their corresponding iminoproducts were significantly stickier than D-leucine, as indicated by apparent pKa values <9.5 in both kcat/Km and kcat. Restricted proton movements in catalysis were established from hollowed kcat pH profiles in wild-type PaDADH with D-lysine and in the H48F and E87L enzymes with D-arginine. PMID:25637657

  5. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    PubMed

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated. PMID:22886112

  6. Disorders of glutamate metabolism.

    PubMed

    Kelly, A; Stanley, C A

    2001-01-01

    The significant role the amino acid glutamate assumes in a number of fundamental metabolic pathways is becoming better understood. As a central junction for interchange of amino nitrogen, glutamate facilitates both amino acid synthesis and degradation. In the liver, glutamate is the terminus for release of ammonia from amino acids, and the intrahepatic concentration of glutamate modulates the rate of ammonia detoxification into urea. In pancreatic beta-cells, oxidation of glutamate mediates amino acid-stimulated insulin secretion. In the central nervous system, glutamate serves as an excitatory neurotransmittor. Glutamate is also the precursor of the inhibitory neurotransmittor GABA, as well as glutamine, a potential mediator of hyperammonemic neurotoxicity. The recent identification of a novel form of congenital hyperinsulinism associated with asymptomatic hyperammonemia assigns glutamate oxidation by glutamate dehydrogenase a more important role than previously recognized in beta-cell insulin secretion and hepatic and CNS ammonia detoxification. Disruptions of glutamate metabolism have been implicated in other clinical disorders, such as pyridoxine-dependent seizures, confirming the importance of intact glutamate metabolism. This article will review glutamate metabolism and clinical disorders associated with disrupted glutamate metabolism. PMID:11754524

  7. Glutamate Synthase: Properties of the Reduced Nicotinamide Adenine Dinucleotide-Dependent Enzyme from Saccharomyces cerevisiae

    PubMed Central

    Roon, Robert J.; Even, Harvey L.; Larimore, Fred

    1974-01-01

    A reduced nicotinamide adenine dinucleotide (NADH)-dependent glutamate synthase has been detected and partially purified from crude extracts of Saccharomyces cerevisiae. The enzyme is specific for NADH, glutamine, and α-ketoglutarate (Km values of 2.6 μM, 1.0 mM, and 140 μM, respectively) and has a pH optimum between 7.1 and 7.7. The stoichiometry of the reaction has been determined as 2 mol of glutamate synthesized per mol of glutamine consumed. Glutamate synthase can be distinguished from either of the glutamate dehydrogenases of yeast on the basis of its substrate requirements and behavior during agarose gel and ion exchange chromatography. Variations in the specific activity of glutamate synthase, which occur in response to changes in the growth medium, are similar in character to those observed with the nicotinamide adenine dinucleotide phosphate-dependent (anabolic) glutamate dehydrogenase. PMID:4362465

  8. On the regulative role of the glutamate receptor in mitochondria.

    PubMed

    Selin, Alexey A; Lobysheva, Natalia V; Nesterov, Semen V; Skorobogatova, Yulia A; Byvshev, Ivan M; Pavlik, Lyubov L; Mikheeva, Irina B; Moshkov, Dmitry A; Yaguzhinsky, Lev S; Nartsissov, Yaroslav R

    2016-05-01

    The purpose of this work was to study the regulative role of the glutamate receptor found earlier in the brain mitochondria. In the present work a glutamate-dependent signaling system with similar features was detected in mitochondria of the heart. The glutamate-dependent signaling system in the heart mitochondria was shown to be suppressed by γ-aminobutyric acid (GABA). The GABA receptor presence in the heart mitochondria was shown by golding with the use of antibodies to α- and β-subunits of the receptor. The activity of glutamate receptor was assessed according to the rate of synthesis of hydrogen peroxide. The glutamate receptor in mitochondria could be activated only under conditions of hypoxic stress, which in model experiments was imitated by blocking Complex I by rotenone or fatty acids. The glutamate signal in mitochondria was shown to be calcium- and potential-dependent and the activation of the glutamate cascade was shown to be accompanied by production of hydrogen peroxide. It was discovered that H2O2 synthesis involves two complexes of the mitochondrial electron transfer system - succinate dehydrogenase (SDH) and fatty acid dehydrogenase (ETF:QO). Thus, functions of the glutamate signaling system are associated with the system of respiration-glycolysis switching (the Pasteur-Crabtree) under conditions of hypoxia. PMID:26812870

  9. Exciting Times for Pancreatic Islets: Glutamate Signaling in Endocrine Cells.

    PubMed

    Otter, Silke; Lammert, Eckhard

    2016-03-01

    Glutamate represents a key excitatory neurotransmitter in the central nervous system, and also modulates the function and viability of endocrine cells in pancreatic islets. In insulin-secreting beta cells, glutamate acts as an intracellular messenger, and its transport into secretory granules promotes glucose- and incretin-stimulated insulin secretion. Mitochondrial degradation of glutamate also contributes to insulin release when glutamate dehydrogenase is allosterically activated. It also signals extracellularly via glutamate receptors (AMPA and NMDA receptors) to modulate glucagon, insulin and somatostatin secretion, and islet cell survival. Its degradation products, GABA and γ-hydroxybutyrate, are released and also influence islet cell behavior. Thus, islet glutamate receptors, such as the NMDA receptors, might serve as possible drug targets to develop new medications for adjunct treatment of diabetes. PMID:26740469

  10. Acute Modulation of Cortical Glutamate and GABA Content by Physical Activity.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Fernandez, Dione H; Maddock, Michael I

    2016-02-24

    Converging evidence demonstrates that physical activity evokes a brain state characterized by distinctive changes in brain metabolism and cortical function. Human studies have shown that physical activity leads to a generalized increase in electroencephalography power across regions and frequencies, and a global increase in brain nonoxidative metabolism of carbohydrate substrates. This nonoxidative consumption of carbohydrate has been hypothesized to include increased de novo synthesis of amino acid neurotransmitters, especially glutamate and GABA. Here, we conducted a series of proton magnetic resonance spectroscopy studies in human volunteers before and after vigorous exercise (≥80% of predicted maximal heart rate). Results showed that the resonance signals of both glutamate and GABA increased significantly in the visual cortex following exercise. We further demonstrated a similar increase in glutamate following exercise in an executive region, the anterior cingulate cortex. The increase in glutamate was similar when using echo times of 30 and 144 ms, indicating that exercise-related T2 relaxation effects across this range of relaxation times did not account for the findings. In addition, we found preliminary evidence that more physical activity during the preceding week predicts higher resting glutamate levels. Overall, the results are consistent with an exercise-induced expansion of the cortical pools of glutamate and GABA, and add to a growing understanding of the distinctive brain state associated with physical activity. A more complete understanding of this brain state may reveal important insights into mechanisms underlying the beneficial effects of physical exercise in neuropsychiatric disorders, neurorehabilitation, aging, and cognition. PMID:26911692

  11. 11 beta-Hydroxysteroid dehydrogenase activity in hypothalamic obesity.

    PubMed

    Tiosano, Dov; Eisentein, Israel; Militianu, Daniela; Chrousos, George P; Hochberg, Ze'ev

    2003-01-01

    After extensive suprasellar operations for hypothalamic tumor removal, some patients develop Cushing-like morbid obesity while they receive replacement doses of glucocorticoids. In this study, we examined the hypothesis that target tissue conversion of inactive 11-ketosteroids to active 11 beta-OH glucocorticoids might explain the obesity of some patients with hypothalamic lesions. Toward this aim, we studied 10 patients with hypothalamic obesity and secondary adrenal insufficiency and 6 control Addisonian patients while they were on glucocorticoid replacement therapy. Pituitary hormone deficiencies were replaced when medically indicated. Twenty-four-hour urine was collected after a single oral dose of 12 mg/m(2) hydrocortisone acetate. The ratios of free and conjugated cortisol (F) to cortisone (E) and their metabolites, [tetrahydrocortisol (THF)+5 alpha THF]/tetrahyrdocortisone (THE), dihydrocortisols/dihydrocortisones, cortols/cortolones, and (F+E)/(THF+THE+5 alpha THF), were considered to represent 11 beta-hydroxysteroid dehydrogenase (HSD) activity. The 11-OH/11-oxo ratios were significantly higher in the urine of patients with hypothalamic obesity. The 11-OH/11-oxo ratios, however, did not correlate with the degree of obesity, yet a significant correlation was found between conjugated F/E and the ratio of visceral fat to sc fat measured by computerized tomography at the umbilical level. The consequence of increased 11 beta-HSD1 activity and the shift of the interconversion toward cortisol may contribute to the effects of the latter in adipose tissue. We propose that deficiency of hypothalamic messengers after surgical injury induces a paracrine/autocrine effect of enhanced glucocorticoid activity due to up-regulated 11 beta-HSD1 activity. PMID:12519880

  12. Furosemide and 11beta-hydroxysteroid dehydrogenase activity, in man.

    PubMed

    Palermo, M; Armanini, D; Shackleton, C H L; Sorba, G; Cossu, M; Roitman, E; Scaroni, C; Delitala, G

    2002-09-01

    Mineralocorticoid receptors possess the same affinity for aldosterone and for cortisol and preferential binding of aldosterone is modulated by the 11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) enzyme, which converts cortisol to its inactive metabolite cortisone. Several endogenous or exogenous compounds able to inhibit the enzyme have been described and, as a consequence, produce the syndrome of apparent mineralocorticoid excess (AME) characterized by hypertension, hypokalemia, volume repletion and suppression of the renin-angiotensin-aldosterone system. High doses of furosemide, a diuretic that works in the luminal surface of the thick ascending limb of Henle's loop, have been reported to inhibit 11 beta-OHSD activity to the same extent as licorice in vivo and in vitro, in rat. The aim of our study was to verify the effect of the drug on 11 beta-OHSD activity in man at the doses currently used in clinical practice. We tested the activity of 11 beta-OHSD following both acute and protracted administration of furosemide. In the acute study, the drug was administered at low (40 mg i.v. in bolo) and high doses (infusion of 10 mg/kg bw i.v for six hours); the protracted furosemide administration consisted in 50 mg/day for 20 days, by mouth. The ratios between the cortisol metabolites tetrahydrocortisol plus allo-tetrahydrocortisol to tetra-hydrocortisone and urinary free cortisol to urinary free cortisone were used to measure the activity of 11 beta-OHSD. Urinary cortisol, cortisone and their metabolites were tested by a gas-chromatographic/mass spectrometric method. Neither acute nor prolonged administration of furosemide did affect the activity of 11 beta-OHSD although the drug was able to modify plasma aldosterone and PRA secretion and to determine hypokalemia. Our results suggest that furosemide does not play a significant role in 11 beta-OHSD modulation in humans, at least at the dosage used in clinical practice. PMID:12373630

  13. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life.

    PubMed

    Benachenhou-Lahfa, N; Forterre, P; Labedan, B

    1993-04-01

    The existence of two families of genes coding for hexameric glutamate dehydrogenases has been deduced from the alignment of 21 primary sequences and the determination of the percentages of similarity between each pair of proteins. Each family could also be characterized by specific motifs. One family (Family I) was composed of gdh genes from six eubacteria and six lower eukaryotes (the primitive protozoan Giardia lamblia, the green alga Chlorella sorokiniana, and several fungi and yeasts). The other one (Family II) was composed of gdh genes from two eubacteria, two archaebacteria, and five higher eukaryotes (vertebrates). Reconstruction of phylogenetic trees using several parsimony and distance methods confirmed the existence of these two families. Therefore, these results reinforced our previously proposed hypothesis that two close but already different gdh genes were present in the last common ancestor to the three Ur-kingdoms (eubacteria, archaebacteria, and eukaryotes). The branching order of the different species of Family I was found to be the same whatever the method of tree reconstruction although it varied slightly according the region analyzed. Similarly, the topological positions of eubacteria and eukaryotes of Family II were independent of the method used. However, the branching of the two archaebacteria in Family II appeared to be unexpected: (1) the thermoacidophilic Sulfolobus solfataricus was found clustered with the two eubacteria of this family both in parsimony and distance trees, a situation not predicted by either one of the contradictory trees recently proposed; and (2) the branching of the halophilic Halobacterium salinarium varied according to the method of tree construction: it was closer to the eubacteria in the maximum parsimony tree and to eukaryotes in distance trees. Therefore, whatever the actual position of the halophilic species, archaebacteria did not appear to be monophyletic in these gdh gene trees. This result questions the

  14. Diagnosing Clostridium difficile-associated diarrhea using enzyme immunoassay: the clinical significance of toxin negativity in glutamate dehydrogenase-positive patients

    PubMed Central

    Yuhashi, Kazuhito; Yagihara, Yuka; Misawa, Yoshiki; Sato, Tomoaki; Saito, Ryoichi; Okugawa, Shu; Moriya, Kyoji

    2016-01-01

    Purpose The enzyme immunoassay (EIA) has lower sensitivity for Clostridium difficile toxins A and B than the polymerase chain reaction in the diagnosis of C. difficile-associated diarrhea (CDAD). Furthermore, toxin positivity with EIA performed on C. difficile isolates from stool cultures may be observed even in patients with EIA glutamate dehydrogenase (GDH)-positive and toxin-negative stool specimens. It is unclear whether such patients should be treated as having CDAD. Methods The present study retrospectively compared patient characteristics, treatment, and diarrhea duration among three groups of patients who underwent stool EIA testing for CDAD diagnosis: a toxin-positive stool group (positive stool group; n=39); a toxin-negative stool/toxin-positive isolate group (discrepant negative/positive group, n=14); and a dual toxin-negative stool and isolate group (dual negative group, n=15). All cases included were confirmed to be GDH positive on EIA test. Results Patients’ backgrounds and comorbidities were not significantly different among three groups. No difference was observed among the three groups with regard to antimicrobial drug use before diarrhea onset. Treatment was received by 82.1% of the positive stool group compared to 7.1% of the discrepant positive/negative group and 0% of the dual negative group, while mean diarrhea duration was 10.6 days compared to 7.9 days (P=0.6006) and 3.4 days (P=0.0312), respectively. Conclusion Even without treatment, patients with toxin-negative stool specimens had shorter diarrhea duration than those with toxin-positive stool specimens even with toxin-positive isolates. These findings may suggest a limited need for CDAD treatment for GDH-positive patients and toxin-negative stool specimens. PMID:27313472

  15. Extrasynaptic Glutamate Receptor Activation as Cellular Bases for Dynamic Range Compression in Pyramidal Neurons

    PubMed Central

    Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.

    2012-01-01

    Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP

  16. Glutamate release from platelets: exocytosis versus glutamate transporter reversal.

    PubMed

    Kasatkina, Ludmila A; Borisova, Tatiana A

    2013-11-01

    Platelets express neuronal and glial glutamate transporters EAAT 1-3 in the plasma membrane and vesicular glutamate transporters VGLUT 1,2 in the membrane of secretory granules. This study is focused on the assessment of non-exocytotic glutamate release, that is, the unstimulated release, heteroexchange and glutamate transporter reversal in platelets. Using the glutamate dehydrogenase assay, the absence of unstimulated release of endogenous glutamate from platelets was demonstrated, even after inhibition of glutamate transporters and cytoplasmic enzyme glutamine synthetase by dl-threo-β-benzyloxyaspartate and methionine sulfoximine, respectively. Depolarization of the plasma membrane by exposure to elevated [K(+)] did not induce the release of glutamate from platelets that was shown using the glutamate dehydrogenase assay and radiolabeled l-[(14)C]glutamate. Glutamate efflux by means of heteroexchange with transportable inhibitor of glutamate transporters dl-threo-β-hydroxyaspartate (dl-THA) was not observed. Furthermore, the protonophore cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP) and inhibitor of V-type H(+)-ATPase bafilomycin A1 also failed to stimulate the release of glutamate from platelets. However, exocytotic release of glutamate from secretory granules in response to thrombin stimulation was not prevented by elevated [K(+)], dl-THA, FCCP and bafilomycin A1. In contrast to nerve terminals, platelets cannot release glutamate in a non-exocytotic manner. Heteroexchange, transporter-mediated and unstimulated release of glutamate are not inherent to platelets. Therefore, platelets may be used as a peripheral marker/model for the analysis of glutamate uptake by brain nerve terminals only (direct function of transporters), whereas the mechanisms of glutamate release are different in platelets and nerve terminals. Glutamate is released by platelets exclusively by means of exocytosis. Also, reverse function of vesicular glutamate transporters of platelets is

  17. Gene Cloning and mRNA Expression of Glutamate Dehydrogenase in the Liver, Brain, and Intestine of the Swamp Eel, Monopterus albus (Zuiew), Exposed to Freshwater, Terrestrial Conditions, Environmental Ammonia, or Salinity Stress

    PubMed Central

    Tok, Chia Y.; Chew, Shit F.; Ip, Yuen K.

