Science.gov

Sample records for glutathione s-transferase p1-1

  1. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    SciTech Connect

    Liu, Xiyuan; An, Byoung Ha; Kim, Min Jung; Park, Jong Hoon; Kang, Young Sook; Chang, Minsun

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1 (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.

  2. Inhibition of cell proliferation by ciprofibrate in glutathione S-transferase P1-1-positive rat hepatic hyperplastic nodules.

    PubMed

    Chen, Z Y; Liu, Y F; He, C Y; White, C C; Eaton, D L

    1994-05-15

    Previous studies have demonstrated that short-term treatment with a peroxisome proliferator (PP) decreased the size and number of genotoxic carcinogen-induced hepatic hyperplastic lesions identified by gamma-glutamyl transpeptidase (GGT) or glutathione S-transferase P1-1 (rGSTP1-1) staining. However, longer-term PP treatment of animals bearing similar hepatic hyperplastic lesions produced an increase in both the size and number of liver tumors. To characterize the hepatic hyperplastic lesions which are inhibited or promoted by PP, a unique double labeling technique was developed to determine the relative rate of cell division (e.g., DNA synthesis) in rGSTP1-1-positive nodules before and after ciprofibrate (Cip) treatment. rGSTP1-1-positive nodules were induced with the Solt-Farber resistance protocol (diethylnitrosamine-2-acetylaminofluorene partial hepatectomy). Eleven weeks after diethylnitrosamine initiation, 3 groups of rats were maintained on a control chow diet or switched to a powdered chow diet containing 0.025% Cip or 0.05% phenobarbital (PB) for the last 8 days of the experiment. A minipump implanted in the abdominal cavity released [methyl-3H]thymidine continuously for 72 h and was then removed prior to CIp or PB treatment. A second minipump was then implanted which released bromodeoxyuridine to the abdominal cavity 5 days after the start of Cip or PB administration and lasted for 72 h until the termination of the experiment. Both the [methyl-3H]thymidine and bromodeoxyuridine labeling indices (LIs) were determined in the same group of cells within individual rGSTP1-1-positive nodules in the right posterior lobes of livers. PB treatment increased both the average number of persistent GGT-positive nodules and the ratio of persistent GGT-positive to rGSTP1-1-positive nodules/cm2. In contrast, Cip treatment greatly decreased the average number and area of persistent GGT-positive nodules, as well as the ratio between persistent GGT-positive and rGSTP1

  3. Structural and functional consequences of inactivation of human glutathione S-transferase P1-1 mediated by the catechol metabolite of equine estrogens, 4-hydroxyequilenin.

    PubMed

    Chang, M; Shin, Y G; van Breemen, R B; Blond, S Y; Bolton, J L

    2001-04-17

    The inactivation mechanism(s) of human glutathione S-transferase P1-1 (hGST P1-1) by the catechol metabolite of Premarin estrogens, 4-hydroxyequilenin (4-OHEN), was (were) studied by means of site-directed mutagenesis, electrospray ionization mass spectrometric analysis, titration of free thiol groups, kinetic studies of irreversible inhibition, and analysis of band patterns on nonreducing sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE). The four cysteines (Cys 14, Cys 47, Cys 101, and Cys 169 in the primary sequence) in hGST P1-1 are susceptible to electrophilic attack and/or oxidative damage leading to loss of enzymatic activity. To investigate the role of cysteine residues in the 4-OHEN-mediated inactivation of this enzyme, one or a combination of cysteine residues was replaced by alanine residues (C47A, C101A, C47A/C101A, C14A/C47A/C101A, and C47A/C101A/C169A mutants). Mutation of Cys 47 decreased the affinity for the substrate GSH but not for the cosubstrate 1-chloro-2,4-dinitrobenzene (CDNB). However, the Cys 47 mutation did not significantly affect the rate of catalysis since V(max) values of the mutants were similar or higher compared to that of wild type. Electrospray ionization mass spectrometric analyses of wild-type and mutant enzymes treated with 4-OHEN showed that a single molecule of 4-OHEN-o-quinone attached to the proteins, with the exception of the C14A/C47A/C101A mutant where no covalent adduct was detected. 4-OHEN also caused oxidative damage as demonstrated by the appearance of disulfide-bonded species on nonreducing SDS--PAGE and protection of 4-OHEN-mediated enzyme inhibition by free radical scavengers. The studies of thiol group titration and irreversible kinetic experiments indicated that the different cysteines have distinct reactivity for 4-OHEN; Cys 47 was the most reactive thiol group whereas Cys 169 was resistant to modification. These results demonstrate that hGST P1-1 is inactivated by 4-OHEN through two

  4. Structure and function of residue 104 and water molecules in the xenobiotic substrate-binding site in human glutathione S-transferase P1-1.

    PubMed

    Ji, X; Blaszczyk, J; Xiao, B; O'Donnell, R; Hu, X; Herzog, C; Singh, S V; Zimniak, P

    1999-08-10

    Two variants of human class pi glutathione (GSH) S-transferase 1-1 with either isoleucine or valine in position 104 (hGSTP1-1[I104] and hGSTP1-1[V104]) have distinct activity toward (+)-anti-7, 8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-BPDE]. To elucidate their structure-function relationship, we determined the crystal structures of the two variants in complex with GSBpd, the GSH conjugate of (+)-anti-BPDE, at 2.1 and 2.0 A resolution, respectively. The crystal structures reveal that residue 104 in the xenobiotic substrate-binding site (H-site) dictates the binding modes of the product molecule GSBpd with the following three consequences. First, the distance between the hydroxyl group of Y7 and the sulfur atom of GSBpd is 5.9 A in the hGSTP1-1[I104].GSBpd complex versus 3.2 A in the V104 variant. Second, one of the hydroxyl groups of GSBpd forms a direct hydrogen bond with R13 in hGSTP1-1[V104].GSBpd; in contrast, this hydrogen bond is not observed in the I104 complex. Third, in the hydrophilic portion of the H-site of the I104 complex, five H-site water molecules [Ji, X., et al. (1997) Biochemistry 36, 9690-9702] are observed, whereas in the V104 complex, two of the five have been displaced by the Bpd moiety of GSBpd. Although there is no direct hydrogen bond between Y108 (OH) and the hydroxyl groups of GSBpd, indirect hydrogen bonds mediated by water molecules are observed in both complexes, supporting the previously suggested role of the hydroxyl group of Y108 as an electrophilic participant in the addition of GSH to epoxides. PMID:10441116

  5. Thioltransferase activity of bovine lens glutathione S-transferase.

    PubMed Central

    Dal Monte, M; Cecconi, I; Buono, F; Vilardo, P G; Del Corso, A; Mura, U

    1998-01-01

    A Mu-class glutathione S-transferase purified to electrophoretic homogeneity from bovine lens displayed thioltransferase activity, catalysing the transthiolation reaction between GSH and hydroxyethyldisulphide. The thiol-transfer reaction is composed of two steps, the formation of GSSG occurring through the generation of an intermediate mixed disulphide between GSH and the target disulphide. Unlike glutaredoxin, which is only able to catalyse the second step of the transthiolation process, glutathioneS-transferase catalyses both steps of the reaction. Data are presented showing that bovine lens glutathione S-transferase and rat liver glutaredoxin, which was used as a thioltransferase enzyme model, can operate in synergy to catalyse the GSH-dependent reduction of hydroxyethyldisulphide. PMID:9693102

  6. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  7. METAL-INDUCED INHIBITION OF GLUTATHIONE S-TRANSFERASES

    EPA Science Inventory

    The glutathione S-transferases comprise a group of multi-functional enzymes involved in the biotransformation/detoxication of a broad spectrum of hydrophobic compounds bearing an electrophilic center. The enzymes facilitate the nucleophilic attack of the -SH group of reduced glut...

  8. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  9. Recombinant baculovirus vectors expressing glutathione-S-transferase fusion proteins.

    PubMed

    Davies, A H; Jowett, J B; Jones, I M

    1993-08-01

    Recombinant baculoviruses are a popular means of producing heterologous protein in eukaryotic cells. Purification of recombinant proteins away from the insect cell background can, however, remain an obstacle for many developments. Recently, prokaryotic fusion protein expression systems have been developed allowing single-step purification of the heterologous protein and specific proteolytic cleavage of the affinity tag moiety from the desired antigen. Here we report the introduction of these attributes to the baculovirus system. "Baculo-GEX" vectors enable baculovirus production of fusion proteins with the above advantages, but in a eukaryotic post-translational processing environment. Glutathione-S-transferase (GST) fusions are stable cytoplasmic proteins in insect cells and may therefore be released by sonication alone, avoiding the solubility problems and detergent requirements of bacterial systems. Thus large amounts of authentic antigen may be purified in a single, non-denaturing step. PMID:7763917

  10. Benzene oxide is a substrate for glutathione S-transferases.

    PubMed

    Zarth, Adam T; Murphy, Sharon E; Hecht, Stephen S

    2015-12-01

    Benzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published. Therefore, we incubated GSTA1, GSTT1, GSTM1, and GSTP1 with glutathione and BO and quantified the formation of S-phenylglutathione. Kinetic parameters were determined for GSTT1 and GSTP1. At 37 °C, the putative Km and Vmax values for GSTT1 were 420 μM and 450 fmol/s, respectively, while those for GSTP1 were 3600 μM and 3100 fmol/s. GSTA1 and GSTM1 did not exhibit sufficient activity for determination of kinetic parameters. We conclude that GSTT1 is a critical enzyme in the detoxification of BO and that GSTP1 may also play an important role, while GSTA1 and GSTM1 seem to be less important. PMID:26554337

  11. Interrelationship between anionic and cationic forms of glutathione S-transferases of human liver.

    PubMed Central

    Awasthi, Y C; Dao, D D; Saneto, R P

    1980-01-01

    Human liver glutathione S-transferases (GSH S-transferases) were fractionated into cationic and anionic proteins. During fractionation with (NH4)2SO4 the anionic GSH S-transferases are concentrated in the 65%-saturated-(NH4)2SO4 fraction, whereas the cationic GSH S-transferases separate in the 80%-saturated-(NH4)2SO4 fraction. From the 65%-saturated-(NH4)2SO4 fraction two new anionic GSH S-transferases, omega and psi, were purified to homogeneity by using ion-exchange chromatography on DEAE-cellulose, Sephadex G-200 gel filtration, affinity chromatography on GSH bound to epoxy-activated Sepharose and isoelectric focusing. By a similar procedure, cationic GSH S-transferases were purified from the 80%-saturated-(NH4)2SO4 fraction. Isoelectric points of GSH S-transferases omega and psi are 4.6 and 5.4 respectively. GSH S-transferase omega is the major anionic GSH S-transferase of human liver, whereas GSH S-transferase psi is present only in traces. The subunit mol.wt. of GSH S-transferase omega is about 22500, whereas that of cationic GSH S-transferases is about 24500. Kinetic and structural properties as well as the amino acid composition of GSH S-transferase omega are described. The antibodies raised against cationic GSH S-transferases cross-react with GSH S-transferase omega. There are significant differences between the catalytic properties of GSH S-transferase omega and the cationic GSH S-transferases. GSH peroxidase II activity is displayed by all five cationic GSH S-transferases, whereas both anionic GSH S-transferases do not display this activity. Images Fig. 3. PMID:7470087

  12. Glutathione S-transferase activity and glutathione S-transferase mu expression in subjects with risk for colorectal cancer.

    PubMed

    Szarka, C E; Pfeiffer, G R; Hum, S T; Everley, L C; Balshem, A M; Moore, D F; Litwin, S; Goosenberg, E B; Frucht, H; Engstrom, P F

    1995-07-01

    The glutathione S-transferases (alpha, mu, and pi), a family of Phase II detoxication enzymes, play a critical role in protecting the colon mucosa by catalyzing the conjugation of dietary carcinogens with glutathione. We investigated the efficacy of using the glutathione S-transferase (GST) activity of blood lymphocytes and GST-mu expression as biomarkers of risk for colorectal cancer. GST activity was measured in the blood lymphocytes of control individuals (n = 67) and in the blood lymphocytes (n = 60) and colon tissue (n = 34) of individuals at increased risk for colon cancer. Total GST activity was determined spectrophotometrically with the use of 1-chloro-2,4-dinitrobenzene as a substrate. The ability to express the um subclass of GST was determined with the use of an ELISA. Although interindividual variability in the GST activity of blood lymphocytes was greater than 8-fold (range, 16.7-146.8 nmol/min/mg), the GST activity of blood lymphocytes and colon tissue within an individual was constant over time and was unrelated to sex, age, or race. The GST activity of blood lymphocytes from high-risk individuals was significantly lower than that of blood lymphocytes from control individuals (P < or = 0.004). No association was observed between the frequency of GST-mu phenotype and risk for colorectal cancer. Blood lymphocytes from high-risk individuals unable to express GST-mu had lower levels of GST activity than did those from control subjects with the GST-mu null phenotype; however, this difference was significant in male subjects only (P < or = 0.006). Analysis of paired samples of blood lymphocytes and colon tissue indicated a strong correlation between the GST activity of the two tissue types (Spearman's rank correlation, r = 0.87; P < or = 0.0001). The GST activity of blood lymphocytes may be used to identify high-risk individuals with decreased protection from this Phase II detoxication enzyme who may benefit from clinical trials evaluating GST modulators

  13. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei.

    PubMed

    Pettersson, Eva U; Ljunggren, Erland L; Morrison, David A; Mattsson, Jens G

    2005-01-01

    The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase. PMID:15619514

  14. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu.

    PubMed Central

    't Hoen, Peter A C; Out, Ruud; Commandeur, Jan N M; Vermeulen, Nico P E; van Batenburg, F H D; Manoharan, Muthiah; van Berkel, Theo J C; Biessen, Erik A L; Bijsterbosch, Martin K

    2002-01-01

    The aim of the present study was to identify functional antisense oligodeoxynucleotides (ODNs) against the rat glutathione S-transferase Mu (GSTM) isoforms, GSTM1 and GSTM2. These antisense ODNs would enable the study of the physiological consequences of GSTM deficiency. Because it has been suggested that the effectiveness of antisense ODNs is dependent on the secondary mRNA structures of their target sites, we made mRNA secondary structure predictions with two software packages, Mfold and STAR. The two programs produced only marginally similar structures, which can probably be attributed to differences in the algorithms used. The effectiveness of a set of 18 antisense ODNs was evaluated with a cell-free transcription/translation assay, and their activity was correlated with the predicted secondary RNA structures. Four phosphodiester ODNs specific for GSTM1, two ODNs specific for GSTM2, and four ODNs targeted at both GSTM isoforms were found to be potent, sequence-specific, and RNase H-dependent inhibitors of protein expression. The IC50 value of the most potent ODN was approximately 100 nM. Antisense ODNs targeted against regions that were predicted by STAR to be predominantly single stranded were more potent than antisense ODNs against double-stranded regions. Such a correlation was not found for the Mfold prediction. Our data suggest that simulation of the local folding of RNA facilitates the discovery of potent antisense sequences. In conclusion, we selected several promising antisense sequences, which, when synthesized as biologically stable oligonucleotides, can be applied for study of the physiological impact of reduced GSTM expression. PMID:12515389

  15. Expression of glutathione, glutathione peroxidase and glutathione S-transferase pi in canine mammary tumors

    PubMed Central

    2014-01-01

    Background Glutathione (GSH) is one of the most important agents of the antioxidant defense system of the cell because, in conjunction with the enzymes glutathione peroxidase (GSH-Px) and glutathione S transferase pi (GSTpi), it plays a central role in the detoxification and biotransformation of chemotherapeutic drugs. This study evaluated the expression of GSH and the GSH-Px and GSTpi enzymes by immunohistochemistry in 30 canine mammary tumors, relating the clinicopathological parameters, clinical outcome and survival of the bitches. In an in vitro study, the expression of the genes glutamate cysteine ligase (GCLC) and glutathione synthetase (GSS) that synthesize GSH and GSH-Px gene were verified by qPCR and subjected to treatment with doxorubicin, to check the resistance of cancer cells to chemotherapy. Results The immunohistochemical expression of GSH, GSH-Px and GSTpi was compared with the clinical and pathological characteristics and the clinical outcome in the bitches, including metastasis and death. The results showed that high immunoexpression of GSH was correlated to the absence of tumor ulceration and was present in dogs without metastasis (P < 0.05). There was significant correlation of survival with the increase of GSH (P < 0.05). The expression of the GSH-Px and GSTpi enzymes showed no statistically significant correlation with the analyzed variables (p > 0.05). The analysis of the relative expression of genes responsible for the synthesis of GSH (GCLC and GSS) and GSH-Px by quantitative PCR was done with cultured cells of 10 tumor fragments from dogs with mammary tumors. The culture cells showed a decrease in GCLC and GSS expression when compared with no treated cells (P < 0.05). High GSH immunoexpression was associated with better clinical outcomes. Conclusion Therefore, high expression of the GSH seems to play an important role in the clinical outcome of patients with mammary tumors and suggest its use as prognostic marker. The in

  16. Developmental aspects of glutathione S-transferase B (ligandin) in rat liver.

    PubMed Central

    Hales, B F; Neims, A H

    1976-01-01

    The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood. PMID:1008852

  17. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  18. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription-polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  19. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori

    PubMed Central

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  20. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  1. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  2. A tyrosine-reactive irreversible inhibitor for glutathione S-transferase Pi (GSTP1).

    PubMed

    Crawford, L A; Weerapana, E

    2016-05-24

    Glutathione S-transferase Pi (GSTP1) mediates cellular defense against reactive electrophiles. Here, we report LAS17, a dichlorotriazine-containing compound that irreversibly inhibits GSTP1 and is selective for GSTP1 within cellular proteomes. Mass spectrometry and mutational studies identified Y108 as the site of modification, providing a unique mode of GSTP1 inhibition. PMID:27113843

  3. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  4. Identification of Small-Molecule Frequent Hitters of Glutathione S-Transferase-Glutathione Interaction.

    PubMed

    Brenke, Jara K; Salmina, Elena S; Ringelstetter, Larissa; Dornauer, Scarlett; Kuzikov, Maria; Rothenaigner, Ina; Schorpp, Kenji; Giehler, Fabian; Gopalakrishnan, Jay; Kieser, Arnd; Gul, Sheraz; Tetko, Igor V; Hadian, Kamyar

    2016-07-01

    In high-throughput screening (HTS) campaigns, the binding of glutathione S-transferase (GST) to glutathione (GSH) is used for detection of GST-tagged proteins in protein-protein interactions or enzyme assays. However, many false-positives, so-called frequent hitters (FH), arise that either prevent GST/GSH interaction or interfere with assay signal generation or detection. To identify GST-FH compounds, we analyzed the data of five independent AlphaScreen-based screening campaigns to classify compounds that inhibit the GST/GSH interaction. We identified 53 compounds affecting GST/GSH binding but not influencing His-tag/Ni(2+)-NTA interaction and general AlphaScreen signals. The structures of these 53 experimentally identified GST-FHs were analyzed in chemoinformatic studies to categorize substructural features that promote interference with GST/GSH binding. Here, we confirmed several existing chemoinformatic filters and more importantly extended them as well as added novel filters that specify compounds with anti-GST/GSH activity. Selected compounds were also tested using different antibody-based GST detection technologies and exhibited no interference clearly demonstrating specificity toward their GST/GSH interaction. Thus, these newly described GST-FH will further contribute to the identification of FH compounds containing promiscuous substructures. The developed filters were uploaded to the OCHEM website (http://ochem.eu) and are publicly accessible for analysis of future HTS results. PMID:27044684

  5. Regiospecificity of placental metabolism by cytochromes P450 and glutathione S-transferase.

    PubMed

    McRobie, D J; Glover, D D; Tracy, T S

    1996-01-01

    The placenta possesses the ability to metabolize numerous xenobiotics and endogenous steroids. However, it is unknown whether regional differences in these enzymatic reactions exist in the human placenta. To this end, we undertook a study of four regions of the placenta, the chorionic plate, maternal surface, placental margin and whole tissue, to assess the activities of cytochrome P450 1A1 and 19A1 (aromatase) and glutathione S-stransferase in these fractions. No differences in either P450 1A1 or glutathione S-transferase activities were noted among any of the placental fractions. However, with respect to P450 19A1 activity, the placental margin differed significantly from all other fractions (p < 0.05). This study demonstrates that whole tissue samples of the human placenta are adequate for placental cytochrome P450 and glutathione S-transferase metabolism studies. PMID:8938464

  6. Tumor efficacy and bone marrow-sparing properties of TER286, a cytotoxin activated by glutathione S-transferase.

    PubMed

    Morgan, A S; Sanderson, P E; Borch, R F; Tew, K D; Niitsu, Y; Takayama, T; Von Hoff, D D; Izbicka, E; Mangold, G; Paul, C; Broberg, U; Mannervik, B; Henner, W D; Kauvar, L M

    1998-06-15

    TER286 is a latent drug activated by human glutathione S-transferase (GST) isoforms P1-1 and A1-1 to produce a nitrogen mustard alkylating agent. M7609 human colon carcinoma, selected for resistance to doxorubicin, and MCF-7 human breast carcinoma, selected for resistance to cyclophosphamide, both showed increased sensitivity to TER286 over their parental lines in parallel with increased expression of GST P1-1. In primary human tumor clonogenic assays, the spectrum of cytotoxic activity observed for TER286 was both broad and unusual when compared to a variety of current drugs. In murine xenografts of M7609 engineered to have high, medium, or low GST P1-1, responses to TER286 were positively correlated with the level of P1-1. Cytotoxicity was also observed in several other cell culture and xenograft models. In xenografts of the MX-1 human breast carcinoma, tumor growth inhibition or regression was observed in nearly all of the animals treated with an aggressive regimen of five daily doses. This schedule resulted in a 24-h posttreatment decline in bone marrow progenitors to 60% of control and was no worse than for a single dose of TER286. These studies have motivated election of TER286 as a clinical candidate. PMID:9635580

  7. A comparison of erythrocyte glutathione S-transferase activity from human foetuses and adults.

    PubMed Central

    Strange, R C; Johnston, J D; Coghill, D R; Hume, R

    1980-01-01

    Glutathione S-transferase activity was measured in partially purified haemolysates of erythrocytes from human foetuses and adults. Enzyme activity was present in erythrocytes obtained between 12 and 40 weeks of gestation. The catalytic properties of the enzyme from foetal cells were similar to those of the enzyme from adult erythrocytes, indicating that probably only one form of the erythrocytes enzyme exists throughout foetal and adult life. PMID:7396875

  8. Habitual consumption of fruits and vegetables: associations with human rectal glutathione S-transferase.

    PubMed

    Wark, Petra A; Grubben, Marina J A L; Peters, Wilbert H M; Nagengast, Fokko M; Kampman, Ellen; Kok, Frans J; van 't Veer, Pieter

    2004-11-01

    The glutathione (GSH)/glutathione S-transferase (GST) system is an important detoxification system in the gastrointestinal tract. A high activity of this system may benefit cancer prevention. The aim of the study was to assess whether habitual consumption of fruits and vegetables, especially citrus fruits and brassica and allium vegetables, is positively associated with parameters reflecting the activity of the GSH/GST enzyme system in human rectal mucosa. GST enzyme activity, GST isoenzyme levels of GST-alpha (A1-1, A1-2 and A2-2), -mu (M1-1) and -pi (P1-1), and GSH levels were measured in rectal biopsies from 94 subjects. Diet, lifestyle, GSTM1 and GSTT1 null polymorphisms were assessed. Mean GST enzyme activity was 237 nmol/min/mg protein (SD = 79). Consumption of citrus fruits was positively associated with GST enzyme activity [difference between high and low consumption: 28.9 (95% confidence interval (CI) = 9.3-48.6) nmol/min/mg protein], but was not associated with the other parameters. A positive association with brassica vegetables was found among carriers of the GSTM1-plus genotype [difference between high and low consumption: 22.6 (95% CI = 0.2-45.0) nmol/min/mg protein], but not among GSTM1-null individuals (-25.8 nmol/min/mg protein, 95% CI = -63.3-11.8). This is in line with a positive association between consumption of brassica vegetables and GSTM isoenzyme level [difference between high and low consumption: 67.5%, 95% CI = (6.8-162.7)]. Consumption of allium vegetables was not associated with GST enzyme activity, but negatively with GSTP1-1 levels [difference between high and low consumption: -23.3%, 95% CI = (-35.5; -8.6)]. Associations were similar among those with the GSTT1-plus and GSTT1-null genotype. In conclusion, variations in habitual consumption of fruits, particularly citrus fruits, and of vegetables, in particular brassica vegetables, among those with the GSTM1-plus genotype, may contribute to variations in human rectal GST enzyme

  9. Complementary DNA cloning, messenger RNA expression, and induction of alpha-class glutathione S-transferases in mouse tissues.

    PubMed

    Buetler, T M; Eaton, D L

    1992-01-15

    Glutathione S-transferases (EC 2.5.1.18) are a multigene family of related proteins divided into four classes. Each class has multiple isoforms that exhibit tissue-specific expression, which may be an important determinant of susceptibility of that tissue to toxic injury or cancer. Recent studies have suggested that alpha-class glutathione S-transferase isoforms may play an important role in the development of cancers. Several alpha-class glutathione S-transferase isozymes have been characterized, purified, and cloned from a number of species, including rats, mice, and humans. Here we report on the cloning, sequencing, and mRNA expression of two alpha-class glutathione S-transferases from mouse liver, termed mYa and mYc. While mYa was shown to be identical to the known alpha-class glutathione S-transferase complementary DNA clone pGT41 (W. R. Pearson et al., J. Biol. Chem., 263: 13324-13332, 1988), the other clone, mYc, was demonstrated to be a novel complementary DNA clone encoding a glutathione S-transferase homologous to rat Yc (subunit 2). The mRNA for this novel complementary DNA is expressed constitutively in mouse liver. It also is the major alpha-class glutathione S-transferase isoform expressed in lung. The levels of expression of the butylated hydroxyanisole-inducible form (mYa) are highest in kidney and intestine. Treatment of mice with butylated hydroxyanisole had little effect on the expression levels of mYc but strongly induced mYa expression in liver. Butylated hydroxyanisole treatment increased expression levels for both mYa and mYc to varying degrees in kidney, lung, and intestine. The importance of the novel mouse liver alpha-class glutathione S-transferase isoform (mYc) in the metabolism of aflatoxin B1 and other carcinogens is discussed. PMID:1728405

  10. Partial characterization of glutathione S-transferases from wheat (Triticum spp.) and purification of a safener-induced glutathione S-transferase from Triticum tauschii.

    PubMed Central

    Riechers, D E; Irzyk, G P; Jones, S S; Fuerst, E P

    1997-01-01

    Hexaploid wheat (Triticum aestivum L.) has very low constitutive glutathione S-transferase (GST) activity when assayed with the chloroacetamide herbicide dimethenamid as a substrate, which may account for its low tolerance to dimethenamid in the field. Treatment of seeds with the herbicide safener fluxofenim increased the total GST activity extracted from T. aestivum shoots 9-fold when assayed with dimethenamid as a substrate, but had no effect on glutathione levels. Total GST activity in crude protein extracts from T. aestivum, Triticum durum, and Triticum tauschii was separated into several component GST activities by anion-exchange fast-protein liquid chromatography. These activities (isozymes) differed with respect to their activities toward dimethenamid or 1-chloro-2,4-dinitrobenzene as substrates and in their levels of induction by safener treatment. A safener-induced GST isozyme was subsequently purified by anion-exchange and affinity chromatography from etiolated shoots of the diploid wheat species T. tauschii (a progenitor of hexaploid wheat) treated with the herbicide safener cloquintocet-mexyl. The isozyme bound to a dimethenamid-affinity column and had a subunit molecular mass of 26 kD based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme (designated GST TSI-1) was recognized by an antiserum raised against a mixture of maize (Zea mays) GSTs. Amino acid sequences obtained from protease-digested GST TSI-1 had significant homology with the safener-inducible maize GST V and two auxin-regulated tobacco (Nicotiana tabacum) GST isozymes. PMID:9276955

  11. The DinB Superfamily Includes Novel Mycothiol, Bacillithiol and Glutathione S-transferases

    PubMed Central

    Newton, Gerald L.; Leung, Stephan S.; Wakabayashi, Judy I.; Rawat, Mamta; Fahey, Robert C.

    2011-01-01

    The superfamily of glutathione S-transferases has been the subject of extensive study but Actinobacteria produce mycothiol (MSH) in place of glutathione and no mycothiol S-transferase (MST) has been identified. Using mycothiol and monochlorobimane as substrates a MST activity was detected in extracts of Mycobacterium smegmatis and purified sufficiently to allow identification of MSMEG_0887, a member the DUF664 family of the DinB superfamily, as the MST. The identity of the M. smegmatis and homologous Mycobacterium tuberculosis (Rv0443) enzymes was confirmed by cloning and the expressed proteins were found to be active with MSH but not bacillithiol (BSH) or glutathione (GSH). Bacillus subtilis YfiT is another member of the DinB superfamily but this bacterium produces BSH. The YfiT protein was shown to have S-transferase activity with monochlorobimane when assayed with BSH but not with MSH or GSH. Enterococcus faecalis EF_3021 shares some homology with MSMEG_0887 but this organism produces GSH but not MSH or BSH. Cloned and expressed EF_0321 was active with monochlorobimane and GSH but not with MSH or BSH. MDMPI_2 is another member of the DinB superfamily and has been previously shown to have mycothiol-dependent maleylpyruvate isomerase activity. Three of the eight families of the DinB superfamily include proteins shown to catalyze thiol-dependent metabolic or detoxification activities. Since more than two-thirds of the sequences assigned to the DinB superfamily are members of these families it seems likely that such activity is dominant in the DinB superfamily. PMID:22059487

  12. Photoactivation of hypericin down-regulates glutathione S-transferase activity in nasopharyngeal cancer cells.

    PubMed

    Du, H Y; Olivo, M; Tan, B K H; Bay, B H

    2004-04-30

    Photodynamic therapy (PDT) is a new modality of treatment for cancer. Hypericin is a photosensitizer, which is known to generate reactive oxygen species upon activation with light. We observed that photoactivated hypericin induces the generation of reactive oxygen intermediates in nasopharyngeal cancer (NPC) cells in vitro. There was also significant reduction of Glutathione S-transferase (GST) activity in HK1 and CNE-2 NPC cells and in tumor tissues from the NPC/HK1 murine tumor model by hypericin-mediated PDT. As antioxidants protect cells against phototoxicity, down-regulation of GST activity would potentiate the efficacy of hypericin-PDT treatment. PMID:15072826

  13. Induction of glutathione-S-transferase activity by antioxidants in hepatocyte culture.

    PubMed

    Chen, L H; Shiau, C C

    1989-01-01

    Twelve male Sprague-Dawley rats were used for the study. Six rats were injected with benzo(a)pyrene (BP); the other six rats served as the control. Twenty-four hours after injection, hepatocytes were isolated and cultured. The cultured plates were divided into 5 groups and treated with absolute ethanol (control), butylated hydroxytoluene, vitamin E, ascorbic acid or vitamin Elascorbic acid. After 48 hours, the hepatocytes were harvested for enzyme activation determination. With both control and BP-injected rats, each antioxidant treatment significantly increased glutathione-S-transferase activity. The results suggest that antioxidants may have a detoxifying effect against BP-induced carcinogenesis. PMID:2817788

  14. Glutathion S-transferase activity and DDT-susceptibility of Malaysian mosquitos.

    PubMed

    Lee, H L; Chong, W L

    1995-03-01

    Comparative DDT-susceptibility status and glutathion s-transferase (GST) activity of Malaysian Anopheles maculatus, Culex quinquefasciatus and Aedes aegypti was investigated to ascertain the role of this enzyme in DDT resistance. The standardised WHO dose-mortality bioassay tests were used to determine DDT susceptibility in these mosquitos, whilst GST microassay (Brogdon and Barber, 1990) was conducted to measure the activity of this enzyme in mosquito homogenate. It appeared that DDT susceptibility status of Malaysian mosquitos was not correlated with GST activity. PMID:8525405

  15. Pharmacogenetics of azathioprine in inflammatory bowel disease: a role for glutathione-S-transferase?

    PubMed

    Stocco, Gabriele; Pelin, Marco; Franca, Raffaella; De Iudicibus, Sara; Cuzzoni, Eva; Favretto, Diego; Martelossi, Stefano; Ventura, Alessandro; Decorti, Giuliana

    2014-04-01

    Azathioprine is a purine antimetabolite drug commonly used to treat inflammatory bowel disease (IBD). In vivo it is active after reaction with reduced glutathione (GSH) and conversion to mercaptopurine. Although this reaction may occur spontaneously, the presence of isoforms M and A of the enzyme glutathione-S-transferase (GST) may increase its speed. Indeed, in pediatric patients with IBD, deletion of GST-M1, which determines reduced enzymatic activity, was recently associated with reduced sensitivity to azathioprine and reduced production of azathioprine active metabolites. In addition to increase the activation of azathioprine to mercaptopurine, GSTs may contribute to azathioprine effects even by modulating GSH consumption, oxidative stress and apoptosis. Therefore, genetic polymorphisms in genes for GSTs may be useful to predict response to azathioprine even if more in vitro and clinical validation studies are needed. PMID:24707136

  16. Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Nagaoka, Sumiharu; Banno, Yutaka; Aso, Yoichi

    2009-05-01

    A cDNA encoding an omega-class glutathione S-transferase of the silkmoth, Bombyx mori (bmGSTO), was cloned by reverse transcriptase-polymerase chain reaction. The resulting clone was sequenced and deduced for amino acid sequence, which revealed 40, 40, and 39% identities to omega-class GSTs from human, pig, and mouse, respectively. A recombinant protein (rbmGSTO) was functionally overexpressed in Escherichia coli cells in a soluble form and purified to homogeneity. rbmGSTO was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GST, as well as with 4-hydroxynonenal, a product of lipid peroxidation. This enzyme was shown to have high affinity for organophosphorus insecticide and was present abundantly in silkmoth strain exhibiting fenitrothion resistance. These results indicate that bmGSTO could be involved in the increase in level of insecticide resistance for lepidopteran insects. PMID:19022397

  17. Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure.

    PubMed

    Farkas, Michael H; Berry, James O; Aga, Diana S

    2007-02-15

    Soil contamination with nonmetabolized antibiotics is an emerging environmental concern, especially on agricultural croplands that receive animal manure as fertilizer. In this study, phytotoxicity of chlortetracycline (CTC) antibiotics on pinto beans (Phaseolus vulgaris) and maize (Zea mays) was investigated under controlled conditions. When grown in CTC-treated soil, a significant increase in the activities of the plant stress proteins glutathione S-transferases (GST) and peroxidases (POX) were observed in maize plants, but not in pinto beans. In vitro conjugation reactions demonstrated that the induced GST in maize catalyzed the conjugation of glutathione (GSH) with CTC, producing stable conjugates that were structurally characterized using liquid chromatography/mass spectrometry. The antibiotic-induced GST produced CTC-glutathione conjugate at relative concentrations 2-fold higher than that produced by constitutively expressed GST extracted from untreated maize. On the other hand, GST extracted from pinto beans (both treated and untreated) did not efficiently catalyze glutathione conjugation with CTC. These results suggest that maize is able to detoxify chlortetracycline via the glutathione pathway, whereas pinto beans cannot. This may explain the observed stunted growth of pinto beans after antibiotic treatment. This study demonstrates the importance of plant uptake in determining the fate of antibiotics in soil and their potential phytotoxicity to susceptible plants. PMID:17593756

  18. Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extensive similarities between helminth proteins and allergens are thought to contribute to helminth-driven allergic sensitization. We investigated the molecular and structural similarities between Bla g 5, a major glutathione-S transferase (GST) allergen of cockroaches, and the GST of Wucherer...

  19. Effect of glutathione S-transferase M1 polymorphisms on biomarkers of exposure and effects.

    PubMed Central

    Srám, R J

    1998-01-01

    Genotypes responsible for interindividual differences in ability to activate or detoxify genotoxic agents are recognized as biomarkers of susceptibility. Among the most studied genotypes are human glutathione transferases. The relationship of genetic susceptibility to biomarkers of exposure and effects was studied especially in relation to the genetic polymorphism of glutathione S-transferase M1 (GSTM1). For this review papers reporting the effect of GSTM1 genotype on DNA adducts, protein adducts, urine mutagenicity, Comet assay parameters, chromosomal aberrations, sister chromatid exchanges (SCE), micronuclei, and hypoxanthine-guanine phosphoribosyl transferase mutations were assessed. Subjects in groups occupationally exposed to polycyclic aromatic hydrocarbons, benzidine, pesticides, and 1,3-butadiene were included. As environmentally exposed populations, autopsy donors, coal tar-treated patients, smokers, nonsmokers, mothers, postal workers, and firefighters were followed. From all biomarkers the effect of GSTM1 and N-acetyl transferase 2 was seen in coke oven workers on mutagenicity of urine and of glutathione S-transferase T1 on the chromosomal aberrations in subjects from 1,3-butadiene monomer production units. Effects of genotypes on DNA adducts were found from lung tissue of autopsy donors and from placentas of mothers living in an air-polluted region. The GSTM1 genotype affected mutagenicity of urine in smokers and subjects from polluted regions, protein adducts in smokers, SCE in smokers and nonsmokers, and Comet assay parameters in postal workers. A review of all studies on GSTM1 polymorphisms suggests that research probably has not reached the stage where results can be interpreted to formulate preventive measures. The relationship between genotypes and biomarkers of exposure and effects may provide an important guide to the risk assessment of human exposure to mutagens and carcinogens. PMID:9539016

  20. MicroRNA Regulating Glutathione S-Transferase P1 in Prostate Cancer

    PubMed Central

    Singh, Savita; Shukla, Girish C; Gupta, Sanjay

    2015-01-01

    Glutathione S-transferase P1 (GSTP1), an enzyme involved in detoxification process, is frequently inactivated in prostate cancer due to epigenetic modifications. Through in silico analysis we identified a subset of miRNAs that are putative targets in regulating GSTP1. miRNAs are small endogenous non-coding RNA that are critical regulators of various physiologic and pathologic processes and their level of expression may play a precise role in early diagnosis and prognosis of cancer. These small molecules have been detected in a wide variety of human biological specimens including blood, serum, urine, ejaculate and tissues, which could be utilized as clinically useful biomarker in early detection and prognosis of prostate cancer. The chapter summarizes the current knowledge about miRNA involved in GSTP1 regulation in prostate cancer and their potential as useful biomarkers of disease for early detection and prognosis, along with challenges and limitations in this development. PMID:25774339

  1. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups

    PubMed Central

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  2. Glutathione S-transferases variants as risk factors in Alzheimer's disease.

    PubMed

    Wang, Tengfei

    2015-10-01

    Glutathione S-transferase (GST) was suggested as an important contributor to Alzheimer's disease (AD). The GSTs polymorphisms have been investigated as candidate genetic risk factors for AD, yet results remained uncertain. Therefore, we performed a meta-analysis to clarify the relationship of GSTs polymorphisms with the occurrence of AD. PubMed, Embase, Cochrane library and Alzgene databases were searched and potential literatures were selected. Pooled analyses and subgroup analyses were conducted, and also publication bias tests and cumulative meta-analysis. This meta-analysis suggested null associations between polymorphisms of GSTM1, GSTT1, GSTM3, GSTP1, GSTO1 and AD risk. GSTs variants may not have an impact on the morbidity of Alzheimer's disease. Further well designed researches are required to confirm these findings of the current study. PMID:25981226

  3. Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases.

