Science.gov

Sample records for glutathione systems differ

  1. Glutathione system in young spontaneously hypertensive rats.

    PubMed

    Lee, S K; Arunkumar, Sundaram; Sirajudeen, K N S; Singh, H J

    2010-12-01

    Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear. PMID:20680541

  2. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance.

    PubMed

    Chen, Fei; Wang, Fang; Wu, Feibo; Mao, Weihua; Zhang, Guoping; Zhou, Meixue

    2010-08-01

    Soil cadmium (Cd) contamination has posed a serious problem for safe food production and become a potential agricultural and environmental hazard worldwide. Greenhouse hydroponic experiments were conducted to investigate the modulation of exogenous GSH (reduced glutathione) in antioxidant defense system against the Cd-induced toxicity in plants exposed to 5 muM Cd using two barley genotypes differing in Cd tolerance. Addition of 20 mg L(-1) GSH in 5 muM Cd culture medium significantly alleviated Cd-induced growth inhibition, especially for the sensitive genotype Dong 17 and dramatically depressed O(2)(-), H(2)O(2) and malondialdehyde (MDA) accumulation. GSH mediated intracellular GSH content to keep the level over the control especially in the case of Cd-induced GSH reduction. External GSH counteracted Cd-induced alterations of certain antioxidant enzymes, e.g. brought root dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione peroxidase (GPX) activities of the both genotypes down towards the control level, but elevated the depressed ascorbate peroxidase (APX) and catalase (CAT) activities in Dong 17 after 10-15 d treatment. The examination of APX and superoxide dismutase (SOD) isoenzymes revealed GSH significantly increased MnSOD, sAPX and tAPX activities in the both genotypes, and strongly stimulated Cd-induced decrease in cAPX in the sensitive genotype. Furthermore, External GSH up-regulated root cAPX and leaf cAPX, CAT1, and CAT2 expression at transcript level in Dong 17 to achieve stimulation. These data, especially from the results of depressed O(2)(-), H(2)O(2) and MDA accumulation and elevated Cd-induced decrease in GSH content and APX (strongly stimulated cAPX, sAPX and tAPX) and CAT activities by GSH addition in the sensitive genotype, suggest that elevated intracellular GSH and stimulated APX (especially cAPX, sAPX and tAPX iosenzymes) and CAT activities, when concerning ROS scavenging systems, play an important role

  3. Glutathione

    PubMed Central

    Noctor, Graham; Queval, Guillaume; Mhamdi, Amna; Chaouch, Sejir; Foyer, Christine H.

    2011-01-01

    Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores. PMID:22303267

  4. [The different aspects of the biological role of glutathione].

    PubMed

    Bilska, Anna; Kryczyk, Agata; Włodek, Lidia

    2007-01-01

    Glutathione plays a key role in maintaining a physiological balance between prooxidants and antioxidants, crucial for the life and death of a cell. Glutathione occurs in the human body in several redox forms, of which reduced glutathione (GSH), oxidized glutathione (GSSG), S-nitrosoglutathione (GSNO), and mixed disulfides of glutathione with proteins are the most important. There is a clear relationship between the levels of different redox forms of glutathione and the regulation of cellular metabolism in a broad sense. Therefore, each of these forms of glutathione can be beneficial or harmful to the organism depending on the cell type and its metabolic status. In such a situation, elevation of GSH level can constitute a very important factor aiding treatment. A rise in GSH level is beneficial in all pathological states, accompanied by lowered GSH content, while a lowering of GSH level is an indication to induce short-term immunosuppression required in organ transplantation and in tumor cells to selectively increase their sensitivity to chemo- and radiotherapy. GSH itself cannot be used as a therapeutic since it is not transported through plasma membranes. Cysteine, an amino acid which limits glutathione biosynthesis, also cannot be used in therapy due to its high neurotoxicity. For this reason, there is currently an intensive search for possibilities of modulating cellular glutathione and cysteine levels, and this problem can be the subject of interdisciplinary studies combining such scientific fields as biology, pharmacology, toxicology, and clinical medicine. PMID:17679914

  5. Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension.

    PubMed

    Robaczewska, J; Kedziora-Kornatowska, K; Kozakiewicz, M; Zary-Sikorska, E; Pawluk, H; Pawliszak, W; Kedziora, J

    2016-06-01

    The risk of developing chronic hypertension increases with age. Among others factors, increased oxidative stress is a well-recognized etiological factor for the development of hypertension. The co-occurrence of oxidative stress and hypertension may occur as a consequence of a decrease in antioxidant defense system activity or elevated reactive oxygen species generation. Glutathione is a major intracellular thiol-disulfide redox buffer that serves as a cofactor for many antioxidant enzymes. Glutathione-related parameters are altered in hypertension, suggesting that there is an association between the glutathione-related redox system and hypertension. In this review, we provide mechanistic explanations for how glutathione maintains blood pressure. More specifically, we discuss glutathione's role in combating oxidative stress and maintaining nitric oxide bioavailability via the formation of nitrosothiols and nitrosohemoglobin. Although impaired vasodilator responses are observed in S-nitrosothiol-deficient red blood cells, this potential hypertensive mechanism is currently overlooked in the literature. Here we fill in this gap by discussing the role of glutathione in nitric oxide metabolism and controlling blood pressure. We conclude that disturbances in glutathione metabolism might explain age-dependent increases in blood pressure. PMID:27511994

  6. Gender differences in glutathione metabolism in Alzheimer's disease.

    PubMed

    Liu, Honglei; Harrell, Lindy E; Shenvi, Swapna; Hagen, Tory; Liu, Rui-Ming

    2005-03-15

    The mechanism underlying Alzheimer's disease (AD), an age-related neurodegenerative disease, is still an area of significant controversy. Oxidative damage of macromolecules has been suggested to play an important role in the development of AD; however, the underlying mechanism is still unclear. In this study, we showed that the concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, was decreased in red blood cells from male AD patients compared with age- and gender-matched controls. However, there was no difference in blood GSH concentration between the female patients and female controls. The decrease in GSH content in red blood cells from male AD patients was associated with reduced activities of glutamate cysteine ligase and glutathione synthase, the two enzymes involved in de novo GSH synthesis, with no change in the amount of oxidized glutathione or the activity of glutathione reductase, suggesting that a decreased de novo GSH synthetic capacity is responsible for the decline in GSH content in AD. These results showed for the first time that GSH metabolism was regulated differently in male and female AD patients. PMID:15693022

  7. Glutathione Redox System in β-Thalassemia/Hb E Patients

    PubMed Central

    Tangjaidee, Thongchai; Hatairaktham, Suneerat; Charoensakdi, Ratiya; Panichkul, Narumol; Siritanaratkul, Noppadol; Fucharoen, Suthat

    2013-01-01

    β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH)/glutathione disulfide (GSSG) and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body's first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores. PMID:24223032

  8. Effect of fish oil on glutathione redox system in multiple sclerosis

    PubMed Central

    Sorto-Gomez, Tania E; Ortiz, Genaro G; Pacheco-Moises, Fermín P; Torres-Sanchez, Erandis D; Ramirez-Ramirez, Viridiana; Macias-Islas, Miguel A; de la Rosa, Alfredo Celis; Velázquez-Brizuela, Irma E

    2016-01-01

    Multiple sclerosis (MS) is a chronic, inflammatory and autoimmune disease of the central nervous system. Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are implicated in the induction and progression of MS. Evidence suggests that Omega-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory, antioxidant and neuroprotective effects. The aim of the present work was to evaluate the effect of fish oil on the activity of glutathione reductase (GR), content of reduced and oxidized glutathione, and GSH/GSSG ratio in MS. 50 patients with relapsing-remitting MS were enrolled. The experimental group received orally 4 g/day of fish oil for 12 months. Fish oil supplementation resulted in a significant increase in n-3 fatty acids and a decrease n-6 fatty acids. No differences in glutathione reductase activity, content of reduced and oxidized glutathione, and GSH/GSSG ratio were found. Conclusion: Glutathione reductase activity was not significantly different between the groups; however, fish oil supplementation resulted in smaller increase in GR compared with control group, suggesting a possible effect on antioxidant defence mechanisms. PMID:27335704

  9. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  10. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  11. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  12. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  13. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  14. The glutathione system: a new drug target in neuroimmune disorders.

    PubMed

    Morris, Gerwyn; Anderson, George; Dean, Olivia; Berk, Michael; Galecki, Piotr; Martin-Subero, Marta; Maes, Michael

    2014-12-01

    Glutathione (GSH) has a crucial role in cellular signaling and antioxidant defenses either by reacting directly with reactive oxygen or nitrogen species or by acting as an essential cofactor for GSH S-transferases and glutathione peroxidases. GSH acting in concert with its dependent enzymes, known as the glutathione system, is responsible for the detoxification of reactive oxygen and nitrogen species (ROS/RNS) and electrophiles produced by xenobiotics. Adequate levels of GSH are essential for the optimal functioning of the immune system in general and T cell activation and differentiation in particular. GSH is a ubiquitous regulator of the cell cycle per se. GSH also has crucial functions in the brain as an antioxidant, neuromodulator, neurotransmitter, and enabler of neuron survival. Depletion of GSH leads to exacerbation of damage by oxidative and nitrosative stress; hypernitrosylation; increased levels of proinflammatory mediators and inflammatory potential; dysfunctions of intracellular signaling networks, e.g., p53, nuclear factor-κB, and Janus kinases; decreased cell proliferation and DNA synthesis; inactivation of complex I of the electron transport chain; activation of cytochrome c and the apoptotic machinery; blockade of the methionine cycle; and compromised epigenetic regulation of gene expression. As such, GSH depletion has marked consequences for the homeostatic control of the immune system, oxidative and nitrosative stress (O&NS) pathways, regulation of energy production, and mitochondrial survival as well. GSH depletion and concomitant increase in O&NS and mitochondrial dysfunctions play a role in the pathophysiology of diverse neuroimmune disorders, including depression, myalgic encephalomyelitis/chronic fatigue syndrome and Parkinson's disease, suggesting that depleted GSH is an integral part of these diseases. Therapeutical interventions that aim to increase GSH concentrations in vivo include N-acetyl cysteine; Nrf-2 activation via hyperbaric

  15. Glutathione cycle in stable chronic obstructive pulmonary disease.

    PubMed

    Biljak, Vanja Radisić; Rumora, Lada; Cepelak, Ivana; Pancirov, Dolores; Popović-Grle, Sanja; Sorić, Jasna; Grubisić, Tihana Zanić

    2010-08-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and oxidant/antioxidant imbalance. Glutathione is the most abundant cellular low-molecular weight thiol and the glutathione redox cycle is the fundamental component of the cellular antioxidant defence system. Concentration of total glutathione and catalytic activities of glutathione peroxidase and glutathione reductase were determined in peripheral blood of patients (n = 109) and healthy subjects (n = 51). Concentration of total glutathione in patients was not changed in comparison to healthy controls. However, we found statistically significant difference between patients with moderate and severe disease stages. Glutathione reductase activity was increased, while glutathione proxidase activity was decreased in the patients with COPD, when compared to healthy controls. We found no significant difference in glutathione peroxidase and glutathione reductase activities between stages. Patients who smoked had lower concentration of total glutathione compared with former smokers and never-smoking patients. Lung function parameters were inversely associated with glutathione level. Evidence is presented for differential modulation of glutathione peroxidase and glutathione reductase activities in peripheral blood of patients with stable COPD. We suppose that in addition to glutathione biosynthesis, glutathione reductase-dependent regulation of the glutathione redox state is vital for protection against oxidative stress. PMID:20648694

  16. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system

    PubMed Central

    Gostimskaya, Irina; Grant, Chris M.

    2016-01-01

    Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron–sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1M1L mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron–sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own. PMID:26898146

  17. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system.

    PubMed

    Gostimskaya, Irina; Grant, Chris M

    2016-05-01

    Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron-sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1(M1L) mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron-sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own. PMID:26898146

  18. Dual targeting of the thioredoxin and glutathione systems in cancer and HIV.

    PubMed

    Benhar, Moran; Shytaj, Iart Luca; Stamler, Jonathan S; Savarino, Andrea

    2016-05-01

    Although the use of antioxidants for the treatment of cancer and HIV/AIDS has been proposed for decades, new insights gained from redox research have suggested a very different scenario. These new data show that the major cellular antioxidant systems, the thioredoxin (Trx) and glutathione (GSH) systems, actually promote cancer growth and HIV infection, while suppressing an effective immune response. Mechanistically, these systems control both the redox- and NO-based pathways (nitroso-redox homeostasis), which subserve innate and cellular immune defenses. Dual inhibition of the Trx and GSH systems synergistically kills neoplastic cells in vitro and in mice and decreases resistance to anticancer therapy. Similarly, the population of HIV reservoir cells that constitutes the major barrier to a cure for AIDS is exquisitely redox sensitive and could be selectively targeted by Trx and GSH inhibitors. Trx and GSH inhibition may lead to a reprogramming of the immune response, tilting the balance between the immune system and cancer or HIV in favor of the former, allowing elimination of diseased cells. Thus, therapies based on silencing of the Trx and GSH pathways represent a promising approach for the cure of both cancer and AIDS and warrant further investigation. PMID:27135880

  19. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system

    PubMed Central

    Baxter, Paul S.; Bell, Karen F.S.; Hasel, Philip; Kaindl, Angela M.; Fricker, Michael; Thomson, Derek; Cregan, Sean P.; Gillingwater, Thomas H.; Hardingham, Giles E.

    2015-01-01

    How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked. PMID:25854456

  20. Variations in the distribution of selenium between erythrocyte glutathione peroxidase and hemoglobin in different human populations

    SciTech Connect

    Whanger, P.D.; Robinson, M.F.; Feldman, E.B.; Beilstein, M.A.; Butler, J.A.

    1986-03-01

    The majority of erythrocyte (RBC) selenium (Se) is associated with glutathione peroxidase (GPx) in animals, but most of it is with hemoglobin (Hb) in human RBCs. Dietary forms of Se may influence this distribution since a rat study showed that selenite promoted the deposition of Se in GPx but selenomethionine (SeMet) resulted in greater amounts with Hb. Three different populations of people were chosen to investigate some possible reasons for the Se distribution in human RBC proteins. An average of 12% of the RBC Se (0.71 ng Se/mg Hb) was associated with GPx in people living in Oregon, but nearly 30% of the Se was associated with GPx in RBC (0.26 ng Se/mg Hb) from New Zealanders. Georgia residents with low RBC Se levels (0.35 ng Se/mg Hb) had 38% of the Se associated with GPx as compared to 29% for those with higher RBC levels (0.56 ng Se/mg Hb). In a third group of people the amount of Se tended to be higher in RBC GPx from non-vegetarian OSU students than from vegetarians. The predominant form of Se in meat appears to be selenocysteine, which is metabolized similarly to selenite, and presumably contributes to this difference since many plant foods contain Se as SeMet. These are examples of many possible factors affecting the relative distribution of Se in human RBC proteins.

  1. Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities

    PubMed Central

    2013-01-01

    Background Excess light conditions induce the generation of reactive oxygen species (ROS) directly in the chloroplasts but also cause an accumulation and production of ROS in peroxisomes, cytosol and vacuoles. Antioxidants such as ascorbate and glutathione occur in all cell compartments where they detoxify ROS. In this study compartment specific changes in antioxidant levels and related enzymes were monitored among Arabidopsis wildtype plants and ascorbate and glutathione deficient mutants (vtc2-1 and pad2-1, respectively) exposed to different light intensities (50, 150 which was considered as control condition, 300, 700 and 1,500 μmol m-2 s-1) for 4 h and 14 d. Results The results revealed that wildtype plants reacted to short term exposure to excess light conditions with the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol and an increased activity of catalase in the leaves. Long term exposure led to an accumulation of ascorbate and glutathione mainly in chloroplasts. In wildtype plants an accumulation of ascorbate and hydrogen peroxide (H2O2) could be observed in vacuoles when exposed to high light conditions. The pad2-1 mutant reacted to long term excess light exposure with an accumulation of ascorbate in peroxisomes whereas the vtc2-1 mutant reacted with an accumulation of glutathione in the chloroplasts (relative to the wildtype) and nuclei during long term high light conditions indicating an important role of these antioxidants in these cell compartments for the protection of the mutants against high light stress. Conclusion The results obtained in this study demonstrate that the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol is an important reaction of plants to short term high light stress. The accumulation of ascorbate and H2O2 along the tonoplast and in vacuoles during these conditions indicates an important route for H2O2 detoxification under these conditions. PMID

  2. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.

    PubMed

    Sonni, Francesca; Clark, Andrew C; Prenzler, Paul D; Riponi, Claudio; Scollary, Geoffrey R

    2011-04-27

    Glutathione was assessed individually, and in combination with ascorbic acid, for its ability to act as an antioxidant with respect to color development in an oxidizing model white wine system. Glutathione was utilized at concentrations normally found in wine (30 mg/L), as well as at concentrations 20-fold higher (860 mg/L), the latter to afford ascorbic acid (500 mg/L) to glutathione ratios of 1:1. The model wine systems were stored at 45 °C without sulfur dioxide and at saturated oxygen levels, thereby in conditions highly conducive to oxidation. Under these conditions the results demonstrated the higher concentration of glutathione could initially provide protection against oxidative coloration, but eventually induced color formation. In the period during which glutathione offered a protective effect, the production of xanthylium cation pigment precursors and o-quinone-derived phenolic compounds was limited. When glutathione induced coloration, polymeric pigments were formed, but these were different from those found in model wine solutions without glutathione. In the presence of ascorbic acid, high concentrations of glutathione were able to delay the decay in ascorbic acid and inhibit the reaction of ascorbic acid degradation products with the wine flavanol compound (+)-catechin. However, on depletion, the glutathione again induced the production of a range of different polymeric pigments. These results highlight new mechanisms through which glutathione can offer both protection and spoilage during the oxidative coloration of a model wine. PMID:21384873

  3. Interaction between nitric oxide and subsets of human T lymphocytes with differences in glutathione metabolism

    PubMed Central

    Roozendaal, Ramon; Kauffman, Henk F; Dijkhuis, Anne-Jan; Ommen, Elisabeth T V; Postma, Dirkje S; De Monchy, Jan G R; Vellenga, Edo

    2002-01-01

    Nitric oxide (NO) modulates human T-lymphocyte responses through several mechanisms. In the current study we show that interactions between NO and glutathione (GSH) metabolism are related to the selective persistent inhibition of interferon-γ (IFN-γ) production by NO, which we previously identified. T cells were exposed to NO using the NO-donor compound Spermine-nonoate (Sper) and activated using anti-CD3 plus anti-CD28 monoclonal antibodies. Persistent inhibition of IFN-γ by Sper was prevented by addition of the GSH precursor l-cysteine, which inhibits Sper induced GSH depletion. Subsets of cells were either susceptible (GSHlow) or resistant (GSHhigh) to NO-induced GSH depletion. The GSHlow subset was characterized by enhanced numbers of CD4+ cells, reduced numbers of activated cells as characterized by CD25 and CD69, and reduced numbers of memory (CD45RO+) cells relative to the GSHhigh population. Rather than directly affecting susceptibility to NO, these surface markers reflected different expression patterns. Particularly, the GSHlow subset was further characterized by decreased activity of the GSH synthesis related enzymes multi-drug resistance related protein (MRP)-1 and γ-glutamyltranspeptidase (γ-GT). Blocking γ-GT, using acivicin was shown to exacerbate NO-induced GSH depletion and NO-induced apoptosis. Since NO induced apoptosis selectively affects IFN-γ production these findings implicate GSH metabolism in the modulation and maintenance of the T helper (Th)1/Th2 balance. PMID:12423309

  4. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    PubMed Central

    Bae, Young-An; Cai, Guo-Bin; Kim, Seon-Hee; Zo, Young-Gun; Kong, Yoon

    2009-01-01

    Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx), the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH)-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx)-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic expansion/deletion and exon

  5. Different roles of functional residues in the hydrophobic binding site of two sweet orange tau glutathione S-transferases.

    PubMed

    Lo Piero, Angela R; Mercurio, Valeria; Puglisi, Ivana; Petrone, Goffredo

    2010-01-01

    Glutathione S-transferases (GSTs) catalyze the conjugation of glutathione to hydrophobic compounds, contributing to the metabolism of toxic chemicals. In this study, we show that two naturally occurring tau GSTs (GSTUs) exhibit distinctive kinetic parameters towards 1-chloro-2,4-dinitrobenzene (CDNB), although they differ only in three amino acids (Arg89, Glu117 and Ile172 in GSTU1 are replaced by Pro89, Lys117 and Val172 in GSTU2). In order to understand the effects of the single mismatched residues, several mutant GSTs were generated through site-directed mutagenesis. The analysis of the kinetic parameters of the mutants led to the conclusion that Glu117 provides a critical contribution to the maintenance of a high-affinity CDNB-binding site. However, the substitution E117K gives rise to mutants showing increased k(cat) values for CDNB, suggesting that Lys117 might positively influence the formation of the transition state during catalysis. No changes in the K(m) values towards glutathione were found between the naturally occurring GSTs and mutants, except for the mutant caused by the substitution R89P in GSTU1, which showed a sharp increase in K(m). Moreover, the analysis of enzyme reactivation after denaturation showed that this R89P substitution leads to a two-fold enhancement of the refolded enzyme yield, suggesting that the insertion of proline might induce critical structural modifications. In contrast, the substitution P89R in GSTU2 does not modify the reactivation yield and does not impair the affinity of the mutant for glutathione, suggesting that all three residues investigated in this work are fundamental in the creation of enzymes characterized by unique biochemical properties. PMID:19954490

  6. CHANGES IN GLUTATHIONE SYSTEM AND LIPID PEROXIDATION IN RAT BLOOD DURING THE FIRST HOUR AFTER CHLORPYRIFOS EXPOSURE.

    PubMed

    Rosalovsky, V P; Grabovska, S V; Salyha, Yu T

    2015-01-01

    Chlorpyrifos (CPF) is a highly toxic organophosphate compound, widely used as an active substance of many insecticides. Along with the anticholinesterase action, CPF may affect other biochemical mechanisms, particularly through disrupting pro- and antioxidant balance and inducing free-radical oxidative stress. Origins and occurrence of these phenomena are still not fully understood. The aim of our work was to investigate the effects of chlorpyrifos on key parameters of glutathione system and on lipid peroxidation in rat blood in the time dynamics during one hour after exposure. We found that a single exposure to 50 mg/kg chlorpyrifos caused a linear decrease in butyryl cholinesterase activity, increased activity of glutathione peroxidase and glutathione reductase, alterations in the levels of glutathione, TBA-active products and lipid hydroperoxides during 1 hour after poisoning. The most significant changes in studied parameters were detected at the 15-30th minutes after chlorpyrifos exposure. PMID:26717603

  7. Effect of melatonin supplementation and cross-fostering on renal glutathione system and development of hypertension in spontaneously hypertensive rats.

    PubMed

    Siew-Keah, Lee; Sundaram, Arunkumar; Sirajudeen, K N S; Zakaria, Rahimah; Singh, H J

    2014-03-01

    Antenatal and postnatal environments are hypothesised to influence the development of hypertension. This study investigates the synergistic effect of cross-fostering and melatonin supplementation on the development of hypertension and renal glutathione system in spontaneously hypertensive rats (SHR). In one experiment, 1-day-old male SHR pups were fostered to either SHR (shr-SHR) or Wistar-Kyoto rats, (shr-WKY). In a concurrent experiment, SHR dams were given melatonin in drinking water (10 mg/kg body weight) from day 1 of pregnancy. Immediately following delivery, 1-day-old male pups were fostered either to SHR (Mel-shr-SHR) or WKY (Mel-shr-WKY) dams receiving melatonin supplementation until weaning on day 21. Upon weaning, melatonin supplementation was continued to these pups until the age of 16 weeks. Systolic blood pressures (SBP) were recorded at the age of 4, 6, 8, 12 and 16 weeks. Renal antioxidant activities were measured. Mean SBP of shr-WKY, Mel-shr-SHR and Mel-shr-WKY was significantly lower than that in shr-SHR until the age of 8 weeks. At 12 and 16 weeks of age, mean SBP of Mel-shr-WKY was lower than those in non-treated shr-SHR and shr-WKY pups but was not significantly different from that in Mel-shr-SHR. Renal glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were significantly higher in Mel-shr-SHR and Mel-shr-WKY at 16 weeks of age. It appears that combination of cross-fostering and melatonin supplementation exerts no synergistic effect on delaying the rise in blood pressure in SHR. The elevated GPx and GST activities are likely to be due to the effect of melatonin supplementation. PMID:23975651

  8. The role of the glutathione system in seizures induced by diphenyl diselenide in rat pups.

    PubMed

    Prigol, Marina; Brüning, César Augusto; Nogueira, Cristina W; Zeni, Gilson

    2011-08-15

    The present study investigated the role of the glutathione system in seizures induced by diphenyl diselenide (PhSe)(2) (50 mg/kg) in rat pups (post natal day, 12-14). Reduced glutathione (GSH) (300 nmol/site; i.c.v.), administered 20 min before (PhSe)(2), abolished the appearance of seizures, protected against the inhibition of catalase and δ-aminolevulinic dehydratase (δ-ALA-D) activities and increased glutathione peroxidase (GPx) activity induced by (PhSe)(2). Administration of l-buthionine sulfoximine (BSO, a GSH-depleting compound) (3.2 μmol/site; i.c.v.) 24h before (PhSe)(2) increased the percentage (42-100%) of rat pups which had seizure episodes, reduced the onset for the first convulsive episode. In addition, BSO increased thiobarbituric acid reactive species (TBARS) levels and decreased GSH content, catalase, δ-ALA-D and Na(+), K(+)-ATPase activities. Treatment with sub effective doses of GSH (10 nmol/site) and d-2-amino-7-phosphonoheptanoic acid (AP-7, an antagonist of the glutamate site at the NMDA receptor; 5mg/kg, i.p.) abolished the appearance of seizures induced by (PhSe)(2) in rat pups. Sub effective doses of GSH and kynurenic acid (an antagonist of strychnine-insensitive glycine site at the NMDA receptor; 40 mg/kg, i.p.) were also able in abolishing the appearance of seizures induced by (PhSe)(2). In conclusion, administration of GSH protected against seizure episodes induced by (PhSe)(2) in rat pups by reducing oxidative stress and, at least in part, by acting as an antagonist of glutamate and glycine modulatory sites in the NMDA receptor. PMID:21620807

  9. Unveiling the roles of the glutathione redox system in vivo by analyzing genetically modified mice

    PubMed Central

    Fujii, Junichi; Ito, Jun-itsu; Zhang, Xuhong; Kurahashi, Toshihiro

    2011-01-01

    Redox status affects various cellular activities, such as proliferation, differentiation, and death. Recent studies suggest pivotal roles of reactive oxygen species not only in pathogenesis under oxidative insult but also in intracellular signal transduction. Glutathione is present in several millimolar concentrations in the cytoplasm and has multiple roles in the regulation of cellular homeostasis. Two enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, constitute the de novo synthesis machinery, while glutathione reductase is involved in the recycling of oxidized glutathione. Multidrug resistant proteins and some other transporters are responsible for exporting oxidized glutathione, glutathione conjugates, and S-nitrosoglutathione. In addition to antioxidation, glutathione is more positively involved in cellular activity via its sulfhydryl moiety of a molecule. Animals in which genes responsible for glutathione metabolism are genetically modified can be used as beneficial and reliable models to elucidate roles of glutathione in vivo. This review article overviews recent progress in works related to genetically modified rodents and advances in the elucidation of glutathione-mediated reactions. PMID:21980221

  10. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems

    PubMed Central

    Dóka, Éva; Pader, Irina; Bíró, Adrienn; Johansson, Katarina; Cheng, Qing; Ballagó, Krisztina; Prigge, Justin R.; Pastor-Flores, Daniel; Dick, Tobias P.; Schmidt, Edward E.; Arnér, Elias S. J.; Nagy, Péter

    2016-01-01

    Hydrogen sulfide signaling involves persulfide formation at specific protein Cys residues. However, overcoming current methodological challenges in persulfide detection and elucidation of Cys regeneration mechanisms from persulfides are prerequisites for constructing a bona fide signaling model. We here establish a novel, highly specific protein persulfide detection protocol, ProPerDP, with which we quantify 1.52 ± 0.6 and 11.6 ± 6.9 μg/mg protein steady-state protein persulfide concentrations in human embryonic kidney 293 (HEK293) cells and mouse liver, respectively. Upon treatment with polysulfides, HEK293 and A549 cells exhibited increased protein persulfidation. Deletion of the sulfide-producing cystathionine-γ-lyase or cystathionine-β-synthase enzymes in yeast diminished protein persulfide levels, thereby corroborating their involvement in protein persulfidation processes. We here establish that thioredoxin (Trx) and glutathione (GSH) systems can independently catalyze reductions of inorganic polysulfides and protein persulfides. Increased endogenous persulfide levels and protein persulfidation following polysulfide treatment in thioredoxin reductase-1 (TrxR1) or thioredoxin-related protein of 14 kDa (TRP14) knockdown HEK293 cells indicated that these enzymes constitute a potent regeneration system of Cys residues from persulfides in a cellular context. Furthermore, TrxR1-deficient cells were less viable upon treatment with toxic amounts of polysulfides compared to control cells. Emphasizing the dominant role of cytosolic disulfide reduction systems in maintaining sulfane sulfur homeostasis in vivo, protein persulfide levels were markedly elevated in mouse livers where hepatocytes lack both TrxR1 and glutathione reductase (TR/GR-null). The different persulfide patterns observed in wild-type, GR-null, and TR/GR-null livers suggest distinct roles for the Trx and GSH systems in regulating subsets of protein persulfides and thereby fine-tuning sulfide

  11. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems.

    PubMed

    Dóka, Éva; Pader, Irina; Bíró, Adrienn; Johansson, Katarina; Cheng, Qing; Ballagó, Krisztina; Prigge, Justin R; Pastor-Flores, Daniel; Dick, Tobias P; Schmidt, Edward E; Arnér, Elias S J; Nagy, Péter

    2016-01-01

    Hydrogen sulfide signaling involves persulfide formation at specific protein Cys residues. However, overcoming current methodological challenges in persulfide detection and elucidation of Cys regeneration mechanisms from persulfides are prerequisites for constructing a bona fide signaling model. We here establish a novel, highly specific protein persulfide detection protocol, ProPerDP, with which we quantify 1.52 ± 0.6 and 11.6 ± 6.9 μg/mg protein steady-state protein persulfide concentrations in human embryonic kidney 293 (HEK293) cells and mouse liver, respectively. Upon treatment with polysulfides, HEK293 and A549 cells exhibited increased protein persulfidation. Deletion of the sulfide-producing cystathionine-γ-lyase or cystathionine-β-synthase enzymes in yeast diminished protein persulfide levels, thereby corroborating their involvement in protein persulfidation processes. We here establish that thioredoxin (Trx) and glutathione (GSH) systems can independently catalyze reductions of inorganic polysulfides and protein persulfides. Increased endogenous persulfide levels and protein persulfidation following polysulfide treatment in thioredoxin reductase-1 (TrxR1) or thioredoxin-related protein of 14 kDa (TRP14) knockdown HEK293 cells indicated that these enzymes constitute a potent regeneration system of Cys residues from persulfides in a cellular context. Furthermore, TrxR1-deficient cells were less viable upon treatment with toxic amounts of polysulfides compared to control cells. Emphasizing the dominant role of cytosolic disulfide reduction systems in maintaining sulfane sulfur homeostasis in vivo, protein persulfide levels were markedly elevated in mouse livers where hepatocytes lack both TrxR1 and glutathione reductase (TR/GR-null). The different persulfide patterns observed in wild-type, GR-null, and TR/GR-null livers suggest distinct roles for the Trx and GSH systems in regulating subsets of protein persulfides and thereby fine-tuning sulfide

  12. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    SciTech Connect

    Stringari, James; Nunes, Adriana K.C.; Franco, Jeferson L.; Bohrer, Denise; Garcia, Solange C.; Dafre, Alcir L.; Milatovic, Dejan; Souza, Diogo O.; Rocha, Joao B.T.; Aschner, Michael; Farina, Marcelo

    2008-02-15

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F{sub 2}-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F{sub 2}-isoprostanes levels at all time points. Significant negative correlations were found between F{sub 2}-isoprostanes and GSH, as well as between F{sub 2}-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of

  13. Early changes in system [Formula: see text] and glutathione in the retina of diabetic rats.

    PubMed

    Carpi-Santos, Raul; Ferreira, Marcos Josf; Pereira Netto, Annibal Duarte; Giestal-de-Araujo, Elizabeth; Ventura, Ana Lucia Marques; Cossenza, Marcelo; Calaza, Karin C

    2016-05-01

    Diabetic retinopathy (DR), the main cause of blindness among diabetic patients, affects both neuronal and vascular cells of the retina. Studies show that neuronal cell death begins after 4 weeks of diabetes and could be related with an increase in oxidative stress. System [Formula: see text] is a glutamate/cystine exchanger, formed by a catalytic subunit called xCT and a regulatory subunit 4F2hc, whose activity is crucial to the synthesis of glutathione, which is a key antioxidant molecule for cells. Although some studies have shown that glutamate transport mediated by excitatory amino acid transporters (EAATs) in diabetic rats is downregulated, there are no studies investigating system [Formula: see text] in this context. To evaluate whether system [Formula: see text] is modified by early onset of diabetes, primary retinal cell culture exposed to high glucose and retinas of rats 3 weeks after streptozotocin injection were used. We observed that xCT subunit protein expression both in cultures and in vivo were diminished. Furthermore, system [Formula: see text] activity and GSH levels were also decreased whereas oxidative stress was increased in retinas of diabetic animals. Therefore, this study raises the possibility that alterations in system [Formula: see text] expression and activity could occur during early onset of diabetes. In that way, system [Formula: see text] modifications could be related to increased ROS in diabetic retinopathy. PMID:26706282

  14. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats

    SciTech Connect

    Gao Weihua; Mizukawa, Yumiko; Nakatsu, Noriyuki; Minowa, Yosuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2010-09-15

    Chemical-induced glutathione depletion is thought to be caused by two types of toxicological mechanisms: PHO-type glutathione depletion [glutathione conjugated with chemicals such as phorone (PHO) or diethyl maleate (DEM)], and BSO-type glutathione depletion [i.e., glutathione synthesis inhibited by chemicals such as L-buthionine-sulfoximine (BSO)]. In order to identify mechanism-based biomarker gene sets for glutathione depletion in rat liver, male SD rats were treated with various chemicals including PHO (40, 120 and 400 mg/kg), DEM (80, 240 and 800 mg/kg), BSO (150, 450 and 1500 mg/kg), and bromobenzene (BBZ, 10, 100 and 300 mg/kg). Liver samples were taken 3, 6, 9 and 24 h after administration and examined for hepatic glutathione content, physiological and pathological changes, and gene expression changes using Affymetrix GeneChip Arrays. To identify differentially expressed probe sets in response to glutathione depletion, we focused on the following two courses of events for the two types of mechanisms of glutathione depletion: a) gene expression changes occurring simultaneously in response to glutathione depletion, and b) gene expression changes after glutathione was depleted. The gene expression profiles of the identified probe sets for the two types of glutathione depletion differed markedly at times during and after glutathione depletion, whereas Srxn1 was markedly increased for both types as glutathione was depleted, suggesting that Srxn1 is a key molecule in oxidative stress related to glutathione. The extracted probe sets were refined and verified using various compounds including 13 additional positive or negative compounds, and they established two useful marker sets. One contained three probe sets (Akr7a3, Trib3 and Gstp1) that could detect conjugation-type glutathione depletors any time within 24 h after dosing, and the other contained 14 probe sets that could detect glutathione depletors by any mechanism. These two sets, with appropriate scoring

  15. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders. PMID:26923386

  16. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    SciTech Connect

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Janusz; Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa

    2014-10-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning.

  17. Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.).

    PubMed

    Li, Hao; He, Jie; Yang, Xiaozhen; Li, Xin; Luo, Dan; Wei, Chunhua; Ma, Jianxiang; Zhang, Yong; Yang, Jianqiang; Zhang, Xian

    2016-03-01

    Melatonin is involved in defending against oxidative stress caused by various environmental stresses in plants. In this study, the roles of exogenous melatonin in regulating local and systemic defense against photooxidative stress in cucumber (Cucumis sativus) and the involvement of redox signaling were examined. Foliar or rhizospheric treatment with melatonin enhanced tolerance to photooxidative stress in both melatonin-treated leaves and untreated systemic leaves. Increased melatonin levels are capable of increasing glutathione (reduced glutathione [GSH]) redox status. Application of H2 O2 and GSH also induced tolerance to photooxidative stress, while inhibition of H2 O2 accumulation and GSH synthesis compromised melatonin-induced local and systemic tolerance to photooxidative stress. H2 O2 treatment increased the GSH/oxidized glutathione (GSSG) ratio, while inhibition of H2 O2 accumulation prevented a melatonin-induced increase in the GSH/GSSG ratio. Additionally, inhibition of GSH synthesis blocked H2 O2 -induced photooxidative stress tolerance, whereas scavenging or inhibition of H2 O2 production attenuated but did not abolish GSH-induced tolerance to photooxidative stress. These results strongly suggest that exogenous melatonin is capable of inducing both local and systemic defense against photooxidative stress and melatonin-enhanced GSH/GSSG ratio in a H2 O2 -dependent manner is critical in the induction of tolerance. PMID:26681257

  18. High-intensity physical exercise disrupts implicit memory in mice: involvement of the striatal glutathione antioxidant system and intracellular signaling.

    PubMed

    Aguiar, A S; Boemer, G; Rial, D; Cordova, F M; Mancini, G; Walz, R; de Bem, A F; Latini, A; Leal, R B; Pinho, R A; Prediger, R D S

    2010-12-29

    Physical exercise is a widely accepted behavioral strategy to enhance overall health, including mental function. However, there is controversial evidence showing brain mitochondrial dysfunction, oxidative damage and decreased neurotrophin levels after high-intensity exercise, which presumably worsens cognitive performance. Here we investigated learning and memory performance dependent on different brain regions, glutathione antioxidant system, and extracellular signal-regulated protein kinase 1/2 (ERK1/2), serine/threonine protein kinase (AKT), cAMP response element binding (CREB) and dopamine- and cyclic AMP-regulated phosphoprotein (DARPP)-32 signaling in adult Swiss mice submitted to 9 weeks of high-intensity exercise. The exercise did not alter the animals' performance in the reference and working memory versions of the water maze task. On the other hand, we observed a significant impairment in the procedural memory (an implicit memory that depends on basal ganglia) accompanied by a reduced antioxidant capacity and ERK1/2 and CREB signaling in this region. In addition, we found increased striatal DARPP-32-Thr-75 phosphorylation in trained mice. These findings indicate an increased vulnerability of the striatum to high-intensity exercise associated with the disruption of implicit memory in mice and accompanied by alteration of signaling proteins involved in the plasticity of this brain structure. PMID:20888397

  19. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots.

    PubMed

    Ma, Jianhui; Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Jiang, Lina; Shao, Yun; Tong, Doudou; Li, Chunxi

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  20. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  1. [The state of enzymatic redox system of glutathione in the blood of patients with lymphosarcoma (non-Hodgkin's lymphoma].

    PubMed

    Gavriliuk, L A; Robu, M V; Vratichian, A I; Lysyĭ, L T

    2009-06-01

    Lipid peroxidation (LPO) processes are enhanced and metabolism is disturbed in patients with lymphosarcoma (LS) (non-Hodgkin's lymphoma). The blood enzymatic redox system was analyzed in patients with LS of two types: lymphoblastic LS (LB LS) and prolymphocytic LS (PL LS). The activities of glutathione reductase (GR), glutathione peroxidase (GP), glutathione dehydroascorbate reductase (GDAR), gamma-glutamyl transpeptidase (GGT), and glucose-6-phosphate dehydrogenase (G6PDH) were spectrophotometrically (Humalyzer 2000, DE) determined in the peripheral plasma, white blood cells, lymphocytes, and red blood cells of 32 aged 42-57 years who had LS and 25 healthy individuals. Peripheral blood lymphocytes and leukocytes were obtained by the method developed by A. Böyum. A search for a correlation was made by the Spearman method. The activities of the enzymes and the data of the correlation analysis suggested antioxidant defense system imbalance and metabolic disturbances in patients with LS. Close functional correlations between GR and GP, GR and G6PDH persisted in patients with both types of the disease. Functional relationships between GR and GDAR remained only in patients with PL LS (r = 0.946; p < 0.001). That between GR and GGT was impaired in patients with LS. A correlation between the activity of antioxidant enzymes and the proliferative activity of blood cells was found in patients with LB LS, which may be used as an additional biochemical test in the differential diagnosis of LS. PMID:19642581

  2. Impaired Glutathione Redox System Paradoxically Suppresses Angiotensin II-Induced Vascular Remodeling

    PubMed Central

    Izawa, Kazuma; Okada, Motoi; Sumitomo, Kazuhiro; Nakagawa, Naoki; Aizawa, Yoshiaki; Kawabe, Junichi; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2014-01-01

    Background Angiotensin II (AII) plays a central role in vascular remodeling via oxidative stress. However, the interaction between AII and reduced glutathione (GSH) redox status in cardiovascular remodeling remains unknown. Methods In vivo: The cuff-induced vascular injury model was applied to Sprague Dawley rats. Then we administered saline or a GSH inhibitor, buthionine sulfoximine (BSO, 30 mmol/L in drinking water) for a week, subsequently administered 4 more weeks by osmotic pump with saline or AII (200 ng/kg/minute) to the rats. In vitro: Incorporation of bromodeoxyuridine (BrdU) was measured to determine DNA synthesis in cultured rat vascular smooth muscle cells (VSMCs). Results BSO reduced whole blood GSH levels. Systolic blood pressure was increased up to 215±4 mmHg by AII at 4 weeks (p<0.01), which was not affected by BSO. Superoxide production in vascular wall was increased by AII and BSO alone, and was markedly enhanced by AII+BSO. The left ventricular weight to body weight ratio was significantly increased in AII and AII+BSO as compared to controls (2.52±0.08, 2.50±0.09 and 2.10±0.07 mg/g respectively, p<0.05). Surprisingly, the co-treatment of BSO totally abolished these morphological changes. Although the vascular circumferential wall stress was well compensated in AII, significantly increased in AII+BSO. The anti-single-stranded DNA staining revealed increasing apoptotic cells in the neointima of injured arteries in BSO groups. BrdU incorporation in cultured VSMCs with AII was increased dose-dependently. Furthermore it was totally abolished by BSO and was reversed by GSH monoethyl ester. Conclusions We demonstrated that a vast oxidative stress in impaired GSH redox system totally abolished AII-induced vascular, not cardiac remodeling via enhancement of apoptosis in the neointima and suppression of cell growth in the media. The drastic suppression of remodeling may result in fragile vasculature intolerable to mechanical stress by AII. PMID

  3. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki

    2015-01-01

    Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought

  4. Forming different planetary systems

    NASA Astrophysics Data System (ADS)

    Zhou, Ji-Lin; Xie, Ji-Wei; Liu, Hui-Gen; Zhang, Hui; Sun, Yi-Sui

    2012-08-01

    With the increasing number of detected exoplanet samples, the statistical properties of planetary systems have become much clearer. In this review, we summarize the major statistical results that have been revealed mainly by radial velocity and transiting observations, and try to interpret them within the scope of the classical core-accretion scenario of planet formation, especially in the formation of different orbital architectures for planetary systems around main sequence stars. Based on the different possible formation routes for different planet systems, we tentatively classify them into three major catalogs: hot Jupiter systems, standard systems and distant giant planet systems. The standard system can be further categorized into three sub-types under different circumstances: solar-like systems, hot Super-Earth systems, and subgiant planet systems. We also review the theory of planet detection and formation in binary systems as well as planets in star clusters.