    2011-01-01

    The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can undergo long period of emersion, has high environmental and tissue ammonia tolerance, and can survive in brackish water. We obtained a cDNA sequence of glutamate dehydrogenase (gdh), which consisted of a 133-bp 5′ UTR, a complete coding sequence region spanning 1629 bp and a 3′ UTR of approximately 717 bp, from the liver, intestine, and brain of M. albus. The translated Gdh amino acid sequence had 542 residues, and it formed a monophyletic clade with Bostrychus sinensis Gdh1a, Tetraodon nigroviridis Gdh1a, Chaenocephalus aceratus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2, and O. mykiss Gdh1a. One day of exposure to terrestrial conditions or 75 mmol l−1 NH4Cl, but not to water at salinity 20, resulted in a significant increase in mRNA expression of gdh1a and Gdh amination activity in the liver of M. albus. However, exposure to brackish water, but not to terrestrial conditions or 75 mmol l−1 NH4Cl, led to a significant increase in the mRNA expression of gdh1a and Gdh amination activity in the intestine. By contrast, all the three experimental conditions had no significant effects on the mRNA expression of gdh1a in the brain of M. albus, despite a significant decrease in the Gdh amination activity in the brain of fish exposed to 75 mmol l−1 NH4Cl for 6 days. Our results indicate for the first time that the mRNA expression of gdh1a was differentially up-regulated in the liver and intestine of M. albus in response to ammonia toxicity and salinity stress, respectively. The increases in mRNA expression of gdh1a and Gdh amination activity would probably lead to an increase in glutamate production in support of increased glutamine synthesis for the purpose of ammonia detoxification or cell volume regulation under these two different environmental conditions. PMID:22319499

  18. Microbial and xanthine dehydrogenase inhibitory activity of some flavones.

    PubMed

    Khobragade, C N; Bodade, Ragini G; Shinde, M S; Jaju, Deepa R; Bhosle, R B; Dawane, B S

    2008-06-01

    Xanthine dehydrogenase (XDH) is responsible for the pathological condition called Gout. In the present study different flavones synthesized from chalcone were evaluated in vitro for their inhibitory activity. Inhibitory activity of flavones on XDH was determined in terms of inhibition of uric acid synthesis from Xanthine. The enzymatic activity was found maximum at pH 7.5 and temperature 40 degrees C. The flavones 6-chloro-2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(1)) and 6-chloro-7methyl-2-[3-(4-chloro-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one(F(2)),were noncompetitive and competitive inhibitor with Ki values 1.1 and 0.22 respectively. The flavones (F(1)), (F(2)), 6-chloro-2-[3-(4-chloro-phenyl)-1phenyl-1-H-pyrazol-4-yl]-chromen-4-one(F(3)), 8-bromo-6-chloro-2-[3-(4-chloro-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(4)), 2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(5)) and 6-methyl-2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(6)) were also screened for their antimicrobial activity, measured in terms of zone of inhibition. A broad spectrum antifungal activity was obtained against Trichoderma viridae, Candida albicans, Microsporum cannis, Penicillium chrysogenum and Fusarium moniliformae. In case of Aspergillus niger and Aspergillus flavous only spore formation was affected, while antibacterial activity was observed against Staphylococcus aureus, Bacillus subtilis and Serratia marsecens only. The flavones were further analyzed for quantitative structural activity relationship study (QSAR) by using PASS, online software to determine their Pa value. Toxicity and drug relevant properties were revealed by PALLAS software in terms of their molecular weight. Log P values were also studied. The result showed both the F(1) and F(2) flavones as antigout and therefore supports the development of novel drugs for the treatment of gout. PMID:18569337

  19. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  20. Human gastric alcohol dehydrogenase activity: effect of age, sex, and alcoholism.

    PubMed Central

    Seitz, H K; Egerer, G; Simanowski, U A; Waldherr, R; Eckey, R; Agarwal, D P; Goedde, H W; von Wartburg, J P

    1993-01-01

    As various isoenzymes of gastric alcohol dehydrogenase exist and as the effect of sex and age on these enzymes is unknown, this study measured the activity of gastric alcohol dehydrogenase at high and low ethanol concentrations in endoscopic biopsy specimens from a total of 290 patients of various ages and from 10 patients with chronic alcoholism. Gastric alcohol dehydrogenase was also detected by immunohistological tests in biopsy specimens from 40 patients by the use of a polyclonal rabbit antibody against class I alcohol dehydrogenase. A significant correlation was found between the immunohistological reaction assessed by the intensity of the colour reaction in the biopsy specimen and the activity of alcohol dehydrogenase measured at 580 mM ethanol. While alcohol dehydrogenase activity measured at 16 mM ethanol was not significantly affected by age and sex, both factors influenced alcohol dehydrogenase activity measured at 580 mM ethanol. Young women below 50 years of age had significantly lower alcohol dehydrogenase activities in the gastric corpus and antrum when compared with age matched controls (SEM) (6.4 (0.7) v 8.8 (0.6) nmol/min/mg protein; p < 0.001 and 6.0 (1.3) v 9.5 (1.3) nmol/min/mg protein; p < 0.001). Over 50 years of age this sex difference was no longer detectable, as high Km gastric alcohol dehydrogenase activity decreases with age only in men and not in women. In addition, extremely low alcohol dehydrogenase activities have been found in gastric biopsy specimens from young male alcoholics (2.2 (0.5) nmol/min/mg protein), which returned to normal after two to three weeks of abstinence. The activity of alcohol dehydrogenase in the human stomach measured at 580 mM ethanol is decreased in young women, in elderly men, and in the subject with alcoholism. This decrease in alcohol dehydrogenase activity may contribute to the reduced first pass metabolism of ethanol associated with raised ethanol blood concentrations seen in these people. Images Figure

  1. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain.

    PubMed

    Zhang, Zhi; Bassam, Bassam; Thomas, Ajit G; Williams, Monica; Liu, Jinhuan; Nance, Elizabeth; Rojas, Camilo; Slusher, Barbara S; Kannan, Sujatha

    2016-10-01

    Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by

  2. Enzyme-Doped Thin Films and Optical Fiber Sensors for Glutamate

    NASA Astrophysics Data System (ADS)

    Rickus, Jenna L.; Tobin, Allan J.; Zink, Jeffrey I.; Dunn, Bruce S.

    2002-10-01

    Biomolecules encapsulated in porous silicate glass using the sol-gel process form optically transparent materials capable of biorecognition. We are working to design biosensors from these materials for the detection of glutamate, the major excitatory neurotransmitter in the central nervous system. Previously we demonstrated the ability of glutamate dehydrogenase (GDH)-doped sol-gel bulk materials to measure glutamate at varying concentrations. Here we show that GDH can be encapsulated in a thin film while retaining its enzymatic activity. The films are likely to be reaction limited rather than diffusion limited, as the reaction rate at saturating glutamate concentrations varies linearly with enzyme loading. At a given enzyme loading, the film reaction rate increases with increasing glutamate concentration, demonstrating its potential as a glutamate sensor material. In addition we have shown that the enzyme-doped sol-gel glass can be deposited onto the tip of an optical fiber. The fiber is active and responds to the presence of glutamate.

  3. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.

    PubMed Central

    Rinehart, C A; Hubbard, J S

    1976-01-01

    When illuminated, washed cell suspensions of Ectothiorhodospira halophila carry out a concentrative uptake of glutamate or proline. Dark-exposed cells accumulate glutamate but not proline. Proline transport was strongly inhibited by carbonylcyanide-m-chlorophenylhydrazone (CCCP), a proton permeant that uncouples photophosphorylation, and by 2-heptyl-4-hydroxyquinoline-n-oxide (HQNO), an inhibitor of photosynthetic electron transport. A stimulation of proline uptake was effected by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of membrane adenosine triphosphatase (ATPase) which catalyzes the phosphorylation. These findings suggest that the driving force for proline transport is the proton-motive force established during photosynthetic electron transport. Glutamate uptake in the light was inhibited by CCCP and HQNO, but to a lesser extent than was the proline system. DCCD caused a mild inhibition of glutamate uptake in the light, but strongly inhibited the uptake by dark-exposed cells. CCCP strongly inhibited glutamate uptake in the dark. The light-dependent transport of glutamate is apparently driven by the proton-motive force established during photosynthetic electron transport. Hydrolysis of adenosine triphosphate (ATP) by membrane ATPase apparently establishes the proton-motive force to drive the light-independent transport. These conclusions were supported by demonstrating that light- or dark-exposed cells accumulate [3H]triphenylmethylphosphonium, a lipid-soluble cation. Several lines of indirect evidence indicated that the proline system required higher levels of energy than did the glutamate system(s). This could explain why ATP hydrolysis does not drive proline transport in the dark. Membrane vesicles were prepared by the sonic treatment of E. halophila spheroplasts. The vesicles contained active systems for the uptake of proline and glutamate. PMID:956126

  4. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    PubMed Central

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  5. Structural and biochemical characterization of the folyl-poly-γ-l-glutamate hydrolyzing activity of human glutamate carboxypeptidase II.

    PubMed

    Navrátil, Michal; Ptáček, Jakub; Šácha, Pavel; Starková, Jana; Lubkowski, Jacek; Bařinka, Cyril; Konvalinka, Jan

    2014-07-01

    In addition to its well-characterized role in the central nervous system, human glutamate carboxypeptidase II (GCPII; Uniprot ID Q04609) acts as a folate hydrolase in the small intestine, participating in the absorption of dietary polyglutamylated folates (folyl-n-γ-l-glutamic acid), which are the provitamin form of folic acid (also known as vitamin B9 ). Despite the role of GCPII as a folate hydrolase, nothing is known about the processing of polyglutamylated folates by GCPII at the structural or enzymological level. Moreover, many epidemiologic studies on the relationship of the naturally occurring His475Tyr polymorphism to folic acid status suggest that this polymorphism may be associated with several pathologies linked to impaired folate metabolism. In the present study, we report: (a) a series X-ray structures of complexes between a catalytically inactive GCPII mutant (Glu424Ala) and a panel of naturally occurring polyglutamylated folates; (b) the X-ray structure of the His475Tyr variant at a resolution of 1.83 Å; (c) the study of the recently identified arene-binding site of GCPII through mutagenesis (Arg463Leu, Arg511Leu and Trp541Ala), inhibitor binding and enzyme kinetics with polyglutamylated folates as substrates; and (d) a comparison of the thermal stabilities and folate-hydrolyzing activities of GCPII wild-type and His475Tyr variants. As a result, the crystallographic data reveal considerable details about the binding mode of polyglutamylated folates to GCPII, especially the engagement of the arene binding site in recognizing the folic acid moiety. Additionally, the combined structural and kinetic data suggest that GCPII wild-type and His475Tyr variant are functionally identical. PMID:24863754

  6. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control

    PubMed Central

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G.

    2015-01-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2–4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input–output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. PMID:24610117

  7. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    SciTech Connect

    Ly, A.M.; Michaelis, E.K. )

    1991-04-30

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. ({sup 14}C)Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of ({sup 14}C)methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA{sup +} led to a transient increase in the influx of the lipid-permeable anion probe S{sup 14}CN{sup {minus}}. These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the {approximately}69-kDa protein in the function of these ion channels.

  8. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    PubMed

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy. PMID:26677078

  9. Methylmalonic semialdehyde dehydrogenase deficiency: demonstration of defective valine and beta-alanine metabolism and reduced malonic semialdehyde dehydrogenase activity in cultured fibroblasts

    SciTech Connect

    Gray, R.G.; Pollitt, R.J.; Webley, J.

    1987-08-01

    Intact cultured fibroblasts from a child with a new metabolic disorder, thought to be due to a deficiency of methylmalonic semialdehyde dehydrogenase, produced labeled CO/sub 2/ normally from (1-/sup 14/C)valine but not from (2-/sup 14/C)valine. CO/sub 2/ production from labeled beta-alanine was also much reduced, confirming the suspicion that malonic semialdehyde dehydrogenase is also deficient in this condition. An assay for malonic semialdehyde dehydrogenase in cell homogenates showed low activity but it was impossible to assess the degree of reduction.

  10. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors

    PubMed Central

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-01-01

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3−/− but not in mGluR2−/− mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity. PMID:21628565

  11. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    PubMed Central

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  12. Structural basis for an atypical active site of an L-aspartate/glutamate-specific racemase from Escherichia coli.

    PubMed

    Ahn, Jae-Woo; Chang, Jeong Ho; Kim, Kyung-Jin

    2015-12-21

    We determined the crystal structure of EcL-DER to elucidate protein function and substrate specificity. Unlike other asp/glu racemases, EcL-DER has an unbalanced pair of catalytic residues, Thr83/Cys197, at the active site that is crucial for L- to D-unidirectional racemase activity. EcL-DER exhibited racemase activity for both L-glutamate and L-aspartate, but had threefold higher activity for L-glutamate. Based on the structure of the EcL-DER(C197S) mutant in complex with L-glutamate, we determined the binding mode of the L-glutamate substrate in EcL-DER and provide a structural basis for how the protein utilizes L-glutamate as a main substrate. The unidirectionality, despite an equilibrium constant of unity, can be understood in terms of the Haldane relationship. PMID:26555188

  13. Simulated ischaemia-reperfusion conditions increase xanthine dehydrogenase and oxidase activities in rat brain slices.

    PubMed

    Battelli, M G; Buonamici, L; Virgili, M; Abbondanza, A; Contestabile, A

    1998-01-01

    Xanthine dehydrogenase and oxidase activities increased by 87% in rat brain slices after 30 min in vitro ischaemia. A further 41% increase was induced by 30 min simulated reperfusion of ischaemic slices. No conversion from the dehydrogenase to the oxidase activity was observed. The increment of enzyme activity was not due to neosynthesis of the enzyme, since it was not affected by the addition of cycloheximide during the ischaemic incubation. The increased oxygen-dependent form of the enzyme could aggravate the ischaemic brain injury by free radicals production, in particular after reperfusion. PMID:9460697

  14. Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity.

    PubMed

    Barinka, Cyril; Sácha, Pavel; Sklenár, Jan; Man, Petr; Bezouska, Karel; Slusher, Barbara S; Konvalinka, Jan

    2004-06-01

    Glutamate carboxypeptidase II (GCPII) is a membrane peptidase expressed in the prostate, central and peripheral nervous system, kidney, small intestine, and tumor-associated neovasculature. The GCPII form expressed in the central nervous system, termed NAALADase, is responsible for the cleavage of N-acetyl-L-aspartyl-L-glutamate (NAAG) yielding free glutamate in the synaptic cleft, and is implicated in various pathologic conditions associated with glutamate excitotoxicity. The prostate form of GCPII, termed prostate-specific membrane antigen (PSMA), is up-regulated in cancer and used as an effective prostate cancer marker. Little is known about the structure of this important pharmaceutical target. As a type II membrane protein, GCPII is heavily glycosylated. In this paper we show that N-glycosylation is vital for proper folding and subsequent secretion of human GCPII. Analysis of the predicted N-glycosylation sites also provides evidence that these sites are critical for GCPII carboxypeptidase activity. We confirm that all predicted N-glycosylation sites are occupied by an oligosaccharide moiety and show that glycosylation at sites distant from the putative catalytic domain is critical for the NAAG-hydrolyzing activity of GCPII calling the validity of previously described structural models of GCPII into question. PMID:15152093

  15. Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse

    PubMed Central

    Cahill, Emma; Salery, Marine; Vanhoutte, Peter; Caboche, Jocelyne

    2014-01-01

    Despite their distinct targets, all addictive drugs commonly abused by humans evoke increases in dopamine (DA) concentration within the striatum. The main DA Guanine nucleotide binding protein couple receptors (GPCRs) expressed by medium-sized spiny neurons of the striatum are the D1R and D2R, which are positively and negatively coupled to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. These two DA GPCRs are largely segregated into distinct neuronal populations, where they are co-expressed with glutamate receptors in dendritic spines. Direct and indirect interactions between DA GPCRs and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behavior induced by drugs of abuse. A major downstream target of striatal D1R is the extracellular signal-regulated kinase (ERK) kinase pathway. ERK activation by drugs of abuse behaves as a key integrator of D1R and glutamate NMDAR signaling. Once activated, ERK can trigger chromatin remodeling and induce gene expression that permits long-term cellular alterations and drug-induced morphological and behavioral changes. Besides the classical cAMP/PKA pathway, downstream of D1R, recent evidence implicates a cAMP-independent crosstalk mechanism by which the D1R potentiates NMDAR-mediated calcium influx and ERK activation. The mounting evidence of reciprocal modulation of DA and glutamate receptors adds further intricacy to striatal synaptic signaling and is liable to prove relevant for addictive drug-induced signaling, plasticity, and behavior. Herein, we review the evidence that built our understanding of the consequences of this synergistic signaling for the actions of drugs of abuse. PMID:24409148

  16. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration

    PubMed Central

    Van Vranken, Jonathan G.; Bricker, Daniel K.; Dephoure, Noah; Gygi, Steven P.; Cox, James E.; Thummel, Carl S.; Rutter, Jared

    2014-01-01

    SUMMARY Succinate dehydrogenase (SDH) occupies a central place in cellular energy production, linking the tricarboxylic cycle with the electron transport chain. As a result, a subset of cancers and neuromuscular disorders result from mutations affecting any of the four SDH structural subunits or either of two known SDH assembly factors. Herein we characterize a novel evolutionarily conserved SDH assembly factor designated Sdh8/SDHAF4, using yeast, Drosophila, and mammalian cells. Sdh8 interacts specifically with the catalytic Sdh1 subunit in the mitochondrial matrix, facilitating its association with Sdh2 and the subsequent assembly of the SDH holocomplex. These roles for Sdh8 are critical for preventing motility defects and neurodegeneration in Drosophila as well as the excess ROS generated by free Sdh1. These studies provide insights into the mechanisms by which SDH is assembled and raise the possibility that some forms of neuromuscular disease may be associated with mutations that affect this SDH assembly factor. PMID:24954416

  17. Relationship of lactate dehydrogenase activity to body measurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to examine 1) relationships between lactate dehydrogenase (LDH) activity and body measurements of grazing beef cows, and 2) the association between maternal LDH activity in late gestation and subsequent calf birth weight (BRW), hip height (HH) at weaning, and adjusted weaning weight ...

  18. Relationship of lactate dehydrogenase activity with body measeurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus x Charolais cows (n = 87) and their Angus-sired, spring-born calves (n = 86) were utilized to examine relationships between lactate dehydrogenase (LDH) activity and body measurements of beef cows; and the relationship between maternal LDH activity in late gestation and subsequent calf birth we...

  19. Amino ketone formation and aminopropanol-dehydrogenase activity in rat-liver preparations

    PubMed Central

    Turner, J. M.; Willetts, A. J.

    1967-01-01

    1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol

  20. Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity.