    PubMed

    Hou, Liming; Honaker, Matthew T; Shireman, Laura M; Balogh, Larissa M; Roberts, Arthur G; Ng, Kei-Cheuk; Nath, Abhinav; Atkins, William M

    2007-08-10

    The structurally related glutathione S-transferase isoforms GSTA1-1 and GSTA4-4 differ greatly in their relative catalytic promiscuity. GSTA1-1 is a highly promiscuous detoxification enzyme. In contrast, GSTA4-4 exhibits selectivity for congeners of the lipid peroxidation product 4-hydroxynonenal. The contribution of protein dynamics to promiscuity has not been studied. Therefore, hydrogen/deuterium exchange mass spectrometry (H/DX) and fluorescence lifetime distribution analysis were performed with glutathione S-transferases A1-1 and A4-4. Differences in local dynamics of the C-terminal helix were evident as expected on the basis of previous studies. However, H/DX demonstrated significantly greater solvent accessibility throughout most of the GSTA1-1 sequence compared with GSTA4-4. A Phe-111/Tyr-217 aromatic-aromatic interaction in A4-4, which is not present in A1-1, was hypothesized to increase core packing. "Swap" mutants that eliminate this interaction from A4-4 or incorporate it into A1-1 yield H/DX behavior that is intermediate between the wild type templates. In addition, the single Trp-21 residue of each isoform was exploited to probe the conformational heterogeneity at the intrasubunit domain-domain interface. Excited state fluorescence lifetime distribution analysis indicates that this core residue is more conformationally heterogeneous in GSTA1-1 than in GSTA4-4, and this correlates with greater stability toward urea denaturation for GSTA4-4. The fluorescence distribution and urea sensitivity of the mutant proteins were intermediate between the wild type templates. The results suggest that the differences in protein dynamics of these homologs are global. The results suggest also the possible importance of extensive conformational plasticity to achieve high levels of functional promiscuity, possibly at the cost of stability. PMID:17561509

  4. Glutathione S-transferase GSTT1 and GSTM1 allozymes: beyond null alleles.

    PubMed

    Agúndez, José A G; Ladero, José M

    2008-03-01

    Moyer AM, Salavaggione OE, Hebbring SJ et al.: Glutathione S-transferase T1 and M1: gene sequence variation and functional genomics. Clin. Cancer Res. 13, 7207-7216 (2007). Genetic variations in the glutathione S-transferases GSTT1 and GSTM1 have been studied in many human populations, and association of these variations with environmentally-related cancers, drug-induced hepatotoxicity and even chronification of viral hepatitis has been shown. However, studies carried out to date have been limited to gene deletion, designated as null alleles, and no extensive studies on other types of genetic variations have been carried out. This study is of great importance, as it describes the occurrence and the allele frequencies for 18 SNPs in the GSTT1 gene, including four nonsynonymous SNPs, and 69 SNPs, two of which are nonsynonymous, in the GSTM1 gene. The GSTT1 SNPs leading to the amino acid substitutions Asp43Asn, Thr65Met, Thr104Pro and a single nucleotide deletion in exon 4 cause a decrease in immunoreactive protein. Interestingly, the previously described nonsynonymous GSTT1 SNPs rs2266635 (Ala21Thr), rs11550606 (Leu30Pro), rs17856199 (Phe45Cys), rs11550605 (Thr104Pro), rs2266633 (Asp141Asn) and rs2234953 (Glu173Lys) were not identified in 400 subjects, thus indicating that these variant alleles are expected to occur at extremely low frequencies. This study reinforces the need to combine SNP databases and resequencing. On combining the data reported in this study with SNP databases, the most promising target SNPs for GSTT1 association studies are those causing the amino acid changes Asp43Asn, Thr65Met, Thr104Pro and the single nucleotide deletion in exon 4. These gene variants should be analyzed in African-American and Hispanic subjects to increase the predictive capacity of genetic tests. For Caucasians and Oriental subjects, testing for null alleles seems to be sufficient. PMID:18303971

  5. Effect of three xenobiotic compounds on Glutathione S-Transferase in the clam Ruditapes decussatus.

    PubMed

    Hoarau, Pascal; Garello, Ginette; Gnassia-Barelli, Mauricette; Roméo, Michèle; Girard, Jean-Pierre

    2004-05-28

    The effects of 4,4'DDE, methoxychlor and imidazole were studied on glutathione S-transferase activities in the gills and hepatopancreas of the clam Ruditapes decussatus. The contamination doses were 0.14 microM for 4,4'DDE, 0.14 microM for methoxychlor and 25 microM for imidazole. GST activities were spectrophotometrically measured. SDS-PAGE and isoelectric focusing (IEF) were used to separate the different GST isoforms in control and treated animals, followed by Western blotting performed with anti-alpha, anti-mu and anti-pi GST anti-sera. In the hepatopancreas, GST-CDNB activities were always two to five-fold lower than in the gills where the activities were significantly increased after exposure to 4,4'DDE (ca. 1.6-fold) and to methoxychlor (ca. 1.3-fold) compared to the controls (ca. 3 micromolmin(-1)mg(-1)protein) whereas they remained unchanged after treatment with imidazole. When using glutathione S-transferase anti-alpha, anti-mu and anti-pi anti-sera, a single 26 kDa polypeptide was observed in the hepatopancreas and in the gills in all the tested conditions. Five GST subunits were observed after IEF showing greater immuno-reactivity with the anti-pi mammalian class antiserum than with the anti-alpha or anti-mu mammalian anti-sera. One isoform of pI 5.77 was particularly induced by 4,4'DDE and methoxychlor; it was recognized by the three anti-sera tested and seemed to be more efficient in the gills than in the hepatopancreas. This isoform may play a role in organochlorine detoxication. PMID:15110472

  6. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    SciTech Connect

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling; Gorman, Michael A.; Morton, Craig J.; Pyke, James; McConville, Malcolm J.; Bieri, Michael; Mok, Yee-Foong; Robin, Charles; Gooley, Paul R.; Parker, Michael W.; Batterham, Philip

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.

  7. Potent and selective inhibitors of glutathione S-transferase omega 1 that impair cancer drug resistance.

    PubMed

    Tsuboi, Katsunori; Bachovchin, Daniel A; Speers, Anna E; Spicer, Timothy P; Fernandez-Vega, Virneliz; Hodder, Peter; Rosen, Hugh; Cravatt, Benjamin F

    2011-10-19

    Glutathione S-transferases (GSTs) are a superfamily of enzymes that conjugate glutathione to a wide variety of both exogenous and endogenous compounds for biotransformation and/or removal. Glutathione S-tranferase omega 1 (GSTO1) is highly expressed in human cancer cells, where it has been suggested to play a role in detoxification of chemotherapeutic agents. Selective inhibitors of GSTO1 are, however, required to test the role that this enzyme plays in cancer and other (patho)physiological processes. With this goal in mind, we performed a fluorescence polarization activity-based protein profiling (fluopol-ABPP) high-throughput screen (HTS) with GSTO1 and the Molecular Libraries Small Molecule Repository (MLSMR) 300K+ compound library. This screen identified a class of selective and irreversible α-chloroacetamide inhibitors of GSTO1, which were optimized to generate an agent KT53 that inactivates GSTO1 with excellent in vitro (IC(50) = 21 nM) and in situ (IC(50) = 35 nM) potency. Cancer cells treated with KT53 show heightened sensitivity to the cytotoxic effects of cisplatin, supporting a role for GSTO1 in chemotherapy resistance. PMID:21899313

  8. Potent and Selective Inhibitors of Glutathione S-transferase Omega 1 that Impair Cancer Drug Resistance

    PubMed Central

    Tsuboi, Katsunori; Bachovchin, Daniel A.; Speers, Anna E.; Spicer, Timothy P.; Fernandez-Vega, Virneliz; Hodder, Peter; Rosen, Hugh; Cravatt, Benjamin F.

    2011-01-01

    Glutathione S-transferases (GSTs) are a superfamily of enzymes that conjugate glutathione to a wide variety of both exogenous and endogenous compounds for biotransformation and/or removal. Glutathione S-tranferase omega 1 (GSTO1) is highly expressed in human cancer cells, where it has been suggested to play a role in detoxification of chemotherapeutic agents. Selective inhibitors of GSTO1 are, however, required to test the role that this enzyme plays in cancer and other (patho)physiological processes. With this goal in mind, we performed a fluorescence polarization activity-based protein profiling (fluopol-ABPP) high-throughput screen (HTS) with GSTO1 and the Molecular Libraries Small Molecule Repository (MLSMR) 300K+ compound library. This screen identified a class of selective and irreversible α-chloroacetamide inhibitors of GSTO1, which were optimized to generate an agent KT53 that inactivates GSTO1 with excellent in vitro (IC50 = 21 nM) and in situ (IC50 = 35 nM) potency. Cancer cells treated with KT53 show heightened sensitivity to the cytotoxic effects of cisplatin, supporting a role for GSTO1 in the detoxification of chemo-therapeutic agents PMID:21899313

  9. 3-Methyleneoxindole: an affinity label of glutathione S-transferase pi which targets tryptophan 38.

    PubMed

    Pettigrew, N E; Brush, E J; Colman, R F

    2001-06-26

    The compound 3-methyleneoxindole (MOI), a photooxidation product of the plant auxin indole-3-acetic acid, functions as an affinity label of the dimeric pi class glutathione S-transferase (GST) isolated from pig lung. MOI inactivates the enzyme to a limit of 14% activity. The k for inactivation by MOI is decreased 20-fold by S-hexylglutathione but only 2-fold by S-methylglutathione, suggesting that MOI does not react entirely within the glutathione site. The striking protection against inactivation provided by S-(hydroxyethyl)ethacrynic acid indicates that MOI reacts in the active site region involving both the glutathione and the xenobiotic substrate sites. Incorporation of [(3)H]MOI up to approximately 1 mol/mol of enzyme dimer concomitant with maximum inactivation suggests that there are interactions between subunits. Fractionation of the proteolytic digest of [(3)H]MOI-modified GST pi yielded Trp38 as the only labeled amino acid. The crystal structure of the human GST pi-ethacrynic acid complex (2GSS) shows that the indole of Trp38 is less than 4 A from ethacrynic acid. Similarly, MOI may bind in this substrate site. In contrast to its effect on the pi class GST, MOI inactivates much less rapidly and extensively alpha and mu class GSTs isolated from the rat. These results show that MOI reacts preferentially with GST pi. Such a compound may be useful in novel combination chemotherapy to enhance the efficacy of alkylating cancer drugs while minimizing toxic side effects. PMID:11412109

  10. Optical biosensor consisting of glutathione-S-transferase for detection of captan.

    PubMed

    Choi, Jeong-Woo; Kim, Young-Kee; Song, Sun-Young; Lee, In-ho; Lee, Won-Hong

    2003-10-15

    The optical biosensor consisting of a glutathione-S-transferase (GST)-immobilized gel film was developed to detect captan in contaminated water. The sensing scheme was based on the decrease of yellow product, s-(2,4-dinitrobenzene) glutathione, produced from substrates, 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), due to the inhibition of GST reaction by captan. Absorbance of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme reactor of the sensor system was fabricated by the gel entrapment technique for the immobilized GST film. The immobilized GST had the maximum activity at pH 6.5. The optimal concentrations of substrates were determined with 1 mM for both of CDNB and GSH. The optimum concentration of enzyme was also determined with 100 microg/ml. The activity of immobilized enzyme was fairly sustained during 30 days. The proposed biosensor could successfully detect the captan up to 2 ppm and the response time to steady signal was about 15 min. PMID:12941561

  11. Fluorometric microplate assay to measure glutathione S-transferase activity in insects and mites using monochlorobimane.

    PubMed

    Nauen, Ralf; Stumpf, Natascha

    2002-04-15

    Elevated levels of glutathione S-transferases (GSTs) play a major role as a mechanism of resistance to insecticides and acaricides in resistant pest insects and mites, respectively. Such compounds are either detoxicated directly via phase I metabolism or detoxicated by phase II metabolism of metabolites as formed by microsomal monooxygenases. Here we used monochlorobimane (MCB) as an artificial substrate and glutathione to determine total GST activity in equivalents of single pest insects and spider mites in a sensitive 96-well plate-based assay system by measuring the enzymatic conversion of MCB to its fluorescent bimane-glutathione adduct. The differentiation by their GST activity between several strains of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), with different degrees of resistance to numerous acaricides was more sensitive with MCB compared to the commonly used substrate 1-chloro-2,4-dinitrobenzene (CDNB). Compared to an acaricide-susceptible reference strain, one field population of T. urticae showed a more than 10-fold higher GST activity measured with MCB, in contrast to a less than 2-fold higher activity when CDNB was used. Furthermore, we showed that GST activity can be sensitively assessed with MCB in homogenates of pest insects such as Heliothis virescens, Spodoptera frugiperda (Lepidoptera: Noctuidae), Plutella xylostella (Lepidoptera: Yponomeutidae), and Myzus persicae (Hemiptera: Aphididae). PMID:11950219

  12. The human glutathione transferase P1-1 specific inhibitor TER 117 designed for overcoming cytostatic-drug resistance is also a strong inhibitor of glyoxalase I.

    PubMed

    Johansson, A S; Ridderström, M; Mannervik, B

    2000-03-01

    gamma-L-Glutamyl-S-(benzyl)-L-cysteinyl-R-(-)-phenylglycine (TER 117) has previously been developed for selective inhibition of human glutathione S-transferase P1-1 (GST P1-1) based on the postulated contribution of this isoenzyme to the development of drug resistance in cancer cells. In the present investigation, the inhibitory effect of TER 117 on the human glyoxalase system was studied. Although designed as an inhibitor specific for GST P1-1, TER 117 also competitively inhibits glyoxalase I (K(I) = 0.56 microM). In contrast, no inhibition of glyoxalase II was detected. Reduced glyoxalase activity is expected to raise intracellular levels of toxic 2-oxoaldehydes otherwise eliminated by glyoxalase I. The resulting toxicity would accompany the potentiation of cytostatic drugs, caused by inhibition of the detoxication effected by GST P1-1. TER 117 was designed for efficient inhibition of the most abundant form GST P1-1/Ile105. Therefore, the inhibitory effect of TER 117 on a second allelic variant GST P1-1/Val105 was also studied. TER 117 was shown to competitively inhibit both GST P1-1 variants. The apparent K(I) values at glutathione concentrations relevant to the intracellular milieu were in the micromolar range for both enzyme forms. Extrapolation to free enzyme produced K(I) values of approximately 0.1 microM for both isoenzymes, reflecting the high affinity of GST P1-1 for the inhibitor. Thus, the allelic variation in position 105 of GST P1-1 does not affect the inhibitory potency of TER 117. The inhibitory effects of TER 117 on GST P1-1 and glyoxalase I activities may act in synergy in the cell and improve the effectiveness of chemotherapy. PMID:10692504

  13. MIF protein are theta-class glutathione S-transferase homologs.

    PubMed Central

    Blocki, F. A.; Ellis, L. B.; Wackett, L. P.

    1993-01-01

    MIF proteins are mammalian polypeptides of approximately 13,000 molecular weight. This class includes human macrophage migration inhibitory factor (MIF), a rat liver protein that has glutathione S-transferase (GST) activity (TRANSMIF), and the mouse delayed early response gene 6 (DER6) protein. MIF proteins were previously linked to GSTs by demonstrating transferase activity and observing N-terminal sequence homology with a mu-class GST (Blocki, F.A., Schlievert, P.M., & Wackett, L.P., 1992, Nature 360, 269-270). In this study, MIF proteins are shown to be structurally related to the theta class of GSTs. This is established in three ways. First, unique primary sequence patterns are developed for each of the GST gene classes. The patterns identify the three MIF proteins as theta-like transferase homologs. Second, pattern analysis indicates that GST members of the theta class contain a serine residue in place of the N-terminal tyrosine that is implicated in glutathione deprotonation and activation in GSTs of known structure (Liu, S., et al., 1992, J. Biol. Chem. 267, 4296-4299). The MIF proteins contain a threonine at this position. Third, polyclonal antibodies raised against recombinant human MIF cross-react on Western blots with rat theta GST but not with alpha and mu GSTs. That MIF proteins have glutathione-binding ability may provide a common structural key toward understanding the varied functions of this widely distributed emerging gene family. Because theta is thought to be the most ancient evolutionary GST class, MIF proteins may have diverged early in evolution but retained a glutathione-binding domain. PMID:8298459

  14. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases.

    PubMed Central

    Alfenito, M R; Souer, E; Goodman, C D; Buell, R; Mol, J; Koes, R; Walbot, V

    1998-01-01

    Glutathione S-transferases (GSTs) traditionally have been studied in plants and other organisms for their ability to detoxify chemically diverse herbicides and other toxic organic compounds. Anthocyanins are among the few endogenous substrates of plant GSTs that have been identified. The Bronze2 (Bz2) gene encodes a type III GST and performs the last genetically defined step of the maize anthocyanin pigment pathway. This step is the conjugation of glutathione to cyanidin 3-glucoside (C3G). Glutathionated C3G is transported to the vacuole via a tonoplast Mg-ATP-requiring glutathione pump (GS-X pump). Genetically, the comparable step in the petunia anthocyanin pathway is controlled by the Anthocyanin9 (An9) gene. An9 was cloned by transposon tagging and found to encode a type I plant GST. Bz2 and An9 have evolved independently from distinct types of GSTs, but each is regulated by the conserved transcriptional activators of the anthocyanin pathway. Here, a phylogenetic analysis is presented, with special consideration given to the origin of these genes and their relaxed substrate requirements. In particle bombardment tests, An9 and Bz2 functionally complement both mutants. Among several other GSTs tested, only soybean GmGST26A (previously called GmHsp26A and GH2/4) and maize GSTIII were found to confer vacuolar sequestration of anthocyanin. Previously, these genes had not been associated with the anthocyanin pathway. Requirements for An9 and Bz2 gene function were investigated by sequencing functional and nonfunctional germinal revertants of an9-T3529, bz2::Ds, and bz2::Mu1. PMID:9668133

  15. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver.

    PubMed

    Oetari, S; Sudibyo, M; Commandeur, J N; Samhoedi, R; Vermeulen, N P

    1996-01-12

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or by adding glutathione (GSH), N-acetyl L-cysteine (NAC), ascorbic acid, rat liver microsomes, or rat liver cytosol. Curcumin was found to be a potent inhibitor of rat liver P450 1A1/1A2 measured as ethoxyresorufin deethylation (EROD) activity in beta-naphthoflavone (beta NF)-induced microsomes, a less potent inhibitor of P450 2B1/2B2, measured as pentoxyresorufin depentylation (PROD) activity in phenobarbital (PB)-induced microsomes and a weak inhibitor of P450 2E1, measured as p-nitrophenol (PNP) hydroxylation activity in pyrazole-induced microsomes. Ki values were 0.14 and 76.02 microM for the EROD- and PROD-activities, respectively, and 30 microM of curcumin inhibited only 9% of PNP-hydroxylation activity. In ethoxyresorufin deethylation (EROD) and pentoxyresorufin depentylation (PROD) experiments, curcumin showed a competitive type of inhibition. Curcumin was also a potent inhibitor of glutathione S-transferase (GST) activity in cytosol from liver of rats treated with phenobarbital (PB), beta-naphthoflavone (beta NF) and pyrazole (Pyr), when measured towards 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. In liver cytosol from rats treated with phenobarbital (PB), curcumin inhibited GST activity in a mixed-type manner with a Ki of 5.75 microM and Ki of 12.5 microM. In liver cytosol from rats treated with pyrazole (Pyr) or beta-naphthoflavone (beta NF), curcumin demonstrated a competitive type of inhibition with Ki values of 1.79 microM and 2.29 microM, respectively. It is concluded that these strong inhibitory properties of curcumin towards P450s and GSTs, in addition to its well-known antioxidant activity, may help explain the previously observed anticarcinogenic

  16. Association between herbivore stress and glutathione S-transferase expression in Pinus brutia Ten.

    PubMed

    Semiz, A; Çelik-Turgut, G; Semiz, G; Özgün, Ö; Şen, A

    2016-01-01

    Plants have developed mechanisms to defend themselves against many factors including biotic stress such as herbivores and pathogens. Glutathione S-transferase (GST) is a glutathione-dependent detoxifying enzyme and plays critical roles in stress tolerance and detoxification metabolism in plants. Pinus brutia Ten. is a prominent native forest tree species in Turkey, due to both its economic and ecological assets. One of the problems faced by P. brutia afforestation sites is the attacks by pine processionary moth (Thaumetopoea wilkinsoni Tams.). In this study, we investigated the changes in activity and mRNA expression of GST in pine samples taken from both resistant and susceptible clones against T. wilkinsoni over a nine month period in a clonal seed orchard. It was found that the average cytosolic GST activities of trees in March and July were significantly higher than the values obtained in November. November was considered to be the control since trees were not under stress yet. In addition, RT-PCR results clearly showed that levels of GST transcripts in March and July samples were significantly higher as compared to the level seen in November. These findings strongly suggest that GST activity from P. brutia would be a valuable marker for exposure to herbivory stress. PMID:27064879

  17. Effects of gestational and overt diabetes on placental cytochromes P450 and glutathione S-transferase.

    PubMed

    Glover; McRobie; Tracy

    1998-07-01

    Objective: Animal and in vivo human studies have observed that diabetes alters the expression of hepatic metabolizing cytochrome P450 (CYP) and glutathione S-transferase (GST) enzymes. The placenta has the ability to metabolize a number of xenobiotic and endogenous compounds by processes similar to those seen in the liver. Our objective was to compare placental xenobiotic metabolizing activity in diabetics to matched non-diabetic controls to determine if the presence of diabetes alters placental xenobiotic metabolizing activity.Methods: The catalytic activities of 7-ethoxyresorufin-O-deethylation [EROD] (CYP1A1), chlorzoxazone 6-hydroxylation (CYP2E1), dextromethorphan N-demethylation (CYP3A4), dextromethorphan O-demethylation (CYP2D6), and 1-chloro-2,4-dinitrobenzene (CDNB) conjugation with glutathione (GST) from placentas of diet controlled (class A1) and insulin-dependent (class A2) gestational diabetics and overt diabetics were compared to matched controls.Results: No differences in EROD activity were observed among overt or gestational diabetics and their respectively matched controls. CYP2E1, 2D6, and 3A4 enzyme activity were not detected in human placentas. In contrast, GST activity was significantly reduced by 30% (P <.05) in overt diabetics as compared to their matched controls and gestational diabetics.Conclusion: Pregnant women with overt diabetes have reduced GST activity in the placenta, which could potentially result in exposure of the fetus to harmful reactive electrophilic metabolites. PMID:10838356

  18. Effects of antioxidants on glutathione-S-transferase activities in hepatocyte culture

    SciTech Connect

    Chen, L.H. )

    1991-03-15

    Hepatocyte cultures from control rats and rats injected with 3-methylcholanthrene(3-MC) were used to study the effects of antioxidants on the activity of glutathione-S-transferases (GSH-S-T). This group of enzymes catalyzes conjugation of xenobiotics or their metabolites with reduced glutathione and plays an important role in detoxification of xenobiotics. In Experiment 1, treatment of hepatocyte cultures from both control and 3-MC-injected rats with 25 {mu}M or 50 {mu}M butylated hydroxyanisole (BHA) for 24 hours or 48 hours significantly increased GSH-S-T activity with I-chloro-2,4-dinitrobenzene (CDNB) as the substrate. In Experiment 2, treatment of hepatocytes from both control and 3-MC-treated rats with 25 {mu}M ethoxyquin or vitamin E, but not vitamin A or ascorbic acid, significantly increased GSH-S-T activity when CDNB, 1,2-dichloro-4-nitrobenzene or p-nitrobenzyl chloride was used as the substrate, respectively. The results suggested that BHA, ethoxyquin and vitamin E may have detoxification effects against 3-MC-induced carcinogenesis.

  19. Glutathione-S-Transferases As Determinants of Cell Survival and Death

    PubMed Central

    Townsend, Danyelle M.

    2012-01-01

    Abstract Significance: The family of glutathione S-transferases (GSTs) is part of a cellular Phase II detoxification program composed of multiple isozymes with functional human polymorphisms that have the capacity to influence individual response to drugs and environmental stresses. Catalytic activity is expressed through GST dimer-mediated thioether conjugate formation with resultant detoxification of a variety of small molecule electrophiles. Recent Advances: More recent work indicates that in addition to the classic catalytic functions, specific GST isozymes have other characteristics that impact cell survival pathways in ways unrelated to detoxification. These characteristics include the following: regulation of mitogen-activated protein kinases; facilitation of the addition of glutathione to cysteine residues in certain proteins (S-glutathionylation); as a novel cellular partner of the human papilloma virus-16 E7 oncoprotein playing a pivotal role in preventing cell death in infected human cells; mitogenic influence in myeloproliferative pathways; participant in the process of cocaine addiction. Critical Issues: Some of these functions have provided a platform for targeting GST with novel small molecule therapeutics, particularly in cancer where evidence of clinical applications is emerging. Future Directions: Our evolving understanding of the GST superfamily and their divergent expression patterns in individuals make them attractive candidates for translational studies in a variety of human pathologies. In addition, their role in regulating cell fate in signaling and cell death pathways has opened up a significant functional complexity that extends well beyond standard detoxification reactions. Antioxid. Redox Signal. 17, 1728–1737. PMID:22540427

  20. Glutathione-S-transferase in Nereis succinea (Polychaeta) and its induction by xeno-estrogen.

    PubMed

    Ayoola, James A O; García-Alonso, Javier; Hardege, Jörg D

    2011-10-01

    The need to replace or at least to reduce the use of vertebrates in toxicity tests is a timely major concern in research and industry but to date, efforts made to minimize their use are still far from complete. Increasing demands for toxicity tests put considerable pressures upon the development of future fast and efficient test methods using invertebrates. In fact, to date, few studies provide links between biochemical and cellular effects of xeno-estrogens in aquatic invertebrates. Glutathione-S-transferase (GST) activity, as a biomarker of stress exposure, was measured in the population of clamworms (Nereis succinea) from Cardiff Bay. In addition, we examined the effect of single exposure to nonylphenol (NP) on this enzymatic activity. Field study results showed a relationship between the worm's size, reproductive status, and GST activity from the field population. In addition, we show a significant increase in the GST activity at 100 μg/L NP with sex-specific responses. The xeno-estrogens, which could affect reproduction of nereid by interfering in normal endocrinological pathways, are eliminated through GST by conjugation with glutathione. This work shows for the first time that GST activity depends on sex and stage of the clamworms and also that the xeno-estrogen NP induces its activity. This study supports the use of this species as a bioindicator of aquatic pollution and lays the foundation to causally link toxic exposure with reproductive output. PMID:20549611

  1. The association of glutathione S-transferase polymorphisms in patients with osteosarcoma: evidence from a meta-analysis.

    PubMed

    Wang, Z; Xu, H; He, M; Wu, H; Zhu, Y; Su, Z

    2015-05-01

    Osteosarcoma is a life-threatening malignancy that often occurs in teenagers. Numerous studies have reported glutathione S-transferase polymorphisms are associated with osteosarcoma, but the results are inconclusive, partially because the sample size in each of published studies is relatively small. Therefore, we performed a meta-analysis of the published studies to estimate the association more accurately. To preciously examine the association between the glutathione S-transferase polymorphisms and osteosarcoma, we undertook a meta-analysis of six case-control studies. The association between the glutathione S-transferase polymorphisms and osteosarcoma risk was assessed by odds ratios together with their 95% confidence intervals using a fixed-effects model or random-effects model. In addition, hazard ratio was used to measure the relationship between glutathione S-transferase polymorphisms and prognosis in patients with osteosarcoma. We found that there was significant association between the polymorphisms in GSTT1 or GSTM3 (AA versus BB) and osteosarcoma risk. In addition, there is no evidence of association on GSTM1, GSTT1, GSTP1 (IIe/IIe versus IIe/Val) or GSTP1 (IIe/IIe versus Val/Val) polymorphisms with prognosis in osteosarcoma. In conclusion, the GSTT1 and GSTM3 polymorphisms might influence osteosarcoma risk. PMID:24689813

  2. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  3. Bilberry (Vaccinium myrtillus) Anthocyanins Modulate Heme Oxygenase-1 and Glutathione S-Transferase-pi Expression in the ARPE-19 Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE. To determine whether anthocyanin-enriched bilberry extracts modulate pre- or post-translational levels of oxidative stress defense enzymes heme-oxygenase (HO)-1 and glutathione S-transferase-pi (GST-pi) in cultured human retinal pigment epithelial (RPE) cells. METHODS. Confluent ARPE-19 c...

  4. Inhibition of liver glutathione S-transferase activity in rats by hypolipidemic drugs related or unrelated to clofibrate.

    PubMed

    Foliot, A; Touchard, D; Mallet, L

    1986-05-15

    The effects of in vivo administration of six hypolipidemic drugs on rat liver glutathione S-transferase activity were compared. This activity was measured with sulfobromophthalein (BSP), 1,2-dichloro-4-nitrobenzene (DCNB) or 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. Except for the nicotinic acid derivative ethanolamine oxiniacate, all the compounds tested significantly reduced it, whether or not they were related to clofibrate. The hepatic glutathione concentration either remained unchanged or only increased slightly after treatment with the various drugs. When measured, the maximal excretion rate of bile BSP dropped significantly, but not that of phenol-3,6-dibromophthalein (DBSP). Hepatic dye uptake and storage were not impaired. These results show that hypolipidemic drugs of the peroxisome proliferator type inhibit rat liver glutathione S-transferase activity and may reduce transport of anions conjugated with glutathione before excretion. PMID:3707598

  5. Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress.

    PubMed Central

    Raza, Haider; Robin, Marie-Anne; Fang, Ji-Kang; Avadhani, Narayan G

    2002-01-01

    The mitochondrial respiratory chain, which consumes approx. 85-90% of the oxygen utilized by cells, is a major source of reactive oxygen species (ROS). Mitochondrial genetic and biosynthetic systems are highly susceptible to ROS toxicity. Intramitochondrial glutathione (GSH) is a major defence against ROS. In the present study, we have investigated the nature of the glutathione S-transferase (GST) pool in mouse liver mitochondria, and have purified three distinct forms of GST: GSTA1-1 and GSTA4-4 of the Alpha family, and GSTM1-1 belonging to the Mu family. The mitochondrial localization of these multiple GSTs was confirmed using a combination of immunoblot analysis, protease protection assay, enzyme activity, N-terminal amino acid sequencing, peptide mapping and confocal immunofluorescence analysis. Additionally, exogenously added 4-hydroxynonenal (HNE), a reactive byproduct of lipid peroxidation, to COS cells differentially affected the cytosolic and mitochondrial GSH pools in a dose- and time-dependent manner. Our results show that HNE-mediated mitochondrial oxidative stress caused a decrease in the GSH pool, increased membrane lipid peroxidation, and increased levels of GSTs, glutathione peroxidase and Hsp70 (heat-shock protein 70). The HNE-induced oxidative stress persisted for longer in the mitochondrial compartment, where the recovery of GSH pool was slower than in the cytosolic compartment. Our study, for the first time, demonstrates the presence in mitochondria of multiple forms of GSTs that show molecular properties similar to those of their cytosolic counterparts. Our results suggest that mitochondrial GSTs may play an important role in defence against chemical and oxidative stress. PMID:12020353

  6. Comparison of human liver and small intestinal glutathione S-transferase-catalyzed busulfan conjugation in vitro.

    PubMed

    Gibbs, J P; Yang, J S; Slattery, J T

    1998-01-01

    The apparent oral clearance of busulfan has been observed to vary as much as 10-fold in the population of children and adults receiving high-dose busulfan. The only identified elimination pathway for busulfan involves glutathione conjugation. The reaction is predominantly catalyzed by glutathione S-transferase (GST) A1-1, which is present in both liver and intestine. The purpose of this study was to compare busulfan Vmax/Km in cytosol prepared from adult human liver and small intestine. Tetrahydrothiophenium ion formation rate per milligram of cytosolic protein was constant along the length (assessed in 30-cm segments) of three individual small intestines. A 30-cm-long intestinal segment 90-180 cm from the pylorus was chosen to be representative of intestinal cytosolic busulfan conjugating activity. Busulfan Vmax/Km (mean +/- SD) in cytosol prepared from 23 livers and 12 small intestines was 0.166 +/- 0.066 and 0.176 +/- 0.085 microl/min/mg cytosolic protein, respectively, in incubations with 5 microM busulfan, 1 mM glutathione, and 2 mg of cytosolic protein. The relative content of GSTalpha (A1-1, A1-2, and A2-2) was compared for human liver and intestinal cytosol using Western blot. The levels of GSTalpha in liver and intestinal cytosol were 1.12 +/- 0.56 and 1.36 +/- 0.32 integrated optimal density units/5 microg cytosolic protein, respectively. Busulfan conjugation in vitro was comparable per milligram of cytosolic protein in liver and intestinal cytosol. PMID:9443852

  7. Inhibition of the recombinant cattle tick Rhipicephalus (Boophilus) annulatus glutathione S-transferase.

    PubMed

    Guneidy, Rasha A; Shahein, Yasser E; Abouelella, Amira M K; Zaki, Eman R; Hamed, Ragaa R

    2014-09-01

    Rhipicephalus (Boophilus) annulatus is a bloodsucking ectoparasite that causes severe production losses in the cattle industry. This study aims to evaluate the in vitro effects of tannic acid, hematin (GST inhibitors) and different plant extracts (rich in tannic acid) on the activity of the recombinant glutathione S-transferase enzyme of the Egyptian cattle tick R. annulatus (rRaGST), in order to confirm their ability to inhibit the parasitic essential detoxification enzyme glutathione S-transferase. Extraction with 70% ethanol of Hibiscus cannabinus (kenaf flowers), Punica granatum (red and white pomegranate peel), Musa acuminata (banana peel) (Musaceae), Medicago sativa (alfalfa seeds), Tamarindus indicus (seed) and Cuminum cyminum (cumin seed) were used to assess: (i) inhibitory capacities of rRaGST and (ii) their phenolic and flavonoid contents. Ethanol extraction of red pomegranate peel contained the highest content of phenolic compounds (29.95mg gallic acid/g dry tissue) compared to the other studied plant extracts. The highest inhibition activities of rRaGST were obtained with kenaf and red pomegranate peel (P. granatum) extracts with IC50 values of 0.123 and 0.136mg dry tissue/ml, respectively. Tannic acid was the more effective inhibitor of rRaGST with an IC50 value equal to 4.57μM compared to delphinidine-HCl (IC50=14.9±3.1μM). Gossypol had a weak inhibitory effect (IC50=43.7μM), and caffeic acid had almost no effect on tick GST activity. The IC50 values qualify ethacrynic acid as a potent inhibitor of rRaGST activity (IC50=0.034μM). Cibacron blue and hematin showed a considerable inhibition effect on rRaGST activity, and their IC50 values were 0.13μM and 7.5μM, respectively. The activity of rRaGST was highest for CDNB (30.2μmol/min/mg protein). The enzyme had also a peroxidatic activity (the specific activity equals 26.5μmol/min/mg protein). Both tannic acid and hematin inhibited rRaGST activity non-competitively with respect to GSH and

  8. Effects of some metal ions on rainbow trout erythrocytes glutathione S-transferase enzyme: an in vitro study.

    PubMed

    Comakli, Veysel; Ciftci, Mehmet; Kufrevioglu, O Irfan

    2013-12-01

    Glutathione S-transferase enzyme (GST) (EC 2.5.1.18) was purified from rainbow trout erythrocytes, and some characteristics of the enzyme and effects of some metal ions on enzyme activity were investigated. For this purpose, erythrocyte glutathione S-transferase enzyme which has 16.54 EU/mg protein specific activities was purified 11,026-fold by glutathione-agarose affinity chromatography with a yield of 59%. Temperature was kept under control (+4°C) during purification. Enzyme purification was checked by performing SDS-PAGE. Optimal pH, stable pH, optimal temperature, and K(M) and Vmax values for GSH and 1-chloro-2, 4-dinitrobenzene (CDNB) were also determined for the enzyme. In addition, IC50 values, Ki constants and the type of inhibition were determined by means of Line-Weaver-Burk graphs obtained for such inhibitors as Ag(+); Cd(2+), Cr(2+) and Mg(2+). PMID:23057421

  9. Role of glutathione and glutathione S-transferases in the metabolism of busulfan

    SciTech Connect

    Marchand, D.H.

    1987-01-01

    Busulfan (1,4-dimethanesulfonate butanediol) is a bifunctional alkylating agent used in the treatment of chronic myelogenous leukemia. The major urinary metabolite of busulfan in mammals is 3-hydroxytetrahydrothiophene-1,1-dioxide (3-HOTHT). Previous metabolic studies with /sup 35/S-busulfan indicated that the sulfur in 3-HOTHT results from the reaction of busulfan with endogenous thiols. These studies also found that mixing L-cysteine with busulfan at pH 8.0 produced a tetrahydrothiophenium-cysteine conjugate (THT-cys). Treatment of THT-cys with sodium hydroxide produced tetrahydrothiophene (THT). Administration of THT-cyc or THT to rats resulted in the appearance of 3-HOTHT in rat urine. Glutathione (GSH) is the major non-protein thiol in cells. As part of the present studies, the reaction between GSH and busulfan was examined.

  10. Hepatic glutathione and glutathione S-transferase in selenium deficiency and toxicity in the chick

    SciTech Connect

    Kim, Y. S.

    1989-01-01

    First, the hepatic activity of GSH-T{sub CDNB} was increased only under conditions of severe oxidative stress produced by combined Se- and vitamin E (VE)-deficiency, indicating that VE also affects GSH metabolism. Second, the incorporation of {sup 35}S-methionine into GSH and protein was about 4- and 2-fold higher, respectively, in Se- and VE-deficient chick hepatocytes as compared to controls. Third, chicks injected with the glutathione peroxidase (SeGSHpx) inhibitor, aurothioglucose (AuTG), showed increase hepatic GSH-T{sub CDNB} activity and plasma GSH concentration regardless of their Se status. Fourth, the effect of ascorbic acid (AA), on GSH metabolism was studied. Chicks fed 1000 ppm AA showed decreased hepatic GSH concentration compared to chicks fed no AA in a Se- and VE-deficient diet. Fifth, chicks fed excess Se showed increase hepatic activity of GSH-T{sub CDNB} and GSH concentration regardless of VE status.

  11. Association study of Glutathione S-Transferase polymorphisms and risk of endometriosis in an Iranian population

    PubMed Central

    Hassani, Mina; Saliminejad, Kioomars; Heidarizadeh, Masood; Kamali, Koorosh; Memariani, Toktam; Khorram Khorshid, Hamid Reza

    2016-01-01

    Background: Endometriosis influenced by both genetic and environmental factors. Associations of glutathione S-transferases (GSTs) genes polymorphisms in endometriosis have been investigated by various researchers; however, the results are not consistent. Objective: We examined the associations of GSTM1 and GSTT1 null genotypes and GSTP1 313 A/G polymorphisms with endometriosis in an Iranian population. Materials and Methods: In this case-control study, 151 women with diagnosis of endometriosis and 156 normal healthy women as control group were included. The genotyping was determined using multiplex PCR and PCR- RFLP methods. Results: The GSTM1 null genotype was significantly higher (p=0.027) in the cases (7.3%) than the control group (1.3%). There was no significant difference between the frequency of GSTT1 genotypes between the cases and controls. The GSTP1 313 AG genotype was significantly lower (p=0.048) in the case (33.1%) than the control group (44.4%). Conclusion: Our results showed that GSTM1 and GSTP1 polymorphisms may be associated with susceptibility of endometriosis in Iranian women. PMID:27351025

  12. The role of glutathione-S-transferase polymorphisms in ovarian cancer survival.

    PubMed

    Nagle, Christina M; Chenevix-Trench, Georgia; Spurdle, Amanda B; Webb, Penelope M

    2007-01-01

    Resistance to chemotherapy represents one of the most important causes of treatment failure in patients with ovarian cancer. Common polymorphisms in the glutathione-S-transferase (GSTM1, GSTP1 and GSTT1) family have been implicated in chemoresistence and ovarian cancer survival. In this study, we have analysed Australian women diagnosed with primary invasive epithelial ovarian cancer between 1985 and 1997, using DNA extracted from peripheral blood and archival uninvolved (normal) tissues. GSTP1 genotypes were determined using ABI Prism 7700 Sequence Detection System methodology (n=448) and GSTT1 and GSTM1 genotypes using PCR-agarose methodology (n=239). We observed a significant survival advantage among carriers of GSTP1 Ile105Val GG/GA genotype (HR 0.77, 95% confidence interval (CI) 0.61-0.99,p=0.04) and a non-significant survival advantage among women who were homozygous for the GSTM1 and GSTT1 deletion variants. There was also evidence of an additive effect, with a stronger survival benefit in women carrying three low function GST genotypes (GSTM1 null, GSTT1 null and GSTP1 GA/GG) (HR 0.47, 95% CI 0.22-1.02). The results of this study, the largest to date, are consistent with a number of previous smaller studies which have also observed that reduced GST function was associated with better survival outcomes in patients with ovarian cancer. PMID:17084623

  13. Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase.