  5. Differences in response of glucuronide and glutathione conjugating enzymes to aflatoxin B/sub 1/ and N-acetylaminofluorene in underfed rats

    SciTech Connect

    Rajpurohit, R.; Krishnaswamy, K.

    1988-01-01

    Changes in the hepatic drug/xenobiotic-metabolizing enzymes in underfed rats exposed to aflatoxin B/sub 1/ and N-acetylaminofluorene were investigated. Neither carcinogen, fed at the level of 10 ..mu..g and 0.667 mg per 100 g body weight, respectively, over a period of 3 wk, had any significant influence on cytochrome P-450 and aryl hydrocarbon hydroxylase in the undernourished rats. Significantly low activities of UDP-glucuronyltransferase and glutathione S-transferase were observed in food-restricted animals fed on aflatoxin B/sub 1/. N-acetylaminofluorene, on the other hand stimulated both the enzyme activities in the underfed group, to as much observed in the respective well-fed treated group. UDP-Glucuronyltransferase and glutathione S-transferase in undernutrition seem to respond differently to aflatoxin B/sub 1/ and N-acetylaminofluorene. Further studies are needed to assess the possible consequences of such alterations.

  6. Systemic and mucosal immune responses after intranasal administration of recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing glutathione S-transferase from Schistosoma haematobium.

    PubMed

    Kremer, L; Dupré, L; Riveau, G; Capron, A; Locht, C

    1998-12-01

    A major goal of current vaccine development is the induction of strong immune responses against protective antigens delivered by mucosal routes. One of the most promising approaches in that respect relies on the use of live recombinant vaccine carriers. In this study, Mycobacterium bovis BCG was engineered to produce an intracellular glutathione S-transferase from Schistosoma haematobium (Sh28GST). The gene encoding Sh28GST was placed under the control of the mycobacterial hsp60 promoter on a replicative shuttle plasmid containing a mercury resistance operon as the only selectable marker. The recombinant Sh28GST produced in BCG bound glutathione and expressed enzymatic activity, indicating that its active site was properly folded. Both intraperitoneal and intranasal immunizations of BALB/c mice with the recombinant BCG resulted in strong anti-Sh28GST antibody responses, which were enhanced by a boost. Mice immunized intranasally produced a mixed response with the production of Sh28GST-specific immunoglobulin G1 (IgG1), IgG2a, IgG2b, and IgA in the serum. In addition, high levels of anti-Sh28GST IgA were also found in the bronchoalveolar lavage fluids, demonstrating that intranasal delivery of the recombinant BCG was able to induce long-lasting secretory and systemic immune responses to antigens expressed intracellularly. Surprisingly, intranasal immunization with the BCG producing the Sh28GST induced a much stronger specific humoral response than intranasal immunization with BCG producing the glutathione S-transferase from Schistosoma mansoni, although the two antigens have over 90% identity. This difference was not observed after intraperitoneal administration. PMID:9826340

  7. [Experimental Evaluation of Radioprotective Efficacy of Synthetic Genistein on Criteria of Glutathione System and Lipid Peroxidation in Erythrocytes of Peripheral Blood in Irradiated Rats].

    PubMed

    Grebenyuk, A N; Tarumov, R A; Basharin, V A; Kovtun, V U

    2015-01-01

    The study was aimed to evaluate experimentally the radioprotective effectiveness of synthetic genistein in terms of the glutathione system and lipid peroxidation in erythrocytes of irradiated rats. The animals were exposed to single acute X-ray irradiation at a dose of 6 Gy. Genistein was administered intraperitoneally at 200 mg/kg 1 hour before radiation exposure. The irradiation caused the initiation of lipid peroxidation in the background depletion of reduced glutathione. Decrease by 25% in the number of malondialdehyde in the rats treated with genistein was registered 5 min after irradiation compared with the control. It is established thatl day after irradiation the level of reduced glutathione in the rats treated with genistein was 26% higher. However, intraperitoneal administration of genistein did not cause statistically significant changes in the activity of glutathione reductase, glutathione-S-transferase, or glucose-6-phosphate dehydrogenase during the whole period of observation. The results suggest that the radioprotective effect of synthetic genistein is implemented, along with other mechanisms, by stimulating the glutathione system and reducing the severity of lipid peroxidation. PMID:26863780

  8. A glutathione conjugate of hepoxilin A3: Formation and action in the rat central nervous system

    SciTech Connect

    Pace-Asciak, C.R.; Laneuville, O.; Su, W.G.; Corey, E.J.; Gurevich, N.; Wu, P.; Carlen, P.L. )

    1990-04-01

    Incubation of (8R)- and (8S)-(1-14C)hepoxilin A3 (where hepoxilin A3 is 8-hydroxy-11,12-epoxyeicosa-(5Z,9E,14Z)-trienoic acid) and glutathione with homogenates of rat brain hippocampus resulted in a product that was identified as the (8R) and (8S) diastereomers of 11-glutathionyl hepoxilin A3 by reversed-phase high performance liquid chromatographic comparison with the authentic standard made by total synthesis. Identity was further confirmed by cleavage of the isolated product with gamma-glutamyltranspeptidase to yield the corresponding cysteinylglycinyl conjugate that was identical by reversed-phase high performance liquid chromatographic analysis with the enzymic cleavage product derived from the synthetic glutathionyl conjugate. The glutathionyl and cysteinylglycinyl conjugate are referred to as hepoxilin A3-C and hepoxilin A3-D, respectively, by analogy with the established leukotriene nomenclature. Formation of hepoxilin A3-C was greatly enhanced with a concomitant decrease in formation of the epoxide hydrolase product, trioxilin A3, when the epoxide hydrolase inhibitor trichloropropene oxide was added to the incubation mixture demonstrating the presence of a dual metabolic pathway in this tissue involving hepoxilin epoxide hydrolase and glutathione S-transferase processes. Hepoxilin A3-C was tested using intracellular electrophysiological techniques on hippocampal CA1 neurons and found to be active at concentrations as low as 16 nM in causing membrane hyperpolarization, enhanced amplitude and duration of the post-spike train afterhyperpolarization, a marked increase in the inhibitory postsynaptic potential, and a decrease in the spike threshold. These findings suggest that these products in the hepoxilin pathway of arachidonic acid metabolism formed by the rat brain may function as neuromodulators.

  9. Inhibition of Astrocytic Glutamine Synthetase by Lead is Associated with a Slowed Clearance of Hydrogen Peroxide by the Glutathione System

    PubMed Central

    Robinson, Stephen R.; Lee, Alan; Bishop, Glenda M.; Czerwinska, Hania; Dringen, Ralf

    2015-01-01

    Lead intoxication in humans is characterized by cognitive impairments, particularly in the domain of memory, where evidence indicates that glutamatergic neurotransmission may be impacted. Animal and cell culture studies have shown that lead decreases the expression and activity of glutamine synthetase (GS) in astrocytes, yet the basis of this effect is uncertain. To investigate the mechanism responsible, the present study exposed primary astrocyte cultures to a range of concentrations of lead acetate (0–330 μM) for up to 24 h. GS activity was significantly reduced in cells following 24 h incubation with 100 or 330 μM lead acetate. However, no reduction in GS activity was detected when astrocytic lysates were co-incubated with lead acetate, suggesting that the mechanism is not due to a direct interaction and involves intact cells. Since GS is highly sensitive to oxidative stress, the capacity of lead to inhibit the clearance of hydrogen peroxide (H2O2) was investigated. It was found that exposure to lead significantly diminished the capacity of astrocytes to degrade H2O2, and that this was due to a reduction in the effectiveness of the glutathione system, rather than to catalase. These results suggest that the inhibition of GS activity in lead poisoning is a consequence of slowed H2O2 clearance, and supports the glutathione pathway as a primary therapeutic target. PMID:26696846

  10. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans.

    PubMed

    Yun, JiEun; Lee, Dong Gun

    2016-08-01

    Cecropin A, isolated from the giant silk moth Hyalophora cecropia, is a 37-mer peptide that exerts potent antimicrobial effects. We investigated cecropin A-induced apoptosis associated with ion balance and redox state of Candida albicans. The antifungal effect of cecropin A, associated with ion movement was verified by significant increase of cell viability following pretreatment of ion channel blockers. Cecropin A induced undesired ion movement such as calcium accumulation and potassium leakage. Furthermore, the reduction of phosphatidylserine (PS) externalization was detected following pretreatment of ion channel blockers. Based on these results, we confirmed that ion imbalance regulates the apoptotic activity of cecropin A. Moreover, cecropin A decreased NADPH and glutathione levels, which are crucial factors in the intracellular antioxidant defense system. The decreased intracellular antioxidant capacity induced oxidative stress by generating reactive oxygen species (ROS). Moreover, several apoptotic features such as mitochondrial depolarization, caspase activation, and DNA fragmentation were observed in cecropin A-treated cells. In conclusion, disrupted ion balance and intracellular glutathione redox state play a key role in cecropin A-induced apoptosis in C. albicans. © 2016 IUBMB Life, 68(8):652-662, 2016. PMID:27338801

  11. Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy

    PubMed Central

    Tobe, Ryuta; Carlson, Bradley A.; Tsuji, Petra A.; Lee, Byeong Jae; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2015-01-01

    A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system. PMID:26569310

  12. Detection of glutathione within single mice hepatocytes using microfluidic chips coupled with a laser-induced fluorescence system.

    PubMed

    Hao, Minglu; Liu, Rutao; Zhang, Hao; Li, Yating; Jing, Mingyang

    2014-05-01

    A rapid and accurate detection of glutathione (GSH) content in single cells is important to the early diagnosis and prevention of diseases. A microfluidic system allows the manipulation of trace amounts of reagents and single cells in a simple and cheap glass chip coupled with laser induced fluorescence (LIF) detection. 2,3-Naphthalenedicarboxaldehyde (NDA) was used as the derivatization reagent to label GSH in cells. Microchannel surface derivatization and optimization of injection and separation were investigated in detail, and then the GSH in single mice hepatocyte was separated and detected under optimum conditions with a linear range of 5×10(-4) M~5×10(-3) M and a detection limit of 4.47×10(-5) M. This study provides a simple and effective method for rapid GSH detection in single cells using few reagents. PMID:24534424

  13. Detection of glutathione within single mice hepatocytes using microfluidic chips coupled with a laser-induced fluorescence system

    NASA Astrophysics Data System (ADS)

    Hao, Minglu; Liu, Rutao; Zhang, Hao; Li, Yating; Jing, Mingyang

    A rapid and accurate detection of glutathione (GSH) content in single cells is important to the early diagnosis and prevention of diseases. A microfluidic system allows the manipulation of trace amounts of reagents and single cells in a simple and cheap glass chip coupled with laser induced fluorescence (LIF) detection. 2,3-Naphthalenedicarboxaldehyde (NDA) was used as the derivatization reagent to label GSH in cells. Microchannel surface derivatization and optimization of injection and separation were investigated in detail, and then the GSH in single mice hepatocyte was separated and detected under optimum conditions with a linear range of 5 × 10-4 M ˜ 5 × 10-3 M and a detection limit of 4.47 × 10-5 M. This study provides a simple and effective method for rapid GSH detection in single cells using few reagents.

  14. Selective Targeting of the Cysteine Proteome by Thioredoxin and Glutathione Redox Systems

    PubMed Central

    Go, Young-Mi; Roede, James R.; Walker, Douglas I.; Duong, Duc M.; Seyfried, Nicholas T.; Orr, Michael; Liang, Yongliang; Pennell, Kurt D.; Jones, Dean P.

    2013-01-01

    Thioredoxin (Trx) and GSH are the major thiol antioxidants protecting cells from oxidative stress-induced cytotoxicity. Redox states of Trx and GSH have been used as indicators of oxidative stress. Accumulating studies suggest that Trx and GSH redox systems regulate cell signaling and metabolic pathways differently and independently during diverse stressful conditions. In the current study, we used a mass spectrometry-based redox proteomics approach to test responses of the cysteine (Cys) proteome to selective disruption of the Trx- and GSH-dependent systems. Auranofin (ARF) was used to inhibit Trx reductase without detectable oxidation of the GSH/GSSG couple, and buthionine sulfoximine (BSO) was used to deplete GSH without detectable oxidation of Trx1. Results for 606 Cys-containing peptides (peptidyl Cys) showed that 36% were oxidized more than 1.3-fold by ARF, whereas BSO-induced oxidation of peptidyl Cys was only 10%. Mean fold oxidation of these peptides was also higher by ARF than BSO treatment. Analysis of potential functional pathways showed that ARF oxidized peptides associated with glycolysis, cytoskeleton remodeling, translation and cell adhesion. Of 60 peptidyl Cys oxidized due to depletion of GSH, 41 were also oxidized by ARF and included proteins of translation and cell adhesion but not glycolysis or cytoskeletal remodeling. Studies to test functional correlates showed that pyruvate kinase activity and lactate levels were decreased with ARF but not BSO, confirming the effects on glycolysis-associated proteins are sensitive to oxidation by ARF. These data show that the Trx system regulates a broader range of proteins than the GSH system, support distinct function of Trx and GSH in cellular redox control, and show for the first time in mammalian cells selective targeting peptidyl Cys and biological pathways due to deficient function of the Trx system. PMID:23946468

  15. In vitro and in vivo effects of three different Mitragyna speciosa korth leaf extracts on phase II drug metabolizing enzymes--glutathione transferases (GSTs).

    PubMed

    Azizi, Juzaili; Ismail, Sabariah; Mordi, Mohd Nizam; Ramanathan, Surash; Said, Mohd Ikram Mohd; Mansor, Sharif Mahsufi

    2010-01-01

    In the present study, we investigate the effects of three different Mitragyna speciosa extracts, namely methanolic, aqueous and total alkaloid extracts, on glutathione transferase-specific activity in male Sprague Dawley rat liver cytosol in vitro and in vivo. In the in vitro study, the effect of Mitragyna speciosa extracts (0.01 to 750 microg/mL) against the specific activity of glutathione transferases was examined in rat liver cytosolic fraction from untreated rats. Our data show concentration dependent inhibition of cytosolic GSTs when Mitragyna speciosa extract was added into the reaction mixture. At the highest concentration used, the methanolic extract showed the highest GSTs specific activity inhibition (61%), followed by aqueous (50%) and total alkaloid extract (43%), respectively. In in vivo study, three different dosages; 50, 100 and 200 mg/kg for methanolic and aqueous extracts and 5, 10 and 20 mg/kg for total alkaloid extract were given orally for 14 days. An increase in GST specific activity was generally observed. However, only Mitragyna speciosa aqueous extract with a dosage of 100 mg/kg showed significant results: 129% compared to control. PMID:20110902

  16. Activity of carboxylesterase and glutathione S-transferase in different life-stages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations.

    PubMed

    Wilczek, Grazyna; Kramarz, Paulina; Babczyńska, Agnieszka

    2003-04-01

    Among the cytoplasmatic enzymes responsible for neutralization of organic xenobiotics, carboxylesterases (CarE) and glutathione S-transferases (GST) play important roles. Our study tested to what extent dietary Zn or Cd could modify the activity of CarE and GST at different life-stages of the carabid beetle Poecilus cupreus. Treatment and stage effects generally were statistically significant. For CarE activity in the beetles exposed to cadmium, only treatment was a significant factor. In all cases, the interaction between studied factors was statistically significant, implying that the physiological condition of the animals may enhance or reduce enzyme activity. We also observed differences between animals treated with cadmium and zinc in the pattern of enzyme activity, and a difference in GST activity measured with two different substrates. Our results confirmed that in studying enzyme activity under metal stress one should consider the animal's life-stage and sex. PMID:12727300

  17. IN VITRO INHIBITION OF GLUTATHIONE REDUCTASE BY ARSENOTRI-GLUTATHIONE

    EPA Science Inventory

    Arsenotriglutathione, a product of the reduction of arsenate and the complexation of arsenite by glutathione, is a mixed type inhibitor of the reduction of glutathione disulfide by purified yeast glutathione reductase or the glutathione reductase activity in rabbit erythrocyte ly...

  18. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    SciTech Connect

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  19. Responses of the hepatic glutathione antioxidant defense system and related gene expression in juvenile common carp after chronic treatment with tributyltin.

    PubMed

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2015-04-01

    Recently, residual organotin compounds have generally been recognised as relevant sources of aquatic environmental pollutants. However, the effects of these contaminants on the glutathione (GSH)-antioxidant system of fishes have not been adequately studied. In the current study, the chronic effects of tributyltin (TBT) found within antifouling paints for ships, on the GSH antioxidant system and related gene expression in the liver of juvenile common carp (Cyprinus carpio) were investigated. Fishes were exposed to sub-lethal concentrations of TBT (75 ng/L, 0.75 and 7.5 μg/L) for 15, 30 and 60 days. GSH levels and GSH-related enzymes activities, including glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST), were quantified in the fish liver. The levels of malondialdehyde were also measured as a marker of oxidative damage. In addition, the expression levels of gstp1, gr and gpx1 in common carp chronically exposed to TBT were determined. The results of the current study indicate that chronic exposure of TBT results in reactive oxygen species stress in the liver of common carp, and mRNA expression levels are more sensitive than related enzyme levels. In short, the measured GSH-related indices could potentially be used as molecular indicators for monitoring organotin compounds in the aquatic environment. PMID:25582114

  20. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach.

    PubMed

    Kiebala, Michelle; Skalska, Jolanta; Casulo, Carla; Brookes, Paul S; Peterson, Derick R; Hilchey, Shannon P; Dai, Yun; Grant, Steven; Maggirwar, Sanjay B; Bernstein, Steven H

    2015-02-01

    B-cell malignancies are a common type of cancer. One approach to cancer therapy is to either increase oxidative stress or inhibit the stress response systems on which cancer cells rely. In this study, we combined nontoxic concentrations of Auranofin (AUR), an inhibitor of the thioredoxin system, with nontoxic concentrations of buthionine-sulfoximine (BSO), a compound that reduces intracellular glutathione levels, and investigated the effect of this drug combination on multiple pathways critical for malignant B-cell survival. Auranofin interacted synergistically with BSO at low concentrations to trigger death in multiple malignant B-cell lines and primary mantle-cell lymphoma cells. Additionally, there was less toxicity toward normal B cells. Low AUR concentrations inhibited thioredoxin reductase (TrxR) activity, an effect significantly increased by BSO cotreatment. Overexpression of TrxR partially reversed AUR+BSO toxicity. Interestingly, the combination of AUR+BSO inhibited nuclear factor κB (NF-κB) signaling. Moreover, synergistic cell death induced by this regimen was attenuated in cells overexpressing NF-κB proteins, arguing for a functional role for NF-κB inhibition in AUR+BSO-mediated cell death. Together, these findings suggest that AUR+BSO synergistically induces malignant B-cell death, a process mediated by dual inhibition of TrxR and NF-κB, and such an approach warrants further investigation in B-cell malignancies. PMID:25448488

  1. Glutathione permeability of CFTR.

    PubMed

    Linsdell, P; Hanrahan, J W

    1998-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) forms an ion channel that is permeable both to Cl- and to larger organic anions. Here we show, using macroscopic current recording from excised membrane patches, that the anionic antioxidant tripeptide glutathione is permeant in the CFTR channel. This permeability may account for the high concentrations of glutathione that have been measured in the surface fluid that coats airway epithelial cells. Furthermore, loss of this pathway for glutathione transport may contribute to the reduced levels of glutathione observed in airway surface fluid of cystic fibrosis patients, which has been suggested to contribute to the oxidative stress observed in the lung in cystic fibrosis. We suggest that release of glutathione into airway surface fluid may be a novel function of CFTR. PMID:9688865

  2. Glutathione in cyanobacteria

    NASA Technical Reports Server (NTRS)

    Bermudes, D.

    1985-01-01

    The effects of light and O2 on glutathione production were determined. Results of light and dark studies under normal and reduced oxygen tensions were compared to determine the effect of reduction in oxygen tension on glutathione levels. The growth rate of Anacystis nidulans and concurrent production of glutathione is presented. The generation of time of Anacystis nidulans was approximately 12 hours. Results of light and dark incubation of Aphanothece halophytica dominated planktonic microbial community from Pond 4 and Anacystis nidulans under high and low oxygen tension is also presented. It appears that light grown Anacystis nidulans cells have equal amounts of glutathione while dark grown cells produce more glutathione in the presence of increased O2.

  3. The antioxidant glutathione in the fish cell lines EPC and BCF-2: response to model pro-oxidants as measured by three different fluorescent dyes.

    PubMed

    Jos, A; Cameán, A M; Pflugmacher, S; Segner, H

    2009-04-01

    Reduced glutathione (GSH) protects cells against injury by oxidative stress and maintains a range of vital functions. In vitro cell cultures have been used as experimental models to study the role of GSH in chemical toxicity in mammals; however, this approach has been rarely used with fish cells to date. The present study aimed to evaluate sensitivity and specificity of three fluorescent dyes for measuring pro-oxidant-induced changes of GSH contents in fish cell lines: monochlorobimane (mBCl), 5-chloromethylfluorescein diacetate (CMFDA) and 7-amino-4-chloromethylcoumarin (CMAC-blue). Two cell lines were studied, the EPC line established from a skin tumour of carp Cyprinus carpio, and BF-2 cells established from fins of bluegill sunfish Lepomis macrochirus. The cells were exposed for 6 and 24 h to low cytotoxic concentrations of pro-oxidants including hydrogen peroxide, paraquat (PQ), copper and the GSH synthesis inhibitor, L-buthionine-SR-sulfoximine (BSO). The results indicate moderate differences in the GSH response between EPC and BF-2 cells, but distinct differences in the magnitude of the GSH response for the four pro-oxidants. Further, the choice of GSH dye can critically affect the results, with CMFDA appearing to be less specific for GSH than mBCl and CMAC-blue. PMID:19444932

  4. Enzyme-catalysed conjugations of glutathione with unsaturated compounds

    PubMed Central

    Boyland, E.; Chasseaud, L. F.

    1967-01-01

    1. Rat-liver supernatant catalyses the reaction of diethyl maleate with glutathione. 2. Evidence is presented that the enzyme involved is different from the known glutathione-conjugating enzymes, glutathione S-alkyltransferase, S-aryltransferase and S-epoxidetransferase. 3. Rat-liver supernatant catalyses the reaction of a number of other αβ-unsaturated compounds, including aldehydes, ketones, lactones, nitriles and nitro compounds, with glutathione: separate enzymes may be responsible for these reactions. PMID:6035529

  5. Ground difference compensating system

    DOEpatents

    Johnson, Kris W.; Akasam, Sivaprasad

    2005-10-25

    A method of ground level compensation includes measuring a voltage of at least one signal with respect to a primary ground potential and measuring, with respect to the primary ground potential, a voltage level associated with a secondary ground potential. A difference between the voltage level associated with the secondary ground potential and an expected value is calculated. The measured voltage of the at least one signal is adjusted by an amount corresponding to the calculated difference.

  6. Mercury species, selenium, metallothioneins and glutathione in two dolphins from the southeastern Brazilian coast: Mercury detoxification and physiological differences in diving capacity.

    PubMed

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tercia G; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M

    2016-06-01

    In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hginorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hginorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hginorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. PMID:27038210

  7. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    PubMed

    van de Mortel, Judith E; Schat, Henk; Moerland, Perry D; Ver Loren van Themaat, Emiel; van der Ent, Sjoerd; Blankestijn, Hetty; Ghandilyan, Artak; Tsiatsiani, Styliani; Aarts, Mark G M

    2008-03-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis. PMID:18088336

  8. Comparative Hepatotoxicity of Aflatoxin B1 among Workers Exposed to Different Organic Dust with Emphasis on Polymorphism Role of Glutathione S-Transferase Gene

    PubMed Central

    Saad-Hussein, Amal; Shahy, Eman M.; Shaheen, Weam; Taha, Mona M.; Mahdy-Abdallah, Heba; Ibrahim, Khadiga S.; Hafez, Salwa F.; Fadl, Nevein N.; El-Shamy, Karima A.

    2016-01-01

    AIM: The study aimed to investigate effects of organic dust exposure from different sources on aflatoxin B1-albumin adducts (AFB1/Alb), and role of glutathione S-transferase (GST) gene polymorphism in hepatotoxicity of (AFB1) among exposed workers. MATERIAL AND METHODS: Liver enzymes, AFB1/Alb, and GST polymorphism were estimated in 132 wheat flour dust and 87 woods sawmill workers, and 156 controls. RESULTS: Results revealed that AFB1/Alb and liver enzymes were significantly elevated in exposed workers compared to controls, and were significantly higher in sawmill workers compared to flour workers. AFB1/Alb in flour and sawmill workers with GSTT1 and GSTM1&GSTT1 null genotypes were significantly higher than controls, and in sawmill workers with GSTM1&GSTT1 null than flour workers. Liver enzymes (ALT and AST) in sawmill workers were significantly higher than flour workers and controls in all GST polymorphism; except in GSTT1 polymorphism, where these enzymes were significantly higher in the two exposed groups than controls. CONCLUSIONS: In conclusion, organic dust exposure may cause elevation in AFB1/Alb and liver enzymes of exposed workers, and GST gene polymorphism plays an important role in susceptibility to hepatic parenchymal cell injury; except in workers with GSTT1&GSTM1 null genotype, gene susceptibility seemed to have little role and the main role was for environmental exposures. PMID:27335608

  9. The properties of mesoporous silica nanoparticles functionalized with different PEG-chain length via the disulfide bond linker and drug release in glutathione medium.

    PubMed

    Xie, Zhifei; Gong, Huameng; Liu, Mingxing; Zhu, Hongda; Sun, Honghao

    2016-01-01

    In this paper, a novel drug-loaded material (MSNs-SS-PEG) was obtained by grafting the thiol-linked methoxy polyethylene glycol (MeOPEG-SH) onto the thiol-functionalized mesoporous silica nanoparticles (MSNs-SH) via the disulfide bond linker. In our designed experiment, three different chain lengths of PEG (PEG(1000), PEG(5000), and PEG(1000)-PEG(5000)) were used. The silica materials were characterized by Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering, field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, and X-ray diffraction. The morphology of the MSNs-SS-PEG was spherical with an average diameter of about 150 nm. Due to the covalent modification of hydrophilic MeOPEG, the MSNs-SS-PEG was coated by a thin polymer shell, showing stable and inerratic MCM-41 type mesoporous structure as well as high specific surface areas and large pore volumes. Moreover, the releases of doxorubicin hydrochloride (DOX) from these materials at 10 mM of glutathione were investigated. The PEG functionalization could effectively cap drugs in the mesoporous channels. The release of DOX from the MSNs-SS-PEG(n) revealed redox-responsive characteristic. The obtained results showed that the MSNs-SS-PEG might be promising drug delivery carrier materials, which could play an important role in the development of drug delivery. PMID:26540096

  10. Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine.

    PubMed

    Kizek, René; Vacek, Jan; Trnková, Libuse; Jelen, Frantisek

    2004-06-01

    The stabilization of the reduction state of proteins and peptides is very important for the monitoring of protein-protein, protein-DNA and protein-xenobiotic interactions. The reductive state of protein or peptide is characterized by the reactive sulfhydryl group. Glutathione in the reduced (GSH) and oxidized (GSSG) forms was studied by cyclic voltammetry. Tris(2-carboxyethyl)phosphine (TCEP) as the disulfide bond reductant and/or hydrogen peroxide as the sulfhydryl group oxidant were used. Cyclic voltammetry measurements, following the redox state of glutathione, were performed on a hanging mercury drop electrode (HMDE) in borate buffer (pH 9.2). It was shown that in aqueous solutions TCEP was able to reduce disulfide groups smoothly and quantitatively. The TCEP response at -0.25 V vs. Ag/AgCl/3 M KCl did not disturb the signals of the thiol/disulfide redox couple. The origin of cathodic and anodic signals of GSH (at -0.44 and -0.37 V) and GSSG (at -0.69 and -0.40 V) glutathione forms is discussed. It was shown that the application of TCEP to the conservation of sulfhydryl groups in peptides and proteins can be useful instrument for the study of peptides and proteins redox behavior. PMID:15110242

  11. Effect of a microemulsion system on hapten-peptide reactivity studies: examples of hydroxycitronellal and citral, fragrance skin sensitizers, with glutathione.

    PubMed

    Merckel, Fabien; Bernard, Guillaume; Mutschler, Julien; Giménez-Arnau, Elena; Gerberick, G Frank; Lepoittevin, Jean-Pierre

    2010-09-20

    In chemico methods, based on the assessment of hapten reactivity toward peptides, have been proposed as alternative methods for the assessment of the skin sensitizing potential of chemicals. However, even if these approaches seem very promising, a major drawback inherent to most in vitro methods is the poor water solubility of many organic molecules in aqueous media. Thus, semiorganic media based on buffer solutions and organic cosolvents such as ethanol or acetonitrile have been proposed, but a narrow equilibrium should be found between the peptide and chemical solubilities. Microemulsions have been shown to be very valuable when reacting a lipophilic organic compound soluble in hydrophobic media with a very hydrophilic organic substance insoluble in most organic solvents. However, the reaction rate between polar and apolar reactants can be influenced, in some cases, by the use of microemulsions. On the basis of NMR experiments, we have compared the reactivity of hydroxycitronellal 1 and citral 2, two weak fragrance sensitizers of major clinical relevance, toward glutathione used as a model nucleophile in a water/acetonitrile 2:1 mixture and in a microemulsion based on chloroform/water/tert-butanol/sodium dodecylsulphate. Hydroxycitronellal and citral were found to react with the thiol group of glutathione to form, in both media, identical adducts, but the observed reaction rates were found to be different. In the case of hydroxycitronellal, the observed reaction rate of glutathione addition on the aldehyde was found to be about three times higher in the microemulsion compared to the classical semiorganic mixture. In the case of citral, the situation was more complex as the Michael addition of glutathione on the conjugated double bond was found to be significantly faster in the classical semiorganic mixture, while the subsequent reaction of a second glutathione molecule on the aldehyde was found to be faster in the microemulsion. This chloroform

  12. Simulation of interindividual differences in inactivation of reactive para-benzoquinone imine metabolites of diclofenac by glutathione S-transferases in human liver cytosol.

    PubMed

    den Braver, Michiel W; Zhang, Yongjie; Venkataraman, Harini; Vermeulen, Nico P E; Commandeur, Jan N M

    2016-07-25

    Diclofenac is a widely prescribed NSAID that causes severe idiosyncratic drug induced liver injury (IDILI) in a small part of the patient population. Formation of protein-reactive metabolites is considered to play a role in the development of diclofenac-induced IDILI. Therefore, a high hepatic activity of enzymes involved in bioactivation of diclofenac is expected to increase the risk for liver injury. However, the extent of covalent protein binding may also be determined by activity of protective enzymes, such as glutathione S-transferases (GSTs). This is supported by an association study in which a correlation was found between NSAID-induced IDILI and the combined null genotypes of GSTM1 and GSTT1. In the present study, the activity of 10 different recombinant human GSTs in inactivation of protein-reactive quinoneimine (QI) metabolites of diclofenac was tested. Both at low and high GSH concentrations, high activities of GSTA1-1, A2-2, A3-3, M1-1, M3-3 and P1-1 in the inactivation of these QIs were found. By using the expression levels of GSTs in livers of 22 donors, a 6-fold variation in GST-dependent inactivation of reactive diclofenac metabolites was predicted. Moreover, it was shown in vitro that GSTs can strongly increase the efficiency of GSH to protect against the alkylation of the model thiol N-acetylcysteine by reactive diclofenac metabolites. The results of this study demonstrate that variability of GST expression may significantly contribute to the inter-individual differences in susceptibility to diclofenac-induced liver injury. In addition, expression levels of GSTs in in vitro models for hepatotoxicity may be important factors determining sensitivity to diclofenac cytotoxicity. PMID:27183920

  13. Selenium, glutathione peroxidase and other selenoproteins

    SciTech Connect

    Wilhelmsen, E.C.

    1983-01-01

    Selenium, as essential trace element, has long been associated with protein. The essentiality of selenium is partially understood as glutathione peroxidase contains an essential selenocysteine. Glutathione peroxidase has been purified from many tissues including rat liver. An estimated molecular weight of 105,000 was obtained for glutathione peroxidase by comparison to standards. A subunit size of 26,000 was obtained by SDS-gel electrophoresis. Glutathione peroxidase is not the only selenoprotein in the rat. In seven rat tissues examined, there were many different subunit sizes and change groups representing between 9 and 23 selenoproteins. Selenocysteine in glutathione peroxidase accounts for ca. 36% of the selenium in the rat. The mode of synthesis of glutathione peroxidase and the other selenoproteins is not understood. Glutathione peroxidase is strongly and reversibly inhibited by mercaptocarboxylic acids and other mercaptans, including some used as slow-acting drugs for the symtomatic treatment of rheumatoid arthritis. The mechanism and chemistry of this inhibition is discussed. This inhibition may provide a link between selenium and arthritis.

  14. An enzyme catalysing the conjugation of epoxides with glutathione

    PubMed Central

    Boyland, E.; Williams, K.

    1965-01-01

    1. Liver supernatant preparations from rats and ferrets catalyse the conjugation of some epoxides with glutathione. The enzyme involved might be called `glutathione S-epoxidetransferase', as it is different from glutathione S-aryltransferase, the enzyme catalysing the conjugation of 1,2-dichloro-4-nitrobenzene, 4-nitro-pyridine N-oxide and other cyclic compounds with glutathione and from the enzyme catalysing the conjugation of iodomethane and glutathione. 2. The enzyme does not catalyse the reaction with cysteine. It is not inactivated by dialysis but is unstable at pH 5·0. 3. The role of the enzyme in metabolism of foreign compounds is discussed. PMID:14342229

  15. Species differences in kidney necrosis and DNA damage, distribution and glutathione-dependent metabolism of 1,2-dibromo-3-chloropropane (DBCP).

    PubMed

    Søderlund, E J; Låg, M; Holme, J A; Brunborg, G; Omichinski, J G; Dahl, J E; Nelson, S D; Dybing, E

    1990-04-01

    Species differences and mechanisms of 1,2-dibromo-3-chloropropane (DBCP) nephrotoxicity were investigated by studying DBCP renal necrosis and DNA damage, distribution and glutathione-dependent metabolism in rats, mice, hamsters and guinea pigs. Extensive renal tubular necrosis was observed in rats 48 hr after a single intraperitoneal administration (21-170 mumol/kg) of DBCP. Significantly less necrosis was found in mice and guinea pigs, whereas no renal damage was evident (less than 680 mumol/kg) in hamsters. The activation of DBCP to DNA damaging intermediates in vivo, as measured by alkaline elution of DNA isolated from kidney nuclei 60 min. after intraperitoneal injection of DBCP, was compared in all four species. Distinct DNA damage was detected in rats, mice and hamsters as early as 10 min. after administration of DBCP and within 30 min. in guinea pigs. Rats and guinea pigs showed similar sensitivity towards DBCP-induced DNA damage (extensive DNA damage greater than 21 mumol/kg DBCP), whereas in mice and hamsters a 10-50 times higher DBCP dose was needed to cause a similar degree of DNA damage. Renal DBCP concentrations at various time-points (20 min., 1, 3 and 8 hr) after intraperitoneal administration (85 mumol/kg) revealed that the initial (20 min.) DBCP concentration was substantially higher in rats and guinea pigs compared to the other two species. Furthermore, kidney elimination of DBCP occurred at a significantly lower rate in rats than in mice, hamsters and guinea pigs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2371234

  16. Glutathione and mitochondria

    PubMed Central

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C.

    2014-01-01

    Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease, and Alzheimer’s disease. PMID:25024695

  17. Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary hyperbilirubinemia.

    PubMed Central

    Elferink, R P; Ottenhoff, R; Liefting, W; de Haan, J; Jansen, P L

    1989-01-01

    TR- mutant rats have an autosomal recessive mutation that is expressed as a severely impaired hepatobiliary secretion of organic anions like bilirubin-(di)glucuronide and dibromosulphthalein (DBSP). In this paper, the hepatobiliary transport of glutathione and a glutathione conjugate was studied in normal Wistar rats and TR- rats. It was shown that glutathione is virtually absent from the bile of TR- rats. In the isolated, perfused liver the secretion of glutathione and the glutathione conjugate, dinitrophenyl-glutathione (GS-DNP), from hepatocyte to bile is severely impaired, whereas the sinusoidal secretion from liver to blood is not affected. The secretion of GS-DNP was also studied in isolated hepatocytes. The secretion of GS-DNP from cells isolated from TR- rat liver was significantly slower than from normal hepatocytes. Efflux of GS-DNP was a saturable process with respect to intracellular GS-DNP concentration: Vmax and Km for efflux from TR- cells was 498 nmol/min.g dry wt and 3.3 mM, respectively, as compared with 1514 nmol/min.g dry wt and 0.92 mM in normal hepatocytes. These results suggest that the canalicular transport system for glutathione and glutathione conjugates is severely impaired in TR- rats, whereas sinusoidal efflux is unaffected. Because the defect also comes to expression in isolated hepatocytes, efflux of GS-DNP from normal hepatocytes must predominantly be mediated by the canalicular transport mechanism, which is deficient in TR- rats. PMID:2760197

  18. Effects of fraxetin on glutathione redox status.

    PubMed

    Martín-Aragón, S; Benedí, J M; Villar, A M

    1997-01-01

    We have evaluated the effects of an oral treatment of mice with fraxetin (25 mg/kg for 30 days) on the glutathione system (GSH, GSSG, and GSSG/GSH ratio as stress index), glutathione reductase (GR) and glutathione peroxidase (GPx) in liver supernatants from male C57BL/6J mice (18-month old). A significant antioxidant effect in vivo was found under this treatment by a decrease in the GSSG/GSH ratio and an increased activity of GR compared with the control mice. GSSG rate and GSSG/GSH ratio were correlated with the decline of GPx++ activity. Our results of increased GR activity could be considered as a supercompensation in glutathione redox status that involves a decrease in the accumulation of GSSG, as well as, in GSSG/GSH ratio. Finally, we suggest that this possible mechanism of supercompensation could lead to an enhancement in the average life span. PMID:9162171

  19. Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung.

    PubMed

    Yamada, H Y; Kumar, G; Zhang, Y; Rubin, E; Lightfoot, S; Dai, W; Rao, C V

    2016-01-01

    Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1(-/+)) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1(-/-) Sgo1(-/+) double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1(-/+) or RAG1(-/-) mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1(-/-) and RAG1(-/-) Sgo1(-/+). The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1(-/+) mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1(-/+) mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung. PMID:27526110

  20. Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung

    PubMed Central

    Yamada, H Y; Kumar, G; Zhang, Y; Rubin, E; Lightfoot, S; Dai, W; Rao, C V

    2016-01-01

    Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1−/+) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1−/− Sgo1−/+ double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1−/+ or RAG1−/− mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1−/− and RAG1−/− Sgo1−/+. The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1−/+ mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1−/+ mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung. PMID:27526110

  1. Changes in biosynthesis and metabolism of glutathione upon ochratoxin A stress in Arabidopsis thaliana.

    PubMed

    Wang, Yan; Zhao, Weiwei; Hao, Junran; Xu, Wentao; Luo, Yunbo; Wu, Weihong; Yang, Zhuojun; Liang, Zhihong; Huang, Kunlun

    2014-06-01

    Ochratoxin A (OTA) is one of the most toxic mycotoxins, which is toxic to plants and simulates oxidative stress. Glutathione is an important antioxidant in plants and is closely associated with detoxification in cells. We have previously shown that OTA exposure induces obvious expression differences in genes associated with glutathione metabolism. To characterize glutathione metabolism and understand its role in OTA phytotoxicity, we observed the accumulation of GSH in the detached leaves of Arabidopsis thaliana under OTA treatment. OTA stimulated a defense response through enhancing glutathione-S-transferase, glutathione peroxidase, glutathione reductase activities, and the transcript levels of these enzymes were increased to maintain the total glutathione content. Moreover, the level of oxidized glutathione (GSSG) was increased and the ascorbate-glutathione cycle fluctuated in response to OTA. The depletion of glutathione using buthionine sulfoximine (BSO, inhibitor of glutamate-cysteine ligase) had no profound effect on OTA toxicity, as glutathione was regenerated through the ascorbate-glutathione cycle to maintain the total glutathione content. The ROS, MDA and GSH accumulation was significantly affected in the mutant gsh1, gr1 and gpx2 after treatment with OTA, which indicated that glutathione metabolism is directly involved in the oxidative stress response of Arabidopsis thaliana subjected to OTA. In conclusion, date demonstrate that glutathione-associated metabolism is closely related with OTA stress and glutathione play a role in resistance of Arabidopsis subjected to OTA. PMID:24662377

  2. Effects of concentrated drinking water injection on glutathione and glutathione-dependent enzymes in liver of Cyprinus carpio L.