    PubMed

    Sinclair, R; Reid, G A; Chapman, S K

    1998-07-01

    Flavocytochrome b2 from Saccharomyces cerevisiae is an l-lactate dehydrogenase which exhibits only barely detectable activity levels towards another 2-hydroxyacid, l-mandelate. Using protein engineering methods we have altered the active site of flavocytochrome b2 and successfully introduced substantial mandelate dehydrogenase activity into the enzyme. Changes to Ala-198 and Leu-230 have significant effects on the ability of the enzyme to utilize l-mandelate as a substrate. The double mutation of Ala-198-->Gly and Leu-230-->Ala results in an enzyme with a kcat value (25 degrees C) with L-mandelate of 8.5 s-1, which represents an increase of greater than 400-fold over the wild-type enzyme. Perhaps more significantly, the mutant enzyme has a catalytic efficiency (as judged by kcat/Km values) that is 6-fold higher with l-mandelate than it is with L-lactate. Closer examination of the X-ray structure of S. cerevisiae flavocytochrome b2 led us to conclude that one of the haem propionate groups might interfere with the binding of L-mandelate at the active site of the enzyme. To test this idea, the activity with l-mandelate of the independently expressed flavodehydrogenase domain (FDH), was examined and found to be higher than that seen with the wild-type enzyme. In addition, the double mutation of Ala-198-->Gly and Leu-230-->Ala introduced into FDH produced the greatest mandelate dehydrogenase activity increase, with a kcat value more than 700-fold greater than that seen with the wild-type holoenzyme. In addition, the enzyme efficiency (kcat/Km) of this mutant enzyme was more than 20-fold greater with L-mandelate than with l-lactate. We have therefore succeeded in constructing an enzyme which is now a better mandelate dehydrogenase than a lactate dehydrogenase. PMID:9639570

  1. Synthesis and antiproliferative activity of glutamic acid-based dipeptides.

    PubMed

    Silveira-Dorta, Gastón; Martín, Víctor S; Padrón, José M

    2015-08-01

    A small and focused library of 22 dipeptides derived from N,N-dibenzylglutamic acid α- and γ-benzyl esters was prepared in a straightforward manner. The evaluation of the antiproliferative activity in the human solid tumor cell lines HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast), and WiDr (colon) provided γ-glutamyl methionine (GI50 = 6.0-41 μM) and α-glutamyl proline (GI50 = 7.5-18 μM) as lead compounds. In particular, glutamyl serine and glutamyl proline dipeptides were more active in the resistant cancer cell line WiDr than the conventional anticancer drugs cisplatin and etoposide. Glutamyl tryptophan dipeptides did not affect cell growth of HBL-100, while in T-47D cells, proliferation was inhibited. This result might be attributed to the inhibition of the ATB(0,+) transporter. PMID:25900811

  2. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration.

    PubMed

    Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter

    2016-08-01

    During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. PMID:27016016

  3. CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors.

    PubMed

    Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly

    2016-02-01

    Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. PMID:26776730

  4. Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology.

    PubMed

    Rodrigues, Marília Danyelle Nunes; Seminotti, Bianca; Amaral, Alexandre Umpierrez; Leipnitz, Guilhian; Goodman, Stephen Irwin; Woontner, Michael; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2015-12-15

    Glutaric aciduria type I (GA I) is biochemically characterized by accumulation of glutaric and 3-hydroxyglutaric acids in body fluids and tissues, particularly in the brain. Affected patients show progressive cortical leukoencephalopathy and chronic degeneration of the basal ganglia whose pathogenesis is still unclear. In the present work we investigated parameters of bioenergetics and redox homeostasis in various cerebral structures (cerebral cortex, striatum and hippocampus) and heart of adult wild type (Gcdh(+/+)) and glutaryl-CoA dehydrogenase deficient knockout (Gcdh(-/-)) mice fed a baseline chow. Oxidative stress parameters were also measured after acute lysine overload. Finally, mRNA expression of NMDA subunits and GLT1 transporter was determined in cerebral cortex and striatum of these animals fed a baseline or high lysine (4.7%) chow. No significant alterations of bioenergetics or redox status were observed in these mice. In contrast, mRNA expression of the NR2B glutamate receptor subunit and of the GLT1 glutamate transporter was higher in cerebral cortex of Gcdh(-/-) mice. Furthermore, NR2B expression was markedly elevated in striatum of Gcdh(-/-) animals receiving chronic Lys overload. These data indicate higher susceptibility of Gcdh(-/-) mice to excitotoxic damage, implying that this pathomechanism may contribute to the cortical and striatum alterations observed in GA I patients. PMID:26671102

  5. The hormonal regulation of hepatic microsomal 11beta-hydroxysteroid dehydrogenase activity in the rat.

    PubMed

    Lax, E R; Ghraf, R; Schriefers, H

    1978-10-01

    Hepatic microsomal 11beta-hydroxysteroid dehydrogenase activity is higher in male than in female rat liver. Gonadectomy on day 25 of life only affects the activity in the adult male animal, causing a decrease towards the normal female level. Administration of testosterone to gonadectomized rats of either sex causes the induction of typical male activity levels. On the basis of these experiments, this enzyme activity may be classified as an drogen-dependent. However, 11beta-hydroxysteroid dehydrogenase differs from other known androgen-dependent activities in that administration of oestradiol to gonadectomized animals of either sex causes a further significant repression of the activity to levels close to the limits of detection. Hypophysectomy on day 50 of life does not affect the activity in 75 day-old male rats, but causes the appearance of typically male activity levels in females. These results indicate that the hypophysis exerts a repressive influence on hepatic 11beta-hydroxysteroid dehydrogenase in female rats. The facts that this activity is not influenced by androgen or oestrogen administration once the pituitary has been removed demonstrates the obligatory role of the hypophysis for sex hormone action. PMID:696183

  6. Carbon monoxide and Ca2+-activated K+ channels in cerebral arteriolar responses to glutamate and hypoxia in newborn pigs

    PubMed Central

    Kanu, Alie; Leffler, Charles W.

    2008-01-01

    Large conductance calcium activated (KCa) channels regulate the physiological functions of many tissues, including cerebrovascular smooth muscle. L-glutamic acid (glutamate) is the principal excitatory neurotransmitter in the central nervous system and oxygen tension is a dominant local regulator of vascular tone. In vivo, glutamate and hypoxia dilate newborn pig cerebral arterioles and both dilations are blocked by inhibition of CO production. CO dilates cerebral arterioles by activating KCa channels. Therefore, the present study was designed to investigate effects of glutamate and hypoxia on cerebral CO production and the role of KCa channels in the cerebral arteriolar dilations to glutamate and hypoxia. In the presence of iberiotoxin or paxilline that block dilation to the KCa channel opener, NS1619, neither CO nor glutamate dilated pial arterioles. Conversely, neither paxilline nor iberiotoxin inhibited dilation to acute severe or moderate prolonged hypoxia. Both glutamate and hypoxia increased CSF CO concentration. Iberiotoxin that blocked dilation to glutamate did not attenuate the increase in CSF CO. The guanylyl cyclase inhibitor, 1H–(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one (ODQ), that blocked dilation to sodium nitroprusside did not inhibit dilation to hypoxia. These data suggest that dilation of newborn pig pial arterioles to glutamate is mediated by activation of KCa channels consistent with the intermediary signal being CO. Surprisingly, although heme oxygenase (HO) inhibition attenuates dilation to hypoxia, hypoxia increases CSF CO concentration, and KCa channel antagonists block dilation to CO, neither KCa channel blockers nor ODQ altered dilation to hypoxia suggesting the contribution of the HO/CO system to hypoxia-induced dilation is not by stimulating vascular smooth muscle KCa channels or guanylyl cyclase. PMID:17766483

  7. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease.

    PubMed

    Haas, Laura T; Strittmatter, Stephen M

    2016-08-12

    The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling. PMID:27325698

  8. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    PubMed

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (p<0.05, corrected) to sad versus shape contrast. For the anger versus shape contrast, there was a significant negative correlation between age and BOLD signal in pregenual ACC (p<0.05, corrected) and a positive correlation between MdPFC glutamate concentration (pre-task) and BOLD signal in pregenual ACC (p<0.05, corrected). Our findings are the first to provide insight into relationships between MdPFC neurotransmitter concentrations and ACC BOLD signal, and could further understanding of molecular mechanisms underlying emotion processing in healthy and mood-disordered individuals. PMID:24973815

  9. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  10. Activation of hepatic branched-chain 2-oxoacid dehydrogenase by rat liver cytosolic supernatant.

    PubMed

    Hauschildt, S

    1986-10-29

    Hepatic branched-chain 2-oxoacid dehydrogenase is inactivated by nutritional alterations. Reactivation occurs during preincubation of intact mitochondria in the presence of rat liver cytosolic supernatant. Cytosolic supernatant contains two factors capable of reactivating the enzyme. On gel-filtration (Sephadex G-100), one factor (AF1) elutes in the molecular range of 35,000-40,000 and the other factor (AF2) elutes slightly later than inorganic phosphate. AF2 is stable against heat denaturation and treatment with proteinases. It is destroyed by alkaline phosphatase and in the presence of Ap5A, atractyloside, CaCl2 and NaF its stimulatory effect on branched-chain 2-oxoacid dehydrogenase activity is abolished. Inhibition of activation by NaF suggests that a phosphatase might be involved in the activation process. PMID:3768411

  11. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling.

    PubMed

    Lindén, Pernilla; Keech, Olivier; Stenlund, Hans; Gardeström, Per; Moritz, Thomas

    2016-05-01

    Mitochondrial malate dehydrogenase (mMDH) catalyses the interconversion of malate and oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Its activity is important for redox control of the mitochondrial matrix, through which it may participate in regulation of TCA cycle turnover. In Arabidopsis, there are two isoforms of mMDH. Here, we investigated to which extent the lack of the major isoform, mMDH1 accounting for about 60% of the activity, affected leaf metabolism. In air, rosettes of mmdh1 plants were only slightly smaller than wild type plants although the fresh weight was decreased by about 50%. In low CO2 the difference was much bigger, with mutant plants accumulating only 14% of fresh weight as compared to wild type. To investigate the metabolic background to the differences in growth, we developed a (13)CO2 labelling method, using a custom-built chamber that enabled simultaneous treatment of sets of plants under controlled conditions. The metabolic profiles were analysed by gas- and liquid- chromatography coupled to mass spectrometry to investigate the metabolic adjustments between wild type and mmdh1 The genotypes responded similarly to high CO2 treatment both with respect to metabolite pools and (13)C incorporation during a 2-h treatment. However, under low CO2 several metabolites differed between the two genotypes and, interestingly most of these were closely associated with photorespiration. We found that while the glycine/serine ratio increased, a concomitant altered glutamine/glutamate/α-ketoglutarate relation occurred. Taken together, our results indicate that adequate mMDH activity is essential to shuttle reductants out from the mitochondria to support the photorespiratory flux, and strengthen the idea that photorespiration is tightly intertwined with peripheral metabolic reactions. PMID:26889011

  12. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling

    PubMed Central

    Lindén, Pernilla; Keech, Olivier; Stenlund, Hans; Gardeström, Per; Moritz, Thomas

    2016-01-01

    Mitochondrial malate dehydrogenase (mMDH) catalyses the interconversion of malate and oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Its activity is important for redox control of the mitochondrial matrix, through which it may participate in regulation of TCA cycle turnover. In Arabidopsis, there are two isoforms of mMDH. Here, we investigated to which extent the lack of the major isoform, mMDH1 accounting for about 60% of the activity, affected leaf metabolism. In air, rosettes of mmdh1 plants were only slightly smaller than wild type plants although the fresh weight was decreased by about 50%. In low CO2 the difference was much bigger, with mutant plants accumulating only 14% of fresh weight as compared to wild type. To investigate the metabolic background to the differences in growth, we developed a 13CO2 labelling method, using a custom-built chamber that enabled simultaneous treatment of sets of plants under controlled conditions. The metabolic profiles were analysed by gas- and liquid- chromatography coupled to mass spectrometry to investigate the metabolic adjustments between wild type and mmdh1. The genotypes responded similarly to high CO2 treatment both with respect to metabolite pools and 13C incorporation during a 2-h treatment. However, under low CO2 several metabolites differed between the two genotypes and, interestingly most of these were closely associated with photorespiration. We found that while the glycine/serine ratio increased, a concomitant altered glutamine/glutamate/α-ketoglutarate relation occurred. Taken together, our results indicate that adequate mMDH activity is essential to shuttle reductants out from the mitochondria to support the photorespiratory flux, and strengthen the idea that photorespiration is tightly intertwined with peripheral metabolic reactions. PMID:26889011

  13. The dihydrolipoamide dehydrogenase of Aeromonas caviae ST exhibits NADH-dependent tellurite reductase activity.

    PubMed

    Castro, Miguel E; Molina, Roberto; Díaz, Waldo; Pichuantes, Sergio E; Vásquez, Claudio C

    2008-10-10

    Potassium tellurite (K(2)TeO(3)) is extremely toxic for most forms of life and only a limited number of organisms are naturally resistant to the toxic effects of this compound. Crude extracts prepared from the environmental isolate Aeromonas caviae ST catalize the in vitro reduction of TeO32- in a NADH-dependent reaction. Upon fractionation by ionic exchange column chromatography three major polypeptides identified as the E1, E2, and E3 components of the pyruvate dehydrogenase (PDH) complex were identified in fractions exhibiting tellurite-reducing activity. Tellurite reductase and pyruvate dehydrogenase activities co-eluted from a Sephadex gel filtration column. To determine which component(s) of the PDH complex has tellurite reductase activity, the A. caviae ST structural genes encoding for E1 (aceE), E2 (aceF), and E3 (lpdA) were independently cloned and expressed in Escherichia coli and their gene products purified. Results indicated that tellurite reductase activity lies almost exclusively in the E3 component, dihydrolipoamide dehydrogenase. The E3 component of the PDH complex from E. coli, Zymomonas mobilis, Streptococcus pneumoniae, and Geobacillus stearothermophilus also showed NADH-dependent tellurite reductase in vitro suggesting that this enzymatic activity is widely distributed among microorganisms. PMID:18675788

  14. Multichannel Simultaneous Determination of Activities of Lactate Dehydrogenase

    SciTech Connect

    Ma, L.

    2000-09-12

    It is very important to find the best conditions for some enzymes to do the best catalysis in current pharmaceutical industries. Based on the results above, we could say that this set-up could be widely used in finding the optimal condition for best enzyme activity of a certain enzyme. Instead of looking for the best condition for enzyme activity by doing many similar reactions repeatedly, we can complete this assignment with just one run if we could apply enough conditions.

  15. Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Roy, R. R.; Edgerton, V. R.

    1995-01-01

    The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data

  16. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    PubMed Central

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  17. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.

    PubMed

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  18. Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons.

    PubMed

    Ho, Yuen-Shan; Yu, Man-Shan; Yik, Suet-Yi; So, Kwok-Fai; Yuen, Wai-Hung; Chang, Raymond Chuen-Chung

    2009-12-01

    Glutamate excitotoxicity is involved in many neurodegenerative diseases including Alzheimer's disease (AD). Attenuation of glutamate toxicity is one of the therapeutic strategies for AD. Wolfberry (Lycium barbarum) is a common ingredient in oriental cuisines. A number of studies suggest that wolfberry has anti-aging properties. In recent years, there is a trend of using dried Wolfberry as food supplement and health product in UK and North America. Previously, we have demonstrated that a fraction of polysaccharide from Wolfberry (LBA) provided remarkable neuroprotective effects against beta-amyloid peptide-induced cytotoxicity in primary cultures of rat cortical neurons. To investigate whether LBA can protect neurons from other pathological factors such as glutamate found in Alzheimer brain, we examined whether it can prevent neurotoxicity elicited by glutamate in primary cultured neurons. The glutamate-induced cell death as detected by lactate dehydrogenase assay and caspase-3-like activity assay was significantly reduced by LBA at concentrations ranging from 10 to 500 microg/ml. Protective effects of LBA were comparable to memantine, a non-competitive NMDA receptor antagonist. LBA provided neuroprotection even 1 h after exposure to glutamate. In addition to glutamate, LBA attenuated N-methyl-D-aspartate (NMDA)-induced neuronal damage. To further explore whether LBA might function as antioxidant, we used hydrogen peroxide (H(2)O(2)) as oxidative stress inducer in this study. LBA could not attenuate the toxicity of H(2)O(2). Furthermore, LBA did not attenuate glutamate-induced oxidation by using NBT assay. Western blot analysis indicated that glutamate-induced phosphorylation of c-jun N-terminal kinase (JNK) was reduced by treatment with LBA. Taken together, LBA exerted significant neuroprotective effects on cultured cortical neurons exposed to glutamate. PMID:19499323

  19. Effect of amines as activators on the alcohol-oxidizing activity of pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenase.

    PubMed

    Takeda, Kouta; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2014-01-01

    Pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenases (PQQ-ADH) require ammonia or primary amines as activators in in vitro assays with artificial electron acceptors. We found that PQQ-ADH from Pseudomonas putida KT2440 (PpADH) was activated by various primary amines, di-methylamine, and tri-methylamine. The alcohol oxidation activity of PpADH was strongly enhanced and the affinity for substrates was also improved by pentylamine as an activator. PMID:25229857

  20. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity. PMID:27443004

  1. Metabotropic glutamate receptor 5, but not 1, modulates NMDA receptor-mediated activation of neuronal nitric oxide synthase.