    PubMed

    LaPensee, Elizabeth W; Schwemberger, Sandy J; LaPensee, Christopher R; Bahassi, El Mustapha; Afton, Scott E; Ben-Jonathan, Nira

    2009-08-01

    Resistance to chemotherapy is a major obstacle for successful treatment of breast cancer patients. Given that prolactin (PRL) acts as an anti-apoptotic/survival factor in the breast, we postulated that it antagonizes cytotoxicity by chemotherapeutic drugs. Treatment of breast cancer cells with PRL caused variable resistance to taxol, vinblastine, doxorubicin and cisplatin. PRL prevented cisplatin-induced G(2)/M cell cycle arrest and apoptosis. In the presence of PRL, significantly less cisplatin was bound to DNA, as determined by mass spectroscopy, and little DNA damage was seen by gamma-H2AX staining. PRL dramatically increased the activity of glutathione-S-transferase (GST), which sequesters cisplatin in the cytoplasm; this increase was abrogated by Jak and mitogen-activated protein kinase inhibitors. PRL upregulated the expression of the GSTmu, but not the pi, isozyme. A GST inhibitor abrogated antagonism of cisplatin cytotoxicity by PRL. In conclusion, PRL confers resistance against cisplatin by activating a detoxification enzyme, thereby reducing drug entry into the nucleus. These data provide a rational explanation for the ineffectiveness of cisplatin in breast cancer, which is characterized by high expression of both PRL and its receptor. Suppression of PRL production or blockade of its actions should benefit patients undergoing chemotherapy by allowing for lower drug doses and expanded drug options. PMID:19443905

  14. Highly ordered protein nanorings designed by accurate control of glutathione S-transferase self-assembly.

    PubMed

    Bai, Yushi; Luo, Quan; Zhang, Wei; Miao, Lu; Xu, Jiayun; Li, Hongbin; Liu, Junqiu

    2013-07-31

    Protein self-assembly into exquisite, complex, yet highly ordered architectures represents the supreme wisdom of nature. However, precise manipulation of protein self-assembly behavior in vitro is a great challenge. Here we report that by taking advantage of the cooperation of metal-ion-chelating interactions and nonspecific protein-protein interactions, we achieved accurate control of the orientation of proteins and their self-assembly into protein nanorings. As a building block, we utilized the C2-symmetric protein sjGST-2His, a variant of glutathione S-transferase from Schistosoma japonicum having two properly oriented His metal-chelating sites on the surface. Through synergic metal-coordination and non-covalent interactions, sjGST-2His self-assembled in a fixed bending manner to form highly ordered protein nanorings. The diameters of the nanorings can be regulated by tuning the strength of the non-covalent interaction network between sjGST-2His interfaces through variation of the ionic strength of the solution. This work provides a de novo design strategy that can be applied in the construction of novel protein superstructures. PMID:23865524

  15. Inhibition of insect glutathione S-transferase (GST) by conifer extracts.

    PubMed

    Wang, Zhiling; Zhao, Zhong; Abou-Zaid, Mamdouh M; Arnason, John T; Liu, Rui; Walshe-Roussel, Brendan; Waye, Andrew; Liu, Suqi; Saleem, Ammar; Cáceres, Luis A; Wei, Qin; Scott, Ian M

    2014-12-01

    Insecticide synergists biochemically inhibit insect metabolic enzyme activity and are used both to increase the effectiveness of insecticides and as a diagnostic tool for resistance mechanisms. Considerable attention has been focused on identifying new synergists from phytochemicals with recognized biological activities, specifically enzyme inhibition. Jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP.), balsam fir (Abies balsamea (L.) Mill.), and tamarack larch (Larix laricina (Du Roi) Koch) have been used by native Canadians as traditional medicine, specifically for the anti-inflammatory and antioxidant properties based on enzyme inhibitory activity. To identify the potential allelochemicals with synergistic activity, ethanol crude extracts and methanol/water fractions were separated by Sephadex LH-20 chromatographic column and tested for in vitro glutathione S-transferase (GST) inhibition activity using insecticide-resistant Colorado potato beetle, Leptinotarsa decemlineata (Say) midgut and fat-body homogenate. The fractions showing similar activity were combined and analyzed by ultra pressure liquid chromatography-mass spectrometry. A lignan, (+)-lariciresinol 9'-p-coumarate, was identified from P. mariana cone extracts, and L. laricina and A. balsamea bark extracts. A flavonoid, taxifolin, was identified from P. mariana and P. banksiana cone extracts and L. laricina bark extracts. Both compounds inhibit GST activity with taxifolin showing greater activity compared to (+)-lariciresinol 9'-p-coumarate and the standard GST inhibitor, diethyl maleate. The results suggested that these compounds can be considered as potential new insecticide synergists. PMID:25270601

  16. Inhibition of various isoforms of rat liver glutathione S-transferases by tannic acid and butein.

    PubMed

    Zhang, K; Mack, P; Wong, K P

    1997-07-01

    Glutathione S-transferases (EC.2.5.1.18, GSTs) were purified from rat liver by S-hexylglutathione affinity chromatography and six isoforms, namely C-1, C-2, C-3, C-4, A-2 and A-1, were isolated by CM-cellulose and DEAE-cellulose ion-exchange columns. Tannic acid and butein showed varying degrees of inhibition on the six individual GST isoforms. When 1-chloro-2,4-dinitrobenzene (CDNB) was used as a substrate, butein exerted significantly more potent inhibition on the cationic isoforms C-2, C-3 and C-4 with IC50 values of 6.8, 8.5 and 8.0 muM respectively. All the isoforms showed lower activity towards p-nitrobenzyt chloride when compared to CDNB and inhibition of the p-nitrobenzyl chloride-activity by tannic acid and butein was also weaker. The inhibitory effects of tannic acid and butein on each isoform decreased generally with increasing pH in the range of 6.0 to 8.0. The optimum pHs for inhibitions by tannic acid and butein on the six individual isoforms lie in the pH range of 6.0 to 6.5. PMID:19856286

  17. Role of oxidative stress mediated by glutathione-s-transferase in thiopurines' toxic effects.

    PubMed

    Pelin, Marco; De Iudicibus, Sara; Fusco, Laura; Taboga, Eleonora; Pellizzari, Giulia; Lagatolla, Cristina; Martelossi, Stefano; Ventura, Alessandro; Decorti, Giuliana; Stocco, Gabriele

    2015-06-15

    Azathioprine (AZA), 6-mercaptopurine (6-MP), and 6-thioguanine (6-TG) are antimetabolite drugs, widely used as immunosuppressants and anticancer agents. Despite their proven efficacy, a high incidence of toxic effects in patients during standard-dose therapy is recorded. The aim of this study is to explain, from a mechanistic point of view, the clinical evidence showing a significant role of glutathione-S-transferase (GST)-M1 genotype on AZA toxicity in inflammatory bowel disease patients. To this aim, the human nontumor IHH and HCEC cell lines were chosen as predictive models of the hepatic and intestinal tissues, respectively. AZA, but not 6-MP and 6-TG, induced a concentration-dependent superoxide anion production that seemed dependent on GSH depletion. N-Acetylcysteine reduced the AZA antiproliferative effect in both cell lines, and GST-M1 overexpression increased both superoxide anion production and cytotoxicity, especially in transfected HCEC cells. In this study, an in vitro model to study thiopurines' metabolism has been set up and helped us to demonstrate, for the first time, a clear role of GST-M1 in modulating AZA cytotoxicity, with a close dependency on superoxide anion production. These results provide the molecular basis to shed light on the clinical evidence suggesting a role of GST-M1 genotype in influencing the toxic effects of AZA treatment. PMID:25928802

  18. Trichinella spiralis: low vaccine potential of glutathione S-transferase against infections in mice.

    PubMed

    Li, Ling Ge; Wang, Zhong Quan; Liu, Ruo Dan; Yang, Xuan; Liu, Li Na; Sun, Ge Ge; Jiang, Peng; Zhang, Xi; Zhang, Gong Yuan; Cui, Jing

    2015-06-01

    We have previously reported that Trichinella spiralis glutathione-S-transferase (TsGST) gene is an up-regulated gene in intestinal infective larvae (IIL) compared to muscle larvae (ML). In this study, the TsGST gene was cloned, and recombinant TsGST (rTsGST) was produced. Anti-rTsGST serum recognized the native TsGST by Western blotting in crude antigens of ML, adult worm (AW) and newborn larvae (NBL) of T. spiralis, but not in ML excretory-secretory (ES) antigens. Expression of TsGST was observed in all different developmental stages (IIL, AW, NBL and ML). An immunolocalization analysis identified TsGST in the cuticle, stichosome and genital primordium of the parasite. The rTsGST had GST enzymatic activity. After a challenge infection with T. spiralis larvae, mice immunized with rTsGST displayed a 35.71% reduction in adult worms and a 38.55% reduction in muscle larvae. The vaccination of mice with rTsGST induced the Th1/Th2-mixed type of immune response with Th2 predominant (high levels of IgG1) and partial protective immunity against T. spiralis infection. PMID:25757368

  19. Isothiocyanate exposure, glutathione S-transferase polymorphisms, and colorectal cancer risk1234

    PubMed Central

    Gao, Yu-Tang; Shu, Xiao-Ou; Cai, Qiuyin; Li, Guo-Liang; Li, Hong-Lan; Ji, Bu-Tian; Rothman, Nathaniel; Dyba, Marcin; Xiang, Yong-Bing; Chung, Fung-Lung; Chow, Wong-Ho; Zheng, Wei

    2010-01-01

    Background: Isothiocyanates, compounds found primarily in cruciferous vegetables, have been shown in laboratory studies to possess anticarcinogenic activity. Glutathione S-transferases (GSTs) are involved in the metabolism and elimination of isothiocyanates; thus, genetic variations in these enzymes may affect in vivo bioavailability and the activity of isothiocyanates. Objective: The objective was to prospectively evaluate the association between urinary isothiocyanate concentrations and colorectal cancer risk as well as the potential modifying effect of GST genotypes on the association. Design: A nested case-control study of 322 cases and 1251 controls identified from the Shanghai Women's Health Study was conducted. Results: Urinary isothiocyanate concentrations were inversely associated with colorectal cancer risk; the inverse association was statistically significant or nearly significant in the GSTM1-null (P for trend = 0.04) and the GSTT1-null (P for trend = 0.07) genotype groups. The strongest inverse association was found among individuals with both the GSTM1-null and the GSTT1-null genotypes, with an adjusted odds ratio of 0.51 (95% CI: 0.27, 0.95), in a comparison of the highest with the lowest tertile of urinary isothiocyanates. No apparent associations between isothiocyanate concentration and colorectal cancer risk were found among individuals who carried either the GSTM1 or GSTT1 gene (P for interaction < 0.05). Conclusion: This study suggests that isothiocyanate exposure may reduce the risk of colorectal cancer, and this protective effect may be modified by the GSTM1 and GSTT1 genes. PMID:20042523

  20. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana

    NASA Astrophysics Data System (ADS)

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions.

  1. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases

    PubMed Central

    Henderson, Colin J.; Smith, Austin G.; Ure, Jan; Brown, Ken; Bacon, E. Jane; Wolf, C. Roland

    1998-01-01

    The activity of chemical carcinogens is a complex balance between metabolic activation by cytochrome P450 monooxygenases and detoxification by enzymes such as glutathione S-transferase (GST). Regulation of these proteins may have profound effects on carcinogenic activity, although it has proved impossible to ascribe the observed effects to the activity of a single protein. GstP appears to play a very important role in carcinogenesis, although the precise nature of its involvement is unclear. We have deleted the murine GstP gene cluster and established the effects on skin tumorigenesis induced by the polycyclic aromatic hydrocarbon 7,12-dimethylbenz anthracene and the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate. After 20 weeks, a highly significant increase in the number of papillomas was found in the GstP1/P2 null mice [GstP1/P2(−/−) mice, 179 papillomas, mean 9.94 per animal vs. GstP1/P2(+/+) mice, 55 papillomas, mean 2.89 per animal, (P < 0.001)]. This difference in tumor incidence provides direct evidence that a single gene involved in drug metabolism can have a profound effect on tumorigenicity, and demonstrates that GstP may be an important determinant in cancer susceptibility, particularly in diseases where exposure to polycyclic aromatic hydrocarbons is involved, for instance in cigarette smoke-induced lung cancer. PMID:9560266

  2. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana.

    PubMed

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions. PMID:27126403

  3. Purification and kinetic mechanism of the major glutathione S-transferase from bovine brain.

    PubMed Central

    Young, P R; Briedis, A V

    1989-01-01

    The major glutathione S-transferase isoenzyme from bovine brain was isolated and purified approx. 500-fold. The enzyme has a pI of 7.39 +/- 0.02 and consists of two non-identical subunits having apparent Mr values of 22,000 and 24,000. The enzyme is uniformly distributed in brain, and kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate suggest a random rapid-equilibrium mechanism. The kinetics of inhibition by product, by GSH analogues and by NADH are consistent with the suggested mechanism and require inhibitor binding to several different enzyme forms. Long-chain fatty acids are excellent inhibitors of the enzyme, and values of 1nKi for hexanoic acid, octanoic acid, decanoic acid and lauric acid form a linear series when plotted as a function of alkyl chain length. A free-energy change of -1900 J/mol (-455 cal/mol) per CH2 unit is calculated for the contribution of hydrophobic binding energy to the inhibition constants. The turnover number of the purified enzyme dimer is approx. 3400/min. When compared with the second-order rate constant for the reaction between CDNB and GSH, the enzyme is providing a rate acceleration of about 1000-fold. The role of entropic contributions to this small rate acceleration is discussed. PMID:2930465

  4. Role of glutathione S-transferases in the spinocerebellar ataxia type 2 clinical phenotype.

    PubMed

    Almaguer-Gotay, D; Almaguer-Mederos, L E; Aguilera-Rodríguez, R; Estupiñán-Rodríguez, A; González-Zaldivar, Y; Cuello-Almarales, D; Laffita-Mesa, J M; Vázquez-Mojena, Y

    2014-06-15

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative and incurable hereditary disorder caused by a CAG repeat expansion mutation on ATXN2 gene. The identification of reliable biochemical markers of disease severity is of paramount significance for the development and assessment of clinical trials. In order to evaluate the potential use of glutathione-S-transferase (GST) activity as a biomarker for SCA2, a case-control study in 38 affected, presymptomatic individuals or healthy controls was conducted. An enlarged sample of 121 affected individuals was set to assess the impact of GST activity on SCA2 clinical expression. There was a significant increase in GST activity in affected individuals relative to controls, although sensibility and specificity were not high. GST activity was not significantly influenced by sex, age, disease duration or CAG repeat size and did not significantly influence disease severity markers. These findings show a disruption of in vivo GST activity in SCA2, suggesting a role for oxidative stress in the neurodegenerative process. PMID:24780439

  5. Development of pyrethroid-like fluorescent substrates for glutathione S-transferase

    PubMed Central

    Huang, Huazhang; Yao, Hongwei; Liu, Jun-Yan; Samra, Aman I.; Kamita, Shizuo G.; Cornel, Anthony J.; Hammock, Bruce D.

    2012-01-01

    The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers) preference. A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized CDNB, a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (kcat/KM ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes. PMID:23000005

  6. Glutathione S-transferases of Aulacorthum solani and Acyrthosiphon pisum: partial purification and characterization.

    PubMed

    Francis, F; Haubruge, E; Gaspar, C; Dierickx, P J

    2001-05-01

    Glutathione S-transferases (GST) play an important role in the detoxification of many substances including allelochemicals from plants. Brassicaceae plants contain glucosinolates and emit volatile isothiocyanates which affect the GST system. A comparison of the GST of two aphid species, the generalist Aulacorthum solani found on Brassicaceae and the Fabaceae specialist Acyrthosiphon pisum, was made to try to explain their respective feeding behaviour. Differences of GST were determined among the two aphid species based on purification by affinity chromatography, SDS-PAGE and on kinetic studies. Purification yields using an epoxy-activated Sepharose 6B column were highly different for the two aphid species (18% and 34% for A. solani and A. pisum, respectively). These variations were confirmed by SDS-PAGE. While only a 27-kDa band was observed for A. pisum, two bands of approximately 25-kDa were visualized for the generalist aphid, A. solani. Considering the kinetic results, differences of Km and Vmax were observed following the aphid species when a range of substrates (CDNB and DCNB) and GSH concentrations were tested. Studies on the detoxification enzymes of generalist and specialist herbivores would be undertaken to determine accurately the effect of the host plant on the organisms eating them, particularly in terms of biochemical and ecological advantages. PMID:11337260

  7. Glutathione S-transferase K1 genotype and overweight status in schizophrenia patients: A pilot study.

    PubMed

    Oniki, Kentaro; Kamihashi, Ryoko; Tomita, Tetsu; Ishioka, Masamichi; Yoshimori, Yuki; Osaki, Natsumi; Tsuchimine, Shoko; Sugawara, Norio; Kajiwara, Ayami; Morita, Kazunori; Miyata, Keishi; Otake, Koji; Nakagawa, Kazuko; Ogata, Yasuhiro; Saruwatari, Junji; Yasui-Furukori, Norio

    2016-05-30

    Elevated oxidative stress in mitochondria and mitochondrial dysfunction are associated with weight gain in schizophrenia (SCZ) patients. Glutathione S-transferase kappa 1 (GSTK1) protects cells against exogenous and endogenous oxidative stress in the mitochondria. This exploratory study investigated the possible effects of a common GSTK1 polymorphism (rs1917760, G-1308T) on the risk for overweight status among 329 SCZ patients and 305 age- and gender-matched controls and on the GSTK1 mRNA level in peripheral blood mononuclear cells among 14 SCZ patients. The GSTK1 T/T genotype was associated with having a higher BMI value among SCZ male patients, whereas this genotype tended to be associated with a lower BMI value among female patients. Conversely, these associations were not observed among the controls. The GSTK1 T/T genotype was associated with decreased GSTK1 mRNA level among SCZ patients. The GSTK1 T/T genotype may be a novel risk factor for the prediction of overweight status in SCZ male patients, although the results of this pilot study should be verified by a larger study. PMID:27010189

  8. Glutathione S-transferase polymorphisms in varicocele patients: a meta-analysis.

    PubMed

    Zhu, B; Yin, L; Zhang, J Y

    2015-01-01

    The glutathione S-transferase (GST) family represents a major group of detoxification and antioxidant enzymes. Studies have shown that high oxidative stress levels are associated with varicocele. The objective of this study was to assess the relationship between GSTM1 and GSTT1 null polymorphisms and varicocele using a study group of 497 varicocele patients and 476 control subjects. A systematic literature search (for articles published up to September 2014) utilizing Google Scholar and PubMed was conducted. The chi-square-based Q test and I(2) index were used to evaluate data from retrieved studies. The possible publication bias was evaluated by Begg funnel plot and the Egger test. No statistically significant association was found between GSTM1 or GSTT1 null genotypes and varicocele in the overall data analysis. In a subgroup analysis, only the null GSTM1 genotype was observed at a significantly higher frequency in Caucasian varicocele patients. In the Chinese subgroup, no association was established between the GSTM1 and GSTT1 null genotypes and this condition. More attention should be drawn to oxidative stress-related pathological manifestations for Caucasian varicocele patients. PMID:26782535

  9. The stereochemical course of 4-hydroxy-2-nonenal metabolism by glutathione S-transferases.

    PubMed

    Balogh, Larissa M; Roberts, Arthur G; Shireman, Laura M; Greene, Robert J; Atkins, William M

    2008-06-13

    4-Hydroxy-2-nonenal (HNE) is a toxic aldehyde generated during lipid peroxidation and has been implicated in a variety of pathological states associated with oxidative stress. Glutathione S-transferase (GST) A4-4 is recognized as one of the predominant enzymes responsible for the metabolism of HNE. However, substrate and product stereoselectivity remain to be fully explored. The results from a product formation assay indicate that hGSTA4-4 exhibits a modest preference for the biotransformation of S-HNE in the presence of both enantiomers. Liquid chromatography mass spectrometry analyses using the racemic and enantioisomeric HNE substrates explicitly demonstrate that hGSTA4-4 conjugates glutathione to both HNE enantiomers in a completely stereoselective manner that is not maintained in the spontaneous reaction. Compared with other hGST isoforms, hGSTA4-4 shows the highest degree of stereoselectivity. NMR experiments in combination with simulated annealing structure determinations enabled the determination of stereochemical configurations for the GSHNE diastereomers and are consistent with an hGSTA4-4-catalyzed nucleophilic attack that produces only the S-configuration at the site of conjugation, regardless of substrate chirality. In total these results indicate that hGSTA4-4 exhibits an intriguing combination of low substrate stereoselectivity with strict product stereoselectivity. This behavior allows for the detoxification of both HNE enantiomers while generating only a select set of GSHNE diastereomers with potential stereochemical implications concerning their effects and fates in biological tissues. PMID:18424441

  10. Inhibitory effects of plant polyphenols on rat liver glutathione S-transferases.

    PubMed

    Zhang, K; Das, N P

    1994-06-01

    Several novel naturally occurring flavonoids and other polyphenols exerted varying degrees of concentration-dependent inhibition on uncharacterized rat liver glutathione S-transferase (EC 2.5.1.18, GST) isoforms. The order of inhibitory potencies of the five most potent polyphenols was tannic acid > 2-hydroxyl chalcone > butein > morin > quercetin, and their IC50 values were 1.044, 6.758, 9.033, 13.710 and 18.732 microM, respectively. Their inhibitions were reversible, as indicated by dialysis experiments. The optimum pH for the inhibitions by four of the compounds (tannic acid, butein, 2-hydroxyl chalcone and morin) was in the range of pH 6.0 to 6.5, but for quercetin the optimum pH was 8.0. These potent inhibitors possess one or more of the following chemical structural features: (a) polyhydroxylation substitutions, (b) absence of a sugar moiety, (c) for the chalcones, the presence of an open C-ring and hydroxylation at either the C-2 or C-3 position, (d) for the flavonoids, the attachment of the B-ring to C-2, and (e) a double bond between C-2 and C-3. Butein exhibited a non-competitive inhibition toward both glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Interestingly, tannic acid showed a non-competitive inhibition toward CDNB but a competitive inhibition toward GSH. The inhibitory potency of tannic acid on rat liver GSTs was concentration and substrate dependent. Using CDNB, p-nitrobenzyl chloride, 4-nitropyridine-N-oxide, and ethacrynic acid as substrates, the IC50 values for tannic acid were 1.044, 11.151, 20.206, and 57.664 microM, respectively. PMID:8010991

  11. Glutathione S-transferases in rat olfactory epithelium: purification, molecular properties and odorant biotransformation.

    PubMed Central

    Ben-Arie, N; Khen, M; Lancet, D

    1993-01-01

    The olfactory epithelium is exposed to a variety of xenobiotic chemicals, including odorants and airborne toxic compounds. Recently, two novel, highly abundant, olfactory-specific biotransformation enzymes have been identified: cytochrome P-450olf1 and olfactory UDP-glucuronosyltransferase (UGT(olf)). The latter is a phase II biotransformation enzyme which catalyses the glucuronidation of alcohols, thiols, amines and carboxylic acids. Such covalent modification, which markedly affects lipid solubility and agonist potency, may be particularly important in the rapid termination of odorant signals. We report here the identification and characterization of a second olfactory phase II biotransformation enzyme, a glutathione S-transferase (GST). The olfactory epithelial cytosol shows the highest GST activity among the extrahepatic tissues examined. Significantly, olfactory epithelium had an activity 4-7 times higher than in other airway tissues, suggesting a role for this enzyme in chemoreception. The olfactory GST has been affinity-purified to homogeneity, and shown by h.p.l.c. and N-terminal amino acid sequencing to constitute mainly the Yb1 and Yb2 subunits, different from most other tissues that have mixtures of more enzyme classes. The identity of the olfactory enzymes was confirmed by PCR cloning and restriction enzyme analysis. Most importantly, the olfactory GSTs were found to catalyse glutathione conjugation of several odorant classes, including many unsaturated aldehydes and ketones, as well as epoxides. Together with UGT(olf), olfactory GST provides the necessary broad coverage of covalent modification capacity, which may be crucial for the acuity of the olfactory process. Images Figure 1 Figure 4 Figure 5 PMID:8503873

  12. Characterization of the complex of glutathione S-transferase pi and 1-cysteine peroxiredoxin

    PubMed Central

    Ralat, Luis A.; Misquitta, Stephanie A.; Manevich, Yefim; Fisher, Aron B.; Colman, Roberta F.

    2016-01-01

    Glutathione S-transferase pi has been shown to reactivate 1-cysteine peroxiredoxin (1-Cys Prx) by formation of a complex. A model of the complex was proposed based on the crystal structures of the two enzymes. We have now characterized the complex of GST pi/1-Cys Prx by determining the Mw of the complex, by measuring the catalytic activity of the GST pi monomer, and by identifying the interaction sites between GST pi and 1-Cys Prx. The Mw of the purified GST pi/1-Cys Prx complex is 50,200 at pH 8.0 in the presence of 2.5 mM glutathione, as measured by light scattering, providing direct evidence that the active complex is a heterodimer composed of equimolar amounts of the two proteins. In the presence of 4 M KBr, GST pi is dissociated to monomer and retains catalytic activity, but the Km value for GSH is increased substantially. To identify the peptides of GST pi that interact with 1-Cys Prx, GST pi was digested with V8 protease and the peptides were purified. The binding by 1-Cys Prx of each of four pure GST pi peptides (residues 41–85, 115–124, 131–163, and 164–197) was investigated by protein fluorescence titration. An apparent stoichiometry of 1 mol/subunit 1-Cys Prx was measured for each peptide and the formation of the heterodimer is decreased when these peptides are included in the incubation mixture. These results support our proposed model of the heterodimer. PMID:18358825

  13. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi.

    PubMed

    Czerwinski, M; Gibbs, J P; Slattery, J T

    1996-09-01

    Busulfan is eliminated by glutathione S-transferase (GST)-catalyzed conjugation with glutathione (GSH). We have characterized the busulfan-conjugating activity of purified human liver GSTA1-1, GSTA1-2, GSTA2-2, GSTM1-1, and placental GSTP1-1. Isoforms were purified from cytosol by GSH-affinity chromatography and chromatofocusing. In addition, the busulfan-conjugating activity of cDNA-expressed GTH1 and GTH2, corresponding to GSTA1-1 and GSTA2-2, were characterized. The major product of busulfan conjugation, a thiophenium ion (THT+), was assayed by GC/MS after conversion to tetrahydrothiophene (THT). THT+ formation rate increased linearly with busulfan concentration up to its solubility limit for all GST isoforms. Because Vmax and KM could not be determined separately, the slope of the velocity vs. substrate concentration plot, Vmax/KM was used to compare isoform activities. Vmax/KM for GSTA1-1 was 7.95 microliters/min/mg protein, the highest busulfan-conjugating activity of all human liver and placenta isoforms evaluated. GSTM1-1 and GSTP1-1, respectively, had 46% and 18% of the activity of GSTA1-1. Since the polymorphic mu-class GST catalyzed busulfan conjugation, we examined busulfan clearance in 50 patients undergoing high-dose busulfan before bone marrow transplantation. Busulfan clearance was normally distributed, suggesting that GSTM1-1 does not contribute significantly to the elimination of busulfan from the body. We conclude that GSTA1-1 is the major isoform catalyzing busulfan conjugation, whereas GSTM1-1 and GSTP1-1 may be important in the protection of specific cells. PMID:8886613

  14. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae.

    PubMed

    Pavlidi, Nena; Tseliou, Vasilis; Riga, Maria; Nauen, Ralf; Van Leeuwen, Thomas; Labrou, Nikolaos E; Vontas, John

    2015-06-01

    The two-spotted spider mite Tetranychus urticae is one of the most important agricultural pests world-wide. It is extremely polyphagous and develops resistance to acaricides. The overexpression of several glutathione S-transferases (GSTs) has been associated with insecticide resistance. Here, we functionally expressed and characterized three GSTs, two of the delta class (TuGSTd10, TuGSTd14) and one of the mu class (TuGSTm09), which had been previously associated with striking resistance phenotypes against abamectin and other acaricides/insecticides, by transcriptional studies. Functional analysis showed that all three GSTs were capable of catalyzing the conjugation of both 1-chloro-2,4 dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene(DCNB) to glutathione (GSH), as well as exhibiting GSH-dependent peroxidase activity toward Cumene hydroperoxide (CumOOH). The steady-state kinetics of the T. urticae GSTs for the GSH/CDNB conjugation reaction were determined and compared with other GSTs. The interaction of the three recombinant proteins with several acaricides and insecticides was also investigated. TuGSTd14 showed the highest affinity toward abamectin and a competitive type of inhibition, which suggests that the insecticide may bind to the H-site of the enzyme. The three-dimensional structure of the TuGSTd14 was predicted based on X-ray structures of delta class GSTs using molecular modeling. Structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of TuGSTd14. PMID:26047112

  15. Genetic Deficiency of Glutathione S-Transferase P Increases Myocardial Sensitivity to Ischemia-Reperfusion Injury

    PubMed Central

    Conklin, Daniel J.; Guo, Yiru; Jagatheesan, Ganapathy; Kilfoil, Peter; Haberzettl, Petra; Hill, Bradford G.; Baba, Shahid P.; Guo, Luping; Wetzelberger, Karin; Obal, Detlef; Rokosh, D. Gregg; Prough, Russell A.; Prabhu, Sumanth D.; Velayutham, Murugesan; Zweier, Jay L.; Hoetker, David; Riggs, Daniel W.; Srivastava, Sanjay; Bolli, Roberto; Bhatnagar, Aruni

    2016-01-01

    Rationale Myocardial ischemia-reperfusion (I/R) results in the generation of oxygen-derived free radicals and the accumulation of lipid peroxidation-derived unsaturated aldehydes. However, the contribution of aldehydes to myocardial I/R injury has not been assessed. Objective We tested the hypothesis that removal of aldehydes by glutathione S-transferase P (GSTP) diminishes I/R injury. Methods and Results In adult male C57BL/6 mouse hearts, Gstp1/2 was the most abundant GST transcript followed by Gsta4 and Gstm4.1, and GSTP activity was a significant fraction of the total GST activity. mGstp1/2 deletion reduced total GST activity, but no compensatory increase in GSTA and GSTM or major antioxidant enzymes was observed. Genetic deficiency of GSTP did not alter cardiac function, but in comparison with hearts from wild-type (WT) mice, the hearts isolated from GSTP-null mice were more sensitive to I/R injury. Disruption of the GSTP gene also increased infarct size after coronary occlusion in situ. Ischemia significantly increased acrolein in hearts, and GSTP deficiency induced significant deficits in the metabolism of the unsaturated aldehyde, acrolein, but not in the metabolism 4-hydroxy-trans-2-nonenal (HNE) or trans-2-hexanal; and, upon ischemia, the GSTP-null hearts accumulated more acrolein-modified proteins than WT hearts. GSTP-deficiency did not affect I/R-induced free radical generation, JNK activation or depletion of reduced glutathione. Acrolein-exposure induced a hyperpolarizing shift in INa, and acrolein-induced cell death was delayed by SN-6, a Na+/Ca++ exchange inhibitor. Cardiomyocytes isolated from GSTP-null hearts were more sensitive than WT myocytes to acrolein-induced protein crosslinking and cell death. Conclusions GSTP protects the heart from I/R injury by facilitating the detoxification of cytotoxic aldehydes such as acrolein. PMID:26169370

  16. Inhibition of human placenta glutathione transferase P1-1 by calvatic acid.

    PubMed

    Caccuri, A M; Ricci, G; Desideri, A; Buffa, M; Fruttero, R; Gasco, A; Ascenzi, P

    1994-04-01

    The inhibition mechanism of the dimeric human placenta glutathione transferase (GST P1-1) by the antibiotic p-carboxyphenylazoxycyanide (calvatic acid) has been investigated at pH 7.0 and 30.0 degrees C. Experiments performed at different calvatic acid/GST P1-1 molar ratios indicate that one mole of calvatic acid inactivates one mole of the homodimeric enzyme molecule, containing two catalytically equivalent active sites. The apparent second order rate constant for GST P1-1 inactivation is 2.4 +/- 0.3 M-1 s-1. The recovery of all the 5,5'-dithio-bis(2-nitro-benzoic acid)-titratable thiol groups as well as the original catalytic activity of GST P1-1 after treatment of the inhibited enzyme with dithiothreitol indicates that two disulfide bridges per dimer, likely between Cys47 and Cys101, have been formed during the reaction with calvatic acid. To the best of the authors knowledge, calvatic acid represents a unique case of enzyme inhibitor acting also throughout its reaction product(s). PMID:8069231

  17. Frequencies of glutathione s-transferase (GSTM1, GSTM3 AND GSTT1) polymorphisms in a Malaysian population

    PubMed Central

    Alshagga, Mustafa A.; Mohamed, Norazlina; Nazrun Suhid, Ahmad; Abdel Aziz Ibrahim, Ibrahim; Zulkifli Syed Zakaria, Syed

    2011-01-01

    Introduction Glutathione S-transferase (GST) is a xenobiotic metabolising enzyme (XME), which may modify susceptibility in certain ethnic groups, showing ethnic dependent polymorphism. The aim of this study was to determine GSTM1, GSTM3 and GSTT1 gene polymorphisms in a Malaysian population in Kuala Lumpur. Material and methods Blood or buccal swab samples were collected from 137 Form II students from three schools in Wilayah Persekutuan Kuala Lumpur. Genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results Glutathione-S-transferase GSTM3 gene frequencies were 89% for AA, 10% for AB and 1% for BB. The gene frequencies for deleted GSTM1 and GSTT1 were 66% and 18% respectively. Conclusions This study suggested that the Malay population is at risk for environmental diseases and provides the basis for gene-environment association studies to be carried out. PMID:22291790

  18. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    SciTech Connect

    Conklin, Daniel J.; Haberzettl, Petra; Jagatheesan, Ganapathy; Baba, Shahid; Merchant, Michael L.; Prough, Russell A.; Williams, Jessica D.; Prabhu, Sumanth D.; Bhatnagar, Aruni

    2015-06-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized and

  19. Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis.

    PubMed

    Rajarapu, Swapna Priya; Mittapalli, Omprakash

    2013-05-01

    The emerald ash borer, Agrilus planipennis Fairmaire is a recently discovered invasive insect pest of ash, Fraxinus spp. in North America. Glutathione-S-transferases (GST) are a multifunctional superfamily of enzymes which function in conjugating toxic compounds to less toxic and excretable forms. In this study, we report the molecular characterization and expression patterns of different classes of GST genes in different tissues and developmental stages plus their specific activity. Multiple sequence alignment of all six A. planipennis GSTs (ApGST-E1, ApGST-E2, ApGST-E3, ApGST-O1, ApGST-S1 and ApGST-μ1) revealed conserved features of insect GSTs and a phylogenetic analysis grouped the GSTs within the epsilon, sigma, omega and microsomal classes of GSTs. Real time quantitative PCR was used to study field collected samples. In larval tissues high mRNA levels for ApGST-E1, ApGST-E3 and ApGST-O1 were obtained in the midgut and Malpighian tubules. On the other hand, ApGST-E2 and ApGST-S1 showed high mRNA levels in fat body and ApGST-μ1 showed constitutive levels in all the tissues assayed. During development, mRNA levels for ApGST-E2 were observed to be the highest in feeding instars, ApGST-S1 in prepupal instars; while the others showed constitutive patterns in all the developmental stages examined. At the enzyme level, total GST activity was similar in all the tissues and developmental stages assayed. Results obtained suggest that A. planipennis is potentially primed with GST-driven detoxification to metabolize ash allelochemicals. To our knowledge this study represents the first report of GSTs in A. planipennis and also in the family of wood boring beetles. PMID:23499941

  20. Cloning, expression and analysis of the olfactory glutathione S-transferases in coho salmon

    PubMed Central

    Espinoza, Herbert M.; Shireman, Laura M.; McClain, Valerie; Atkins, William; Gallagher, Evan P.

    2013-01-01

    The glutathione S-transferases (GSTs) provide cellular protection by detoxifying xenobiotics, maintaining redox status, and modulating secondary messengers, all of which are critical to maintaining olfaction in salmonids. Here, we characterized the major coho salmon olfactory GSTs (OlfGSTs), namely omega, pi, and rho subclasses. OlfGST omega contained an open reading frame of 720 bp and encoded a protein of 239 amino acids. OlfGST pi and OlfGST rho contained open reading frames of 727 and 681 bp, respectively, and encoded proteins of 208 and 226 amino acids. Whole-protein mass spectrometry yielded molecular weights of 29,950, 23,354, and 26,655 Da, respectively, for the GST omega, pi, and rho subunits. Homology modeling using four protein-structure prediction algorithms suggest that the active sites in all three OlfGST isoforms resembled counterparts in other species. The olfactory GSTs conjugated prototypical GST substrates, but only OlfGST rho catalyzed the demethylation of the pesticide methyl parathion. OlfGST pi and rho exhibited thiol oxidoreductase activity towards 2-hydroxyethyl disulfide (2-HEDS) and conjugated 4-hydroxynonenal (HNE), a toxic aldehyde with neurodegenerative properties. The kinetic parameters for OlfGST pi conjugation of HNE were KM = 0.16 ± 0.06 mM and Vmax = 0.5 ± 0.1 μmol min−1 mg−1 for OlfGST pi, whereas OlfGST rho was more efficient at catalyzing HNE conjugation (KM = 0.022 ± 0.008 mM and Vmax = 0.47 ± 0.05 μmol min−1 mg−1). Our findings indicate that the peripheral olfactory system of coho expresses GST isoforms that detoxify certain electrophiles and pesticides and that help maintain redox statusand signal transduction. PMID:23261526

  1. Cloning, expression and analysis of the olfactory glutathione S-transferases in coho salmon.

    PubMed

    Espinoza, Herbert M; Shireman, Laura M; McClain, Valerie; Atkins, William; Gallagher, Evan P

    2013-03-15

    The glutathione S-transferases (GSTs) provide cellular protection by detoxifying xenobiotics, maintaining redox status, and modulating secondary messengers, all of which are critical to maintaining olfaction in salmonids. Here, we characterized the major coho salmon olfactory GSTs (OlfGSTs), namely omega, pi, and rho subclasses. OlfGST omega contained an open reading frame of 720bp and encoded a protein of 239 amino acids. OlfGST pi and OlfGST rho contained open reading frames of 627 and 681nt, respectively, and encoded proteins of 208 and 226 amino acids. Whole-protein mass spectrometry yielded molecular weights of 29,950, 23,354, and 26,655Da, respectively, for the GST omega, pi, and rho subunits. Homology modeling using four protein-structure prediction algorithms suggest that the active sites in all three OlfGST isoforms resembled counterparts in other species. The olfactory GSTs conjugated prototypical GST substrates, but only OlfGST rho catalyzed the demethylation of the pesticide methyl parathion. OlfGST pi and rho exhibited thiol oxidoreductase activity toward 2-hydroxyethyl disulfide (2-HEDS) and conjugated 4-hydroxynonenal (HNE), a toxic aldehyde with neurodegenerative properties. The kinetic parameters for OlfGST pi conjugation of HNE were K(M)=0.16 ± 0.06mM and V(max)=0.5 ± 0.1μmolmin⁻¹mg⁻¹, whereas OlfGST rho was more efficient at catalyzing HNE conjugation (K(M)=0.022 ± 0.008 mM and V(max)=0.47 ± 0.05μmolmin⁻¹mg⁻¹). Our findings indicate that the peripheral olfactory system of coho expresses GST isoforms that detoxify certain electrophiles and pesticides and that help maintain redox status and signal transduction. PMID:23261526

  2. Cloning, expression and identification of two glutathione S-transferase isoenzymes from Perna viridis.

    PubMed

    Li, Zhenzhen; Chen, Rong; Zuo, Zhenghong; Mo, Zhengping; Yu, Ang

    2013-08-01

    Glutathione S-transferases (GSTs; EC 2.5.1.18) are phase II enzymes involved in major detoxification reactions of xenobiotic in many organisms. In the present study, two classes of GSTs (PvGST1 and PvGST2) were cloned from P. viridis by rapid amplification of cDNA ends method. Sequence alignments and phylogenetic analysis together supported that PvGST1 and PvGST2 belonged to the pi and omega classes, respectively. The PvGST1 cDNA was 1214 nucleotides (nt) in length and contained a 618 nt open reading frame (ORF) encoding 206 amino acid residues, and had 46 nt of 5'-untranslated region (UTR) and a 3' UTR of 550 nt including a tailing signal (AATAAA) and a poly (A) tail. The molecular mass of the predicted PvGST1 was 23.815kDa, with the calculated isoelectric point being 5.39. PvGST2 was 1093bp, consisting of a 5' UTR of 13bp, a 3' UTR of 246bp and an ORF of 834bp. The deduced protein was composed of 278 amino acids, with an estimated molecular mass of 32.476kDa and isoelectric point of 8.88. Tissue distribution analysis of the PvGST1 and PvGST2 mRNA revealed that the GST expression level was higher in digestive gland and gonad, while lower in gill and mantle in both genders. Molecular modeling analysis of two GSTs implicated their various functions account for their different enzymatic features. PMID:23711756

  3. Nuclear morphometry and glutathione S-transferase pi expression in breast cancer.

    PubMed

    Huang, J; Bay, B H; Tan, P H

    2000-01-01

    Glutathione S-transferase pi (GST-pi) is a phase II detoxification enzyme whose expression is increased in estrogen receptor (ER)-poor breast cancers and in breast cancers resistant to certain chemotherapeutic agents. The aim of this study was to investigate the immunohistochemical expression of GST-pi in invasive breast carcinoma and to correlate the findings with those of nuclear morphometry. Formalin-fixed paraffin-embedded tissue specimens obtained from 21 invasive breast cancers and 16 adjacent (benign) tissues were immunohistochemically stained using polyclonal anti-human GST-pi antibody. There was positive (defined as >10% immunoreactive tumor cells) but variable expression of GST-pi in 10 (48%) cases. Nuclear morphometry in these 10 tumors revealed immunoreactive malignant cells to be larger (mean area 41.7+/-1.0 microm2) and more rounded in form when compared with non-staining cancer cells (mean area 28.7+/-0.7 microm2). It was also observed that GST-pi immunonegative tumor cells in GST-pi expressing tumors had different morphologies from malignant cells in the remaining 11 (52%) cancers that were regarded as GST-pi negative. Increased GST-pi expression determined by the percentage of positively staining tumor cells, was found to be significantly correlated with increased variability in nuclear area and perimeter (Spearman's rho=0.821, p=0.044 for both) in the subset of node-positive tumors. Our findings suggest that there exists two sub-populations of cancer cells with distinct nuclear morphologies in GST-pi positive tumors; factors other than GST-pi expression are likely to have a phenotypic effect on breast cancer cells; and there may be a special significance of this enzyme in axillary node-positive breast tumors. PMID:10767377

  4. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk

    SciTech Connect

    Woldegiorgis, S.; Ahmed, R.C.; Zhen, Y.; Erdmann, C.A.; Russell, M.L.; Goth-Goldstein, R.