    PubMed

    Elia, Antonia Concetta; Fanetti, Alessia; Dörr, Ambrosius Josef Martin; Taticchi, Maria I

    2008-06-01

    Two drinking water production plants located in North Italy, collecting water from the River Po (Plants 1 and 2) were chosen for this study. Water samples were collected before and after the disinfection process and at two points along the piping system. Water samples were concentrated by the solid-phase extraction system and injected intraperitoneally into specimens of Cyprinus carpio. The concentration of water samples was 3 l/equiv. In order to assess the effects of the water samples on carp liver, total glutathione and glutathione-dependent enzymes, such as glutathione S-transferase, glutathione peroxidase, glutathione reductase and glyoxalase I, were measured following this treatment for 6 days at two experimental times (3 and 6 days). Both water plant-treated carp showed a general increase of the enzymatic activities of glutathione S-transferase, and glutathione reductase which might be employed as potential biomarkers of oxidative stress induced by disinfected river water. Plant 1-treated carp showed higher glyoxalase I and glutathione levels and lower glutathione peroxidase activity. A depleted level of total glutathione and of glyoxalase I for specimens of water plant 2 (for both experimental times), without correlation with the distances in the pipeline, suggests that river plant water can also lead to potentially adverse effects on selected biochemical parameters in C. carpio. PMID:18457861

  3. Deficient Glutathione in the Pathophysiology of Mycotoxin-Related Illness

    PubMed Central

    Guilford, Frederick T.; Hope, Janette

    2014-01-01

    Evidence for the role of oxidative stress in the pathophysiology of mycotoxin-related illness is increasing. The glutathione antioxidant and detoxification systems play a major role in the antioxidant function of cells. Exposure to mycotoxins in humans requires the production of glutathione on an “as needed” basis. Research suggests that mycotoxins can decrease the formation of glutathione due to decreased gene expression of the enzymes needed to form glutathione. Mycotoxin-related compromise of glutathione production can result in an excess of oxidative stress that leads to tissue damage and systemic illness. The review discusses the mechanisms by which mycotoxin-related deficiency of glutathione may lead to both acute and chronic illnesses. PMID:24517907

  4. Deficient glutathione in the pathophysiology of mycotoxin-related illness.

    PubMed

    Guilford, Frederick T; Hope, Janette

    2014-02-01

    Evidence for the role of oxidative stress in the pathophysiology of mycotoxin-related illness is increasing. The glutathione antioxidant and detoxification systems play a major role in the antioxidant function of cells. Exposure to mycotoxins in humans requires the production of glutathione on an "as needed" basis. Research suggests that mycotoxins can decrease the formation of glutathione due to decreased gene expression of the enzymes needed to form glutathione. Mycotoxin-related compromise of glutathione production can result in an excess of oxidative stress that leads to tissue damage and systemic illness. The review discusses the mechanisms by which mycotoxin-related deficiency of glutathione may lead to both acute and chronic illnesses. PMID:24517907

  5. Glutathione is a Physiologic Reservoir of Neuronal Glutamate

    PubMed Central

    Koga, Minori; Serritella, Anthony V.; Messmer, Marcus M.; Hayashi-Takagi, Akiko; Hester, Lynda D.; Snyder, Solomon H.; Sawa, Akira; Sedlak, Thomas W.

    2013-01-01

    Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1-10 millimolar. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress. PMID:21539809

  6. Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.).

    PubMed

    Anjum, Naser A; Srikanth, Koigoora; Mohmood, Iram; Sayeed, Iqbal; Trindade, Tito; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2014-06-01

    This in vitro study investigates the impact of silica-coated magnetite particles (Fe3O4@SiO2/SiDTC, hereafter called IONP; 2.5 mg L(-1)) and its interference with co-exposure to persistent contaminant (mercury, Hg; 50 μg L(-1)) during 0, 2, 4, 8, 16, 24, 48, and 72 h on European eel (Anguilla anguilla) brain and evaluates the significance of the glutathione (GSH) redox system in this context. The extent of damage (membrane lipid peroxidation, measured as thiobarbituric acid reactive substances, TBARS; protein oxidation, measured as reactive carbonyls, RCs) decreased with increasing period of exposure to IONP or IONP + Hg which was accompanied with differential responses of glutathione redox system major components (glutathione reductase, GR; glutathione peroxidase, GPX; total GSH, TGSH). The occurrence of antagonism between IONP and Hg impacts was evident at late hour (72 h), where significantly decreased TBARS and RC levels and GR and glutathione sulfo-transferase (GST) activity imply the positive effect of IONP + Hg concomitant exposure against Hg-accrued negative impacts [vs. early (2 h) hour of exposure]. A period of exposure-dependent IONP alone and IONP + Hg joint exposure-accrued impact was perceptible. Additionally, increased susceptibility of the GSH redox system to increased period of exposure to Hg was depicted, where insufficiency of elevated GR for the maintenance of TGSH required for membrane lipid and cellular protein protection was displayed. Overall, a fine-tuning among brain glutathione redox system components was revealed controlling IONP + Hg interactive impacts successfully. PMID:24627197

  7. Cell free glutathione synthesizing activity of mercury resistant bacteria

    SciTech Connect

    Gachhui, R.; Pahan, K.; Ray, S., R.; Chaudhuri, J.; Mandal, A. )

    1991-03-01

    Reduced glutathione (GSH) is present in all living cells and is known to have a generalized role in protecting the cells from heavy metal toxicity. Depletion of both GSH and glutathione reductase (GR) level upon treatment with mercuric chloride (HgCl{sub 2}) is reported in various organs of rat. However, the effect of HgCl{sub 2} on glutathione level in bacterial system is not known. In the present communication, the authors report the results of their investigation on the glutathione status in mercury resistant bacterial cells exposed to HgCl{sub 2}.

  8. Expression of the Laccase Gene from a White Rot Fungus in Pichia pastoris Can Enhance the Resistance of This Yeast to H2O2-Mediated Oxidative Stress by Stimulating the Glutathione-Based Antioxidative System

    PubMed Central

    Fan, Fangfang; Zhuo, Rui; Ma, Fuying; Gong, Yangmin; Wan, Xia; Jiang, Mulan

    2012-01-01

    Laccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, we report that the expression of the laccase gene from white rot fungus in Pichia pastoris can significantly enhance the resistance of yeast to H2O2-mediated oxidative stress. The expression of laccase in yeast was found to confer a strong ability to scavenge intracellular H2O2 and to protect cells from lipid oxidative damage. The mechanism by which laccase gene expression increases resistance to oxidative stress was then investigated further. We found that laccase gene expression in Pichia pastoris could increase the level of glutathione-based antioxidative activity, including the intracellular glutathione levels and the enzymatic activity of glutathione peroxidase, glutathione reductase, and γ-glutamylcysteine synthetase. The transcription of the laccase gene in Pichia pastoris was found to be enhanced by the oxidative stress caused by exogenous H2O2. The stimulation of laccase gene expression in response to exogenous H2O2 stress further contributed to the transcriptional induction of the genes involved in the glutathione-dependent antioxidative system, including PpYAP1, PpGPX1, PpPMP20, PpGLR1, and PpGSH1. Taken together, these results suggest that the expression of the laccase gene in Pichia pastoris can enhance the resistance of yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system to protect the cell from oxidative damage. PMID:22706050

  9. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    PubMed Central

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  10. Expression of glutathione, glutathione peroxidase and glutathione S-transferase pi in canine mammary tumors

    PubMed Central

    2014-01-01

    Background Glutathione (GSH) is one of the most important agents of the antioxidant defense system of the cell because, in conjunction with the enzymes glutathione peroxidase (GSH-Px) and glutathione S transferase pi (GSTpi), it plays a central role in the detoxification and biotransformation of chemotherapeutic drugs. This study evaluated the expression of GSH and the GSH-Px and GSTpi enzymes by immunohistochemistry in 30 canine mammary tumors, relating the clinicopathological parameters, clinical outcome and survival of the bitches. In an in vitro study, the expression of the genes glutamate cysteine ligase (GCLC) and glutathione synthetase (GSS) that synthesize GSH and GSH-Px gene were verified by qPCR and subjected to treatment with doxorubicin, to check the resistance of cancer cells to chemotherapy. Results The immunohistochemical expression of GSH, GSH-Px and GSTpi was compared with the clinical and pathological characteristics and the clinical outcome in the bitches, including metastasis and death. The results showed that high immunoexpression of GSH was correlated to the absence of tumor ulceration and was present in dogs without metastasis (P < 0.05). There was significant correlation of survival with the increase of GSH (P < 0.05). The expression of the GSH-Px and GSTpi enzymes showed no statistically significant correlation with the analyzed variables (p > 0.05). The analysis of the relative expression of genes responsible for the synthesis of GSH (GCLC and GSS) and GSH-Px by quantitative PCR was done with cultured cells of 10 tumor fragments from dogs with mammary tumors. The culture cells showed a decrease in GCLC and GSS expression when compared with no treated cells (P < 0.05). High GSH immunoexpression was associated with better clinical outcomes. Conclusion Therefore, high expression of the GSH seems to play an important role in the clinical outcome of patients with mammary tumors and suggest its use as prognostic marker. The in

  11. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Ji, Mikyoung; Barnwell, Callie V; Grunden, Amy M

    2015-07-01

    Glutathione reductases catalyze the reduction of oxidized glutathione (glutathione disulfide, GSSG) using NADPH as the substrate to produce reduced glutathione (GSH), which is an important antioxidant molecule that helps maintain the proper reducing environment of the cell. A recombinant form of glutathione reductase from Colwellia psychrerythraea, a marine psychrophilic bacterium, has been biochemically characterized to determine its molecular and enzymatic properties. C. psychrerythraea glutathione reductase was shown to be a homodimer with a molecular weight of 48.7 kDa using SDS-PAGE, MALDI-TOF mass spectrometry and gel filtration. The C. psychrerythraea glutathione reductase sequence shows significant homology to that of Escherichia coli glutathione reductase (66 % identity), and it possesses the FAD and NADPH binding motifs, as well as absorption spectrum features which are characteristic of flavoenzymes such as glutathione reductase. The psychrophilic C. psychrerythraea glutathione reductase exhibits higher k cat and k cat/K m at lower temperatures (4 °C) compared to mesophilic Baker's yeast glutathione reductase. However, C. psychrerythraea glutathione reductase was able to complement an E. coli glutathione reductase deletion strain in oxidative stress growth assays, demonstrating the functionality of C. psychrerythraea glutathione reductase over a broad temperature range, which suggests its potential utility as an antioxidant enzyme in heterologous systems. PMID:26101017

  12. Hepatic Metallothionein and Glutathione-S-Transferase Responses in Two Populations of Rice Frogs, Fejervarya limnocharis, Naturally Exposed to Different Environmental Cadmium Levels

    PubMed Central

    Othman, Mohd Sham; Khonsue, Wichase; Kitana, Jirarach; Thirakhupt, Kumthorn; Robson, Mark; Borjan, Marija

    2014-01-01

    Glutathione-S-Transferase (GST) and metallothionein are important biomarker endpoints in studying the effect of Cd exposure. The purpose of this research was to study the correlation between hepatic GST and metallothionein with hepatic Cd in wild Fejervarya limnocharis exposed to environmental Cd. Results showed that frogs from contaminated sites had significantly higher hepatic metallothionein (3.58 mg/kg wet weight) and GST activity (0.259 μmol/min/mg total protein) than those from the reference site (2.36 mg/kg wet weight and 0.157 μmol/min/mg total protein respectively). There was a significantly positive correlation between hepatic Cd and GST activity (r = 0.802, p = 0.009) but not between hepatic Cd and metallothionein (r = 0.548, p = 0.139). The results concluded that while frogs from the contaminated site had higher GST and metallothionein, only GST showed significant positive correlation with hepatic Cd levels, indicating that hepatic GST activity may be used as a biomarker endpoint. PMID:22722596

  13. Hepatic metallothionein and Glutathione-S-Transferase responses in two populations of rice frogs, Fejervarya limnocharis, naturally exposed to different environmental cadmium levels.

    PubMed

    Othman, Mohd Sham; Khonsue, Wichase; Kitana, Jirarach; Thirakhupt, Kumthorn; Robson, Mark; Borjan, Marija; Kitana, Noppadon

    2012-08-01

    Glutathione-S-Transferase (GST) and metallothionein are important biomarker endpoints in studying the effect of Cd exposure. The purpose of this research was to study the correlation between hepatic GST and metallothionein with hepatic Cd in wild Fejervarya limnocharis exposed to environmental Cd. Results showed that frogs from contaminated sites had significantly higher hepatic metallothionein (3.58 mg/kg wet weight) and GST activity (0.259 μmol/min/mg total protein) than those from the reference site (2.36 mg/kg wet weight and 0.157 μmol/min/mg total protein respectively). There was a significantly positive correlation between hepatic Cd and GST activity (r = 0.802, p = 0.009) but not between hepatic Cd and metallothionein (r = 0.548, p = 0.139). The results concluded that while frogs from the contaminated site had higher GST and metallothionein, only GST showed significant positive correlation with hepatic Cd levels, indicating that hepatic GST activity may be used as a biomarker endpoint. PMID:22722596

  14. Dual Targeting of the Thioredoxin and Glutathione Anti-Oxidant Systems in Malignant B-cells; A Novel Synergistic Therapeutic Approach

    PubMed Central

    Kiebala, Michelle; Skalska, Jolanta; Casulo, Carla; Brookes, Paul S.; Peterson, Derick R.; Hilchey, Shannon P.; Dai, Yun; Grant, Steven; Maggirwar, Sanjay B.; Bernstein, Steven H.

    2015-01-01

    B-cell malignancies are a common type of cancer. One approach to cancer therapy is to either increase oxidative stress or inhibit the stress response systems on which cancer cells rely. In this study, we combined non-toxic concentrations of Auranofin (AUR), an inhibitor of the thioredoxin (Trx) system, with non-toxic concentrations of buthionine-sulfoximine (BSO), a compound that reduces intracellular glutathione (GSH) levels, and investigated the effect of this drug combination on multiple pathways critical for malignant B-cell survival. AUR interacted synergistically with BSO at low concentrations to trigger death in multiple malignant B-cell lines and primary mantle cell lymphoma (MCL) cells. Additionally, there was less toxicity toward normal B-cells. Low AUR concentrations inhibited Trx reductase (TrxR) activity, an effect significantly increased by BSO co-treatment. TrxR over-expression partially reversed AUR+BSO toxicity. Interestingly, the combination of AUR+BSO inhibited NF-κB signaling. Moreover, synergistic cell death induced by this regimen was attenuated in cells over-expressing NF-κB proteins, arguing for a functional role for NF-κB inhibition in AUR+BSO-mediated cell death. Together, these findings suggest that AUR+BSO synergistically induce malignant B-cell death, a process mediated by dual inhibition of TrxR and NF-κB, and such an approach warrants further investigation in B-cell malignancies. PMID:25448488

  15. Effects of cyanobacterial lipopolysaccharides from microcystis on glutathione-based detoxification pathways in the zebrafish (Danio rerio) embryo.

    PubMed

    Jaja-Chimedza, Asha; Gantar, Miroslav; Mayer, Gregory D; Gibbs, Patrick D L; Berry, John P

    2012-06-01

    Cyanobacteria ("blue-green algae") are recognized producers of a diverse array of toxic secondary metabolites. Of these, the lipopolysaccharides (LPS), produced by all cyanobacteria, remain to be well investigated. In the current study, we specifically employed the zebrafish (Danio rerio) embryo to investigate the effects of LPS from geographically diverse strains of the widespread cyanobacterial genus, Microcystis, on several detoxifying enzymes/pathways, including glutathione-S-transferase (GST), glutathione peroxidase (GPx)/glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), and compared observed effects to those of heterotrophic bacterial (i.e., E. coli) LPS. In agreement with previous studies, cyanobacterial LPS significantly reduced GST in embryos exposed to LPS in all treatments. In contrast, GPx moderately increased in embryos exposed to LPS, with no effect on reciprocal GR activity. Interestingly, total glutathione levels were elevated in embryos exposed to Microcystis LPS, but the relative levels of reduced and oxidized glutathione (i.e., GSH/GSSG) were, likewise, elevated suggesting that oxidative stress is not involved in the observed effects as typical of heterotrophic bacterial LPS in mammalian systems. In further support of this, no effect was observed with respect to CAT or SOD activity. These findings demonstrate that Microcystis LPS affects glutathione-based detoxification pathways in the zebrafish embryo, and more generally, that this model is well suited for investigating the apparent toxicophore of cyanobacterial LPS, including possible differences in structure-activity relationships between heterotrophic and cyanobacterial LPS, and teleost fish versus mammalian systems. PMID:22822454

  16. Survival of Escherichia coli cells on solid copper surfaces is increased by glutathione.

    PubMed

    Große, Cornelia; Schleuder, Grit; Schmole, Christin; Nies, Dietrich H

    2014-11-01

    Bacteria are rapidly killed on solid copper surfaces, so this material could be useful to limit the spread of multiple-drug-resistant bacteria in hospitals. In Escherichia coli, the DNA-protecting Dps protein and the NADH:ubiquinone oxidoreductase II Ndh were not involved in tolerance to copper ions or survival on solid copper surfaces. Decreased copper tolerance under anaerobic growth conditions in the presence of ascorbate and with melibiose as the carbon source indicated that sodium-dependent symport systems may provide an import route for Cu(I) into the cytoplasm. Glutathione-free ΔcopA ΔgshA double mutants of E. coli were more rapidly inactivated on solid copper surfaces than glutathione-containing wild-type cells. Therefore, while DNA protection by Dps was not required, glutathione was needed to protect the cytoplasm and the DNA against damage mediated by solid copper surfaces, which may explain the differences in the molecular mechanisms of killing between glutathione-containing Gram-negative and glutathione-free Gram-positive bacteria. PMID:25192999

  17. Survival of Escherichia coli Cells on Solid Copper Surfaces Is Increased by Glutathione

    PubMed Central

    Große, Cornelia; Schleuder, Grit; Schmole, Christin

    2014-01-01

    Bacteria are rapidly killed on solid copper surfaces, so this material could be useful to limit the spread of multiple-drug-resistant bacteria in hospitals. In Escherichia coli, the DNA-protecting Dps protein and the NADH:ubiquinone oxidoreductase II Ndh were not involved in tolerance to copper ions or survival on solid copper surfaces. Decreased copper tolerance under anaerobic growth conditions in the presence of ascorbate and with melibiose as the carbon source indicated that sodium-dependent symport systems may provide an import route for CuI into the cytoplasm. Glutathione-free ΔcopA ΔgshA double mutants of E. coli were more rapidly inactivated on solid copper surfaces than glutathione-containing wild-type cells. Therefore, while DNA protection by Dps was not required, glutathione was needed to protect the cytoplasm and the DNA against damage mediated by solid copper surfaces, which may explain the differences in the molecular mechanisms of killing between glutathione-containing Gram-negative and glutathione-free Gram-positive bacteria. PMID:25192999

  18. Involvement of Antibiotic Efflux Machinery in Glutathione-Mediated Decreased Ciprofloxacin Activity in Escherichia coli.

    PubMed

    Goswami, Manish; Subramanian, Mahesh; Kumar, Ranjeet; Jass, Jana; Jawali, Narendra

    2016-07-01

    We have analyzed the contribution of different efflux components to glutathione-mediated abrogation of ciprofloxacin's activity in Escherichia coli and the underlying potential mechanism(s) behind this phenomenon. The results indicated that glutathione increased the total active efflux, thereby partially contributing to glutathione-mediated neutralization of ciprofloxacin's antibacterial action in E. coli However, the role of glutathione-mediated increased efflux becomes evident in the absence of a functional TolC-AcrAB efflux pump. PMID:27139480

  19. Glutathione-related factors are not correlated with sensitivity of human tumour cells to actinomycin D.

    PubMed

    Zhang, K; Yang, E B; Zhao, Y N; Wong, K P; Mack, P

    2000-02-28

    Glutathione (GSH) contents and activities of glutathione S-transferases (GST), glutathione reductase (GSH-RD), glutathione peroxidase (GSHpx) and glutathione conjugate export pump (GS-X pump) were determined in eight human tumour cell lines with different sensitivities to melphalan, a substrate of glutathione conjugation, and actinomycin D which has not been shown to be detoxified by glutathione-related mechanisms. Chang liver cells with highest GSH content and highest activities of GST, GSH-RD, GSHpx and GS-X pump were found to be most resistant to melphalan. Statistical analysis showed significant correlations between sensitivities of the human tumour cells to melphalan and the glutathione-related factors (r = 0.72-0.79; except for GST, r = 0.65, P = 0.08), while there were no significant correlations observed between sensitivities of the human tumour cells to actinomycin D and all the glutathione-related factors tested (r = -0.25-0.14). Significant correlations of the glutathione-related factors to resistance of human tumour cells to melphalan, a substrate of glutathione conjugation, but not to resistance of the human tumour cells to actinomycin D which has not been shown to be detoxified by glutathione-related mechanisms suggested that glutathione-related mechanisms contribute to drug resistance by increased detoxification of the drugs involved. PMID:10737727

  20. The concentration of ascorbic acid and glutathione in 13 provenances of Acacia melanoxylon.

    PubMed

    Wujeska-Klause, Agnieszka; Bossinger, Gerd; Tausz, Michael

    2016-04-01

    Climate change can negatively affect sensitive tree species, affecting their acclimation and adaptation strategies. A common garden experiment provides an opportunity to test whether responses of trees from different provenances are genetically driven and if this response is related to factors at the site of origin. We hypothesized that antioxidative defence systems and leaf mass area ofAcacia melanoxylonR. Br. samples collected from different provenances will vary depending on local rainfall. Thirteen provenances ofA. melanoxylonoriginating from different rainfall habitats (500-2000 mm) were grown for 5 years in a common garden. For 2 years, phyllode samples were collected during winter and summer, for measurements of leaf mass area and concentrations of glutathione and ascorbic acid. Leaf mass area varied between seasons, years and provenances ofA. melanoxylon, and an increase was associated with decreasing rainfall at the site of origin. Ascorbic acid and glutathione concentrations varied between seasons, years (i.e., environmental factors) and among provenances ofA. melanoxylon In general, glutathione and ascorbic acid concentrations were higher in winter compared with summer. Ascorbic acid and glutathione were different among provenances, but this was not associated with rainfall at the site of origin. PMID:26960387

  1. Immunohistochemical demonstration of salmon olfactory glutathione S-transferase class pi (N24) in the olfactory system of lacustrine sockeye salmon during ontogenesis and cell proliferation.

    PubMed

    Yanagi, S; Kudo, H; Doi, Y; Yamauchi, K; Ueda, H

    2004-06-01

    In mammals, glutathione S-transferase (GST) in the olfactory epithelium is involved in assistance of the olfactory reception by the xenobiotic metabolism. We previously reported the protein and gene expressions of salmon olfactory GST class pi (soGST) in the olfactory receptor cells (ORCs) of the salmonid fish. However, the chronological appearances of soGST in ORCs during ontogeny and cell proliferation are still unknown in this species. In this study, we performed immunohistochemistry of soGST using an antibody specific to soGST in the olfactory system (olfactory placode, olfactory pit, olfactory epithelium, olfactory nerve and olfactory bulb) of lacustrine sockeye salmon ( Oncorhynchus nerka) embryos and 5-bromo-2'-deoxyuridine (BrdU) experimental fish. The projection of olfactory nerve bundles from the olfactory pit to the presumptive olfactory bulb was identified at embryonic day 28 after fertilization. The olfactory cilia were first detected on the apical surface of ORCs at day 43. soGST-immunoreactivity was first detected within the olfactory pit cells at day 55. At 58 day, the number of soGST-immunoreactive cells increased markedly in the olfactory epithelia, and soGST-immunoreactive fibers were observed in the olfactory nerves and olfactory bulbs. By in vivo uptake of BrdU in 1-year-old fish, we observed for the first time at day 7 after labeling that the olfactory epithelia showed ORCs in which both soGST-immunoreactivity and BrdU coexisted. These results indicate that soGST is synthesized in the mature ORCs of lacustrine sockeye salmon after cell formation and differentiation. PMID:15156400

  2. Effects of copper overload in P19 neurons: impairment of glutathione redox homeostasis and crosstalk between caspase and calpain protease systems in ROS-induced apoptosis.

    PubMed

    Jazvinšćak Jembrek, Maja; Vlainić, Josipa; Radovanović, Vedrana; Erhardt, Julija; Oršolić, Nada

    2014-12-01

    Copper, a transition metal with essential biological functions, exerts neurotoxic effects when present in excess. The aim of the present study was to better elucidate cellular and molecular mechanisms of CuSO4 toxicity in differentiated P19 neurons. Exposure to 0.5 mM CuSO4 for 24 h provoked moderate decrease in viability, accompanied with barely increased generation of reactive oxygen species (ROS) and caspase-3/7 activity. Glutathione (GSH) and ATP contents were depleted, lactate dehydrogenase inactivated, and glyceraldehyde-3-phosphate dehydrogenase overexpressed. In severely damaged neurons exposed to only two times higher concentration, classical caspase-dependent apoptosis was triggered as evidenced by marked caspase-3/7 activation and chromatin condensation. Multifold increase in ROS, together with very pronounced ATP and GSH loss, strongly suggests impairment of redox homeostasis. At higher copper concentration protease calpains were also activated, and neuronal injury was prevented in the presence of calpain inhibitor leupeptin through the mechanism that affects caspase activation. MK-801 and nifedipine, inhibitors of calcium entry, and H-89 and UO126, inhibitors of PKA and ERK signaling respectively, exacerbated neuronal death only in severely damaged neurons, while ROS-scavenger quercetin and calcium chelator BAPTA attenuated toxicity only at lower concentration. In a dose-dependent manner copper also provoked transcriptional changes of genes involved in intracellular signaling and induction of apoptosis (p53, c-fos, Bcl-2 and Bax). The obtained results emphasize differences in triggered neuronal-death processes in a very narrow range of concentrations and give further insight into the molecular mechanisms of copper toxicity with the potential to improve current therapeutic approaches in curing copper-related neurodegenerative diseases. PMID:25216733

  3. Saving the zone of stasis: is glutathione effective?

    PubMed

    Zor, Fatih; Ozturk, Serdar; Deveci, Mustafa; Karacalioglu, Ozgur; Sengezer, Mustafa

    2005-12-01

    One of the main subjects that burn researches are focused on is saving the zone of stasis. There are many molecules that are used for this purpose, but all have their drawbacks. Glutathione is one of the major buffer molecules of the cells and is known to increase the thermo-resistance of the cells. In this study, the effect of the systemic glutathione on the zone of stasis was evaluated. The results showed that glutathione is an effective molecule for saving the zone of stasis. It is well-known cheap, and easy to use. PMID:16278048

  4. Effect of 4-week feeding of deoxynivalenol- or T-2-toxin-contaminated diet on lipid peroxidation and glutathione redox system in the hepatopancreas of common carp (Cyprinus carpio L.).

    PubMed

    Pelyhe, Csilla; Kövesi, Benjámin; Zándoki, Erika; Kovács, Balázs; Szabó-Fodor, Judit; Mézes, Miklós; Balogh, Krisztián

    2016-05-01

    The purpose of study was to investigate the effects of T-2 toxin (4.11 mg T-2 toxin and 0.45 mg HT-2 toxin kg(-1) feed) and deoxynivalenol (5.96 and 0.33 mg 15-acetyl deoxynivalenol (DON) kg(-1) feed) in 1-year-old common carp juveniles in a 4-week feeding trial. The exposure of mycotoxins resulted in increased mortality in both groups consuming mycotoxin-contaminated diet. Parameters of lipid peroxidation were not affected during the trial, and antioxidant defence also did not show response to oxidative stress; however, glutatione peroxidase activity slightly, but significantly, decreased in the T-2 toxin group. Glutathione S-transferase activity showed moderate decrease as effect of T-2 toxin, which suggests its effect on xenobiotic transformation. Reduced glutathione concentration showed moderate changes as effect of DON exposure, but T-2 toxin has no effect. Expression of phospholipid hydroperoxide glutathione peroxidase (GPx4) genes showed different response to mycotoxin exposure. T-2 toxin caused dual response in the expression of gpx4a (early and late downregulation and mid-term upregulation), but continuous upregulation was found as effect of deoxynivalenol. Expression of the other gene, gpx4b, was upregulated by both trichothecenes during the whole period. The results suggested that trichothecenes have some effect on free radical formation and antioxidant defence, but the changes depend on the duration of exposure and the dose applied, and in case of glutathione peroxidase, there was no correlation between expression of genes and enzyme activity. PMID:26920403

  5. Effect of glutathione addition in sparkling wine.

    PubMed

    Webber, Vanessa; Dutra, Sandra Valduga; Spinelli, Fernanda Rodrigues; Marcon, Ângela Rossi; Carnieli, Gilberto João; Vanderlinde, Regina

    2014-09-15

    This study aims to evaluate the effect of the addition of glutathione (GSH) on secondary aromas and on the phenolic compounds of sparkling wine elaborated by traditional method. It was added 10 and 20 mg L(-1) of GSH to must and to base wine. The determination of aroma compounds was performed by gas chromatography. Phenolic compounds and glutathione content were analyzed by high performance liquid chromatography. Sparkling wines with addition of GSH to must showed lower levels of total phenolic compounds and hydroxycinnamic acids. Furthermore, the sparkling wine with addition of GSH to must showed higher levels of 2-phenylethanol, 3-methyl-1-butanol and diethyl succinate, and lower concentrations of ethyl decanoate, octanoic and decanoic acids. The GSH addition to the must show a greater influence on sparkling wine than to base wine, however GSH addition to base wine seems retain higher SO2 free levels. The concentration of GSH added showed no significant difference. PMID:24767072

  6. Relationship of glutathione S-transferase genotypes with side-effects of pulsed cyclophosphamide therapy in patients with systemic lupus erythematosus

    PubMed Central

    Zhong, Shilong; Huang, Min; Yang, Xiuyan; Liang, Liuqin; Wang, Yixi; Romkes, Marjorie; Duan, Wei; Chan, Eli; Zhou, Shu-Feng

    2006-01-01

    Aims Cyclophosphamide (CTX) is an established treatment of severe systemic lupus erythematosus (SLE). Cytotoxic CTX metabolites are mainly detoxified by multiple glutathione S-transferases (GSTs). However, data are lacking on the relationship between the short-term side-effects of CTX therapy and GST genotypes. In the present study, the effects of common GSTM1, GSTT1, and GSTP1 genetic mutations on the severity of myelosuppression, gastrointestinal (GI) toxicity, and infection incidences induced by pulsed CTX therapy were evaluated in patients SLE. Methods DNA was extracted from peripheral leucocytes in patients with confirmed SLE diagnosis (n = 102). GSTM1 and GSTT1 null mutations were analyzed by a polymerase chain reaction (PCR)-multiplex procedure, whereas the GSTP1 codon 105 polymorphism (Ile→Val) was analyzed by a PCR-restriction fragment length polymorphism (RFLP) assay. Results Our study demonstrated that SLE patients carrying the genotypes with GSTP1 codon 105 mutation [GSTP1*-105I/V (heterozygote) and GSTP1*-105 V/V (homozygote)] had an increased risk of myelotoxicity when treated with pulsed high-dose CTX therapy (Odds ratio (OR) 5.00, 95% confidence interval (CI) 1.96, 12.76); especially in patients younger than 30 years (OR 7.50, 95% CI 2.14, 26.24), or in patients treated with a total CTX dose greater than 1.0 g (OR 12.88, 95% CI 3.16, 52.57). Similarly, patients with these genotypes (GSTP1*I/V and GSTP1*V/V) also had an increased risk of GI toxicity when treated with an initial pulsed high-dose CTX regimen (OR 3.33, 95% CI 1.03, 10.79). However, GSTM1 and GSTT1 null mutations did not significantly alter the risks of these short-term side-effects of pulsed high-dose CTX therapy in SLE patients. Conclusions The GSTP1 codon 105 polymorphism, but not GSTM1 or GSTT1 null mutations, significantly increased the risks of short-term side-effects of pulsed high-dose CTX therapy in SLE patients. Because of the lack of selective substrates for a GST enzyme

  7. Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli.

    PubMed Central

    Hwang, D D; Liu, L F; Kuan, I C; Lin, L Y; Tam, T C; Tam, M F

    1999-01-01

    We describe here an Escherichia coli expression system that produces recombinant proteins enriched in the N-terminal processed form, by using glutathione S-transferase cGSTM1-1 and rGSTT1-1 as models, where c and r refer to chick and rat respectively. Approximately 90% of the cGSTM1-1 or rGSTT1-1 overexpressed in E. coli under the control of a phoA promoter retained the initiator methionine residue that was absent from the mature isoenzymes isolated from tissues. The amount of initiator methionine was decreased to 40% of the expressed cGSTM1-1 when the isoenzyme was co-expressed with an exogenous methionine aminopeptidase gene under the control of a separate phoA promoter. The recombinant proteins expressed were mainly methionine aminopeptidase. The yield of cGSTM1-1 was decreased to 10% of that expressed in the absence of the exogenous methionine aminopeptidase gene. By replacing the phoA with its natural promoter, the expression of methionine aminopeptidase decreased drastically. The yield of the co-expressed cGSTM1-1 was approx. 60% of that in the absence of the exogenous methionine aminopeptidase gene; approx. 65% of the initiator methionine residues were removed from the enzyme. Under similar conditions, N-terminal processing was observed in approx. 70% of the recombinant rGSTT1-1 expressed. By increasing the concentration of phosphate in the growth medium, the amount of initiator methionine on cGSTM1-1 was decreased to 14% of the overexpressed isoenzymes, whereas no further improvement could be observed for rGSTT1-1. The initiator methionine residue does not affect the enzymic activities of either cGSTM1-1 or rGSTT1-1. However, the epoxidase activity and the 4-nitrobenzyl chloride-conjugating activity of the purified recombinant rGSTT1-1 are markedly higher that those reported recently for the same isoenzyme isolated from rat livers. PMID:10024508

  8. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  9. Delayed Cardiomyopathy in Dystrophin Deficient mdx Mice Relies on Intrinsic Glutathione Resource

    PubMed Central

    Khouzami, Lara; Bourin, Marie-Claude; Christov, Christo; Damy, Thibaud; Escoubet, Brigitte; Caramelle, Philippe; Perier, Magali; Wahbi, Karim; Meune, Christophe; Pavoine, Catherine; Pecker, Françoise

    2010-01-01

    Oxidative stress contributes to the pathogenesis of Duchenne muscular dystrophy (DMD). Although they have been a model for DMD, mdx mice exhibit slowly developing cardiomyopathy. We hypothesized that disease process was delayed owing to the development of an adaptive mechanism against oxidative stress, involving glutathione synthesis. At 15 to 20 weeks of age, mdx mice displayed a 33% increase in blood glutathione levels compared with age-matched C57BL/6 mice. In contrast, cardiac glutathione content was similar in mdx and C57BL/6 mice as a result of the balanced increased expression of glutamate cysteine ligase catalytic and regulatory subunits ensuring glutathione synthesis in the mdx mouse heart, as well as increased glutathione peroxidase-1 using glutathione. Oral administration from 10 weeks of age of the glutamate cysteine ligase inhibitor, l-buthionine(S,R)-sulfoximine (BSO, 5 mmol/L), led to a 33% and 50% drop in blood and cardiac glutathione, respectively, in 15- to 20-week-old mdx mice. Moreover, 20-week-old BSO-treated mdx mice displayed left ventricular hypertrophy associated with diastolic dysfunction, discontinuities in β-dystroglycan expression, micronecrosis and microangiopathic injuries. Examination of the glutathione status in four DMD patients showed that three displayed systemic glutathione deficiency as well. In conclusion, low glutathione resource hastens the onset of cardiomyopathy linked to a defect in dystrophin in mdx mice. This is relevant to the glutathione deficiency that DMD patients may suffer. PMID:20696779

  10. Glutathione redox cycle dysregulation in Huntington's disease knock-in striatal cells.

    PubMed

    Ribeiro, Márcio; Rosenstock, Tatiana R; Cunha-Oliveira, Teresa; Ferreira, Ildete L; Oliveira, Catarina R; Rego, A Cristina

    2012-11-15

    Huntington's disease (HD) is a CAG repeat disorder affecting the HD gene, which encodes for huntingtin (Htt) and is characterized by prominent cell death in the striatum. Oxidative stress was previously implicated in HD neurodegeneration, but the role of the major endogenous antioxidant system, the glutathione redox cycle, has been less studied following expression of full-length mutant Htt (FL-mHtt). Thus, in this work we analyzed the glutathione system in striatal cells derived from HD knock-in mice expressing mutant Htt versus wild-type cells. Mutant cells showed increased intracellular reactive oxygen species (ROS) and caspase-3 activity, which were significantly prevented following treatment with glutathione ethyl ester. Interestingly, mutant cells exhibited an increase in intracellular levels of both reduced and oxidized forms of glutathione, and enhanced activities of glutathione peroxidase (GPx) and glutathione reductase (GRed). Furthermore, glutathione-S-transferase (GST) and γ-glutamyl transpeptidase (γ-GT) activities were also increased in mutant cells. Nevertheless, glutamate-cysteine ligase (GCL) and glutathione synthetase (GS) activities and levels of GCL catalytic subunit were decreased in cells expressing FL-mHtt, highly suggesting decreased de novo synthesis of glutathione. Enhanced intracellular total glutathione, despite decreased synthesis, could be explained by decreased extracellular glutathione in mutant cells. This occurred concomitantly with decreased mRNA expression levels and activity of the multidrug resistance protein 1 (Mrp1), a transport protein that mediates cellular export of glutathione disulfide and glutathione conjugates. Additionally, inhibition of Mrp1 enhanced intracellular GSH in wild-type cells only. These data suggest that FL-mHtt affects the export of glutathione by decreasing the expression of Mrp1. Data further suggest that boosting of GSH-related antioxidant defense mechanisms induced by FL-mHtt is insufficient to

  11. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  12. Response of glutathione in mussels (Mytilus) exposed to common environmental contaminants

    SciTech Connect

    Inouye, L.S.; Casillas, E.

    1995-12-31

    Mussels (Mytilus sp.) were exposed to PCBs, a mixture of polycyclic aromatic hydrocarbons (PAHs), or extracts of contaminated sediments to determine the response of glutathione content in gill and digestive gland to chemicals contaminants. In addition, a field transplant investigation was conducted to determine if the differences observed in tissue glutathione levels of mussels from reference and contaminated sites were due to the presence of chemical contaminants rather than to population differences in basal glutathione concentrations. Exposure to PCBs or to sediment extracts from a contaminated site resulted in a decrease in glutathione content in the digestive gland, but an increase in glutathione content in gills. In contrast, no alterations in tissue glutathione were observed after exposure to PAHs. Transplant investigation results were consistent with those from the contaminated sediment extract exposure. Glutathione content in digestive glands was higher in mussels from a reference site compared to that found in mussels from the contaminated site, while the opposite trend was found in gill glutathione content of the same mussels. Eight weeks after being transplanted from the reference site to the contaminated site or alternatively from a contaminated site to a reference site, glutathione levels in the gland tissues matched those found in mussels native to the site to which they were transplanted. Although gill glutathione content was significantly different from that found at the site of origin, it did not match levels found in mussels native to the site to which they had been transplanted.

  13. Differences Between Distributed and Parallel Systems

    SciTech Connect

    Brightwell, R.; Maccabe, A.B.; Rissen, R.

    1998-10-01

    Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.

  14. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  15. The content of glutathione and glutathione S-transferases and the glutathione peroxidase activity in rat liver nuclei determined by a non-aqueous technique of cell fractionation.

    PubMed Central

    Soboll, S; Gründel, S; Harris, J; Kolb-Bachofen, V; Ketterer, B; Sies, H

    1995-01-01

    Hepatocellular nuclei require glutathione, glutathione S-transferases (GSTs) and Se-dependent glutathione peroxidase (GPx) for intranuclear protection against damage from electrophiles or products of active oxygen. Data so far available from the literature on nuclei isolated in aqueous systems range from glutathione, GSTs and GPx either being absent altogether to being present in quantities in excess of those in the cytoplasm. This paper describes a small-scale preparation of a nuclear fraction from rat liver by a non-aqueous technique, designed to retain nuclear water-soluble molecules in situ, since low-molecular-mass compounds can diffuse freely into other compartments during aqueous separation. This non-aqueous procedure shows the nucleus to contain glutathione at 8.4 mM and soluble GSTs at 38 micrograms/mg of protein, the enrichment over the homogenate being 1.2-1.4-fold. Se-dependent GPx activity was also present in the nucleus (56 m-units/mg), although with slightly lower activity than in the homogenate (0.7-fold). Images Figure 1 PMID:7487946

  16. Proteomic responses to lead-induced oxidative stress in Talinum triangulare Jacq. (Willd.) roots: identification of key biomarkers related to glutathione metabolisms.