    PubMed

    Llansola, Marta; Felipo, Vicente

    2010-03-01

    In cerebellar neurons in culture, activation of group I metabotropic glutamate receptors (mGluRs) prevents glutamate and NMDA-induced neuronal death, indicating that it interferes with the excitotoxic mechanisms leading to death. However, it is not known which step of these mechanisms is affected by mGluRs. The aims of this work were to assess: (a) whether activation of group I mGluRs (mGluR1 or mGluR5) impairs NMDA-induced activation of the glutamate-nitric oxide-cGMP pathway; (b) which mGluR (1 or 5) is responsible for this impairment and (c) whether impairment of the pathway occurs at the level of activation of soluble guanylate cyclase by nitric oxide or of activation of neuronal nitric oxide synthase (nNOS) by NMDA. It is shown that activation of mGluR1 enhances the function of the glutamate-nitric oxide-cGMP pathway by increasing activation of soluble guanylate cyclase by nitric oxide. In contrast, mGluR5 activation inhibits the glutamate-nitric oxide-cGMP pathway by reducing NMDA-induced activation of nNOS. This is due to reduced NMDA-induced increase in cAMP, reduced activation of Akt by cAMP and of nNOS by Akt. The impairment of activation of the glutamate-NO-cGMP pathway by activation of mGluR5 would contribute to its neuroprotective effect against excitotoxicity in cerebellar neurons in culture. PMID:20043967

  2. Evolutionary origins of retinoid active short-chain dehydrogenases/reductases of SDR16C family.

    PubMed

    Belyaeva, Olga V; Chang, Chenbei; Berlett, Michael C; Kedishvili, Natalia Y

    2015-06-01

    Vertebrate enzymes that belong to the 16C family of short-chain dehydrogenases/reductases (SDR16C) were shown to play an essential role in the control of retinoic acid (RA) levels during development. To trace the evolution of enzymatic function of SDR16C family, and to examine the origins of the pathway for RA biosynthesis from vitamin A, we identified putative SDR16C enzymes through the extensive search of available genome sequencing data in a subset of species representing major metazoan phyla. The phylogenetic analysis revealed that enzymes from protostome, non-chordate deuterostome and invertebrate chordate species are found in three clades of SDR16C family containing retinoid active enzymes, which are retinol dehydrogenase 10 (RDH10), retinol dehydrogenases E2 (RDHE2) and RDHE2-similar, and dehydrogenase reductase (SDR family) member 3 (DHRS3). For the initial functional analysis, we cloned RDH10- and RDHE2-related enzymes from the early developmental stages of a non-chordate deuterostome, green sea urchin Lytechinus variegatus, and an invertebrate chordate, sea squirt Ciona intestinalis. In situ hybridization revealed that these proteins are expressed in a pattern relevant to development, while assays performed on proteins expressed in mammalian cell culture showed that they possess retinol-oxidizing activity as their vertebrate homologs. The existence of invertebrate homologs of DHRS3 was inferred from the analysis of phylogeny and cofactor-binding residues characteristic of preference for NADP(H). The presence of invertebrate homologs in the DHRS3 group of SDR16C is interesting in light of the complex mutually activating interaction, which we have recently described for human RDH10 and DHRS3 enzymes. Further functional analysis of these homologs will establish whether this interaction evolved to control retinoid homeostasis only in vertebrates, or is also conserved in pre-vertebrates. PMID:25451586

  3. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia. PMID:26946972

  4. Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor.

    PubMed

    Gorostiza, Pau; Volgraf, Matthew; Numano, Rika; Szobota, Stephanie; Trauner, Dirk; Isacoff, Ehud Y

    2007-06-26

    The analysis of cell signaling requires the rapid and selective manipulation of protein function. We have synthesized photoswitches that covalently modify target proteins and reversibly present and withdraw a ligand from its binding site due to photoisomerization of an azobenzene linker. We describe here the properties of a glutamate photoswitch that controls an ion channel in cells. Affinity labeling and geometric constraints ensure that the photoswitch controls only the targeted channel, and enables spatial patterns of light to favor labeling in one location over another. Photoswitching to the activating state places a tethered glutamate at a high (millimolar) effective local concentration near the binding site. The fraction of active channels can be set in an analog manner by altering the photostationary state with different wavelengths. The bistable photoswitch can be turned on with millisecond-long pulses at one wavelength, remain on in the dark for minutes, and turned off with millisecond long pulses at the other wavelength, yielding sustained activation with minimal irradiation. The system provides rapid, reversible remote control of protein function that is selective without orthogonal chemistry. PMID:17578923

  5. A sensitive radioisotopic method for the measurement of NAD(P)H: Its application to the assay of metabolites and enzymatic activities

    SciTech Connect

    Sener, A.; Malaisse, W.J. )

    1990-05-01

    A radioisotopic method for the assay of NADH or NADPH is presented, which is based on the conversion of 2-(U-{sup 14}C)ketoglutarate to {sup 14}C-labeled glutamate in the reaction catalyzed by glutamate dehydrogenase. The efficiency of the method is close to 75%, its precision (coefficient of variation) close to 5%, and its sensitivity close to 0.1 pmol/sample. This simple and rapid method can be applied to the measurement of several metabolites and enzymatic activities. In the present study, its application to the assay of sorbitol, 3-hydroxybutyrate, glutamate dehydrogenase, 3-hydroxybutyrate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase is documented.

  6. Activation of hepatic acetyl-CoA carboxylase by glutamate and Mg2+ is mediated by protein phosphatase-2A.

    PubMed Central

    Gaussin, V; Hue, L; Stalmans, W; Bollen, M

    1996-01-01

    The activation of hepatic acetyl-CoA carboxylase by Na(+)-cotransported amino acids such as glutamine has been attributed mainly to the stimulation of its dephosphorylation by accumulating dicarboxylic acids, e.g. glutamate. We report here on a hepatic species of protein phosphatase-2A that activates acetyl-CoA carboxylase in the presence of physiological concentrations of glutamate or Mg2+ and, under these conditions, accounts for virtually all the hepatic acetyl-CoA carboxylase phosphatase activity. Glutamate also stimulated the dephosphorylation of a synthetic pentadecapeptide encompassing the Ser-79 phosphorylation site of rat acetyl-CoA carboxylase, but did not affect the dephosphorylation of other substrates such as phosphorylase. Conversely, protamine, which stimulated the dephosphorylation of phosphorylase, inhibited the activation of acetyl-CoA carboxylase. A comparison with various species of muscle protein phosphatase-2A showed that the stimulatory effects of glutamate and Mg2+ on the acetyl-CoA carboxylase phosphatase activity are largely mediated by the regulatory A subunit. Glutamate and Mg2+ emerge from our study as novel regulators of protein phosphatase-2A when acting on acetyl-CoA carboxylase. PMID:8645208

  7. Activity dependent internalization of the glutamate transporter GLT-1 mediated by β-arrestin 1 and ubiquitination.

    PubMed

    Ibáñez, Ignacio; Díez-Guerra, F Javier; Giménez, Cecilio; Zafra, Francisco

    2016-08-01

    GLT-1 is the main glutamate transporter in the brain and undergoes trafficking processes that control its concentration on the cell surface thereby shaping glutamatergic neurotransmission. We have investigated how the traffic of GLT-1 is regulated by transporter activity. We report that internalization of GLT-1 from the cell surface is accelerated by transportable substrates like glutamate or aspartate, as well as by the transportable inhibitor L-trans-2,4-PDC, but not by the non-substrate inhibitor WAY 213613 in primary mixed cultures and in transiently transfected HEK293 cells. Analysis of the mechanism of endocytosis in HEK293 cells revealed that glutamate promoted the association with the transporter of the adaptor protein β-arrestin and the ubiquitin ligase Nedd4-2. The addition of glutamate is accompanied by an increase in the transporter ubiquitination, and the internalization is suppressed by an ubiquitination inhibitor (PYR41), and in a mutant defective in C-terminal lysines. The glutamate triggered endocytosis was also suppressed by siRNA for β-arrestin. This regulatory mechanism might be relevant in controlling the amount of transporter on the cell surface in conditions such as ischemia or traumatic brain injury, where extracellular concentrations of glutamate are persistently elevated. PMID:27044663

  8. Escherichia coli d-Malate Dehydrogenase, a Generalist Enzyme Active in the Leucine Biosynthesis Pathway*

    PubMed Central

    Vorobieva, Anastassia A.; Khan, Mohammad Shahneawz; Soumillion, Patrice

    2014-01-01

    The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of d-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on d-malate as a carbon source, the d-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB− strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (l(+)-tartrate, d-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution. PMID:25160617

  9. Inhibition of mammillary body neurons by direct activation of Group II metabotropic glutamate receptors

    PubMed Central

    Lee, Charles C.

    2016-01-01

    The mammillary body is an important neural component of limbic circuitry implicated in learning and memory. Excitatory and inhibitory inputs, primarily mediated by glutamate and gamma-amino butyric acid (GABA), respectively, converge and integrate in this region, before sending information to the thalamus. One potentially overlooked mechanism for inhibition of mammillary body neurons is through direct activation of Group II metabotropic glutamate receptors (mGluRs). Here, whole-cell patch clamp recordings of in vitro slice preparations containing the mammillary body nuclei of the mouse were employed to record responses to bath application of pharmacological agents to isolate the direct effect of activating Group II mGluRs. Application of the Group II mGluR specific agonist, APDC, resulted in a hyperpolarization of the membrane potential in mammillary body neurons, likely resulting from the opening of a potassium conductance. These data suggest that glutamatergic inputs to the mammillary body may be attenuated via Group II mGluRs and implicates a functional role for these receptors in memory-related circuits and broadly throughout the central nervous system. PMID:27390777

  10. Neuronal activity mediated regulation of glutamate transporter GLT-1 surface diffusion in rat astrocytes in dissociated and slice cultures.

    PubMed

    Al Awabdh, Sana; Gupta-Agarwal, Swati; Sheehan, David F; Muir, James; Norkett, Rosalind; Twelvetrees, Alison E; Griffin, Lewis D; Kittler, Josef T

    2016-07-01

    The astrocytic GLT-1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live-cell imaging to study the mechanisms regulating GLT-1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP-time lapse imaging, we show that GLT-1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity-dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT-1 is more stable than diffuse GLT-1 and that glutamate increases GLT-1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT-1 isoforms expressed in the brain, GLT-1a and GLT-1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT-1b more so. GLT-1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT-1 isoforms. Altogether, these data reveal that astrocytic GLT-1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252-1264. PMID:27189737

  11. Fluorescence imaging of glutamate release in neurons

    SciTech Connect

    Wang, Ziqiang; Yeung, Edward S.

    1999-12-01

    A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with charge-coupled device (CCD) imaging is down to {mu}M levels of glutamate with reasonable response time ({approx}30 s). The standard glutamate test shows a linear response over 3 orders of magnitude, from {mu}M to 0.1 mM range. The in vitro monitoring of glutamate release from cultured neuron cells demonstrated excellent spatial and temporal resolution. (c) 1999 Society for Applied Spectroscopy.

  12. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  13. Renal sympathetic nerve activity is increased in monosodium glutamate induced hyperadipose rats.

    PubMed

    da Silva Mattos, Alexandro Márcio; Xavier, Carlos Henrique; Karlen-Amarante, Marlusa; da Cunha, Natália Veronez; Fontes, Marco Antonio Peliky; Martins-Pinge, Marli Cardoso

    2012-08-01

    The literature suggests that both obesity and hypertension are associated with increased sympathetic nerve activity. In the present study we evaluated the renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) in hyperadipose rats induced by neonatal administration of monosodium glutamate (MSG). Neonatal Wistar male rats were injected with MSG (4 mg/g body weight ID) or equimolar saline (control) for 5 days. At 90th day, all rats were anesthetized (urethane 1.4 g/kg) and prepared for MAP, HR and renal sympathetic nerve activity recordings. The anesthetized MSG rats presented baseline hypertension and increased baseline RSNA compared with control. Our results suggest the involvement of the renal sympathetic nervous system in the physiopathology of the MSG obesity. PMID:22705582

  14. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme. PMID:24846734

  15. Neuronal activity mediated regulation of glutamate transporter GLT‐1 surface diffusion in rat astrocytes in dissociated and slice cultures

    PubMed Central

    Al Awabdh, Sana; Gupta‐Agarwal, Swati; Sheehan, David F.; Muir, James; Norkett, Rosalind; Twelvetrees, Alison E.; Griffin, Lewis D.

    2016-01-01

    The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264 PMID:27189737

  16. Clostridium difficile Testing Algorithms Using Glutamate Dehydrogenase Antigen and C. difficile Toxin Enzyme Immunoassays with C. difficile Nucleic Acid Amplification Testing Increase Diagnostic Yield in a Tertiary Pediatric Population

    PubMed Central

    McGowan, Karin L.

    2012-01-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined as positivity by CCNA or positivity by LAMP plus another test (GDH, CDT, or the Premier C. difficile toxin A and B enzyme immunoassay [P-EIA]). A total of 141 specimens from 141 patients yielded 27 TPs and 19% prevalence. Sensitivity, specificity, positive predictive value, and negative predictive value were 56%, 100%, 100%, and 90% for P-EIA and 81%, 100%, 100%, and 96% for both algorithm 1 and algorithm 2. In summary, GDH-based algorithms detected C. difficile infections with superior sensitivity compared to P-EIA. The algorithms allowed immediate reporting of half of all TPs, but LAMP or CCNA was required to confirm the presence or absence of toxigenic C. difficile in GDH-positive/CDT-negative specimens. PMID:22259201

  17. Purification and Partial Kinetic and Physical Characterization of Two Chloroplast-Localized NADP-Specific Glutamate Dehydrogenase Isoenzymes and Their Preferential Accumulation in Chlorella sorokiniana Cells Cultured at Low or High Ammonium Levels 1

    PubMed Central

    Bascomb, Newell F.; Schmidt, Robert R.

    1987-01-01

    Two ammonium-inducible, chloroplast-localized NADP-specific glutamate dehydrogenase isoenzymes were purified to homogeneity from Chlorella sorokiniana. These isoenzymes were homopolymers of either α- or β-subunits with molecular weights of 55,500 or 53,000, respectively. The α-isoenzyme was preferentially induced at low ammonium concentrations (2 millimolar or lower), whereas only the β-isoenzyme accumulated after cells were fully induced (120 minutes) at high ammonium concentrations (29 millimolar). Purification of isoenzymes was achieved by (NH4)2SO4 fractionation, gel-filtration, anion-exchange fast protein liquid chromatography, and affinity chromatography. The α- and β-isoenzymes were separated by their differential binding to Type 4 nicotinamide adenine dinucleotide phosphate-Sepharose. Both isoenzymes bound to an antibody affinity column to which purified antibody (prepared against β-isoenzyme) was covalently attached. Peptide mapping of the subunits showed them to have a high degree of sequence homology. Both subunits were synthesized in vitro from precursor protein(s) with a molecular weight of 58,500. Although the subunits have similar chemical, physical, and antigenic properties, their holoenzymes have strikingly different ammonium Km values. The ammonium Km of the β-isoenzyme remained constant at approximately 75 millimolar, whereas this Km of the α-isoenzyme ranged from 0.02 to 3.5 millimolar, depending upon nicotinamide adenine dinucleotide phosphate concentration. Images Fig. 1 Fig. 2 Fig. 7 Fig. 8 PMID:16665219

  18. Clostridium difficile testing algorithms using glutamate dehydrogenase antigen and C. difficile toxin enzyme immunoassays with C. difficile nucleic acid amplification testing increase diagnostic yield in a tertiary pediatric population.

    PubMed

    Ota, Kaede V; McGowan, Karin L

    2012-04-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined as positivity by CCNA or positivity by LAMP plus another test (GDH, CDT, or the Premier C. difficile toxin A and B enzyme immunoassay [P-EIA]). A total of 141 specimens from 141 patients yielded 27 TPs and 19% prevalence. Sensitivity, specificity, positive predictive value, and negative predictive value were 56%, 100%, 100%, and 90% for P-EIA and 81%, 100%, 100%, and 96% for both algorithm 1 and algorithm 2. In summary, GDH-based algorithms detected C. difficile infections with superior sensitivity compared to P-EIA. The algorithms allowed immediate reporting of half of all TPs, but LAMP or CCNA was required to confirm the presence or absence of toxigenic C. difficile in GDH-positive/CDT-negative specimens. PMID:22259201

  19. Modulation of pyruvate dehydrogenase kinase activity in cultured hepatocytes by glucagon and n-octanoate.

    PubMed Central

    Fatania, H R; Vary, T C; Randle, P J

    1986-01-01

    The activity of pyruvate dehydrogenase kinase in extracts of mitochondria from rat hepatocytes cultured for 21 h in medium 199 was increased 2.5-fold by the presence of 55 nM-glucagon and 1 mM-sodium n-octanoate in the culture medium. The change was comparable with that induced in vivo by 48 h starvation. The potential contribution of branched-chain complex to estimates of PDH-complex activity in rat liver mitochondria has been defined. PMID:3707545

  20. Differential effects of acute and chronic fructose administration on pyruvate dehydrogenase activity and lipogenesis

    SciTech Connect

    Wilson, L.

    1988-01-01

    These studies were undertaken to distinguish between the acute and chronic effects of fructose administration. In vivo, liver lipogenesis, as measured by {sup 3}H{sub 2}O incorporation, was greater in rats fed 60% fructose than in their glucose fed controls. Both fructose feeding, and fructose feeding plus intraperitoneal fructose injection increased the activities of 6-phosphogluconate dehydrogenase and malic enzyme. Liver PDH activity was increased by fructose feeding, and was increased even more by fructose feeding and injection of fructose, but this was not associated with any changes in hepatic ATP concentrations.

  1. Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor.

    PubMed

    Vilar, Bruno; Busserolles, Jérôme; Ling, Bing; Laffray, Sophie; Ulmann, Lauriane; Malhaire, Fanny; Chapuy, Eric; Aissouni, Youssef; Etienne, Monique; Bourinet, Emmanuel; Acher, Francine; Pin, Jean-Philippe; Eschalier, Alain; Goudet, Cyril

    2013-11-27

    Hyperactivity of the glutamatergic system is involved in the development of central sensitization in the pain neuraxis, associated with allodynia and hyperalgesia observed in patients with chronic pain. Herein we study the ability of type 4 metabotropic glutamate receptors (mGlu4) to regulate spinal glutamate signaling and alleviate chronic pain. We show that mGlu4 are located both on unmyelinated C-fibers and spinal neurons terminals in the inner lamina II of the spinal cord where they inhibit glutamatergic transmission through coupling to Cav2.2 channels. Genetic deletion of mGlu4 in mice alters sensitivity to strong noxious mechanical compression and accelerates the onset of the nociceptive behavior in the inflammatory phase of the formalin test. However, responses to punctate mechanical stimulation and nocifensive responses to thermal noxious stimuli are not modified. Accordingly, pharmacological activation of mGlu4 inhibits mechanical hypersensitivity in animal models of inflammatory or neuropathic pain while leaving acute mechanical perception unchanged in naive animals. Together, these results reveal that mGlu4 is a promising new target for the treatment of chronic pain. PMID:24285900

  2. Activation of Metabotropic Glutamate Receptors Regulates Ribosomes of Cochlear Nucleus Neurons

    PubMed Central

    Carzoli, Kathryn L.; Hyson, Richard L.