    2002-04-01

    The role of the glutathione S-transferase (GST) enzyme family is to detoxify environmental toxins and carcinogens and to protect organisms from their adverse effects, including cancer. The genes GSTM1, GSTP1, and GSTT1 code for three GSTs involved in the detoxification of carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and benzene. In humans, GSTM1 is deleted in about 50% of the population, GSTT1 is absent in about 20%, whereas the GSTP1 gene has a single base polymorphism resulting in an enzyme with reduced activity. Epidemiological studies indicate that GST polymorphisms increase the level of carcinogen-induced DNA damage and several studies have found a correlation of polymorphisms in one of the GST genes and an increased risk for certain cancers. We examined the role of polymorphisms in genes coding for these three GST enzymes in breast cancer. A breast tissue collection consisting of specimens of breast cancer patients and non-cancer controls was analyzed by polymerase chain reaction (PCR) for the presence or absence of the GSTM1 and GSTT1 genes and for GSTP1 single base polymorphism by PCR/RFLP. We found that GSTM1 and GSTT1 deletions occurred more frequently in cases than in controls, and GSTP1 polymorphism was more frequent in controls. The effective detoxifier (putative low-risk) genotype (defined as presence of both GSTM1 and GSTT1 genes and GSTP1 wild type) was less frequent in cases than controls (16% vs. 23%, respectively). The poor detoxifier (putative high-risk) genotype was more frequent in cases than controls. However, the sample size of this study was too small to provide conclusive results.

  5. Effects of Local Heart Irradiation in a Glutathione S-Transferase Alpha 4-Null Mouse Model

    PubMed Central

    Boerma, Marjan; Singh, Preeti; Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Singh, Sharda P.

    2015-01-01

    Glutathione S-transferase alpha 4 (GSTA4-4) is one of the enzymes responsible for the removal of 4-hydroxynonenal (4-HNE), an electrophilic product of lipid peroxidation in cellular membranes during oxidative stress. 4-HNE is a direct activator of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a transcription factor with many target genes encoding antioxidant and anti-electrophile enzymes. We have previously shown that Gsta4-null mice on a 129/Sv background exhibited increased activity of Nrf2 in the heart. Here we examined the sensitivity of this Gsta4-null mouse model towards cardiac function and structure loss due to local heart irradiation. Male Gsta4-null and wild-type mice were exposed to a single X-ray dose of 18 Gy to the heart. Six months after irradiation, immunohistochemical staining for respiratory complexes 2 and 5 indicated that radiation exposure had caused most pronounced alterations in mitochondrial morphology in Gsta4-null mice. On the other hand, wild-type mice showed a decline in cardiac function and an increase in plasma levels of troponin-I, while no such changes were observed in Gsta4-null mice. Radiation-induced Nrf2-target gene expression only in Gsta4-null mice. In conclusion, although loss of GSTA4-4 led to enhanced susceptibility of cardiac mitochondria to radiation-induced loss of morphology, cardiac function was preserved in Gsta4-null mice. We propose that this protection against cardiac function loss may occur, at least in part, by upregulation of the Nrf2 pathway. PMID:26010708

  6. Genomic cloning and characterization of the rat glutathione S-transferase-A3-subunit gene.

    PubMed

    Fotouhi-Ardakani, N; Batist, G

    1999-05-01

    The rat glutathione S-transferase-A3-subunit (GSTA3) gene is a member of the class Alpha GSTs, which we have previously reported to be overexpressed in anti-cancer-drug-resistant cells. In this study, we report the isolation and characterization of the entire rat GSTA3 (rGST Yc1) subunit gene. The rat GSTA3 subunit gene is approximately 15 kb in length and consists of seven exons interrupted by introns of different lengths. Exon 1, with a length of 219 bp, contains only the 5'-untranslated region of the gene. Each exon-intron splicing junction exhibited the consensus sequence for a mammalian splice site. The transcription start site and exon 1 of rat GSTA3 were characterized by a combination of primer extension and rapid amplification of the cDNA ends. Position +1 was identified 219 bp upstream of the first exon-intron splicing junction. The proximal promoter region of the rat GSTA3 subunit gene does not contain typical TATA or CAAT boxes. A computer-based search for potential transcription-factor binding sites revealed the existence of a number of motifs such as anti-oxidant-responsive element, ras-response element, activator protein-1, nuclear factor-kappaB, cAMP-response-element-binding protein, Barbie box and E box. The functional activity of the regulatory region of the rat GSTA3 subunit gene was shown by its ability to drive the expression of a chloramphenicol acetyltransferase reporter gene in rat mammary carcinoma cells, and its activity was greater in melphalan-resistant cells known to have transcriptional activation of this gene by previous studies. The structure of the gene, with a large intron upstream of the translation-initiation site, may explain why the isolation of this promoter has been so elusive. This information will provide the opportunity to examine the involvement of the rat GSTA3 subunit gene in drug resistance and carcinogenesis. PMID:10215608

  7. Biochemical studies on glutathione S-transferase from the bovine filarial worm Setaria digitata.

    PubMed

    Srinivasan, Lakshmy; Mathew, Nisha; Karunan, Twinkle; Muthuswamy, Kalyanasundaram

    2011-07-01

    Setaria digitata is a filarial worm of the cattle used as a model system for antifilarial drug screening, due to its similarity to the human filarial parasites Wuchereria bancrofti and Brugia malayi. Since filarial glutathione S-transferase (GST) is a good biochemical target for antifilarial drug development, a study has been undertaken for the biochemical characterization of GST from S. digitata. Cytosolic fraction was separated from the crude S.digitata worm homogenate by ultracentrifugation at 100,000 g and subjected to ammonium sulfate precipitation followed by affinity chromatography using GSH-agarose column. The kinetic parameters K (m) and V (max) values with respect to GSH were 0.45 mM and 0.105 μmol min(-1) mL(-1) respectively. With respect to 1-chloro-2,4-dinitrobenzene, the K (m) and V (max) values were 1.21 and 0.117 μmol min(-1) mL(-1) respectively. The effect of temperature and pH on GST enzyme activity was studied. The protein retained its enzyme activity between 0°C and 40°C, beyond which it showed a decreasing tendency, and at 80°C, the activity was lost completely. The enzyme activity was varying with change in pH, and the maximum GST activity was observed at pH 7.5. Gel filtration chromatographic studies indicated that the protein has a native molecular mass of about 54 kDa. The single band of GST subunit appeared in sodium dodecyl sulfate polyacrylamide gel electrophoresis was found to have molecular mass of ∼27 kDa. This shows that cytosolic S. digitata GST protein is homodimeric in nature. PMID:21207063

  8. Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke

    PubMed Central

    Conklin, Daniel J.; Haberzettl, Petra; Prough, Russell A.; Bhatnagar, Aruni

    2009-01-01

    Exposure to tobacco smoke impairs endothelium-dependent arterial dilation. Reactive constituents of cigarette smoke are metabolized and detoxified by glutathione-S-transferases (GSTs). Although polymorphisms in GST genes are associated with the risk of cancer in smokers, the role of these enzymes in regulating the cardiovascular effects of smoking has not been studied. The P isoform of GST (GSTP), which catalyzes the conjugation of electrophilic molecules in cigarette smoke such as acrolein, was expressed in high abundance in the mouse lung and aorta. Exposure to tobacco smoke for 3 days (5 h/day) decreased total plasma protein. These changes were exaggerated in GSTP−/− mice. Aortic rings isolated from tobacco smoke-exposed GSTP−/− mice showed greater attenuation of ACh-evoked relaxation than those from GSTP+/+ mice. The lung, plasma, and aorta of mice exposed to tobacco smoke or acrolein (for 5 h) accumulated more acrolein-adducted proteins than those tissues of mice exposed to air, indicating that exposure to tobacco smoke results in the systemic delivery of acrolein. Relative to GSTP+/+ mice, modification of some proteins by acrolein was increased in the aorta of GSTP−/− mice. Aortic rings prepared from GSTP−/− mice that inhaled acrolein (1 ppm, 5 h/day for 3 days) or those exposed to acrolein in an organ bath showed diminished ACh-induced arterial relaxation more strongly than GSTP+/+ mice. Acrolein-induced endothelial dysfunction was prevented by pretreatment of the aorta with N-acetylcysteine. These results indicate that GSTP protects against the endothelial dysfunction induced by tobacco smoke exposure and that this protection may be related to the detoxification of acrolein or other related cigarette smoke constituents. PMID:19270193

  9. Glutathione S-Transferase Regulation in Calanus finmarchicus Feeding on the Toxic Dinoflagellate Alexandrium fundyense

    PubMed Central

    Roncalli, Vittoria; Jungbluth, Michelle J.; Lenz, Petra H.

    2016-01-01

    The effect of the dinoflagellate, Alexandrium fundyense, on relative expression of glutathione S-transferase (GST) transcripts was examined in the copepod Calanus finmarchicus. Adult females were fed for 5-days on one of three experimental diets: control (100% Rhodomonas spp.), low dose of A. fundyense (25% by volume, 75% Rhodomonas spp.), and high dose (100% A. fundyense). Relative expression of three GST genes was measured using RT-qPCR on days 0.5, 1, 2 and 5 in two independent experiments. Differential regulation was found for the Delta and the Sigma GSTs between 0.5 to 2 days, but not on day 5 in both experiments. The third GST, a microsomal, was not differentially expressed in either treatment or day. RT-qPCR results from the two experiments were similar, even though experimental females were collected from the Gulf of Maine on different dates and their reproductive output differed. In the second experiment, expression of 39 GSTs was determined on days 2 and 5 using RNA-Seq. Global gene expression analyses agreed with the RT-qPCR results. Furthermore, the RNA-Seq measurements indicated that only four GSTs were differentially expressed under the experimental conditions, and the response was small in amplitude. In summary, the A. fundyense diet led to a rapid and transient response in C. finmarchicus in three cytosolic GSTs, while a fourth GST (Omega I) was significantly up-regulated on day 5. Although there was some regulation of GSTs in response the toxic dinoflagellate, the tolerance to A. fundyense by C. finmarchicus is not dependent on the long-term up-regulation of specific GSTs. PMID:27427938

  10. Urinary π-glutathione S-transferase Predicts Advanced Acute Kidney Injury Following Cardiovascular Surgery

    PubMed Central

    Shu, Kai-Hsiang; Wang, Chih-Hsien; Wu, Che-Hsiung; Huang, Tao-Min; Wu, Pei-Chen; Lai, Chien-Heng; Tseng, Li-Jung; Tsai, Pi-Ru; Connolly, Rory; Wu, Vin-Cent

    2016-01-01

    Urinary biomarkers augment the diagnosis of acute kidney injury (AKI), with AKI after cardiovascular surgeries being a prototype of prognosis scenario. Glutathione S-transferases (GST) were evaluated as biomarkers of AKI. Urine samples were collected in 141 cardiovascular surgical patients and analyzed for urinary alpha-(α-) and pi-(π-) GSTs. The outcomes of advanced AKI (KDIGO stage 2, 3) and all-cause in-patient mortality, as composite outcome, were recorded. Areas under the receiver operator characteristic (ROC) curves and multivariate generalized additive model (GAM) were applied to predict outcomes. Thirty-eight (26.9%) patients had AKI, while 12 (8.5%) were with advanced AKI. Urinary π-GST differentiated patients with/without advanced AKI or composite outcome after surgery (p < 0.05 by generalized estimating equation). Urinary π-GST predicted advanced AKI at 3 hrs post-surgery (p = 0.033) and composite outcome (p = 0.009), while the corresponding ROC curve had AUC of 0.784 and 0.783. Using GAM, the cutoff value of 14.7 μg/L for π-GST showed the best performance to predict composite outcome. The addition of π-GST to the SOFA score improved risk stratification (total net reclassification index = 0.47). Thus, urinary π-GST levels predict advanced AKI or hospital mortality after cardiovascular surgery and improve in SOFA outcome assessment specific to AKI. PMID:27527370

  11. Genomic cloning and characterization of the rat glutathione S-transferase-A3-subunit gene.

    PubMed Central

    Fotouhi-Ardakani, N; Batist, G

    1999-01-01

    The rat glutathione S-transferase-A3-subunit (GSTA3) gene is a member of the class Alpha GSTs, which we have previously reported to be overexpressed in anti-cancer-drug-resistant cells. In this study, we report the isolation and characterization of the entire rat GSTA3 (rGST Yc1) subunit gene. The rat GSTA3 subunit gene is approximately 15 kb in length and consists of seven exons interrupted by introns of different lengths. Exon 1, with a length of 219 bp, contains only the 5'-untranslated region of the gene. Each exon-intron splicing junction exhibited the consensus sequence for a mammalian splice site. The transcription start site and exon 1 of rat GSTA3 were characterized by a combination of primer extension and rapid amplification of the cDNA ends. Position +1 was identified 219 bp upstream of the first exon-intron splicing junction. The proximal promoter region of the rat GSTA3 subunit gene does not contain typical TATA or CAAT boxes. A computer-based search for potential transcription-factor binding sites revealed the existence of a number of motifs such as anti-oxidant-responsive element, ras-response element, activator protein-1, nuclear factor-kappaB, cAMP-response-element-binding protein, Barbie box and E box. The functional activity of the regulatory region of the rat GSTA3 subunit gene was shown by its ability to drive the expression of a chloramphenicol acetyltransferase reporter gene in rat mammary carcinoma cells, and its activity was greater in melphalan-resistant cells known to have transcriptional activation of this gene by previous studies. The structure of the gene, with a large intron upstream of the translation-initiation site, may explain why the isolation of this promoter has been so elusive. This information will provide the opportunity to examine the involvement of the rat GSTA3 subunit gene in drug resistance and carcinogenesis. PMID:10215608

  12. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa.

    PubMed

    Liao, Weihua; Ji, Lexiang; Wang, Jia; Chen, Zhong; Ye, Meixia; Ma, Huandi; An, Xinmin

    2014-09-01

    Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant-pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data. PMID:24870810

  13. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites

    PubMed Central

    2010-01-01

    Background Recent evidence suggests that Sarcoptes scabiei var. hominis mites collected from scabies endemic communities in northern Australia show increasing tolerance to 5% permethrin and oral ivermectin. Previous findings have implicated detoxification pathways in developing resistance to these acaricides. We investigated the contribution of Glutathione S-transferase (GST) enzymes to permethrin and ivermectin tolerance in scabies mites using biochemical and molecular approaches. Results Increased in vitro survival following permethrin exposure was observed in S. scabiei var. hominis compared to acaricide naïve mites (p < 0.0001). The addition of the GST inhibitor diethyl maleate restored in vitro permethrin susceptibility, confirming GST involvement in permethrin detoxification. Assay of GST enzymatic activity in mites demonstrated that S. scabiei var. hominis mites showed a two-fold increase in activity compared to naïve mites (p < 0.0001). Increased transcription of three different GST molecules was observed in permethrin resistant S. scabiei var. canis- mu 1 (p < 0.0001), delta 1 (p < 0.001), and delta 3 (p < 0.0001). mRNA levels of GST mu 1, delta 3 and P-glycoprotein also significantly increased in S. scabiei var. hominis mites collected from a recurrent crusted scabies patient over the course of ivermectin treatment. Conclusions These findings provide further support for the hypothesis that increased drug metabolism and efflux mediate permethrin and ivermectin resistance in scabies mites and highlight the threat of emerging acaricide resistance to the treatment of scabies worldwide. This is one of the first attempts to define specific genes involved in GST mediated acaricide resistance at the transcriptional level, and the first application of such studies to S. scabiei, a historically challenging ectoparasite. PMID:20482766

  14. Characterization and Functional Analysis of Four Glutathione S-Transferases from the Migratory Locust, Locusta migratoria

    PubMed Central

    Qin, Guohua; Jia, Miao; Liu, Ting; Zhang, Xueyao; Guo, Yaping; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2013-01-01

    Glutathione S-transferases (GSTs) play an important role in detoxification of xenobiotics in both prokaryotic and eukaryotic cells. In this study, four GSTs (LmGSTd1, LmGSTs5, LmGSTt1, and LmGSTu1) representing different classes were identified from the migratory locust, Locusta migratoria. These four proteins were heterologously expressed in Escherichia coli as soluble fusion proteins, purified by Ni2+-nitrilotriacetic acid agarose column and biochemically characterized. LmGSTd1, LmGSTs5, and LmGSTu1 showed high activities with 1-chloro-2, 4-dinitrobenzene (CDNB), detectable activity with p-nitro-benzyl chloride (p-NBC) and 1, 2-dichloro-4-nitrobenzene (DCNB), whereas LmGSTt1 showed high activity with p-NBC and detectable activity with CDNB. The optimal pH of the locust GSTs ranged between 7.0 to 9.0. Ethacrynic acid and reactive blue effectively inhibited all four GSTs. LmGSTs5 was most sensitive to heavy metals (Cu2+ and Cd2+). The maximum expression of the four GSTs was observed in Malpighian tubules and fat bodies as evaluated by western blot. The nymph mortalities after carbaryl treatment increased by 28 and 12% after LmGSTs5 and LmGSTu1 were silenced, respectively. The nymph mortalities after malathion and chlorpyrifos treatments increased by 26 and 18% after LmGSTs5 and LmGSTu1 were silenced, respectively. These results suggest that sigma GSTs in L. migratoria play a significant role in carbaryl detoxification, whereas some of other GSTs may also involve in the detoxification of carbaryl and chlorpyrifos. PMID:23505503

  15. Genetic polymorphism for glutathione-S-transferase mu in asbestos cement workers.

    PubMed Central

    Jakobsson, K; Rannug, A; Alexandrie, A K; Rylander, L; Albin, M; Hagmar, L

    1994-01-01

    OBJECTIVE--To investigate whether a lack of glutathione-S-transferase mu (GSTM1) activity was related to an increased risk for adverse outcome after asbestos exposure. METHODS--A study was made of 78 male former asbestos cement workers, with retrospective cohort data on exposure, radiographical findings, and lung function. Venous blood samples were obtained for the analysis of GSTM1 polymorphism by the polymerase chain reaction technique. Chest x ray films were classified according to the International Labour Organisation (ILO) 1980 classification. Vital capacity (VC) and forced expiratory volume during 1 s (FEV1) were determined. Individual estimates of asbestos exposure were calculated, and expressed as duration of exposure, average exposure intensity, and cumulative dose. Data on smoking were obtained from interviews. RESULTS--The lung function in the study group was reduced, compared with reference equations. 23% of the workers had small opacities > or = 1/0, 29% circumscribed pleural thickenings, 14% diffuse thickenings, and 12% obliterated costophrenic angles. 54% of the workers were GSTM1 deficient. They were comparable with the other workers in age, follow up time (median 30 years), and duration of exposure (median 18 years), but had a slightly higher cumulated dose (median 18 v 10 fibre-years) than the others. Neither in radiographical changes nor lung function variables were there any differences between the different GSTM1 groups. The findings were similar when smoking habits and estimated asbestos exposure were taken into account. CONCLUSIONS--We could not show that lack of GSTM1 activity was related to an increased risk for radiographical or lung function changes in a group of asbestos cement workers, followed up for a long period after the end of exposure. PMID:7849864

  16. Urinary π-glutathione S-transferase Predicts Advanced Acute Kidney Injury Following Cardiovascular Surgery.

    PubMed

    Shu, Kai-Hsiang; Wang, Chih-Hsien; Wu, Che-Hsiung; Huang, Tao-Min; Wu, Pei-Chen; Lai, Chien-Heng; Tseng, Li-Jung; Tsai, Pi-Ru; Connolly, Rory; Wu, Vin-Cent

    2016-01-01

    Urinary biomarkers augment the diagnosis of acute kidney injury (AKI), with AKI after cardiovascular surgeries being a prototype of prognosis scenario. Glutathione S-transferases (GST) were evaluated as biomarkers of AKI. Urine samples were collected in 141 cardiovascular surgical patients and analyzed for urinary alpha-(α-) and pi-(π-) GSTs. The outcomes of advanced AKI (KDIGO stage 2, 3) and all-cause in-patient mortality, as composite outcome, were recorded. Areas under the receiver operator characteristic (ROC) curves and multivariate generalized additive model (GAM) were applied to predict outcomes. Thirty-eight (26.9%) patients had AKI, while 12 (8.5%) were with advanced AKI. Urinary π-GST differentiated patients with/without advanced AKI or composite outcome after surgery (p < 0.05 by generalized estimating equation). Urinary π-GST predicted advanced AKI at 3 hrs post-surgery (p = 0.033) and composite outcome (p = 0.009), while the corresponding ROC curve had AUC of 0.784 and 0.783. Using GAM, the cutoff value of 14.7 μg/L for π-GST showed the best performance to predict composite outcome. The addition of π-GST to the SOFA score improved risk stratification (total net reclassification index = 0.47). Thus, urinary π-GST levels predict advanced AKI or hospital mortality after cardiovascular surgery and improve in SOFA outcome assessment specific to AKI. PMID:27527370

  17. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  18. Glutathione S Transferases Polymorphisms Are Independent Prognostic Factors in Lupus Nephritis Treated with Cyclophosphamide

    PubMed Central

    Verstuyft, Céline; Costedoat-Chalumeau, Nathalie; Hummel, Aurélie; Le Guern, Véronique; Sacré, Karim; Meyer, Olivier; Daugas, Eric; Goujard, Cécile; Sultan, Audrey; Lobbedez, Thierry; Galicier, Lionel; Pourrat, Jacques; Le Hello, Claire; Godin, Michel; Morello, Rémy; Lambert, Marc; Hachulla, Eric; Vanhille, Philippe; Queffeulou, Guillaume; Potier, Jacky; Dion, Jean-Jacques; Bataille, Pierre; Chauveau, Dominique; Moulis, Guillaume; Farge-Bancel, Dominique; Duhaut, Pierre; Saint-Marcoux, Bernadette; Deroux, Alban; Manuzak, Jennifer; Francès, Camille; Aumaitre, Olivier; Bezanahary, Holy; Becquemont, Laurent; Bienvenu, Boris

    2016-01-01

    Objective To investigate association between genetic polymorphisms of GST, CYP and renal outcome or occurrence of adverse drug reactions (ADRs) in lupus nephritis (LN) treated with cyclophosphamide (CYC). CYC, as a pro-drug, requires bioactivation through multiple hepatic cytochrome P450s and glutathione S transferases (GST). Methods We carried out a multicentric retrospective study including 70 patients with proliferative LN treated with CYC. Patients were genotyped for polymorphisms of the CYP2B6, CYP2C19, GSTP1, GSTM1 and GSTT1 genes. Complete remission (CR) was defined as proteinuria ≤0.33g/day and serum creatinine ≤124 µmol/l. Partial remission (PR) was defined as proteinuria ≤1.5g/day with a 50% decrease of the baseline proteinuria value and serum creatinine no greater than 25% above baseline. Results Most patients were women (84%) and 77% were Caucasian. The mean age at LN diagnosis was 41 ± 10 years. The frequency of patients carrying the GST null genotype GSTT1-, GSTM1-, and the Ile→105Val GSTP1 genotype were respectively 38%, 60% and 44%. In multivariate analysis, the Ile→105Val GSTP1 genotype was an independent factor of poor renal outcome (achievement of CR or PR) (OR = 5.01 95% CI [1.02–24.51]) and the sole factor that influenced occurrence of ADRs was the GSTM1 null genotype (OR = 3.34 95% CI [1.064–10.58]). No association between polymorphisms of cytochrome P450s gene and efficacy or ADRs was observed. Conclusion This study suggests that GST polymorphisms highly impact renal outcome and occurrence of ADRs related to CYC in LN patients. PMID:27002825

  19. S-(4-bromo-2,3-dioxobutyl)glutathione: A new affinity label for the 4-4 isoenzyme of rat liver glutathione S-transferase

    SciTech Connect

    Katusz, R.M.; Colman, R.F. )

    1991-11-26

    S-(4-Bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, has been synthesized and characterized by UV spectroscopy and thin-layer chromatography, as well as by bromide and primary amine analysis. Incubation of S-BDB-G (200 {mu}M) with the 4-4 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25C results in a time-dependent inactivation of the enzyme. The k{sub obs} exhibits a nonlinear dependence on S-BDB-G concentration from 50 to 1000 {mu}M. Modified enzyme, prepared by incubating glutathione S-transferase with ({sup 3}H)S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with NaBH{sub 4}, carboxymethylated, and digested with trypsin. The tryptic digest was fractionated by reverse-phase high-performance liquid chromatography. Two radioactive peptides were identified. These results suggest that S-BDB-G functions as an affinity label at or near the active site of glutathione S-transferase and that modification of one site per enzyme subunit causes inactivation. It is proposed that the new compound, S-(4-bromo-2,3-dioxobutyl)glutathione, may have general applicability as an affinity label of other enzymes with glutathione binding sites.

  20. Catalytic characterization of human microsomal glutathione S-transferase 2: identification of rate-limiting steps.

    PubMed

    Ahmad, Shabbir; Niegowski, Damian; Wetterholm, Anders; Haeggström, Jesper Z; Morgenstern, Ralf; Rinaldo-Matthis, Agnes

    2013-03-12

    Microsomal glutathione S-transferase 2 (MGST2) is a 17 kDa trimeric integral membrane protein homologous to leukotriene C4 synthase (LTC4S). MGST2 has been suggested to catalyze the biosynthesis of the pro-inflammatory mediator leukotriene C4 (LTC4) in cells devoid of LTC4S. A detailed biochemical study of MGST2 is critical for the understanding of its cellular function and potential role as an LTC4-producing enzyme. Here we have characterized the substrate specificity and catalytic properties of purified MGST2 by steady-state and pre-steady-state kinetic experiments. In comparison with LTC4S, which has a catalytic efficiency of 8.7 × 10(5) M(-1) s(-1), MGST2, with a catalytic efficiency of 1.8 × 10(4) M(-1) s(-1), is considerably less efficient in producing LTC4. However, the two enzymes display a similar KM(LTA4) of 30-40 μM. While LTC4S has one activated glutathione (GSH) (forming a thiolate) per enzyme monomer, the MGST2 trimer seems to display only third-of-the-sites reactivity for thiolate activation, which in part would explain its lower catalytic efficiency. Furthermore, MGST2 displays GSH-dependent peroxidase activity of ∼0.2 μmol min(-1) mg(-1) toward several lipid hydroperoxides. MGST2, but not LTC4S, is efficient in catalyzing conjugation of the electrophilic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the lipid peroxidation product 4-hydroxy-2-nonenal with GSH. Using stopped-flow pre-steady-state kinetics, we have characterized the full catalytic reaction of MGST2 with CDNB and GSH as substrates, showing an initial rapid equilibrium binding of GSH followed by thiolate formation. Burst kinetics for the CDNB-GSH conjugation step was observed only at low GSH concentrations (thiolate anion formation becoming rate-limiting under these conditions). Product release is rapid and does not limit the overall reaction. Therefore, in general, the chemical conjugation step is rate-limiting for MGST2 at physiological GSH concentrations. MGST2 and LTC4S

  1. A novel glutathione-S transferase immunosensor based on horseradish peroxidase and double-layer gold nanoparticles.

    PubMed

    Lu, Dingqiang; Lu, Fuping; Pang, Guangchang

    2016-06-01

    GSTs, a biotransformation enzyme group, can perform metabolism, drug transfer and detoxification functions. Rapid detection of the GSTs with more sensitive approaches is of great importance. In the current study, a novel double-layer gold nanoparticles-electrochemical immunosensor electrode (DGN-EIE) immobilized with Glutathione S-Transferase (GST) antibody derived from Balb/c mice was developed. To increase the fixed quantity of antibodies and electrochemical signal, an electrochemical biosensing signal amplification system was utilized with gold nanoparticles-thionine-chitosan absorbing horseradish peroxidase (HRP). In addition, transmission electron microscope (TEM) was used to characterize the nanogold solution. To evaluate the quality of DGN-EIE, the amperometric I-t curve method was applied to determine the GST in PBS. The results showed that the response current had a good linear correlation with the GST concentration ranged from 0.1-10(4) pg/mL. The lowest detection limit was found at 0.03 pg/mL(S/N = 3). The linear equation was deduced as △I/% = 7.386lgC + 22.36 (R(2) = 0.998). Moreover, it was validated with high sensitivity and reproducibility. Apparently, DGN-EIE may be a very useful tool for monitoring the GST. PMID:27220630

  2. Glutathione, glutathione S-transferases, and related redox enzymes in Adriamycin-resistant cell lines with a multidrug resistant phenotype.

    PubMed

    Schisselbauer, J C; Crescimanno, M; D'Alessandro, N; Clapper, M; Toulmond, S; Tapiero, H; Tew, K D

    1989-01-01

    Friend erythroleukemia cells (FLC) selected by exposure to Adriamycin (doxorubicin) express an approximate 2.5-fold (ARN1) or 13-fold (ARN2) resistance to the drug with various degrees of cross-resistance to other anthracyclines, vinca alkaloids, and epipodophyllotoxins. Because the redox cycling of the quinone moiety of Adriamycin is known to produce oxidative stress, however, an analysis of glutathione (GSH) and related enzyme systems was undertaken in the wild-type and selected resistant cells. In ARN1 and ARN2, superoxide dismutase (SOD) and catalase activities were slightly decreased, intracellular GSH and GSH reductase were essentially unchanged, and total GSH peroxidase, glutathione S-transferase (GST), and DT-diaphorase activities were slightly elevated. In each case there was no stoichiometric relationship between degree of resistance and level of activity. GST isozymes were purified from each cell line by HPLC GSH affinity column chromatography. Two-dimensional gel electrophoresis and western blot immunoreactivity against a battery of GST isozyme polyclonal antibodies determined that both the resistant and sensitive cells expressed isozymes of the alpha, pi, and mu classes (alternative murine nomenclature: M1, M2, M3). Of significance, both ARN1 and ARN2 cell lines expressed a unique alpha subunit which was absent from the parent FLC cell line. This isozyme presumably accounted for the increased GSH peroxidase activity (cumene hydroperoxide as substrate) found in ARN1 and ARN2 and may play a role in the small incremental resistance to melphalan found for both resistant lines. Expression of the isozyme was not stoichiometric with respect to degree of resistance. The presence of this isozyme may contribute to the resistant phenotype or may be the consequence of a more general cellular response to oxidative stress. PMID:2639724

  3. Prognostic significance of glutathione S-transferase-pi in invasive breast cancer.

    PubMed

    Huang, Jingxiang; Tan, Puay-Hoon; Thiyagarajan, Jayabaskar; Bay, Boon-Huat

    2003-06-01

    Glutathione S-transferase pi (GST-pi), a Phase II detoxification enzyme, has recently been implicated in protection against apoptosis. Expression of GST-pi and Bcl-2 protein, an established apoptosis marker, was analyzed by immunohistochemistry in 116 cases of infiltrative ductal breast carcinomas in Singapore women. The markers were correlated with apoptosis detected by the TUNEL method and clinico-pathological parameters. There were 67 (58%) GST-pi-positive breast tumors and 43 (37%) Bcl-2-positive tumors. In a large proportion of GST-pi-positive/Bcl-2-positive tumors, there was a distinct accumulation of the GST-pi enzyme within the nucleus of cancer cells when examined by double immunofluorescence labeling under confocal microscopy. GST-pi immunoreactivity was not significantly correlated with any of the traditional histologic factors known to influence prognosis, whereas Bcl-2 overexpression was associated with reduced size of primary tumor (P =.021) and positive estrogen receptor status (P =.001). Univariate analysis revealed that GST-pi-positive, Bcl-2-positive, and lower histological grade tumors had decreased levels of apoptosis (P =.024, P =.011, and P =.029, respectively). However, multivariate analysis showed that histological grade and Bcl-2, but not GST-pi, immunoreactivity were correlated with apoptotic status. The Kaplan-Meier disease-free survival curves showed a significant difference between GST-pi-positive and GST-pi-negative breast cancer cases (P =.002). Disease-free survival in patients with GST-pi-positive tumors was also worse than that in patients with GST-pi-negative tumors in the group who had adjuvant chemotherapy (P =.04). In patients who were lymph node positive, GST-pi immunopositivity was found to influence disease-free survival. Recurrence of tumors was also significantly affected by GST-pi immunoreactivity (relative risk of 8.1). The findings indicate that GST-pi-positive tumors are more aggressive and have a poorer prognosis than

  4. Infection with Salmonella typhimurium modulates the immune response to Schistosoma mansoni glutathione-S-transferase.

    PubMed Central

    Comoy, E E; Vendeville, C; Capron, A; Thyphronitis, G

    1997-01-01

    Immune response polarization is controlled by several factors, including cytokines, antigen-presenting cells, antigen dose, and others. We have previously shown that adjuvants and live vectors play a critical role in polarization. Thus, immunization with the Schistosoma mansoni 28-kDa glutathione-S-transferase (Sm28-GST) in aluminum hydroxide induced a type 2 cytokine profile and the production of immunoglobulin G1 (IgG1)- and IgE-specific antibodies. In contrast, mice infected with recombinant Salmonella typhimurium expressing Sm28-GST developed a type 1 cytokine profile and produced IgG2a-specific antibodies against Sm28-GST and Salmonella antigens. In this study, to determine if S. typhimurium not expressing Sm28-GST would still influence the type of the response against this antigen, we compared the profiles of the immune responses generated against Sm28-GST administered in alum in mice infected and not infected with S. typhimurium. Infected mice generated both IgG1 and IgG2a antibodies against Sm28-GST, while noninfected mice produced only IgG1 anti-Sm28-GST antibodies. Moreover, interleukin-4 (IL-4) mRNA expression in infected mice was near background levels, while gamma interferon (IFN-gamma) mRNA expression in coinfected mice was significantly higher than in mice immunized with Sm28-GST in alum only. However, after antigen-specific stimulation in vitro with Sm28-GST, levels of IL-4 and IFN-gamma cytokine production were similar in the two groups of mice. These results suggest that (i) the immune milieu produced during an infection may modify the response against an irrelevant antigen and (ii) isotype switching may be influenced by the cytokine environment of a bystander immune response, even though the specific antigen-driven cytokine production is not modified. Thus, the isotypic profile is not always an absolute reflection of the cytokines produced by antigen-specific Th cells. PMID:9234784

  5. Inhibition characteristics of hypericin on rat small intestine glutathione-S-transferases.

    PubMed

    Tuna, Gamze; Kulaksiz Erkmen, Gulnihal; Dalmizrak, Ozlem; Dogan, Arin; Ogus, I Hamdi; Ozer, Nazmi

    2010-10-01

    Glutathione-S-transferases constitute a family of enzymes involving in the detoxification of xenobiotics, signalling cascades and serving as ligandins or/and catalyzing the conjugation of various chemicals and drugs. The widely expressed cytosolic GST-pi is a marker protein in various cancers and its increased concentration is linked to drug resistance. GST-pi is autoregulated by S-glutathionylation and it catalyzes the S-glutathionylation of other proteins in response to oxidative or nitrosative stress. S-glutathionylation of GST-pi results in multimer formation and the breakage of ligand binding interactions with c-Jun NH(2)-terminal kinase (JNK). Another widely expressed GST enzyme, GST-alpha is assumed as a marker in hepatocellular damage, is implicated in cancer, asthma, cardiovascular disease and response to chemotherapy. Although, it was shown that hypericin binds and inhibits GST-alpha and GST-pi, the inhibition characteristics have not been investigated in detail. The aim of this study was to investigate the effects of hypericin on major GSTs; GST-alpha and GST-pi purified from rat small intestine. When GSH used as varied substrate the inhibition pattern with hypericin was uncompetitive for GST-alpha (K(i)=0.16 + or - 0.02 microM) and noncompetitive for GST-pi (K(i) = 2.46 + or - 0.43 microM). While using CDNB (1-chloro-2,4-dinitrobenzene) as the varied substrate, the inhibition patterns were noncompetitive for GST-alpha and competitive for GST-pi; K(i) values for GST-alpha and GST-pi were 1.91 + or - 0.21 and 0.55 + or - 0.07 microM, respectively. Since hypericin accumulated in cancer cells and important in photodynamic therapy (PDT), inhibition of GST-alpha and GST-pi by hypericin might increase the effectivity of the treatment. Considering that GST-pi is responsible for the drug resistance its inhibition might increase the benefit obtained from chemotherapy. PMID:20637187

  6. Glutathione S-transferase activity in follicular fluid from women undergoing ovarian stimulation: role in maturation.

    PubMed

    Meijide, Susana; Hernández, M Luisa; Navarro, Rosaura; Larreategui, Zaloa; Ferrando, Marcos; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2014-10-01

    Female infertility involves an emotional impact for the woman, often leading to a state of anxiety and low self-esteem. The assisted reproduction techniques (ART) are used to overcome the problem of infertility. In a first step of the in vitro fertilization therapy women are subjected to an ovarian stimulation protocol to obtain mature oocytes, which will result in competent oocytes necessary for fertilization to occur. Ovarian stimulation, however, subjects the women to a high physical and psychological stress, thus being essential to improve ART and to find biomarkers of dysfunction and fertility. GSH is an important antioxidant, and is also used in detoxification reactions, catalysed by glutathione S-transferases (GST). In the present work, we have investigated the involvement of GST in follicular maturation. Patients with fertility problems and oocyte donors were recruited for the study. From each woman follicles at two stages of maturation were extracted at the preovulatory stage. Follicular fluid was separated from the oocyte by centrifugation and used as the enzyme source. GST activity was determined based on its conjugation with 3,4-dichloronitrobenzene and the assay was adapted to a 96-well microplate reader. The absorbance was represented against the incubation time and the curves were adjusted to linearity (R(2)>0.990). Results showed that in both donors and patients GST activity was significantly lower in mature oocytes compared to small ones. These results suggest that GST may play a role in the follicle maturation by detoxifying xenobiotics, thus contributing to the normal development of the oocyte. Supported by FIS/FEDER (PI11/02559), Gobierno Vasco (Dep. Educación, Universiades e Investigación, IT687-13), and UPV/EHU (CLUMBER UFI11/20 and PES13/58). The work was approved by the Ethics Committee of the UPV/EHU (CEISH/96/2011/RUIZLARREA), and performed according to the UPV/EHU and IVI-Bilbao agreement (Ref. 2012/01). PMID:26461371

  7. QUANTITATIVE IMAGE CYTOMETRY OF HEPATOCYTES EXPRESSING GAMMA-GLUTAMYL TRANSPEPTIDASE AND GLUTATHIONE S-TRANSFERASE IN DIETHYLNITROSAMINE-INITIATED RATS TREATED WITH PHENOBARBITAL AND/OR PHTHALATE ESTERS

    EPA Science Inventory

    Image cytometry was used to quantify the volume of liver tissue expressing two widely accepted biochemical markers of neoplasia, gammaglutamyl transpeptidase (GGT) and the placental isozyme of glutathione s-transferase (GST-P). ats were treated with hepatocarcinogen, diethylnitro...