    PubMed

    Kumar, Abhay; Majeti, Narasimha Vara Prasad

    2014-01-01

    In this study, Talinum triangulare Jacq. (Willd.) treated with different lead (Pb) concentrations for 7 days has been investigated to understand the mechanisms of ascorbate-glutathione metabolisms in response to Pb-induced oxidative stress. Proteomic study was performed for control and 1.25 mM Pb-treated plants to examine the root protein dynamics in the presence of Pb. Results of our analysis showed that Pb treatment caused a decrease in non-protein thiols, reduced glutathione (GSH), total ascorbate, total glutathione, GSH/oxidized glutathione (GSSG) ratio, and activities of glutathione reductase and γ-glutamylcysteine synthetase. Conversely, cysteine and GSSG contents and glutathione-S-transferase activity was increased after Pb treatment. Fourier transform infrared spectroscopy confirmed our metabolic and proteomic studies and showed that amino, phenolic, and carboxylic acids as well as alcoholic, amide, and ester-containing biomolecules had key roles in detoxification of Pb/Pb-induced toxic metabolites. Proteomic analysis revealed an increase in relative abundance of 20 major proteins and 3 new proteins (appeared only in 1.25 mM Pb). Abundant proteins during 1.25 mM Pb stress conditions have given a very clear indication about their involvement in root architecture, energy metabolism, reactive oxygen species (ROS) detoxification, cell signaling, primary and secondary metabolisms, and molecular transport systems. Relative accumulation patterns of both common and newly identified proteins are highly correlated with our other morphological, physiological, and biochemical parameters. PMID:24705950

  17. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  18. Glutathione deficiency down-regulates hepatic lipogenesis in rats

    PubMed Central

    2010-01-01

    Background Oxidative stress is supposed to increase lipid accumulation by stimulation of hepatic lipogenesis at transcriptional level. This study was performed to investigate the role of glutathione in the regulation of this process. For that purpose, male rats were treated with buthionine sulfoximine (BSO), a specific inhibitor of γ-glutamylcysteine synthetase, for 7 days and compared with untreated control rats. Results BSO treatment caused a significant reduction of total glutathione in liver (-70%), which was attributable to diminished levels of reduced glutathione (GSH, -71%). Glutathione-deficient rats had lower triglyceride concentrations in their livers than the control rats (-23%), whereas the circulating triglycerides and the cholesterol concentrations in plasma and liver were not different between the two groups of rats. Livers of glutathione-deficient rats had lower mRNA abundance of sterol regulatory element-binding protein (SREBP)-1c (-47%), Spot (S)14 (-29%) and diacylglycerol acyltransferase 2 (DGAT-2, -27%) and a lower enzyme activity of fatty acid synthase (FAS, -26%) than livers of the control rats. Glutathione-deficient rats had also a lower hepatic activity of the redox-sensitive protein-tyrosine phosphatase (PTP)1B, and a higher concentration of irreversible oxidized PTP1B than control rats. No differences were observed in protein expression of total PTP1B and the mature mRNA encoding active XBP1s, a key regulator of unfolded protein and ER stress response. Conclusion This study shows that glutathione deficiency lowers hepatic triglyceride concentrations via influencing lipogenesis. The reduced activity of PTP1B and the higher concentration of irreversible oxidized PTP1B could be, at least in part, responsible for this effect. PMID:20482862

  19. Brain oxidative stress: detection and mapping of anti-oxidant marker 'Glutathione' in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy.

    PubMed

    Mandal, Pravat K; Tripathi, Manjari; Sugunan, Sreedevi

    2012-01-01

    Glutathione (GSH) serves as an important anti-oxidant in the brain by scavenging harmful reactive oxygen species that are generated during different molecular processes. The GSH level in the brain provides indirect information on oxidative stress of the brain. We report in vivo detection of GSH non-invasively from various brain regions (frontal cortex, parietal cortex, hippocampus and cerebellum) in bilateral hemispheres of healthy male and female subjects and from bi-lateral frontal cortices in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All AD patients who participated in this study were on medication with cholinesterase inhibitors. Healthy young male (age 26.4±3.0) and healthy young female (age 23.6±2.1) subjects have higher amount of GSH in the parietal cortical region and a specific GSH distribution pattern (parietal cortex>frontal cortex>hippocampus ~ cerebellum) has been found. Overall mean GSH content is higher in healthy young female compared to healthy young male subjects and GSH is distributed differently in two hemispheres among male and female subjects. In both young female and male subjects, statistically significant (p=0.02 for young female and p=0.001 for young male) difference in mean GSH content is found when compared between left frontal cortex (LFC) and right frontal cortex (RFC). In healthy young female subjects, we report statistically significant positive correlation of GSH content between RFC and LFC (r=0.641, p=0.004) as well as right parietal cortex (RPC) and left parietal cortex (LPC) (r=0.797, p=0.000) regions. In healthy young male subjects, statistically significant positive correlation of GSH content was observed between LFC and LPC (r=0.481, p=0.032) regions. This statistical analysis implicates that in case of a high GSH content in LPC of a young male, his LFC region would also contain high GSH and vice versa. The difference in mean of GSH content between healthy young female control and female AD

  20. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    PubMed Central

    Johnson, William M.; Wilson-Delfosse, Amy L.; Mieyal, John. J.

    2012-01-01

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated. PMID:23201762

  1. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs

    SciTech Connect

    Erden, M.; Bor, N.M.

    1984-04-01

    In this series of experiments the protective action of reduced glutathion due to ionizing radiation has been studied. In the experimental group 18 guinea pigs were exposed to successive radiations of 150 rad 3 or 4 days apart. Total dose given amounted to 750 rad which is the LD50 for guinea pigs. Blood samples were taken 30 min after each exposure. The control series were sham radiated but otherwise treated identically. The cells of the removed blood samples were separated by centrifugation and were subjected to the reduced glutathion stability test. GSSGR, GPer, and LDH enzyme activities were also measured of which the latter served as a marked enzyme. It was found that LDH did not show any alteration after radiation. The reduced glutathion stability test showed a consistent but minor reduction (P greater than 0.05), in the experimental group. GSSGR enzyme activity on the other hand was reduced significantly (from 176.48 +/- 11.32 to 41.34 +/- 1.17 IU/ml of packed erythrocytes, P less than 0.001) in the same group. GPer activity showed a consistent but minor elevation during the early phase of the experimental group. It was later increased significantly beginning after 600 rad total radiation on the fourth session (P less than 0.050).

  2. Color analysis of different ceramic systems.

    PubMed

    Aladag, Akin; Gungor, Mehmet Ali; Artunc, Celal

    2010-01-01

    This study compared the color properties of three different ceramic systems. Three groups of 10 specimens each were prepared: Dental porcelain alloy was used as a framework for conventional and ProBOND metal-ceramic systems, while glass-ceramic ingots were used as a framework for 10 samples using an all-ceramic system. For the former, dentin porcelain was applied and a ceramic veneering material was applied to the ingot frameworks. Using a dental spectrophotometer, the pre- and post-glaze color compatibility between disc specimens and A3 shade was evaluated. The Kruskal-Wallis test was used to compare color differences among groups in this study, while the Mann-Whitney U test was used to make bilateral comparisons among the three different ceramic systems. The values obtained during the dentin stage revealed a significant difference in the all-ceramic group (p < 0.05). After glazing, there was no significant difference between ProBOND samples and all-ceramic samples (p > 0.05). These results suggest that ProBOND can yield esthetically superior results in clinical applications compared to conventional ceramic systems. PMID:20478787

  3. The photochemical thiol–ene reaction as a versatile method for the synthesis of glutathione S-conjugates targeting the bacterial potassium efflux system Kef† †Electronic supplementary information (ESI) available: Further experimental details and NMR spectra. See DOI: 10.1039/c5qo00436e Click here for additional data file.

    PubMed Central

    Rasmussen, Tim; Miller, Samantha; Booth, Ian R.

    2016-01-01

    The thiol–ene coupling reaction is emerging as an important conjugation reaction that is suitable for use in a biological setting. Here, we explore the utility of this reaction for the synthesis of glutathione-S-conjugates (GSX) and present a general, operationally simple, protocol with a wide substrate scope. The GSX afforded are an important class of compounds and provide invaluable molecular tools to study glutathione-binding proteins. In this study we apply the diverse library of GSX synthesised to further our understanding of the structural requirements for binding to the glutathione-binding protein, Kef, a bacterial K+ efflux system, found in many bacterial pathogens. This system is vital to the survival of bacteria upon exposure to electrophiles, and plays an essential role in the maintenance of intracellular pH and K+ homeostasis. Consequently, Kef is an appealing target for the development of novel antibacterial drugs. PMID:27110363

  4. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it?

    PubMed Central

    Conrad, Marcus; Friedmann Angeli, José Pedro

    2015-01-01

    The system XC−/glutathione/glutathione peroxidase 4 (Gpx4) axis pivotally controls ferroptosis, a recently described form of regulated non-apoptotic cell death. Compelling evidence has established that this route of cell death is not only of high relevance for triggering cancer cell death, but also proves to be amenable for therapeutic intervention to halt ischemia/reperfusion-related diseases. PMID:27308484

  5. Emerging regulatory paradigms in glutathione metabolism.

    PubMed

    Liu, Yilin; Hyde, Annastasia S; Simpson, Melanie A; Barycki, Joseph J

    2014-01-01

    One of the hallmarks of cancer is the ability to generate and withstand unusual levels of oxidative stress. In part, this property of tumor cells is conferred by elevation of the cellular redox buffer glutathione. Though enzymes of the glutathione synthesis and salvage pathways have been characterized for several decades, we still lack a comprehensive understanding of their independent and coordinate regulatory mechanisms. Recent studies have further revealed that overall central metabolic pathways are frequently altered in various tumor types, resulting in significant increases in biosynthetic capacity and feeding into glutathione synthesis. In this review, we will discuss the enzymes and pathways affecting glutathione flux in cancer and summarize current models for regulating cellular glutathione through both de novo synthesis and efficient salvage. In addition, we examine the integration of glutathione metabolism with other altered fates of intermediary metabolites and highlight remaining questions about molecular details of the accepted regulatory modes. PMID:24974179

  6. Emerging regulatory paradigms in glutathione metabolism

    PubMed Central

    Liu, Yilin; Hyde, Annastasia S.; Simpson, Melanie A.; Barycki, Joseph J.

    2015-01-01

    One of the hallmarks of cancer is the ability to generate and withstand unusual levels of oxidative stress. In part, this property of tumor cells is conferred by elevation of the cellular redox buffer glutathione. Though enzymes of the glutathione synthesis and salvage pathways have been characterized for several decades, we still lack a comprehensive understanding of their independent and coordinate regulatory mechanisms. Recent studies have further revealed that overall central metabolic pathways are frequently altered in various tumor types, resulting in significant increases in biosynthetic capacity, and feeding into glutathione synthesis. In this review, we will discuss the enzymes and pathways affecting glutathione flux in cancer, and summarize current models for regulating cellular glutathione through both de novo synthesis and efficient salvage. In addition, we examine the integration of glutathione metabolism with other altered fates of intermediary metabolites, and highlight remaining questions about molecular details of the accepted regulatory modes. PMID:24974179

  7. The Characterizations of Different Splicing Systems

    NASA Astrophysics Data System (ADS)

    Karimi, Fariba; Sarmin, Nor Haniza; Heng, Fong Wan

    The concept of splicing system was first introduced by Head in 1987 to model the biological process of DNA recombination mathematically. This model was made on the basis of formal language theory which is a branch of applied discrete mathematics and theoretical computer science. In fact, splicing system treats DNA molecule and the recombinant behavior by restriction enzymes and ligases in the form of words and splicing rules respectively. The notion of splicing systems was taken into account from different points of view by many mathematicians. Several modified definitions have been introduced by many researchers. In this paper, some properties of different kinds of splicing systems are presented and their relationships are investigated. Furthermore, these results are illustrated by some examples.

  8. Comparison of different Bacillus subtilis expression systems.

    PubMed

    Vavrová, Ludmila; Muchová, Katarína; Barák, Imrich

    2010-11-01

    Bacillus subtilis is considered to have great potential as a host for the production and secretion of recombinant proteins. Many different expression systems have been developed for B. subtilis. Here we compare two widely used expression systems, the IPTG-inducible derivative of spac system (hyper-spank) and the xylose-inducible (xyl) to the SURE (subtilin-regulated gene expression) system. Western blot analysis of the membrane protein SpoIISA together with its protein partner SpoIISB showed that the highest expression level of this complex is obtained using the SURE system. Measurement of β-galactosidase activities of the promoter-lacZ fusions in individual expression systems confirmed that the P(spaS) promoter of the SURE system is the strongest of those compared, although the induction/repression ratio reached only 1.84. Based on these results, we conclude that the SURE system is the most efficient of these three B. subtilis expression systems in terms of the amount of expressed product. Remarkably, the yield of the SpoIISA-SpoIISB complex obtained from B. subtilis was comparable to that normally obtained from the Escherichia coli arabinose-inducible expression system. PMID:20863884

  9. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle.

    PubMed

    Bashri, Gausiya; Prasad, Sheo Mohan

    2016-10-01

    In the present study, effect of exogenous indole-3-acetic acid at their different levels (i.e. low; IAAL, 10µM and high; IAAH, 100µM) were studied on growth, oxidative stress biomarkers and antioxidant enzymes (SOD, POD, CAT and GST), and metabolites (AsA and GSH) as well as enzymes (APX, GR and DHAR) of ascorbate-glutathione cycle in Trigonella foenum-graecum L. seedlings grown under cadmium (Cd1, 3mgCd kg(-1) soil and Cd2, 9mgCd kg(-1) soil) stress. Cadmium (Cd) at both doses caused reduction in growth which was correlated with enhanced lipid peroxidation and damage to membrane as a result of excess accumulation of O2(•-) and H2O2. Cd also enhanced the oxidation of AsA and GSH to DHA and GSSG, respectively which give a clear sign of oxidative stress, despite of accelerated activity of enzymatic antioxidants: SOD, CAT, POD, GST as well as APX, DHAR (except in Cd2 stress) and GR. Exogenous application of IAAL resulted further rise in the activities of these enzymes, and maintained the redox status (> ratios: AsA/DHA and GSH/GSSG) of cells. The maintained redox status of cells under IAAL treatment declined the level of ROS in Cd1 and Cd2 treated seedlings thereby alleviated the Cd toxicity and this effect was more pronounced under Cd1 stress. Contrary to this, exogenous IAAH suppressed the activity of DHAR and GR and disturbed the redox status (< ratios: AsA/DHA and GSH/GSSG) of cells, hence excess accumulation of ROS further aggravated the Cd induced damage. Thus, overall results suggest that IAA at low (IAAL) and high (IAAH) doses affected the Cd toxicity differently by regulating the ascorbate-glutathione cycle as well as activity of other antioxidants in Trigonella seedlings. PMID:27344401

  10. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  11. Human eye color difference threshold measurement system

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhou, Taogeng

    2013-12-01

    The human eye has the ability to distinguish millions of colors, with this feature we can identify very subtle color differences, and the measurement of human eye color difference threshold can provide a visual function diagnosis for testee. In recent years, people begin to focus on studies on visual threshold diagnostic equipment. This paper proposes a human eye color difference threshold measurement system which is based on dual integrating sphere. The system includes two pairs of dual integrating sphere and color control module. Dual integrating sphere uses to mix and produce color, and palette unit which produces primary colors (red (R), green (G), blue (B)) is embedded in dual integrating sphere. At the same time, the embedded palette unit which produces cyan (C), magenta (M), and yellow (Y) expands color area that the system can generate. One optical path based on dual integrating sphere generates standard color, the other path produces the matching color which is similar to a standard color. In the high-precision closed-loop color control module, photoelectric switch records stepper motor's origin position and limits move displacement. Precision stepper motor pushes the light-blocking panel of the palette unit to a predetermined position, while real-time monitoring the position of the light-blocking panel and mixing the ideal controllable color. Two colors that the system generates are projected onto the same target area. Subjects make a judgment on color difference threshold by observing the target eventually.

  12. Systemic risk on different interbank network topologies

    NASA Astrophysics Data System (ADS)

    Lenzu, Simone; Tedeschi, Gabriele

    2012-09-01

    In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.

  13. Informational exchange between different highly organized systems

    NASA Astrophysics Data System (ADS)

    Panovkin, B. N.

    The conditions under which information exchange is possible between different highly organized systems are considered in relation to problems of establishing informational contact with extraterrestrial civilizations. It is pointed out that the basis for mutual understanding among terrestrial societies has been the commonality of the subject relationship to the material and social world, which influences both articulation and cognitive processes. A model of information exchange between highly organized systems (automata) making use of different schemes for the classification of the objects of activity is then examined. It is shown that, in the most favorable case, information exchange is possible between actively interacting systems in direct contact according to a high-rank reflexive game with verification.

  14. Fluorometric microplate assay to measure glutathione S-transferase activity in insects and mites using monochlorobimane.

    PubMed

    Nauen, Ralf; Stumpf, Natascha

    2002-04-15

    Elevated levels of glutathione S-transferases (GSTs) play a major role as a mechanism of resistance to insecticides and acaricides in resistant pest insects and mites, respectively. Such compounds are either detoxicated directly via phase I metabolism or detoxicated by phase II metabolism of metabolites as formed by microsomal monooxygenases. Here we used monochlorobimane (MCB) as an artificial substrate and glutathione to determine total GST activity in equivalents of single pest insects and spider mites in a sensitive 96-well plate-based assay system by measuring the enzymatic conversion of MCB to its fluorescent bimane-glutathione adduct. The differentiation by their GST activity between several strains of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), with different degrees of resistance to numerous acaricides was more sensitive with MCB compared to the commonly used substrate 1-chloro-2,4-dinitrobenzene (CDNB). Compared to an acaricide-susceptible reference strain, one field population of T. urticae showed a more than 10-fold higher GST activity measured with MCB, in contrast to a less than 2-fold higher activity when CDNB was used. Furthermore, we showed that GST activity can be sensitively assessed with MCB in homogenates of pest insects such as Heliothis virescens, Spodoptera frugiperda (Lepidoptera: Noctuidae), Plutella xylostella (Lepidoptera: Yponomeutidae), and Myzus persicae (Hemiptera: Aphididae). PMID:11950219

  15. Hemispheric differences in the mesostriatal dopaminergic system

    PubMed Central

    Molochnikov, Ilana; Cohen, Dana

    2014-01-01

    The mesostriatal dopaminergic system, which comprises the mesolimbic and the nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic functions. Multiple reports suggest that these processes are influenced by hemispheric differences in striatal dopamine (DA) levels, DA turnover and its receptor activity. Here, we review studies which measured the concentration of DA and its metabolites to examine the relationship between DA imbalance and animal behavior under different conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric DA imbalance; determine whether the known anatomy provides a suitable substrate for this imbalance; examine the relationship between DA imbalance and animal behavior; and characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal and the mesolimbic DA systems. We conclude that many studies provide supporting evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system. Nonetheless, a variety of brain and behavioral manipulations demonstrate that the nigrostriatal system displays symmetrical laterality whereas the mesolimbic system displays asymmetrical laterality which supports hemispheric specialization in rodents. The reciprocity of the relationship between DA imbalance and animal behavior (i.e., the capacity of animal training to alter DA imbalance for prolonged time periods) remains controversial, however, if confirmed, it may provide a valuable non-invasive therapeutic means for treating abnormal DA imbalance. PMID:24966817

  16. Balneotherapy and platelet glutathione metabolism in type II diabetic patients

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Agishi, Yuko

    1996-09-01

    Effects of balneotherapy on platelet glutathione metabolism were investigated in 12 type II (non-insulin-dependent) diabetic patients. Levels of the reduced form of glutathione (GSH) on admission were well correlated with those of fasting plasma glucose (FPG; r=0.692, P<0.02). After 4 weeks of balneotherapy, the mean level of GSH showed no changes; however, in well-controlled patients (FPG <150 mg/dl), the level increased ( P<0.01) and in poorly controlled patients (FPG >150 mg/dl), the value decreased ( P<0.05). There was a negative correlation between glutathione peroxidase (GPX) activities and the levels of FPG ( r=-0.430, P<0.05). After balneotherapy, the activity increased in 5 patients, decreased in 3 patients and showed no changes (alteration within ±3%) in all the other patients. From these findings in diabetic patients we concluded: (1) platelet GSH synthesis appeared to be induced in response to oxidative stress; (2) lowered GPX activities indicated that the antioxidative defense system was impaired; and (3) platelet glutathione metabolism was partially improved by 4 weeks balneotherapy, an effect thought to be dependent on the control status of plasma glucose levels. It is suggested that balneotherapy is beneficial for patients whose platelet antioxidative defense system is damaged, such as those with diabetes mellitus and coronary heart disease.

  17. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... PubMed Njålsson R. Glutathione synthetase deficiency. Cell Mol Life Sci. 2005 Sep;62(17):1938-45. Review. Citation on PubMed Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007 Mar 30;2:16. Review. Citation on PubMed or ...

  18. Storage of Heparinised Canine Whole Blood for the Measurement of Glutathione Peroxidase Activity.

    PubMed

    van Zelst, Mariëlle; Hesta, Myriam; Gray, Kerry; Janssens, Geert P J

    2016-08-01

    Glutathione peroxidase activity is used as a biomarker of selenium status in dogs. Freshly collected blood samples are usually measured, due to the lack of knowledge on the effect of storing the samples. This study investigated if the analysis of glutathione peroxidase activity in whole blood collected from dogs was affected by storage of between 5 and 164 days. Results indicated that glutathione peroxidase activity was more variable in the freshly analysed samples compared to the stored samples. Although the mean differences between fresh and stored samples were not always equal to zero, this is thought to be caused by the variability of reagent preparation rather than by storage, as no consistent increase or decrease in glutathione peroxidase activity was found. Therefore, it can be concluded that heparinised dog blood samples can be successfully stored up to 164 days before analysis of glutathione peroxidase activity. PMID:26701335

  19. Glutathione and GSH-dependent enzymes in bronchoalveolar lavage fluid cells in response to ozone

    SciTech Connect

    Boehme, D.S.; Hotchkiss, J.A.; Henderson, R.F. )

    1992-02-01

    The purpose of this study was to determine if in vivo ozone exposure results in elevations in the levels of glutathione and glutathione-dependent enzymes in cells derived from bronchoalveolar lavage fluid (BALF). Our hypothesis was that, as part of a defense mechanism against oxygen toxicity, such cells would have increased levels of glutathione (GSH) in response to an oxidant stress. Female F344/N rats were exposed to 0.8 ppm ozone, 6 hr/day, for 1, 3, or 7 days, after which cells were collected by lung lavage. The GSH and GSH-peroxidase activity per milligram of protein in the cellular fraction, both necessary for reducing cellular peroxides, were elevated after 3 days of ozone exposure. After 7 days of exposure, cellular GSH had returned to control values, but the activity of glutathione reductase, the enzyme that reduces oxidized glutathione to GSH, was increased. Extracellular GSH concentration and glutathione reductase activity in BALF were also increased after 7 days of exposure. The total glutathione equivalents (GSH and GSSG, both cellular and extracellular) in BALF increased throughout the 7-day exposure, with GSH increasing first in the cells, and then in the extracellular fluid. This study demonstrated that the glutathione anti-oxidant system of BALF cells is stimulated by exposure to ozone. This response may serve to protect cells from the toxic effects of oxidant stress.

  20. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals

    PubMed Central

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E.; Ortiz, Rudy M.

    2011-01-01

    SUMMARY Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin–angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40–50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals. PMID:21430206

  1. Glutathione level after long-term occupational elemental mercury exposure

    SciTech Connect

    Kobal, Alfred Bogomir Prezelj, Marija; Horvat, Milena; Krsnik, Mladen; Gibicar, Darija; Osredkar, Josko

    2008-05-15

    Many in vitro and in vivo studies have elucidated the interaction of inorganic mercury (Hg) and glutathione. However, human studies are limited. In this study, we investigated the potential effects of remote long-term intermittent occupational elemental Hg vapour (Hg{sup o}) exposure on erythrocyte glutathione levels and some antioxidative enzyme activities in ex-mercury miners in the period after exposure. The study included 49 ex-mercury miners divided into subgroups of 28 still active, Hg{sup o}-not-exposed miners and 21 elderly retired miners, and 41 controls, age-matched to the miners subgroup. The control workers were taken from 'mercury-free works'. Reduced glutathione (GSH) and oxidized disulphide glutathione (GSSG) concentrations in haemolysed erythrocytes were determined by capillary electrophoresis, while total glutathione (total GSH) and the GSH/GSSG ratio were calculated from the determined values. Catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in erythrocytes were measured using commercially available reagent kits, while urine Hg (U-Hg) concentrations were determined by cold vapour atomic absorption (CVAAS). No correlation of present U-Hg levels, GSH, GSSG, and antioxidative enzymes with remote occupational biological exposure indices were found. The mean CAT activity in miners and retired miners was significantly higher (p<0.05) than in the controls. No differences in mean GPx activity among the three groups were found, whereas the mean GR activity was significantly higher (p<0.05) in miners than in retired miners. The mean concentrations of GSH (mmol/g Hb) in miners (13.03{+-}3.71) were significantly higher (p<0.05) than in the control group (11.68{+-}2.66). No differences in mean total GSH, GSSG levels, and GSH/GSSG ratio between miners and controls were found. A positive correlation between GSSG and present U-Hg excretion (r=0.41, p=0.001) in the whole group of ex-mercury miners was observed. The

  2. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress.

    PubMed

    Wu, Zhichao; Zhao, Xiaohu; Sun, Xuecheng; Tan, Qiling; Tang, Yafang; Nie, Zhaojun; Qu, Chanjuan; Chen, Zuoxin; Hu, Chengxiao

    2015-11-01

    Oilseed rape (Brassica napus L.) with high tolerance to cadmium (Cd) may be used in the phytoremediation of Cd-contaminated fields. However, the mechanisms responsible for Cd accumulation and tolerance in oilseed rape are still poorly understood. Here, we investigated the physiological and molecular processes involved in Cd tolerance of two oilseed rape cultivars with different Cd accumulation abilities. The total Cd accumulation in cultivar L351 was higher than cultivar L338, particularly with increasing concentrations of Cd exposure. L338 was a more pronounced Cd-sensitive cultivar than L351, while higher activities of antioxidant enzymes (CAT, APX, GR, DHAR) as well as higher contents of GSH and AsA were all observed in L351 under Cd treatments, especially at high levels. No differences were found in SOD activities between the two cultivars under the same Cd treatments, suggesting that SOD was not the key factor in relation to the differences of Cd tolerance and accumulation between them. Gene expression levels of BnFe-SOD, BnCAT, BnAPX, BcGR and BoDHAR in roots of L351 were relatively higher than that in L338 under Cd exposure as well as BnCAT and BcGR in leaves. It is concluded that antioxidant enzymes and the ascorbate-glutathione cycle play important roles in oilseed rape Cd accumulation and tolerance. PMID:26207887

  3. Different approaches to contracting in health systems.

    PubMed Central

    Perrot, Jean

    2006-01-01

    Contracting is one of the tools increasingly being used to enhance the performance of health systems in both developed and developing countries; it takes different forms and cannot be limited to the mere purchase of services. Actors adopt contracting to formalize all kinds of relations established between them. A typology for this approach will demonstrate its diversity and provide a better understanding of the various issues raised by contracting. In recent years the way health systems are organized has changed significantly. To remedy the under-performance of their health systems, most countries have undertaken reforms that have resulted in major institutional overhaul, including decentralization of health and administrative services, autonomy for public service providers, separation of funding bodies and service providers, expansion of health financing options and the development of the profit or nonprofit private sector. These institutional reshuffles lead not only to multiplication and diversification of the actors involved, but also to greater separation of the service provision and administrative functions. Health systems are becoming more complex and can no longer operate in isolation. Actors are gradually realizing that they need to forge relations. The simplest way to do that is through dialogue, although some prefer a more formal commitment. Interaction between actors may take various forms and be on different scales. There are several types of contractual relations: some are based on the nature of the contract (public or private), others on the parties involved and yet others on the scope of the contract. Here they are classified into three categories according to the object of the contract: delegation of responsibility, act of purchase of services, or cooperation. PMID:17143459

  4. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei.

    PubMed

    Pettersson, Eva U; Ljunggren, Erland L; Morrison, David A; Mattsson, Jens G

    2005-01-01

    The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase. PMID:15619514

  5. The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels.

    PubMed

    Xiang, C; Werner, B L; Christensen, E M; Oliver, D J

    2001-06-01

    A functional analysis of the role of glutathione in protecting plants from environmental stress was undertaken by studying Arabidopsis that had been genetically modified to have altered glutathione levels. The steady-state glutathione concentration in Arabidopsis plants was modified by expressing the cDNA for gamma-glutamyl-cysteine synthetase (GSH1) in both the sense and antisense orientation. The resulting plants had glutathione levels that ranged between 3% and 200% of the level in wild-type plants. Arabidopsis plants with low glutathione levels were hypersensitive to Cd due to the limited capacity of these plants to make phytochelatins. Plants with the lowest levels of reduced glutathione (10% of wild type) were sensitive to as little as 5 microM Cd, whereas those with 50% wild-type levels required higher Cd concentrations to inhibit growth. Elevating glutathione levels did not increase metal resistance. It is interesting that the plants with low glutathione levels were also less able to accumulate anthocyanins supporting a role for glutathione S-transferases for anthocyanin formation or for the vacuolar localization and therefore accumulation of these compounds. Plants with less than 5% of wild-type glutathione levels were smaller and more sensitive to environmental stress but otherwise grew normally. PMID:11402187

  6. The antioxidant master glutathione and periodontal health

    PubMed Central

    Bains, Vivek Kumar; Bains, Rhythm

    2015-01-01

    Glutathione, considered to be the master antioxidant (AO), is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH) in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials. PMID:26604952

  7. Alcoholism: the role of different motivational systems.

    PubMed Central

    Pihl, R O; Peterson, J B

    1995-01-01

    Individuals use and misuse alcohol (and other drugs) because of the pharmacologically mediated effects these substances have on the operation of 4 psychobiological systems, mediating response to motivationally relevant unconditioned and conditioned stimuli. These 4 systems have unique neuroanatomical structure, biochemical modes of operation, association with affect, behavior and cognition, and responsiveness to drugs of abuse. Individual variation in the operation of these systems determines individual susceptibility to initiation and maintenance of drug use and abuse. Sources of such variation differ, in a vitally important fashion, in various specific populations of individuals at heightened risk for drug abuse. Nonalcoholic sons of male alcoholics, with multigenerational family histories of male alcoholism, appear to be at heightened risk for the development of alcohol abuse because alcohol eliminates their heightened response to threat, and because they are hypersensitive to ethanol's psychomotor stimulant effects. Anxiety-sensitive individuals also appear attracted to alcohol for its anxiolytic properties. Many other important sources of idiosyncratic variability exist. Detailed analysis of such sources may lead to the development of more effective prevention and treatment programs. Images Figure 7 PMID:8527424

  8. Identification of Small-Molecule Frequent Hitters of Glutathione S-Transferase-Glutathione Interaction.

    PubMed

    Brenke, Jara K; Salmina, Elena S; Ringelstetter, Larissa; Dornauer, Scarlett; Kuzikov, Maria; Rothenaigner, Ina; Schorpp, Kenji; Giehler, Fabian; Gopalakrishnan, Jay; Kieser, Arnd; Gul, Sheraz; Tetko, Igor V; Hadian, Kamyar

    2016-07-01

    In high-throughput screening (HTS) campaigns, the binding of glutathione S-transferase (GST) to glutathione (GSH) is used for detection of GST-tagged proteins in protein-protein interactions or enzyme assays. However, many false-positives, so-called frequent hitters (FH), arise that either prevent GST/GSH interaction or interfere with assay signal generation or detection. To identify GST-FH compounds, we analyzed the data of five independent AlphaScreen-based screening campaigns to classify compounds that inhibit the GST/GSH interaction. We identified 53 compounds affecting GST/GSH binding but not influencing His-tag/Ni(2+)-NTA interaction and general AlphaScreen signals. The structures of these 53 experimentally identified GST-FHs were analyzed in chemoinformatic studies to categorize substructural features that promote interference with GST/GSH binding. Here, we confirmed several existing chemoinformatic filters and more importantly extended them as well as added novel filters that specify compounds with anti-GST/GSH activity. Selected compounds were also tested using different antibody-based GST detection technologies and exhibited no interference clearly demonstrating specificity toward their GST/GSH interaction. Thus, these newly described GST-FH will further contribute to the identification of FH compounds containing promiscuous substructures. The developed filters were uploaded to the OCHEM website (http://ochem.eu) and are publicly accessible for analysis of future HTS results. PMID:27044684

  9. Forward masking in different cochlear implant systems

    NASA Astrophysics Data System (ADS)

    Boëx, Colette; Kós, Maria-Izabel; Pelizzone, Marco

    2003-10-01

    The goal of this study was to evaluate, from a psychophysical standpoint, the neural spread of excitation produced by the stimulation of different types of intracochlear electrode arrays: the Ineraid™, the Clarion™ S-Series on its own or with the Electrode Positioning System (EPS), and the Clarion™ HiFocus-I with the EPS. The EPS is an independent silicone part designed to bring the electrode array close to the modiolus. Forward masking was evaluated in 12 adult subjects (3 Ineraid™, 4 Clarion™ S-Series, 3 Clarion™ S-Series+EPS, 3 HiFocus-I+EPS) by psychophysical experiments conducted using trains of biphasic stimuli (813 pulses per second, 307.6 μs/phase). Masker signals (+8 dB re: threshold, 300 ms) were applied to the most apical electrode. Probe signals (30 ms, 10-ms postmasker) were delivered to more basal electrodes. Masked and unmasked detection thresholds of probe signals were measured. For both Clarion™ HiFocus-I subjects, measurements were conducted in both monopolar and bipolar stimulus configurations. No major differences were found in forward masking between the different intracochlear electrode arrays tested in the monopolar configuration at suprathreshold levels equivalent to those used in speech-coding strategies, but significant differences were found between subjects. A significant negative correlation also was found between the level of forward masking and the consonant identification performance. These measurements showed that the neural spread of excitation was more restricted in the bipolar configuration than in the monopolar configuration for HiFocus-I subjects. It was found that CIS strategies implemented without using apical electrodes, which showed high levels of masking, could improve consonant identification.

  10. Noise effects in two different biological systems

    NASA Astrophysics Data System (ADS)

    Spagnolo, B.; Spezia, S.; Curcio, L.; Pizzolato, N.; Fiasconaro, A.; Valenti, D.; Lo Bue, P.; Peri, E.; Colazza, S.

    2009-05-01

    We investigate the role of the colored noise in two biological systems: (i) adults of Nezara viridula (L.) (Heteroptera: Pentatomidae), and (ii) polymer translocation. In the first system we analyze, by directionality tests, the response of N. viridula individuals to subthreshold signals plus noise in their mating behaviour. The percentage of insects that react to the subthreshold signal shows a nonmonotonic behaviour, characterized by the presence of a maximum, as a function of the noise intensity. This is the signature of the non-dynamical stochastic resonance phenomenon. By using a “soft” threshold model we find that the maximum of the input-output cross correlation occurs in the same range of noise intensity values for which the behavioural activation of the insects has a maximum. Moreover this maximum value is lowered and shifted towards higher noise intensities, compared to the case of white noise. In the second biological system the noise driven translocation of short polymers in crowded solutions is analyzed. An improved version of the Rouse model for a flexible polymer is adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and the effects of a Lennard-Jones potential between all beads. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion in the presence of thermal fluctuations and a colored noise source. At low temperatures or for strong colored noise intensities the translocation process of the polymer chain is delayed. At low noise intensity, as the polymer length increases, we find a nonmonotonic behaviour for the mean first translocation time of the polymer centre of inertia. We show how colored noise influences the motion of short polymers, by inducing two different regimes of translocation in the dynamics of molecule transport.

  11. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  12. [PATOGENETIC VALUE OF VIOLATIONS FROM GLUTATHIONE SYSTEM AT THE PATIENTS WITH NONALCOHOLIC STEATOHEPATITIS ON A BACKGROUND OF DIABETES MELLITUS TYPE II].

    PubMed

    Sotskaya, Ya A; Homutyanskaya, N I; Dolgopolova, E V; Salamekh, K A

    2015-01-01

    At the patients with nonalcoholic steatohepatitis on a background of diabetes mellitus type II, after completion of the generally accepted medical treatment there was no normalization of indexes of the glutation system (the level of recovered glutation and activity of enzymes the glutation redox-system was saved decreased), that in a clinical plan was represented in.a presence unstable clinical and biochemical remission of disease. PMID:27491150

  13. Sex differences in the cellular defence system against free radicals from oxygen or drug metabolites in rat.

    PubMed

    Julicher, R H; Sterrenberg, L; Haenen, G R; Bast, A; Noordhoek, J

    1984-12-01

    In this study, it was investigated whether sex-related differences in the protective mechanisms against oxygen radicals and free radical metabolites from drugs were present in rat liver, heart, and kidney. To that end, superoxide dismutase, catalase, the factors of the glutathione system and vitamin E were measured. In addition, NADPH-dependent cytochrome c-reductase activity was established, as this enzyme is involved in the formation of free radicals in the presence of many xenobiotics. The total capacity of the cellular systems that detoxify reactive oxygen species or free radical-drug metabolites seems to be higher in female liver as compared to male. No differences were found for heart and kidney tissue. It is hypothesized that female rats probably are less vulnerable for those drugs whose hepatotoxic action is induced by excessive formation of free radical species. PMID:6442559

  14. Evaluation of lenticular antioxidant and redox system components in the lenses of acetyl-L-carnitine treatment in BSO-induced glutathione deprivation

    PubMed Central

    Elanchezhian, R.; Sakthivel, M.; Isai, M.; Thomas, P.A.

    2009-01-01

    Purpose To investigate whether acetyl-L-carnitine (ALCAR) retards L-buthionine-(S,R)-sulfoximine (BSO)-induced cataractogenesis in Wistar rat pups. Methods On postpartum day 3, group I pups received intraperitoneal (ip) saline and group II and group III pups received i.p. injections of BSO once daily for three consecutive days. In addition, group III pups received ip ALCAR once daily from postpartum days 3–15. Both eyes of each pup were examined up from postpartum day 16 to day 30. After sacrifice, extricated pup lenses were analyzed for antioxidant and redox system components. Results There was dense lenticular opacification in all group II pups, minimal opacification in 40% of group III pups, and no opacification in 60% of group III pups and in all of group I pups. Group II lenses exhibited significantly lower values of antioxidant and redox system components and higher malondialdehyde concentrations than in group I or group III lenses. Conclusions ALCAR prevents cataractogenesis in the BSO-induced cataract model, possibly by inhibiting depleting antioxidant enzyme and redox system components and inhibiting lipid peroxidation. PMID:19649174

  15. Transport of Glutathione Diethyl Ester Into Human Cells

    NASA Astrophysics Data System (ADS)

    Levy, Ellen J.; Anderson, Mary E.; Meister, Alton

    1993-10-01

    Glutathione monoesters in which the carboxyl group of the glycine residue is esterified were previously found, in contrast to glutathione itself, to be effectively transported into various types of cells and to be converted intracellularly into glutathione. Glutathione monoesters are thus useful for prevention of oxidative stress, certain toxicities, and for treatment of glutathione deficiency. Glutathione diethyl ester is rapidly split to the glutathione monoethyl ester by mouse plasma glutathione diester α-esterase activity. Thus, as expected, glutathione mono- and diesters have similar effects on cellular glutathione levels in mice. However, human plasma lacks glutathione diester α-esterase thus, it became of interest to compare the transport properties of glutathione mono- and diesters in human cells. We found that human cells (erythrocytes, peripheral blood mononuclear cells, fibroblasts, ovarian tumor cells, and purified T cells) transport glutathione diethyl ester much more effectively than the corresponding monoethyl (glycyl) ester. Human cells rapidly convert glutathione diethyl ester to the monoester, whose intracellular levels rise to levels that are significantly higher than levels found after application of the monoester to the cells. High levels of the monoester provide the cells with a means of producing glutathione over a period of time. We conclude that glutathione diethyl ester is highly effective as a delivery agent for glutathione monoester, and thus for glutathione, in human cells and therefore could serve to decrease oxidative stress and toxicity. Hamster (and certain other animals) also lack plasma glutathione diester α-esterase and therefore would be suitable animal models. Previously reported toxicity of certain glutathione ester preparations appears to reflect the presence of impurities rather than effects of the esters.