    2014-01-01

    The brain stem auditory system of the chick is an advantageous model for examining changes that occur as a result of deafness. Elimination of acoustic input through cochlear ablation results in the eventual death of approximately 30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). One early change following deafness is an alteration in NM ribosomes, evidenced both by a decrease in protein synthesis and reduction in antigenicity for Y10B, a monoclonal antibody that recognizes a ribosomal epitope. Previous studies have shown that mGluR activation is necessary to maintain Y10B antigenicity and NM viability. What is still unclear, however, is whether or not mGluR activation is sufficient to prevent deafness-induced changes in these neurons, or if other activity-dependent factors are also necessary. The current study investigated the ability of mGluR activation to regulate cochlear nucleus ribosomes in the absence of auditory nerve input. In vitro methods were employed to periodically pressure eject glutamate or mGluR agonists over neurons on one side of a slice preparation leaving the opposite side of the same slice untreated. Immunohistochemistry was then performed using Y10B in order to assess ribosomal changes. Application of glutamate and both group I and II selective mGluR agonists effectively rescued ribosomal antigenicity on the treated side of the slice in comparison to ribosomes on the untreated side. These findings suggest that administration of mGluR agonists is sufficient to reduce the early interruption of normal ribosomal integrity that is typically seen following loss of auditory nerve activity. PMID:25334004

  3. Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum.

    PubMed

    Kim, Jongpill; Fukuda, Hirohisa; Hirasawa, Takashi; Nagahisa, Keisuke; Nagai, Kazuo; Wachi, Masaaki; Shimizu, Hiroshi

    2010-04-01

    We found that penicillin-induced glutamate production by Corynebacterium glutamicum is inhibited when a de novo protein synthesis inhibitor, chloramphenicol, is added simultaneously with penicillin. When chloramphenicol was added 4 h after penicillin addition, glutamate production was essentially unaffected. (3)H-Leucine incorporation experiments revealed that protein synthesis continued for 1 h after penicillin addition and then gradually decreased. These results suggest that de novo protein synthesis within 4 h of penicillin treatment is required for the induction of glutamate production. To identify the protein(s) necessary for penicillin-induced glutamate production, proteome analysis of penicillin-treated C. glutamicum cells was performed with two-dimensional gel electrophoresis. Of more than 500 proteins detected, the amount of 13 proteins, including OdhI (an inhibitory protein for 2-oxoglutarate dehydrogenase complex), significantly increased upon penicillin treatment. Artificial overexpression of the odhI gene resulted in the decreased specific activity of the 2-oxoglutarate dehydrogenase complex and increased glutamate production without any triggers. These results suggest that the de novo synthesis of OdhI is the necessary factor for penicillin-induced glutamate overproduction by C. glutamicum. Moreover, continuous glutamate production was achieved by overexpression of odhI without any triggers. Thus, the odhI-overexpressing strain of C. glutamicum can be useful for efficient glutamate production. PMID:19956942

  4. Why are the 2-oxoacid dehydrogenase complexes so large? Generation of an active trimeric complex.

    PubMed

    Marrott, Nia L; Marshall, Jacqueline J T; Svergun, Dmitri I; Crennell, Susan J; Hough, David W; van den Elsen, Jean M H; Danson, Michael J

    2014-11-01

    The four-component polypeptides of the 2-oxoacid dehydrogenase complex from the thermophilic archaeon Thermoplasma acidophilum assemble to give an active multienzyme complex possessing activity with the branched-chain 2-oxoacids derived from leucine, isoleucine and valine, and with pyruvate. The dihydrolipoyl acyl-transferase (E2) core of the complex is composed of identical trimer-forming units that assemble into a novel 42-mer structure comprising octahedral and icosahedral geometric aspects. From our previously determined structure of this catalytic core, the inter-trimer interactions involve a tyrosine residue near the C-terminus secured in a hydrophobic pocket of an adjacent trimer like a ball-and-socket joint. In the present study, we have deleted the five C-terminal amino acids of the E2 polypeptide (IIYEI) and shown by equilibrium centrifugation that it now only assembles into a trimeric enzyme. This was confirmed by SAXS analysis, although this technique showed the presence of approximately 20% hexamers. The crystal structure of the trimeric truncated E2 core has been determined and shown to be virtually identical with the ones observed in the 42-mer, demonstrating that removal of the C-terminal anchor does not significantly affect the individual monomer or trimer structures. The truncated E2 is still able to bind both 2-oxoacid decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components to give an active complex with catalytic activity similar to the native multienzyme complex. This is the first report of an active mini-complex for this enzyme, and raises the question of why all 2-oxoacid dehydrogenase complexes assemble into such large structures. PMID:25088564

  5. Effect of Hofmeister anions and protein concentration on the activity and stability of some immobilized made-independent dehydrogenases

    SciTech Connect

    Carrea, G.; Bovara, R.; Pasta, P.; Cremonesi, P.

    1982-01-01

    The effect of several factors on the activity and stability of alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and 20-beta-hydroxysteroid dehydrogenase, both free and immobilized on CNBr-activated Sepharose 4B, was investigated. Enzymes were immobilized under different conditions including various degrees of matrix activation, variable amounts of protein, in the presence, or in the absence of, additives (coenzymes, dithiothreitol, salts). Activity recovery was in general satisfactorily high with 20-beta-hydroxysteroid dehydrogenase, low with glyceraldehyde-3-phosphate dehydrogenase, and markedly linked to the concentration of immobilized protein with alcohol dehydrogenase. In the latter case the advantageous stabilizing effect of high enzyme concentrations was notably diminished by the paralled decrease of the effectiveness factor. The effect of high concentrations of anions of the Hofmeister series was examined. It was found that 1M phosphate and 0.5M sulfate dramatically stabilize both free and immobilized enzymes against inactivation by temperature and urea. Km values of apolar substrates were considerably lowered by the two anions while Km values of polar substrates were not affected. In some cases Vmax values also were influenced by high concentrations of these anions. The present results appear of interest particularly in view of enzyme utilization for analytical as well as for preparative purposes. (Refs. 13).

  6. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    SciTech Connect

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na{sup +}-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  7. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    PubMed

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity. PMID:26851652

  8. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity.

    PubMed

    Yang, Junfeng; Hertz, Ellen; Zhang, Xiaoqun; Leinartaité, Lina; Lundius, Ebba Gregorsson; Li, Jie; Svenningsson, Per

    2016-01-12

    Progressive accumulation of α-synuclein (α-syn)-containing protein aggregates throughout the nervous system is a pathological hallmark of Parkinson's disease (PD). The mechanisms whereby α-syn exerts neurodegeneration remain to be fully understood. Here we show that overexpression of α-syn in transgenic mice leads to increased phosphorylation of glutamate NMDA receptor (NMDAR) subunits NR1 and NR2B in substantia nigra and striatum as well as reduced glucocerebrosidase (GCase) levels. Similarly, molecular studies performed in mouse N2A cells stably overexpressing human α-syn ((α-syn)N2A) showed that phosphorylation states of the same NMDAR subunits were increased, whereas GCase levels and lysosomal GCase activity were reduced. (α-syn)N2A cells showed an increased sensitivity to neurotoxicity towards 6-hydroxydopamine and NMDA. However, wildtype N2A, but not (α-syn)N2A cells, showed a further reduction in viability when co-incubated with 6-hydroxydopamine and the lysosomal inhibitors NH4Cl and leupeptin, suggesting that α-syn per se perturbs lysosomal functions. NMDA treatment reduced lysosomal GCase activity to the same extent in (α-syn)N2A cells as in wildtype N2A cells, indicating that the α-syn-dependent difference in NMDA neurotoxicity is unrelated to an altered GCase activity. Nevertheless, these data provide molecular evidence that overexpression of α-syn simultaneously induces two potential neurotoxic hits by increasing glutamate NMDA receptor phosphorylation, consistent with increased NMDA receptors functionality, and reducing GCase activity. PMID:26610904

  9. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors*

    PubMed Central

    Hsu, Wei-Lun; Chung, Hui-Wen; Wu, Chih-Yueh; Wu, Huei-Ing; Lee, Yu-Tao; Chen, En-Chan; Fang, Weilun; Chang, Yen-Chung

    2015-01-01

    Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca2+, resulting from Ca2+ influxes through calcium-permeable AMPA receptors, voltage-gated Ca2+ channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca2+ influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca2+ and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain. PMID:26134564

  10. SLC1 Glutamate Transporters

    PubMed Central

    Grewer, Christof; Gameiro, Armanda; Rauen, Thomas

    2014-01-01

    The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 (SLC1) family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na+ ions and the countertransport of one K+ in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions. PMID:24240778

  11. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage. PMID:27143375

  12. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    PubMed Central

    Nagayach, Aarti; Patro, Nisha; Patro, Ishan

    2014-01-01

    Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes. PMID:25400546

  13. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  14. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: Effects of CO and oxygen on synthesis and activity

    SciTech Connect

    Bonam, D.; Lehman, L.; Roberts, G.P.; Ludden, P.W.

    1989-06-01

    Exposure of the photosynthetic bacterium Rhodospirillum rubrum to carbon monoxide led to increased carbon monoxide dehydrogenase and hydrogenase activities due to de novo protein synthesis of both enzymes. Two-dimensional gels of (/sup 35/S)methionine-pulse-labeled cells showed that induction of CO dehydrogenase synthesis was rapidly initiated (less than 5 min upon exposure to CO) and was inhibited by oxygen. Both CO dehydrogenase and the CO-induced hydrogenase were inactivated by oxygen in vivo and in vitro. In contrast to CO dehydrogenase, the CO-induced hydrogenase was 95% inactivated by heating at 70 degrees C for 5 min. Unlike other hydrogenases, this CO-induced hydrogenase was inhibited only 60% by a 100% CO gas phase.

  15. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity.

    PubMed

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al(13) can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al(13) concentration increase. Our study also found that the effects of Al(III) and Al(13) on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules. PMID:22163924

  16. Induction of an Olfactory Memory by the Activation of a Metabotropic Glutamate Receptor

    NASA Astrophysics Data System (ADS)

    Kaba, Hideto; Hayashi, Yasunori; Higuchi, Takashi; Nakanishi, Shigetada

    1994-07-01

    Female mice form an olfactory memory of male pheromones at mating; exposure to the pheromones of a strange male after that mating will block pregnancy. The formation of this memory is mediated by the accessory olfactory system, in which an increase in norepinephrine after mating reduces inhibitory transmission of γ-aminobutyric acid from the granule cells to the mitral cells. This study shows that the activation of mGluR2, a metabotropic glutamate receptor that suppresses the γ-aminobutyric acid inhibition of the mitral cells, permits the formation of a specific olfactory memory without the occurrence of mating by infusion of mGluR2 agonists into the female's accessory olfactory bulb. This memory faithfully reflects the memory formed at mating.

  17. Helicobacter pylori γ-Glutamyltranspeptidase Induces Tolerogenic Human Dendritic Cells by Activation of Glutamate Receptors.

    PubMed

    Käbisch, Romy; Semper, Raphaela P; Wüstner, Stefanie; Gerhard, Markus; Mejías-Luque, Raquel

    2016-05-15

    Helicobacter pylori infection is characterized by chronic persistence of the bacterium. Different virulence factors, including H. pylori γ-glutamyltranspeptidase (gGT), have been reported to induce tolerogenicity by reprogramming dendritic cells (DCs). gGT is present in all bacterial isolates, indicating an important role for gGT in the course of infection. In the current study, we have analyzed the effect of H. pylori gGT on human DCs and the subsequent adaptive immune response. We show that glutamate produced due to H. pylori gGT enzymatic activity tolerizes DCs by inhibiting cAMP signaling and dampening IL-6 secretion in response to the infection. Together, our results provide a novel molecular mechanism by which H. pylori manipulates the host's immune response to persist within its host. PMID:27183641

  18. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  19. The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity

    PubMed Central

    2011-01-01

    Background Escherichia coli synthesizes three membrane-bound molybdenum- and selenocysteine-containing formate dehydrogenases, as well as up to four membrane-bound [NiFe]-hydrogenases. Two of the formate dehydrogenases (Fdh-N and Fdh-O) and two of the hydrogenases (Hyd-1 and Hyd-2) have their respective catalytic subunits located in the periplasm and these enzymes have been shown previously to oxidize formate and hydrogen, respectively, and thus function in energy metabolism. Mutants unable to synthesize the [NiFe]-hydrogenases retain a H2: benzyl viologen oxidoreductase activity. The aim of this study was to identify the enzyme or enzymes responsible for this activity. Results Here we report the identification of a new H2: benzyl viologen oxidoreductase enzyme activity in E. coli that is independent of the [NiFe]-hydrogenases. This enzyme activity was originally identified after non-denaturing polyacrylamide gel electrophoresis and visualization of hydrogen-oxidizing activity by specific staining. Analysis of a crude extract derived from a variety of E. coli mutants unable to synthesize any [NiFe]-hydrogenase-associated enzyme activity revealed that the mutants retained this specific hydrogen-oxidizing activity. Enrichment of this enzyme activity from solubilised membrane fractions of the hydrogenase-negative mutant FTD147 by ion-exchange, hydrophobic interaction and size-exclusion chromatographies followed by mass spectrometric analysis identified the enzymes Fdh-N and Fdh-O. Analysis of defined mutants devoid of selenocysteine biosynthetic capacity or carrying deletions in the genes encoding the catalytic subunits of Fdh-N and Fdh-O demonstrated that both enzymes catalyze hydrogen activation. Fdh-N and Fdh-O can also transfer the electrons derived from oxidation of hydrogen to other redox dyes. Conclusions The related respiratory molybdo-selenoproteins Fdh-N and Fdh-O of Escherichia coli have hydrogen-oxidizing activity. These findings demonstrate that the

  20. Inhibitory effects of ofloxacin and cefepime on enzyme activity of 6-phosphogluconate dehydrogenase from chicken liver.

    PubMed

    Erat, Mustafa; Sakiroğlu, Halis

    2007-01-01

    In this study, effects of some antibiotics, namely, ofloxacin, cefepime, cefazolin, and ampicillin on the in vitro enzyme activity of 6-phosphogluconate dehydrogenase have been investigated. For this purpose, 6-phosphogluconate dehydrogenase was purified from chicken liver 535-fold with a yield of 18% by using ammonium sulphate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography, and Sephadex G-200 gel filtration chromatography. In order to check the purity of the enzyme, SDS polyacylamide gel electrophoresis (SDS-PAGE) was performed. This analysis revealed a highly pure enzyme band on the gel. Among the antibiotics, ofloxacin and cefepime exhibited inhibitory effects, but cefazolin and ampicillin showed neither important inhibitory nor activatory effects on the enzyme activity. The measured I(50) values by plotting activity percent vs. inhibitor concentration, [I(50)] were 0.1713 mM for ofloxacin and 6.0028 mM for cefepime. Inhibition constants, K(i), for ofloxacin and cefepime were also calculated as 0.2740 +/- 0.1080 mM and 12.869 +/- 16.6540 mM by means of Lineweaver-Burk graphs, and inhibition types of the antibiotics were found out to be non-competitive and competitive, respectively. It has been understood from the calculated inhibitory parameters that the purified chicken enzyme has been quite inhibited by these two antimicrobials. PMID:17305608

  1. Peroxisome proliferator-activated receptor ɣ activation induces 11β-hydroxysteroid dehydrogenase type 1 activity in human alternative macrophages

    PubMed Central

    Chinetti-Gbaguidi, Giulia; Bouhlel, Mohamed Amine; Copin, Corinne; Duhem, Christian; Derudas, Bruno; Neve, Bernardette; Noel, Benoit; Eeckhoute, Jerome; Lefebvre, Philippe; Seckl, Jonathan R.; Staels, Bart

    2012-01-01

    Objectives 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular reduction of inactive cortisone to active cortisol, the natural ligand activating the glucocorticoid receptor (GR). Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a nuclear receptor controlling inflammation, lipid metabolism and the macrophage polarization state. In this study, we investigated the impact of macrophage polarization on the expression and activity of 11β-HSD1 and the role of PPAR therein. Methods and Results 11β-HSD1 gene expression is higher in pro-inflammatory M1 and anti-inflammatory M2 macrophages than in resting macrophages (RM), whereas its activity is highest in M2 macrophages. Interestingly, PPARγ activation induces 11β-HSD1 enzyme activity in M2 macrophages, but not in RM or M1 macrophages. Consequently, human M2 macrophages displayed enhanced responsiveness to the 11β-HSD1 substrate cortisone, an effect amplified by PPAR -induction of 11β-HSD1 activity, as illustrated by an increased expression of GR target genes. Conclusions Our data identify a positive cross-talk between PPARγ and GR in human M2 macrophages via the induction of 11β-HSD1 expression and activity. PMID:22207732

  2. Activation of Group II Metabotropic Glutamate Receptors Induces Depotentiation in Amygdala Slices and Reduces Fear-Potentiated Startle in Rats

    ERIC Educational Resources Information Center

    Lin, Chia-Ho; Lee, Chia-Ching; Huang, Ya-Chun; Wang, Su-Jane; Gean, Po-Wu

    2005-01-01

    There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces…

  3. Decreased succinate dehydrogenase activity of gamma and alpha motoneurons in mouse spinal cords following 13 weeks of exposure to microgravity.

    PubMed

    Ishihara, Akihiko; Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Ohira, Yoshinobu

    2013-10-01

    Cell body size and succinate dehydrogenase activity of motoneurons in the dorsolateral region of the ventral horn in the lumbar and cervical segments of the mouse spinal cord were assessed after long-term exposure to microgravity and compared with those of ground-based controls. Mice were housed in a mouse drawer system on the International Space Station for 13 weeks. The mice were transported to the International Space Station by the Space Shuttle Discovery and returned to Earth by the Space Shuttle Atlantis. No changes in the cell body size of motoneurons were observed in either segment after exposure to microgravity, but succinate dehydrogenase activity of small-sized (<300 μm(2)) gamma and medium-sized (300-700 μm(2)) alpha motoneurons, which have higher succinate dehydrogenase activity than large-sized (>700 μm(2)) alpha motoneurons, in both segments was lower than that of ground-based controls. We concluded that exposure to microgravity for longer than 3 months induced decreased succinate dehydrogenase activity of both gamma and slow-type alpha motoneurons. In particular, the decreased succinate dehydrogenase activity of gamma motoneurons was observed only after long-term exposure to microgravity. PMID:23943522

  4. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  5. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism.