  8. Neuroantibodies (NAB) in African-American Children: Associations with Gender, Glutathione-S-Transferase (GST)Pi Polymorphisms (SNP) and Heavy Metals

    EPA Science Inventory

    CONTACT (NAME ONLY): Hassan El-Fawal Abstract Details PRESENTATION TYPE: Platform or Poster CURRENT CATEGORY: Neurodegenerative Disease | Biomarkers | Neurotoxicity, Metals KEYWORDS: Autoantibodies, Glutathione-S-Transferase, DATE/TIME LAST MODIFIED: DATE/TIME SUBMITTED: Abs...

  9. Regulation of aflatoxin B1-metabolizing aldehyde reductase and glutathione S-transferase by chemoprotectors.

    PubMed Central

    McLellan, L I; Judah, D J; Neal, G E; Hayes, J D

    1994-01-01

    Ingestion of aflatoxin B1 (AFB1) represents a major risk factor in the aetiology of human hepatocellular carcinoma. In the rat, the harmful effects of AFB1 can be prevented by the administration of certain drugs which induce hepatic detoxification enzymes. We have previously shown that treatment of rats with the chemoprotector ethoxyquin (EQ) results in a marked increase in expression of the Alpha-class glutathione S-transferase (GST) Yc2 subunit which has high activity towards AFB1-8,9-epoxide [Hayes, Judah, McLellan, Kerr, Peacock and Neal (1991) Biochem. J. 279, 385-398]. To allow an assessment of whether the increased expression of GST Yc2 represents a general adaptive resistance mechanism to chemical stress, that is invoked by both chemoprotectors and carcinogens, we have examined the effects of EQ, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), phenobarbital (PB), AFB1, 3-methylcholanthrene (3-MC) and clofibrate on the AFB1-glutathione-conjugating activity and the GST subunit levels in rat liver. In addition, the effect of these drugs on the hepatic levels of an aldehyde reductase (AFB1-AR) that metabolizes the cytotoxic dialdehydic form of AFB1 has been studied as this enzyme also appears to be important in chemoprotection. Administration of the antioxidants EQ, BHA or BHT, as well as PB, led to a marked increase in levels of the GST Yc2 subunit in rat liver, and this increase coincided with a substantial rise in the GST activity towards AFB1-8,9-epoxide; neither AFB1, 3-MC nor clofibrate caused induction of Yc2 or any of the GST subunits examined. Among the xenobiotics studied, EQ was found to be the most effective inducing agent for the Yc2 subunit as well as Yc1, Yb1 and Yf. However, PB was equally as effective as EQ in increasing levels of the Ya-type subunits, although it was not found to be as potent an inducer of the other GST subunits, including Yc2. In addition to induction of GST, EQ caused a substantial increase in the hepatic

  10. The content of glutathione and glutathione S-transferases and the glutathione peroxidase activity in rat liver nuclei determined by a non-aqueous technique of cell fractionation.

    PubMed Central

    Soboll, S; Gründel, S; Harris, J; Kolb-Bachofen, V; Ketterer, B; Sies, H

    1995-01-01

    Hepatocellular nuclei require glutathione, glutathione S-transferases (GSTs) and Se-dependent glutathione peroxidase (GPx) for intranuclear protection against damage from electrophiles or products of active oxygen. Data so far available from the literature on nuclei isolated in aqueous systems range from glutathione, GSTs and GPx either being absent altogether to being present in quantities in excess of those in the cytoplasm. This paper describes a small-scale preparation of a nuclear fraction from rat liver by a non-aqueous technique, designed to retain nuclear water-soluble molecules in situ, since low-molecular-mass compounds can diffuse freely into other compartments during aqueous separation. This non-aqueous procedure shows the nucleus to contain glutathione at 8.4 mM and soluble GSTs at 38 micrograms/mg of protein, the enrichment over the homogenate being 1.2-1.4-fold. Se-dependent GPx activity was also present in the nucleus (56 m-units/mg), although with slightly lower activity than in the homogenate (0.7-fold). Images Figure 1 PMID:7487946

  11. Lead concentration and the level of glutathione, glutathione S-transferase, reductase and peroxidase in the blood of some occupational workers from Irbid City, Jordan.

    PubMed

    Hunaiti, A; Soud, M; Khalil, A

    1995-08-18

    Blood samples were collected from 263 lead-exposed suspected males living in Irbid area in the northern part of Jordan. The blood lead concentrations in the samples were determined by atomic absorption and were related to the type of work performed by the workers. The blood lead concentration was higher in metal casters, 41.6, and radiator welders, 32,8 micrograms/dl, compared to non-suspected lead-exposed university students, 5.7 micrograms/dl. Workers such as mechanics, bus drivers, car painters and gas station workers showed slightly higher but not significant blood lead. The blood glutathione content and the activities of glutathione reductase, glutathione peroxidase and glutathione S-transferase were also determined in non-suspected subjects and in those with occupational exposure to lead. With increasing blood lead concentration, glutathione content decreases as well as the activities of the glutathione utilizing enzymes. PMID:7569882

  12. Conversion of melphalan to 4-(glutathionyl)phenylalanine. A novel mechanism for conjugation by glutathione-S-transferases.

    PubMed

    Dulik, D M; Fenselau, C

    1987-01-01

    One of the conjugates of melphalan, characterized following incubation with glutathione (GSH) and immobilized microsomal glutathione-S-transferases, has been identified as 4-(glutathionyl)-phenylalanine. This conjugate is formed by displacement of the mustard moiety. The structure was confirmed by reaction of the corresponding 4-halophenylalanines with GSH as well as by TLC, HPLC, and FAB mass spectrometry. Evidence is presented here to support the hypothesis that this novel reaction occurs via a cyclic aziridinium ion. To test this proposed mechanism, N,N-dimethyl-p-toluidine and its corresponding quaternary ammonium iodide salt were incubated with GSH in the presence of immobilized glutathione-S-transferases at 37 degrees C for 1 hr at pH 7.4. The tertiary amine did not react, whereas the quaternary compound produced 4-(glutathionyl)toluene. The effect of ring substituent requirements for the reaction was evaluated. The formation of GSH adducts of alkylating agents may be a factor in the development of resistance to these drugs. PMID:2882977

  13. Glutathione S-transferase and gamma-glutamyl transpeptidase activities in cultured rat hepatocytes treated with tocotrienol and tocopherol.

    PubMed

    Ong, F B; Wan Ngah, W Z; Shamaan, N A; Md Top, A G; Marzuki, A; Khalid, A K

    1993-09-01

    1. The effect of tocotrienol and tocopherol on glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (GGT) activities in cultured rat hepatocytes were investigated. 2. Tocotrienol and tocopherol significantly decreased GGT activities at 5 days in culture but tocotrienol also significantly decreased GGT activities at 1-2 days. 3. Tocotrienol and tocopherol treatment significantly decreased GST activities at 3 days compared to the control but tocotrienol also decreased GST activities at 1-3 days. 4. Tocotrienol showed a more pronounced effect at a dosage of greater than 50 microM tocotrienol at 1-3 days in culture compared to the control. PMID:7903615

  14. Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation.

    PubMed

    Parker, Lorien J; Italiano, Louis C; Morton, Craig J; Hancock, Nancy C; Ascher, David B; Aitken, Jade B; Harris, Hugh H; Campomanes, Pablo; Rothlisberger, Ursula; De Luca, Anastasia; Lo Bello, Mario; Ang, Wee Han; Dyson, Paul J; Parker, Michael W

    2011-07-01

    Platinum-based cancer drugs, such as cisplatin, are highly effective chemotherapeutic agents used extensively for the treatment of solid tumors. However, their effectiveness is limited by drug resistance, which, in some cancers, has been associated with an overexpression of pi class glutathione S-transferase (GST P1-1), an important enzyme in the mercapturic acid detoxification pathway. Ethacraplatin (EA-CPT), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands, was designed as a platinum cancer metallodrug that could also target cytosolic GST enzymes. We previously reported that EA-CPT was an excellent inhibitor of GST activity in live mammalian cells compared to either cisplatin or ethacrynic acid. In order to understand the nature of the drug-protein interactions between EA-CPT and GST P1-1, and to obtain mechanistic insights at a molecular level, structural and biochemical investigations were carried out, supported by molecular modeling analysis using quantum mechanical/molecular mechanical methods. The results suggest that EA-CPT preferentially docks at the dimer interface at GST P1-1 and subsequent interaction with the enzyme resulted in docking of the ethacrynate ligands at both active sites (in the H-sites), with the Pt moiety remaining bound at the dimer interface. The activation of the inhibitor by its target enzyme and covalent binding accounts for the strong and irreversible inhibition of enzymatic activity by the platinum complex. PMID:21681839

  15. Cantharidin Impedes Activity of Glutathione S-Transferase in the Midgut of Helicoverpa armigera Hübner

    PubMed Central

    Khan, Rashid Ahmed; Liu, Ji Yuan; Rashid, Maryam; Wang, Dun; Zhang, Ya Lin

    2013-01-01

    Previous investigations have implicated glutathione S-transferases (GSTs) as one of the major reasons for insecticide resistance. Therefore, effectiveness of new candidate compounds depends on their ability to inhibit GSTs to prevent metabolic detoxification by insects. Cantharidin, a terpenoid compound of insect origin, has been developed as a bio-pesticide in China, and proves highly toxic to a wide range of insects, especially lepidopteran. In the present study, we test cantharidin as a model compound for its toxicity, effects on the mRNA transcription of a model Helicoverpa armigera glutathione S-transferase gene (HaGST) and also for its putative inhibitory effect on the catalytic activity of GSTs, both in vivo and in vitro in Helicoverpa armigera, employing molecular and biochemical methods. Bioassay results showed that cantharidin was highly toxic to H. armigera. Real-time qPCR showed down-regulation of the HaGST at the mRNA transcript ranging from 2.5 to 12.5 folds while biochemical assays showed in vivo inhibition of GSTs in midgut and in vitro inhibition of rHaGST. Binding of cantharidin to HaGST was rationalized by homology and molecular docking simulations using a model GST (1PN9) as a template structure. Molecular docking simulations also confirmed accurate docking of the cantharidin molecule to the active site of HaGST impeding its catalytic activity. PMID:23528854

  16. Effect of municipal waste water effluent upon the expression of Glutathione S-transferase isoenzymes of brine shrimp Artemia.

    PubMed

    Grammou, Athina; Papadimitriou, Chrisa; Samaras, Peter; Vasara, Eleni; Papadopoulos, Athanasios I

    2011-06-01

    Multiple isoenzymes of the detoxification enzyme family Glutathione S-transferase are expressed in the brine shrimp Artemia. The number of the major ones detected in crude extract by means of chromatofocusing varied between three and four, depending on the age. Two isoenzymes, one alkaline and one neutral (with corresponding isoelectric points of 8.5 and 7.2) appear to be dominant in all three developmental stages studied, (24, 48, and 72 h after hatching). Culturing Artemia for 48 h after hatching, in artificial sea water prepared by municipal wastewater effluent resulted to significant alterations of the isoenzyme profile. In comparison to organisms cultured for the same period of time in artificial sea water prepared by filtered tap water, the expression of the alkaline isoenzyme decreased by 62% while that of the neutral isoenzyme increased by 58%. Furthermore, the enzyme activity of the major isoenzyme of the acidic area increased by more than two folds. It is worth mentioning that although the specific activity of the total enzyme in the whole body homogenate was elevated, no statistically significant alteration of the Km value was observed. These findings suggest that study of the isoenzyme profile of Glutathione S-transferase may offer high sensitivity in detecting environmental pollution and needs to be further investigated. PMID:21429555

  17. Cantharidin Impedes Activity of Glutathione S-Transferase in the Midgut of Helicoverpa armigera Hübner.

    PubMed

    Khan, Rashid Ahmed; Liu, Ji Yuan; Rashid, Maryam; Wang, Dun; Zhang, Ya Lin

    2013-01-01

    Previous investigations have implicated glutathione S-transferases (GSTs) as one of the major reasons for insecticide resistance. Therefore, effectiveness of new candidate compounds depends on their ability to inhibit GSTs to prevent metabolic detoxification by insects. Cantharidin, a terpenoid compound of insect origin, has been developed as a bio-pesticide in China, and proves highly toxic to a wide range of insects, especially lepidopteran. In the present study, we test cantharidin as a model compound for its toxicity, effects on the mRNA transcription of a model Helicoverpa armigera glutathione S-transferase gene (HaGST) and also for its putative inhibitory effect on the catalytic activity of GSTs, both in vivo and in vitro in Helicoverpa armigera, employing molecular and biochemical methods. Bioassay results showed that cantharidin was highly toxic to H. armigera. Real-time qPCR showed down-regulation of the HaGST at the mRNA transcript ranging from 2.5 to 12.5 folds while biochemical assays showed in vivo inhibition of GSTs in midgut and in vitro inhibition of rHaGST. Binding of cantharidin to HaGST was rationalized by homology and molecular docking simulations using a model GST (1PN9) as a template structure. Molecular docking simulations also confirmed accurate docking of the cantharidin molecule to the active site of HaGST impeding its catalytic activity. PMID:23528854

  18. Aniline exposure associated with up-regulated transcriptional responses of three glutathione S-transferase Delta genes in Drosophila melanogaster.

    PubMed

    Chan, Wen-Chiao; Chien, Yi-Chih; Chien, Cheng-I

    2015-03-01

    Complex transcriptional profile of glutathione S-transferase Delta cluster genes occurred in the developmental process of the fruit fly Drosophila melanogaster. The purpose of this project was to quantify the expression levels of Gst Delta class genes altered by aniline exposure and to understand the relationship between aniline dosages and the variation of Gst Delta genes expressed in D. melanogaster. Using RT-PCR expression assays, the expression patterns of the transcript mRNAs of the glutathione S-transferase Delta genes were revealed and their expression levels were measured at eggs, larvae, pupae and adults. The adult stage was selected for further dose-response assays. After analysis, the results indicated that three Gst Delta genes (Gst D2, Gst D5 and Gst D6) were found to show a peak of up-regulated transcriptional response at 6-8h of exposure of aniline. Furthermore, the dose-response relationship of their induction levels within the dose regiments (from 1.2 to 2.0 μl/tube) had been measured. The expression patterns and annotations of these genes were discussed in the context. PMID:25682008

  19. Structure and expression of a cluster of glutathione S-transferase genes from a marine fish, the plaice (Pleuronectes platessa).

    PubMed Central

    Leaver, M J; Wright, J; George, S G

    1997-01-01

    Glutathione S-transferases are involved in the detoxification of reactive electrophilic compounds, including intracellular metabolites, drugs, pollutants and pesticides. A cluster of three glutathione S-transferase genes, designated GSTA, GSTA1 and GSTA2, was isolated from the marine flatfish, plaice (Pleuronectes platessa). GSTA and GSTA1 code for protein products with 76% amino acid identity. GSTA2 appears to contain a single nucleotide deletion which would render any product non-functional. All of these genes consist of six exons of similar sizes and greater than 70% nucleotide identity, and are interrupted by five introns of differing sizes. GSTA and GSTA1 mRNAs were present in a range of tissues, while GSTA2 mRNA was no detected. Expression of GSTA mRNA was increased in plaice intestine and spleen by pretreatment with beta-naphthoflavone, and expression of both GSTA and GSTA1 mRNAs was increased in plaice liver and gill by pretreatment with the peroxisome proliferating agent perfluoro-octanoic acid. PMID:9020873

  20. Glutathione S-transferase in the midgut tissue of gypsy moth (Lymantria dispar) caterpillars exposed to dietary cadmium.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Mrdaković, Marija; Todorović, Dajana; Matić, Dragana; Lazarević, Jelica; Mataruga, Vesna Perić

    2016-06-01

    Activity of glutathione S-transferase (GST) in midgut of gypsy moth caterpillars exposed to 10 and 30μg Cd/g dry food was examined. Based on the enzyme reaction through conjugation with glutathione, overall activity remained unaltered after acute and chronic treatment. No-observed-effect-concentration (10μg Cd/g dry food) significantly increased activity only after 3-day recovery following cadmium administration. Almost all comparisons of the indices of phenotypic plasticity revealed statistically significant differences. Despite the facts that GST has important role in xenobiotic biotransformation, our results indicate that this enzyme in insect midgut does not represent the key factor in cadmium detoxification. PMID:27084993

  1. Influence of glutathione S-transferase B (ligandin) on the intermembrane transfer of bilirubin. Implications for the intracellular transport of nonsubstrate ligands in hepatocytes.

    PubMed Central

    Zucker, S D; Goessling, W; Ransil, B J; Gollan, J L

    1995-01-01

    To examine the hypothesis that glutathione S-transferases (GST) play an important role in the hepatocellular transport of hydrophobic organic anions, the kinetics of the spontaneous transfer of unconjugated bilirubin between membrane vesicles and rat liver glutathione S-transferase B (ligandin) was studied, using stopped-flow fluorometry. Bilirubin transfer from glutathione S-transferase B to phosphatidylcholine vesicles was best described by a single exponential function, with a rate constant of 8.0 +/- 0.7 s-1 (+/- SD) at 25 degrees C. The variations in transfer rate with respect to acceptor phospholipid concentration provide strong evidence for aqueous diffusion of free bilirubin. This finding was verified using rhodamine-labeled microsomal membranes as acceptors. Bilirubin transfer from phospholipid vesicles to GST also exhibited diffusional kinetics. Thermodynamic parameters for bilirubin dissociation from GST were similar to those for human serum albumin. The rate of bilirubin transfer from rat liver basolateral plasma membranes to acceptor vesicles in the presence of glutathione S-transferase B declined asymptotically with increasing GST concentration. These data suggest that glutathione S-transferase B does not function as an intracellular bilirubin transporter, although expression of this protein may serve to regulate the delivery of bilirubin, and other nonsubstrate ligands, to sites of metabolism within the cell. Images PMID:7560084

  2. Effects of gestational and overt diabetes on human placental cytochromes P450 and glutathione S-transferase.

    PubMed

    McRobie, D J; Glover, D D; Tracy, T S

    1998-04-01

    The placenta possesses the ability to metabolize a number of xenobiotics and endogenous compounds by processes similar to those seen in the liver. Animal and in vivo studies have observed that the presence of diabetes alters the expression of hepatic metabolizing enzymes (cytochrome P450 and glutathione S-transferase); however, it is unknown whether similar alterations occur in the human placenta. To evaluate whether diabetes has any effect of placental xenobiotic metabolizing activity, the catalytic activities of 7-ethoxyresorufin O-deethylation (EROD, CYP1A1), chlorzoxazone 6-hydroxylation (CYP2E1), dextromethorphan N-demethylation (CYP3A4), dextromethorphan O-demethylation (CYP2D6), and 1-chloro-2, 4-dinitrobenzene (CDNB) conjugation with glutathione (glutathione S-transferase, GST) from placentas of diet (class A1) and insulin-dependent (class A2) gestational diabetics and overt diabetics were compared with matched controls. EROD activity (CYP1A1) ranged from 0.29 to 2.67 pmol/min/mg protein. However, no differences were observed among overt or gestational diabetics and their respective matched controls. CDNB conjugation (GST) ranged from 0.275 to 1.65 units/min/mg protein. In contrast to that observed with CYP1A1, a small but statistically significant reduction in GST activity was noted in overt diabetics as compared with their matched controls and gestational diabetics. CYP2E1, 2D6, and 3A4 enzymatic activities were not detected in human placental tissue. GST protein was detectable in all tissues studied, but no CYP protein could be detected in any of the tissues. Thus, it seems that pregnant women with overt diabetes have reduced GST activity in the placenta, which could potentially result in the exposure of the fetus to harmful electrophiles. However, the full clinical significance of this finding remains to be elucidated. PMID:9531526

  3. Non-enzymatic roles for the URE2 glutathione S-transferase in the response of Saccharomyces cerevisiae to arsenic.

    PubMed

    Todorova, Tatina T; Kujumdzieva, Anna V; Vuilleumier, Stéphane

    2010-11-01

    The response of Saccharomyces cerevisiae to arsenic involves a large ensemble of genes, many of which are associated with glutathione-related metabolism. The role of the glutathione S-transferase (GST) product of the URE2 gene involved in resistance of S. cerevisiae to a broad range of heavy metals was investigated. Glutathione peroxidase activity, previously reported for the Ure2p protein, was unaffected in cell-free extracts of an ure2Δ mutant of S. cerevisiae. Glutathione levels in the ure2Δ mutant were lowered about threefold compared to the isogenic wild-type strain but, as in the wild-type strain, increased 2-2.5-fold upon addition of either arsenate (As(V)) or arsenite (As(III)). However, lack of URE2 specifically caused sensitivity to arsenite but not to arsenate. The protective role of URE2 against arsenite depended solely on the GST-encoding 3'-end portion of the gene. The nitrogen source used for growth was suggested to be an important determinant of arsenite toxicity, in keeping with non-enzymatic roles of the URE2 gene product in GATA-type regulation. PMID:20740275

  4. Loss-of-function mutations in a glutathione S-transferase suppress the prune-Killer of prune lethal interaction.

    PubMed

    Provost, Elayne; Hersperger, Grafton; Timmons, Lisa; Ho, Wen Qi; Hersperger, Evelyn; Alcazar, Rosa; Shearn, Allen

    2006-01-01

    The prune gene of Drosophila melanogaster is predicted to encode a phosphodiesterase. Null alleles of prune are viable but cause an eye-color phenotype. The abnormal wing discs gene encodes a nucleoside diphosphate kinase. Killer of prune is a missense mutation in the abnormal wing discs gene. Although it has no phenotype by itself even when homozygous, Killer of prune when heterozygous causes lethality in the absence of prune gene function. A screen for suppressors of transgenic Killer of prune led to the recovery of three mutations, all of which are in the same gene. As heterozygotes these mutations are dominant suppressors of the prune-Killer of prune lethal interaction; as homozygotes these mutations cause early larval lethality and the absence of imaginal discs. These alleles are loss-of-function mutations in CG10065, a gene that is predicted to encode a protein with several zinc finger domains and glutathione S-transferase activity. PMID:16143620

  5. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects.

    PubMed

    Shi, Houxia; Pei, Lianghong; Gu, Shasha; Zhu, Shicheng; Wang, Yanyun; Zhang, Yi; Li, Bin

    2012-11-01

    Glutathione S-transferases are important detoxification enzymes involved in insecticide resistance. Sequencing the Tribolium castaneum genome provides an opportunity to investigate the structure, function, and evolution of GSTs on a genome-wide scale. Thirty-six putative cytosolic GSTs and 5 microsomal GSTs have been identified in T. castaneum. Furthermore, 40, 35, 13, 23, and 32 GSTs have been discovered the other insects, Drosophila, Anopheles, Apis, Bombyx, and Acyrthosiphon, respectively. Phylogenetic analyses reveal that insect-specific GSTs, Epsilon and Delta, are the largest species-specific expanded GSTs. In T. castaneum, most GSTs are tandemly arranged in three chromosomes. Particularly, Epsilon GSTs have an inverted long-fragment duplication in the genome. Other four widely distributed classes are highly conserved in all species. Given that GSTs specially expanded in Tribolium castaneum, these genes might help to resist poisonous chemical environments and produce resistance to kinds of different insecticides. PMID:22824654

  6. Transcriptome-wide identification and expression analysis of glutathione S-transferase genes involved in flavonoids accumulation in Dracaena cambodiana.

    PubMed

    Zhu, Jia-Hong; Li, Hui-Liang; Guo, Dong; Wang, Ying; Dai, Hao-Fu; Mei, Wen-Li; Peng, Shi-Qing

    2016-07-01

    Dragon's blood is a traditional medicine widely used in the world, and the main components of which are flavonoids. However, little is known about its formation mechanism. Previous studies indicate that plant glutathione S-transferase (GST) genes are involved in transportation of flavonoids from cytosolic synthesis to vacuolar accumulation. In this study, 20 Dracaena cambodiana GST genes (DcGSTs) were identified based on transcriptome database. Phylogenetic analysis revealed that 20 DcGSTs belonged to seven different classes. Tissue-specific expression analysis suggested that DcGSTs displayed differential expressions either in their transcript abundance or expression patterns under normal growth conditions. The transcript profiles of three DcGSTs in response to the inducer of dragon's blood were strongly correlated with flavonoids biosynthetic genes, consistent with dragon's blood accumulation. Our survey provides useful information for future studies on GST genes involved in dragon's blood formation in D. cambodiana. PMID:27208821

  7. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    PubMed

    Xu, Jing; Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis. PMID:26327625

  8. S-Glutathionylation of Keap1: a new role for glutathione S-transferase pi in neuronal protection.

    PubMed

    Carvalho, Andreia Neves; Marques, Carla; Guedes, Rita C; Castro-Caldas, Margarida; Rodrigues, Elsa; van Horssen, Jack; Gama, Maria João

    2016-05-01

    Oxidative stress is a key pathological feature of Parkinson's disease (PD). Glutathione S-transferase pi (GSTP) is a neuroprotective antioxidant enzyme regulated at the transcriptional level by the antioxidant master regulator nuclear factor-erythroid 2-related factor 2 (Nrf2). Here, we show for the first time that upon MPTP-induced oxidative stress, GSTP potentiates S-glutathionylation of Kelch-like ECH-associated protein 1 (Keap1), an endogenous repressor of Nrf2, in vivo. S-glutathionylation of Keap1 leads to Nrf2 activation and subsequently increases expression of GSTP. This positive feedback regulatory loop represents a novel mechanism by which GSTP elicits antioxidant protection in the brain. PMID:27086966

  9. The Role of Glutathione S-transferase P in signaling pathways and S-glutathionylation in Cancer

    PubMed Central

    Tew, Kenneth D.; Manevich, Yefim; Grek, Christina; Xiong, Ying; Uys, Joachim; Townsend, Danyelle M.

    2011-01-01

    Glutathione S-transferase P is abundantly expressed in some mammalian tissues, particularly those associated with malignancies. While the enzyme can catalyze thioether bond formation between some electrophilic chemicals and GSH, novel non-detoxification functions are now ascribed to it. This review summarizes recent material that implicates GSTP in mediating S-glutathionylation of specific clusters of target proteins and in reactions that define a negative regulatory role in some kinase pathways through ligand or protein:protein interactions. It is becoming apparent that GSTP participates in the maintenance of cellular redox homeostasis through a number of convergent and divergent mechanisms. Moreover, drug platforms that have GSTP as a target have produced some interesting preclinical and clinical candidates. PMID:21558000

  10. The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer.

    PubMed

    Tew, Kenneth D; Manevich, Yefim; Grek, Christina; Xiong, Ying; Uys, Joachim; Townsend, Danyelle M

    2011-07-15

    Glutathione S-transferase P is abundantly expressed in some mammalian tissues, particularly those associated with malignancies. While the enzyme can catalyze thioether bond formation between some electrophilic chemicals and GSH, novel nondetoxification functions are now ascribed to it. This review summarizes recent material that implicates GSTP in mediating S-glutathionylation of specific clusters of target proteins and in reactions that define a negative regulatory role in some kinase pathways through ligand or protein:protein interactions. It is becoming apparent that GSTP participates in the maintenance of cellular redox homeostasis through a number of convergent and divergent mechanisms. Moreover, drug platforms that have GSTP as a target have produced some interesting preclinical and clinical candidates. PMID:21558000

  11. Genetic polymorphisms in glutathione-S-transferases are associated with anxiety and mood disorders in nicotine dependence

    PubMed Central

    Pizzo de Castro, Márcia Regina; Ehara Watanabe, Maria Angelica; Losi Guembarovski, Roberta; Odebrecht Vargas, Heber; Vissoci Reiche, Edna Maria; Kaminami Morimoto, Helena; Dodd, Seetal; Berk, Michael

    2014-01-01

    Background Nicotine dependence is associated with an increased risk of mood and anxiety disorders and suicide. The primary hypothesis of this study was to identify whether the polymorphisms of two glutathione-S-transferase enzymes (GSTM1 and GSTT1 genes) predict an increased risk of mood and anxiety disorders in smokers with nicotine dependence. Materials and methods Smokers were recruited at the Centre of Treatment for Smokers. The instruments were a sociodemographic questionnaire, Fagerström Test for Nicotine Dependence, diagnoses of mood disorder and nicotine dependence according to DSM-IV (SCID-IV), and the Alcohol, Smoking and Substance Involvement Screening Test. Anxiety disorder was assessed based on the treatment report. Laboratory assessment included glutathione-S-transferases M1 (GSTM1) and T1 (GSTT1), which were detected by a multiplex-PCR protocol. Results Compared with individuals who had both GSTM1 and GSTT1 genes, a higher frequency of at least one deletion of the GSTM1 and GSTT1 genes was identified in anxious smokers [odds ratio (OR)=2.21, 95% confidence interval (CI)=1.05–4.65, P=0.034], but there was no association with bipolar and unipolar depression (P=0.943). Compared with nonanxious smokers, anxious smokers had a greater risk for mood disorders (OR=4.67; 95% CI=2.24–9.92, P<0.001), lung disease (OR=6.78, 95% CI=1.95–23.58, P<0.003), and suicide attempts (OR=17.01, 95% CI=2.23–129.91, P<0.006). Conclusion This study suggests that at least one deletion of the GSTM1 and GSTT1 genes represents a risk factor for anxious smokers. These two genes may modify the capacity for the detoxification potential against oxidative stress. PMID:24637631

  12. Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily.

    PubMed

    Zakharyan, R A; Sampayo-Reyes, A; Healy, S M; Tsaprailis, G; Board, P G; Liebler, D C; Aposhian, H V

    2001-08-01

    The drinking of water containing large amounts of inorganic arsenic is a worldwide major public health problem because of arsenic carcinogenicity. Yet an understanding of the specific mechanism(s) of inorganic arsenic toxicity has been elusive. We have now partially purified the rate-limiting enzyme of inorganic arsenic metabolism, human liver MMA(V) reductase, using ion exchange, molecular exclusion, and hydroxyapatite chromatography. When SDS-beta-mercaptoethanol-PAGE was performed on the most purified fraction, seven protein bands were obtained. Each band was excised from the gel, sequenced by LC-MS/MS and identified according to the SWISS-PROT and TrEMBL Protein Sequence databases. Human liver MMA(V) reductase is 100% identical, over 92% of sequence that we analyzed, with the recently discovered human glutathione-S-transferase Omega class hGSTO 1-1. Recombinant human GSTO1-1 had MMA(V) reductase activity with K(m) and V(max) values comparable to those of human liver MMA(V) reductase. The partially purified human liver MMA(V) reductase had glutathione S-transferase (GST) activity. MMA(V) reductase activity was competitively inhibited by the GST substrate, 1-chloro 2,4-dinitrobenzene and also by the GST inhibitor, deoxycholate. Western blot analysis of the most purified human liver MMA(V) reductase showed one band when probed with hGSTO1-1 antiserum. We propose that MMA(V) reductase and hGSTO 1-1 are identical proteins. PMID:11511179

  13. Glutathione S-transferase M1 polymorphism and esophageal cancer risk: An updated meta-analysis based on 37 studies

    PubMed Central

    Lu, Quan-Jun; Bo, Ya-Cong; Zhao, Yan; Zhao, Er-Jiang; Sapa, Wolde Bekalo; Yao, Ming-Jie; Duan, Dan-Dan; Zhu, Yi-Wei; Lu, Wei-Quan; Yuan, Ling

    2016-01-01

    AIM: To evaluate the relationship between glutathione S-transferase M1 (GSTM1) polymorphism and susceptibility to esophageal cancer (EC). METHODS: A comprehensive search of the United States National Library of Medicine PubMed database and the Elsevier, Springer, and China National Knowledge Infrastructure databases for all relevant studies was conducted using combinations of the following terms: “glutathione S-transferase M1”, “GSTM1”, “polymorphism”, and “EC” (until November 1, 2014). The statistical analysis was performed using the SAS software (v.9.1.3; SAS Institute, Cary, NC, United States) and the Review Manager software (v.5.0; Oxford, England); crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the association between the GSTM1 null genotype and the risk of EC. RESULTS: A total of 37 studies involving 2236 EC cases and 3243 controls were included in this meta-analysis. We observed that the GSTM1 null genotype was a significant risk factor for EC in most populations (OR = 1.33, 95%CI: 1.12-1.57, Pheterogeneity < 0.000001, and I2 = 77.0%), particularly in the Asian population (OR = 1.53, 95%CI: 1.26-1.86, Pheterogeneity < 0.000001, and I2 = 77.0%), but not in the Caucasian population (OR = 1.02, 95%CI: 0.87-1.19, Pheterogeneity = 0.97, and I2 = 0%). CONCLUSION: The GSTM1 null polymorphism may be associated with an increased risk for EC in Asian but not Caucasian populations. PMID:26855551

  14. The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development.

    PubMed

    Enya, Sora; Daimon, Takaaki; Igarashi, Fumihiko; Kataoka, Hiroshi; Uchibori, Miwa; Sezutsu, Hideki; Shinoda, Tetsuro; Niwa, Ryusuke

    2015-06-01

    Insect molting and metamorphosis are tightly controlled by ecdysteroids, which are important steroid hormones that are synthesized from dietary sterols in the prothoracic gland. One of the ecdysteroidogenic genes in the fruit fly Drosophila melanogaster is noppera-bo (nobo), also known as GSTe14, which encodes a member of the epsilon class of glutathione S-transferases. In D. melanogaster, nobo plays a crucial role in utilizing cholesterol via regulating its transport and/or metabolism in the prothoracic gland. However, it is still not known whether the orthologs of nobo from other insects are also involved in ecdysteroid biosynthesis via cholesterol transport and/or metabolism in the prothoracic gland. Here we report genetic evidence showing that the silkworm Bombyx mori ortholog of nobo (nobo-Bm; GSTe7) is essential for silkworm development. nobo-Bm is predominantly expressed in the prothoracic gland. To assess the functional importance of nobo-Bm, we generated a B. mori genetic mutant of nobo-Bm using TALEN-mediated genome editing. We show that loss of nobo-Bm function causes larval arrest and a glossy cuticle phenotype, which are rescued by the application of 20-hydroxyecdysone. Moreover, the prothoracic gland cells isolated from the nobo-Bm mutant exhibit an abnormal accumulation of 7-dehydrocholesterol, a cholesterol metabolite. These results suggest that the nobo family of glutathione S-transferases is essential for development and for the regulation of sterol utilization in the prothoracic gland in not only the Diptera but also the Lepidoptera. On the other hand, loss of nobo function mutants of D. melanogaster and B. mori abnormally accumulates different sterols, implying that the sterol utilization in the PG is somewhat different between these two insect species. PMID:25881968

  15. Caffeine Junkie: an Unprecedented Glutathione S-Transferase-Dependent Oxygenase Required for Caffeine Degradation by Pseudomonas putida CBB5

    PubMed Central

    Summers, Ryan M.; Seffernick, Jennifer L.; Quandt, Erik M.; Yu, Chi Li; Barrick, Jeffrey E.

    2013-01-01

    Caffeine and other N-methylated xanthines are natural products found in many foods, beverages, and pharmaceuticals. Therefore, it is not surprising that bacteria have evolved to live on caffeine as a sole carbon and nitrogen source. The caffeine degradation pathway of Pseudomonas putida CBB5 utilizes an unprecedented glutathione-S-transferase-dependent Rieske oxygenase for demethylation of 7-methylxanthine to xanthine, the final step in caffeine N-demethylation. The gene coding this function is unusual, in that the iron-sulfur and non-heme iron domains that compose the normally functional Rieske oxygenase (RO) are encoded by separate proteins. The non-heme iron domain is located in the monooxygenase, ndmC, while the Rieske [2Fe-2S] domain is fused to the RO reductase gene, ndmD. This fusion, however, does not interfere with the interaction of the reductase with N1- and N3-demethylase RO oxygenases, which are involved in the initial reactions of caffeine degradation. We demonstrate that the N7-demethylation reaction absolutely requires a unique, tightly bound protein complex composed of NdmC, NdmD, and NdmE, a novel glutathione-S-transferase (GST). NdmE is proposed to function as a noncatalytic subunit that serves a structural role in the complexation of the oxygenase (NdmC) and Rieske domains (NdmD). Genome analyses found this gene organization of a split RO and GST gene cluster to occur more broadly, implying a larger function for RO-GST protein partners. PMID:23813729

  16. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA. PMID:15528046

  17. Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione-S-transferase π

    PubMed Central

    McMillan, David H.; van der Velden, Jos L.J.; Lahue, Karolyn G.; Qian, Xi; Schneider, Robert W.; Iberg, Martina S.; Nolin, James D.; Abdalla, Sarah; Casey, Dylan T.; Tew, Kenneth D.; Townsend, Danyelle M.; Henderson, Colin J.; Wolf, C. Roland; Butnor, Kelly J.; Taatjes, Douglas J.; Budd, Ralph C.; Irvin, Charles G.; van der Vliet, Albert; Flemer, Stevenson; Anathy, Vikas; Janssen-Heininger, Yvonne M.W.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp−/− mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF. PMID:27358914

  18. Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria.

    PubMed Central

    Arca, P; Hardisson, C; Suárez, J E

    1990-01-01

    The enzyme that modifies fosfomycin by formation of an adduct with glutathione was purified 12-fold with a 56% activity yield by passage through DEAE Sephacel and high-performance liquid chromatography molecular exclusion columns. Its functional form was a homodimer of two 16,000-dalton polypeptides, which possibly showed an antiparallel alpha tertiary structure and which lacked marked hydrophobic regions. Visualization of the reaction was achieved by precolumn derivatization of glutathione and the adduct, separation by high-performance liquid chromatography, and fluorescence detection of both compounds. Temperature and pH optima were 20 to 30 degrees C and 8.25, respectively; Mn2+, Fe2+, and Co2+ enhanced the rate of modification; and Km values were 9.4 and 11 mM for fosfomycin and glutathione, respectively. Phosphoenolpyruvate did not interfere with fosfomycin modification. The enzyme was stable at 4 degrees C for at least 6 months but progressively lost its activity upon being heated for 60 min at temperatures over 30 degrees C. Images PMID:2193621

  19. Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures.

    PubMed

    Ishihara, Yasuhiro; Kawami, Tomohito; Ishida, Atsuhiko; Yamazaki, Takeshi

    2012-06-01

    Tributyltin (TBT) has been used as a heat stabilizer, agricultural pesticide and antifouling agents on ships, boats and fish-farming nets; however, the neurotoxicity of TBT has recently become a concern. TBT is suggested to stimulate the generation of reactive oxygen species (ROS) inside cells. The aim of this study was to determine the mechanism of neuronal oxidative injury induced by TBT using rat organotypic hippocampal slice cultures. The treatment of rat hippocampal slices with TBT induced ROS production, lipid peroxidation and cell death. Pretreatment with antioxidants such as superoxide dismutase, catalase or trolox, suppressed the above phenomena induced by TBT, indicating that TBT elicits oxidative stress in hippocampal slices, which causes neuronal cell death. TBT dose-dependently inhibited glutathione S-transferase (GST), but not glutathione peroxidase or glutathione reductase in the cytosol of rat hippocampus. The treatment of hippocampal slices with TBT decreased the GST activity. Pretreatment with reduced glutathione attenuated the reduction of GST activity and cell death induced by TBT, indicating that the decrease in GST activity by TBT is involved in hippocampal cell death. When hippocampal slices were treated with sulforaphane, the expression and activity of GST were increased. Notably, TBT-induced oxidative stress and cell death were significantly suppressed by pretreatment with sulforaphane. These results indicate that GST inhibition could contribute, at least in part, to the neuronal cell death induced by TBT in hippocampal slices. This study is the first report to show the link between neuronal oxidative injury and the GST inhibition elicited by TBT. PMID:22449404

  20. Age-Related Changes in Antioxidant and Glutathione S-Transferase Enzyme Activities in the Asian Clam.

    PubMed

    Vranković, J

    2016-03-01

    Aging is accompanied by increased production of free oxygen radicals and impairment of normal cellular functions. The aim of this work was to provide preliminary data on age-related differences in the activities of antioxidant enzymes and phase II biotransformation enzyme glutathione S-transferase (GST) in a wild population of the Asian clam Corbicula fluminea. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and GST were assessed in visceral mass of four age classes (0+-, 1+-, 2+-, and 3+-year-old) of C. fluminea clams. Age-related changes were seen in antioxidant enzyme status: levels of total SOD (totSOD) (P < 0.05), MnSOD, and CuZnSOD (P < 0.05) activities increased progressively during aging from younger to older clams. Changes in CAT and GR activities with advancing age were found, the levels being the highest in age class II, then being lower in age classes III and IV (P < 0.05). Activities of GPX and GST were lower in the senescent individuals (2+- and 3+-year-old clams) compared with young individuals (0+- and 1+-year-old clams). Overall, the decline of glutathione-dependent enzyme activities, coupled with higher and lower activities of totSOD and CAT, respectively, as the individual grows older, may render the older animals more susceptible to oxidative stress. Data reported here are not intended to be exhaustive since they concern only age/size structure of the population at one locality, so more detailed studies on both the developmental stages and levels of antioxidant enzymes of this new alien species in Serbian rivers are required. PMID:27262191

  1. Different roles of functional residues in the hydrophobic binding site of two sweet orange tau glutathione S-transferases.