  16. Study of Linkage between Glutathione Pathway and the Antibiotic Resistance of Escherichia coli from Patients’ Swabs

    PubMed Central

    Kominkova, Marketa; Michalek, Petr; Cihalova, Kristyna; Guran, Roman; Cernei, Natalia; Nejdl, Lukas; Smerkova, Kristyna; Dostalova, Simona; Chudobova, Dagmar; Heger, Zbynek; Vesely, Radek; Gumulec, Jaromir; Kynicky, Jindrich; Xhaxhiu, Kledi; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    In this work, we focused on the differences between bacterial cultures of E. coli obtained from swabs of infectious wounds of patients compared to laboratory E. coli. In addition, blocking of the protein responsible for the synthesis of glutathione (γ-glutamylcysteine synthase—GCL) using 10 mM buthionine sulfoximine was investigated. Each E. coli showed significant differences in resistance to antibiotics. According to the determined resistance, E. coli were divided into experimental groups based on a statistical evaluation of their properties as more resistant and more sensitive. These groups were also used for finding the differences in a dependence of the glutathione pathway on resistance to antibiotics. More sensitive E. coli showed the same kinetics of glutathione synthesis while blocking GCL (Km 0.1 µM), as compared to non-blocking. In addition, the most frequent mutations in genes of glutathione synthetase, glutathione peroxidase and glutathione reductase were observed in this group compared to laboratory E.coli. The group of “more resistant” E. coli exhibited differences in Km between 0.3 and 0.8 µM. The number of mutations compared to the laboratory E. coli was substantially lower compared to the other group. PMID:25837469

  17. Study of linkage between glutathione pathway and the antibiotic resistance of Escherichia coli from patients' swabs.

    PubMed

    Kominkova, Marketa; Michalek, Petr; Cihalova, Kristyna; Guran, Roman; Cernei, Natalia; Nejdl, Lukas; Smerkova, Kristyna; Dostalova, Simona; Chudobova, Dagmar; Heger, Zbynek; Vesely, Radek; Gumulec, Jaromir; Kynicky, Jindrich; Xhaxhiu, Kledi; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    In this work, we focused on the differences between bacterial cultures of E. coli obtained from swabs of infectious wounds of patients compared to laboratory E. coli. In addition, blocking of the protein responsible for the synthesis of glutathione (γ-glutamylcysteine synthase-GCL) using 10 mM buthionine sulfoximine was investigated. Each E. coli showed significant differences in resistance to antibiotics. According to the determined resistance, E. coli were divided into experimental groups based on a statistical evaluation of their properties as more resistant and more sensitive. These groups were also used for finding the differences in a dependence of the glutathione pathway on resistance to antibiotics. More sensitive E. coli showed the same kinetics of glutathione synthesis while blocking GCL (Km 0.1 µM), as compared to non-blocking. In addition, the most frequent mutations in genes of glutathione synthetase, glutathione peroxidase and glutathione reductase were observed in this group compared to laboratory E.coli. The group of "more resistant" E. coli exhibited differences in Km between 0.3 and 0.8 µM. The number of mutations compared to the laboratory E. coli was substantially lower compared to the other group. PMID:25837469

  18. Lectin-Gated, Mesoporous, Photofunctionalized Glyconanoparticles for Glutathione-Responsive Drug Delivery

    PubMed Central

    Zhou, Juan; Hao, Nanjing; De Zoyza, Thareendra; Yan, Mingdi

    2015-01-01

    A stimuli-responsive drug delivery system based on fluorescent, lectin-gated, mesoporous glyconanoparticles has been developed and evaluated in normal- and cancer lung epithelial cells. The gating process proved efficient, exhibiting good sealing properties in the absence of the glutathione redox trigger, avoiding premature release in normal cells. In the presence of higher levels of glutathione in cancer cells, the lectin gate was rapidly opened and the anticancer drug released. PMID:25989158

  19. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice.

    PubMed

    Hovatta, Iiris; Tennant, Richard S; Helton, Robert; Marr, Robert A; Singer, Oded; Redwine, Jeffrey M; Ellison, Julie A; Schadt, Eric E; Verma, Inder M; Lockhart, David J; Barlow, Carrolee

    2005-12-01

    Anxiety and fear are normal emotional responses to threatening situations. In human anxiety disorders--such as panic disorder, obsessive-compulsive disorder, post-traumatic stress disorder, social phobia, specific phobias and generalized anxiety disorder--these responses are exaggerated. The molecular mechanisms involved in the regulation of normal and pathological anxiety are mostly unknown. However, the availability of different inbred strains of mice offers an excellent model system in which to study the genetics of certain behavioural phenotypes. Here we report, using a combination of behavioural analysis of six inbred mouse strains with quantitative gene expression profiling of several brain regions, the identification of 17 genes with expression patterns that correlate with anxiety-like behavioural phenotypes. To determine if two of the genes, glyoxalase 1 and glutathione reductase 1, have a causal role in the genesis of anxiety, we performed genetic manipulation using lentivirus-mediated gene transfer. Local overexpression of these genes in the mouse brain resulted in increased anxiety-like behaviour, while local inhibition of glyoxalase 1 expression by RNA interference decreased the anxiety-like behaviour. Both of these genes are involved in oxidative stress metabolism, linking this pathway with anxiety-related behaviour. PMID:16244648

  20. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  1. Interaction between vitamin B6 and source of selenium on the response of the selenium-dependent glutathione peroxidase system to oxidative stress induced by oestrus in pubertal pig.

    PubMed

    Dalto, Danyel Bueno; Roy, Mélanie; Audet, Isabelle; Palin, Marie-France; Guay, Frédéric; Lapointe, Jérôme; Matte, J Jacques

    2015-10-01

    This study aimed to assess the interaction between vitamin B6 and selenium (Se) for the flow of Se towards the Se-dependent glutathione peroxidase (GPX) system in response to oxidative stress naturally induced by oestrus in a pubertal pig model. At first oestrus, forty-five gilts were randomly assigned to the experimental diets (n=9/group): basal diet (CONT); CONT+0.3mg/kg of Na-selenite (MSeB60); MSeB60+10mg/kg of HCl-B6 (MSeB610); CONT+0.3mg/kg of Se-enriched yeast (OSeB60); and OSeB60+10mg/kg of HCl-B6 (OSeB610). Blood samples were collected at each oestrus (long-term profiles), and daily from day -4 to +3 (slaughter) of the fourth oestrus (peri-oestrus profiles) after which liver, kidneys, and ovaries were collected. For long-term profiles, CONT had lower blood Se than Se-supplemented gilts (p<0.01) and OSe was higher than MSe (p<0.01). Lower erythrocyte pyridoxal-5-phosphate was found in B60 than B610 (p<0.01). No treatment effect was observed on GPX activity. For peri-oestrus profiles, treatment effects were similar to long-term profiles. Treatment effects on liver Se were similar to those for long-term blood Se profiles and OSe had higher renal Se concentrations than MSe gilts (p<0.01). Gene expressions of GPX1, GPX3, GPX4, and selenocysteine lyase in liver and kidney were greatest in OSeB610 gilts (p<0.05). These results suggest that dietary B6 modulate the metabolic pathway of OSe towards the GPX system during the peri-oestrus period in pubertal pigs. PMID:26302908

  2. Hen welfare in different housing systems.

    PubMed

    Lay, D C; Fulton, R M; Hester, P Y; Karcher, D M; Kjaer, J B; Mench, J A; Mullens, B A; Newberry, R C; Nicol, C J; O'Sullivan, N P; Porter, R E

    2011-01-01

    Egg production systems have become subject to heightened levels of scrutiny. Multiple factors such as disease, skeletal and foot health, pest and parasite load, behavior, stress, affective states, nutrition, and genetics influence the level of welfare hens experience. Although the need to evaluate the influence of these factors on welfare is recognized, research is still in the early stages. We compared conventional cages, furnished cages, noncage systems, and outdoor systems. Specific attributes of each system are shown to affect welfare, and systems that have similar attributes are affected similarly. For instance, environments in which hens are exposed to litter and soil, such as noncage and outdoor systems, provide a greater opportunity for disease and parasites. The more complex the environment, the more difficult it is to clean, and the larger the group size, the more easily disease and parasites are able to spread. Environments such as conventional cages, which limit movement, can lead to osteoporosis, but environments that have increased complexity, such as noncage systems, expose hens to an increased incidence of bone fractures. More space allows for hens to perform a greater repertoire of behaviors, although some deleterious behaviors such as cannibalism and piling, which results in smothering, can occur in large groups. Less is understood about the stress that each system imposes on the hen, but it appears that each system has its unique challenges. Selective breeding for desired traits such as improved bone strength and decreased feather pecking and cannibalism may help to improve welfare. It appears that no single housing system is ideal from a hen welfare perspective. Although environmental complexity increases behavioral opportunities, it also introduces difficulties in terms of disease and pest control. In addition, environmental complexity can create opportunities for the hens to express behaviors that may be detrimental to their welfare. As a

  3. Maintaining good hearing: calorie restriction, Sirt3, and glutathione.

    PubMed

    Han, Chul; Someya, Shinichi

    2013-10-01

    Reducing calorie intake extends the lifespan of a variety of experimental models and delays progression of age-related hearing loss (AHL). AHL is a common feature of aging and is characterized by age-related decline of hearing associated with loss of sensory hair cells, spiral ganglion neurons, and/or stria vascularis degeneration in the cochlea. Sirtuins are a family of NAD(+)-dependent enzymes that regulate lifespan in lower organisms and have emerged as broad regulators of cellular fate. Our recent study indicated that mitochondrial Sirt3, a member of the sirtuin family, mediates the anti-aging effects of calorie restriction (CR) on AHL in mice. Interestingly, we also found that weight loss alone may not be sufficient for maintaining normal hearing. How does CR slow the progression of AHL through regulation of Sirt3? Here we review the evidence that during CR, Sirt3 slows the progression of AHL by promoting the glutathione-mediated mitochondrial antioxidant defense system in mice. A significant reduction in food consumption in one's daily life may not be a desirable and realistic option for most people. Therefore, identification/discovery of compounds that induce the activation of SIRT3 or glutathione reductase, or that increase mitochondrial glutathione levels has potential for maintaining good hearing through mimicking the anti-aging effects of CR in human inner ear cells. PMID:23454634

  4. A Glutathione-Nrf2-Thioredoxin Cross-Talk Ensures Keratinocyte Survival and Efficient Wound Repair

    PubMed Central

    Telorack, Michèle; Meyer, Michael; Ingold, Irina; Conrad, Marcus; Bloch, Wilhelm; Werner, Sabine

    2016-01-01

    The tripeptide glutathione is the most abundant cellular antioxidant with high medical relevance, and it is also required as a co-factor for various enzymes involved in the detoxification of reactive oxygen species and toxic compounds. However, its cell-type specific functions and its interaction with other cytoprotective molecules are largely unknown. Using a combination of mouse genetics, functional cell biology and pharmacology, we unraveled the function of glutathione in keratinocytes and its cross-talk with other antioxidant defense systems. Mice with keratinocyte-specific deficiency in glutamate cysteine ligase, which catalyzes the rate-limiting step in glutathione biosynthesis, showed a strong reduction in keratinocyte viability in vitro and in the skin in vivo. The cells died predominantly by apoptosis, but also showed features of ferroptosis and necroptosis. The increased cell death was associated with increased levels of reactive oxygen and nitrogen species, which caused DNA and mitochondrial damage. However, epidermal architecture, and even healing of excisional skin wounds were only mildly affected in the mutant mice. The cytoprotective transcription factor Nrf2 was strongly activated in glutathione-deficient keratinocytes, but additional loss of Nrf2 did not aggravate the phenotype, demonstrating that the cytoprotective effect of Nrf2 is glutathione dependent. However, we show that deficiency in glutathione biosynthesis is efficiently compensated in keratinocytes by the cysteine/cystine and thioredoxin systems. Therefore, our study highlights a remarkable antioxidant capacity of the epidermis that ensures skin integrity and efficient wound healing. PMID:26808544

  5. A Glutathione-Nrf2-Thioredoxin Cross-Talk Ensures Keratinocyte Survival and Efficient Wound Repair.

    PubMed

    Telorack, Michèle; Meyer, Michael; Ingold, Irina; Conrad, Marcus; Bloch, Wilhelm; Werner, Sabine

    2016-01-01

    The tripeptide glutathione is the most abundant cellular antioxidant with high medical relevance, and it is also required as a co-factor for various enzymes involved in the detoxification of reactive oxygen species and toxic compounds. However, its cell-type specific functions and its interaction with other cytoprotective molecules are largely unknown. Using a combination of mouse genetics, functional cell biology and pharmacology, we unraveled the function of glutathione in keratinocytes and its cross-talk with other antioxidant defense systems. Mice with keratinocyte-specific deficiency in glutamate cysteine ligase, which catalyzes the rate-limiting step in glutathione biosynthesis, showed a strong reduction in keratinocyte viability in vitro and in the skin in vivo. The cells died predominantly by apoptosis, but also showed features of ferroptosis and necroptosis. The increased cell death was associated with increased levels of reactive oxygen and nitrogen species, which caused DNA and mitochondrial damage. However, epidermal architecture, and even healing of excisional skin wounds were only mildly affected in the mutant mice. The cytoprotective transcription factor Nrf2 was strongly activated in glutathione-deficient keratinocytes, but additional loss of Nrf2 did not aggravate the phenotype, demonstrating that the cytoprotective effect of Nrf2 is glutathione dependent. However, we show that deficiency in glutathione biosynthesis is efficiently compensated in keratinocytes by the cysteine/cystine and thioredoxin systems. Therefore, our study highlights a remarkable antioxidant capacity of the epidermis that ensures skin integrity and efficient wound healing. PMID:26808544

  6. [Ascorbate-glutathione cycle enzymes activity in Zea mays leaves under salinity and treatment by adaptogenic compounds].

    PubMed

    Konturs'ka, O O; Palladina, T O

    2012-01-01

    The effect of different salinity levels and synthetic compounds treatments on ascorbate-glutathione cycle enzymes activity in maize leaves has been investigated. One-day seedlings exposition with 0.05 M NaCl increased ascorbate peroxidase activity, whereas 10-day exposition did not affect it. However the exposition with 0.1 M NaCl, which is extreme for maize, decreased ascorbate peroxidase activity in leaves during 10 days. On the other hand glutathione reductase activity in leaves increased under both salt concentrations. Seeds treatments with Methyure and Ivine increased ascorbate peroxidase activity in the leaves of seedlings under 0.1 M NaCl, but did not affect glutathione reductase activity as compared to the salt control. The results obtained have shown differences of ascorbate-glutathione cycle enzymes responses to salt exposition of seedlings and the effects of adaptogenic compounds on the ascorbate-glutathione cycle via ascorbate peroxidase activation. PMID:23387279

  7. Glutathione Metabolism and Parkinson’s Disease

    PubMed Central

    Smeyne, Michelle

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395

  8. Synergy between different electromagnetic-protection systems

    NASA Astrophysics Data System (ADS)

    Boudenot, J. C.

    1990-04-01

    A new approach to electromagnetic-protection (EP) design is presented. The EP problem for large structures has been shown to be strongly dependent on the various types of electromagnetic constraints (NEMP, lightning, EMC, TEMPEST). Even though the types of protection systems that can be applied are limited, the characteristics of these systems show a potential for synergism in the treatment of the EP. It is shown that, in order to take advantange of this potential synergism and to achieve the best cost-effective design, an early analysis of the protection scenario is required.

  9. Hen Welfare in Different Housing Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egg production systems have become subject to heightened levels of scrutiny due to animal welfare concerns. Multiple factors such as disease, skeletal and foot health, pest and parasite load, behavior, stress, affective states, nutrition, and genetics influence the level of welfare laying hens exper...

  10. Hen Welfare in Different Housing Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the public has begun to question the conditions under which intensively-managed livestock are housed. As a consequence of this concern, animal production practices, including egg production systems, have become subject to heightened levels of scrutiny. Animal welfare issues lie at the he...

  11. Glutathione metabolism and its implications for health.

    PubMed

    Wu, Guoyao; Fang, Yun-Zhong; Yang, Sheng; Lupton, Joanne R; Turner, Nancy D

    2004-03-01

    Glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is the most abundant low-molecular-weight thiol, and GSH/glutathione disulfide is the major redox couple in animal cells. The synthesis of GSH from glutamate, cysteine, and glycine is catalyzed sequentially by two cytosolic enzymes, gamma-glutamylcysteine synthetase and GSH synthetase. Compelling evidence shows that GSH synthesis is regulated primarily by gamma-glutamylcysteine synthetase activity, cysteine availability, and GSH feedback inhibition. Animal and human studies demonstrate that adequate protein nutrition is crucial for the maintenance of GSH homeostasis. In addition, enteral or parenteral cystine, methionine, N-acetyl-cysteine, and L-2-oxothiazolidine-4-carboxylate are effective precursors of cysteine for tissue GSH synthesis. Glutathione plays important roles in antioxidant defense, nutrient metabolism, and regulation of cellular events (including gene expression, DNA and protein synthesis, cell proliferation and apoptosis, signal transduction, cytokine production and immune response, and protein glutathionylation). Glutathione deficiency contributes to oxidative stress, which plays a key role in aging and the pathogenesis of many diseases (including kwashiorkor, seizure, Alzheimer's disease, Parkinson's disease, liver disease, cystic fibrosis, sickle cell anemia, HIV, AIDS, cancer, heart attack, stroke, and diabetes). New knowledge of the nutritional regulation of GSH metabolism is critical for the development of effective strategies to improve health and to treat these diseases. PMID:14988435

  12. Five Decades with Glutathione and the GSTome

    PubMed Central

    Mannervik, Bengt

    2012-01-01

    Uncle Folke inspired me to become a biochemist by demonstrating electrophoresis experiments on butterfly hemolymph in his kitchen. Glutathione became the subject for my undergraduate project in 1964 and has remained a focal point in my research owing to its multifarious roles in the cell. Since the 1960s, the multiple forms of glutathione transferase (GST), the GSTome, were isolated and characterized, some of which were discovered in our laboratory. Products of oxidative processes were found to be natural GST substrates. Examples of toxic compounds against which particular GSTs provide protection include 4-hydroxynonenal and ortho-quinones, with possible links to the etiology of Alzheimer and Parkinson diseases and other degenerative conditions. The role of thioltransferase and glutathione reductase in the cellular reduction of disulfides and other oxidized forms of thiols was clarified. Glyoxalase I catalyzes still another glutathione-dependent detoxication reaction. The unusual steady-state kinetics of this zinc-containing enzyme initiated model discrimination by regression analysis. Functional properties of the enzymes have been altered by stochastic mutations based on DNA shuffling and rationally tailored by structure-based redesign. We found it useful to represent promiscuous enzymes by vectors or points in multidimensional substrate-activity space and visualize them by multivariate analysis. Adopting the concept “molecular quasi-species,” we describe clusters of functionally related enzyme variants that may emerge in natural as well as directed evolution. PMID:22247548

  13. Protective effect of sesamol against 3-nitropropionic acid-induced cognitive dysfunction and altered glutathione redox balance in rats.

    PubMed

    Kumar, Puneet; Kalonia, Harikesh; Kumar, Anil

    2010-07-01

    Sesamol (SML) (Sesamum indicum, Linn, Pedaliaceae) has been used traditionally as a health supplement in India and other countries for a long time. It is a well-known antioxidant, currently being tried against several neurological disorders. The present study was designed to evaluate the potential of sesamol treatment against 3-nitropropionic acid (3-NP)-induced cognitive impairment and oxidative damage in striatal, cortex and hippocampal regions of the rat. The memory performance was assessed by Morris water maze and elevated plus maze paradigms. The oxidative damage was assessed by estimating the total glutathione, reduced glutathione, oxidized glutathione levels and glutathione redox ratio. Glutathione-S-transferase and lactate dehydrogenase enzymes were also measured in different brain areas. 3-NP significantly impaired memory performance as assessed in Morris water maze and elevated plus maze, which was significantly attenuated by sesamol (5, 10 and 20 mg/kg) pre-treatment. On the other hand, 3-NP significantly induced oxidative stress and depleted total glutathione, reduced glutathione, glutathione-S-transferase, lactate dehydrogenase enzyme levels and redox ratio in the striatum, cortex and hippocampal regions as compared to the vehicle-treated group. Sesamol pre-treatment restored oxidative defence possibly by its free radical scavenging activity as compared to the 3NP-treated group. The present study suggests that sesamol could be used as an effective agent in the management of Huntington's disease. PMID:20102363

  14. The Ascorbate-glutathione-α-tocopherol Triad in Abiotic Stress Response

    PubMed Central

    Szarka, András; Tomasskovics, Bálint; Bánhegyi, Gábor

    2012-01-01

    The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants. PMID:22605990

  15. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response.

    PubMed

    Szarka, András; Tomasskovics, Bálint; Bánhegyi, Gábor

    2012-01-01

    The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants. PMID:22605990

  16. Glutathione and gamma-glutamyl transferases are involved in the formation of cadmium-glutathione complex.

    PubMed

    Adamis, Paula Daniela Braga; Mannarino, Sérgio Cantú; Eleutherio, Elis Cristina Araújo

    2009-05-01

    In a wild-type strain of Saccharomyces cerevisiae, cadmium induces the activities of both gamma-glutamyl transferase (gamma-GT) and glutathione transferase 2 (Gtt2). However, Gtt2 activity did not increase under gamma-GT or Ycf1 deficiencies, suggesting that the accumulation of glutathione-cadmium in the cytosol inhibits Gtt2. On the other hand, the balance between the cytoplasmic and vacuolar level of glutathione seems to regulate gamma-GT activity, since this enzyme was not activated in a gtt2 strain. Taken together, these results suggest that gamma-GT and Gtt2 work together to remove cadmium from the cytoplasm, a crucial mechanism for metal detoxification that is dependent on glutathione. PMID:19345220

  17. Systemic Imidacloprid Affects Intraguild Parasitoids Differently

    PubMed Central

    Roe, R. Michael; Bacheler, Jack S.

    2015-01-01

    Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera, Ichneumonidae) are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011–2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches. PMID:26658677

  18. Systemic Imidacloprid Affects Intraguild Parasitoids Differently.

    PubMed

    Taylor, Sally V; Burrack, Hannah J; Roe, R Michael; Bacheler, Jack S; Sorenson, Clyde E

    2015-01-01

    Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera, Ichneumonidae) are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011-2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches. PMID:26658677

  19. Glutathione, glutathione disulfide, and S-glutathionylated proteins in cell cultures.

    PubMed

    Giustarini, Daniela; Galvagni, Federico; Tesei, Anna; Farolfi, Alberto; Zanoni, Michele; Pignatta, Sara; Milzani, Aldo; Marone, Ilaria M; Dalle-Donne, Isabella; Nassini, Romina; Rossi, Ranieri

    2015-12-01

    The analysis of the global thiol-disulfide redox status in tissues and cells is a challenging task since thiols and disulfides can undergo artificial oxido-reductions during sample manipulation. Because of this, the measured values, in particular for disulfides, can have a significant bias. Whereas this methodological problem has already been addressed in samples of red blood cells and solid tissues, a reliable method to measure thiols and disulfides in cell cultures has not been previously reported. Here, we demonstrate that the major artifact occurring during thiol and disulfide analysis in cultured cells is represented by glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG) overestimation, due to artificial oxidation of glutathione (GSH) during sample manipulation, and that this methodological problem can be solved by the addition of N-ethylmaleimide (NEM) immediately after culture medium removal. Basal levels of GSSG and PSSG in different lines of cultured cells were 3-5 and 10-20 folds higher, respectively, when the cells were processed without NEM. NEM pre-treatment also prevented the artificial reduction of disulfides that occurs during the pre-analytical phase when cells are exposed to an oxidant stimulus. In fact, in the absence of NEM, after medium removal, GSH, GSSG and PSSG levels restored their initial values within 15-30 min, due to the activity of reductases and the lack of the oxidant. The newly developed protocol was used to measure the thiol-disulfide redox status in 16 different line cells routinely used for biomedical research both under basal conditions and after treatment with disulfiram, a thiol-specific oxidant (0-200 μM concentration range). Our data indicate that, in most cell lines, treatment with disulfiram affected the levels of GSH and GSSG only at the highest concentration. On the other hand, PSSG levels increased significantly also at the lower concentrations of the drug, and the rise was remarkable (from 100 to 1000

  20. The comprehensive acid-base characterization of glutathione

    NASA Astrophysics Data System (ADS)

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-02-01

    Glutathione in its thiol (GSH) and disulfide (GSSG) forms, and 4 related compounds were studied by 1H NMR-pH titrations and a case-tailored evaluation method. The resulting acid-base properties are quantified in terms of 128 microscopic protonation constants; the first complete set of such parameters for this vitally important pair of compounds. The concomitant 12 interactivity parameters were also determined. Since biological redox systems are regularly compared to the GSH-GSSG pair, the eight microscopic thiolate basicities determined this way are exclusive means for assessing subtle redox parameters in a wide pH range.

  1. Short-term effects of T-2 toxin exposure on some lipid peroxide and glutathione redox parameters of broiler chickens.

    PubMed

    Bócsai, A; Pelyhe, Cs; Zándoki, E; Ancsin, Zs; Szabó-Fodor, J; Erdélyi, M; Mézes, M; Balogh, K

    2016-06-01

    The purpose of this study was to investigate the short-term effects of T-2 toxin exposure (3.09 mg/kg feed) on lipid peroxidation and glutathione redox system of broiler chicken. A total of 54 Cobb 500 cockerels were randomly distributed to two experimental groups at 21 days of age. Samples (blood plasma, red blood cell, liver, kidney and spleen) were collected every 12 h during a 48-h period. The results showed that the initial phase of lipid peroxidation, as measured by conjugated dienes and trienes in the liver, was continuously, but not significantly higher in T-2 toxin-dosed birds than in control birds. The termination phase of lipid peroxidation, as measured by malondialdehyde, was significantly higher in liver and kidney as a result of T-2 toxin exposure at the end of the experimental period (48th hour). The glutathione redox system activated shortly after starting the T-2 toxin exposure, which is supported by the significantly higher concentration of reduced glutathione and glutathione peroxidase activity in blood plasma at 24 and 48 h, in liver at 12, 24 and 36 h, and in kidney and spleen at 24 h. These results suggest that T-2 toxin, or its metabolites, may be involved in the generation of reactive oxygen substances which causes an increase in lipid peroxidation, and consequently activates the glutathione redox system, namely synthesis of reduced glutathione and glutathione peroxidase. PMID:26412027

  2. Regiospecificity of placental metabolism by cytochromes P450 and glutathione S-transferase.

    PubMed

    McRobie, D J; Glover, D D; Tracy, T S

    1996-01-01

    The placenta possesses the ability to metabolize numerous xenobiotics and endogenous steroids. However, it is unknown whether regional differences in these enzymatic reactions exist in the human placenta. To this end, we undertook a study of four regions of the placenta, the chorionic plate, maternal surface, placental margin and whole tissue, to assess the activities of cytochrome P450 1A1 and 19A1 (aromatase) and glutathione S-stransferase in these fractions. No differences in either P450 1A1 or glutathione S-transferase activities were noted among any of the placental fractions. However, with respect to P450 19A1 activity, the placental margin differed significantly from all other fractions (p < 0.05). This study demonstrates that whole tissue samples of the human placenta are adequate for placental cytochrome P450 and glutathione S-transferase metabolism studies. PMID:8938464

  3. Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants.

    PubMed

    Zechmann, B; Zellnig, G; Urbanek-Krajnc, A; Müller, M

    2007-01-01

    Styrian oil pumpkin seedlings (Cucurbita pepo L. subsp. pepo var. styriaca GREB: .) were treated for 48 h with 1 mM OTC (L-2-oxothiazolidine-4-carboxylic acid) in order to artificially increase cellular glutathione content. They were inoculated with zucchini yellow mosaic virus (ZYMV) 10 days later. The effects of OTC treatment and ZYMV infection on glutathione levels were examined at the subcellular level by immunogold labeling of glutathione using a transmission electron microscope (TEM). These effects were further tested at the whole-tissue level by high performance liquid chromatography (HPLC). Such tests were carried out a) on roots, cotyledons and the first true leaves immediately after OTC treatment in order to analyze to which extent OTC increases glutathione levels in different cell compartments as well as in the whole organ; and b) in older and younger leaves and in roots three weeks after ZYMV inoculation in order to study how possible effects of OTC on symptom development would correlate with glutathione levels at the subcellular level and in the whole organ. Immunocytological and biochemical investigations revealed that, 48 h after OTC treatment, glutathione content had increased in all investigated organs, up to 144% in peroxisomes of cotyledons. Three weeks after ZYMV inoculation, glutathione labeling density had significantly increased within intact cells of infected leaves, up to 124% in the cytosol of younger leaves. Roots showed decreased amounts of glutathione in the TEM. Biochemical studies revealed that OTC treatment resulted in 41 and 51% higher glutathione content in older and younger ZYMV-infected leaves, respectively, in comparison to untreated and ZYMV-infected plants. Evaluation of symptom development at this point revealed that all untreated ZYMV-infected plants had symptoms, whereas only 42% of OTC-treated ZYMV-infected plants showed signs of symptoms. Quantification of ZYMV particles revealed that all organs of OTC-treated and ZYMV

  4. Glutathione and redox signaling in substance abuse

    PubMed Central

    Uys, Joachim D.; Mulholland, Patrick J.; Townsend, Danyelle M.

    2015-01-01

    Throughout the last couple decades, the cause and consequences of substance abuse has expanded to identify the underlying neurobiological signaling mechanisms associated with addictive behavior. Chronic use of drugs, such as cocaine, methamphetamine and alcohol leads to the formation of oxidative or nitrosative stress (ROS/RNS) and changes in glutathione and redox homeostasis. Of importance, redox-sensitive post-translational modifications on cysteine residues, such as S-glutathionylation and S-nitrosylation could impact on the structure and function of addiction related signaling proteins. In this commentary, we evaluate the role of glutathione and redox signaling in cocaine-, methamphetamine- and alcohol addiction and conclude by discussing the possibility of targeting redox pathways for the therapeutic intervention of these substance abuse disorders. PMID:25027386

  5. Glutathione and redox signaling in substance abuse.

    PubMed

    Uys, Joachim D; Mulholland, Patrick J; Townsend, Danyelle M

    2014-07-01

    Throughout the last couple decades, the cause and consequences of substance abuse has expanded to identify the underlying neurobiological signaling mechanisms associated with addictive behavior. Chronic use of drugs, such as cocaine, methamphetamine and alcohol leads to the formation of oxidative or nitrosative stress (ROS/RNS) and changes in glutathione and redox homeostasis. Of importance, redox-sensitive post-translational modifications on cysteine residues, such as S-glutathionylation and S-nitrosylation could impact on the structure and function of addiction related signaling proteins. In this commentary, we evaluate the role of glutathione and redox signaling in cocaine-, methamphetamine- and alcohol addiction and conclude by discussing the possibility of targeting redox pathways for the therapeutic intervention of these substance abuse disorders. PMID:25027386

  6. Functional Systems and Culturally-Determined Cognitive Differences.

    ERIC Educational Resources Information Center

    Wiseman, Richard L.

    Noting that one means of better understanding the nature of cultural differences is to elucidate the cognitive differences between members of differing cultures, this paper examines Alexander Luria's sociohistorical theory of functional cognitive systems. The paper first describes Luria's notion of functional systems, the crux of which postulates…

  7. Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery

    NASA Astrophysics Data System (ADS)

    Santos, M. C.; Seabra, A. B.; Pelegrino, M. T.; Haddad, P. S.

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs), with appropriate surface coatings, are commonly used for biomedical applications, such as drug delivery. For the successful application of SPIONs, it is necessary that the nanoparticles have well-defined morphological, structural and magnetic characteristics, in addition to high stability and biocompatibility in biological environments. The present work is focused on the synthesis and characterization of SPIONs, which were prepared using the co-precipitation method and have great potential for drug delivery. The surfaces of the SPIONs were functionalized with the tripeptide glutathione (GSH) and poly(ethylene glycol) (PEG) to form GSH-SPIONs and PEG-GSH-SPIONs. The structural, morphological, magnetic properties and the cytotoxicity of the obtained nanoparticles were characterized using different techniques. The results showed that the nanoparticles have a mean diameter of 10 nm in the solid state and are superparamagnetic at room temperature. No cytotoxicity was observed for either nanoparticle (up to 500 μg L-1) on mouse normal fibroblasts (3T3 cell line) or acute T cell leukemia (Jurkat cell line) after 24 h of incubation. Free thiol groups (SH) on the surfaces of GSH-SPIONs and PEG-GSH-SPIONs were nitrosated, leading to the formation of S-nitrosated SPIONs, which act as a nitric oxide (NO) donor. The amounts of NO released from GSNO-SPIONs and PEG-GSNO-SPIONs were (124.0 ± 1.0) μmol and (33.2 ± 5.1) μmol of NO per gram, respectively. This study highlights the successful capping of the SPION surfaces with antioxidant GSH and biocompatible PEG, which improved the dispersion and biocompatibility of the NPs in aqueous/biological environments, thereby enhancing the potential uses of SPIONs as drug delivery systems, such as a NO donor vehicle, in biomedical applications.

  8. Lead(II) complex formation with glutathione.

    PubMed

    Mah, Vicky; Jalilehvand, Farideh

    2012-06-01

    A structural investigation of complexes formed between the Pb(2+) ion and glutathione (GSH, denoted AH(3) in its triprotonated form), the most abundant nonprotein thiol in biological systems, was carried out for a series of aqueous solutions at pH 8.5 and C(Pb(2+)) = 10 mM and in the solid state. The Pb L(III)-edge extended X-ray absorption fine structure (EXAFS) oscillation for a solid compound with the empirical formula [Pb(AH(2))]ClO(4) was modeled with one Pb-S and two short Pb-O bond distances at 2.64 ± 0.04 and 2.28 ± 0.04 Å, respectively. In addition, Pb···Pb interactions at 4.15 ± 0.05 Å indicate dimeric species in a network where the thiolate group forms an asymmetrical bridge between two Pb(2+) ions. In aqueous solution at the mole ratio GSH/Pb(II) = 2.0 (C(Pb(2+)) = 10 mM, pH 8.5), lead(II) complexes with two thiolate ligands form, characterized by a ligand-to-metal charge-transfer band (LMCT) S(-) → Pb(2+) at 317 nm in the UV-vis spectrum and mean Pb-S and Pb-(N/O) bond distances of 2.65 ± 0.04 and 2.51 ± 0.04 Å, respectively, from a Pb L(III)-edge EXAFS spectrum. For solutions with higher mole ratios, GSH/Pb(II) ≥ 3.0, electrospray ionization mass spectroscopy spectra identified a triglutathionyllead(II) complex, for which Pb L(III)-edge EXAFS spectroscopy shows a mean Pb-S distance of 2.65 ± 0.04 Å in PbS(3) coordination, (207)Pb NMR spectroscopy displays a chemical shift of 2793 ppm, and in the UV-vis spectrum, an S(-) → Pb(2+) LMCT band appears at 335 nm. The complex persists at high excess of GSH and also at ∼25 K in frozen glycerol (33%)/water glasses for GSH/Pb(II) mole ratios from 4.0 to 10 (C(Pb(2+)) = 10 mM) measured by Pb L(III)-edge EXAFS spectroscopy. PMID:22594853

  9. Effect of Glutathione on Phytochelatin Synthesis in Tomato Cells 1

    PubMed Central

    Mendum, Mary Lou; Gupta, Subhash C.; Goldsbrough, Peter B.

    1990-01-01

    Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably [γ-Glu-Cys]2-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmium incorporate little [35S]cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione. PMID:16667492

  10. Systemic antioxidant properties of L-carnitine in two different models of arterial hypertension.

    PubMed

    Mate, Alfonso; Miguel-Carrasco, José L; Monserrat, María T; Vázquez, Carmen M

    2010-06-01

    In spite of a wide range of drugs being available in the market, treatment of arterial hypertension still remains a challenge, and new therapeutic strategies could be developed in order to improve the rate of success in controlling this disease. Since oxidative stress has gained importance in the last few years as one of the mechanisms involved in the origin and development of hypertension, and considering that L-carnitine (LC) is a useful compound in different pathologies characterized by increased oxidative status, the aim of the present study was to investigate the systemic antioxidant effect of LC and its correlation to blood pressure in two experimental models of hypertension: (1) spontaneously hypertensive rats (SHR) and (2) rats with hypertension induced by N(omega)-nitro-L-arginine methyl ester (L-NAME). Treatment with captopril was also performed in SHR in order to compare the antioxidant and antihypertensive effects of LC and captopril. The antioxidant defense capacity, in terms of antioxidant enzyme activity, glutathione system availability and plasma total antioxidant capacity, was measured in both animal models with or without an oral, chronic treatment with LC. All the antioxidant parameters studied were diminished in SHR and in L-NAME-treated animals, an alteration that was in general reversed after treatments with LC and captopril. In addition, LC produced a significant but not complete reduction of systolic and diastolic blood pressure levels in these two models of hypertension, whereas captopril was able to normalize blood pressure. Both LC and captopril prevented the reduction in nitric oxide (NO) levels observed in hypertensive animals. This suggests a decrease in the systemic oxidative stress and a higher availability of NO induced by LC in a similar way to captopril's effects, which could be relevant in the management of arterial hypertension eventually. PMID:20506010

  11. Radiographic changes and lung function in relation to activity of the glutathione transferases theta and mu among asbestos cement workers.

    PubMed

    Jakobsson, K; Rannug, A; Alexandrie, A K; Warholm, M; Rylander, L; Hagmar, L

    1995-05-01

    Experimental data indicate that active oxygen species may be casually involved in the development of asbestos-related disease. Thus, it was hypothesized that individual differences in glutathione transferase activity, which may affect the ability to inactivate molecules formed in relation to oxidative stress, could influence the biological response to asbestos exposure. We could, however, not demonstrate an increased risk for radiographic changes or reduced lung function among asbestos cement workers deficient for glutathione transferase theta (GSTT1), glutathione transferase mu (GSTM1), or having a combined deficiency of enzyme activity. PMID:7618163

  12. Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling.

    PubMed

    Gupta, Ankita; Kesherwani, Manish; Velmurugan, Devadasan; Tripathi, Timir

    2016-08-01

    Platyhelminth thioredoxin glutathione reductase (TGR) is a multifunctional enzyme that crosstalk between the conventional thioredoxin (Trx) and glutathione (GSH) system. It has been validated as a potential drug target in blood flukes. In the present study, we have performed a biochemical study on Fasciola gigantica TGR with substrates DTNB and GSSG. The Michaelis constant (Km) with DTNB was found to be 4.34±0.12μM while it was 61.15±1.50μM with GSSG. The kinetic results were compared with the TGR activities of other helminths. FgTGR showed typical hysteretic behavior with GSSG as other TGRs. We also described a homology-based structure of FgTGR. The cofactors (NADPH and FAD) and substrates (GSSG and DTNB) were docked, and two possible binding sites for substrates were identified in a single chain. The substrates were found to bind more favorably in the second site of TrxR domains. We also presented the first report on binding interaction of DTNB with a TGR. DTNB forms H-bond with His204 and Arg450 of chain A, Sec597, and Gly598 from chain B, salt-bridge with Lys124, and numerous other hydrophobic interactions. Helminth TGR represents an important enzyme in the redox and antioxidant system; hence, its inhibition can be used as an effective strategy against liver flukes. PMID:27112978

  13. Involvement of salicylic acid, glutathione and protein S-thiolation in plant cell death-mediated defence response of Mesembryanthemum crystallinum against Botrytis cinerea.

    PubMed

    Kuźniak, Elżbieta; Kaźmierczak, Andrzej; Wielanek, Marzena; Głowacki, Rafał; Kornas, Andrzej

    2013-02-01

    The response of Mesembryanthemum crystallinum plants performing C3 photosynthesis and crassulacean acid metabolism (CAM) to the non-host necrotrophic pathogen Botrytis cinerea was analyzed at the local and systemic levels. The induction of programmed cell death, lignin and callose deposition, changes in salicylic acid, glutathione and cysteinylglycine pools as well as the content of thiolated proteins were studied. The infected C3 and CAM plants exhibited hypersensitive-like defence response, however fluorescence staining with acridine orange and ethidium bromide revealed programmed cell death events in C3 plants only. The local immune response was not related to callose and lignin deposition. In the infected plants, salicylic acid, glutathione and cysteinylglycine, the first product of glutathione catabolism, as well as protein S-thiolation, predominantly S-glutathionylation, contributed to local defence at sites of inoculation. They (except protein thiolation) were also active in the establishment of systemic acclimation response monitored in the non-treated upper leaves. The extent to which they were involved in the local and systemic responses induced by B. cinerea differed in C3 and CAM plants. The accumulation of free salicylic acid, both in treated and upper leaves of the infected plants, was much more pronounced in CAM plants. The results have been discussed with respect to redox regulations in defence against necrotrophic pathogens and to stress acclimation. PMID:23228550

  14. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth.

    PubMed Central

    Muller, E G

    1996-01-01

    A glutathione reductase null mutant of Saccharomyces cerevisiae was isolated in a synthetic lethal genetic screen for mutations which confer a requirement for thioredoxin. Yeast mutants that lack glutathione reductase (glr1 delta) accumulate high levels of oxidized glutathione and have a twofold increase in total glutathione. The disulfide form of glutathione increases 200-fold and represents 63% of the total glutathione in a glr1 delta mutant compared with only 6% in wild type. High levels of oxidized glutathione are also observed in a trx1 delta, trx2 delta double mutant (22% of total), in a glr1 delta, trx1 delta double mutant (71% of total), and in a glr1 delta, trx2 delta double mutant (69% of total). Despite the exceptionally high ratio of oxidized/reduced glutathione, the glr1 delta mutant grows with a normal cell cycle. However, either one of the two thioredoxins is essential for growth. Cells lacking both thioredoxins and glutathione reductase are not viable under aerobic conditions and grow poorly anaerobically. In addition, the glr1 delta mutant shows increased sensitivity to the thiol oxidant diamide. The sensitivity to diamide was suppressed by deletion of the TRX2 gene. The genetic analysis of thioredoxin and glutathione reductase in yeast runs counter to previous studies in Escherichia coli and for the first time links thioredoxin with the redox state of glutathione in vivo. Images PMID:8930901

  15. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    PubMed Central

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  16. Effect of selenium- and glutathione-enriched yeast supplementation on a combined atherosclerosis and diabetes hamster model.

    PubMed

    Agbor, Gabriel A; Vinson, Joe A; Patel, Shachi; Patel, Kunal; Scarpati, Jenyne; Shiner, Drew; Wardrop, Forbes; Tompkins, Thomas A

    2007-10-17

    Selenium has a central role in antioxidant pathways as a cofactor to glutathione peroxidase. The present study evaluated the effects of four different preparations of inactivated yeast containing various concentrations of selenium and glutathione on a combined atherosclerosis and diabetes hamster model. The hamsters were supplemented with the yeast products for three months. The enriched yeast with the highest selenium and glutathione levels reduced the weight loss induced by diabetes, inhibited an increase in plasma cholesterol and triglyceride caused by a high-cholesterol and high-fat diet, increased the time taken for oxidation of lower density lipoproteins (lag time), and inhibited the formation of atherosclerosis better than low selenium/glutathione yeast supplementation. It was concluded that the yeast prepared to provide high selenium and high glutathione was the best for effecting beneficial changes in glutathione, cholesterol, atherosclerosis, and for demonstrating an antioxidant effect. The high selenium and low glutathione yeast was the best for improving selenium and glucose levels. PMID:17880156

  17. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development.