    PubMed

    Frezza, M; di Padova, C; Pozzato, G; Terpin, M; Baraona, E; Lieber, C S

    1990-01-11

    After consuming comparable amounts of ethanol, women have higher blood ethanol concentrations than men, even with allowance for differences in size, and are more susceptible to alcoholic liver disease. Recently, we documented significant "first-pass metabolism" of ethanol due to its oxidation by gastric tissue. We report a study of the possible contribution of this metabolism to the sex-related difference in blood alcohol concentrations in 20 men and 23 women. Six in each group were alcoholics. The first-pass metabolism was determined on the basis of the difference in areas under the curves of blood alcohol concentrations after intravenous and oral administration of ethanol (0.3 g per kilogram of body weight). Alcohol dehydrogenase activity was also measured in endoscopic gastric biopsies. In nonalcoholic subjects, the first-pass metabolism and gastric alcohol dehydrogenase activity of the women were 23 and 59 percent, respectively, of those in the men, and there was a significant correlation (rs = 0.659) between first-pass metabolism and gastric mucosal alcohol dehydrogenase activity. In the alcoholic men, the first-pass metabolism and gastric alcohol dehydrogenase activity were about half those in the nonalcoholic men; in the alcoholic women, the gastric mucosal alcohol dehydrogenase activity was even lower than in the alcoholic men, and first-pass metabolism was virtually abolished. We conclude that the increased bioavailability of ethanol resulting from decreased gastric oxidation of ethanol may contribute to the enhanced vulnerability of women to acute and chronic complications of alcoholism. PMID:2248624

  6. Lipid-mediated unfolding of 3-beta hydroxysteroid dehydrogenase2 is essential for steroidogenic activity

    PubMed Central

    Rajapaksha, Maheshinie; Thomas, James L.; Streeter, Michael; Prasad, Manoj; Whittal, Randy M.; Bell, John D.; Bose, Himangshu S.

    2011-01-01

    For inner mitochondrial membrane (IMM) proteins that do not undergo N-terminal cleavage, their activity may occur in the absence of a receptor present in the mitochondrial membrane. One such protein is human 3-beta hydroxysteroid dehydrogenase-2 (3βHSD2), the IMM resident protein responsible for catalyzing two key steps in steroid metabolism: the conversion of pregnenolone to progesterone and dehydroepiandrosterone (DHEA) to androstenedione. Conversion requires that 3βHSD2 serves as both a dehydrogenase and isomerase. The dual functionality of 3βHSD2 results from a conformational change, but the trigger for this change remains unknown. Using Fluorescence Resonance Energy Transfer (FRET), we found that 3βHSD2 interacted strongly with a mixture of dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylcholine (DPPC). 3βHSD2 became less stable when incubated with the individual lipids, as indicated by the decrease in thermal denaturation (Tm), from 42° C to 37° C. DPPG, alone or in combination with DPPC, led to a decrease in α-helical content without affecting the β-sheet conformation. With the exception of the N-terminal 20 amino acids, mixed vesicles protected 3βHSD2 from trypsin digestion. However, protein incubated with DPPC was only partially protected. The lipid-mediated unfolding completely supports the model in which a cavity forms between the α-helix and β-sheet. As 3βHSD2 lacks a receptor, opening the conformation may activate the protein. PMID:22106846

  7. Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species.

    PubMed Central

    Lernmark, U.; Gardestrom, P.

    1994-01-01

    Protoplasts from barley (Hordeum vulgare), pea (Pisum sativum), wheat (Triticum aestivum), and spinach (Spinacia oleracea) leaves were fractionated into chloroplast- and mitochondrion-enriched fractions. Pyruvate dehydrogenase complex capacities in mitochondria (mtPDC) and chloroplasts (cpPDC) were measured in appropriate fractions under conditions optimal for each isozyme. The total cellular capacity of PDC was similar in barley and pea but about 50% lower in wheat and spinach. In pea a distribution of 87% mtPDC and 13% cpPDC was found on a cellular basis. In barley, wheat, and spinach the subcellular distribution was the opposite, with about 15% mtPDC and 85% cpPDC. cpPDC activity was constant at about 0.1 nmol cell-1 h-1 in cells from different regions along the developing barley leaf and showed no correlation with developmental patterns of photosynthetic parameters, such as increasing Chl and NADP-glyceraldehyde-3-phosphate dehydrogenase activity. Similarly, the capacity of the mitochondrial isoform did not change during barley leaf development and had a developmental pattern similar to that of citrate synthase and fumarase. Differences in subcellular distribution of PDCs in barley and pea are proposed to be due to differences in regulation, not to changes in isozyme proportions during leaf development or to species-specific differences in phosphorylation state of mtPDC after organelle separation. PMID:12232437

  8. SIRT3 DEACETYLATES AND INCREASES PYRUVATE DEHYDROGENASE ACTIVITY IN CANCER CELLS

    PubMed Central

    Wagner, Brett A.; Song, Ha Yong; Zhu, Yueming; Vassilopoulos, Athanassios; Jung, Barbara; Buettner, Garry R.; Gius, David

    2015-01-01

    Pyruvate dehydrogenase E1 alpha (PDHE1α or PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex (PDC) that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321) and a PDHA1 mutant, mimicking a deacetylated lysine (PDHA1K321R) increases in PDH activity, as compared to the K321 acetylation mimic (PDHA1K321Q) or wild-type PDHA1. Finally, PDHA1K321Q exhibited a more transformed in vitro cellular phenotype as compared to PDHA1K321R. These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyl-lysine suggesting that the acetylome, as well as the kinome, links glycolysis to respiration. PMID:25152236

  9. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.

    PubMed

    Wu, Tung-Yun; Chen, Chang-Ting; Liu, Jessica Tse-Jin; Bogorad, Igor W; Damoiseaux, Robert; Liao, James C

    2016-06-01

    Methanol utilization by methylotrophic or non-methylotrophic organisms is the first step toward methanol bioconversion to higher carbon-chain chemicals. Methanol oxidation using NAD-dependent methanol dehydrogenase (Mdh) is of particular interest because it uses NAD(+) as the electron carrier. To our knowledge, only a limited number of NAD-dependent Mdhs have been reported. The most studied is the Bacillus methanolicus Mdh, which exhibits low enzyme specificity to methanol and is dependent on an endogenous activator protein (ACT). In this work, we characterized and engineered a group III NAD-dependent alcohol dehydrogenase (Mdh2) from Cupriavidus necator N-1 (previously designated as Ralstonia eutropha). This enzyme is the first NAD-dependent Mdh characterized from a Gram-negative, mesophilic, non-methylotrophic organism with a significant activity towards methanol. Interestingly, unlike previously reported Mdhs, Mdh2 does not require activation by known activators such as B. methanolicus ACT and Escherichia coli Nudix hydrolase NudF, or putative native C. necator activators in the Nudix family under mesophilic conditions. This enzyme exhibited higher or comparable activity and affinity toward methanol relative to the B. methanolicus Mdh with or without ACT in a wide range of temperatures. Furthermore, using directed molecular evolution, we engineered a variant (CT4-1) of Mdh2 that showed a 6-fold higher K cat/K m for methanol and 10-fold lower K cat/K m for n-butanol. Thus, CT4-1 represents an NAD-dependent Mdh with much improved catalytic efficiency and specificity toward methanol compared with the existing NAD-dependent Mdhs with or without ACT activation. PMID:26846745

  10. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    SciTech Connect

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  11. Desensitization and internalization of metabotropic glutamate receptor 1a following activation of heterologous Gq/11-coupled receptors.

    PubMed

    Mundell, Stuart J; Pula, Giordano; McIlhinney, R A Jeffrey; Roberts, Peter J; Kelly, Eamonn

    2004-06-15

    In this study we characterized the heterologous desensitization and internalization of the metabotropic glutamate receptor 1 (mGluR1) splice variants mGluR1a and mGluR1b following activation of endogenous G(q/11)-coupled receptors in HEK293 cells. Agonist activation of M1 muscarinic acetylcholine or P2Y1 purinergic receptors triggered the PKC- and CaMKII-dependent internalization of mGluR1a. In co-immunoprecipitation studies, both glutamate and carbachol increased the association of GRK2 with mGluR1a. Co-addition of the protein kinase C (PKC) inhibitor GF109203X and the Ca(2+) calmodulin-dependent kinase II (CaMKII) inhibitor KN-93 blocked the ability of glutamate and carbachol to increase the association of GRK2 with mGluR1a. Glutamate also increased the association of GRK2 with mGluR1b, whereas carbachol did not. However, unlike mGluR1a, glutamate-stimulated association of GRK2 with mGluR1b was not reduced by PKC/CaMKII inhibition. Pretreatment of cells expressing mGluR1a or mGluR1b with carbachol rapidly desensitized subsequent glutamate-stimulated inositol phosphate accumulation. The carbachol-induced heterologous desensitization and internalization of mGluR1a was blocked by LY367385, an mGluR1a antagonist with inverse agonist activity. Furthermore, LY367385 blocked the ability of carbachol to increase the association of GRK2 with mGluR1a. On the other hand, LY367385 had no effect on the carbachol-induced desensitization and internalization of the nonconstitutively active mGluR1b splice variant. These results demonstrate that the internalization of mGluR1a, triggered homologously by glutamate or heterologously by carbachol, is PKC/CaMKII-, GRK2-, arrestin-, and clathrin-dependent and that PKC/CaMKII activation appears to be necessary for GRK2 to associate with mGluR1a. Furthermore, the heterologous desensitization of mGluR1a is dependent upon the splice variant being in an active conformation. PMID:15182196

  12. Metabotropic glutamate receptors inhibit microglial glutamate release

    PubMed Central

    McMullan, Stephen M; Phanavanh, Bounleut; Guo Li, Gary; Barger, Steven W

    2012-01-01

    Pro-inflammatory stimuli evoke an export of glutamate from microglia that is sufficient to contribute to excitotoxicity in neighbouring neurons. Since microglia also express various glutamate receptors themselves, we were interested in the potential feedback of glutamate on this system. Several agonists of mGluRs (metabotropic glutamate receptors) were applied to primary rat microglia, and the export of glutamate into their culture medium was evoked by LPS (lipopolysaccharide). Agonists of group-II and -III mGluR ACPD [(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] and L-AP4 [L-(+)-2-amino-4-phosphonobutyric acid] were both capable of completely blocking the glutamate export without interfering with the production of NO (nitric oxide); the group-I agonist tADA (trans-azetidine-2,4-dicarboxylic acid) was ineffective. Consistent with the possibility of feedback, inhibition of mGluR by MSPG [(R,S)-α-2-methyl-4sulfonophenylglycine] potentiated glutamate export. As the group-II and -III mGluR are coupled to Gαi-containing G-proteins and the inhibition of adenylate cyclase, we explored the role of cAMP in this effect. Inhibition of cAMP-dependent protein kinase [also known as protein kinase A (PKA)] by H89 mimicked the effect of ACPD, and the mGluR agonist had its actions reversed by artificially sustaining cAMP through the PDE (phosphodiesterase) inhibitor IBMX (isobutylmethylxanthine) or the cAMP mimetic dbcAMP (dibutyryl cAMP). These data indicate that mGluR activation attenuates a potentially neurotoxic export of glutamate from activated microglia and implicate cAMP as a contributor to this aspect of microglial action. PMID:22770428

  13. Orally active glutamate carboxypeptidase II inhibitor 2-MPPA attenuates dizocilpine-induced prepulse inhibition deficits in mice.

    PubMed

    Takatsu, Yuto; Fujita, Yuko; Tsukamoto, Takashi; Slusher, Barbara S; Hashimoto, Kenji

    2011-01-31

    Glutamate carboxypeptidase II (GCP II) is a glial enzyme responsible for the hydrolysis of N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate (NAA). Abnormalities in glutamate neurotransmission are implicated in the pathophysiology of schizophrenia. In this study, we examined the effects of a novel, orally active GCP II inhibitor, 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), on the prepulse inhibition (PPI) deficits after administration of the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine. Oral administration of 2-MPPA (10, 30 or 100mg/kg) significantly attenuated dizocilpine (0.1mg/kg)-induced PPI deficits in mice, in a dose dependent manner. Furthermore, the efficacy of 2-MPPA on dizocilpine-induced PPI deficits was significantly antagonized by pretreatment with the selective group II metabotropic glutamate receptor (mGluR) antagonist LY341495 (1.0mg/kg). In the same model, however, the selective group II mGluR agonist LY354740 (3, 10 or 30 mg/kg) significantly attenuated dizocilpine-induced PPI deficits at only one dose and prepulse intensity. Our findings suggest that GCP II inhibition may be useful therapeutic strategy for schizophrenia. From a mechanistic perspective, while increased NAAG and activation of group II mGluRs may contribute to the therapeutic efficacy of 2-MPPA, it is likely that additional pharmacological activities are also involved. PMID:21093418

  14. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    SciTech Connect

    Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria; Andre, Isabelle; Mano, Nicolas

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  15. Dosage Compensation in DROSOPHILA MELANOGASTER Triploids. II. Glucose-6-Phosphate Dehydrogenase Activity

    PubMed Central

    Maroni, Gustavo; Plaut, Walter

    1973-01-01

    The level of activity of the enzyme glucose-6-phosphate dehydrogenase was determinel in flies having seven different chromosomic constitutions. All those having an integral number of chromosomes [XAA, XXAA, XAAA, XXAAA, and XXXAAA (X=X chromosome, A=set of autosomes)] were found to have similar units of enzyme activity/mg live weight, while diploid females with a duplication and triploid females with a deficiency showed dosage effect. The amount of enzyme activity per cell, on the other hand, is also independent of the number of X's present but appears roughly proportional to the number of sets of autosomes.—It is proposed that dosage-compensated sex-linked genes are controlled by a positively acting regulatory factor(s) of autosomal origin. With this hypothesis it is possible to explain dosage compensation as a consequence of general regulatory mechanisms without invoking a special device which applies only to the X chromosomes. PMID:17248620

  16. Plasma lactic dehydrogenase activities in men during bed rest with exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Juhos, L. T.; Young, H. L.

    1985-01-01

    Peak oxygen uptake and the activity of lactic dehydrogenase (LDH-T) and its five isoenzymes were measured by spectrophotometer in seven men before, during, and after bed rest and exercise training. Exercise training consisted of isometric leg exercises of 250 kcal/hr for a period of one hour per day. It is found that LDH-T was reduced by 0.05 percent in all three regimens by day 10 of bed rest, and that the decrease occurred at different rates. The earliest reduction in LDH-T activity in the no-exercise regimen was associated with a decrease in peak oxygen uptake of 12.3 percent. It is concluded that isometric (aerobic) muscular strength training appear to maintain skeletal muscle integrity better during bed rest than isotonic exercise training. Reduced hydrostatic pressure during bed rest, however, ultimately counteracts the effects of both moderate isometric and isotonic exercise training, and may result in decreased LDH-T activity.

  17. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    PubMed Central

    Yanamala, Naveena; Tirupula, Kalyan C; Klein-Seetharaman, Judith

    2008-01-01

    Metabotropic glutamate receptors (mGluRs) are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%), the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%), the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86%) and 8/9 (89%) for ArgusLab and 10/14 (71%) and 7/9 (78%) for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by photochemical isomerization

  18. The Role of Glutamate Dehydrogenase (GDH) Testing Assay in the Diagnosis of Clostridium difficile Infections: A High Sensitive Screening Test and an Essential Step in the Proposed Laboratory Diagnosis Workflow for Developing Countries like China.

    PubMed

    Cheng, Jing-Wei; Xiao, Meng; Kudinha, Timothy; Xu, Zhi-Peng; Sun, Lin-Ying; Hou, Xin; Zhang, Li; Fan, Xin; Kong, Fanrong; Xu, Ying-Chun

    2015-01-01

    The incidence and severity of Clostridium difficile infection (CDI) in North America and Europe has increased significantly since the 2000s. However, CDI is not widely recognized in China and other developing countries due to limited laboratory diagnostic capacity and low awareness. Most published studies on laboratory workflows for CDI diagnosis are from developed countries, and thus may not be suitable for most developing countries. Therefore, an alternative strategy for developing countries is needed. In this study, we evaluated the performance of the Glutamate Dehydrogenase (GDH) test and its associated workflow on 416 fecal specimens from suspected CDI cases. The assay exhibited excellent sensitivity (100.0%) and specificity (92.8%), compared to culture based method, and thus could be a good screening marker for C. difficile but not for indication of toxin production. The VIDAS CDAB assay, which can detect toxin A/B directly from fecal specimens, showed good specificity (99.7%) and positive predictive value (97.2%), but low sensitivity (45.0%) and negative predictive value (88.3%), compared with PCR-based toxin gene detection. Therefore, we propose a practical and efficient GDH test based workflow strategy for the laboratory diagnosis of CDI in developing countries like China. By applying this new workflow, the CDI laboratory diagnosis rate was notably improved in our center, yet the increasing cost was kept at a minimum level. Furthermore, to gain some insights into the genetic population structure of C. difficile isolates from our hospital, we performed MLST and PCR toxin gene typing. PMID:26659011

  19. The Role of Glutamate Dehydrogenase (GDH) Testing Assay in the Diagnosis of Clostridium difficile Infections: A High Sensitive Screening Test and an Essential Step in the Proposed Laboratory Diagnosis Workflow for Developing Countries like China

    PubMed Central

    Cheng, Jing-Wei; Xiao, Meng; Kudinha, Timothy; Xu, Zhi-Peng; Sun, Lin-Ying; Hou, Xin; Zhang, Li; Fan, Xin; Kong, Fanrong; Xu, Ying-Chun

    2015-01-01

    The incidence and severity of Clostridium difficile infection (CDI) in North America and Europe has increased significantly since the 2000s. However, CDI is not widely recognized in China and other developing countries due to limited laboratory diagnostic capacity and low awareness. Most published studies on laboratory workflows for CDI diagnosis are from developed countries, and thus may not be suitable for most developing countries. Therefore, an alternative strategy for developing countries is needed. In this study, we evaluated the performance of the Glutamate Dehydrogenase (GDH) test and its associated workflow on 416 fecal specimens from suspected CDI cases. The assay exhibited excellent sensitivity (100.0%) and specificity (92.8%), compared to culture based method, and thus could be a good screening marker for C. difficile but not for indication of toxin production. The VIDAS CDAB assay, which can detect toxin A/B directly from fecal specimens, showed good specificity (99.7%) and positive predictive value (97.2%), but low sensitivity (45.0%) and negative predictive value (88.3%), compared with PCR-based toxin gene detection. Therefore, we propose a practical and efficient GDH test based workflow strategy for the laboratory diagnosis of CDI in developing countries like China. By applying this new workflow, the CDI laboratory diagnosis rate was notably improved in our center, yet the increasing cost was kept at a minimum level. Furthermore, to gain some insights into the genetic population structure of C. difficile isolates from our hospital, we performed MLST and PCR toxin gene typing. PMID:26659011