    PubMed

    Lo Piero, Angela R; Mercurio, Valeria; Puglisi, Ivana; Petrone, Goffredo

    2010-01-01

    Glutathione S-transferases (GSTs) catalyze the conjugation of glutathione to hydrophobic compounds, contributing to the metabolism of toxic chemicals. In this study, we show that two naturally occurring tau GSTs (GSTUs) exhibit distinctive kinetic parameters towards 1-chloro-2,4-dinitrobenzene (CDNB), although they differ only in three amino acids (Arg89, Glu117 and Ile172 in GSTU1 are replaced by Pro89, Lys117 and Val172 in GSTU2). In order to understand the effects of the single mismatched residues, several mutant GSTs were generated through site-directed mutagenesis. The analysis of the kinetic parameters of the mutants led to the conclusion that Glu117 provides a critical contribution to the maintenance of a high-affinity CDNB-binding site. However, the substitution E117K gives rise to mutants showing increased k(cat) values for CDNB, suggesting that Lys117 might positively influence the formation of the transition state during catalysis. No changes in the K(m) values towards glutathione were found between the naturally occurring GSTs and mutants, except for the mutant caused by the substitution R89P in GSTU1, which showed a sharp increase in K(m). Moreover, the analysis of enzyme reactivation after denaturation showed that this R89P substitution leads to a two-fold enhancement of the refolded enzyme yield, suggesting that the insertion of proline might induce critical structural modifications. In contrast, the substitution P89R in GSTU2 does not modify the reactivation yield and does not impair the affinity of the mutant for glutathione, suggesting that all three residues investigated in this work are fundamental in the creation of enzymes characterized by unique biochemical properties. PMID:19954490

  2. Bioaccumulation of PCB-153 and effects on molecular biomarkers acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels.

    PubMed

    Vidal-Liñán, Leticia; Bellas, Juan; Soriano, José Antonio; Concha-Graña, Estefanía; Muniategui, Soledad; Beiras, Ricardo

    2016-07-01

    In this study, PCB-153 bioaccumulation kinetics and concentration-response experiments were performed employing wild Mytilus galloprovincialis mussels. In addition, the activity of three enzymatic biomarkers: glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE), were measured in the mussel gills. The experimental data fitted well to an asymptotic accumulation model with a high bioconcentration factor (BCF) of 9324 L kg(-1) and a very limited depuration capacity, described by a low excretion rate coefficient (Kd = 0.083 d(-1)). This study reports by first time in mussels significant inhibition of GST activity and significant induction of GPx activity as a result of exposure to dissolved PCB-153. In contrast, AChE activity was unaffected at all concentrations and exposure times tested. The effects on both enzymes are time-dependent, which stresses the difficulties inherent to the use of these biomarkers in chemical pollution monitoring programs. PMID:27176625

  3. Kinetic analysis of the intracellular conjugation of monochlorobimane by IC-21 murine macrophage glutathione-S-transferase.

    PubMed

    Young, P R; ConnorsWhite, A L; Dzido, G A

    1994-12-15

    Monochlorobimane (MCB) reacts with glutathione (GSH) in a reaction catalyzed by the glutathione-S-transferase (GST) isozymes. The diffusion of MCB through cell membranes is rapid and the fluorescence conjugates are relatively insensitive to quenching and to pH effects, and are expelled slowly from the cell, allowing the rate of fluorescence increase to be used to probe the dynamics of the intracellular reaction. Using low-light microscopic cytometry to monitor the initial rates of fluorescence increase for the GST-catalyzed reaction within IC-21 macrophages yields Vmax = 8.4 x 10(-16) mol s-1 cell-1 and KMCBm = 65 microM. Combining these data with an integrated Michaelis analysis of the reaction course yields KIP approximately 1.5 x 10(-5) M, and KmGSH approximately 3.0 x 10(-4) M (at [MCB] = 50 microM). The values of Vmax and KMCBm for the cell-free (extracellular) GST-catalyzed conjugation reaction are 1.2 x 10(-18) mol s-1 cell-1 and 3.1 microM, respectively. The values of Vmax for the intra- and extracellular conjugation reactions differ by 700-fold, suggesting the presence of an intracellular activator for this enzyme system. PMID:7803478

  4. Organophosphate pesticides increase the expression of alpha glutathione S-transferase in HepG2 cells.

    PubMed

    Medina-Díaz, I M; Rubio-Ortíz, M; Martínez-Guzmán, M C; Dávalos-Ibarra, R L; Rojas-García, A E; Robledo-Marenco, M L; Barrón-Vivanco, B S; Girón-Pérez, M I; Elizondo, G

    2011-12-01

    Chlorpyrifos and methyl parathion are among the most widely used insecticides in the world. Human populations are constantly exposed to low doses of both due to their extensive use and presence in food and drinking water. Glutathione S-transferase (GST) catalyzes the conjugation of glutathione on electrophilic substrates and is an important line of defense in the protection of cellular components from reactive species. GST alpha1 (GSTA1) is the predominant isoform of GST expressed in the human liver; thus, determining the effect of insecticides on GSTA1 transcription is very important. In the present study, we analyzed the effects of methyl parathion and chlorpyrifos on GSTA1 gene expression in HepG2 cells using real time PCR, and activity and immunoreactive protein assays. The results demonstrated that exposure to methyl parathion and chlorpyrifos increased the level of GSTA1 mRNA, GSTA1 immunoreactive protein and GST activity relative to a control. These results demonstrated that these insecticides can increase the expression of GSTA1. In conclusion, HepG2 cell cultures treated with methyl parathion and chlorpyrifos could be a useful model for studying the function of GSTA1 and its role in the metabolism of xenobiotics in the liver. PMID:21907274

  5. Glutathione S-transferase SlGSTE1 in Spodoptera litura may be associated with feeding adaptation of host plants.

    PubMed

    Zou, Xiaopeng; Xu, Zhibin; Zou, Haiwang; Liu, Jisheng; Chen, Shuna; Feng, Qili; Zheng, Sichun

    2016-03-01

    Spodoptera litura is polyphagous pest insect and feeds on plants of more than 90 families. In this study the role of glutathione S-transferase epilson 1 (slgste1) in S. litura in detoxification was examined. This gene was up-regulated in the midgut of S. litura at the transcriptional and protein levels when the insect fed on Brassica juncea or diet containing phytochemicals such as indole-3-carbinol and allyl-isothiocyanate that are metabolic products of sinigrin and glucobrassicin in B. juncea. The SlGSTE1 could catalyze the conjugation of reduced glutathione and indole-3-carbinol and allyl-isothiocyanate, as well as xanthotoxin, which is a furanocoumarin, under in vitro condition. When the expression of Slgste1 in the larvae was suppressed with RNAi, the larval growth and feeding rate were decreased. Furthermore, the up-regulated expression of the SlGSTE1 protein in the midgut of larvae that fed on different host plants was detected by 2-DE and ESI/MS analysis. The feeding adaptation from the most to the least of the larvae for the various host plants was Brassica alboglabra, Brassica linn. Pekinensis, Cucumis sativus, Ipomoea batatas, Arachis hypogaea and Capsicum frutescens. All the results together suggest that Slgste1 is a critical detoxifying enzyme that is induced by phytochmicals in the host plants and, inter alia, may be related to host plant adaptation of S. litura. PMID:26631599

  6. INDUCTION OF DNA-PROTEIN CROSSLINKS BY THE METABOLISM OF DICHLOROMETHANE IN V79 CELL LINES TRANSFECTED WITH THE MURINE GLUTATHIONE-S-TRANSFERASE THETA 1 GENE

    EPA Science Inventory

    Dichloromethane (DCM) is considered a probable human carcinogen. Laboratory studies have shown an increased incidence of lung and liver cancer in mice but not in rats or hamsters. Despite the correlation between metabolism of DCM by the glutathione-S-transferase (GST) pathway and...

  7. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and resistant Drosophila melanogaster strains in response to DDT and oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been...

  8. 1-3-A Resolution Structure of Human Glutathione S-Transferase With S-Hexyl Glutathione Bound Reveals Possible Extended Ligandin Binding Site

    SciTech Connect

    Trong, I.Le; Stenkamp, R.E.; Ibarra, C.; Atkins, W.M.; Adman, E.T.

    2005-08-22

    Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.

  9. Purification and characterization of a glutathione S-transferase from Mucor mucedo.

    PubMed

    Hamed, Ragaa R; Abu-Shady, Mohamed R; El-Beih, Fawkia M; Abdalla, Abdel-Monem A; Afifi, Ola M

    2005-01-01

    An intracellular glutathione transferase was purified to homogenity from the fungus, Mucor mucedo, using DEAE-cellulose ion-exchange and glutathione affinity chromatography. Gel filtration chromatography and SDS-PAGE revealed that the purified GST is a homodimer with approximate native and subunit molecular mass of 53 kDa and 23.4 kDa, respectively. The enzyme has a pI value of 4.8, a pH optimum at pH 8.0 and apparent activation energy (Ea) of 1.42 kcal mol(-1). The purified GST acts readily on CDNB with almost negligible peroxidase activity and the activity was inhibited by Cibacron Blue (IC50 0.252 microM) and hematin (IC50 3.55 microM). M. mucedo GST displayed a non-Michaelian behavior. At low (0.1-0.3 mM) and high (0.3-2 mM) substrate concentration, Km (GSH) was calculated to be 0.179 and 0.65 mM, whereas Km(CDNB) was 0.531 and 11 mM and k(cat) was 39.8 and 552 s(-1), respectively. The enzyme showed apparent pKa values of 6-6.5 and 8.0. PMID:16209109

  10. In vitro kinetics of hepatic glutathione s-transferase conjugation in largemouth bass and brown bullheads

    SciTech Connect

    Gallagher, E.P.; Sheehy, K.M.; Lame, M.W.; Segall, H.J.

    2000-02-01

    The kinetics of glutathione 5-transferase (GST) catalysis were investigated in largemouth bass (Micropterus salmoides) and brown bullheads (Amerius nebulosus), two freshwater fish species found in a variety of polluted waterways in the eastern US. The initial rates of hepatic GST activity toward four GST substrates, including 1-chloro-2,4-dinitrobenzene, ethacrynic acid, {Delta}5-androstene-17-dione, and nitrobutyl chloride, were significantly higher in brown bullheads than in largemouth bass. Hepatic GST activity toward 1,2-dichloro-4-nitrobenzene, a {mu}-class GST substrate in rodents, was not detectable in either species. Liver cytosolic GSTs were more efficient in bullheads than in bass at catalyzing 1-chloro-2,4-dinitrobenzene-reduced glutathione (CDNB-GSH) conjugation over a broad range of electrophile (CDNB) concentrations, including those representative of environmental exposure. In contrast, largemouth bass maintained higher ambient concentrations of GSH, the nucleophilic cofactor for GST-mediated conjugation, than brown bullheads. Biphasic kinetics for GST-CDNB conjugation under conditions of variable GSH concentration were apparent in Eadie-Hofstee plots of the kinetic data, suggesting the presence of at least two hepatic GST isozymes with markedly different K{sub m} values for GSH in both species. The GST-CDNB reaction rate data obtained under conditions of variable GSH were well fitted (R{sup 2} = 0.999) by the two-enzyme Michaelis-Menten equation. In addition, Western blotting experiments confirmed the presence of two different hepatic GST-like proteins in both largemouth bass and brown bullhead liver. Collectively, these findings indicate that largemouth bass and brown bullhead GSTs catalyze the conjugation of structurally diverse, class-specific GST substrates, and that brown bullheads exhibit higher initial rates of GST activity than largemouth bass. The relatively higher rates of in vitro liver GST activity at the low substrate concentrations

  11. Glutathione-S-Transferase is Detected During Somatic Embryogenesis in Chicory

    PubMed Central

    Galland, Rachel; Blervacq, Anne-Sophie; Blassiau, Christelle; Smagghe, Benoît; Decottignies, Jean-Pierre

    2007-01-01

    Glutathione S-tranferases (GSTs) are a heterogeneous family of proteins, which perform diverse pivotal catalytic and non-enzymatic functions during plant development and in plant stress responses. Previous studies have shown that a GST activity (EC 2.5.1.18) is closely linked with the precocious phases of somatic embryogenesis in leaf tissues of an interspecific chicory hybrid (Cichorium intybus L. var. sativa × C. endivia L. var. latifolia). In order to learn more about the involvement of this enzyme in this process, in situ-hybridization as well as immunolocalization were performed in parallel. GST-mRNAs and proteins were colocalized in small veins, particularly in young protoxylem cell walls. During cell reactivation, the in situ and protein signals became less intense and were associated with chloroplasts. The GST-mRNAs and corresponding proteins were not always colocalized in the same tissues. While high amounts of transcripts could be detected in multicellular embryos, the proteins were not well labeled. Our results indicated that GSTs belong to a complex anti-oxidant mechanism within the cell, and also at the cell wall level. GSTs presence in reactivated cell and multicellular embryos is discussed in relation to redox cell status. PMID:19516999

  12. Structure of glutathione S-transferase 1 from the major human hookworm parasite Necator americanus (Na-GST-1) in complex with glutathione

    PubMed Central

    Asojo, Oluwatoyin A.; Ceccarelli, Christopher

    2014-01-01

    Glutathione S-transferase 1 from Necator americanus (Na-GST-1) is a vaccine candidate for hookworm infection that has a high affinity for heme and metal porphyrins. As part of attempts to clarify the mechanism of heme detoxification by hookworm GSTs, co-crystallization and soaking studies of Na-GST-1 with the heme-like molecules protoporphyrin IX disodium salt, hematin and zinc protoporphyrin were undertaken. While these studies did not yield the structure of the complex of Na-GST-1 with any of these molecules, co-crystallization experiments resulted in the first structures of the complex of Na-GST-1 with the substrate glutathione. The structures of the complex of Na-GST-1 with glutathione were solved from pathological crystalline aggregates comprising more than one crystal form. These first structures of the complex of Na-GST-1 with the substrate glutathione were solved by molecular replacement from data collected with a sealed-tube home source using the previously reported apo structure as the search model. PMID:25195885

  13. Problematic detoxification of estrogen quinones by NAD(P)H-dependent quinone oxidoreductase and glutathione-S-transferase.

    PubMed

    Chandrasena, R Esala P; Edirisinghe, Praneeth D; Bolton, Judy L; Thatcher, Gregory R J

    2008-07-01

    Estrogen exposure through early menarche, late menopause, and hormone replacement therapy increases the risk factor for hormone-dependent cancers. Although the molecular mechanisms are not completely established, DNA damage by quinone electrophilic reactive intermediates, derived from estrogen oxidative metabolism, is strongly implicated. A current hypothesis has 4-hydroxyestrone-o-quinone (4-OQE) acting as the proximal estrogen carcinogen, forming depurinating DNA adducts via Michael addition. One aspect of this hypothesis posits a key role for NAD(P)H-dependent quinone oxidoreductase (NQO1) in the reduction of 4-OQE and protection against estrogen carcinogenesis, despite two reports that 4-OQE is not a substrate for NQO1. 4-OQE is rapidly and efficiently trapped by GSH, allowing measurement of NADPH-dependent reduction of 4-OQE in the presence and absence of NQO1. 4-OQE was observed to be a substrate for NQO1, but the acceleration of NADPH-dependent reduction by NQO1 over the nonenzymic reaction is less than 10-fold and at more relevant nanomolar concentrations of substrate is less than 2-fold. An alternative detoxifying enzyme, glutathione-S-transferase, was observed to be a target for 4-OQE, rapidly undergoing covalent modification. These results indicate that a key role for NQO1 and GST in direct detoxification of 4-hydroxy-estrogen quinones is problematic. PMID:18588320

  14. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis

    PubMed Central

    Hoy, Marjorie A.

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  15. Effect of glutathione-S-transferase polymorphisms on the cancer preventive potential of isothiocyanates: an epidemiological perspective.

    PubMed

    Seow, Adeline; Vainio, Harri; Yu, Mimi C

    2005-12-30

    Isothiocyanates (ITCs) are widely distributed in cruciferous vegetables and are biologically active against chemical carcinogenesis due to their ability to induce phase II conjugating enzymes. Among these is the glutathione-S-transferase (GST) family of enzymes, which in turn catalyzes the metabolism of ITCs, for which it has high substrate specificity. A recent body of epidemiologic data on the inverse association between cruciferous vegetable/ITC intake and cancers of the colo-rectum, lung and breast, also support that this protective effect is greater among individuals who possess the GSTM1 or T1 null genotype, and who would be expected to accumulate higher levels of ITC at the target tissue level, a pre-requisite for their enzyme-inducing effects. The association between ITC and cancer, and its modification by GST status, is most consistent for lung cancer and appears to be strongest among current smokers. Within limits, a comparison between groups which have been stratified by GST genotype may be less susceptible to confounding by other variables, given the random assortment of genes in gametogenesis. While a more complete understanding of the overall effects on health will need to take into account other components such as indoles and anti-oxidants, the interaction between ITC intake and GST genotype may provide a firmer basis to support a biologically significant role for ITC in cruciferous vegetables. PMID:16019037

  16. Mechanism of protective immunity by vaccination with recombinant Echinococcus granulosus glutathione S-transferase (Chinese strain) in mice

    PubMed Central

    ZHU, MINGXING; WANG, XIUQING; WANG, HAO; WANG, ZHISHENG; ZHAO, JIAQING; WANG, YANA; ZHAO, WEI

    2015-01-01

    The aim of this study was to investigate the immunoprotective effects of recombinant Echinococcus granulosus glutathione S-transferase (rEgGST) against the development of protoscolices (PSCs), and to determine the mechanisms underlying this protection. ICR mice were subcutaneously immunized three times with rEgGST at weeks 0, 2 and 4, followed by the intraperitoneal administration of E. granulosus PSCs at week 10. Six mice in each group were sacrificed at 0, 2, 4, 6, 10, 18 and 30 weeks following the initial vaccination in order to observe the macroscopic and microscopic effects of parasite development. Various analyses were subsequently conducted, including determination of the levels of immunoglobulins (Igs) and cytokines. Significant differences were observed a number of indices of immune response following immunization with rEgGST. These included reduced cyst formation and elevated levels of IgG1, IgG2a, IgG3, IL-2, IL-4, IL-10 and IFN-γ, which indicated an increased percentage of immune helper cells. The results of the present study suggest that immunization with rEgGST in mice is able to successfully reduce the PSC-induced formation of cysts and to stimulate an immune response, suggesting that rEgGST possesses potential value as a candidate vaccine for PSC infection. PMID:26622451

  17. The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers.

    PubMed

    Dong, Miao; Zhu, Lusheng; Shao, Bo; Zhu, Shaoyuan; Wang, Jun; Xie, Hui; Wang, Jinhua; Wang, Fenghua

    2013-06-01

    Endosulfan, an organochlorine pesticide, has been used worldwide in the past decades. The present study was performed to investigate the effect of endosulfan on liver microsomal cytochrome P450 (CYP) enzymes and glutathione S-transferases (GST) in zebrafish. Male and female zebrafish were separated and exposed to a control and four concentrations of endosulfan (0.01, 0.1, 1, and 10μgL(-1)) and were sampled on days 7, 14, 21, and 28. After exposure to endosulfan, the content of CYP increased and later gradually fell back to control level in most sampling time intervals. A similar tendency was also found in the activities of NADPH-P450 reductase (NCR), aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND). GST activities were generally higher in treatment groups than control groups. Regarding sex-based differences, the induction degree of the activity of NCR was generally higher in males than females. Similar differences were also found on the 28th day in the activities of APND and ERND, as well as GST activity on the 7th day. Overall, the present results demonstrate the toxicity at low doses of endosulfan and indicated marked induction of CYP and GST enzymes in zebrafish liver. PMID:23523001

  18. Immunocytochemical studies of the distribution of alpha and pi isoforms of glutathione S-transferase in cystic renal diseases.

    PubMed

    Hiley, C G; Otter, M; Bell, J; Strange, R C; Keeling, J W

    1994-01-01

    We describe immunohistochemical studies of the expression of alpha and pi class glutathione S-transferases (GSTs) in normal fetal kidneys. These define, in greater detail, changes in expression of alpha isoforms in the proximal tubule. At about 36 weeks of gestation expression of alpha isoforms was down-regulated in the distal tubules and collecting ducts while pi was expressed throughout the nephron. Tubular expression of alpha isoforms was restricted to the part adjacent to the glomerulus; cells farthest from the glomerulus were negative. After 40 weeks of gestation, alpha isoforms were expressed along the entire proximal tubule, while pi was restricted to the distal tubule and collecting ducts. GST expression was also studied in multicystic renal dysplasia, autosomal recessive polycystic kidney disease, and autosomal dominant polycystic kidney disease to determine whether the patterns of expression of alpha and pi isoforms allow identification of the origin of the cysts that characterize these diseases. Cysts were lined by epithelia that were strongly positive for alpha and pi isoforms. The epithelia of noncystic nephrons in renal cystic dysplasia demonstrated delayed maturity, suggesting that GST expression was dependent on the stage of development and not length of gestation. PMID:8066005

  19. Identification of Putative Carboxylesterase and Glutathione S-transferase Genes from the Antennae of the Chilo suppressalis (Lepidoptera: Pyralidae)

    PubMed Central

    Liu, Su; Gong, Zhong-Jun; Rao, Xiang-Jun; Li, Mao-Ye; Li, Shi-Guang

    2015-01-01

    In insects, rapid degradation of odorants in antennae is extremely important for the sensitivity of olfactory receptor neurons. Odorant degradation in insect antennae is mediated by multiple enzymes, especially the carboxylesterases (CXEs) and glutathione S-transferases (GSTs). The Asiatic rice borer, Chilo suppressalis, is an economically important lepidopteran pest which causes great economic damage to cultivated rice crops in many Asian countries. In this study, we identified 19 putative CXE and 16 GST genes by analyzing previously constructed antennal transcriptomes of C. suppressalis. BLASTX best hit results showed that these genes are most homologous to their respective orthologs in other lepidopteran species. Phylogenetic analyses revealed that these CXE and GST genes were clustered into various clades. Reverse-transcription quantitative polymerase chain reaction assays showed that three CXE genes (CsupCXE8, CsupCXE13, and CsupCXE18) are antennae-enriched. These genes are candidates for involvement in odorant degradation. Unexpectedly, none of the GST genes were found to be antennae-specific. Our results pave the way for future researches of the odorant degradation mechanism of C. suppressalis at the molecular level. PMID:26198868

  20. Molecular Cloning, Characterization and Positively Selected Sites of the Glutathione S-Transferase Family from Locusta migratoria

    PubMed Central

    Zhang, Min; Qin, Guohua; Li, Daqi; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2014-01-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes that are involved in the metabolism of endogenous and exogenous compounds and are related to insecticide resistance. The purpose of this study was to provide new information on the molecular characteristics and the positive selection of locust GSTs. Based on the transcriptome database, we sequenced 28 cytosolic GSTs and 4 microsomal GSTs from the migratory locust (Locusta migratoria). We assigned the 28 cytosolic GSTs into 6 classes—sigma, epsilon, delta, theta, omega and zeta, and the 4 microsomal GSTs into 2 subclasses—insect and MGST3. The tissue- and stage-expression patterns of the GSTs differed at the mRNA level. Further, the substrate specificities and kinetic constants of the cytosolic GSTs differed markedly at the protein level. The results of likelihood ratio tests provided strong evidence for positive selection in the delta class. The result of Bayes Empirical Bayes analysis identified 4 amino acid sites in the delta class as positive selection sites. These sites were located on the protein surface. Our findings will facilitate the elucidation of the molecular characteristics and evolutionary aspects of insect GST superfamily. PMID:25486043

  1. Glutathione S-transferase activity influences busulfan pharmacokinetics in patients with beta thalassemia major undergoing bone marrow transplantation.

    PubMed

    Poonkuzhali, B; Chandy, M; Srivastava, A; Dennison, D; Krishnamoorthy, R

    2001-03-01

    Busulfan, at a dose of 16 mg/kg, is widely used in combination with cyclophosphamide as a conditioning regimen for patients undergoing bone marrow transplantation. Wide interindividual variation in busulfan kinetics and rapid clearance of the drug have been reported, especially in children. Some of the factors contributing to interpatient variability have been identified. They include circadian rhythms, age, disease, drug interaction, changes in hepatic function, and busulfan bioavailability. In this study, we demonstrate that hepatic glutathione S-transferase (GST) activity correlates negatively with busulfan maximum and minimum concentrations (Pearson's correlation r = -0.74 and -0.77, respectively) and positively with busulfan clearance (Pearson's correlation r = 0.728) in children with thalassemia major in the age range of 2 to 15 years. We also found that plasma alpha GST levels were 5 to 10 times higher in patients with thalassemia than in normal controls and age-matched leukemic patients, either reflecting extensive liver damage, elevated expression of the enzyme, or both in thalassemic patients. Plasma alpha GST concentrations showed a similar correlation with busulfan kinetic parameters to that observed for hepatic GST. The status of hepatic GST activity accounts, at least in part, for the observed interindividual variation in busulfan kinetics, while the observed association with plasma alpha GST is difficult to explain at present. PMID:11181493

  2. Pi class glutathione S-transferase genes are regulated by Nrf 2 through an evolutionarily conserved regulatory element in zebrafish

    PubMed Central

    Suzuki, Takafumi; Takagi, Yaeko; Osanai, Hitoshi; Li, Li; Takeuchi, Miki; Katoh, Yasutake; Kobayashi, Makoto; Yamamoto, Masayuki

    2005-01-01

    Pi class GSTs (glutathione S-transferases) are a member of the vertebrate GST family of proteins that catalyse the conjugation of GSH to electrophilic compounds. The expression of Pi class GST genes can be induced by exposure to electrophiles. We demonstrated previously that the transcription factor Nrf 2 (NF-E2 p45-related factor 2) mediates this induction, not only in mammals, but also in fish. In the present study, we have isolated the genomic region of zebrafish containing the genes gstp1 and gstp2. The regulatory regions of zebrafish gstp1 and gstp2 have been examined by GFP (green fluorescent protein)-reporter gene analyses using microinjection into zebrafish embryos. Deletion and point-mutation analyses of the gstp1 promoter showed that an ARE (antioxidant-responsive element)-like sequence is located 50 bp upstream of the transcription initiation site which is essential for Nrf 2 transactivation. Using EMSA (electrophoretic mobility-shift assay) analysis we showed that zebrafish Nrf 2–MafK heterodimer specifically bound to this sequence. All the vertebrate Pi class GST genes harbour a similar ARE-like sequence in their promoter regions. We propose that this sequence is a conserved target site for Nrf 2 in the Pi class GST genes. PMID:15654768

  3. Circadian regulation of permethrin susceptibility by glutathione S-transferase (BgGSTD1) in the German cockroach (Blattella germanica).

    PubMed

    Lin, Yu-Hsien; Lee, Chi-Mei; Huang, Jia-Hsin; Lee, How-Jing

    2014-06-01

    The daily susceptibility rhythm to permethrin and the expression level of the delta class glutathione S-transferase (BgGSTD1) gene were investigated in Blattella germanica. Male cockroaches were exposed to the same concentration of permethrin at different times in a light-dark cycle, and results showed that the highest resistance occurred at night. Furthermore, the circadian rhythmicity of permethrin susceptibility was demonstrated by the highest resistance at subjective night under constant darkness. The mRNA level of the BgGSTD1 gene in the fat body of B. germanica peaked early in the day or subjective day under light-dark or constant dark conditions, whereas enzyme activity of cytosolic GSTs did not reflect the rhythmic pattern as well as BgGSTD1 expression. RNA interference (RNAi) was employed to study the function of BgGSTD1 in the circadian rhythm of permethrin susceptibility in B. germanica. Both BgGSTD1 mRNA level and cytosolic GSTs activity were significantly decreased by dsGSTD1 injection. In addition, survival of B. germanica with silenced BgGSTD1 was significantly decreased at night but not in the day when the cockroaches were exposed to permethrin. Total cytosolic GSTs activity demonstrated that is not the only gene involved in the circadian regulation of the permethrin resistance, although it is one of the major regulators of permethrin resistance. PMID:24819204

  4. Computational QM/MM Study of the Reaction Mechanism of Human Glutathione S-Transferase A3-3

    NASA Astrophysics Data System (ADS)

    Calvaresi, Matteo; Stenta, Marco; Altoè, Piero; Bottoni, Andrea; Garavelli, Marco; Spinelli, Domenico

    2007-12-01

    Human Glutathione S-Transferase A3-3(hGSTA3-3) is the most efficient human steroid double-bond isomerase enzyme. It catalyzes the double bond isomerization of Δ5-androstene-3,17-dione (Δ5-AD) and Δ5-pregnene-3,20-dione (Δ5-PD). The isomerization products are the precursors of the steroid hormones testosterone and progesterone. We have carried out a QM/MM study to elucidate some interesting aspects of the enzyme catalytic mechanism. In particular, we have analyzed either a concerted or a stepwise reaction path. Moreover, we have attempted to rationalize the electrostatic effects on the catalytic activity of the residues surrounding the active site. Specifically, we have performed a "finger print" analysis to determine the electrostatic contribution of each aminoacid residue to the global electrostatic term, thus ranking the effect of the various aminoacids in the course of the reaction. In this way, we have highlighted the most important terms affecting the stabilization-destabilization of the enzyme.

  5. Genetic variation in glutathione S-transferase genes and risk of nonfatal cerebral stroke in patients suffering from essential hypertension.

    PubMed

    Polonikov, Alexey; Vialykh, Ekaterina; Vasil'eva, Oksana; Bulgakova, Irina; Bushueva, Olga; Illig, Thomas; Solodilova, Maria

    2012-07-01

    Oxidative stress resulting from an increased amount of reactive oxygen species and an imbalance between oxidants and antioxidants has been implicated in pathogenesis of cerebral stroke. The purpose of this study was to investigate the relationship between common polymorphisms of glutathione S-transferase M1, T1, and P1 genes and risk of stroke in hypertensive individuals. A total of 667 unrelated Russian individuals with hypertension, including 306 hypertensives who suffered from cerebral stroke and 361 hypertensives who did not have cerebrovascular accidents, were recruited for the study. The deletion polymorphisms of GSTM1 and GSTT1 genes and polymorphism Ile105Val of the GSTP1 gene were genotyped by a multiplex polymerase chain reaction and restriction analyses, respectively. No differences in GSTM1 and GSTP1 genotype distributions between the cases and controls have been observed. The null GSTT1 genotype was found to be associated with increased risk of cerebral stroke after Bonferroni correction and adjusting for confounding variables such as gender, blood pressure, body mass index, and antihypertensive medication use (odds ratio 1.51 95 % CI 1.09-2.07, P = 0.01). The present study was the first to show the association of null genotype of the GSTT1 gene with increased risk of cerebral stroke. PMID:22528457

  6. Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes.

    PubMed

    Li, Xiaohong; Liu, Zhen; Deng, Ying; Li, Shengli; Mu, Dezhi; Tian, Xiaoxian; Lin, Yuan; Yang, Jiaxiang; Li, Jun; Li, Nana; Wang, Yanping; Chen, Xinlin; Deng, Kui; Zhu, Jun

    2015-01-01

    Congenital heart defects (CHDs) arise through various combinations of genetic and environmental factors. Our study explores how polymorphisms in the glutathione S-transferase (GST) genes affect the association between cigarette smoke exposure and CHDs. We analysed 299 mothers of children with CHDs and 284 mothers of children without any abnormalities who were recruited from six hospitals. The hair nicotine concentration (HNC) was used to quantify maternal smoke exposure, and the maternal GSTT1, and GSTM1 and GSTP1 genes were sequenced. We found a trend of higher adjusted odds ratios with higher maternal HNC levels, suggesting a dose-response relationship between maternal smoke exposure and CHDs. The lowest HNC range associated with an increased risk of CHDs was 0.213-0.319 ng/mg among the mothers with functional deletions of GSTM1 or GSTT1and 0.319-0.573 ng/mg among the mothers with normal copies of GSTM1 and GSTT1. In addition, the adjusted odds ratio for an HNC of >0.573 ng/mg was 38.53 among the mothers with the GSTP1 AG or GG genotype, which was 7.76 (χ(2) = 6.702, p = 0.010) times greater than the AOR in the mothers with GSTP1 AA genotype. Our study suggests that polymorphisms of maternal GST genes may modify the association of maternal smoke exposure with CHDs. PMID:26456689

  7. Potential use of acetylcholinesterase, glutathione-S-transferase and metallothionein for assessment of contaminated sediment in tropical chironomid, Chironomus javanus.

    PubMed

    Somparn, A; Iwai, C B; Noller, B

    2015-11-01

    Heavy metals and organophosphorus insecticide is known to act as disruptors for the enzyme system, leading to physiologic disorders. The present study was conducted to investigate the potential use of these enzymes as biomarkers in assessment of contaminated sediments on tropical chironomid species. Acetylcholinesterase (AChE), glutathione-S-transferase (GST) and metallothionein (MT) activity was measured in the fourth-instar chironomid larvae, Chironomus javanus, Kieffer, after either 48-hr or 96-hr exposure to organophosphorus insecticide, chlorpyrifos (0.01- 0.25 mg kg(-1)) or heavy metal cadmium (0.1-25 mg kg(-1)). Exposure to chlorpyrifos (0.01 mg kg(-1)) at 48 and 96 hr significantly of AChE activity (64.2%-85.9%) and induced GST activity (33.9-63.8%) when compared with control (P < 0.05). Moreover, exposure to cadmium (0.1 mg kg(-1)) at 48 and 96 hr also showed significant increas GST activity (11.7-40%) and MT level (9.0%-70.5%) when compared with control (P < 0.05). The results indicated the impact of enzyme activity on chlorpyrifos and cadmium contamination. Activity of AChE, GST and MT could serve as potential biomarkers for assessment and biomonitoring the effects of insecticide and heavy metal contamination in tropical aquatic ecosystems. PMID:26688973

  8. Erk-Creb pathway suppresses glutathione-S-transferase pi expression under basal and oxidative stress conditions in zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Fa, Svetlana; Pogrmic-Majkic, Kristina; Andric, Nebojsa

    2016-01-01

    Transcriptional activation of phase II enzymes including glutathione-S-transferase pi class (Gst Pi) is important for redox regulation and defense from xenobiotics. The role of extracellular signal-regulated kinase (Erk) and protein kinase B (Akt) in regulation of Gst Pi expression has been described using adult mammalian cells. Whether these signaling pathways contribute to Gst Pi expression during embryogenesis is unknown. Using zebrafish embryo model, we provide novel evidence that Erk signaling acts as a specific suppressor of gstp1-2 mRNA during early embryogenesis. Addition of Erk inhibitor U0126 enhanced gstp1-2 mRNA expression during transition from blastula to the segmentation stage and from pharyngula until the hatching stage. Basal Erk activity did not affect gstp1-2 expression in tert-butylhydroquinone-exposed embryos. Addition of phorbol 12-myristate 13-acetate increased Erk activity leading to suppression of gstp1-2 mRNA. Activation of cAMP/Creb pathway by forskolin prevented gstp1-2 expression, whereas U0126 suppressed Creb phosphorylation, thus setting up Creb as a proximal transmitter of Erk inhibitory effect. Collectively, these findings suggest that Erk-Creb pathway exerts suppressive effect on gstp1-2 mRNA in a narrow developmental window. This study also provides a novel link between Erk and gstp1-2 expression, setting apart a possible differential regulation of gstp1-2 in adult and embryonic cells. PMID:26494252

  9. Activity Assay of Glutathione S-Transferase (GSTs) Enzyme as a Diagnostic Biomarker for Liver Hydatid Cyst in Vitro

    PubMed Central

    MOATAMEDI POUR, Lila; FARAHNAK, Ali; MOLAEI RAD, Mohamadbagher; GOLMOHAMADI, Taghi; ESHRAGHIAN, Mohamadreza

    2014-01-01

    Abstract Background The aim of this study was to detect the Glutathione S-Transferase(GST) enzyme activity of healthy / cystic liver as a diagnostic biomarker for hydatidosis. In order to compare with liver tissue, the level of the GSTs enzyme activity of parasite was also determined. Methods Parasites were collected from sheep liver tissue with hydatid cysts at a local abattoir and washed with PBS buffer. Collected parasites and liver tissues were sonicated or homogenized respectively. Extract solution samples were centrifuged and stored at - 20°C. GST enzyme activities were measured in the extract of parasite and liver tissue samples (healthy and infected livers). Protein amounts and protein bands were detected using Bradford and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) methods respectively. To determine significant difference between two groups, two-sample t-test was performed. Results GST specific activities of healthy / infected livers and parasites were estimated 304, 1297 and 146 U/ml/mg respectively. Significant higher GST specific activities in cystic liver than healthy liver was observed (P <0.05). T-test analysis showed GST activity of parasite was lower than healthy liver tissue. SDS-PAGE showed GST protein bands with 24 kDa in parasite samples and25 kDa in liver tissues. Conclusion GST activity incystic liver tissue could be concerned as a biomarker for hydatid cyst diagnosis with other hydatid disease parameters. PMID:25909067

  10. Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes

    PubMed Central

    Li, Xiaohong; Liu, Zhen; Deng, Ying; Li, Shengli; Mu, Dezhi; Tian, Xiaoxian; Lin, Yuan; Yang, Jiaxiang; Li, Jun; Li, Nana; Wang, Yanping; Chen, Xinlin; Deng, Kui; Zhu, Jun

    2015-01-01

    Congenital heart defects (CHDs) arise through various combinations of genetic and environmental factors. Our study explores how polymorphisms in the glutathione S-transferase (GST) genes affect the association between cigarette smoke exposure and CHDs. We analysed 299 mothers of children with CHDs and 284 mothers of children without any abnormalities who were recruited from six hospitals. The hair nicotine concentration (HNC) was used to quantify maternal smoke exposure, and the maternal GSTT1, and GSTM1 and GSTP1 genes were sequenced. We found a trend of higher adjusted odds ratios with higher maternal HNC levels, suggesting a dose-response relationship between maternal smoke exposure and CHDs. The lowest HNC range associated with an increased risk of CHDs was 0.213–0.319 ng/mg among the mothers with functional deletions of GSTM1 or GSTT1and 0.319–0.573 ng/mg among the mothers with normal copies of GSTM1 and GSTT1. In addition, the adjusted odds ratio for an HNC of >0.573 ng/mg was 38.53 among the mothers with the GSTP1 AG or GG genotype, which was 7.76 (χ2 = 6.702, p = 0.010) times greater than the AOR in the mothers with GSTP1 AA genotype. Our study suggests that polymorphisms of maternal GST genes may modify the association of maternal smoke exposure with CHDs. PMID:26456689

  11. A glutathione S-transferase inducer from papaya: rapid screening, identification and structure-activity relationship of isothiocyanates.

    PubMed

    Nakamura, Y; Morimitsu, Y; Uzu, T; Ohigashi, H; Murakami, A; Naito, Y; Nakagawa, Y; Osawa, T; Uchida, K

    2000-09-01

    We have developed a simple system for rapid detection and measurement of glutathione S-transferase placental form (GSTP1) that detoxify polycyclic aromatic hydrocarbons using the cultured rat normal liver epithelial cell line, (RL34) cells. Survey of fruit extracts for GST inducing ability identified both papaya and avocado as significant sources. Benzyl isothiocyanate (BITC) was isolated from papaya methanol extract as a principal inducer of GST activity. Further, the GST inducing ability of a total of 20 isothiocyanates (ITCs) and their derivatives was investigated. Some ITCs showed significant induction, and BITC was one of the most potent inducers among all compounds tested in the present study. The modification of isothiocyanate group (-NCS) or introduction of substituent group to the alpha-carbon modifies GST induction. Moreover, a significant correlation (P<0.01, r=0.913) between the GST activity enrichment and GSTP1 protein induction by ITCs was observed. We also indicated that phenethyl ITC and nitrophenyl ITC, potently inducing GST activity, but not inactive benzyl isocyanate, are potential inducers of intracellular reactive oxygen intermediates (ROIs). Our system of GSTP1 induction is appropriate for the chemical research such as screening and identification of novel type of inducers as well as the structure-activity relationship studies, providing mechanistic insight into essential structural elements for GSTP1 induction. PMID:10936680

  12. Abamectin resistance in strains of vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae) is linked to elevated glutathione S-transferase activity.