    PubMed

    Mora-Lorca, José Antonio; Sáenz-Narciso, Beatriz; Gaffney, Christopher J; Naranjo-Galindo, Francisco José; Pedrajas, José Rafael; Guerrero-Gómez, David; Dobrzynska, Agnieszka; Askjaer, Peter; Szewczyk, Nathaniel J; Cabello, Juan; Miranda-Vizuete, Antonio

    2016-07-01

    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode. PMID:27117030

  18. In Vivo Magnetic Resonance Studies of Glycine and Glutathione Metabolism in a Rat Mammary Tumor

    PubMed Central

    Thelwall, Peter E.; Simpson, Nicholas E.; Rabbani, Zahid N.; Clark, M. Daniel; Pourdeyhimi, Roxana; Macdonald, Jeffrey M.; Blackband, Stephen J.; Gamcsik, Michael P.

    2011-01-01

    The metabolism of glycine into glutathione was monitored noninvasively in vivo in intact R3230Ac rat tumors by magnetic resonance imaging and spectroscopy. Metabolism was tracked by following the isotope label from intravenously infused [2-13C]-glycine into the glycinyl residue of glutathione. Signals from [2-13C]-glycine and γ-glutamylcysteinyl-[2-13C]-glycine (13C-glutathione) were detected by nonlocalized 13C spectroscopy as these resonances are distinct from background signals. In addition, using spectroscopic imaging methods, heterogeneity in the in vivo tumor distribution of glutathione was observed. In vivo spectroscopy also detected isotope incorporation from [2-13C]-glycine into both the 2- and 3-carbons of serine. Analyses of tumor tissue extracts show single and multiple label incorporation from [2-13C]-glycine into serine from metabolism through the serine hydroxymethyltransferase and glycine cleavage system pathways. Mass spectrometric analysis of extracts also shows that isotope-labeled serine is further metabolized via the transsulfuration pathway as the 13C-isotope labels appear in both the glycinyl- and the cysteinyl-residue of glutathione. Our studies demonstrate the use of magnetic resonance imaging and spectroscopy for monitoring tumor metabolic processes central to oxidative stress defense. PMID:21751272

  19. Purification and thermal dependence of glutathione reductase from two forage legume species.

    PubMed

    Kidambi, S P; Mahan, J R; Matches, A G

    1990-02-01

    Alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) are forage legumes that differ in their responses to high and low temperature stresses. Thermal limitations on the function of glutathione reductase (EC 1.6.4.2) could adversely affect the ability of the plant to cope with adverse temperatures. Our objectives were to (a) purify glutathione reductase from ;Cimarron' alfalfa and ;PI 212241' sainfoin and (b) investigate the intraspecies variation in the thermal dependency of glutathione reductase from each of three cultivars of alfalfa and two cultivars and an introduction of sainfoin. Glutathione reductase was purified 1222-and 1948-fold to a specific activity of 281 and 273 units per milligram of protein, from one species each of alfalfa and sainfoin, respectively. The relative molecular mass of the protein was approximately 140 kilodaltons with subunits of 57 and 37 kilodaltons under denaturing conditions. The activation energies were approximately 50 kilojoules per mole for both species. Over a 5 to 45 degrees C temperature gradient, large variation among species and genotypes within species was found for: (a) the minimum apparent Michaelis constant (0.6-2.1 micromoles of NADPH), (b) the temperature at which the minimum apparent Michaelis constant was observed (10-25 degrees C), and (c) the thermal kinetic windows (6-19 degrees C width). Future studies will focus on relating the thermal dependence of the Michaelis constant of the glutathione reductases and plant growth rates and forage quality of these species throughout the growing season. PMID:16667283

  20. Effect of transport on blood selenium and glutathione status in feeder lambs.

    PubMed

    Hall, J A; Bobe, G; Nixon, B K; Vorachek, W R; Hugejiletu; Nichols, T; Mosher, W D; Pirelli, G J

    2014-09-01

    Stress from transport may be linked to increased generation of reactive oxygen species, the removal of which requires reduced glutathione and selenium. The aim of this experiment was to examine the effect of transport on glutathione and Se status of feeder lambs. Recently weaned lambs (n = 40) were blocked by gender and BW on d 0 of the experiment and randomly assigned to 2 treatment groups: group 1, no transport and full access to feed and water (control), and group 2, 8-h road transport followed by another 16 h of feed deprivation (transport). After 24 h, both treatment groups were treated the same. All lambs were weighed, and blood samples were collected at 0, 8, 24, and 72 h and analyzed for whole-blood (WB) and serum Se concentrations, serum NEFA concentrations, and erythrocyte concentrations of glutathione. Transport of feeder lambs for 8 h followed by another 16 h of feed deprivation transiently (significant at 24 h but no longer different at 72 h) decreased BW and erythrocyte glutathione concentrations and increased serum NEFA and blood Se concentrations compared with control lambs. Our results suggest that 8 h of transport followed by another 16 h of feed deprivation results in fatty acid and Se mobilization from tissue stores with a coincident decrease in erythrocyte glutathione concentrations. PMID:25035242

  1. Airway glutathione homeostasis is altered in children with severe asthma: Evidence for oxidant stress

    PubMed Central

    Fitzpatrick, Anne M.; Teague, W. Gerald; Holguin, Fernando; Yeh, Mary; Brown, Lou Ann S.

    2009-01-01

    Background Severe asthma is characterized by persistent airway inflammation and increased formation of reactive oxygen species. Objectives Glutathione (GSH) is an important antioxidant in the epithelial lining fluid (ELF). We hypothesized that airway GSH homeostasis was altered in children with severe asthma and was characterized by decreased GSH and increased glutathione disulfide (GSSG) concentrations. Methods Bronchoalveolar lavage was obtained from 65 children with severe asthma, including 35 children with baseline airway obstruction evidenced by FEV1 <80%. Control data were obtained from 6 children with psychogenic (habit) cough or vocal cord dysfunction undergoing diagnostic bronchoscopy and 35 healthy adult controls. GSH, GSSG, and other determinants of airway oxidative stress including glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), malondialdehyde, 8-isoprostane, and H2O2 were measured in the ELF. The ELF redox potential was calculated from GSH and GSSG by using the Nernst equation. Results: Compared with controls, subjects with severe asthma had lower airway GSH with increased GSSG despite no differences in GST, GR, and GPx activities between groups. This was accompanied by increased malondialdehyde, 8-isoprostane, and H2O2 concentrations in the ELF. GSH oxidation was most apparent in subjects with severe asthma with airway obstruction and was supported by an upward shift in the ELF GSH redox potential. Conclusion Children with severe asthma have increased biomarkers of oxidant stress in the ELF that are associated with increased formation of GSSG and a shift in the GSH redox potential toward the more oxidized state. PMID:19130935

  2. Gender Differences and Intra-Gender Differences amongst Management Information Systems Students

    ERIC Educational Resources Information Center

    Beyer, Sylvia

    2008-01-01

    Few women major in Management Information Systems (MIS). The purpose of this paper is to examine the reasons for women's underrepresentation in MIS. In addition to examining gender differences, an important and novel goal of this study is to examine intra-gender differences in undergraduate students, i.e., differences among female MIS majors and…

  3. Recombinant baculovirus vectors expressing glutathione-S-transferase fusion proteins.

    PubMed

    Davies, A H; Jowett, J B; Jones, I M

    1993-08-01

    Recombinant baculoviruses are a popular means of producing heterologous protein in eukaryotic cells. Purification of recombinant proteins away from the insect cell background can, however, remain an obstacle for many developments. Recently, prokaryotic fusion protein expression systems have been developed allowing single-step purification of the heterologous protein and specific proteolytic cleavage of the affinity tag moiety from the desired antigen. Here we report the introduction of these attributes to the baculovirus system. "Baculo-GEX" vectors enable baculovirus production of fusion proteins with the above advantages, but in a eukaryotic post-translational processing environment. Glutathione-S-transferase (GST) fusions are stable cytoplasmic proteins in insect cells and may therefore be released by sonication alone, avoiding the solubility problems and detergent requirements of bacterial systems. Thus large amounts of authentic antigen may be purified in a single, non-denaturing step. PMID:7763917

  4. Glutathione in metastases: From mechanisms to clinical applications.

    PubMed

    Estrela, José M; Ortega, Angel; Mena, Salvador; Sirerol, J Antoni; Obrador, Elena

    2016-08-01

    Metastatic spread, not primary tumors, is the leading cause of cancer death. Glutathione (γ-glutamyl-cysteinyl-glycine, GSH) is particularly relevant in cancer cells as it is involved in regulating carcinogenic mechanisms, growth and dissemination, and multidrug and radiation resistance. Upon interaction of metastatic cells with the vascular endothelium, a high percentage of metastatic cells with high GSH levels survive the combined nitrosative and oxidative stresses elicited by the vascular endothelium. GSH release from different organs, mainly the liver, and its interorgan transport through the blood circulation to metastatic foci, promote their growth. This review focuses on the relationship among GSH and different key mechanisms that facilitate metastatic cell survival and growth, i.e. adaptive responses to stress, cell death evasion and utilization of physiological neuroendocrine mechanisms. Different strategies that are aimed at sensitizing metastases to cancer therapy by depleting metastatic cell GSH are analyzed. PMID:26754151

  5. Bioavailability Study of an Innovative Orobuccal Formulation of Glutathione

    PubMed Central

    Buonocore, Daniela; Grosini, Matteo; Giardina, Silvana; Michelotti, Angela; Carrabetta, Mariaelena; Seneci, Antonio; Verri, Manuela; Dossena, Maurizia; Marzatico, Fulvio

    2016-01-01

    Alteration of the ubiquitous thiol tripeptide glutathione (GSH) is involved in oxidative stress, which plays a role in ageing; consequently, GSH is closely related to this process characterized by progressive decline in the efficiency of physiological function and increased susceptibility to disease. When circulating GSH decreases, oral administration might be considered a therapeutic benefit. Unfortunately, due to the hydrolysis of the tripeptide by intestinal γ-glutamyltransferase, dietary glutathione is not a major determinant for its increase. Aim of this work was to evaluate improvement of GSH systemic availability testing, in vitro and in vivo, an optimized orobuccal fast-slow release formulation tablet containing pure stabilized GSH. In vitro evaluation of the penetration capability of the innovative GSH-release formulation showed that GSH was well absorbed by the reconstructed oral epithelium and its absorption has features of time-dependence. In addition, in vivo results, obtained from 15 healthy volunteers, were in favor of GSH level improvement in blood showing fast (after 30 and 60 minutes) absorption through oral mucosa. In conclusion, the intake of GSH formulated through optimized orobuccal fast-slow release tablets gave positive results in raising GSH blood concentration. PMID:26649136

  6. Glutathione and γ-glutamylcysteine in hydrogen peroxide detoxification.

    PubMed

    Quintana-Cabrera, Ruben; Bolaños, Juan P

    2013-01-01

    Hydrogen peroxide (H2O2) is an important regulator of cell redox status and signaling pathways. However, if produced in excess, it can trigger oxidative damage, which can be counteracted by the antioxidant systems. Amongst these, the glutathione (GSH) precursor, γ-glutamylcysteine (γGC), has recently been shown to detoxify H2O2 in a glutathione peroxidase-1 (GPx1)-dependent fashion. To analyze how both γGC and GSH reduce H2O2, we have taken advantage of a colorimetric assay that allows simple and reliable quantification of H2O2 in the micromolar range. Whereas most assays rely on coupled enzymatic reactions, this method determines the formation of a ferric thiocyanate derivative after direct Fe(2+) oxidation by H2O2. Here, we detail the procedure and considerations to determine H2O2 reduction by both γGC and GSH, either from cell samples or in vitro reactions with purified enzymes from GSH metabolism. PMID:23830629

  7. Renal Clearance and Degradation of Glutathione-Coated Copper Nanoparticles

    PubMed Central

    Yang, Shengyang; Sun, Shasha; Zhou, Chen; Hao, Guiyang; Liu, Jinbin; Ramezani, Saleh; Yu, Mengxiao; Sun, Xiankai; Zheng, Jie

    2016-01-01

    Degradation of inorganic nanoparticles (NPs) into small molecular complexes is often observed in the physiological environment; however, how this process influences renal clearance of inorganic NPs is largely unknown. By systematically comparing renal clearance of degradable luminescent glutathione coated copper NPs (GS-CuNPs) and their dissociated products, Cu(II)-glutathione disulfide (GSSG) complexes (Cu(II)-GSSG), we found that GS-CuNPs were eliminated through the urinary system surprisingly faster and accumulated in the liver much less than their smaller dissociation counterparts. With assistance of radiochemistry and positron emission tomography (PET) imaging, we found that the observed “nano size” effect in enhancing renal clearance is attributed to the fact that GS-CuNPs are more resistant to serum protein adsorption than Cu(II)-GSSG. In addition, since dissociation of GS-CuNPs follows zero-order chemical kinetics, their renal clearance and biodistribution also depend on initial injection doses and their dissociation processes. Quantitative understanding of size effect and other factors involved in renal clearance and biodistribution of degradable inorganic NPs will lay down a foundation for further development of renal-clearable inorganic NPs with minimized nanotoxicity. PMID:25674666

  8. Physical exercise intensity can be related to plasma glutathione levels.

    PubMed

    Gambelunghe, C; Rossi, R; Micheletti, A; Mariucci, G; Rufini, S

    2001-03-01

    The aim of the present study was to examine the effect of different kinds of physical exercise on plasma glutathione levels. Male Wistar rats were randomly divided into four groups: In walking group (W; n=6), rats were trained to walk 0.8 m/min for 45 min; slow running group (SR; n=6) were trained to run 4 m/min for 45 min; fast running group (FR; n=6) ran 8 m/min for 60 min and control rats (C; n=6) remained in their home cages. All animals were sacrificed after exercise and the levels of reduced glutathione (GSH) in plasma samples determined by high performance liquid chromatography (HPLC) with a fluorescent detector. Compared to controls, exercise did not change GSH plasma levels of the W group. A tendency to decrease blood GSH was observed in plasma samples of the SR group and in the FR group, physical exercise resulted in a dramatic decrease in GSH plasma levels. These data suggest that during light physical exercise there is a low production of reactive oxygen species (ROS) with a low request for antioxidant defence such as oxidation of GSH. The dramatic decrease observed in GSH levels in FR rats would indicate the presence of oxidative stress able to modify blood antioxidant profiles. Our results suggest that GSH plays a central antioxidant role in blood during intensive physical exercise and that its modifications are closely related to exercise intensity. PMID:11519887

  9. Physical exercise intensity can be related to plasma glutathione levels.

    PubMed

    Gambelunghe, C; Rossi, R; Micheletti, A; Mariucci, G; Rufini, S

    2001-03-01

    The aim of the present study was to examine the effect of different kinds of physical exercise on plasma glutathione levels. Male Wistar rats were randomly divided into four groups: In walking group (W; n=6), rats were trained to walk 0.8 m/min for 45 min; slow running group (SR; n=6) were trained to run 4 m/min for 45 min; fast running group (FR; n=6) ran 8m/min for 60 min and control rats (C; n=6) remained in their home cages. All animals were sacrificed after exercise and the levels of reduced glutathione (GSH) in plasma samples determined by high performance liquid chromatography (HPLC) with a fluorescent detector. Compared to controls, exercise did not change GSH plasma levels of the W group. A tendency to decrease blood GSH was observed in plasma samples of the SR group and in the FR group, physical exercise resulted in a dramatic decrease in GSH plasma levels. These data suggest that during light physical exercise there is a low production of reactive oxygen species (ROS) with a low request for antioxidant defence such as oxidation of GSH. The dramatic decrease observed in GSH levels in FR rats would indicate the presence of oxidative stress able to modify blood antioxidant profiles. Our results suggest that GSH plays a central antioxidant role in blood during intensive physical exercise and that its modifications are closely related to exercise intensity. PMID:11579999

  10. Increased efflux of glutathione conjugate in acutely diabetic cardiomyocytes.

    PubMed

    Ghosh, Sanjoy; Ting, Simon; Lau, Howard; Pulinilkunnil, Thomas; An, Ding; Qi, Dake; Abrahani, Mohammed A; Rodrigues, Brian

    2004-10-01

    In diabetes, cell death and resultant cardiomyopathy have been linked to oxidative stress and depletion of antioxidants like glutathione (GSH). Although the de novo synthesis and recycling of GSH have been extensively studied in the chronically diabetic heart, their contribution in modulating cardiac oxidative stress in acute diabetes has been largely ignored. Additionally, the possible contribution of cellular efflux in regulating GSH levels during diabetes is unknown. We used streptozotocin to make Wistar rats acutely diabetic and after 4 days examined the different processes that regulate cardiac GSH. Reduction in myocyte GSH in diabetic rats was accompanied by increased oxidative stress, excessive reactive oxygen species, and an elevated apoptotic cell death. The effect on GSH was not associated with any change in either synthesis or recycling, as both gamma-glutamylcysteine synthetase gene expression (responsible for bio syn thesis) and glutathione reductase activity (involved with GSH recycling) remained unchanged. However, gene expression of multidrug resistance protein 1, a transporter implicated in effluxing GSH during oxidative stress, was elevated. GSH conjugate efflux mediated by multidrug resistance protein 1 also increased in diabetic cardiomyocytes, an effect that was blocked using MK-571, a specific inhibitor of this transporter. As MK-571 also decreased oxidative stress in diabetic cardiomyocytes, an important role can be proposed for this transporter in GSH and reactive oxygen species homeostasis in the acutely diabetic heart. PMID:15573148

  11. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-03-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells.

  12. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    PubMed Central

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-01-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells. PMID:24603274

  13. Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli.

    PubMed

    Gismondi, Eric; Beisel, Jean-Nicolas; Cossu-Leguille, Carole

    2012-10-01

    As biomarkers are known to be influenced by biotic and abiotic factors (e.g. gender, temperature), we investigated over a one-year long sampling period, the influence of season and gender on reduced glutathione concentrations and its synthesis in the crustacean amphipod Gammarus roeseli. At the same time, we assessed energy reserves and malondialdehyde levels as toxic biomarker. Results have shown that, in both genders, reduced glutathione concentrations were inversely correlated to water temperature, and higher in females than in males whatever the season. Total lipid and glycogen contents were higher in females than in males, allowing females to have enough energy to assume the reproductive period and maintain high GSH concentrations for detoxification processes. Conversely, females have lower cell damages than males. These differences between genders could induce differential sensitivity in a contamination context, and thus affect the population. Females could resist better than males in contaminated environments, especially in spring when reduced glutathione concentration is the highest. PMID:22769238

  14. Active synchronization between two different chaotic dynamical system

    SciTech Connect

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  15. Active synchronization between two different chaotic dynamical system

    NASA Astrophysics Data System (ADS)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-01

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  16. A difference characteristic for one-dimensional deterministic systems

    NASA Astrophysics Data System (ADS)

    Shahverdian, A. Yu.; Apkarian, A. V.

    2007-06-01

    A numerical characteristic for one-dimensional deterministic systems reflecting its higher order difference structure is introduced. The comparison with Lyapunov exponent is given. A difference analogy for Eggleston theorem as well as an estimate for Hausdorff dimension of the difference attractor, formulated in terms of the new characteristic is proved.

  17. Comparing Different Fault Identification Algorithms in Distributed Power System

    NASA Astrophysics Data System (ADS)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  18. The regulation of gelation of Phloem exudate from cucurbita fruit by dilution, glutathione, and glutathione reductase.

    PubMed

    Alosi, M C; Melroy, D L; Park, R B

    1988-04-01

    The average glutathione equivalent concentration in phloem exudate collected from squash fruit (Cucurbita moschata [Duchesne] Poir. var Butternut) and pumpkin fruit (Cucurbita pepo [L.] var Jack-o-lattern) was 1.02 and 0.60 millimolar, respectively. Glutathione reductase (EC 1.6.4.2) activity in phloem exudate from squash and pumpkin fruit averaged 0.48 and 1.74 micromole NADPH oxidized per minute per milliliter, respectively. Protein concentrations in fruit phloem exudates averaged 67 milligrams per milliliter for squash and 57 milligrams per milliliter for pumpkin. The phloem-specific P-proteins account for most of the protein content of exudate. Pure exudate from fruit does not gel for hours or days, but when diluted with neutral or alkaline aqueous solutions, exudate gels rapidly. Exudate solutions undergo biphasic pH changes with dilution. We suggest that P-protein undergoes conformational change upon dilution, exposing titratable groups and sulfhydryl residues. Oxidation of the latter forms the intermolecular disulfide bridges of the gel. The gelation of diluted exudate is regulated by factors (oxygen, pH, glutathione, NADPH) which affect the maintenance of reduced sulfhydryl residues and the activity of glutathione reductase. While these factors may also act in vivo to regulate redox conditions in phloem, their relationship to hypothetical sol/gel transitions or motile and nonmotile phases in the transport conduit is unknown. PMID:16666036

  19. Detection of glutathione transferase activity on polyacrylamide gels.

    PubMed

    Ricci, G; Lo Bello, M; Caccuri, A M; Galiazzo, F; Federici, G

    1984-12-01

    A simple and sensitive assay for glutathione transferase activity on polyacrylamide gel is described. The method is based on the fast reduction of nitroblue tetrazolium salt by glutathione. Blue insoluble formazan colors the gel except in the glutathione transferase area. The stable and defined colorless zone is still detectable with 0.005 unit enzyme. This technique has been successfully applied with enzyme preparations of human heart and other tissues. PMID:6532239

  20. Normal and quasinormal forms for systems of difference and differential-difference equations

    NASA Astrophysics Data System (ADS)

    Kashchenko, Ilya; Kaschenko, Sergey

    2016-09-01

    The local dynamics of systems of difference and singularly perturbed differential-difference equations is studied in the neighborhood of a zero equilibrium state. Critical cases in the problem of stability of its state of equilibrium have infinite dimension. Special nonlinear evolution equations, which act as normal forms, are set up. It is shown that their dynamics defines the behavior of solutions to the initial system.

  1. Basis difference method for orthogonal systems on a surface

    NASA Astrophysics Data System (ADS)

    Korobitsyn, V. A.

    2011-07-01

    The basis operator method intended for constructing systems of difference approximations to differential operators in vector and tensor analysis is extended to orthogonal systems on a surface. A class of completely conservative differential-difference schemes for continuum mechanics in Lagrangian variables is constructed. Basis operators are constructed using the finite volume equation, consistency conditions for discrete operators of the first derivative, and consistent projection operators for grid functions. A system of differential-difference continuum mechanics equations on a surface is obtained, which implies all conservation laws typical of the continuum case, including additional ones. A stability estimate is derived for discrete equations of an incompressible viscous fluid.

  2. Complement profile and activation mechanisms by different LDL apheresis systems.

    PubMed

    Hovland, Anders; Hardersen, Randolf; Nielsen, Erik Waage; Enebakk, Terje; Christiansen, Dorte; Ludviksen, Judith Krey; Mollnes, Tom Eirik; Lappegård, Knut Tore

    2012-07-01

    Extracorporeal removal of low-density lipoprotein (LDL) cholesterol by means of selective LDL apheresis is indicated in otherwise uncontrolled familial hypercholesterolemia. During blood-biomaterial interaction other constituents than the LDL particles are affected, including the complement system. We set up an ex vivo model in which human whole blood was passed through an LDL apheresis system with one of three different apheresis columns: whole blood adsorption, plasma adsorption and plasma filtration. The concentrations of complement activation products revealed distinctly different patterns of activation and adsorption by the different systems. Evaluated as the final common terminal complement complex (TCC) the whole blood system was inert, in contrast to the plasma systems, which generated substantial and equal amounts of TCC. Initial classical pathway activation was revealed equally for both plasma systems as increases in the C1rs-C1inh complex and C4d. Alternative pathway activation (Bb) was most pronounced for the plasma adsorption system. Although the anaphylatoxins (C3a and C5a) were equally generated by the two plasma separation systems, they were efficiently adsorbed to the plasma adsorption column before the "outlet", whereas they were left free in the plasma in the filtration system. Consequently, during blood-biomaterial interaction in LDL apheresis the complement system is modulated in different manners depending on the device composition. PMID:22373816

  3. [Selective N-heterylazimine inhibition of reactions catalyzed by rat liver glutathione transferase].

    PubMed

    Stulovskiĭ, A V; Voznyĭ, I V; Rozengart, E V; Suvorov, A A; Khovanskikh, A E

    1992-01-01

    Three reactions (nucleophile substitution, thiolysis and N-deoxygenation) catalyzed by rat liver glutathione transferase have been studied using several N-heterylazimine inhibitors. The inhibitors are sharply different in their effectiveness in the transferase reactions. Their efficiency depends on their structure. The mechanism which underlies the found regularities is suggested. PMID:1413125

  4. Measurement of glutathione in activated sludges.

    PubMed

    Dziurla, M A; Leroy, P; Strünkmann, G W; Salhi, M; Lee, D U; Camacho, P; Heinz, V; Müller, J A; Paul, E; Ginestet, Ph; Audic, J M; Block, J C

    2004-01-01

    Thermal, electric, mechanical or oxidative stress seem a promising way to reduce the production of excess activated sludge during biological wastewater treatment. However, the adaptation and the resistance of the sludge microbial ecosystem to stress conditions is a major question as it may definitively limit the effect of some treatments. Defence mechanisms developed by aerobic organisms, in particular, in response to oxidative stress involve various antioxidant activities and compounds such as glutathione. An HPLC method was developed for measuring reduced and total glutathione (GSH and GSHt) in perchloric acid sludge extracts. The method was sensitive, highly specific and validated for linearity, precision and recovery. Considering the extraction yield and the oxidation of GSH during extract storage, the measured GSH concentration was estimated to represent 60% of the GSH content from activated sludges. GSHt ranged from 0.32 to 3.34micromolg(-1) volatile solids and the GSH/GSHt ratio ranged from 32% to 91%. Measurements performed on sludges stressed in precise conditions selected to reach a reduction of sludge production showed a decrease of GSH and GSHt concentrations with thermal, mechanical, electric and ozone stress. PMID:14630122

  5. Manipulation of glutathione metabolism in transgenic plants.

    PubMed

    Creissen, G; Broadbent, P; Stevens, R; Wellburn, A R; Mullineaux, P

    1996-05-01

    There is clear potential for the genetic manipulation of key enzymes involved in stress metabolism in transgenic plants. However, the data emerging so far from such experiments are equivocal. The detailed analysis of stress responses in progeny of primary transgenics, coupled with comparisons with control transgenic plants that do not contain the GR transgene, allows us to take into account the possible variation in response to stress associated with regeneration of plants from tissue culture. The picture that is now beginning to emerge with respect to the role of GR in stress protection is that, although there are clearly benefits to be had from overexpression of the enzymes, there is no direct correlation between enzyme levels and stress tolerance. It may be that overexpression of the cytosolic isoform (gor2) will prove to be of greater benefit. Furthermore, the types of stresses to which transgenic plants have been exposed in order to assess the consequences of oxidative stress tolerance cannot reproduce those that will experienced in field conditions. Only when plants with higher GR levels and increased glutathione synthesis capacity are grown in field trials will it be possible to make a full assessment of the benefits of engineering plants with altered glutathione metabolism. PMID:8736785

  6. Plasma cysteine, cystine, and glutathione in cirrhosis.

    PubMed

    Chawla, R K; Lewis, F W; Kutner, M H; Bate, D M; Roy, R G; Rudman, D

    1984-10-01

    Plasma contains three forms of cyst(e)ine: cysteine, cystine, and protein-bound cysteine. The former is a thiol and the latter two are disulfides. The levels of all three types of cyst(e)ine, as well as the cysteinyl tripeptide glutathione, were measured in the plasma of 14 normal and 10 cirrhotic individuals. All subjects ate mixed foods. Some cirrhotic patients were studied during nasogastric hyperalimentation with Vivonex (Norwich Eaton Pharmaceuticals, Norwich, N.Y.) as well as during total parenteral nutrition with FreAmine III (American McGaw, Irvine, Calif.); neither formula contains cyst(e)ine. Regardless of the nature of the diet, cirrhotic patients had significantly subnormal values for cysteine, glutathione, and albumin. In addition, the following significant changes were found to be diet-dependent: (a) elevated methionine during Vivonex, (b) subnormal taurine during mixed foods and total parenteral nutrition, (c) depressed protein-bound cysteine during total parenteral nutrition, (d) depressed cyst(e)ine thiol/disulfide ratio during mixed foods, and (e) depressed total thiol during Vivonex and total parenteral nutrition. The data indicate multiple abnormalities in sulfur metabolism in cirrhosis. PMID:6468868

  7. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study

    PubMed Central

    Salem, Heba F; Ahmed, Sayed M; Hassaballah, Ashraf E; Omar, Mahmoud M

    2015-01-01

    Background The blood–brain barrier prevents many drug moieties from reaching the central nervous system. Therefore, glutathione-modulated nanoliposomes have been engineered to enhance the targeting of flucytosine to the brain. Methods Glutathione-modulated nanoliposomes were prepared by thin-film hydration technique and evaluated in the primary brain cells of rats. Lecithin, cholesterol, and span 65 were mixed at 1:1:1 molar ratio. The molar percentage of PEGylated glutathione varied from 0 mol% to 0.75 mol%. The cellular binding and the uptake of the targeted liposomes were both monitored by epifluorescent microscope and flow cytometry techniques. A biodistribution and a pharmacokinetic study of flucytosine and flucytosine-loaded glutathione–modulated liposomes was carried out to evaluate the in vivo brain-targeting efficiency. Results The size of glutathione-modulated nanoliposomes was <100 nm and the zeta potential was more than −65 mV. The cumulative release reached 70% for certain formulations. The cellular uptake increased as molar percent of glutathione increased to reach the maximum at 0.75 mol%. The uptake of the targeted liposomes by brain cells of the rats was three times greater than that of the nontargeted liposomes. An in vivo study showed that the relative efficiency was 2.632±0.089 and the concentration efficiency was 1.590±0.049, and also, the drug-targeting index was 3.670±0.824. Conclusion Overall, these results revealed that glutathione-PEGylated nanoliposomes enhance the effective delivery of flucytosine to brain and could become a promising new therapeutic option for the treatment of the brain infections. PMID:26229435

  8. Glutathione as a skin whitening agent: Facts, myths, evidence and controversies.

    PubMed

    Sonthalia, Sidharth; Daulatabad, Deepashree; Sarkar, Rashmi

    2016-01-01

    Glutathione is a low molecular weight thiol-tripeptide that plays a prominent role in maintaining intracellular redox balance. In addition to its remarkable antioxidant properties, the discovery of its antimelanogenic properties has led to its promotion as a skin-lightening agent. It is widely used for this indication in some ethnic populations. However, there is a dichotomy between evidence to support its efficacy and safety. The hype around its depigmentary properties may be a marketing gimmick of pharma-cosmeceutical companies. This review focuses on the various aspects of glutathione: its metabolism, mechanism of action and the scientific evidence to evaluate its efficacy as a systemic skin-lightening agent. Glutathione is present intracellularly in its reduced form and plays an important role in various physiological functions. Its skin-lightening effects result from direct as well as indirect inhibition of the tyrosinase enzyme and switching from eumelanin to phaeomelanin production. It is available in oral, parenteral and topical forms. Although the use of intravenous glutathione injections is popular, there is no evidence to prove its efficacy. In fact, the adverse effects caused by intravenous glutathione have led the Food and Drug Administration of Philippines to issue a public warning condemning its use for off-label indications such as skin lightening. Currently, there are three randomized controlled trials that support the skin-lightening effect and good safety profile of topical and oral glutathione. However, key questions such as the duration of treatment, longevity of skin-lightening effect and maintenance protocols remain unanswered. More randomized, double-blind, placebo-controlled trials with larger sample size, long-term follow-up and well-defined efficacy outcomes are warranted to establish the relevance of this molecule in disorders of hyperpigmentation and skin lightening. PMID:27088927

  9. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo

    PubMed Central

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A; de Andrade-Lima, L C; Munford, V; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels and functional p53 have a critical role on cisplatin resistance. In this work, we explored several mechanisms of cisplatin resistance in human glioma. We showed that cellular survival was independent of the p53 status of those cells. In addition, in a host-cell reactivation assay using cisplatin-treated plasmid, we did not detect any difference in DNA repair capacity. We demonstrated that cisplatin-treated U138MG cells suffered fewer DNA double-strand breaks and DNA platination. Interestingly, the resistant cells carried higher levels of intracellular glutathione. Thus, preincubation with the glutathione inhibitor buthionine sulfoximine (BSO) induced massive cell death, whereas N-acetyl cysteine, a precursor of glutathione synthesis, improved the resistance to cisplatin treatment. In addition, BSO sensitized glioma cells to TMZ alone or in combination with cisplatin. Furthermore, using an in vivo model the combination of BSO, cisplatin and TMZ activated the caspase 3–7 apoptotic pathway. Remarkably, the combined treatment did not lead to severe side effects, while causing a huge impact on tumor progression. In fact, we noted a remarkable threefold increase in survival rate compared with other treatment regimens. Thus, the intracellular glutathione concentration is a potential molecular marker for cisplatin resistance in glioma, and the use of glutathione inhibitors, such as BSO, in association with cisplatin and TMZ seems a promising approach for the therapy of such devastating

  10. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo.

    PubMed

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A; de Andrade-Lima, L C; Munford, V; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels and functional p53 have a critical role on cisplatin resistance. In this work, we explored several mechanisms of cisplatin resistance in human glioma. We showed that cellular survival was independent of the p53 status of those cells. In addition, in a host-cell reactivation assay using cisplatin-treated plasmid, we did not detect any difference in DNA repair capacity. We demonstrated that cisplatin-treated U138MG cells suffered fewer DNA double-strand breaks and DNA platination. Interestingly, the resistant cells carried higher levels of intracellular glutathione. Thus, preincubation with the glutathione inhibitor buthionine sulfoximine (BSO) induced massive cell death, whereas N-acetyl cysteine, a precursor of glutathione synthesis, improved the resistance to cisplatin treatment. In addition, BSO sensitized glioma cells to TMZ alone or in combination with cisplatin. Furthermore, using an in vivo model the combination of BSO, cisplatin and TMZ activated the caspase 3-7 apoptotic pathway. Remarkably, the combined treatment did not lead to severe side effects, while causing a huge impact on tumor progression. In fact, we noted a remarkable threefold increase in survival rate compared with other treatment regimens. Thus, the intracellular glutathione concentration is a potential molecular marker for cisplatin resistance in glioma, and the use of glutathione inhibitors, such as BSO, in association with cisplatin and TMZ seems a promising approach for the therapy of such devastating

  11. Correction of glutathione deficiency in the lower respiratory tract of HIV seropositive individuals by glutathione aerosol treatment.

    PubMed Central

    Holroyd, K. J.; Buhl, R.; Borok, Z.; Roum, J. H.; Bokser, A. D.; Grimes, G. J.; Czerski, D.; Cantin, A. M.; Crystal, R. G.

    1993-01-01

    BACKGROUND--Concentrations of glutathione, a ubiquitous tripeptide with immune enhancing and antioxidant properties, are decreased in the blood and lung epithelial lining fluid of human immunodeficiency virus (HIV) seropositive individuals. Since the lung is the most common site of infection in those who progress to AIDS it is rational to consider whether it is possible to safely augment glutathione levels in the epithelial lining fluid of HIV seropositive individuals, thus potentially improving local host defence. METHODS--Purified reduced glutathione was delivered by aerosol to HIV seropositive individuals (n = 14) and the glutathione levels in lung epithelial lining fluid were compared before and at one, two, and three hours after aerosol administration. RESULTS--Before treatment total glutathione concentrations in the epithelial lining fluid were approximately 60% of controls. After three days of twice daily doses each of 600 mg reduced glutathione, total glutathione levels in the epithelial lining fluid increased and remained in the normal range for at least three hours after treatment. Strikingly, even though > 95% of the glutathione in the aerosol was in its reduced form, the percentage of oxidised glutathione in epithelial lining fluid increased from 5% before treatment to about 40% three hours after treatment, probably reflecting the use of glutathione as an antioxidant in vivo. No adverse effects were observed. CONCLUSIONS--It is feasible and safe to use aerosolised reduced glutathione to augment the deficient glutathione levels of the lower respiratory tract of HIV seropositive individuals. It is rational to evaluate further the efficacy of this tripeptide in improving host defence in HIV seropositive individuals. PMID:8256245

  12. Proteomic Profiling of Cytosolic Glutathione Transferases from Three Bivalve Species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea

    PubMed Central

    Martins, José Carlos; Campos, Alexandre; Osório, Hugo; da Fonseca, Rute; Vasconcelos, Vítor

    2014-01-01

    Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism. PMID:24473139

  13. Proteomic profiling of cytosolic glutathione transferases from three bivalve species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea.

    PubMed

    Martins, José Carlos; Campos, Alexandre; Osório, Hugo; da Fonseca, Rute; Vasconcelos, Vítor

    2014-01-01

    Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism. PMID:24473139

  14. Habitual consumption of fruits and vegetables: associations with human rectal glutathione S-transferase.

    PubMed

    Wark, Petra A; Grubben, Marina J A L; Peters, Wilbert H M; Nagengast, Fokko M; Kampman, Ellen; Kok, Frans J; van 't Veer, Pieter

    2004-11-01

    The glutathione (GSH)/glutathione S-transferase (GST) system is an important detoxification system in the gastrointestinal tract. A high activity of this system may benefit cancer prevention. The aim of the study was to assess whether habitual consumption of fruits and vegetables, especially citrus fruits and brassica and allium vegetables, is positively associated with parameters reflecting the activity of the GSH/GST enzyme system in human rectal mucosa. GST enzyme activity, GST isoenzyme levels of GST-alpha (A1-1, A1-2 and A2-2), -mu (M1-1) and -pi (P1-1), and GSH levels were measured in rectal biopsies from 94 subjects. Diet, lifestyle, GSTM1 and GSTT1 null polymorphisms were assessed. Mean GST enzyme activity was 237 nmol/min/mg protein (SD = 79). Consumption of citrus fruits was positively associated with GST enzyme activity [difference between high and low consumption: 28.9 (95% confidence interval (CI) = 9.3-48.6) nmol/min/mg protein], but was not associated with the other parameters. A positive association with brassica vegetables was found among carriers of the GSTM1-plus genotype [difference between high and low consumption: 22.6 (95% CI = 0.2-45.0) nmol/min/mg protein], but not among GSTM1-null individuals (-25.8 nmol/min/mg protein, 95% CI = -63.3-11.8). This is in line with a positive association between consumption of brassica vegetables and GSTM isoenzyme level [difference between high and low consumption: 67.5%, 95% CI = (6.8-162.7)]. Consumption of allium vegetables was not associated with GST enzyme activity, but negatively with GSTP1-1 levels [difference between high and low consumption: -23.3%, 95% CI = (-35.5; -8.6)]. Associations were similar among those with the GSTT1-plus and GSTT1-null genotype. In conclusion, variations in habitual consumption of fruits, particularly citrus fruits, and of vegetables, in particular brassica vegetables, among those with the GSTM1-plus genotype, may contribute to variations in human rectal GST enzyme

  15. Contextualizing Learning Scenarios According to Different Learning Management Systems

    ERIC Educational Resources Information Center

    Drira, R.; Laroussi, M.; Le Pallec, X.; Warin, B.

    2012-01-01

    In this paper, we first demonstrate that an instructional design process of Technology Enhanced Learning (TEL) systems based on a Model Driven Approach (MDA) addresses the limits of Learning Technology Standards (LTS), such as SCORM and IMS-LD. Although these standards ensure the interoperability of TEL systems across different Learning Management…

  16. Assessing System Thinking through Different Concept-Mapping Practices

    ERIC Educational Resources Information Center

    Brandstadter, Kristina; Harms, Ute; Grossschedl, Jorg

    2012-01-01

    System thinking is usually investigated by using questionnaires, video analysis, or interviews. Recently, concept-mapping (CM) was suggested as an adequate instrument for analysing students' system thinking. However, there are different ways with which to use this method. Therefore, the purpose of this study was to examine whether particular…

  17. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins

    PubMed Central

    Mohanasundaram, Kaavya A.; Haworth, Naomi L.; Grover, Mani P.; Crowley, Tamsyn M.; Goscinski, Andrzej; Wouters, Merridee A.

    2015-01-01

    Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxin's similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study—CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state. PMID

  18. Retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione

    SciTech Connect

    Neirinckx, R.D.; Burke, J.F.; Harrison, R.C.; Forster, A.M.; Andersen, A.R.; Lassen, N.A.

    1988-12-01

    Preparations of d,l- and meso-hexamethylpropyleneamine oxime (HM-PAO) labeled with technetium-99m were added to rat brain homogenates diluted with phosphate buffer (1:10). The conversion of d,l-HM-PAO to hydrophilic forms took place with an initial rate constant of 0.12 min-1. Incubation of the brain homogenate with 2% diethyl maleate for 5 h decreased the homogenate's measured glutathione (GSH) concentration from 160 to 16 microM and decreased the conversion rate to 0.012 min-1. Buffered aqueous solutions of glutathione rapidly converted the HM-PAO tracers to hydrophilic forms having the same chromatographic characteristics as found in the brain homogenates. The rate constant for the conversion reaction of d,l-HM-PAO in GSH aqueous solution was 208 and 317 L/mol/min in two different assay systems and for meso-HM-PAO the values were 14.7 and 23.2 L/mol/min, respectively. Rat brain has a GSH concentration of about 2.3 mM and the conversion of the d,l-HM-PAO due to GSH alone should proceed with a rate constant of 0.48 to 0.73 min-1 and be correspondingly 14-fold slower for meso-HM-PAO. In human brain, the in vivo data of Lassen et al. show a conversion rate constant of 0.80 min-1. This correspondence of values supports the notion that GSH may be important for the in vivo conversion of 99mTc-labeled HM-PAO to hydrophilic forms and may be the mechanism of trapping in brain and other cells. A kinetic model for the trapping of d,l- and meso-HM-PAO in tissue is developed that is based on data of GSH concentration in various organs.