  20. Activation of group III metabotropic glutamate receptors is neuroprotective in cortical cultures.

    PubMed

    Bruno, V; Copani, A; Bonanno, L; Knoepfel, T; Kuhn, R; Roberts, P J; Nicoletti, F

    1996-08-22

    (RS)-alpha-Methyl-4-phosphonophenylglycine (MPPG) and (S)-alpha-methyl-3-carboxyphenylalanine (M3CPA), two novel preferential antagonists of group III metabotropic glutamate (mGlu) receptors, antagonized the neuroprotective activity of L-2-amino-4-phosphono-butanoate (L-AP4) or L-serine-O-phosphate in mice cultured cortical cells exposed to a toxic pulse of N-methyl-D-aspartate. In contrast, MPPG did not influence the neuroprotective activity of the selective group II mGlu receptor agonist, (2S,1'R,2'R,3'R)-2-(2,3-dicarboxy-cyclopropyl) glycine (DCG-IV). These results indicate that activation of group III mGu receptors exerts neuroprotective activity against excitotoxic neuronal death. At least one of the two major group III mGlu receptor subtypes, i.e. mGlu4 receptor, is expressed by cultured cortical neurons, as shown by immunocytochemical analysis with specific polyclonal antibodies. PMID:8880068

  1. Phenylbutyrate increases pyruvate dehydrogenase complex activity in cells harboring a variety of defects

    PubMed Central

    Ferriero, Rosa; Boutron, Audrey; Brivet, Michele; Kerr, Douglas; Morava, Eva; Rodenburg, Richard J; Bonafé, Luisa; Baumgartner, Matthias R; Anikster, Yair; Braverman, Nancy E; Brunetti-Pierri, Nicola

    2014-01-01

    Objective Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. PDHC deficiency is genetically heterogenous and most patients have defects in the X-linked E1-α gene but defects in the other components of the complex encoded by PDHB, PDHX, DLAT, DLD genes or in the regulatory enzyme encoded by PDP1 have also been found. Phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of pyruvate dehydrogenase kinases and thus, has potential for therapy of patients with PDHC deficiency. In the present study, we investigated response to phenylbutyrate of multiple cell lines harboring all known gene defects resulting in PDHC deficiency. Methods Fibroblasts of patients with PDHC deficiency were studied for their enzyme activity at baseline and following phenylbutyrate incubation. Drug responses were correlated with genotypes and protein levels by Western blotting. Results Large deletions affecting PDHA1 that result in lack of detectable protein were unresponsive to phenylbutyrate, whereas increased PDHC activity was detected in most fibroblasts harboring PDHA1 missense mutations. Mutations affecting the R349-α residue were directed to proteasome degradation and were consistently unresponsive to short-time drug incubation but longer incubation resulted in increased levels of enzyme activity and protein that may be due to an additional effect of phenylbutyrate as a molecular chaperone. Interpretation PDHC enzyme activity was enhanced by phenylbutyrate in cells harboring missense mutations in PDHB, PDHX, DLAT, DLD, and PDP1 genes. In the prospect of a clinical trial, the results of this study may allow prediction of in vivo response in patients with PDHC deficiency harboring a wide spectrum of molecular defects. PMID:25356417

  2. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  3. Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily

    PubMed Central

    Baker, Patrick J.; Britton, K. Linda; Fisher, Martin; Esclapez, Julia; Pire, Carmen; Bonete, Maria Jose; Ferrer, Juan; Rice, David W.

    2009-01-01

    Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events. PMID:19131516

  4. Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress

    PubMed Central

    Limami, Anis M.; Glévarec, Gaëlle; Ricoult, Claudie; Cliquet, Jean-Bernard; Planchet, Elisabeth

    2008-01-01

    The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. 15NH4 labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized 15N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while 15N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt. PMID:18508812

  5. Identification of a new site in the S1 ligand binding region of the NMDA receptor NR2A subunit involved in receptor activation by glutamate.

    PubMed

    Lummis, Sarah C R; Fletcher, Elizabeth J; Green, Tim

    2002-03-01

    Activation of N-methyl-d-aspartate (NMDA) receptors requires the binding of both glutamate and glycine to independent sites on the receptor. These ligands bind to NR2 and NR1 subunits respectively. Ligand binding residues are located in two non-contiguous domains, S1 and S2, which have been implicated in glutamate binding in other ionotropic glutamate receptor subunits. To further define the amino acids through which glutamate activates the receptor, we generated single-site mutations to the NR2A subunit, and expressed them with wild type NR1 in HEK 293 cells. Using calcium imaging and whole cell patch clamp we determined glutamate and glycine potencies. Of the eight residues mutated we identified five (E413, K484, A508, G685 and G688), whose mutation leads to a large reduction (from 4- to 1000-fold) in glutamate potency, consistent with a role for these residues in receptor activation by glutamate. The potency of glycine was largely unchanged by these mutations. Thus our results extend the knowledge base of residues involved in NMDA receptor function and identifies a new site in S1, in the region of A508, that has a role in receptor activation by glutamate. PMID:11955515

  6. Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells

    PubMed Central

    Volpi, Claudia; Mondanelli, Giada; Pallotta, Maria T.; Vacca, Carmine; Iacono, Alberta; Gargaro, Marco; Albini, Elisa; Bianchi, Roberta; Belladonna, Maria L.; Celanire, Sylvain; Mordant, Céline; Heroux, Madeleine; Royer-Urios, Isabelle; Schneider, Manfred; Vitte, Pierre-Alain; Cacquevel, Mathias; Galibert, Laurent; Poli, Sonia-Maria; Solari, Aldo; Bicciato, Silvio; Calvitti, Mario; Antognelli, Cinzia; Puccetti, Paolo; Orabona, Ciriana; Fallarino, Francesca; Grohmann, Ursula

    2016-01-01

    Metabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild—yet chronic—neuroinflammation that remained stable for over two months after discontinuing drug treatment. In vitro, ADX88178 modulated the cytokine secretion profile of dendritic cells (DCs), increasing production of tolerogenic IL-10 and TGF-β. The in vitro effects required activation of a Gi-independent, alternative signaling pathway that involved phosphatidylinositol-3-kinase (PI3K), Src kinase, and the signaling activity of indoleamine 2,3-dioxygenase 1 (IDO1). A PI3K inhibitor as well as small interfering RNA targeting Ido1—but not pertussis toxin, which affects Gi protein-dependent responses—abrogated the tolerogenic effects of ADX88178-conditioned DCs in vivo. Thus our data indicate that, in DCs, highly selective and potent mGluR4 PAMs such as ADX88178 may activate a Gi-independent, long-lived regulatory pathway that could be therapeutically exploited in chronic autoimmune diseases such as multiple sclerosis. PMID:26522434

  7. Neuronal pyruvate carboxylation supports formation of transmitter glutamate.

    PubMed

    Hassel, B; Brâthe, A

    2000-02-15

    Release of transmitter glutamate implies a drain of alpha-ketoglutarate from neurons, because glutamate, which is formed from alpha-ketoglutarate, is taken up by astrocytes. It is generally believed that this drain is compensated by uptake of glutamine from astrocytes, because neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates, which requires pyruvate carboxylation. Here we show that cultured cerebellar granule neurons form releasable [(14)C]glutamate from H(14)CO(3)(-) and [1-(14)C]pyruvate via pyruvate carboxylation, probably mediated by malic enzyme. The activity of pyruvate carboxylation was calculated to be approximately one-third of the pyruvate dehydrogenase activity in neurons. Furthermore, intrastriatal injection of NaH(14)CO(3) or [1-(14)C]pyruvate labeled glutamate better than glutamine, showing that pyruvate carboxylation occurs in neurons in vivo. This means that neurons themselves to a large extent may support their release of glutamate, and thus entails a revision of the current view of glial-neuronal interactions and the importance of the glutamine cycle. PMID:10662824

  8. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes.

    PubMed

    Innocenti, B; Parpura, V; Haydon, P G

    2000-03-01

    A growing body of evidence proposes that glial cells have the potential to play a role as modulators of neuronal activity and synaptic transmission by releasing the neurotransmitter glutamate (Arague et al., 1999). We explore the spatial nature of glutamate release from astrocytes with an enzyme-linked assay system and CCD imaging technology. In the presence of glutamate, L-glutamic dehydrogenase (GDH) reduces NAD(+) to NADH, a product that fluoresces when excited with UV light. Theoretically, provided that GDH and NAD(+) are present in the bathing saline, the release of glutamate from stimulated astrocytes can be optically detected by monitoring the accumulation of NADH. Indeed, stimuli that induce a wave of elevated calcium among astrocytes produced a corresponding spread of extracellular NADH fluorescence. Treatment of cultures either with thapsigargin, to deplete internal calcium stores, or with the membrane-permeant calcium chelator BAPTA AM significantly decreased the accumulation of NADH, demonstrating that this fluorometric assay effectively monitors calcium-dependent glutamate release. With a temporal resolution of 500 msec and spatial resolution of approximately 20 micrometer, discrete regions of glutamate release were not reliably resolved. The wave of glutamate release that underlies the NADH fluorescence propagated at an average speed of approximately 26 micrometer/sec, correlating with the rate of calcium wave progression (10-30 micrometer/sec), and caused a localized accumulation of glutamate in the range of 1-100 microM. Further analysis of the fluorescence accumulation clearly demonstrated that glutamate is released in a regenerative manner, with subsequent cells that are involved in the calcium wave releasing additional glutamate. PMID:10684881

  9. Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia.

    PubMed Central

    Jonas, S. K.; Benedetto, C.; Flatman, A.; Hammond, R. H.; Micheletti, L.; Riley, C.; Riley, P. A.; Spargo, D. J.; Zonca, M.; Slater, T. F.

    1992-01-01

    The activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase have been measured in squamous epithelial cells of the uterine cervix from normal patients and cases of cervical intraepithelial neoplasia (CIN). A biochemical cycling method, which uses only simple equipment and is suited to routine use and to automation, was applied to cells separated by gradient centrifugation. In addition, cells were examined cytochemically, and the intensity of staining in the cytoplasm of single whole cells was measured using computerised microcytospectrophotometry. Twenty per cent of cells in samples from normal patients (n=61) showed staining intensities above an extinction of 0.15 at 540 nm, compared to 71% of cases of CIN 1 (n=14), 91% of cases of CIN 2 (n=11) and 67% of cases of CIN 3 (n=15). The cytochemical data do not allow definitive distinctions to be made between different grades of CIN whereas the biochemical assay applied to cell lysates shows convincing differences between normal samples and cases of CIN. There are no false negatives for CIN 3 (n=14) and CIN 2 (n=10) and 11% false negatives for CIN 1 (n=9) and 14% of false positives for normal cases (n=21). The results of this preliminary study with reference to automation are discussed [corrected]. Images Figure 1 PMID:1637668

  10. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.

    PubMed

    Luo, Min; Christgen, Shelbi; Sanyal, Nikhilesh; Arentson, Benjamin W; Becker, Donald F; Tanner, John J

    2014-09-01

    Proline utilization A (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. Structures of type A PutAs have revealed the catalytic core consisting of proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) modules connected by a substrate-channeling tunnel. Type B PutAs also have a C-terminal domain of unknown function (CTDUF) that is absent in type A PutAs. Small-angle X-ray scattering (SAXS), mutagenesis, and kinetics are used to determine the contributions of this domain to PutA structure and function. The 1127-residue Rhodobacter capsulatus PutA (RcPutA) is used as a representative CTDUF-containing type B PutA. The reaction progress curve for the coupled PRODH-P5CDH activity of RcPutA does not exhibit a time lag, implying a substrate channeling mechanism. RcPutA is monomeric in solution, which is unprecedented for PutAs. SAXS rigid body modeling with target-decoy validation is used to build a model of RcPutA. On the basis of homology to aldehyde dehydrogenases (ALDHs), the CTDUF is predicted to consist of a β-hairpin fused to a noncatalytic Rossmann fold domain. The predicted tertiary structural interactions of the CTDUF resemble the quaternary structural interactions in the type A PutA dimer interface. The model is tested by mutagenesis of the dimerization hairpin of a type A PutA and the CTDUF hairpin of RcPutA. Similar functional phenotypes are observed in the two sets of variants, supporting the hypothesis that the CTDUF mimics the type A PutA dimer interface. These results suggest annotation of the CTDUF as an ALDH superfamily domain that facilitates P5CDH activity and substrate channeling by stabilizing the aldehyde-binding site and sealing the substrate-channeling tunnel from the bulk medium. PMID:25137435

  11. Evidence That the C-Terminal Domain of a Type B PutA Protein Contributes to Aldehyde Dehydrogenase Activity and Substrate Channeling

    PubMed Central

    2015-01-01

    Proline utilization A (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. Structures of type A PutAs have revealed the catalytic core consisting of proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) modules connected by a substrate-channeling tunnel. Type B PutAs also have a C-terminal domain of unknown function (CTDUF) that is absent in type A PutAs. Small-angle X-ray scattering (SAXS), mutagenesis, and kinetics are used to determine the contributions of this domain to PutA structure and function. The 1127-residue Rhodobacter capsulatus PutA (RcPutA) is used as a representative CTDUF-containing type B PutA. The reaction progress curve for the coupled PRODH–P5CDH activity of RcPutA does not exhibit a time lag, implying a substrate channeling mechanism. RcPutA is monomeric in solution, which is unprecedented for PutAs. SAXS rigid body modeling with target–decoy validation is used to build a model of RcPutA. On the basis of homology to aldehyde dehydrogenases (ALDHs), the CTDUF is predicted to consist of a β-hairpin fused to a noncatalytic Rossmann fold domain. The predicted tertiary structural interactions of the CTDUF resemble the quaternary structural interactions in the type A PutA dimer interface. The model is tested by mutagenesis of the dimerization hairpin of a type A PutA and the CTDUF hairpin of RcPutA. Similar functional phenotypes are observed in the two sets of variants, supporting the hypothesis that the CTDUF mimics the type A PutA dimer interface. These results suggest annotation of the CTDUF as an ALDH superfamily domain that facilitates P5CDH activity and substrate channeling by stabilizing the aldehyde-binding site and sealing the substrate-channeling tunnel from the bulk medium. PMID:25137435

  12. Calmodulin activity regulates group I metabotropic glutamate receptor-mediated signal transduction and synaptic depression.

    PubMed

    Sethna, Ferzin; Zhang, Ming; Kaphzan, Hanoch; Klann, Eric; Autio, Dawn; Cox, Charles L; Wang, Hongbing

    2016-05-01

    Group I metabotropic glutamate receptors (mGluR), including mGluR1 and mGluR 5 (mGluR1/5), are coupled to Gq and modulate activity-dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation-dependent long-term depression (LTD). Although it has been established that intracellular Ca(2+) and the Gq-regulated signaling molecules are required for mGluR1/5 LTD, whether and how Ca(2+) regulates Gq signaling and upregulation of protein expression remain unknown. Through pharmacological inhibition, we tested the function of the Ca(2+) sensor calmodulin (CaM) in intracellular signaling triggered by the activation of mGluR1/5. CaM inhibitor N-[4-aminobutyl]-5-chloro-2-naphthalenesulfonamide hydrochloride (W13) suppressed the mGluR1/5-stimulated activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p70-S6 kinase 1 (S6K1) in hippocampal neurons. W13 also blocked the mGluR1/5 agonist-induced synaptic depression in hippocampal slices and in anesthetized mice. Consistent with the function of CaM, inhibiting the downstream targets Ca(2+) /CaM-dependent protein kinases (CaMK) blocked ERK1/2 and S6K1 activation. Furthermore, disruption of the CaM-CaMK-ERK1/2 signaling cascade suppressed the mGluR1/5-stimulated upregulation of Arc expression. Altogether, our data suggest CaM as a new Gq signaling component for coupling Ca(2+) and protein upregulation and regulating mGluR1/5-mediated synaptic modification. PMID:26864654

  13. From Alcohol Dehydrogenase to a “One-way” Carbonyl Reductase by Active-site Redesign

    PubMed Central

    Klimacek, Mario; Nidetzky, Bernd

    2010-01-01

    Directional preference in catalysis is often used to distinguish alcohol dehydrogenases from carbonyl reductases. However, the mechanistic basis underpinning this discrimination is weak. In mannitol 2-dehydrogenase from Pseudomonas fluorescens, stabilization of (partial) negative charge on the substrate oxyanion by the side chains of Asn-191 and Asn-300 is a key feature of catalysis in the direction of alcohol oxidation. We have disrupted this ability through individual and combined substitutions of the two asparagines by aspartic acid. Kinetic data and their thermodynamic analysis show that the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD+-mannitol (Kint) was altered dramatically (104- to 105-fold) from being balanced in the wild-type enzyme (Kint ≈ 3) to favoring enzyme-NAD+-mannitol in the single site mutants, N191D and N300D. The change in Kint reflects a selective slowing down of the mannitol oxidation rate, resulting because Asn → Asp replacement (i) disfavors partial abstraction of alcohol proton by Lys-295 in a step preceding catalytic hydride transfer, and (ii) causes stabilization of a nonproductive enzyme-NAD+-mannitol complex. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3 ± 0.1 and 6.3 ± 0.2, respectively. The mutant incorporating both Asn→Asp substitutions behaved as a slow “fructose reductase” at pH 5.2, lacking measurable activity for mannitol oxidation in the pH range 6.8–10. A mechanism is suggested in which polarization of the substrate carbonyl by a doubly protonated diad of Asp and Lys-295 facilitates NADH-dependent reduction of fructose by N191D and N300D under optimum pH conditions. Creation of an effectively “one-way” reductase by active-site redesign of a parent dehydrogenase has not been previously reported and holds promise in the development of carbonyl reductases for application in organic synthesis. PMID:20639204

  14. Regulation of pyruvate dehydrogenase activity and glucose metabolism in post-ischaemic myocardium.

    PubMed

    Schöder, H; Knight, R J; Kofoed, K F; Schelbert, H R; Buxton, D B

    1998-02-27

    Pyruvate dehydrogenase (PDH) is regulated both by covalent modification and through modulation of the active enzyme by metabolites. In the isolated heart, post-ischaemic inhibition of PDH, leading to uncoupling of glycolysis and glucose oxidation and a decrease in cardiac efficiency, has been described. In vivo, post-ischaemic reperfusion leads to metabolic abnormalities consistent with PDH inhibition, but the effects of ischaemia/reperfusion on PDH are not well characterized. We therefore investigated PDH regulation following transient ischaemia in vivo. In 33 open-chest dogs, the left anterior descending (LAD) was occluded for 20 min followed by 4 h reperfusion. In 17 dogs, dichloroacetate (DCA) was injected prior to reperfusion, while 16 dogs served as controls. In dogs without DCA, glucose oxidation and lactate uptake were lower in reperfused than in remote tissue, suggesting reduced flux through PDH. However, percent active and total PDH measured in myocardial biopsies were similar in both territories, excluding covalent enzyme modification or loss of functional enzyme. DCA activated PDH activity similarly in both regions and abolished differences in glucose oxidation and lactate uptake. Thus, decreased PDH flux in reperfused myocardium does not result from covalent modification or loss of total enzyme activity, but more likely from metabolite inhibition of the active enzyme. DCA leads to essentially complete activation of PDH, increases overall glucose utilization and abolishes post-ischaemic inhibition of glucose oxidation. PMID:9545535

  15. Cinnamyl Alcohol Dehydrogenase: Identification of New Sites of Promoter Activity in Transgenic Poplar.

    PubMed Central

    Hawkins, S.; Samaj, J.; Lauvergeat, V.; Boudet, A.; Grima-Pettenati, J.