    PubMed

    Wei, Qing-Bo; Lei, Zhong-Ren; Nauen, Ralf; Cai, Du-Cheng; Gao, Yu-Lin

    2015-04-01

    Abamectin resistance was selected in the vegetable leafminer, Liriomyza sativae (Blanchard) (Diptera: Agromyzidae) under laboratory conditions, and cross-resistance patterns and possible resistance mechanisms in the abamectin-resistant strains (AL-R, AF-R) were investigated. Compared with the susceptible strain (SS), strain AL-R displayed 39-fold resistance to abamectin after 20 selection cycles during 25 generations, and strain AF-R exhibited 59-fold resistance to abamectin after 16 selection cycles during 22 generations. No cross-resistance to cyromazine was found in both abamectin-resistant strains. However, we failed to select for cyromazine resistance in L. sativae under laboratory conditions by conducting 17 selection cycles during 22 generations. However, moderate levels of cross-resistance to abamectin (6-9 fold) were observed in strains which received cyromazine treatments. Biochemical analysis showed that glutathione S-transferase (GST) activity in both abamectin-resistant strains (AL-R, AF-R) was significantly higher than in the susceptible strain (SS), suggesting metabolically driven resistance to abamectinin L. sativae. Recommendations of mixtures or rotation of cyromazine and abamectin should be considered carefully, as consecutive cyromazine treatments may select for low-level cross-resistance to abamectin. PMID:25813391

  13. Vitamin E, glutathione S-transferase and gamma-glutamyl transpeptidase activities in cultured hepatocytes of rats treated with carcinogens.

    PubMed

    Ong, F B; Wan Ngah, W Z; Top, A G; Khalid, B A; Shamaan, N A

    1994-03-01

    1. The effects of alpha-tocopherol and gamma-tocotrienol on glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (gamma-GT) activities in cultured hepatocytes prepared from rats treated with diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) were investigated. 2. Both the alpha-tocopherol and gamma-tocotrienol treated hepatocytes showed significantly higher (P < 0.05) GST activities than untreated hepatocytes prepared from the carcinogen treated rats in the first 3 days of culture. Treatment with alpha-tocopherol and gamma-tocotrienol generally resulted in a tendency to increase the GST activities above that in the untreated hepatocytes. 3. Treatment with high doses (125-250 microM) of alpha-tocopherol and low doses (12.5-25 microM) of gamma-tocotrienol generally resulted in a significant reduction in gamma-GT activities at 1-3 days. gamma-GT activities are reduced as the dose of alpha-tocopherol and gamma-tocotrienol are increased. PMID:7910569

  14. Proanthocyanidins inhibit Ascaris suum glutathione-S-transferase activity and increase susceptibility of larvae to levamisole in vitro.

    PubMed

    Hansen, Tina V A; Fryganas, Christos; Acevedo, Nathalie; Caraballo, Luis; Thamsborg, Stig M; Mueller-Harvey, Irene; Williams, Andrew R

    2016-08-01

    Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity. PMID:27094225

  15. Glutathione S-Transferase of Brown Planthoppers (Nilaparvata lugens) Is Essential for Their Adaptation to Gramine-Containing Host Plants

    PubMed Central

    Yu, Jing-Ya; Jin, Yu; Ling, Bing; Du, Jin-Ping; Li, Gui-Hua; Qin, Qing-Ming; Cai, Qing-Nian

    2013-01-01

    Plants have evolved complex processes to ward off attacks by insects. In parallel, insects have evolved mechanisms to thwart these plant defenses. To gain insight into mechanisms that mediate this arms race between plants and herbivorous insects, we investigated the interactions between gramine, a toxin synthesized by plants of the family Gramineae, and glutathione S transferase (GST), an enzyme found in insects that is known to detoxify xenobiotics. Here, we demonstrate that rice (Oryza sativa), a hydrophytic plant, also produces gramine and that rice resistance to brown planthoppers (Nilaparvata lugens, BPHs) is highly associated with in planta gramine content. We also show that gramine is a toxicant that causes BPH mortality in vivo and that knockdown of BPH GST gene nlgst1-1 results in increased sensitivity to diets containing gramine. These results suggest that the knockdown of key detoxification genes in sap-sucking insects may provide an avenue for increasing their sensitivity to natural plant-associated defense mechanisms. PMID:23700450

  16. Genome-Wide Analysis of the Glutathione S-Transferase Gene Family in Capsella rubella: Identification, Expression, and Biochemical Functions

    PubMed Central

    He, Gang; Guan, Chao-Nan; Chen, Qiang-Xin; Gou, Xiao-Jun; Liu, Wei; Zeng, Qing-Yin; Lan, Ting

    2016-01-01

    Extensive subfunctionalization might explain why so many genes have been maintained after gene duplication, which provides the engine for gene family expansion. However, it is still a particular challenge to trace the evolutionary dynamics and features of functional divergences in a supergene family over the course of evolution. In this study, we identified 49 Glutathione S-transferase (GST) genes from the Capsella rubella, a close relative of Arabidopsis thaliana and a member of the mustard family. Capsella GSTs can be categorized into eight classes, with tau and phi GSTs being the most numerous. The expansion of the two classes mainly occurs through tandem gene duplication, which results in tandem-arrayed gene clusters on chromosomes. By integrating phylogenetic analysis, expression patterns, and biochemical functions of Capsella and Arabidopsis GSTs, functional divergence, both in gene expression and enzymatic properties, were clearly observed in paralogous gene pairs in Capsella (even the most recent duplicates), and orthologous GSTs in Arabidopsis/Capsella. This study provides functional evidence for the expansion and organization of a large gene family in closely related species.

  17. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    PubMed

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs. PMID:25640718

  18. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis.

    PubMed

    Wu, Ke; Hoy, Marjorie A

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J' and J" clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J' and J" clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  19. Dual protective role for Glutathione S-transferase class pi against VCD-induced ovotoxicity in the rat ovary

    SciTech Connect

    Keating, Aileen F.; Sen, Nivedita; Sipes, I. Glenn; Hoyer, Patricia B.

    2010-09-01

    The occupational chemical 4-vinylcyclohexene diepoxide (VCD) selectively destroys ovarian small pre-antral follicles in rats and mice via apoptosis. Detoxification of VCD can occur through glutathione conjugation, catalyzed by glutathione S-transferase (GST) enzymes. Further, GST class pi (GSTp) can negatively regulate JNK activity through protein:protein interactions in extra-ovarian tissues. Dissociation of this protein complex in the face of chemical exposure releases the inhibition of pro-apoptotic JNK. Increased JNK activity during VCD-induced ovotoxicity has been shown in isolated ovarian small pre-antral follicles following in vivo dosing of rats (80 mg/kg/day; 15 days, i.p.). The present study investigated the pattern of ovarian GSTp expression during VCD exposure. Additionally, the effect of VCD on an ovarian GSTp:JNK protein complex was investigated. PND4 F344 rat ovaries were incubated in control medium {+-} VCD (30 {mu}M) for 2-8 days. VCD increased ovarian GSTp mRNA (P < 0.05) relative to control on d4-d8; whereas GSTp protein was increased (P < 0.05) on d6-d8. A GSTp:JNK protein complex was detected by immunoprecipitation and Western blotting in ovarian tissues. Relative to control, the amount of GSTp-bound JNK was increased (P = 0.09), while unbound JNK was decreased (P < 0.05) on d6 of VCD exposure. The VCD-induced decrease in unbound JNK was preceded by a decrease in phosphorylated c-Jun which occurred on d4. These findings are in support of a possible dual protective role for GSTp in the rat ovary, consisting of metabolism of VCD and inhibition of JNK-initiated apoptosis.

  20. Naturally Occurring Variation in the Glutathione-S-Transferase 4 Gene Determines Neurodegeneration After Traumatic Brain Injury

    PubMed Central

    Ström, Mikael; Lindblom, Rickard; Aeinehband, Shahin; Bellander, Bo-Michael; Nyengaard, Jens R.; Lidman, Olle; Piehl, Fredrik

    2013-01-01

    Abstract Aim: Genetic factors are important for outcome after traumatic brain injury (TBI), although exact knowledge of relevant genes/pathways is still lacking. We here used an unbiased approach to define differentially activated pathways between the inbred DA and PVG rat strains. The results prompted us to study further if a naturally occurring genetic variation in glutathione-S-transferase alpha 4 (Gsta4) affects the outcome after TBI. Results: Survival of neurons after experimental TBI is increased in PVG compared to the DA strain. Global expression profiling analysis shows the glutathione metabolism pathway to be the most regulated between the strains, with increased Gsta4 in PVG among top regulated transcripts. A congenic strain (R5) with a PVG genomic insert containing the Gsta4 gene on DA background displays a reversal of the strain pattern for Gsta4 expression and increased survival of neurons compared to DA. Gsta4 is known to effectively reduce 4-hydroxynonenal (4-HNE), a noxious by-product of lipid peroxidation. Immunostaining of 4-HNE was evident in both rat and human TBI. Intracerebral injection of 4-HNE resulted in neurodegeneration with increased levels of a marker for nerve injury in cerebrospinal fluid of DA compared to R5. Innovation: These findings provide strong support for the notion that the inherent capability of coping with increased 4-HNE after TBI affects outcome in terms of nerve cell loss. Conclusion: A naturally occurring variation in Gsta4 expression in rats affects neurodegeneration after TBI. Further studies are needed to explore if genetic variability in Gsta4 can be associated to outcome also in human TBI. Antioxid. Redox Signal. 18, 784–794. PMID:22881716

  1. Increased Sensitivity of Glutathione S-Transferase P-Null Mice to Cyclophosphamide-Induced Urinary Bladder Toxicity

    PubMed Central

    Haberzettl, Petra; Lesgards, Jean-Francois; Prough, Russell A.; Srivastava, Sanjay; Bhatnagar, Aruni

    2009-01-01

    Hemorrhagic cystitis and diffuse inflammation of the bladder, common side effects of cyclophosphamide (CY) treatment, have been linked to the generation of acrolein derived from CY metabolism. Metabolic removal of acrolein involves multiple pathways, which include reduction, oxidation, and conjugation with glutathione. Herein, we tested the hypothesis that glutathione S-transferase P (GSTP), the GST isoform that displays high catalytic efficiency with acrolein, protects against CY-induced urotoxicity by detoxifying acrolein. Treatment of wild-type (WT) and mGstP1/P2 null (GSTP-null) mice with CY caused hemorrhagic cystitis, edema, albumin extravasation, and sloughing of bladder epithelium; however, CY-induced bladder ulcerations of the lamina propria were more numerous and more severe in GSTP-null mice. CY treatment also led to greater accumulation of myeloperoxidase-positive cells and specific protein-acrolein adducts in the bladder of GSTP-null than WT mice. There was no difference in hepatic microsomal production of acrolein from CY or urinary hydroxypropyl mercapturic acid output between WT and GSTP-null mice, but CY induced greater c-Jun NH2-terminal kinase (JNK) and c-Jun, but not extracellular signal-regulated kinase or p38, activation in GSTP-null than in WT mice. Pretreatment with mesna (2-mercaptoethane sulfonate sodium) abolished CY toxicity and JNK activation in GSTP-null mice. Taken together, these data support the view that GSTP prevents CY-induced bladder toxicity, in part by detoxifying acrolein. Because polymorphisms in human GSTP gene code for protein variants differing significantly in their catalytic efficiency toward acrolein, it is likely that GSTP polymorphisms influence CY urotoxicity. In addition, pretreatment with dietary or nutrient inducers of GSTP may be of use in minimizing bladder injury in patients undergoing CY therapy. PMID:19696094

  2. Induction of glutathione-S-transferase and heat-shock proteins in rat liver after ethylene oxide exposure.

    PubMed

    Katoh, T; Ohmori, H; Murakami, T; Karasaki, Y; Higashi, K; Muramatsu, M

    1991-08-22

    Defense mechanisms in rat liver against depletion of glutathione (GSH) and cellular injuries induced by ethylene oxide (EO) were studied. Rats were exposed to EO under either high dose (1300 ppm for 4 hr, once) or low dose (500 ppm for 6 hr, three times a week for 6 weeks) conditions. The hepatic content of GSH decreased dramatically after EO treatment, probably due to detoxication of EO. After the high dose treatment the hepatic GSH content fell by 90% of the control values but recovered within 10 to 15 hr. EO reacts directly with a variety of cellular macromolecules but all rats survived the exposure. Since the metabolites of EO are ethylene glycol and GSH-conjugates, the enzymatic activities of epoxide hydrolase and glutathione-S-transferase (GST) were determined. Only GST activity was found to occur after low dose chronic exposure. The defense mechanism at mRNA level was investigated using probes for GST and several heat-shock proteins (hsps). Enhanced accumulation of GST mRNA was detectable during the recovery period of rats after both high and low dose exposure to EO. Interestingly, both hsp32 (less than 40-fold) and hsp90 (less than 3-fold) mRNA increased after high dose exposure but the mRNA level of one of the major heat-shock proteins, hsp70, did not change under these conditions. Diethylmaleate, which is known to be a GSH depleter in liver, induced hsp32 mRNA only in rat liver, while hsp70 and hsp90 mRNA levels did not change when GSH was depleted. These results suggest that individual heat-shock proteins are induced in different ways under unphysiological conditions such as EO exposure. PMID:1888334

  3. Variants of glutathione s-transferase pi 1 exhibit differential enzymatic activity and inhibition by heavy metals

    PubMed Central

    Goodrich, Jaclyn M.; Basu, Niladri

    2012-01-01

    Nonsynonymous single nucleotide polymorphisms in glutathione s-transferase pi 1 (GSTP1; Ile/Val 105, Ala/Val 114) have been associated with altered toxicant metabolism in epidemiological cohorts. We explored the impact of GSTP1 genotype on enzyme kinetics and heavy metal inhibition in vitro. Four GSTP1 allozymes (105/114: Ile/Ala, Val/Ala, Ile/Val, Val/Val) were expressed in and purified from E. coli. Enzyme activity assays quantifying the rate of glutathione conjugation with 1-chloro-2,4-dinitrobenzene (CDNB) revealed significant differences in kinetic parameters depending on genotype (p<0.01). Allozymes with Ile105 had better catalytic efficiency and greater affinity for CDNB (mean ±SEM: Ile105 Ala114 Km= 0.33±0.07 mM vs. Val105 Ala114 Km=1.15±0.07 mM). Inhibition of GSTP1 activity by heavy metals was assessed following treatment with mercury (inorganic- HgCl2, methylmercury- MeHg), selenium, cadmium, lead, arsenic, and manganese. All allozymes were inhibited by HgCl2 (IC50 range: 24.1–172 μM), MeHg (93.9–480 μM), and selenium (43.7–62.8 μM). Genotype significantly influenced the potency of mercury with GSTP1 Ile105 Val114 the least sensitive and Val105 Ala114 the most sensitive to inhibition by HgCl2 and MeHg. Overall, genotype of two nonsynonymous polymorphisms in GSTP1 influenced enzyme kinetics pertaining to an electrophilic substrate and inhibition by two mercury species. PMID:22401947

  4. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    PubMed

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications. PMID:26078397

  5. Dual protective role for glutathione S-transferase class pi against VCD-induced ovotoxicity in the rat ovary.

    PubMed

    Keating, Aileen F; Sen, Nivedita; Sipes, I Glenn; Hoyer, Patricia B

    2010-09-01

    The occupational chemical 4-vinylcyclohexene diepoxide (VCD) selectively destroys ovarian small pre-antral follicles in rats and mice via apoptosis. Detoxification of VCD can occur through glutathione conjugation, catalyzed by glutathione S-transferase (GST) enzymes. Further, GST class pi (GSTp) can negatively regulate JNK activity through protein:protein interactions in extra-ovarian tissues. Dissociation of this protein complex in the face of chemical exposure releases the inhibition of pro-apoptotic JNK. Increased JNK activity during VCD-induced ovotoxicity has been shown in isolated ovarian small pre-antral follicles following in vivo dosing of rats (80mg/kg/day; 15days, i.p.). The present study investigated the pattern of ovarian GSTp expression during VCD exposure. Additionally, the effect of VCD on an ovarian GSTp:JNK protein complex was investigated. PND4 F344 rat ovaries were incubated in control medium+/-VCD (30muM) for 2-8days. VCD increased ovarian GSTp mRNA (P <0.05) relative to control on d4-d8; whereas GSTp protein was increased (P<0.05) on d6-d8. A GSTp:JNK protein complex was detected by immunoprecipitation and Western blotting in ovarian tissues. Relative to control, the amount of GSTp-bound JNK was increased (P=0.09), while unbound JNK was decreased (P<0.05) on d6 of VCD exposure. The VCD-induced decrease in unbound JNK was preceded by a decrease in phosphorylated c-Jun which occurred on d4. These findings are in support of a possible dual protective role for GSTp in the rat ovary, consisting of metabolism of VCD and inhibition of JNK-initiated apoptosis. PMID:20542051

  6. Glutathione S-transferase M1, T1 and P1 polymorphisms: susceptibility and outcome in lung cancer patients.

    PubMed

    Sreeja, Leelakumari; Syamala, Vani; Hariharan, Sreedharan; Syamala, Volga S; Raveendran, Praveenkumar B; Sivanandan, C D; Madhavan, Jayaprakash; Ankathil, Ravindran

    2008-01-01

    The glutathione S-transferases (GSTs) are a superfamily of genes whose products are phase II enzymes, catalyzing the conjugation of reactive intermediates to soluble glutathione. Some of the GSTs are polymorphic and may play a role in lung cancer susceptibility. We investigated whether genetic polymorphisms of GSTM1, GSTP1 and GSTT1 genes modulated lung cancer risk and affect survival among lung cancer patients. We determined the GST genotypes in 422 study subjects, using polymerase chain reaction (PCR) and reverse PCR and restriction fragment length polymorphism (RFLP). Logistic Regression analysis was carried out to find the association of various polymorphisms and GSTs and lung cancer. The influence of the genetic polymorphisms on patient survival was estimated using the method of Kaplan-Meier survival function. Cox Proportional Hazard models were used to estimate hazard ratios (HR) for deaths. GSTT1 -/- genotype conferred a higher odds ratio of 2.9 (P = 0.001) compared to the GSTT1+/+. So also, the GSTP1 GG genotype too had higher risk compared to the GSTP1 AA genotype (OR = 2.3, P = 0.033). When the combined GST M1, GSTT1 and GSTP1 genotypes were examined, patients with the combinations GSTM1 null and GSTT1 null had a significant OR of 3.6. So also the combinations GSTT1-/- GSTP1 AA (P = 0.005) and GSTT1-/- GSTP1 AG/GG (P = 0.001) came out to be significant. There were some significant interactions between GST genotypes with tobacco smoking and also for clinicopathological factors. Regarding survival analysis, no association of GSTM1 or GSTP1 genes with survival was noted. The GSTT1 -/- genotype along with stage was significantly associated with overall survival and found to be an independent prognostic factors for shorter lung cancer survival. PMID:18472644

  7. Synthesis and glutathione S-transferase structure-affinity relationships of nonpeptide and peptidase-stable glutathione analogues.

    PubMed

    Klotz, P; Slaoui-Hasnaoui, A; Banères, J L; Duckert, J F; Rossi, J C; Kerbal, A

    1998-06-18

    A series of nonpeptidic glutathione analogues where the peptide bonds were replaced by simple carbon-carbon bonds or isosteric E double bonds were prepared. The optimal length for the two alkyl chains on either side of the mercaptomethyl group was evaluated using structure-affinity relationships. Affinities of the analogues 14a-f, 23, and 25 were evaluated for a recombinant GST enzyme using a new affinity chromatography method previously developed in our laboratory. Analysis of these analogues gives an additional understanding for GST affinity requirements: (a) the carbon skeleton must conserve that of glutathione since analogue 14a showed the best affinity (IC50 = 5.2 microM); (b) the GST G site is not able to accommodate a chain length elongation of one methylene group (no affinity for analogues 14c,f); (c) a one-methylene group chain length reduction is tolerated, much more for the "Glu side" (14d, IC50 = 10.1 microM) than for the "Gly side" (14b, IC50 = 1800 microM); (d) the mercaptomethyl group must remain at position 5 as shown from the null affinity of the 6-mercaptomethyl analogue 14e; (e) the additional peptide isosteric E double bond (25) or hydroxyl derivative (23) in 14e did not help to retrieve affinity. This work reveals useful information for the design of new selective nonpeptidic and peptidase-stable glutathione analogues. PMID:9632361

  8. Isolation and identification of kahweol palmitate and cafestol palmitate as active constituents of green coffee beans that enhance glutathione S-transferase activity in the mouse.

    PubMed

    Lam, L K; Sparnins, V L; Wattenberg, L W

    1982-04-01

    Glutathione (GSH) S-transferase is a major detoxification enzyme system that catalyzes the binding of a variety of electrophiles, including reactive forms of chemical carcinogens, to GSH. Green coffee beans fed in the diet induced increased GSH S-transferase activity in the mucosa of the small intestine and in the liver of mice. A potent compound that induces increased GSH S-transferase activity was isolated from green coffee beans and identified as kahweol palmitate. The corresponding free alcohol, kahweol, and its synthetic monoacetate are also potent inducers of the activity of GSH S-transferase. A similar diterpene ester, cafestol palmitate, isolated from green coffee beans was active but less so than was kahweol palmitate. Likewise, the corresponding alcohol, cafestol, and its monoacetate showed moderate potency as inducers of increased GSH S-transferase activity. Kahweol palmitate and cafestol palmitate were extracted from green coffee beans into petroleum ether. The petroleum ether extract was fractionated by preparative normal-phase and reverse-phase liquid chromatographies successively. Final purification with silver nitrate-impregnated thin-layer chromatography yielded the pure palmitates of cafestol and kahweol. The structures were determined by examination of the spectroscopic data of the esters and their parent alcohols and by derivative comparison. PMID:7059995

  9. Simulation of interindividual differences in inactivation of reactive para-benzoquinone imine metabolites of diclofenac by glutathione S-transferases in human liver cytosol.

    PubMed

    den Braver, Michiel W; Zhang, Yongjie; Venkataraman, Harini; Vermeulen, Nico P E; Commandeur, Jan N M

    2016-07-25

    Diclofenac is a widely prescribed NSAID that causes severe idiosyncratic drug induced liver injury (IDILI) in a small part of the patient population. Formation of protein-reactive metabolites is considered to play a role in the development of diclofenac-induced IDILI. Therefore, a high hepatic activity of enzymes involved in bioactivation of diclofenac is expected to increase the risk for liver injury. However, the extent of covalent protein binding may also be determined by activity of protective enzymes, such as glutathione S-transferases (GSTs). This is supported by an association study in which a correlation was found between NSAID-induced IDILI and the combined null genotypes of GSTM1 and GSTT1. In the present study, the activity of 10 different recombinant human GSTs in inactivation of protein-reactive quinoneimine (QI) metabolites of diclofenac was tested. Both at low and high GSH concentrations, high activities of GSTA1-1, A2-2, A3-3, M1-1, M3-3 and P1-1 in the inactivation of these QIs were found. By using the expression levels of GSTs in livers of 22 donors, a 6-fold variation in GST-dependent inactivation of reactive diclofenac metabolites was predicted. Moreover, it was shown in vitro that GSTs can strongly increase the efficiency of GSH to protect against the alkylation of the model thiol N-acetylcysteine by reactive diclofenac metabolites. The results of this study demonstrate that variability of GST expression may significantly contribute to the inter-individual differences in susceptibility to diclofenac-induced liver injury. In addition, expression levels of GSTs in in vitro models for hepatotoxicity may be important factors determining sensitivity to diclofenac cytotoxicity. PMID:27183920

  10. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort.

    PubMed

    Haiman, Christopher A; Patel, Yesha M; Stram, Daniel O; Carmella, Steven G; Chen, Menglan; Wilkens, Lynne R; Le Marchand, Loic; Hecht, Stephen S

    2016-01-01

    Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2-31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke. PMID:26959369

  11. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort

    PubMed Central

    Haiman, Christopher A.; Patel, Yesha M.; Stram, Daniel O.; Carmella, Steven G.; Chen, Menglan; Wilkens, Lynne R.; Le Marchand, Loic; Hecht, Stephen S.

    2016-01-01

    Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2–31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke. PMID:26959369

  12. Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives.

    PubMed

    Fujioka, Kazutoshi; Casida, John E

    2007-08-01

    Pesticide detoxification is a central feature of selective toxicity and safety evaluation. Two of the principal enzymes involved are GSH S-transferases (GSTs) and cytochrome P450s acting alone and together. More than 100 pesticides are organophosphorus (OP) compounds, but with few exceptions, their GSH conjugates have not been directly observed in vitro or in vivo. The major insecticides chlorpyrifos (CP) and diazinon are of particular interest as multifunctional substrates with diverse metabolites, while ClP(S)(OEt) 2 and the cotton defoliant tribufos are possible precursors of phosphorylated GSH conjugates. Formation of GSH conjugates by GST with GSH was studied in vitro with and without metabolic activation by human liver microsomes or P450 3A4 with NADPH. Metabolites were analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Five GSH conjugates were identified from CP and chlorpyrifos oxon (CPO), i.e., GSCP and GSCPO in which the 6-chloro substituent of CP and CPO, respectively, is displaced by GSH; S-(3,5,6-trichloropyridin-2-yl)glutathione; S-(3,5-dichloro-6-hydroxypyridin-2-yl)glutathione; and S-ethylglutathione. GST of a human liver microsomal preparation but not P450 3A4 with GSH metabolized CP to GSCP. With GST and GSH, diazinon and diazoxon gave S-(2-isopropyl-4-methylpyrimidin-6-yl)glutathione and ClP(S)(OEt) 2 yielded GSP(S)(OEt) 2. With microsomes, NADPH, GST, and GSH tribufos gave GSP(O)(SBu) 2. The liver of intraperitoneally treated mice contained GSCP from CP, GSP(S)(OEt) 2 from ClP(S)(OEt) 2, and GSP(O)(SBu) 2 from tribufos. GSP(S)(OEt) 2 and GSP(O)(SBu) 2 are the first S-phosphoglutathione metabolites observed in vitro and in vivo directly by LC-ESI-MS. Nine other OP pesticides gave only O-dealkylation in the GST/GSH system. GST-catalyzed metabolism joins P450s and hydrolases as important contributors to OP detoxification. PMID:17645302

  13. The role of the inhibition of glutathione-S-transferase in the protective mechanisms of ischemic postconditioning.

    PubMed

    Balatonyi, Borbála; Gasz, Balázs; Kovács, Viktória; Lantos, János; Jancsó, Gábor; Marczin, Nándor; Rőth, Erzsébet

    2013-08-01

    The antioxidant glutathione-S-transferase (GST) is a crucial determinant of the development of ischaemic-reperfusion (I/R) injury, and plays a pivotal role in the regulation of the mitogen activated protein kinase (MAPK) pathways involved in stress response and apoptosis. The aim of this study was to investigate whether inhibition of GST can abolish the benefit of ischaemic postconditioning (IPoC). A neonatal rat cardiomyocyte cell culture was prepared and divided into 6 groups: (I) control group without treatment; (II) cells exposed to simulated I/R; (III) simulated I/R (sI/R) with IPoC; (IV) ethacrynic acid (EA) alone; (V) sI/R with EA; and (VI) sI/R and IPoC together with EA. Viability of the cells was measured by MTT assay, the quantity of apoptotic cells was assessed by flow cytometry following annexin V-FITC - propidium-iodide double staining. The activation of JNK, p38, ERK/p42-p44 MAPKs, and GSK-3β protein kinase was determined by flow-cytometric assay. GST inhibition markedly increased the apoptosis and decreased the cell viability despite IPoC. The protective effect of IPoC was lost in GST-inhibited groups for all MAPKs and GSK-3β. GST activity is required for the survival of cultured cardiomyocytes under stress conditions. GST inhibition was associated with differential activation of MAP and the protein kinases regulating these pathways in the process of ischaemic postconditioning. PMID:23888930

  14. Association of Glutathione S-Transferase P1 (GSTP1) Polymorphism with Tourette Syndrome in Taiwanese Patients

    PubMed Central

    Shen, Che-Piao; Chou, I-Ching; Liu, Hsin-Ping; Lee, Cheng-Chun; Tsai, Yuhsin; Wu, Bor-Tsang; Hsu, Ban-Dar

    2014-01-01

    The etiology of Tourette syndrome (TS) is multifactorial. TS vulnerability may be associated with genetic and environmental factors. From the genetic point of view, TS is heterogeneous. Previous studies showed that some single-nucleotide polymorphisms (SNPs) of the glutathione-S-transferase P1 (GSTP1) gene can affect cellular proliferation and apoptotic activity and TS is a neurodevelopmental disorder. We guessed that there was a relationship between TS and genetic variants of the GSTP1 gene. Therefore, in this study, we aimed to test the hypothesis that GSTP1 SNPs were associated with TS. We performed a case–control study. One hundred twenty-one TS children and 105 normal children were included in the study. Polymerase chain reaction was used to identify the GSTP1 gene polymorphism at position rs6591256 (A/G, promoter polymorphism) in TS patients and normal children. The polymorphism at position rs6591256 in the GSTP1 gene revealed significant differences in the allele (p=0.0135) and genotype (p=0.0159) distributions between the TS patients and the control group. The A allele was present at a higher frequency than the G allele in the TS patients compared with the control group (odds ratio [OR]=1.91, 95% confidence interval [CI]: 1.14–3.21). The AA genotype was associated with susceptibility to TS with an OR of 2.38 for the AA versus AG genotype (95% CI: 1.29–4.41). These findings suggest that variants in the GSTP1 gene may play a role in susceptibility to TS. PMID:24205873

  15. Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study.

    PubMed

    Seow, Adeline; Yuan, Jian-Min; Sun, Can-Lan; Van Den Berg, David; Lee, Hin-Peng; Yu, Mimi C

    2002-12-01

    Dietary intake of cruciferous vegetables (Brassica spp.) has been inversely related to colorectal cancer risk, and this has been attributed to their high content of glucosinolate degradation products such as isothiocyanates (ITCs). These compounds act as anticarcinogens by inducing phase II conjugating enzymes, in particular glutathione S-transferases (GSTs). These enzymes also metabolize ITCs, such that the protective effect of cruciferous vegetables may predicate on GST genotype. The Singapore Chinese Health Study is a prospective investigation among 63 257 middle-aged men and women, who were enrolled between April 1993 and December 1998. In this nested case-control analysis, we compared 213 incident cases of colorectal cancer with 1194 controls. Information on dietary ITC intake from cruciferous vegetables, collected at recruitment via a semi-quantitative food frequency questionnaire, was combined with GSTM1, T1 and P1 genotype from peripheral blood lymphocytes or buccal mucosa. When categorized into high (greater than median) and low (less than/equal to median) intake, dietary ITC was slightly lower in cases than controls but the difference was not significant [odds ratio (OR) 0.81, 95% confidence interval (CI) 0.59-1.12]. There were no overall associations between GSTM1, T1 or P1 genotypes and colorectal cancer risk. However, among individuals with both GSTM1 and T1 null genotypes, we observed a 57% reduction in risk among high versus low consumers of ITC (OR 0.43, 95% CI 0.20-0.96), in particular for colon cancer (OR 0.31, 0.12-0.84). Our results are compatible with the hypothesis that ITCs from cruciferous vegetables modify risk of colorectal cancer in individuals with low GST activity. Further, this gene-diet interaction may be important in studies evaluating the effect of risk-enhancing compounds in the colorectum. PMID:12507929

  16. Glutathione S-transferase (GST) gene polymorphisms, cigarette smoking and colorectal cancer risk among Chinese in Singapore.

    PubMed

    Koh, Woon-Puay; Nelson, Heather H; Yuan, Jian-Min; Van den Berg, David; Jin, Aizhen; Wang, Renwei; Yu, Mimi C

    2011-10-01

    Cigarette smoking is a risk factor for colorectal cancer. Putative colorectal procarcinogens in tobacco smoke include polycyclic aromatic hydrocarbons and heterocyclic aromatic amines that are known substrates of glutathione S-transferases (GSTs). This study examined the influence of functional GST gene polymorphisms on the smoking-colorectal cancer association in a population known to be minimally exposed to dietary sources of these procarcinogens. Incident cases of colorectal cancer (n = 480) and matched controls (n = 1167) were selected from the Singapore Chinese Health Study, a population-based prospective cohort of 63 257 men and women who have been followed since 1993. We determined the deletion polymorphisms of GSTM1 and GSTT1 and the functional polymorphism at codon 105 of GSTP1 for each subject. A three level composite GST index was used to examine if GST profile affected a smoker's risk of developing colorectal cancer. While there was no statistically significant association between cigarette smoking and colorectal cancer risk among subjects absent of any at-risk GST genotypes, smokers possessing two to three at-risk GST genotypes exhibited a statistically significant increased risk of colorectal cancer compared with non-smokers (P = 0.0002). In this latter stratum, heavy smokers exhibited a >5-fold increased risk relative to never-smokers (odds ratio, 5.43; 95% confidence interval, 2.22-13.23). Subjects with one at-risk GST genotype displayed a statistically significant but weaker association with smoking. These findings suggest that GST gene polymorphisms influence interindividual susceptibility to smoking-associated colorectal cancer. Our data indicate an important role for GST enzymes in the detoxification of colorectal carcinogens in tobacco smoke. PMID:21803734

  17. Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore.

    PubMed

    Zhao, B; Seow, A; Lee, E J; Poh, W T; Teh, M; Eng, P; Wang, Y T; Tan, W C; Yu, M C; Lee, H P

    2001-10-01

    Chinese populations consume a diet relatively high in isothiocyanates (ITCs), a derivative of cruciferous vegetables known to have cancer-protective effects. This class of compounds is metabolized by the glutathione S-transferase family of enzymes, which are also involved in the detoxification of tobacco-related carcinogens such as polycyclic aromatic hydrocarbons and alkyl halides. We evaluated the association between dietary isothiocyanate intake, GSTM1 and GSTT1 polymorphisms, and lung cancer risk in 420 Chinese women: 233 histologically confirmed lung cancer patients and 187 hospital controls. Among these, 58.8% of cases and 90.3% of controls were lifetime nonsmokers. An allele-specific PCR method was used to detect the presence or absence of the GSTM1 and GSTT1 genes in DNA isolated from peripheral blood. Higher weekly intake of ITCs (above the control median value of 53.0 micromol) reduced the risk of lung cancer to a greater extent in smokers [adjusted odds ratio (OR), 0.31; 95% confidence interval (CI), 0.10-0.98] than nonsmokers (OR, 0.70; 95% CI, 0.45-1.11). The inverse association was stronger among subjects with homozygous deletion of GSTM1 and/or GSTT1. Among nonsmokers with GSTM1-null genotype, higher intake of ITCs significantly reduced the risk of lung cancer (OR, 0.54; 95% CI, 0.30-0.95), an effect not seen among those with detectable GSTM1 (OR, 1.07; 95% CI, 0.50-2.29). Our results, in a Chinese female population, are consistent with the hypothesis that ITC is inversely related to the risk of lung cancer, and we show that among nonsmokers this effect may be primarily confined to GST-null individuals. Conjugation and elimination of ITCs is enhanced in GST-non-null relative to -null individuals, such that the GST metabolic genotype modifies the protective effect of ITCs on lung cancer development. PMID:11588132

  18. Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene silencing in human leukemia cell lines.

    PubMed

    Karius, Tommy; Schnekenburger, Michael; Ghelfi, Jenny; Walter, Jörn; Dicato, Mario; Diederich, Marc

    2011-06-01

    Glutathione-S-transferase P1 (GSTP1) gene is commonly silenced by CpG island promoter hypermethylation in prostate, breast, and liver cancers. However, mechanisms leading to GSTP1 repression by promoter hypermethylation in leukemia and its relationship with pathological alterations of the chromatin structure remain poorly understood. A panel of leukemia cell lines was analyzed for their GSTP1 expression, revealing cell lines with high, moderate or no detectable GSTP1 expression. Bisulfite sequencing, methylation-specific PCR and combined bisulfite restriction analysis revealed that GSTP1 promoter was completely methylated in transcriptionally inactive RAJI and MEG-01 cell lines. In contrast, cell lines expressing GSTP1 exhibited an unmethylated and transcriptionally active promoter. Furthermore, histone marks and effector proteins associated with transcriptional activity were detected by chromatin immunoprecipitation in the GSTP1 expressing hypomethylated K-562 cell line. However, repressive chromatin marks and the recruitment of silencing protein complexes were found in the non-expressing hypermethylated RAJI and MEG-01 cell lines. Finally, we provide evidence that treatment of RAJI and MEG-01 cells with the DNA demethylating agent, 5-aza-2'-deoxycytidine, resulted in GSTP1 promoter demethylation, drastic changes of histone modifications and promoter associated proteins and GSTP1 gene activation. In contrast, treatments with HDAC inhibitors failed to demethylate and reactivate the GSTP1 gene. Our study extends the knowledge on leukemia-specific epigenetic alterations of GSTP1 gene. Furthermore, we are showing the correlation of DNA methylation and histone modifications with the positive/negative GSTP1 transcriptional expression state. Finally, these data support the concept of the dominance of DNA methylation over HDAC inhibitor-sensitive histone deacetylation in gene silencing. PMID:21453686

  19. Modification of N-acetyltransferases and glutathione S-transferases by coffee components: possible relevance for cancer risk.

    PubMed

    Huber, Wolfgang W; Parzefall, Wolfram

    2005-01-01

    Enzymes of xenobiotic metabolism are involved in the activation and detoxification of carcinogens and can play a pivotal role in the susceptibility of individuals toward chemically induced cancer. Differences in such susceptibility are often related to genetically predetermined enzyme polymorphisms but may also be caused by enzyme induction or inhibition through environmental factors or in the frame of chemopreventive intervention. In this context, coffee consumption, as an important lifestyle factor, has been under thorough investigation. Whereas the data on a potential procarcinogenic effect in some organs remained inconclusive, epidemiology has clearly revealed coffee drinkers to be at a lower risk of developing cancers of the colon and the liver and possibly of several other organs. The underlying mechanisms of such chemoprotection, modifications of xenobiotic metabolism in particular, were further investigated in rodent and in vitro models, as a result of which several individual chemoprotectants out of the >1000 constituents of coffee were identified as well as some strongly metabolized individual carcinogens against which they specifically protected. This chapter discusses the chemoprotective effects of several coffee components and whole coffee in association with modifications of the usually protective glutathione-S-transferase (GST) and the more ambivalent N-acetyltransferase (NAT). A key role is played by kahweol and cafestol (K/C), two diterpenic constituents of the unfiltered beverage that were found to reduce mutagenesis/tumorigenesis by strongly metabolized compounds, such as 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine, 7,12-dimethylbenz[a]anthracene, and aflatoxin B(1), and to cause various modifications of xenobiotic metabolism that were overwhelmingly beneficial, including induction of GST and inhibition of NAT. Other coffee components such as polyphenols and K/C-free coffee are also capable of increasing GST and partially of inhibiting NAT

  20. Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: Genotype-phenotype correlation

    PubMed Central

    Varzari, Alexander; Deyneko, Igor V.; Tudor, Elena; Turcan, Svetlana

    2015-01-01

    Background Glutathione S-transferases (GSTM1, GSTT1, and GSTP1) and methylenetetrahydrofolate reductase (MTHFR) are important enzymes for protection against oxidative stress. In addition, MTHFR has an essential role in DNA synthesis, repair, and methylation. Their polymorphisms have been implicated in the pathogenesis of ulcerative colitis (UC). The aim of the present study was to investigate the role of selected polymorphisms in these genes in the development of UC in the Moldavian population. Methods In a case-control study including 128 UC patients and 136 healthy individuals, GSTM1 and GSTT1 genotypes (polymorphic deletions) were determined using multiplex polymerase chain reaction (PCR). The GSTP1 rs1695 (Ile105Val), MTHFR rs1801133 (C677T), and MTHFR rs1801131 (A1298C) polymorphisms were studied with restriction fragment length polymorphism (RFLP) analysis. Genotype–phenotype correlations were examined using logistic regression analysis. Results None of the genotypes, either alone or in combination, showed a strong association with UC. The case-only sub-phenotypic association analysis showed an association of the MTHFR rs1801133 polymorphism with the extent of UC under co-dominant (p corrected = 0.040) and recessive (p corrected = 0.020; OR = 0.15; CI = 0.04–0.63) genetic models. Also, an association between the MTHFR rs1801131 polymorphism and the severity of UC was reported for the over-dominant model (p corrected = 0.023; coefficient = 0.32; 95% CI = 0.10–0.54). Conclusion The GST and MTHFR genotypes do not seem to be a relevant risk factor for UC in our sample. There was, however, evidence that variants in MTHFR may influence the clinical features in UC patients. Additional larger studies investigating the relationship between GST and MTHFR polymorphisms and UC are required. PMID:26862484

  1. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    SciTech Connect

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Tu Binh Minh; Pham Thi Kim Trang; Pham Hung Viet; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As{sup V} than the wild homo type. Higher percentage of DMA{sup V} in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As{sup V} to As{sup III}. Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  2. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  3. Garlic organosulfur compounds upregulate the expression of the pi class of glutathione S-transferase in rat primary hepatocytes.