  19. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.

    PubMed

    Mohanasundaram, Kaavya A; Haworth, Naomi L; Grover, Mani P; Crowley, Tamsyn M; Goscinski, Andrzej; Wouters, Merridee A

    2015-01-01

    Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxin's similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study-CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state. PMID

  20. Sex Differences in Circadian Timing Systems: Implications for Disease

    PubMed Central

    Bailey, Matthew; Silver, Rae

    2014-01-01

    Virtually every eukaryotic cell has an endogenous circadian clock and a biological sex. These cell-based clocks have been conceptualized as oscillators whose phase can be reset by internal signals such as hormones, and external cues such as light. The present review highlights the inter-relationship between circadian clocks and sex differences. In mammals, the suprachiasmatic nucleus (SCN) serves as a master clock synchronizing the phase of clocks throughout the body. Gonadal steroid receptors are expressed in almost every site that receives direct SCN input. Here we review sex differences in the circadian timing system in the hypothalamic-pituitary-gonadal axis (HPG), the hypothalamicadrenal-pituitary (HPA) axis, and sleep-arousal systems. We also point to ways in which disruption of circadian rhythms within these systems differs in the sexes and is associated with dysfunction and disease. Understanding sex differentiated circadian timing systems can lead to improved treatment strategies for these conditions. PMID:24287074

  1. Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia.

    PubMed

    Baitharu, Iswar; Jain, Vishal; Deep, Satya Narayan; Shroff, Sabita; Sahu, Jayanta Kumar; Naik, Pradeep Kumar; Ilavazhagan, Govindasamy

    2014-01-01

    Withania somnifera root extract has been used traditionally in ayurvedic system of medicine as a memory enhancer. Present study explores the ameliorative effect of withanolide A, a major component of withania root extract and its molecular mechanism against hypoxia induced memory impairment. Withanolide A was administered to male Sprague Dawley rats before a period of 21 days pre-exposure and during 07 days of exposure to a simulated altitude of 25,000 ft. Glutathione level and glutathione dependent free radicals scavenging enzyme system, ATP, NADPH level, γ-glutamylcysteinyl ligase (GCLC) activity and oxidative stress markers were assessed in the hippocampus. Expression of apoptotic marker caspase 3 in hippocampus was investigated by immunohistochemistry. Transcriptional alteration and expression of GCLC and Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) were investigated by real time PCR and immunoblotting respectively. Exposure to hypobaric hypoxia decreased reduced glutathione (GSH) level and impaired reduced gluatathione dependent free radical scavenging system in hippocampus resulting in elevated oxidative stress. Supplementation of withanolide A during hypoxic exposure increased GSH level, augmented GSH dependent free radicals scavenging system and decreased the number of caspase and hoescht positive cells in hippocampus. While withanolide A reversed hypoxia mediated neurodegeneration, administration of buthionine sulfoximine along with withanolide A blunted its neuroprotective effects. Exogenous administration of corticosterone suppressed Nrf2 and GCLC expression whereas inhibition of corticosterone synthesis upregulated Nrf2 as well as GCLC. Thus present study infers that withanolide A reduces neurodegeneration by restoring hypoxia induced glutathione depletion in hippocampus. Further, Withanolide A increases glutathione biosynthesis in neuronal cells by upregulating GCLC level through Nrf2 pathway in a corticosterone dependenet manner. PMID

  2. Withanolide A Prevents Neurodegeneration by Modulating Hippocampal Glutathione Biosynthesis during Hypoxia

    PubMed Central

    Baitharu, Iswar; Jain, Vishal; Deep, Satya Narayan; Shroff, Sabita; Sahu, Jayanta Kumar; Naik, Pradeep Kumar; Ilavazhagan, Govindasamy

    2014-01-01

    Withania somnifera root extract has been used traditionally in ayurvedic system of medicine as a memory enhancer. Present study explores the ameliorative effect of withanolide A, a major component of withania root extract and its molecular mechanism against hypoxia induced memory impairment. Withanolide A was administered to male Sprague Dawley rats before a period of 21 days pre-exposure and during 07 days of exposure to a simulated altitude of 25,000 ft. Glutathione level and glutathione dependent free radicals scavenging enzyme system, ATP, NADPH level, γ-glutamylcysteinyl ligase (GCLC) activity and oxidative stress markers were assessed in the hippocampus. Expression of apoptotic marker caspase 3 in hippocampus was investigated by immunohistochemistry. Transcriptional alteration and expression of GCLC and Nuclear factor (erythroid-derived 2)–related factor 2 (Nrf2) were investigated by real time PCR and immunoblotting respectively. Exposure to hypobaric hypoxia decreased reduced glutathione (GSH) level and impaired reduced gluatathione dependent free radical scavenging system in hippocampus resulting in elevated oxidative stress. Supplementation of withanolide A during hypoxic exposure increased GSH level, augmented GSH dependent free radicals scavenging system and decreased the number of caspase and hoescht positive cells in hippocampus. While withanolide A reversed hypoxia mediated neurodegeneration, administration of buthionine sulfoximine along with withanolide A blunted its neuroprotective effects. Exogenous administration of corticosterone suppressed Nrf2 and GCLC expression whereas inhibition of corticosterone synthesis upregulated Nrf2 as well as GCLC. Thus present study infers that withanolide A reduces neurodegeneration by restoring hypoxia induced glutathione depletion in hippocampus. Further, Withanolide A increases glutathione biosynthesis in neuronal cells by upregulating GCLC level through Nrf2 pathway in a corticosterone dependenet manner

  3. Differences in Systemic Oxidative Stress Based on Race and the Metabolic Syndrome: The Morehouse and Emory Team up to Eliminate Health Disparities (META-Health) Study

    PubMed Central

    Zhao, Liping; Patel, Riyaz S.; Jones, Dean P.; Ahmed, Yusuf; Stoyanova, Neli; Gibbons, Gary H.; Vaccarino, Viola; Din-Dzietham, Rebecca; Quyyumi, Arshed A.

    2012-01-01

    Abstract Background Classification schema such as metabolic syndrome may underestimate cardiovascular disease (CVD) risk in African Americans, despite a higher burden of CVD in African Americans. Oxidative stress results from an imbalance of prooxidants and antioxidants and leads to endothelial dysfunction that promotes vascular inflammation and atherosclerosis. Aminothiol markers of oxidative stress are associated with CVD risk factors and metabolic syndrome; however, little is known about racial differences in levels of oxidative stress. We sought to investigate whether oxidative stress would be higher in African Americans compared to whites independently of traditional risk factor burden. Methods We assessed oxidative stress in a biracial, community-based cohort. In 620 subjects (59% female, 52% African American) in the Morehouse and Emory Team up to Eliminate Health Disparities (META-Health) study, we measured plasma levels of glutathione, an intracellular antioxidant, and its redox potential as a ratio of reduced and oxidized glutathione (Eh glutathione). Results African Americans had lower glutathione levels (P<0.001) compared to whites. There was a trend toward more oxidized Eh glutathione (P=0.07) in African Americans; however, this did not reach statistical significance. After adjustment for demographics and CVD risk factors, African-American race remained a significant correlate of lower glutathione levels (P<0.001) and a more oxidized Eh glutathione (P=0.04). After further adjustment for high-sensitivity C-reactive protein (hsCRP), glutathione remained significantly lower in African Americans (P=0.001). African Americans with or without metabolic syndrome had lower glutathione levels compared to whites with or without metabolic syndrome, respectively (both P≤0.001), and African Americans without metabolic syndrome had a more oxidized Eh glutathione compared to whites without metabolic syndrome (P=0.003). Conclusions African Americans have higher levels

  4. Analysis of Arabidopsis glutathione-transferases in yeast.

    PubMed

    Krajewski, Matthias P; Kanawati, Basem; Fekete, Agnes; Kowalski, Natalie; Schmitt-Kopplin, Philippe; Grill, Erwin

    2013-07-01

    The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and

  5. Nomenclature for mammalian soluble glutathione transferases.

    PubMed

    Mannervik, Bengt; Board, Philip G; Hayes, John D; Listowsky, Irving; Pearson, William R

    2005-01-01

    The nomenclature for human soluble glutathione transferases (GSTs) is extended to include new members of the GST superfamily that have been discovered, sequenced, and shown to be expressed. The GST nomenclature is based on primary structure similarities and the division of GSTs into classes of more closely related sequences. The classes are designated by the names of the Greek letters: Alpha, Mu, Pi, etc., abbreviated in Roman capitals: A, M, P, and so on. (The Greek characters should not be used.) Class members are distinguished by Arabic numerals and the native dimeric protein structures are named according to their subunit composition (e.g., GST A1-2 is the enzyme composed of subunits 1 and 2 in the Alpha class). Soluble GSTs from other mammalian species can be classified in the same manner as the human enzymes, and this chapter presents the application of the nomenclature to the rat and mouse GSTs. PMID:16399376

  6. Quantification of Glutathione in Caenorhabditis elegans

    PubMed Central

    Caito, Samuel W.; Aschner, Michael

    2015-01-01

    Glutathione (GSH) is the most abundant intracellular thiol with diverse functions from redox signaling, xenobiotic detoxification, and apoptosis. The quantification of GSH is an important measure for redox capacity and oxidative stress. This protocol quantifies total GSH from Caenorhabditis elegans, an emerging model organism for toxicology studies. GSH is measured using the 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) cycling method originally created for cell and tissue samples but optimized for whole worm extracts. DTNB reacts with GSH to from a 5′-thio-2-nitrobenzoic acid (TNB) chromophore with maximum absorbance of 412 nm. This method is both rapid and sensitive, making it ideal for studies involving a large number of transgenic nematode strains. PMID:26309452

  7. A comparative study of two different clear aligner systems

    PubMed Central

    2014-01-01

    Background This study aims to compare the ‘Nuvola®’ system with ‘Fantasmino®’ system, examine their material properties, and define the indications for use of the aligners. Methods Two groups of patients were selected and were respectively treated with Nuvola® aligner and Fantasmino® system. Results The goal of treatment has been achieved with the two systems. Conclusions The two types of aligners have shown differences during the treatment. Fantasmino® system has elastic properties of high performance, but its size does not encourage compliance throughout the day. Nuvola® system determines good tooth movement and its size facilitates the patient’s collaboration. In both aligner systems, difficulties were found in the correction of torque information and rotations. PMID:24934094

  8. Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle.

    PubMed

    Peternelj, Tina Tinkara; Marsh, Susan A; Strobel, Natalie A; Matsumoto, Aya; Briskey, David; Dalbo, Vincent J; Tucker, Patrick S; Coombes, Jeff S

    2015-02-01

    Post-translational modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) profoundly affects protein structure, function, and metabolism. Although many skeletal muscle proteins are O-GlcNAcylated, the modification has not been extensively studied in this tissue, especially in the context of exercise. This study investigated the effects of glutathione depletion and acute exercise on O-GlcNAc protein modification in rat skeletal muscle. Diethyl maleate (DEM) was used to deplete intracellular glutathione and rats were subjected to a treadmill run. White gastrocnemius and soleus muscles were analyzed for glutathione status, O-GlcNAc and O-GlcNAc transferase (OGT) protein levels, and mRNA expression of OGT, O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase. DEM and exercise both reduced intracellular glutathione and increased O-GlcNAc. DEM upregulated OGT protein expression. The effects of the interventions were significant 4 h after exercise (P < 0.05). The changes in the mRNA levels of O-GlcNAc enzymes were different in the two muscles, potentially resulting from different rates of oxidative stress and metabolic demands between the muscle types. These findings indicate that oxidative environment promotes O-GlcNAcylation in skeletal muscle and suggest an interrelationship between cellular redox state and O-GlcNAc protein modification. This could represent one mechanism underlying cellular adaptation to oxidative stress and health benefits of exercise. PMID:25416863

  9. Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi

    SciTech Connect

    Singh, Anchal; Rathaur, Sushma . E-mail: sushmarathaur@yahoo.com

    2005-06-17

    Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass {approx}20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/{mu}g of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite.

  10. Carbon dot cluster as an efficient "off-on" fluorescent probe to detect Au(III) and glutathione.

    PubMed

    Gu, Jiangjiang; Hu, Donghua; Wang, Weina; Zhang, Qiuhong; Meng, Zhen; Jia, Xudong; Xi, Kai

    2015-06-15

    In this paper, we reported for the first time that Au(III) decorated carbon dot cluster (Au(III)/CDC) was synthesized to detect glutathione through fluorescence "off-on" approach. The "off" process was realized by the introduction of Au(III) on luminescent carbon dots (CDs), which formed the complex of Au(III)/CDC and quenched the fluorescence of CDs efficiently. This "off" process was used to detect Au(III) with the selectivity among 21 metal ions and the limitation was 0.48 μM (S/N=3). Au(III) could be removed from the complex by biothiol in the solution, which restored the fluorescence of CDC to achieve the "on" process. This process was selective for biothiols (especially for glutathione) among saccharides, dopamine and amino acids and the limit of detection was 2.02 μM (S/N=3). Due to the dependence of the fluorescence restoration on the concentration of glutathione, Au(III)/CDC was applied as the fluorescence sensor for detection of glutathione in the solution and cellular cytosol. By referring to the fluorescence change in the solution, the intracellular glutathione with/without oxygen stress was evaluated. As compared with the commercial assay, our Au(III)/CDC based assay was simple, facile and low cost, which would be useful to measure intracellular glutathione at different cellular states. PMID:25558871

  11. Neuroendocrine underpinnings of sex differences in circadian timing systems.

    PubMed

    Yan, Lily; Silver, Rae

    2016-06-01

    There are compelling reasons to study the role of steroids and sex differences in the circadian timing system. A solid history of research demonstrates the ubiquity of circadian changes that impact virtually all behavioral and biological responses. Furthermore, steroid hormones can modulate every attribute of circadian responses including the period, amplitude and phase. Finally, desynchronization of circadian rhythmicity, and either enhancing or damping amplitude of various circadian responses can produce different effects in the sexes. Studies of the neuroendocrine underpinnings of circadian timing systems and underlying sex differences have paralleled the overall development of the field as a whole. Early experimental studies established the ubiquity of circadian rhythms by cataloging daily and seasonal changes in whole organism responses. The next generation of experiments demonstrated that daily changes are not a result of environmental synchronizing cues, and are internally orchestrated, and that these differ in the sexes. This work was followed by the revelation of molecular circadian rhythms within individual cells. At present, there is a proliferation of work on the consequences of these daily oscillations in health and in disease, and awareness that these may differ in the sexes. In the present discourse we describe the paradigms used to examine circadian oscillation, to characterize how these internal timing signals are synchronized to local environmental conditions, and how hormones of gonadal and/or adrenal origin modulate circadian responses. Evidence pointing to endocrinologically and genetically mediated sex differences in circadian timing systems can be seen at many levels of the neuroendocrine and endocrine systems, from the cell, the gland and organ, and to whole animal behavior, including sleep/wake or rest/activity cycles, responses to external stimuli, and responses to drugs. We review evidence indicating that the analysis of the circadian

  12. Characterization of bifunctional L-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis.

    PubMed

    Yang, Jianhua; Li, Wei; Wang, Dezheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-07-01

    Glutathione (GSH), an important bioactive substance, is widely applied in pharmaceutical and food industries. In this work, two bifunctional L-glutathione synthetases (GshF) from Actinobacillus pleuropneumoniae (GshFAp) and Actinobacillus succinogenes (GshFAs) were successfully expressed in Escherichia coli BL-21(DE3). Similar to the GshF from Streptococcus thermophilus (GshFSt), GshFAp and GshFAs can be applied for high titer GSH production because they are less sensitive to end-product inhibition (Ki values 33 and 43 mM, respectively). The active catalytic forms of GshFAs and GshFAp are dimers, consistent with those of GshFPm (GshF from Pasteurella multocida) and GshFSa (GshF from Streptococcus agalactiae), but are different from GshFSt (GshF from S. thermophilus) which is an active monomer. The analysis of the protein sequences and three dimensional structures of GshFs suggested that the binding sites of GshFs for substrates, L-cysteine, L-glutamate, γ-glutamylcysteine, adenosine-triphosphate, and glycine are highly conserved with only very few differences. With sufficient supply of the precursors, the recombinant strains BL-21(DE3)/pET28a-gshFas and BL-21(DE3)/pET28a-gshFap were able to produce 36.6 and 34.1 mM GSH, with the molar yield of 0.92 and 0.85 mol/mol, respectively, based on the added L-cysteine. The results showed that GshFAp and GshFAs are potentially good candidates for industrial GSH production. PMID:26996628

  13. Kinetic analysis of the intracellular conjugation of monochlorobimane by IC-21 murine macrophage glutathione-S-transferase.

    PubMed

    Young, P R; ConnorsWhite, A L; Dzido, G A

    1994-12-15

    Monochlorobimane (MCB) reacts with glutathione (GSH) in a reaction catalyzed by the glutathione-S-transferase (GST) isozymes. The diffusion of MCB through cell membranes is rapid and the fluorescence conjugates are relatively insensitive to quenching and to pH effects, and are expelled slowly from the cell, allowing the rate of fluorescence increase to be used to probe the dynamics of the intracellular reaction. Using low-light microscopic cytometry to monitor the initial rates of fluorescence increase for the GST-catalyzed reaction within IC-21 macrophages yields Vmax = 8.4 x 10(-16) mol s-1 cell-1 and KMCBm = 65 microM. Combining these data with an integrated Michaelis analysis of the reaction course yields KIP approximately 1.5 x 10(-5) M, and KmGSH approximately 3.0 x 10(-4) M (at [MCB] = 50 microM). The values of Vmax and KMCBm for the cell-free (extracellular) GST-catalyzed conjugation reaction are 1.2 x 10(-18) mol s-1 cell-1 and 3.1 microM, respectively. The values of Vmax for the intra- and extracellular conjugation reactions differ by 700-fold, suggesting the presence of an intracellular activator for this enzyme system. PMID:7803478

  14. Quantitation of protein S-glutathionylation by liquid chromatograph-tandem mass spectrometry: Correction for contaminating glutathione and glutathione disulfide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfides (PSSG) are commonly quantified by the reduction of the disulfide and detection of the resultant glutathione species. This met...

  15. Glutathione S-transferase activity and glutathione S-transferase mu expression in subjects with risk for colorectal cancer.

    PubMed

    Szarka, C E; Pfeiffer, G R; Hum, S T; Everley, L C; Balshem, A M; Moore, D F; Litwin, S; Goosenberg, E B; Frucht, H; Engstrom, P F

    1995-07-01

    The glutathione S-transferases (alpha, mu, and pi), a family of Phase II detoxication enzymes, play a critical role in protecting the colon mucosa by catalyzing the conjugation of dietary carcinogens with glutathione. We investigated the efficacy of using the glutathione S-transferase (GST) activity of blood lymphocytes and GST-mu expression as biomarkers of risk for colorectal cancer. GST activity was measured in the blood lymphocytes of control individuals (n = 67) and in the blood lymphocytes (n = 60) and colon tissue (n = 34) of individuals at increased risk for colon cancer. Total GST activity was determined spectrophotometrically with the use of 1-chloro-2,4-dinitrobenzene as a substrate. The ability to express the um subclass of GST was determined with the use of an ELISA. Although interindividual variability in the GST activity of blood lymphocytes was greater than 8-fold (range, 16.7-146.8 nmol/min/mg), the GST activity of blood lymphocytes and colon tissue within an individual was constant over time and was unrelated to sex, age, or race. The GST activity of blood lymphocytes from high-risk individuals was significantly lower than that of blood lymphocytes from control individuals (P < or = 0.004). No association was observed between the frequency of GST-mu phenotype and risk for colorectal cancer. Blood lymphocytes from high-risk individuals unable to express GST-mu had lower levels of GST activity than did those from control subjects with the GST-mu null phenotype; however, this difference was significant in male subjects only (P < or = 0.006). Analysis of paired samples of blood lymphocytes and colon tissue indicated a strong correlation between the GST activity of the two tissue types (Spearman's rank correlation, r = 0.87; P < or = 0.0001). The GST activity of blood lymphocytes may be used to identify high-risk individuals with decreased protection from this Phase II detoxication enzyme who may benefit from clinical trials evaluating GST modulators

  16. Glutathione dysregulation and the etiology and progression of human diseases

    PubMed Central

    Ballatori, Nazzareno; Krance, Suzanne M.; Notenboom, Sylvia; Shi, Shujie; Tieu, Kim; Hammond, Christine L.

    2009-01-01

    Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Because of GSH’s pleiotropic effects on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates and/or oxidation state can be compromised by inherited or aquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide (GSSG) ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases such as cancer, Parkinson’s disease, and Alzheimer’s disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases

  17. Electromechanical system frequency response equilization using three different methods

    NASA Astrophysics Data System (ADS)

    Prezelj, Jurij; Čudina, Mirko

    2007-01-01

    The frequency response of different electromechanical systems like sensors and actuators is in many cases the most important parameter for their evaluation. In some cases, when a short time delay does not play an important role and the flatness of frequency response is more important, an approximate of inverse system for frequency response compensation can be used. We equalized the frequency response of a non-minimum phase linear time-invariant electromechanical system using a digital finite impulse response (FIR) filter. Three different deconvolution methods for determination of the approximate of inverse filter impulse response were used and the results of the compensation using three different inverse filters are compared. The first method is based on the solution of the system of linear equations, while the second method is based on a simple direct inverse Fourier transformation. The third method uses an active noise control algorithm based on a least mean square adaptive algorithm. The results of all three methods can be applied in a FIR filter realized on DSP boards to perform real time compensation. The theoretical simulations are compared with experiments. Compensation of arbitrary systems is an interesting subject and it can be applied in numerous different fields from sensors and actuators to measurement and acoustics.

  18. Effect of hypoxic cell radiosensitizers on glutathione level and related enzyme activities in isolated rat hepatocytes

    SciTech Connect

    Noguchi, K.; Hattori, T.; Igarashi, T.; Ueno, K.; Satoh, T.; Kitagawa, H.; Hori, H.; Shibata, T.; Inayama, S.

    1985-08-19

    A comparative study of the effect of misonidazole and novel radiosensitizers on glutathione (GSH) levels and related enzyme activities in isolated rat hepatocytes was performed. Incubation of hepatocytes with 5 mM radiosensitizers led to a decrease in the intracellular GSH level. The most pronounced decrease in cellular GSH was evoked by 2,4-dinitromidazole-1-ethanol (DNIE); after incubation for only 15 min, GSH was hardly detected. DNIE-mediated GSH loss was dependent upon its concentration. DNIE reacted with GSH nonenzymatically as well as with diethylmaleate, while misonidazole and 1-methyl-2-methyl-sulfinyl-5-methoxycarbonylimidazole (KIH-3) did not. Addition of partially purified glutathione S-transferase (GST) did not enhance DNIE-mediated GSH loss in a cell-free system. DNIE inhibited glutathione peroxidase (GSH-Px), GST, and glutathione reductase (GSSG-R) activities in hepatocytes, while misonidazole and KIH-3 did not. GSH-Px activity assayed with H/sub 2/O/sub 2/ as substrate was the most inhibited. Inhibition of GSH-Px activity assayed with cumene hydroperoxide as substrate and GST was less than that of GSH-Px assayed with H/sub 2/O/sub 2/ as substrate. GSSG-R activity was decreased by DNIE, but not significantly. Incubation of purified GSH-Px with DNIE resulted in a little change in the activity when assayed with H/sub 2/O/sub 2/ as substrate. 26 references, 2 figures, 4 tables.

  19. Ascorbic acid prevents acetaminophen-induced hepatotoxicity in mice by ameliorating glutathione recovery and autophagy.

    PubMed

    Kurahashi, Toshihiro; Lee, Jaeyong; Nabeshima, Atsunori; Homma, Takujiro; Kang, Eun Sil; Saito, Yuka; Yamada, Sohsuke; Nakayama, Toshiyuki; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2016-08-15

    Aldehyde reductase (AKR1A) plays a role in the biosynthesis of ascorbic acid (AsA), and AKR1A-deficient mice produce about 10-15% of the AsA that is produced by wild-type mice. We found that acetaminophen (AAP) hepatotoxicity was aggravated in AKR1A-deficient mice. The pre-administration of AsA in the drinking water markedly ameliorated the AAP hepatotoxicity in the AKR1A-deficient mice. Treatment of the mice with AAP decreased both glutathione and AsA levels in the liver in the early phase after AAP administration, and an AsA deficiency delayed the recovery of the glutathione content in the healing phase. While in cysteine supply systems; a neutral amino acid transporter ASCT1, a cystine transporter xCT, enzymes for the transsulfuration pathway, and autophagy markers, were all elevated in the liver as the result of the AAP treatment, the AsA deficiency suppressed their induction. Thus, AsA appeared to exert a protective effect against AAP hepatotoxicity by ameliorating the supply of cysteine that is available for glutathione synthesis as a whole. Because some drugs produce reactive oxygen species, resulting in the consumption of glutathione during the metabolic process, the intake of sufficient amounts of AsA would be beneficial for protecting against the hepatic damage caused by such drugs. PMID:27288086

  20. The role of glutathione detoxification pathway in MCLR-induced hepatotoxicity in SD rats.

    PubMed

    Li, Shangchun; Chen, Jun; Xie, Ping; Guo, Xiaochun; Fan, Huihui; Yu, Dezhao; Zeng, Cheng; Chen, Liang

    2015-12-01

    In the present study, we investigated the role of glutathione (GSH) and its related enzymes in Sprague Dawley (SD) rats subjected to microcystin-leucine-arginine (MCLR)-induced hepatotoxicity. SD rats were intraperitoneally (i.p.) injected with MCLR after pretreating with or without buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH synthesis. The depletion of GSH with BSO enhanced MCLR-induced oxidative stress, resulting in more severe liver damage and higher MCLR accumulation. Similarly, the contents of malondialdehyde (MDA), total GSH (T-GSH), oxidized GSH (GSSG) and GSH were significantly enhanced in BSO pretreated rats following MCLR treatment. The study showed that the transcription of GSH-related enzymes such as glutathione-S-transferase (GST), γ-glutamylcysteine synthetase (γ-GCS), glutathione reductase (GR) varied in different ways (expect for glutathione peroxidase (GPx), whose gene expression was induced in all treated groups) with or without BSO pretreatment before MCLR exposure, suggesting an adaptative response of GSH-related enzymes at transcription level to combat enhancement of oxidative stress induced by MCLR when pretreated with BSO. These data suggested the tissues with low GSH concentration are highly vulnerable to MCLR toxicity and GSH was critical for the detoxification in MCLR-induced hepatotoxicity in vivo. PMID:24964298

  1. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells.

    PubMed

    Mauzeroll, Janine; Bard, Allen J

    2004-05-25

    The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV-visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-microm-diameter electrode situated 10 microm from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster. PMID:15148374

  2. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells

    PubMed Central

    Mauzeroll, Janine; Bard, Allen J.

    2004-01-01

    The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV–visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-μm-diameter electrode situated 10 μm from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster. PMID:15148374

  3. Exploring Individual Differences in Attitudes toward Audience Response Systems

    ERIC Educational Resources Information Center

    Kay, Robin H.; Knaack, Liesel

    2009-01-01

    The purpose of this study was to examine individual differences in attitudes toward Audience Response Systems (ARSs) in secondary school classrooms. Specifically, the impact of gender, grade, subject area, computer comfort level, participation level, and type of use were examined in 659 students. Males had significantly more positive attitudes…

  4. Analysis of Different Harmonic and Intermodulation Distortions for CATV Systems

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Kamaljit, Singh Bhatia; Anurag, Sharma; Kaur, Harsimrat

    2015-06-01

    In this paper, after examining all the basic design issues of CATV systems, prominent distortions like harmonic and intermodulation distortions are taken into account for different order. Besides outer distortions for CATV sources, inner distortion of relative intensity to noise is disabled for current analysis.

  5. Different but Equal? Assessing European Dual HE Systems

    ERIC Educational Resources Information Center

    Kivinen, Osmo; Nurmi, Jouni

    2010-01-01

    In higher education dual systems, graduates are qualified to apply for jobs in same professional fields along two separated educational routes. The research problem is whether the rival applicants for professional positions are treated equally in the labour market despite their different qualifications. From the graduates point of view, to be…

  6. Protective role of intracellular glutathione against ethanol-induced damage in cultured rat gastric mucosal cells

    SciTech Connect

    Mutoh, H.; Hiraishi, H.; Ota, S.; Yoshida, H.; Ivey, K.J.; Terano, A.; Sugimoto, T. )

    1990-06-01

    This study investigated whether intracellular glutathione is cytoprotective against ethanol-induced injury to cultured rat gastric mucosal cells in vitro. Secondly, it investigated whether reduced glutathione or oxidized glutathione is responsible for this cytoprotection. Cytolysis was quantified by measuring 51Cr release from prelabeled cells. Concentrations of ethanol greater than 12% caused cell damage and increased 51Cr release in a dose-dependent and time-related fashion. When a substrate for glutathione synthesis, N-acetyl-L-cysteine, was provided to cultured cells for 4 h before challenge with ethanol, cytolysis was significantly decreased corresponding with an increase in cellular glutathione content. Pretreatment with diethyl maleate, which depletes reduced glutathione without forming oxidized glutathione, potentiated ethanol-induced cell damage in a dose-dependent manner with the decrease of cellular glutathione content. The administration of tert-butyl hydroperoxide (which is specifically reduced by glutathione peroxidase to generate oxidized glutathione from reduced glutathione) or diamide (which nonenzymatically oxidizes reduced glutathione to oxidized glutathione) enhanced ethanol injury. We conclude that in cultured gastric mucosal cells, (a) intracellular glutathione maintains integrity of gastric mucosal cells against ethanol in vitro; and (b) reduced glutathione rather than oxidized glutathione is responsible for this cytoprotection. We postulate that the presence of reduced glutathione is essential to allow glutathione peroxidase to catalyze the ethanol-generated toxic oxygen radical, hydrogen peroxide.

  7. Glutathione, glutathione S-transferases, and related redox enzymes in Adriamycin-resistant cell lines with a multidrug resistant phenotype.

    PubMed

    Schisselbauer, J C; Crescimanno, M; D'Alessandro, N; Clapper, M; Toulmond, S; Tapiero, H; Tew, K D

    1989-01-01

    Friend erythroleukemia cells (FLC) selected by exposure to Adriamycin (doxorubicin) express an approximate 2.5-fold (ARN1) or 13-fold (ARN2) resistance to the drug with various degrees of cross-resistance to other anthracyclines, vinca alkaloids, and epipodophyllotoxins. Because the redox cycling of the quinone moiety of Adriamycin is known to produce oxidative stress, however, an analysis of glutathione (GSH) and related enzyme systems was undertaken in the wild-type and selected resistant cells. In ARN1 and ARN2, superoxide dismutase (SOD) and catalase activities were slightly decreased, intracellular GSH and GSH reductase were essentially unchanged, and total GSH peroxidase, glutathione S-transferase (GST), and DT-diaphorase activities were slightly elevated. In each case there was no stoichiometric relationship between degree of resistance and level of activity. GST isozymes were purified from each cell line by HPLC GSH affinity column chromatography. Two-dimensional gel electrophoresis and western blot immunoreactivity against a battery of GST isozyme polyclonal antibodies determined that both the resistant and sensitive cells expressed isozymes of the alpha, pi, and mu classes (alternative murine nomenclature: M1, M2, M3). Of significance, both ARN1 and ARN2 cell lines expressed a unique alpha subunit which was absent from the parent FLC cell line. This isozyme presumably accounted for the increased GSH peroxidase activity (cumene hydroperoxide as substrate) found in ARN1 and ARN2 and may play a role in the small incremental resistance to melphalan found for both resistant lines. Expression of the isozyme was not stoichiometric with respect to degree of resistance. The presence of this isozyme may contribute to the resistant phenotype or may be the consequence of a more general cellular response to oxidative stress. PMID:2639724

  8. Protein disulfide isomerase mediates glutathione depletion-induced cytotoxicity.

    PubMed

    Okada, Kazushi; Fukui, Masayuki; Zhu, Bao-Ting

    2016-08-26

    Glutathione depletion is a distinct cause underlying many forms of pathogenesis associated with oxidative stress and cytotoxicity. Earlier studies showed that glutamate-induced glutathione depletion in immortalized murine HT22 hippocampal neuronal cells leads to accumulation of reactive oxygen species (ROS) and ultimately cell death, but the precise mechanism underlying these processes is not clear. Here we show that during the induction of glutathione depletion, nitric oxide (NO) accumulation precedes ROS accumulation. While neuronal NO synthase (nNOS) in untreated HT22 cells exists mostly as a monomer, glutathione depletion results in increased formation of the dimer nNOS, accompanied by increases in the catalytic activity. We identified that nNOS dimerization is catalyzed by protein disulfide isomerase (PDI). Inhibition of PDI's isomerase activity effectively abrogates glutathione depletion-induced conversion of monomer nNOS into dimer nNOS, accumulation of NO and ROS, and cytotoxicity. Furthermore, we found that PDI is present in untreated cells in an inactive S-nitrosylated form, which becomes activated following glutathione depletion via S-denitrosylation. These results reveal a novel role for PDI in mediating glutathione depletion-induced oxidative cytotoxicity, as well as its role as a valuable therapeutic target for protection against oxidative cytotoxicity. PMID:27317486

  9. Chaos in manufacturing systems: Study of different cases

    NASA Astrophysics Data System (ADS)

    Charpentier, Patrick; Alfaro, Miguel

    2001-06-01

    Since a few years, an abundant literature has been published in order to proof the existence of chaotic behaviors both in the field of science and in the field of technique. Until now very few articles studied the conduct of manufacturing production systems. Apparently some production systems let us think that their behavior might be chaotic. Nevertheless, in our opinion, the proof of existing chaos in the production systems has not been totally confirmed. The works presented in this article are aimed to make obvious and to prove the existence of chaotic behaviors in manufacturing production systems. After the presentation of the interest of this study in a manufacturing production environment, we present our analysis method of the dynamic of non-planned production systems. We then justify the choices which have been made regarding in particular: the sub-system in which our study is made, the variable of interest (temporal average of the number of parts in a waiting line), the determinism of the system parameters, and the imposed balance conditions (in the sense that the number of parts is finished regardless of the considered instant). In the second part are presented the results obtained with two manufacturing systems, both very simple and very similar, although they give very different results. We then compare the results with the rules of assignment and management of different waiting lines. In the last part, we show that an actual system, under certain management conditions, can also present a chaotic behavior. This study has been realized from the modeling of a flexible assembly cell.

  10. Glutathione S-transferases of Aulacorthum solani and Acyrthosiphon pisum: partial purification and characterization.

    PubMed

    Francis, F; Haubruge, E; Gaspar, C; Dierickx, P J

    2001-05-01

    Glutathione S-transferases (GST) play an important role in the detoxification of many substances including allelochemicals from plants. Brassicaceae plants contain glucosinolates and emit volatile isothiocyanates which affect the GST system. A comparison of the GST of two aphid species, the generalist Aulacorthum solani found on Brassicaceae and the Fabaceae specialist Acyrthosiphon pisum, was made to try to explain their respective feeding behaviour. Differences of GST were determined among the two aphid species based on purification by affinity chromatography, SDS-PAGE and on kinetic studies. Purification yields using an epoxy-activated Sepharose 6B column were highly different for the two aphid species (18% and 34% for A. solani and A. pisum, respectively). These variations were confirmed by SDS-PAGE. While only a 27-kDa band was observed for A. pisum, two bands of approximately 25-kDa were visualized for the generalist aphid, A. solani. Considering the kinetic results, differences of Km and Vmax were observed following the aphid species when a range of substrates (CDNB and DCNB) and GSH concentrations were tested. Studies on the detoxification enzymes of generalist and specialist herbivores would be undertaken to determine accurately the effect of the host plant on the organisms eating them, particularly in terms of biochemical and ecological advantages. PMID:11337260

  11. Abrasions and lameness in piglets born in different farrowing systems with different types of floor

    PubMed Central

    Zoric, Mate; Nilsson, Ebba; Mattsson, Sigbrit; Lundeheim, Nils; Wallgren, Per

    2008-01-01

    Background The quality of the floor is essential to the welfare of piglets as abrasions often are recorded in newborn piglets, and such lesions may lead to lameness. Apart from animal suffering, lameness contributes to losses in form of dead piglets, decreased growth, and increased use of antibiotics and manual labour. Methods In a herd with three different farrowing systems, 37 litters (390 piglets) were studied until the age of 3 weeks with respect to presence of skin wounds and abrasions. Lameness was registered until the age of 7 weeks. Eight lame piglets were sacrificed before medical treatment and subjected to necropsy including histopathological and microbiological examinations. Isolates of streptococci, staphylococci and E. coli were tested with respect to antimicrobial resistance. Mastitis was observed in ten sows. Results The most severe abrasions at carpus and soles were seen in the system with a new solid concrete floor with a slatted floor over the dunging area. The lowest magnitude was observed in the deep litter system with peat. Sole bruising was more common in the systems with concrete floor compared to the deep litter system with peat, and the differce in prevalence was significant at all examination days. The lesions decreased with time and about 75% of the treatments for lameness were performed during the first three weeks of life. The overall prevalence of lameness was highest in the system with new solid concrete floor with a slatted floor over the dunging area (9.4%) followed by the old solid concrete floor (7.5%). A lower (p < 0.05) prevalence was seen in the deep litters system with peat (3.3%). No significant relationship between mastitis and abrasions or lameness in the offspring was observed. Conclusion There were large differences in the prevalence of abrasions and lameness between the floor types. The deep litter system with peat provided a soft and good floor for piglets. The overall prevalence of lameness was only diagnosed in every

  12. Fluorescein-labeled glutathione to study protein S-glutathionylation.

    PubMed

    Landino, Lisa M; Brown, Carolyn M; Edson, Carolyn A; Gilbert, Laura J; Grega-Larson, Nathan; Wirth, Anna Jean; Lane, Kelly C

    2010-07-01

    Numerous studies of S-glutathionylation of cysteine thiols indicate that this protein modification plays a key role in redox regulation of proteins. To facilitate the study of protein S-glutathionylation, we developed a synthesis and purification to produce milligram quantities of fluorescein-labeled glutathione. The amino terminus of the glutathione tripeptide reacted with fluorescein isothiocyanate readily in ammonium bicarbonate. Purification by solid phase extraction on C8 and C18 columns separated excess reactants from desired products. Both oxidized and reduced fluorescein-labeled glutathione reacted with a variety of thiol-containing proteins to yield fluorescent proteins. PMID:20156418

  13. Standard machine vision systems used in different industrial applications

    NASA Astrophysics Data System (ADS)

    Bruehl, Wolfgang

    1993-12-01

    Fully standardized machine vision systems won't require task specific hard- or software development. This allows short project realization times at minimized cost. This paper describes two very different applications which were realized only by menu-guided configuration of the QueCheck standard machine vision system. The first is an in-line survey of oilpump castings necessary to protect the following working machine from being damaged by castings not according to the specified geometrical measures. The second application shows the replacement of time consuming manual particle size analysis of fertilizer pellets, by a continuous analysis with a vision system. At the same time the data of the vision system can be used to optimize particle size during production.

  14. Sulforaphane Restores Cellular Glutathione Levels and Reduces Chronic Periodontitis Neutrophil Hyperactivity In Vitro

    PubMed Central

    Dias, Irundika H. K.; Chapple, Ian L. C.; Milward, Mike; Grant, Melissa M.; Hill, Eric; Brown, James; Griffiths, Helen R.

    2013-01-01

    The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2. - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients’ neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2. - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. PMID:23826097

  15. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation1234

    PubMed Central

    Patel, Sanjeet G; Guthikonda, Anuradha P; Reid, Marvin; Balasubramanyam, Ashok; Taffet, George E; Jahoor, Farook

    2011-01-01

    Background: Aging is associated with oxidative stress, but underlying mechanisms remain poorly understood. Objective: We tested whether glutathione deficiency occurs because of diminished synthesis and contributes to oxidative stress in aging and whether stimulating glutathione synthesis with its precursors cysteine and glycine could alleviate oxidative stress. Design: Eight elderly and 8 younger subjects received stable-isotope infusions of [2H2]glycine, after which red blood cell (RBC) glutathione synthesis and concentrations, plasma oxidative stress, and markers of oxidant damage (eg, F2-isoprostanes) were measured. Elderly subjects were restudied after 2 wk of glutathione precursor supplementation. Results: Compared with younger control subjects, elderly subjects had markedly lower RBC concentrations of glycine (486.7 ± 28.3 compared with 218.0 ± 23.7 μmol/L; P < 0.01), cysteine (26.2 ± 1.4 compared with 19.8 ± 1.3 μmol/L; P < 0.05), and glutathione (2.08 ± 0.12 compared with 1.12 ± 0.18 mmol/L RBCs; P < 0.05); lower glutathione fractional (83.14 ± 6.43% compared with 45.80 ± 5.69%/d; P < 0.01) and absolute (1.73 ± 0.16 compared with 0.55 ± 0.12 mmol/L RBCs per day; P < 0.01) synthesis rates; and higher plasma oxidative stress (304 ± 16 compared with 346 ± 20 Carratelli units; P < 0.05) and plasma F2-isoprostanes (97.7 ± 8.3 compared with 136.3 ± 11.3 pg/mL; P < 0.05). Precursor supplementation in elderly subjects led to a 94.6% higher glutathione concentration, a 78.8% higher fractional synthesis rate, a 230.9% higher absolute synthesis rate, and significantly lower plasma oxidative stress and F2-isoprostanes. No differences in these measures were observed between younger subjects and supplemented elderly subjects. Conclusions: Glutathione deficiency in elderly humans occurs because of a marked reduction in synthesis. Dietary supplementation with the glutathione precursors cysteine and glycine fully restores glutathione synthesis and

  16. Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state.