    1997-01-01

    Stem sections from poplar that were stably transformed with a eucalypt cinnamyl alcohol dehydrogenase promoter-[beta]-glucuronidase construct were prepared by using either a technique routinely used in herbaceous species or a technique designed to take into account the particular anatomy of woody plants. Although both preparation techniques confirmed the pattern of expression previously observed (C. Feuillet, V. Lauvergeat, C. Deswarte, G. Pilate, A. Boudet and J. Grima-Pettenati [1995] Plant Mol Biol 27: 651-657), the latter technique also allowed the detection of other sites of promoter activity not revealed by the first technique. In situ hybridization confirmed the expression pattern obtained with the second sample preparation technique. PMID:12223610

  16. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    DOE PAGESBeta

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; Gollapalli, Deviprasad R.; Cuny, Gregory D.; Joachimiak, Andrzej; Hedstrom, Lizbeth

    2015-04-21

    Inosine 5´-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 5´-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategymore » for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.« less

  17. Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation.

    PubMed

    Paul, Mila M; Pauli, Martin; Ehmann, Nadine; Hallermann, Stefan; Sauer, Markus; Kittel, Robert J; Heckmann, Manfred

    2015-01-01

    The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp(69) ). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp(69) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt(KD) ) in wildtype (wt), brp(69) and rab3 null mutants (rab3(rup) ), where Brp is concentrated at a small number of AZs. At wt and rab3(rup) synapses, syt(KD) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt(KD) did not alter EPSC amplitude at brp(69) synapses, but shortened delay and rise time. In fact, following syt(KD) , these kinetic properties were strikingly similar in wt and brp(69) , which supports the notion that Syt protracts release at brp(69) synapses. To gain insight into this surprising role of Syt at brp(69) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At 'tonic' type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt(KD) . Notably, syt(KD) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt(KD) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires

  18. Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exitoneurotoxicity.

    PubMed

    Umebayashi, Daisuke; Natsume, Atsushi; Takeuchi, Hideyuki; Hara, Masahito; Nishimura, Yusuke; Fukuyama, Ryuichi; Sumiyoshi, Naoyuki; Wakabayashi, Toshihiko

    2014-12-15

    We previously demonstrated that activated microglia release excessive glutamate through gap junction hemichannels and identified a novel gap junction hemichannel blocker, INI-0602, that was proven to penetrate the blood-brain barrier and be an effective treatment in mouse models of amyotrophic lateral sclerosis and Alzheimer disease. Spinal cord injury causes tissue damage in two successive waves. The initial injury is mechanical and directly causes primary tissue damage, which induces subsequent ischemia, inflammation, and neurotoxic factor release resulting in the secondary tissue damage. These lead to activation of glial cells. Activated glial cells such as microglia and astrocytes are common pathological observations in the damaged lesion. Activated microglia release glutamate, the major neurotoxic factor released into the extracellular space after neural injury, which causes neuronal death at high concentration. In the present study, we demonstrate that reduction of glutamate-mediated exitotoxicity via intraperitoneal administration of INI-0602 in the microenvironment of the injured spinal cord elicited neurobehavioral recovery and extensive suppression of glial scar formation by reducing secondary tissue damage. Further, this intervention stimulated anti-inflammatory cytokines, and subsequently elevated brain-derived neurotrophic factor. Thus, preventing microglial activation by a gap junction hemichannel blocker, INI-0602, may be a promising therapeutic strategy in spinal cord injury. PMID:24588281

  19. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes.

    PubMed

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L; Frago, Laura M; Dickson, Suzanne L; Argente, Jesús; Chowen, Julie A

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  20. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L.; Frago, Laura M.; Dickson, Suzanne L.; Argente, Jesús; Chowen, Julie A.

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  1. The Hydrogenase Activity of the Molybdenum/Copper-containing Carbon Monoxide Dehydrogenase of Oligotropha carboxidovorans*

    PubMed Central

    Wilcoxen, Jarett; Hille, Russ

    2013-01-01

    The reaction of the air-tolerant CO dehydrogenase from Oligotropha carboxidovorans with H2 has been examined. Like the Ni-Fe CO dehydrogenase, the enzyme can be reduced by H2 with a limiting rate constant of 5.3 s−1 and a dissociation constant Kd of 525 μm; both kred and kred/Kd, reflecting the breakdown of the Michaelis complex and the reaction of free enzyme with free substrate in the low [S] regime, respectively, are largely pH-independent. During the reaction with H2, a new EPR signal arising from the Mo/Cu-containing active site of the enzyme is observed which is distinct from the signal seen when the enzyme is reduced by CO, with greater g anisotropy and larger hyperfine coupling to the active site 63,65Cu. The signal also exhibits hyperfine coupling to at least two solvent-exchangeable protons of bound substrate that are rapidly exchanged with solvent. Proton coupling is also evident in the EPR signal seen with the dithionite-reduced native enzyme, and this coupling is lost in the presence of bicarbonate. We attribute the coupled protons in the dithionite-reduced enzyme to coordinated water at the copper site in the native enzyme and conclude that bicarbonate is able to displace this water from the copper coordination sphere. On the basis of our results, a mechanism for H2 oxidation is proposed which involves initial binding of H2 to the copper of the binuclear center, displacing the bound water, followed by sequential deprotonation through a copper-hydride intermediate to reduce the binuclear center. PMID:24165123

  2. Lipid-mediated unfolding of 3β-hydroxysteroid dehydrogenase 2 is essential for steroidogenic activity.

    PubMed

    Rajapaksha, Maheshinie; Thomas, James L; Streeter, Michael; Prasad, Manoj; Whittal, Randy M; Bell, John D; Bose, Himangshu S

    2011-12-27

    For inner mitochondrial membrane (IMM) proteins that do not undergo N-terminal cleavage, the activity may occur in the absence of a receptor present in the mitochondrial membrane. One such protein is human 3β-hydroxysteroid dehydrogenase 2 (3βHSD2), the IMM resident protein responsible for catalyzing two key steps in steroid metabolism: the conversion of pregnenolone to progesterone and dehydroepiandrosterone to androstenedione. Conversion requires that 3βHSD2 serve as both a dehydrogenase and an isomerase. The dual functionality of 3βHSD2 results from a conformational change, but the trigger for this change remains unknown. Using fluorescence resonance energy transfer, we found that 3βHSD2 interacted strongly with a mixture of dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylcholine (DPPC). 3βHSD2 became less stable when incubated with the individual lipids, as indicated by the decrease in thermal denaturation (T(m)) from 42 to 37 °C. DPPG, alone or in combination with DPPC, led to a decrease in α-helical content without an effect on the β-sheet conformation. With the exception of the 20 N-terminal amino acids, mixed vesicles protected 3βHSD2 from trypsin digestion. However, protein incubated with DPPC was only partially protected. The lipid-mediated unfolding completely supports the model in which a cavity forms between the α-helix and β-sheet. As 3βHSD2 lacks a receptor, opening the conformation may activate the protein. PMID:22106846

  3. Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents.

    PubMed

    Kozikowski, Alan P; Zhang, Jiazhong; Nan, Fajun; Petukhov, Pavel A; Grajkowska, Ewa; Wroblewski, Jarda T; Yamamoto, Tatsuo; Bzdega, Tomasz; Wroblewska, Barbara; Neale, Joseph H

    2004-03-25

    The neuropeptidase glutamate carboxypeptidase II (GCPII) hydrolyzes N-acetyl-L-aspartyl-L-glutamate (NAAG) to liberate N-acetylaspartate and glutamate. GCPII was originally cloned as PSMA, an M(r) 100,000 type II transmembrane glycoprotein highly expressed in prostate tissues. PSMA/GCPII is located on the short arm of chromosome 11 and functions as both a folate hydrolase and a neuropeptidase. Inhibition of brain GCPII may have therapeutic potential in the treatment of certain disease states arising from pathologically overactivated glutamate receptors. Recently, we reported that certain urea-based structures act as potent inhibitors of GCPII (J. Med. Chem. 2001, 44, 298). However, many of the potent GCPII inhibitors prepared to date are highly polar compounds and therefore do not readily penetrate the blood-brain barrier. Herein, we elaborate on the synthesis of a series of potent, urea-based GCPII inhibitors from the lead compound 3 and provide assay data for these ligands against human GCPII. Moreover, we provide data revealing the ability of one of these compounds, namely, 8d, to reduce the perception of inflammatory pain. Within the present series, the gamma-tetrazole bearing glutamate isostere 7d is the most potent inhibitor with a K(i) of 0.9 nM. The biological evaluation of these compounds revealed that the active site of GCPII likely comprises two regions, namely, the pharmacophore subpocket and the nonpharmacophore subpocket. The pharmacophore subpocket is very sensitive to structural changes, and thus, it appears important to keep one of the glutamic acid moieties intact to maintain the potency of the GCPII inhibitors. The site encompassing the nonpharmacophore subpocket that binds to glutamate's alpha-carboxyl group is sensitive to structural change, as shown by compounds 6b and 7b. However, the other region of the nonpharmacophore subpocket can accommodate both hydrophobic and hydrophilic groups. Thus, an aromatic ring can be introduced to the

  4. Muscular cholinesterase and lactate dehydrogenase activities in deep-sea fish from the NW Mediterranean.

    PubMed

    Koenig, Samuel; Solé, Montserrat

    2014-03-01

    Organisms inhabiting submarine canyons can be potentially exposed to higher inputs of anthropogenic chemicals than their counterparts from the adjacent areas. To find out to what extend this observation applies to a NW Mediterranean canyon (i.e. Blanes canyon) off the Catalan coast, four deep-sea fish species were collected from inside the canyon (BC) and the adjacent open slope (OS). The selected species were: Alepocephalus rostratus, Lepidion lepidion, Coelorinchus mediterraneus and Bathypterois mediterraneus. Prior to the choice of an adequate sentinel species, the natural variation of the selected parameters (biomarkers) in relation to factors such as size, sex, sampling depth and seasonality need to be characterised. In this study, the activities of cholinesterases (ChEs) and lactate dehydrogenase (LDH) enzymes were determined in the muscle of the four deep-sea fish. Of all ChEs, acetylcholinesterase (AChE) activity was dominant and selected for further monitoring. Overall, AChE activity exhibited a significant relationship with fish size whereas LDH activity was mostly dependent on the sex and gonadal development status, although in a species-dependent manner. The seasonal variability of LDH activity was more marked than for AChE activity, and inside-outside canyon (BC-OS) differences were not consistent in all contrasted fish species, and in fact they were more dependent on biological traits. Thus, they did not suggest a differential stress condition between sites inside and outside the canyon. PMID:24296242

  5. Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol.

    PubMed

    Marselos, M; Vasiliou, V

    1991-01-01

    The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis. PMID:2060039

  6. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Castilho, Roger Frigério; Wajner, Moacir

    2016-04-01

    Accumulation of 2-methylcitric acid (2MCA) is observed in methylmalonic and propionic acidemias, which are clinically characterized by severe neurological symptoms. The exact pathogenetic mechanisms of brain abnormalities in these diseases are poorly established and very little has been reported on the role of 2MCA. In the present work we found that 2MCA markedly inhibited ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate, with a less significant inhibition in pyruvate plus malate respiring mitochondria. However, no alterations occurred when α-ketoglutarate or succinate was used as respiratory substrates, suggesting a defect on glutamate oxidative metabolism. It was also observed that 2MCA decreased ATP formation in glutamate plus malate or pyruvate plus malate-supported mitochondria. Furthermore, 2MCA inhibited glutamate dehydrogenase activity at concentrations as low as 0.5 mM. Kinetic studies revealed that this inhibitory effect was competitive in relation to glutamate. In contrast, assays of osmotic swelling in non-respiring mitochondria suggested that 2MCA did not significantly impair mitochondrial glutamate transport. Finally, 2MCA provoked a significant decrease in mitochondrial membrane potential and induced swelling in Ca(2+)-loaded mitochondria supported by different substrates. These effects were totally prevented by cyclosporine A plus ADP or ruthenium red, indicating induction of mitochondrial permeability transition. Taken together, our data strongly indicate that 2MCA behaves as a potent inhibitor of glutamate oxidation by inhibiting glutamate dehydrogenase activity and as a permeability transition inducer, disturbing mitochondrial energy homeostasis. We presume that 2MCA-induced mitochondrial deleterious effects may contribute to the pathogenesis of brain damage in patients affected by methylmalonic and propionic acidemias. We propose that brain glutamate oxidation is disturbed by 2-methylcitric acid (2MCA), which

  7. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  8. Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior.

    PubMed

    Kolber, Benedict J; Montana, Michael C; Carrasquillo, Yarimar; Xu, Jian; Heinemann, Stephen F; Muglia, Louis J; Gereau, Robert W

    2010-06-16

    The central nucleus of the amygdala (CeA) has been identified as a site of nociceptive processing important for sensitization induced by peripheral injury. However, the cellular signaling components underlying this function remain unknown. Here, we identify metabotropic glutamate receptor 5 (mGluR5) as an integral component of nociceptive processing in the CeA. Pharmacological activation of mGluRs with (R,S)-3,5-dihydroxyphenylglycine (DHPG) in the CeA of mice is sufficient to induce peripheral hypersensitivity in the absence of injury. DHPG-induced peripheral hypersensitivity is reduced via pharmacological blockade of mGluR5 or genetic disruption of mGluR5. Furthermore, pharmacological blockade or conditional deletion of mGluR5 in the CeA abrogates inflammation-induced hypersensitivity, demonstrating the necessity of mGluR5 in CeA-mediated pain modulation. Moreover, we demonstrate that phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) is downstream of mGluR5 activation in the CeA and is necessary for the full expression of peripheral inflammation-induced behavioral sensitization. Finally, we present evidence of right hemispheric lateralization of mGluR5 modulation of amygdalar nociceptive processing. We demonstrate that unilateral pharmacological activation of mGluR5 in the CeA produces distinct behavioral responses depending on whether the right or left amygdala is injected. We also demonstrate significantly higher levels of mGluR5 expression in the right amygdala compared with the left under baseline conditions, suggesting a potential mechanism for right hemispheric lateralization of amygdala function in pain processing. Together, these results establish an integral role for mGluR5 and ERK1/2 in nociceptive processing in the CeA. PMID:20554871

  9. Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior

    PubMed Central

    Kolber, Benedict J.; Montana, Michael C.; Carrasquillo, Yarimar; Xu, Jian; Heinemann, Stephen F.; Muglia, Louis J.; Gereau, Robert W.

    2010-01-01

    The central nucleus of the amygdala (CeA) has been identified as a site of nociceptive processing important for sensitization induced by peripheral injury. However, the cellular signaling components underlying this function remain unknown. Here, we identify metabotropic glutamate receptor 5 (mGluR5) as an integral component of nociceptive processing in the CeA. Pharmacological activation of mGluRs with R,S-3,5-dihydroxyphenylglycine (DHPG) in the CeA of mice is sufficient to induce peripheral hypersensitivity in the absence of injury. DHPG-induced peripheral hypersensitivity is reduced via pharmacological blockade of mGluR5 or genetic disruption of mGluR5. Further, pharmacological blockade or conditional deletion of mGluR5 in the CeA abrogates inflammation-induced hypersensitivity, demonstrating the necessity of mGluR5 in CeA-mediated pain modulation. Moreover, we demonstrate that phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) is downstream of mGluR5 activation in the CeA and is necessary for the full expression of peripheral inflammation-induced behavioral sensitization. Finally, we present evidence of right hemispheric lateralization of mGluR5 modulation of amygdalar nociceptive processing. We demonstrate that unilateral pharmacological activation of mGluR5 in the CeA produces distinct behavioral responses depending on whether the right or left amygdala is injected. We also demonstrate significantly higher levels of mGluR5 expression in the right amygdala compared to the left under baseline conditions, suggesting a potential mechanism for right hemispheric lateralization of amygdala function in pain processing. Taken together, these results establish an integral role for mGluR5 and ERK1/2 in nociceptive processing in the CeA. PMID:20554871

  10. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation

    PubMed Central

    Gosselin, Romain-Daniel; Meylan, Patrick; Decosterd, Isabelle

    2013-01-01

    Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release. PMID:24368897