    PubMed

    Tsai, Chia-Wen; Yang, Jaw-Ji; Chen, Haw-Wen; Sheen, Lee-Yan; Lii, Chong-Kuei

    2005-11-01

    The chemopreventive property of garlic is related in part to its induction of phase II detoxification enzymes. In the present study, we investigated the modulatory effect of 3 garlic organosulfur compounds, i.e., diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS), which differ in their number of sulfur atoms, on the gene expression of the pi class of glutathione S-transferase (GSTP). Hepatocytes isolated from male Sprague-Dawley rats were cultured with 50-200 micromol/L of DAS, DADS, or DATS for 24 h. DADS and DATS increased GST activity toward ethacrynic acid by 40 and 66%, respectively (P < 0.05). Moreover, both garlic allyl sulfides dose dependently induced GSTP mRNA and protein expression. DATS increased the protein level more than DADS (P < 0.05). In contrast, DAS did not affect the activity or the protein or mRNA levels of this phase II drug-metabolizing enzyme. In Clone 9 liver cells, the pTA-luciferase reporter assay showed that luciferase activity in DADS- and DATS-treated cells was 2.8- and 3.9-fold higher than that in control cells, respectively (P < 0.05). Again, luciferase activity was not affected by treatment with DAS. Deletion of -2.7 to -2.6 kb in the GSTP promoter region, which contains the GSTP enhancer (GPE) I element, abolished the upregulation of GSTP transcription by DADS and DATS. Deletion of GPE II, however, did not affect the induction of reporter activity. In conclusion, the effectiveness of 3 garlic allyl sulfides on GSTP expression was related to the number of sulfur atoms in the molecules, and GPE I was responsible for this upregulation. PMID:16251611

  4. Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus – Contributors to Cellular Detoxification

    PubMed Central

    Roncalli, Vittoria; Cieslak, Matthew C.; Passamaneck, Yale; Christie, Andrew E.; Lenz, Petra H.

    2015-01-01

    Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST) superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival. PMID:25945801

  5. Evaluation of hepatic damage and local immune response in goats immunized with native glutathione S-transferase of Fasciola hepatica.

    PubMed

    Zafra, R; Pérez-Ecija, R A; Buffoni, L; Mendes, R E; Martínez-Moreno, A; Martínez-Moreno, F J; Galisteo, M E Martínez; Pérez, J

    2010-01-01

    Worm burden, hepatic damage and local cellular and humoral immune responses were assessed in goats immunized with glutathione-S-transferase and challenged with Fasciola hepatica. Infected but unimmunized and uninfected control groups were also studied. Hepatic damage was evaluated grossly and microscopically. Local immune response was evaluated by (1) microscopical examination of hepatic lymph nodes (HLNs); (2) analysis of the distribution of CD2(+), CD4(+), CD8(+), T-cell receptor gammadelta(+) lymphocytes and immunoglobulin (Ig) G(+) plasma cells; and (3) investigation of the distribution of cells expressing interleukin (IL)-4 and interferon (IFN)-gamma in the hepatic inflammatory infiltrates and HLNs. Immunized animals did not have significant reduction in fluke number, but there was significant (P<0.05) reduction of fluke size relative to the control groups. The lesions in the two infected groups were similar and consisted of fibrous perihepatitis and white tortuous tracts, mainly involving the left hepatic lobe. Microscopical lesions were similar in both infected groups and were typical of chronic fascioliosis. These included portal fibrosis, inflammatory infiltration with plasma cells, formation of lymphoid follicles, accumulation of haemosiderin-laden macrophages and granulomatous foci. Both infected groups had a marked local immune response characterized by infiltration of CD2(+), CD4(+) and CD8(+) T lymphocytes, and IgG(+) plasma cells in hepatic lesions and in HLNs. There was no expression of IL-4 or INF-gamma by cells in the hepatic inflammatory infiltrate, but expression of INF-gamma in HLNs was much lower than that of IL-4, suggesting an immune response dominated by T helper 2 cells. PMID:20185148

  6. Purification of Glutathione S-Transferase pi from Erythrocytes and Evaluation of the Inhibitory Effect of Hypericin.

    PubMed

    Turk, Seyhan; Kulaksiz Erkmen, Gulnihal; Dalmizrak, Ozlem; Ogus, I Hamdi; Ozer, Nazmi

    2015-12-01

    Hypericin is a photosensitizer compound used in the photodynamic therapy (PDT). PDT is an alternative cancer treatment strategy whose function is dependent on the photosensitizers accumulating selectively in tumor cells and following visible or infra-red light induced activation lead to the apoptosis/necrosis of the tumor cells via the formation of reactive oxygen species. Thus, the cellular redox balance is essential for the efficacy of PDT. Among the protective enzyme systems glutathione S-transferases (GST, E.C.2.5.1.18) function in detoxification, protection against oxidative stress and intracellular transport of molecules. It is known that isoenzymes of GST and especially GST-pi is increased in cancer cells and it plays very important functions in the development of resistance to anticancer drugs. Since photosensitizers are used intravenously, it is important to elucidate the effects of photosensitizers on the erythrocyte enzymes. The aim of the present study was to investigate the impact of hypericin on human erythrocyte GST-pi (heGST-pi). Purification yield of 71% and purification fold of 2550 were achieved by using conventional chromatographic methods. The specific activity of the enzyme is found as 51 U/mg protein. Hypericin inhibited heGST-pi in a dose dependent manner and inhibition was biphasic. Noncompetitive type of inhibition was observed with both substrates, GSH and CDNB. The inhibitory constant (K i ) values obtained from Lineweaver-Burk, Dixon, secondary plots; slope and y-intercept versus 1/S (substrate) and from non-linear regression analysis were in good correlation: K i (GSH) was calculated as 0.19 ± 0.01 μM and K i (CDNB) as 0.26 ± 0.03 μM. PMID:26614503

  7. Transcriptional profiles of glutathione-S-Transferase isoforms, Cyp, and AOE genes in atrazine-exposed zebrafish embryos.

    PubMed

    Glisic, Branka; Hrubik, Jelena; Fa, Svetlana; Dopudj, Nela; Kovacevic, Radmila; Andric, Nebojsa

    2016-02-01

    Glutathione-S-transferase (GST) superfamily consists of multiple members involved in xenobiotic metabolism. Expressional pattern of the GST isoforms in adult fish has been used as a biomarker of exposure to environmental chemicals. However, GST transcriptional responses vary across organs, thus requiring a cross-tissue examination of multiple mRNAs for GST profiling in an animal after chemical exposure. Zebrafish embryos express all GST isoforms as adult fish and could therefore represent an alternative model for identification of biomarkers of exposure. To evaluate such a possibility, we studied a set of cytosolic and microsomal GST isoform-specific expression profiles in the zebrafish embryos after exposure to atrazine, a widely used herbicide. Expression of the GST isoforms was compared with that of CYP genes involved in the phase I of xenobiotic metabolism and antioxidant enzyme (AOE) genes. Using quantitative real-time PCR, we showed dynamic changes in the expressional pattern of twenty GST isoforms, cyp1a, cyp3a65, ahr2, and four AOEs in early development of zebrafish. Acute (48 and 72 h) exposure of 24 h-old embryos to atrazine, from environmentally relevant (0.005 mg/L) to high (40 mg/L) concentrations, caused a variety of transient, albeit minor changes (<2.5-fold) in the GST isoforms, ahr2 and AOE genes response. However, expression of cyp1a and cyp3a65 mRNA was markedly and consistently induced by high doses of atrazine (5 and 40 mg/L). In summary, an analysis of the response of multiple systems in the zebrafish embryos provided a comprehensive understanding of atrazine toxicity and its potential impact on biological processes. PMID:25158112

  8. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    SciTech Connect

    Kawakatsu, Miho; Goto, Shinji; Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.

  9. Effects of microsomal enzyme inducers on glutathione S-transferase isoenzymes in livers of rats and hamsters.

    PubMed

    Foliot, A; Beaune, P

    1994-07-19

    The effects of microsomal enzyme inducers on glutathione S-transferase (GST) isoenzymes were studied in livers of rats and hamsters using three hypolipidemic drugs of the peroxisome proliferator type and the two model substances phenobarbital (PB) and 3-methylcholanthrene (MC). The effects were investigated by immunoblot analysis of the various GST subunits using polyclonal antibodies directed to rat subunits 1-4. In untreated animals the subunit composition was different, with hamsters having a much higher content of class mu isoenzymes. Administration of all three hypolipidemic drugs reduced the protein concentration of both alpha and mu class GSTs in rats but reduced only class mu subunits in hamsters. This reduction was in good agreement with the decreased activity observed with the broad-spectrum substrate 1-chloro-2,4-dinitrobenzene (CDNB) in both species. As expected, PB and MC increased GST activity together with the concentration of subunits 1 and 3 in rats. In hamsters, PB significantly increased subunit 1 and slightly reduced subunits 3 and 4, although this decrease was not significant. Total GST, measured with CDNB, was reduced by 17%. In contrast, MC slightly decreased subunit 1 and markedly raised subunits 3 and 4, resulting in a net increase in total GST activity. All drugs increased relative liver weight, microsomal protein concentration and total P450 in both species; in contrast, total cytosolic proteins were raised by all drugs in rats but not in hamsters, except for MC. The results obtained in these two species show that GST activity is not always increased by microsomal enzyme inducers. The response may depend in part on isoenzyme profile, and varies with the subunit considered. PMID:8053925

  10. Protective role for ovarian Glutathione S-transferase isoform pi during 7,12-dimethylbenz[a]anthracene-induced ovotoxicity

    PubMed Central

    Bhattacharya, Poulomi; Keating, Aileen F.

    2012-01-01

    7,12-dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles at all developmental stages. This study investigated a role for the glutathione S-transferase (Gst) isoforms alpha (a), mu (m) and pi (p) and the transcription factors, Ahr and Nrf2, during DMBA-induced ovotoxicity, and their regulation by phosphatidylinositol-3 kinase (PI3K) signaling. Negative regulation of JNK by GSTP during DMBA exposure was also studied. Post-natal day (PND) 4 Fischer 344 rat ovaries were exposed to vehicle control (1% DMSO) ± DMBA (1 μM) or vehicle control (1% DMSO) ± LY294002 (PI3K inhibitor; 20 μM) for 1, 2, 4, or 6 days. Total RNA or protein was isolated, followed by RT-PCR or Western blotting to determine mRNA or protein level, respectively. Immunoprecipitation using an anti-GSTP antibody was performed to determine interaction between GSTP and JNK, followed by Western blotting to determine JNK and p-c-Jun protein level. DMBA had no impact on Gsta, Gstm or Nrf2 mRNA level, but increased Gstp mRNA and protein after 2 days. Ahr mRNA and protein increased after 2 and 4 days of DMBA exposure, respectively and DMBA increased NRF2 protein level after 4 days. JNK bound to GSTP was increased during DMBA exposure, with a concomitant decrease in unbound JNK and p-c-Jun. Ahr and Gstp mRNA were decreased (2 days) and increased (4 days) by PI3K inhibition, while Gstm mRNA increased (P < 0.05) after both time points, and there was no effect on Nrf2 mRNA. PI3K inhibition increased AHR, NRF2 and GSTP protein level. These findings support involvement of ovarian GSTP during DMBA exposure, and indicate a regulatory role for the PI3K signaling pathway on ovarian xenobiotic metabolism gene expression. PMID:22406437

  11. Covalent binding of nitroso-sulfonamides to glutathione S-transferase in guinea pigs with delayed type hypersensitivity.

    PubMed

    Eyanagi, Reiko; Toda, Akihisa; Imoto, Masumi; Uchiyama, Hidemori; Ishii, Yuji; Kuroki, Hiroaki; Kuramoto, Yukako; Soeda, Shinji; Shimeno, Hiroshi

    2012-04-01

    Drug induced allergies are believed to be induced by conjugates consisting of biological macromolecules and active metabolites. The present study investigated whether guinea pig glutathione S-transferase (gpGST), a protein that binds with sulfanilamide (SA) and sulfamethoxazole (SMX), could be detected in the liver cytosol fraction of guinea pigs that intraperitoneally received SA or SMX, and whether gpGST is a carrier protein. We synthesized three nitroso compounds, i.e., 4-nitroso-sulfanilamide (SA-NO), 4-nitrososulfamethoxazole (SMX-NO) and fluorescent-labeled nitroso compound (DNSBA-NO), and examined binding quantities of nitroso compounds to gpGST purified from untreated female guinea pigs. Furthermore, the concentrations of IgG in serum antibody for nitroso compounds were estimated using ELISA. When guinea pigs were sensitized using the three nitroso compounds, the dose dependent skin reactions were confirmed with each compound. In addition, sensitized guinea pigs using each nitroso compound showed positive skin reactions at an elicitation test performed using gpGST alone. The results confirmed synthesis of antibody against gpGST due to hapten sensitization. Therefore, when a nitroso compound binds with gpGST in the body of guinea pigs, nitroso-gpGST acts as a neoantigen, which induces synthesis of autoantibody. Thus, gpGST appears to be one of the carrier proteins that induce sulfa drug-induced allergies. Immunization of guinea pigs with active metabolite of drugs may give information for predicting the occurrence of delayed type hypersensitivity in human. PMID:22342371

  12. Glutathione S-transferase M1, T1, and P1 polymorphisms and survival among lung cancer patients.

    PubMed

    Sweeney, Carol; Nazar-Stewart, Valle; Stapleton, Patricia L; Eaton, David L; Vaughan, Thomas L

    2003-06-01

    Glutathione S-transferase (GST) enzymes detoxify therapeutic drugs and reactive oxidants, so GST polymorphisms may influence survival after diagnosis of cancer. We evaluated survival according to GST polymorphisms in a population-based series of lung cancer patients. The study subjects (n = 274) were men diagnosed with lung cancer from 1993 through 1996 who participated in a case control study and provided a blood sample for genotyping. The presence of the GSTM1 and GSTT1 genes were assayed by multiplex PCR. Genotype at the GSTP1 Ile(105)Val substitution was determined by PCR and oligonucleotide ligation assay. The study subjects were followed for vital status through 2000, and overall survival was evaluated in Kaplan-Meier survival functions and Cox proportional hazards models. Subjects with the GSTM1 null genotype had shorter survival; the proportion of GSTM1 null subjects surviving at 5 years was 0.20 [95% confidence interval (CI) 0.14-0.27], compared with 0.29 (95% CI 0.22-0.37) for GSTM1 present subjects. The relative risk of death associated with GSTM1 null genotype, adjusted for stage at diagnosis and histology, was 1.36, 95% CI 1.04-1.80. There was no association between GSTT1 or GSTP1 genotype and survival in the overall study population, nor in a subgroup of patients treated with chemotherapy (n = 130). For GSTM1, our results are consistent with a previous study, which also observed that the GSTM1-null genotype, which confers susceptibility to lung cancer, was associated with shorter survival. Future studies of lung cancer survival should take into account GSTM1 genotype as well as investigate underlying mechanisms. PMID:12814998

  13. Effect of ethanol on the expression of hepatic glutathione S-transferase: an in vivo/in vitro study.

    PubMed

    Vanhaecke, T; Lindros, K O; Oinonen, T; Coecke, S; DeBast, G; Phillips, I R; Shephard, E A; Vercruysse, A; Rogiers, V

    2000-11-15

    Ethanol, a human toxicant and a solvent in pharmacological research, is known to interfere with biotransformation of xenobiotics. We compared the in vivo and in vitro long-term effects of ethanol exposure on the expression of glutathione S-transferases (GST, EC 2. 5.1.18) in rat liver. Long-term in vivo ethanol treatment to achieve blood ethanol levels ranging between 10-50 mM was by liquid diet feeding. For in vitro experiments, rat hepatocytes co-cultured with rat liver epithelial cells were exposed to 17 and 68 mM ethanol for up to 10 days. Two weeks of liquid diet ethanol treatment increased total GST activity. Both Mu and Alpha classes and in particular the A1 and A2 subunits and the amount of their corresponding mRNAs were increased. Total GST activity was also increased in co-cultures after exposure to 68 mM ethanol for 10 days. However, the Mu class subunits M1 and M2 and the corresponding mRNAs were increased, rather than the Alpha class subunits. Thus, long-term exposure to ethanol induces hepatic GST both in vivo and in vitro, but different isoenzymes are affected. Consequently, extrapolation of in vitro data on GST expression and regulation to the in vivo situation must be judicious. During xenobiotic metabolism in cell culture, a shift in relative expression and induction of different GST forms may occur, resulting in either an under- or overestimation of effects. PMID:11020451

  14. Salinity influences glutathione S-transferase activity and lipid peroxidation responses in the Crassostrea gigas oyster exposed to diesel oil.

    PubMed

    Zanette, Juliano; de Almeida, Eduardo Alves; da Silva, Angela Zaccaron; Guzenski, João; Ferreira, Jaime Fernando; Di Mascio, Paolo; Marques, Maria Risoleta Freire; Bainy, Afonso Celso Dias

    2011-04-15

    Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25, 15 and 9ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1mL.L(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill's catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde, MDA), but influenced diesel related responses. At 25ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25ppt and 1mL.L(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25ppt salinity. The MDA quickly returned to basal levels after 24h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1mL.L(-1) diesel was observed only at 35ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration. PMID:21349572

  15. Association of glutathione S-transferase P1 (GSTP1) polymorphism with Tourette syndrome in Taiwanese patients.

    PubMed

    Shen, Che-Piao; Chou, I-Ching; Liu, Hsin-Ping; Lee, Cheng-Chun; Tsai, Yuhsin; Wu, Bor-Tsang; Hsu, Ban-Dar; Lin, Wei-Yong; Tsai, Fuu-Jen

    2014-01-01

    The etiology of Tourette syndrome (TS) is multifactorial. TS vulnerability may be associated with genetic and environmental factors. From the genetic point of view, TS is heterogeneous. Previous studies showed that some single-nucleotide polymorphisms (SNPs) of the glutathione-S-transferase P1 (GSTP1) gene can affect cellular proliferation and apoptotic activity and TS is a neurodevelopmental disorder. We guessed that there was a relationship between TS and genetic variants of the GSTP1 gene. Therefore, in this study, we aimed to test the hypothesis that GSTP1 SNPs were associated with TS. We performed a case-control study. One hundred twenty-one TS children and 105 normal children were included in the study. Polymerase chain reaction was used to identify the GSTP1 gene polymorphism at position rs6591256 (A/G, promoter polymorphism) in TS patients and normal children. The polymorphism at position rs6591256 in the GSTP1 gene revealed significant differences in the allele (p=0.0135) and genotype (p=0.0159) distributions between the TS patients and the control group. The A allele was present at a higher frequency than the G allele in the TS patients compared with the control group (odds ratio [OR]=1.91, 95% confidence interval [CI]: 1.14-3.21). The AA genotype was associated with susceptibility to TS with an OR of 2.38 for the AA versus AG genotype (95% CI: 1.29-4.41). These findings suggest that variants in the GSTP1 gene may play a role in susceptibility to TS. PMID:24205873

  16. TA-3037A, a new inhibitor of glutathione S-transferase, produced by actinomycetes. I. Production, isolation, physico-chemical properties and biological activities.

    PubMed

    Komagata, D; Sawa, T; Muraoka, Y; Imada, C; Okami, Y; Takeuchi, T

    1992-07-01

    TA-3037A, a new inhibitor of glutathione S-transferase was discovered in the fermentation broth of Streptomyces sp. TA-3037. It was purified by chromatography followed by solvent extraction and then isolated as yellow needles. TA-3037A has the molecular formula of C16H11NO4. It was competitive with the substrate, and the inhibition constant (Ki) was 4.9 microM. PMID:1517156

  17. A Simple Colorimetric Assay for Specific Detection of Glutathione-S Transferase Activity Associated with DDT Resistance in Mosquitoes

    PubMed Central

    Rajatileka, Shavanti; Steven, Andrew; Hemingway, Janet; Ranson, Hilary; Paine, Mark; Vontas, John

    2010-01-01

    Background Insecticide-based methods represent the most effective means of blocking the transmission of vector borne diseases. However, insecticide resistance poses a serious threat and there is a need for tools, such as diagnostic tests for resistance detection, that will improve the sustainability of control interventions. The development of such tools for metabolism-based resistance in mosquito vectors lags behind those for target site resistance mutations. Methodology/Principal Findings We have developed and validated a simple colorimetric assay for the detection of Epsilon class Glutathione transferases (GST)-based DDT resistance in mosquito species, such as Aedes aegypti, the major vector of dengue and yellow fever worldwide. The colorimetric assay is based on the specific alkyl transferase activity of Epsilon GSTs for the haloalkene substrate iodoethane, which produces a dark blue colour highly correlated with AaGSTE2-2-overexpression in individual mosquitoes. The colour can be measured visually and spectrophotometrically. Conclusions/Significance The novel assay is substantially more sensitive compared to the gold standard CDNB assay and allows the discrimination of moderate resistance phenotypes. We anticipate that it will have direct application in routine vector monitoring as a resistance indicator and possibly an important impact on disease vector control. PMID:20824165

  18. Evaluation of aflatoxin B/sub 1/ mutagenesis: addition of glutathione and glutathione-S-transferase to the Salmonella mutagenicity assay

    SciTech Connect

    Jorgensen, K.V.; Clayton, J.W.; Price, R.L.

    1987-01-01

    The effects of glutathione (GSH) and the combination of GSH and glutathione-S-transferase (GST) on aflatoxin B/sub 1/ (AFB/sub 1/) mutagenesis in the Salmonella mutagenicity assay using Salmonella typhimurium strains TA98 and TA100 were tested. Ten concentrations of AFB/sub 1/ (0-1.0 ..mu..g/plate) were added to a liver microsomal homogenate (S9 mix) or to S9 mix containing GSH or S9 mix containing the combination of GSH + GST. One third of the samples were plated directly. Two-thirds were incubated for 30 min at 37/sup 0/C prior to plating, and of those, half included bacteria. The results show that the addition of GSH and GSH + GST affected AFB/sub 1/ mutagenesis by forming the AFB/sub 1/-GSH conjugate and decreasing the availability of AFB/sub 1/-8,9-epoxide. The effect of GST on GSH activity varied with the strain because of the different amounts of S9 mix used. The formation of the AFB/sub 1/-GSH conjugate was verified by using reverse-phase high-performance liquid chromatography for quantitation of AFB/sub 1/ and detection of AFB/sub 1/-GSH.

  19. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    PubMed Central

    Jones, Jane T.; Qian, Xi; van der Velden, Jos L.J.; Chia, Shi Biao; McMillan, David H.; Flemer, Stevenson; Hoffman, Sidra M.; Lahue, Karolyn G.; Schneider, Robert W.; Nolin, James D.; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M.; Tew, Kenneth D.; Janssen-Heininger, Yvonne M.W.

    2016-01-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  20. Evaluation of glutathione S-transferase GSTM1 and GSTT1 polymorphisms and methylmercury metabolism in an exposed Amazon population.

    PubMed

    Mazzaron Barcelos, Gustavo Rafael; de Marco, Kátia Cristina; Grotto, Denise; Valentini, Juliana; Garcia, Solange Cristina; Leite Braga, Gilberto Úbila; Barbosa, Fernando

    2012-01-01

    Over the last decades, the presence of methylmercury (MeHg) in the Amazon region of Brazil and its adverse human health effects have given rise to much concern. The biotransformation of MeHg occurs mainly through glutathione (GSH) in the bile mediated by conjugation with glutathione S-transferases (GST). Epidemiological evidence has shown that genetic polymorphisms may affect the metabolism of MeHg. The aim of this study was to evaluate the association between GST polymorphisms, GSH, and Hg levels in blood (B-Hg) and in hair (H-Hg) of an Amazon population chronically exposed to the metal through fish consumption. Blood and hair samples were collected from 144 volunteers (71 men, 73 women). B-Hg and H-Hg levels were determined by inductively coupled plasma-mass spectrometry, and GSH levels were evaluated by a spectrophotometric method. GSTM1 and T1 genotyping evaluation were carried out by multiplex polymerase chain reaction (PCR). Mean levels of B-Hg and H-Hg were 37.7 ± 24.5 μg/L and 10.4 ± 7.4 μg/g, respectively; GSH concentrations ranged from 0.52 to 2.89 μM/ml of total blood. Distributions for GSTM1/T1, GSTM1/GSTT1*0, GSTM1*0/T1, and GSTM1*0/GSTT1*0 genotypes were 35.4, 22.2, 25.0, and 17.4%, respectively. GSTT1 genotype carriers presented lower levels of B-Hg and H-Hg when compared to other genotypes carriers. In addition, GSTM1*0/GSTT1*0 individuals presented higher Hg levels in blood and hair than subjects presenting any other genotypes. There appeared to be no evidence of an effect of polymorphisms on GSH levels. Therefore, our data suggest that GST polymorphisms may be associated with MeHg detoxification. PMID:22852846

  1. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells.

    PubMed

    Jones, Jane T; Qian, Xi; van der Velden, Jos L J; Chia, Shi Biao; McMillan, David H; Flemer, Stevenson; Hoffman, Sidra M; Lahue, Karolyn G; Schneider, Robert W; Nolin, James D; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M; Tew, Kenneth D; Janssen-Heininger, Yvonne M W

    2016-08-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  2. Microsomal glutathione S-transferase A1-1 with glutathione peroxidase activity from sheep liver: molecular cloning, expression and characterization.

    PubMed Central

    Prabhu, K S; Reddy, P V; Gumpricht, E; Hildenbrandt, G R; Scholz, R W; Sordillo, L M; Reddy, C C

    2001-01-01

    A 25 kDa subunit of glutathione S-transferase (GST) from sheep liver microsomes (microsomal GSTA1-1) with a significant selenium-independent glutathione peroxidase activity has been isolated and characterized. Several analytical criteria, including EDTA stripping, protease protection assay and extraction with alkaline Na(2)CO(3), indicate that the microsomal GSTA1-1 is associated with the inner microsomal membrane. The specific cDNA nucleotide sequence reveals that the enzyme is made up of 222 amino acid residues and shares approx. 73-83% sequence similarity to Alpha-class GSTs from different species. The molecular mass, as determined by electrospray mass ionization, is 25611.3 Da. The enzyme is distinct from the previously reported rat liver microsomal GST in both amino acid sequence and catalytic properties [Morgenstern, Guthenberg and DePierre (1982) Eur. J. Biochem. 128, 243-248]. The microsomal GSTA1-1 differs from the sheep liver cytosolic GSTs, reported previously from this laboratory, in its substrate specificity profile and molecular mass [Reddy, Burgess, Gong, Massaro and Tu (1983) Arch. Biochem. Biophys. 224, 87-101]. In addition to catalysing the conjugation of 4-hydroxynonenal with GSH, the enzyme also exhibits significant glutathione peroxidase activity towards physiologically relevant fatty acid hydroperoxides, such as linoleic and arachidonic acid hydroperoxides, as well as phosphatidylcholine hydroperoxide, but not with H(2)O(2). Thus the microsomal GSTA1-1 isoenzyme might have an important role in the protection of biological membranes against oxidative damage. PMID:11716762

  3. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1

    SciTech Connect

    Ilic, Zoran; Crawford, Dana; Egner, Patricia A.; Sell, Stewart

    2010-02-01

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replaced with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N{sup 7}-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N{sup 7}-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.

  4. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (Ameriurus nebulosus)

    USGS Publications Warehouse

    Gallagher, E.P.; Gross, T.S.; Sheehy, K.M.

    2001-01-01

    A number of freshwater lakes and reclaimed agricultural sites in Central Florida have been the receiving waters for agrochemical and municipal runoff. One of these sites, Lake Apopka, is also a eutrophic system that has been the focus of several case studies reporting altered reproductive activity linked to bioaccumulation of persistent organochlorine chemicals in aquatic species. The present study was initiated to determine if brown bullheads (Ameriurus nebulosus) from the north marsh of Lake Apopka (Lake Apopka Marsh) exhibit an altered capacity to detoxify environmental chemicals through hepatic glutathione S-transferase (GST)-mediated conjugation as compared with bullheads from a nearby reference site (Lake Woodruff). We also compared plasma sex hormone concentrations (testosterone, 17-?? estradiol, and 11 keto-testosterone) in bullheads from the two sites. Female bullheads from Lake Apopka had 40% lower initial rate GST conjugative activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 50% lower activity towards p-nitrobutyl chloride (NBC), 33% lower activity toward ethacrynic acid (ECA), and 43% lower activity toward ??5-androstene-3,17-dione (??5-ADI), as compared with female bullheads from Lake Woodruff. Enzyme kinetic analyses demonstrated that female bullheads from Lake Apopka had lower GST-catalyzed CDNB clearance than did female Lake Woodruff bullheads. Western blotting studies of bullhead liver cytosolic proteins demonstrated that the reduced GST catalytic activities in female Lake Apopka bullheads were accompanied by lower expression of hepatic GST protein. No site differences were observed with respect to GST activities or GST protein expression in male bullheads. Female Lake Apopka bullheads also had elevated concentrations of plasma androgens (testosterone and 11-ketotestosterone) as compared with females from Lake Woodruff. In contrast, male Lake Apopka bullheads had elevated levels of plasma estrogen but similar levels of androgens as compared with

  5. Autoantibodies to glutathione S-transferase theta 1 in patients with primary sclerosing cholangitis and other autoimmune diseases.

    PubMed

    Ardesjö, Brita; Hansson, Caisa M; Bruder, Carl E G; Rorsman, Fredrik; Betterle, Corrado; Dumanski, Jan P; Kämpe, Olle; Ekwall, Olov

    2008-06-01

    Primary sclerosing cholangitis (PSC) is an enigmatic disorder with a suggested autoimmune basis. A variety of autoantigens have been suggested but no specific or highly directed epitope has been identified. To address this issue, we constructed a cDNA library from normal human choledochus and screened expressing clones with serum from a patient with PSC and inflammatory bowel disease (IBD). Based on this screening, glutathione S-transferase theta 1 (GSTT1) was identified as a potential autoantigenic target. To study the specificity of GSTT1, we determined immunoreactivity using a panel of 58 patients with PSC, with and without IBD, 57 patients with IBD, 31 patients with Hashimoto's thyroiditis, 30 patients with primary biliary cirrhosis (PBC), 20 patients with insulin dependent diabetes mellitus, 22 patients with autoimmune polyendocrine syndrome type I, 10 patients with systemic lupus erythematosus (SLE), 20 patients with Sjögren's syndrome, 12 patients with autoimmune pancreatitis, 28 patients with Addison's disease, 27 patients with Grave's disease, 17 with myasthenia gravis, and 118 healthy controls. Reactivity against GSTT1 was found with PSC and IBD as well as some patients with other autoimmune pathology, indicating that this population of antibodies is neither specific nor a sensitive serologic marker for PSC, but the frequency was clearly higher in autoimmune patients than controls. GSTT1-antibodies have been described in persons with GSTT1-null genotype and are suggested to develop as an alloimmune response to blood transfusions from GSTT1-positive donors or pregnancies with GSTT1-positive children. Therefore, two IBD patients with and 15 PSC patients without GSTT1-antibodies were genotyped for GSTT1 to investigate if the presence of GSTT1-antibodies was associated with the GSTT1-null genotype and possibly caused by an alloimmune response. Both IBD patients and three of the PSC patients were of the GSTT1-null genotype. We note that the frequency of GSTT1

  6. Protective role for ovarian glutathione S-transferase isoform pi during 7,12-dimethylbenz[a]anthracene-induced ovotoxicity

    SciTech Connect

    Bhattacharya, Poulomi Keating, Aileen F.

    2012-04-15

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles at all developmental stages. This study investigated a role for the glutathione S-transferase (Gst) isoforms alpha (a), mu (m) and pi (p) and the transcription factors, Ahr and Nrf2, during DMBA-induced ovotoxicity, and their regulation by phosphatidylinositol-3 kinase (PI3K) signaling. Negative regulation of JNK by GSTP during DMBA exposure was also studied. Post-natal day (PND) 4 Fischer 344 rat ovaries were exposed to vehicle control (1% DMSO) ± DMBA (1 μM) or vehicle control (1% DMSO) ± LY294002 (PI3K inhibitor; 20 μM) for 1, 2, 4, or 6 days. Total RNA or protein was isolated, followed by RT-PCR or Western blotting to determine mRNA or protein level, respectively. Immunoprecipitation using an anti-GSTP antibody was performed to determine interaction between GSTP and JNK, followed by Western blotting to determine JNK and p-c-Jun protein level. DMBA had no impact on Gsta, Gstm or Nrf2 mRNA level, but increased Gstp mRNA and protein after 2 days. Ahr mRNA and protein increased after 2 and 4 days of DMBA exposure, respectively and DMBA increased NRF2 protein level after 4 days. JNK bound to GSTP was increased during DMBA exposure, with a concomitant decrease in unbound JNK and p-c-Jun. Ahr and Gstp mRNA were decreased (2 days) and increased (4 days) by PI3K inhibition, while Gstm mRNA increased (P < 0.05) after both time points, and there was no effect on Nrf2 mRNA. PI3K inhibition increased AHR, NRF2 and GSTP protein level. These findings support involvement of ovarian GSTP during DMBA exposure, and indicate a regulatory role for the PI3K signaling pathway on ovarian xenobiotic metabolism gene expression. -- Highlights: ► Ovarian GSTP is activated in response to DMBA exposure. ► AhR and Nrf2 transcription factors are up-regulated by DMBA. ► PI3K signaling regulates Ahr, Nrf2 and Gstp expression. ► GSTP negatively regulates ovarian JNK in response to DMBA exposure.

  7. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    PubMed Central

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2012-01-01

    The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GST as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8-48 hr) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to cadmium, whereas, more pronounced effects in olfactory and gill GST expression were observed at 48 hr relative to earlier time points. Although evaluation of GSTs reflected a cadmium-associated oxidative stress response, there was no clear GST isoform in any tissue that could serve as a reliable biomarker of acute cadmium exposure. By contrast, metallothionein (MT) mRNA was consistently and markedly induced in all three tissues by cadmium, and among the tissues examined, olfactory MT was the most sensitive marker of cadmium exposures. In summary, coho

  8. Glutathione-S-Transferase: A Minor Allergen in Birch Pollen due to Limited Release from Hydrated Pollen

    PubMed Central

    Vejvar, Eva; Kitzmüller, Claudia; Gadermaier, Gabriele; Nagl, Birgit; Vrtala, Susanne; Briza, Peter; Zlabinger, Gerhard J.; Jahn-Schmid, Beatrice; Ferreira, Fatima; Bohle, Barbara

    2014-01-01

    Background Recently, a protein homologous to glutathione-S-transferases (GST) was detected in prominent amounts in birch pollen by proteomic profiling. As members of the GST family are relevant allergens in mites, cockroach and fungi we investigated the allergenic relevance of GST from birch (bGST). Methodology bGST was expressed in Escherichia coli, purified and characterized by mass spectrometry. Sera from 217 birch pollen-allergic patients were tested for IgE-reactivity to bGST by ELISA. The mediator-releasing activity of bGST was analysed with IgE-loaded rat basophil leukaemia cells (RBL) expressing human FcεRI. BALB/c mice were immunized with bGST or Bet v 1. Antibody and T cell responses to either protein were assessed. IgE-cross-reactivity between bGST with GST from house dust mite, Der p 8, was studied with murine and human sera in ELISA. The release kinetics of bGST and Bet v 1 from birch pollen were assessed in water, simulated lung fluid, 0.9% NaCl and PBS. Eluted proteins were quantified by ELISA and analysed by immunoblotting. Principle findings Only 13% of 217 birch pollen-allergic patients showed IgE-reactivity to bGST. In RBL assays bGST induced mediator release. Immunization of mice with bGST induced specific IgE and a Th2-dominated cellular immune response comparably to immunization with Bet v 1. bGST did not cross-react with Der p 8. In contrast to Bet v 1, only low amounts of bGST were released from pollen grains upon incubation in water and the different physiological solutions. Conclusion/Significance Although bGST is abundant in birch pollen, immunogenic in mice and able to induce mediator release from effector cells passively loaded with specific IgE, it is a minor allergen for birch pollen-allergic patients. We refer this discrepancy to its limited release from hydrated pollen. Hence, bGST is an example demonstrating that allergenicity depends mainly on rapid elution from airborne particles. PMID:25275548

  9. Does Occupational Exposure to Solvents and Pesticides in Association with Glutathione S-Transferase A1, M1, P1, and T1 Polymorphisms Increase the Risk of Bladder Cancer? The Belgrade Case-Control Study

    PubMed Central

    Savic-Radojevic, Ana R.; Bulat, Petar V.; Pljesa-Ercegovac, Marija S.; Dragicevic, Dejan P.; Djukic, Tatjana I.; Simic, Tatjana P.; Pekmezovic, Tatjana D.

    2014-01-01

    Objective We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. Patients and Methods A hospital-based case-control study of bladder cancer in men comprised 143 histologically confirmed cases and 114 age-matched male controls. Deletion polymorphism of glutathione S-transferase M1 and T1 was identified by polymerase chain reaction method. Single nucleotide polymorphism of glutathione S-transferase A1 and P1 was identified by restriction fragment length polymorphism method. As a measure of effect size, odds ratio (OR) with corresponding 95% confidence interval (95%CI) was calculated. Results The glutathione S-transferase A1, T1 and P1 genotypes did not contribute independently toward the risk of bladder cancer, while the glutathione S-transferase M1-null genotype was overrepresented among cases (OR = 2.1, 95% CI = 1.1–4.2, p = 0.032). The most pronounced effect regarding occupational exposure to solvents and glutathione S-transferase genotype on bladder cancer risk was observed for the low activity glutathione S-transferase A1 genotype (OR = 9.2, 95% CI = 2.4–34.7, p = 0.001). The glutathione S-transferase M1-null genotype also enhanced the risk of bladder cancer among subjects exposed to solvents (OR = 6,5, 95% CI = 2.1–19.7, p = 0.001). The risk of bladder cancer development was 5.3–fold elevated among glutathione S-transferase T1-active patients exposed to solvents in comparison with glutathione S-transferase T1-active unexposed patients (95% CI = 1.9–15.1, p = 0.002). Moreover, men with glutathione S-transferase T1-active genotype exposed to pesticides exhibited 4.5 times higher risk in comparison with unexposed glutathione S-transferase T1-active subjects (95% CI = 0.9–22.5, p = 0.067). Conclusion Null or low-activity genotypes of the

  10. Functional and mutational analyses of an omega-class glutathione S-transferase (GSTO2) that is required for reducing oxidative damage in Apis cerana cerana.

    PubMed

    Zhang, Y-Y; Guo, X-L; Liu, Y-L; Liu, F; Wang, H-F; Guo, X-Q; Xu, B-H

    2016-08-01

    Glutathione S-transferases perform a variety of vital functions, particularly in reducing oxidative damage. Here, we investigated the expression patterns of Apis cerana cerana omega-class glutathione S-transferase 2 (AccGSTO2) under various stresses and explored its connection with antioxidant defences. We found that AccGSTO2 knockdown by RNA interference triggered increased mortality in Ap. cerana cerana, and immunohistochemistry revealed significantly decreased AccGSTO2 expression, particularly in the midgut and fat body. Further analyses indicated that AccGSTO2 knockdown resulted in decreases in catalase and glutathione reductase activities, ascorbate content and the ratio of reduced to oxidized glutathione, and increases in H2 O2 , malondialdehyde and carbonyl contents. We also analysed the transcripts of other antioxidant genes and found that many genes were down-regulated in the AccGSTO2 knockdown samples, revealing that AccGSTO2 may be indispensable for attaining a normal lifespan by enhancing cellular oxidative resistance. In addition, the roles of cysteine residues in AccGSTO2 were explored using site-directed mutagenesis. Mutants of Cys(28) and Cys(124) significantly affected the enzyme and antioxidant activities of AccGSTO2, which may be attributed to the changes in the spatial structures of mutants as determined by homology modelling. In summary, these observations provide novel insight into the structural and functional characteristics of GSTOs. PMID:27170478