    PubMed

    Banach-Latapy, Agata; He, Tiantian; Dardalhon, Michèle; Vernis, Laurence; Chanet, Roland; Huang, Meng-Er

    2013-12-01

    Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. Genetically encoded biosensors including the glutathione-specific redox-sensitive yellow fluorescent protein (rxYFP) may provide an alternative way to overcome the limitations of conventional glutathione/glutathione disulfide (GSH/GSSG) redox measurements. This study describes the use of rxYFP sensors for investigating compartment-specific steady redox state and their dynamics in response to stress in human cells. RxYFP expressed in the cytosol, nucleus, or mitochondrial matrix of HeLa cells was responsive to the intracellular redox state changes induced by reducing as well as oxidizing agents. Compartment-targeted rxYFP sensors were able to detect different steady-state redox conditions among the cytosol, nucleus, and mitochondrial matrix. These sensors expressed in human epidermal keratinocytes HEK001 responded to stress induced by ultraviolet A radiation in a dose-dependent manner. Furthermore, rxYFP sensors were able to sense dynamic and compartment-specific redox changes caused by 100 μM hydrogen peroxide (H2O2). Mitochondrial matrix-targeted rxYFP displayed a greater dynamics of oxidation in response to a H2O2 challenge than the cytosol- and nucleus-targeted sensors, largely due to a more alkaline local pH environment. These observations support the view that mitochondrial glutathione redox state is maintained and regulated independently from that of the cytosol and nucleus. Taken together, our data show the robustness of the rxYFP sensors to measure compartmental redox changes in human cells. Complementary to existing redox sensors and conventional redox measurements, compartment-targeted rxYFP sensors provide a novel tool for examining mammalian cell redox homeostasis, permitting high-resolution readout of steady glutathione state and dynamics of redox changes. PMID:23891676

  17. Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.

    1998-01-01

    Earlier studies reported on the toxicity and related oxidative stress of different forms of Se, including seleno-D,L-methionine, in mallards (Anas platyrhynchos). This study compares the effects of Se (seleno-D,L-methionine) and Hg (methylmercury chloride) separately and in combination. Mallard drakes received one of the following diets: untreated feed (controls), or feed containing 10 ppm Se, 10 ppm Hg, or 10 ppm Se in combination with 10 ppm Hg. After 10 weeks, blood, liver, and brain samples were collected for biochemical assays. The following clinical and biochemical alterations occurred in response to mercury exposure: hematocrit and hemoglobin concentrations decreased; activities of the enzymes glutathione (GSH) peroxidase (plasma and liver), glutathione-S-transferase (liver), and glucose-6-phosphate dehydrogenase (G-6-PDH) (liver and brain) decreased; hepatic oxidized glutathione (GSSG) concentration increased relative to reduced glutathione (GSH); and lipid peroxidation in the brain was evident as detected by increased thiobarbituric reactive substances (TBARS). Effects of Se alone included increased hepatic GSSG reductase activity and brain TBARS concentration. Se in combination with Hg partially or totally alleviated effects of Hg on GSH peroxidase, G-6-PDH, and GSSG. These findings are compared in relation to field observations for diving ducks and other aquatic birds. It is concluded that since both Hg and excess Se can affect thiol status, measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. The ability of Se to restore the activities of G-6-PDH, GSH peroxidase, and glutathione status involved in antioxidative defense mechanisms may be crucial to biological protection from the toxic effects of methyl mercury.

  18. Glutathione and its related enzymes in the gonad of Nile Tilapia (Oreochromis niloticus).

    PubMed

    Hamed, R R; Saleh, N S M; Shokeer, A; Guneidy, R A; Abdel-Ghany, S S

    2016-02-01

    Glutathione (GSH) concentration, the activity of its metabolizing enzymes, glutathione transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), and the antioxidant enzyme catalase (CAT) in O. niloticus ovary and testis were examined. GSH concentration of O. niloticus testis exhibited high concentration (129 ± 21 nmol/g tissue) compared with GSH concentration (49.2 ± 8.3 nmol/g tissue) in the ovary. GST, GPx, GR, and CAT activities of O. niloticus testis exhibited high values compared with their corresponding values in ovary homogenates. However, protein concentration in ovary homogenates exhibited higher values (175 ± 40.6 mg) compared with testis homogenates (27.1 ± 3.7 mg). O. niloticus ovary was less effective in excretion of xenobiotices compared with the testis, where its function is mainly in increasing the protein content of the eggs; however, in O. niloticus testis, the glutathione cycle operated in accelerated way in the direction of reduced GSH production in order to protect the maturation stages in a save way. A simple reproducible procedure for the purification of GST from O. niloticus ovary was established. The enzymes proved to be homogenous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and its molecular weight was calculated to be 25.1 kDa. GST of O. niloticus ovary exhibited maximum activity at pH 7.5. The Michaelis-Menten constant (K(m)) of the purified ovary GST for GSH and CDNB was 0.076 mM and 1.0 mM, respectively. Cibacron blue was the most potent inhibitor of ovary GST activity (IC50 value, concentration of inhibitor that will give 50% inhibition, equal 0.002 μM). The specific activity of GST toward different electrophilic substrates was determined. GST activity toward benzyl isothiocyanate was the highest compared with phenethyl isothiocyanate and allyl isothiocyanate. PMID:26476660

  19. Assessing System Thinking Through Different Concept-Mapping Practices

    NASA Astrophysics Data System (ADS)

    Brandstädter, Kristina; Harms, Ute; Großschedl, Jörg

    2012-09-01

    System thinking is usually investigated by using questionnaires, video analysis, or interviews. Recently, concept-mapping (CM) was suggested as an adequate instrument for analysing students' system thinking. However, there are different ways with which to use this method. Therefore, the purpose of this study was to examine whether particular features of CM practices affect the valid assessment of students' system thinking. The particular features analysed were the medium (computer versus paper-pencil) and the directedness (highly directed versus nondirected) of CM practices. These features were evaluated with respect to their influence on (a) students' performance in CM and (b) the validity of different CM practices for system thinking. One hundred fifty-four German fourth graders (mean age: 9.95 years) and 93 eighth graders (mean age: 14.07 years) participated in the study following an experimental pre-test-post-test design. Three variations of CM practices were applied: (a) highly directed computer mapping, (b) highly directed paper-pencil mapping, and (c) nondirected paper-pencil mapping. In addition to the CM task, a paper-pencil questionnaire was employed to investigate the validity of the CM practices. Results showed that the computer positively influenced student performance in CM when compared with paper-pencil. By contrast, there was no difference between highly directed and nondirected mapping. Whereas the medium rarely influenced the validity of CM for system thinking, high directedness showed a positive influence. Considering the limitations and benefits of particular CM practices, we suggest highly directed and computer-based CM as an appropriate assessment tool-in particular, with regard to large-scale assessments of system thinking.

  20. A Geo-Distributed System Architecture for Different Domains

    NASA Astrophysics Data System (ADS)

    Moßgraber, Jürgen; Middleton, Stuart; Tao, Ran

    2013-04-01

    The presentation will describe work on the system-of-systems (SoS) architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". In this project we deal with two use-cases: Natural Crisis Management (e.g. Tsunami Early Warning) and Industrial Subsurface Development (e.g. drilling for oil). These use-cases seem to be quite different at first sight but share a lot of similarities, like managing and looking up available sensors, extracting data from them and annotate it semantically, intelligently manage the data (big data problem), run mathematical analysis algorithms on the data and finally provide decision support on this basis. The main challenge was to create a generic architecture which fits both use-cases. The requirements to the architecture are manifold and the whole spectrum of a modern, geo-distributed and collaborative system comes into play. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. The most important architectural challenges we needed to address are 1. Build a scalable communication layer for a System-of-sytems 2. Build a resilient communication layer for a System-of-sytems 3. Efficiently publish large volumes of semantically rich sensor data 4. Scalable and high performance storage of large distributed datasets 5. Handling federated multi-domain heterogeneous data 6. Discovery of resources in a geo-distributed SoS 7. Coordination of work between geo-distributed systems The design decisions made for each of them will be presented. These developed concepts are also applicable to the requirements of the Future Internet (FI) and Internet of Things (IoT) which will provide services like smart grids, smart metering, logistics and

  1. Chronic Arsenic Exposure and Blood Glutathione and Glutathione Disulfide Concentrations in Bangladeshi Adults

    PubMed Central

    Hall, Megan N.; Niedzwiecki, Megan; Liu, Xinhua; Harper, Kristin N.; Alam, Shafiul; Slavkovich, Vesna; Ilievski, Vesna; Levy, Diane; Siddique, Abu B.; Parvez, Faruque; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph

    2013-01-01

    Background: In vitro and rodent studies have shown that arsenic (As) exposure can deplete glutathione (GSH) and induce oxidative stress. GSH is the primary intracellular antioxidant; it donates an electron to reactive oxygen species, thus producing glutathione disulfide (GSSG). Cysteine (Cys) and cystine (CySS) are the predominant thiol/disulfide redox couple found in human plasma. Arsenic, GSH, and Cys are linked in several ways: a) GSH is synthesized via the transsulfuration pathway, and Cys is the rate-limiting substrate; b) intermediates of the methionine cycle regulate both the transsulfuration pathway and As methylation; c) GSH serves as the electron donor for reduction of arsenate to arsenite; and d) As has a high affinity for sulfhydryl groups and therefore binds to GSH and Cys. Objectives: We tested the hypothesis that As exposure is associated with decreases in GSH and Cys and increases in GSSG and CySS (i.e., a more oxidized environment). Methods: For this cross-sectional study, the Folate and Oxidative Stress Study, we recruited a total of 378 participants from each of five water As concentration categories: < 10 (n = 76), 10–100 (n = 104), 101–200 (n = 86), 201–300 (n = 67), and > 300 µg/L (n = 45). Concentrations of GSH, GSSG, Cys, and CySS were measured using HPLC. Results: An interquartile range (IQR) increase in water As was negatively associated with blood GSH (mean change, –25.4 µmol/L; 95% CI: –45.3, –5.31) and plasma CySS (mean change, –3.00 µmol/L; 95% CI: –4.61, –1.40). We observed similar associations with urine and blood As. There were no significant associations between As exposure and blood GSSG or plasma Cys. Conclusions: The observed associations are consistent with the hypothesis that As may influence concentrations of GSH and other nonprotein sulfhydryls through binding and irreversible loss in bile and/or possibly in urine. Citation: Hall MN, Niedzwiecki M, Liu X, Harper KN, Alam S, Slavkovich V, Ilievski V, Levy

  2. Bilateral Control of Master-Slave Systems with Different Scaling

    NASA Astrophysics Data System (ADS)

    Susa, Shigeru; Natori, Kenji; Ohnishi, Kouhei

    Bilateral control is one of control methods used to achieve haptic teleoperation between remote places. If the bilateral system is utilized for small or large environments such as those in brain surgery and space development, it is necessary that the system takes into account scaling factors between the master and slave. In this paper, we propose the bilateral control of master-slave system with different scaling on the basis of reproducibility and operationality which are one of the evaluation indices of bilateral control system. The proposed control system contains two kinds of scaling factors. One of them is scaling factors of position and force responses that are used to determine the scaling ratio between the master and the slave. The other one is used to adjust the control gains at the master and the slave, respectively. In this paper, some scaling types depending on the nominal masses of the systems are proposed. In order to compare the scaling methods, the analysis results of the proposed method on reproducibility and operationality are shown. Moreover, experimental results confirm the validity of the proposed method.

  3. Physiological evaluation of men wearing three different toxicological protective systems

    SciTech Connect

    Levine, L.; Cadarette, B.S.; Sawka, M.N.; Pandolf, K.B.

    1989-08-01

    This study examined the physiological responses of seven volunteers exercising in the heat while wearing three different toxicological protective systems. The Toxicological Agent Protective (TAP) suit has been available for use for more than 30 years while the other two protective systems are developmental efforts. The Self-Contained Toxicological Environmental Protection Outfit (STEPO) includes either a backpack-rebreather (with CO{sub 2} scrubber) and ice-cooling vest (STEPO-R), or a tether system which supplies breathing/cooling air inside the suit (STEPO-T). After the volunteers were heat acclimated, the three toxicological protection systems were evaluated utilizing a counter-balanced experimental design initially in a hot and then in a cool environment while subjects walked at 1.12 m/s, 0% grade for an attempted two hours. There was no statistical advantage of any one system in terms of exercise time in the cool environment. While evaporated sweating rate was greater for the STEPO-T in the cool environment compared to both STEPO-R and TAP. Development efforts to improve the STEPO system designs continue, and physiological evaluation of new developmental models is underway.

  4. Hemoglobin-catalyzed fluorometric method for the determination of glutathione

    NASA Astrophysics Data System (ADS)

    Wang, Ruiqiang; Tang, Lin; Li, Hua; Wang, Yi; Gou, Rong; Guo, Yuanyuan; Fang, Yudong; Chen, Fengmei

    2016-01-01

    A new spectrofluorometric method for the determination of glutathione based on the reaction catalyzed by hemoglobin was reported. The reaction product gave a highly fluorescent intensity with the excitation and emission wavelengths of 320.0 nm and 413.0 nm, respectively. The optimum experimental conditions were investigated. Results showed that low concentration glutathione enhanced the fluorescence intensity significantly. The line ranges were 1.0 × 10-6-1.0 × 10-5 mol L-1 of glutathione and 6.0 × 10-10 mol L-1-1.0 × 10-8 mol L-1, respectively. The detection limit was calculated to be 1.1 × 10-11 mol L-1. The recovery test by the standard addition method gave values in the range of 90.78%-102.20%. This method was used for the determination of glutathione in synthetic and real samples with satisfactory results.

  5. Light intensity matching between different intravascular optical coherence tomography systems

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Eggermont, Jeroen; Nakatani, Shimpei; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2016-02-01

    Currently two commercial intravascular optical coherence tomography (IVOCT) systems are available: Illumien Optis from St. Jude Medical (SJM) and Lunawave from Terumo. Both systems store the light intensity data in a raw vendor specific polar format. However, whereas SJM uses 16-bits per pixel Terumo uses 8-bits meaning the intensity values are in different ranges. This complicates quantitative light intensity based analysis when comparing results based on data from both systems. Therefore, this work aims to find an intensity transformation function from Terumo's 8-bit OFDI data to SJM's 16-bit range. The data consists of 8 pullbacks, 4 acquired with each system in the same arteries of 2 different patents pre- and post-stenting implantation. A total of 133 matching sections without stent struts from the two sets of pullbacks were identified based on landmarks such as side-branches and calcified regions. Since the main region of interest in the image is the tissue region only the pixels within 2mm behind the lumen border are used. In order to match the SJM data range, the Terumo data was rescaled and cumulative distribution functions (CDF) were calculated based on the histogram distributions. Comparing these CDFs, the transformation function can be determined. Application of this transformation function not only improves the visual similarity of matching slices it can also be used for further quantitative analysis.

  6. Comparing the health and environmental hazards of different energy systems

    SciTech Connect

    Hamilton, L.D.

    1982-01-01

    Energy and environment can pose difficult challenges for policy makers and scientists. Assessing health impacts of different energy sources requires synthesis of research results from many different disciplines into a rational framework. Information is often scanty; qualitatively different risks, or energy systems with quite different end uses, must be put on a common footing. Risk-assessment methods reviewed include examples drawn from work of the Biomedical and Environmental Assessment Division at Brookhaven National Laboratory and elsewhere. Coal and nuclear fuel cycles are compared in respect to morbidity and mortality. Other cycles (oil, gas and renewables) are also examined. In broadening comparisons to include new technologies, one must include the impact of manufacturing the energy-producing devices as part of an expanded fuel cycle, via input-output methods. Input-output analysis allows comparisons of direct and system-wide impacts. Throughout the analysis, uncertainties must be explicitly recognized in the results, including uncertainty in validity of data and uncertainty in choice of appropriate models. No single method of comparative risk assessment is fully satisfactory; each has its limitations. By use of several methods progress has been made in understanding the relative impact of energy technologies.

  7. 1H MRS detection of glycine residue of reduced glutathione in vivo

    NASA Astrophysics Data System (ADS)

    Kaiser, Lana G.; Marjańska, Małgorzata; Matson, Gerald B.; Iltis, Isabelle; Bush, Seth D.; Soher, Brian J.; Mueller, Susanne; Young, Karl

    2010-02-01

    Glutathione (GSH) is a powerful antioxidant found inside different kinds of cells, including those of the central nervous system. Detection of GSH in the human brain using 1H MR spectroscopy is hindered by low concentration and spectral overlap with other metabolites. Previous MRS methods focused mainly on the detection of the cysteine residue (GSH-Cys) via editing schemes. This study focuses on the detection of the glycine residue (GSH-Gly), which is overlapped by glutamate and glutamine (Glx) under physiological pH and temperature. The first goal of the study was to obtain the spectral parameters for characterization of the GSH-Gly signal under physiological conditions. The second goal was to investigate a new method of separating GSH-Gly from Glx in vivo. The characterization of the signal was carried out by utilization of numerical simulations as well as experiments over a wide range of magnetic fields (4.0-14 T). The proposed separation scheme utilizes J-difference editing to quantify the Glx contribution to separate it from the GSH-Gly signal. The presented method retains 100% of the GSH-Gly signal. The overall increase in signal to noise ratio of the targeted resonance is calculated to yield a significant SNR improvement compared to previously used methods that target GSH-Cys residue. This allows shorter acquisition times for in vivo human clinical studies.

  8. Combined processing of observations from different Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Springer, T.; Dow, J.; Sanchez, J. F.; Romero, I.

    2007-12-01

    The upcoming the Galileo GNSS and the modernisation of the GPS and Glonass systems offers many exciting opportunities and challenges in the field of geosciences in the next decade. However, in order to obtain any positive effects on our geodetic and geophysical estimates the different GNSS systems will have to be observed by multi system receivers that track all systems on all available frequencies. Furthermore, these receivers should not introduce any biases between the tracked GNSS observations. In addition to this we need analysis software that can efficiently handle these multi-system and multi-frequency observations in one single estimation process. Over the last two years ESOC has put a significant effort into its Napeos processing software. This software is now capable of combined processing of SLR, DORIS, GPS, GLONASS, and GIOVE-A data. It is routinely used for a large number of tasks within ESOC, e.g., Envisat POD, GIOVE-A orbit predictions for SLR, and for the ESOC contributions to the Galileo Geodetic Service Provider. Furthermore, it will soon officially be used for generating all the ESOC products for the International GNSS Service (IGS). In our presentation we will show results from our combined GNSS analysis, both the combination of GPS and GLONASS as well as the combination of GPS and GIOVE-A. We will focus on the challenges and we were, and in part still are, faced with when combining the data of different GNSS. We will demonstrate that at present both GLONASS and GIOVE-A do not offer any benefits for our estimates. We will conclude our contribution with a discussion on the requirements which need to be fulfilled to be able to really benefit from a combined processing of multi Global Navigation Satellite Systems.

  9. Nanofiltration concentration of extracellular glutathione produced by engineered Saccharomyces cerevisiae.

    PubMed

    Sasaki, Kengo; Hara, Kiyotaka Y; Kawaguchi, Hideo; Sazuka, Takashi; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    This study aimed to optimize extracellular glutathione production by a Saccharomyces cerevisiae engineered strain and to concentrate the extracellular glutathione by membrane separation processes, including ultrafiltration (UF) and nanofiltration (NF). Synthetic defined (SD) medium containing 20 g L(-1) glucose was fermented for 48 h; the fermentation liquid was passed through an UF membrane to remove macromolecules. Glutathione in this permeate was concentrated for 48 h to 545.1 ± 33.6 mg L(-1) using the NF membrane; this was a significantly higher concentration than that obtained with yeast extract peptone dextrose (YPD) medium following 96 h NF concentration (217.9 ± 57.4 mg L(-1)). This higher glutathione concentration results from lower cellular growth in SD medium (final OD600 = 6.9 ± 0.1) than in YPD medium (final OD600 = 11.0 ± 0.6) and thus higher production of extracellular glutathione (16.0 ± 1.3 compared to 9.2 ± 2.1 mg L(-1) in YPD medium, respectively). Similar fermentation and membrane processing of sweet sorghum juice containing 20 g L(-1) total sugars provided 240.3 ± 60.6 mg L(-1) glutathione. Increased extracellular production of glutathione by this engineered strain in SD medium and subsequent UF permeation and NF concentration in shortend time may help realize industrial recovery of extracellular glutathione. PMID:26105794

  10. Factors controlling air quality in different European subway systems.

    PubMed

    Martins, Vânia; Moreno, Teresa; Mendes, Luís; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Alves, Célia A; Duarte, Márcio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier; Minguillón, María Cruz

    2016-04-01

    Sampling campaigns using the same equipment and methodology were conducted to assess and compare the air quality at three South European subway systems (Barcelona, Athens and Oporto), focusing on concentrations and chemical composition of PM2.5 on subway platforms, as well as PM2.5 concentrations inside trains. Experimental results showed that the mean PM2.5 concentrations widely varied among the European subway systems, and even among different platforms within the same underground system, which might be associated to distinct station and tunnel designs and ventilation systems. In all cases PM2.5 concentrations on the platforms were higher than those in the urban ambient air, evidencing that there is generation of PM2.5 associated with the subway systems operation. Subway PM2.5 consisted of elemental iron, total carbon, crustal matter, secondary inorganic compounds, insoluble sulphate, halite and trace elements. Of all metals, Fe was the most abundant, accounting for 29-43% of the total PM2.5 mass (41-61% if Fe2O3 is considered), indicating the existence of an Fe source in the subway system, which could have its origin in mechanical friction and wear processes between rails, wheels and brakes. The trace elements with the highest enrichment in the subway PM2.5 were Ba, Cu, Mn, Zn, Cr, Sb, Sr, Ni, Sn, Co, Zr and Mo. Similar PM2.5 diurnal trends were observed on platforms from different subway systems, with higher concentrations during subway operating hours than during the transport service interruption, and lower levels on weekends than on weekdays. PM2.5 concentrations depended largely on the operation and frequency of the trains and the ventilation system, and were lower inside the trains, when air conditioning system was operating properly, than on the platforms. However, the PM2.5 concentrations increased considerably when the train windows were open. The PM2.5 levels inside the trains decreased with the trains passage in aboveground sections. PMID:26717078

  11. Evaluation of the antibiotic properties of glutathione.

    PubMed

    Schairer, David O; Chouake, Jason S; Kutner, Allison J; Makdisi, Joy; Nosanchuk, Josh D; Friedman, Adam J

    2013-11-01

    Skin and soft tissue infections (SSTIs) are growing in prevalence in both the outpatient and inpatient settings and are some of the most common diseases seen by dermatologists, who are often the first point of care for these patients. Microbial resistance to antibiotics continues to rise as more virulent strains evolve, and strains predominantly found in the hospital setting are now being seen in the community. Therefore, innovative approaches to combat this trend are needed. Glutathione (GSH) is a well-described and established antioxidant. It participates in detoxification of xenobiotics, regulation of cellular growth, modulation of immune response, and maintenance of the thiol status of proteins and cellular cysteine levels. GSH is also known to have a regulatory effect on immune cells and even inherent antibacterial properties have been reported. To this end, the value of GSH as an antibiotic was evaluated by growing methicillin resistant S. aureus, E. coli, K. pneumoniae and P. aeruginosa strains isolated from human skin and soft tissue infection in the presence of GSH. At a physiologic concentration of 10 mM, GSH had no effect on bacterial growth. At concentrations above 50 mM, which created acidic conditions (pH < 4), bacterial growth was completely inhibited. When adjusted to physiologic pH, GSH exhibited a bacteriostatic effect in a concentration-dependent manner. Additionally, the cytotoxicity of GSH was evaluated in a murine cell line. GSH was relatively non-toxic to murine macrophages, even at the highest concentration tested (160 mM). These results suggest the potential utility of GSH for the prevention and/or as adjunctive treatment of infection, most significantly in disease states associated with GSH deficiency. PMID:24196336

  12. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  13. Central Asian Post-Soviet health systems in transition: has different aid engagement produced different outcomes?

    PubMed Central

    Ulikpan, Anar; Mirzoev, Tolib; Jimenez, Eliana; Malik, Asmat; Hill, Peter S.

    2014-01-01

    Background The collapse of the Soviet Union in 1991 resulted in a transition from centrally planned socialist systems to largely free-market systems for post-Soviet states. The health systems of Central Asian Post-Soviet (CAPS) countries (Kyrgyzstan, Mongolia, Tajikistan, Turkmenistan, and Uzbekistan) have undergone a profound revolution. External development partners have been crucial to this reorientation through financial and technical support, though both relationships and outcomes have varied. This research provides a comparative review of the development assistance provided in the health systems of CAPS countries and proposes future policy options to improve the effectiveness of development. Design Extensive documentary review was conducted using Pubmed, Medline/Ovid, Scopus, and Google scholar search engines, local websites, donor reports, and grey literature. The review was supplemented by key informant interviews and participant observation. Findings The collapse of the Soviet dominance of the region brought many health system challenges. Donors have played an essential role in the reform of health systems. However, as new aid beneficiaries, neither CAPS countries’ governments nor the donors had the experience of development collaboration in this context. The scale of development assistance for health in CAPS countries has been limited compared to other countries with similar income, partly due to their limited history with the donor community, lack of experience in managing donors, and a limited history of transparency in international dealings. Despite commonalities at the start, two distinctive trajectories formed in CAPS countries, due to their differing politics and governance context. Conclusions The influence of donors, both financially and technically, remains crucial to health sector reform, despite their relatively small contribution to overall health budgets. Kyrgyzstan, Mongolia, and Tajikistan have demonstrated more effective development

  14. Microleakage under orthodontic brackets bonded with different adhesive systems

    PubMed Central

    Alkis, Huseyin; Turkkahraman, Hakan; Adanir, Necdet

    2015-01-01

    Objective: This in vitro study aimed to compare the microleakage of orthodontic brackets between enamel-adhesive and adhesive-bracket interfaces at the occlusal and gingival margins bonded with different adhesive systems. Materials and Methods: A total of 144 human maxillary premolar teeth extracted for orthodontic reasons was randomly divided into four groups. Each group was then further divided into three sub-groups. Three total-etching bonding systems (Transbond XT, Greengloo and Kurasper F), three one-step self-etching bonding systems (Transbond Plus SEP, Bond Force and Clearfil S3), three two-step self-etching bonding systems (Clearfil SE Bond, Clearfil Protectbond and Clearfil Liner Bond), and three self-adhesive resin cements (Maxcem Elite, Relyx U 100 and Clearfil SA Cement) were used to bond the brackets to the teeth. After bonding, all teeth were sealed with nail varnish and stained with 0.5% basic fuchsine for 24 h. All samples were sectioned and examined under a stereomicroscope to score for microleakage at the adhesive–enamel and adhesive–bracket interfaces from both occlusal and gingival margins. Statistical Analysis Used: Statistical analyses were performed with Kruskal–Wallis and Wilcoxon signed-rank tests. Results: The results indicate no statistically significant differences between the microleakage scores of the adhesives; microleakage was detected in all groups. Comparison of the average values of the microleakage scores in the enamel–adhesive and adhesive–bracket interfaces indicated statistically significant differences (P < 0.05). The amount of the microleakage was higher at the enamel–adhesive interface than at the bracket-adhesive interface. Conclusions: All of the brackets exhibited some amount of microleakage. This result means that microleakage does not depend on the type of adhesive used. PMID:25713494

  15. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.

    PubMed

    Patwardhan, R S; Sharma, D; Checker, R; Thoh, M; Sandur, S K

    2015-10-01

    Ionizing radiation (IR)-induced oxidative stress in tumor cells is effectively managed by constitutive and inducible antioxidant defense systems. This study was initiated to understand the relative contribution of different redox regulatory systems in determining the tumor radio-resistance. In this study, human T-cell lymphoma (Jurkat) cells were exposed to IR (4 Gy) and monitored for the spatio-temporal changes in cellular redox regulatory parameters. We monitored the changes in the levels of reactive oxygen species (ROS) (total, mitochondrial, primary, and secondary), thiols (total, surface, and intracellular), GSH/GSSG ratio, antioxidant enzyme activity viz. thioredoxin (Trx), Trx reductase (TrxR), glutathione peroxidase, and glutathione reductase with respect to time. We have also measured protein glutathionylation. We observed that tumor cells mount a biphasic response after IR exposure which can be divided into early (0-6 h) and late (16-48 h) responses in terms of changes in cellular redox parameters. During early response, constitutively active GSH and Trx systems respond to restore cellular redox balance to pre-exposure levels and help in activation of redox-sensitive transcription factor Nrf-2. During late response, increase in the levels of antioxidants GSH and Trx rescue cells against IR-mediated damage. We observed that disruption of either glutathione or thioredoxin metabolism led to partial impairment of ability of cells to survive against IR-induced damage. But simultaneous disruption of both the pathways significantly increased radio sensitivity of Jurkat cells. This highlighted the importance of these two antioxidant pathways in regulating redox homeostasis under conditions of IR-induced oxidative stress. PMID:26021764

  16. Chemoselective Protection of Glutathione in the Preparation of Bioconjugates: The Case of Trypanothione Disulfide.

    PubMed

    Antoniou, Antonia I; Pepe, Dionissia A; Aiello, Donatella; Siciliano, Carlo; Athanassopoulos, Constantinos M

    2016-05-20

    A novel synthetic route to the chemoselectively protected N,S-ditritylglutathione monomethyl ester is described involving the chemical modification of the commercially available glutathione (GSH). The synthetic value of this building block in the facile preparation of GSH bioconjugates in a satisfying overall yield was exemplified by the case of trypanothione disulfide (TS2), a GSH-spermidine bioconjugate, involved in the antioxidative stress protection system of parasitic protozoa, such as trypanosoma and leishmania parasites. PMID:27137354

  17. Regional modulation of the response to glutathione in Hydra vulgaris.

    PubMed

    Pierobon, Paola

    2015-07-01

    In the presence of prey, or upon exposure to reduced glutathione (GSH), Hydra polyps open a mouth to ingest the captured prey and close it after feeding; at rest the mouth is not evident. In previous papers we have shown that GABA, glycine and NMDA modulate the mechanisms of mouth closure through ligand-gated-ion-channel receptors that are similar to their mammalian analogues in terms of biochemical and pharmacological properties. In order to study the regional distribution of these receptors, we have applied the GSH assay to polyps amputated at different levels of the body column. The response to 1-10 µmol l(-1) GSH of polyps lacking either peduncle and foot or the entire body columns (heads) was not different from control, whole animals. In the presence of GABA or muscimol, duration of the response was significantly decreased in heads; the decrease was suppressed by the GABA antagonists gabazine and bicuculline. By contrast, in animals lacking peduncle and foot, duration of the response did not vary upon GABA administration. Conversely, in the presence of glycine, duration of the response in heads preparations was similar to control, whereas in footless polyps, it was significantly reduced. The decrease was mimicked by the glycine agonists taurine and β-alanine, and counteracted by strychnine. These results suggest a regional distribution of receptors to GABA and glycine in the neuromuscular circuitry modulating the feeding behaviour. PMID:25987735

  18. System for objective assessment of image differences in digital cinema

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  19. EFFECT OF EXOGENOUS GLUTATHIONE, GLUTATHIONE REDUCTASE, CHLORINE DIOXIDE, AND CHLORITE ON OSMOTIC FRAGILITY OF RAT BLOOD IN VITRO

    EPA Science Inventory

    Chlorine dioxide (ClO2), chlorite (ClO2(-1)), and chlorate (ClO3(-1)) in drinking water decreased blood glutathione and RBC osmotic fragility in vivo. The osmotic fragility and glutathione content were also studied in rat blood treated with ClO2, ClO2(-1), ClO3(-1) in vitro. RBC ...

  20. Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells.

    PubMed

    Robitaille, Stephan; Mailloux, Ryan J; Chan, Hing Man

    2016-08-10

    Methylmercury (MeHg) is a neurotoxin that binds strongly to thiol residues on protein and low molecular weight molecules like reduced glutathione (GSH). The mechanism of its effects on GSH homeostasis particularly at environmentally relevant low doses is not fully known. We hypothesized that exposure to MeHg would lead to a depletion of reduced glutathione (GSH) and an accumulation of glutathione disulfide (GSSG) leading to alterations in S-glutathionylation of proteins. Our results showed exposure to low concentrations of MeHg (1μM) did not significantly alter GSH levels but increased GSSG levels by ∼12-fold. This effect was associated with a significant increase in total cellular glutathione content and a decrease in GSH/GSSG. Immunoblot analyses revealed that proteins involved in glutathione synthesis were upregulated accounting for the increase in cellular glutathione. This was associated an increase in cellular Nrf2 protein levels which is required to induce the expression of antioxidant genes in response to cellular stress. Intriguingly, we noted that a key enzyme involved in reversing protein S-glutathionylation and maintaining glutathione homeostasis, glutaredoxin-1 (Grx1), was inhibited by ∼50%. MeHg treatment also increased the S-glutathionylation of a high molecular weight protein. This observation is consistent with the inhibition of Grx1 and elevated H2O2 production however; contrary to our original hypothesis we found few S-glutathionylated proteins in the astrocytoma cells. Collectively, MeHg affects multiple arms of glutathione homeostasis ranging from pool management to protein S-glutathionylation and Grx1 activity. PMID:27180086

  1. 1,4-Naphthoquinones and Others NADPH-Dependent Glutathione Reductase-Catalyzed Redox Cyclers as Antimalarial Agents

    PubMed Central

    Belorgey, Didier; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth

    2013-01-01

    The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in development arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages. PMID:23116403

  2. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione

    PubMed Central

    Booty, Lee M.; King, Martin S.; Thangaratnarajah, Chancievan; Majd, Homa; James, Andrew M.; Kunji, Edmund R.S.; Murphy, Michael P.

    2015-01-01

    Glutathione carries out vital protective roles within mitochondria, but is synthesised in the cytosol. Previous studies have suggested that the mitochondrial dicarboxylate and 2-oxoglutarate carriers were responsible for glutathione uptake. We set out to characterise the putative glutathione transport by using fused membrane vesicles of Lactococcus lactis overexpressing the dicarboxylate and 2-oxoglutarate carriers. Although transport of the canonical substrates could be measured readily, an excess of glutathione did not compete for substrate uptake nor could transport of glutathione be measured directly. Thus these mitochondrial carriers do not transport glutathione and the identity of the mitochondrial glutathione transporter remains unknown. PMID:25637873

  3. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione.

    PubMed

    Booty, Lee M; King, Martin S; Thangaratnarajah, Chancievan; Majd, Homa; James, Andrew M; Kunji, Edmund R S; Murphy, Michael P

    2015-02-27

    Glutathione carries out vital protective roles within mitochondria, but is synthesised in the cytosol. Previous studies have suggested that the mitochondrial dicarboxylate and 2-oxoglutarate carriers were responsible for glutathione uptake. We set out to characterise the putative glutathione transport by using fused membrane vesicles of Lactococcus lactis overexpressing the dicarboxylate and 2-oxoglutarate carriers. Although transport of the canonical substrates could be measured readily, an excess of glutathione did not compete for substrate uptake nor could transport of glutathione be measured directly. Thus these mitochondrial carriers do not transport glutathione and the identity of the mitochondrial glutathione transporter remains unknown. PMID:25637873

  4. On the System of High Order Rational Difference Equations

    PubMed Central

    Zhang, Qianhong; Zhang, Wenzhuan; Shao, Yuanfu; Liu, Jingzhong

    2014-01-01

    This paper is concerned with the boundedness, persistence, and global asymptotic behavior of positive solution for a system of two rational difference equations x n+1 = A + (x n/∑i=1 k y n−i), y n+1 = B + (y n/∑i=1 k x n−i),  n = 0,1,…, k ∈ {1,2,…}, where A, B ∈ (0, ∞), x −i ∈ (0, ∞), and y −i ∈ (0, ∞), i = 0,1, 2,…, k.

  5. Protective role of glutathione reductase in paraquat induced neurotoxicity.

    PubMed

    Djukic, Mirjana M; Jovanovic, Marina D; Ninkovic, Milica; Stevanovic, Ivana; Ilic, Katarina; Curcic, Marijana; Vekic, Jelena

    2012-08-30

    Paraquat (PQ), a widely used herbicide is a well-known free radical producing agent. The mechanistic pathways of PQ neurotoxicity were examined by assessing oxidative/nitrosative stress markers. Focus was on the role of glutathione (GSH) cycle and to examine whether the pre-treatment with enzyme glutathione reductase (GR) could protect the vulnerable brain regions (VBRs) against harmful oxidative effect of PQ. The study was conducted on Wistar rats, randomly divided in five groups: intact-control group, (n = 8) and four experimental groups (n = 24). All tested compounds were administered intrastriatally (i.s.) in one single dose. The following parameters of oxidative status were measured in the striatum, hippocampus and cortex, at 30 min, 24 h and 7 days post treatment: superoxide anion radical (O₂·⁻), nitrate (NO₃⁻), malondialdehyde (MDA), superoxide dismutase (SOD), total GSH (tGSH) and its oxidized, disulfide form (GSSG) and glutathione peroxidase (GPx). Results obtained from the intact and the sham operated groups were not statistically different, confirming that invasive i.s. route of administration would not influence the reliability of results. Also, similar pattern of changes were observed between ipsi- and contra- lateral side of examined VBRs, indicating rapid spatial spreading of oxidative stress. Mortality of the animals (10%), within 24h, along with symptoms of Parkinsonism, after awakening from anesthesia for 2-3 h, were observed in the PQ group, only. Increased levels of O₂·⁻, NO₃⁻ and MDA, increased ratio of GSSG/GSH and considerably high activity of GPx were measured at 30 min after the treatment. Cytotoxic effect of PQ was documented by drastic drop of all measured parameters and extremely high peak of the ratio GSSG/GSH at 24th hrs after the PQ i.s. injection. In the GR+PQ group, markedly low activity of GPx and low content of NO₃⁻ (in striatum and cortex) were measured during whole experiment, while increase value was

  6. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  7. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells.

    PubMed

    Freitas, Hercules R; Ferraz, Gabriel; Ferreira, Gustavo C; Ribeiro-Resende, Victor T; Chiarini, Luciana B; do Nascimento, José Luiz M; Matos Oliveira, Karen Renata H; Pereira, Tiago de Lima; Ferreira, Leonardo G B; Kubrusly, Regina C; Faria, Robson X; Herculano, Anderson Manoel; Reis, Ricardo A de Melo

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as βIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 μM and MK-801 20 μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  8. Sex differences in the blood antioxidant defense system in juvenile rats with various genetic predispositions to hypertension.

    PubMed

    Horvathova, Martina; Zitnanova, Ingrid; Kralovicova, Zuzana; Balis, Peter; Puzserova, Angelika; Muchova, Jana; Kluknavsky, Michal; Durackova, Zdenka; Bernatova, Iveta

    2016-02-01

    This study investigated the contribution of blood oxidative stress (OS) to the development of hypertension, as well as sex differences in the antioxidant defense system (ADS) in genetic models of hypertension. Nine-week-old normotensive Wistar-Kyoto (WKY) rats, borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR) of both sexes were used. Systolic blood pressure (SBP) was determined by tail-cuff plethysmography, the trolox equivalent antioxidant capacity (TEAC) and the concentration of lipid peroxides (LP) were determined in plasma. The activity of the antioxidant enzymes Cu/Zn-superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) was determined in erythrocytes. SBP was significantly elevated in BHR and SHR in both sexes. BHR and SHR males had a higher SBP than the respective females. Sex-dependent differences in the ADS were found only in SHR, in which TEAC, SOD and CAT were significantly higher in males than in females. No differences in TEAC, SOD, CAT and GPx were observed between BHR (males and females) and WKY controls. LP levels were similar in all the groups investigated. Significant positive correlations were observed between SBP and both SOD and CAT. TEAC correlated positively with SOD and LP. As no signs of oxidative damage to lipids were found in young BHR and SHR of either sex, OS in the blood does not seem to be causatively related to the development of hypertension in these rats. However, despite activated antioxidant defenses, the positive correlation between plasma TEAC and LP suggests that oxidative damage is progressing slowly and therefore it seems to be a consequence rather than the cause of hypertension. PMID:26510784

  9. Cadmium(II) complex formation with glutathione.

    PubMed

    Mah, Vicky; Jalilehvand, Farideh

    2010-03-01

    Complex formation between heavy metal ions and glutathione (GSH) is considered as the initial step in many detoxification processes in living organisms. In this study the structure and coordination between the cadmium(II) ion and GSH were investigated in aqueous solutions (pH 7.5 and 11.0) and in the solid state, using a combination of spectroscopic techniques. The similarity of the Cd K-edge and L(3)-edge X-ray absorption spectra of the solid compound [Cd(GS)(GSH)]ClO(4).3H(2)O, precipitating at pH 3.0, with the previously studied cysteine compound {Cd(HCys)(2).H(2)O}(2).H(3)O(+).ClO(4) (-) corresponds to Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) four-coordination within oligomeric complexes with mean bond distances of 2.51 +/- 0.02 A for Cd-S and 2.24 +/- 0.04 A for Cd-O. For cadmium(II) solutions (C (Cd(II)) approximately 0.05 M) at pH 7.5 with moderate excess of GSH (C (GSH)/C (Cd(II)) = 3.0-5.0), a mix of Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) species is consistent with the broad (113)Cd NMR resonances in the range 632-658 ppm. In alkaline solutions (pH 11.0 and C (GSH)/C (Cd(II)) = 2.0 or 3.0), two distinct peaks at 322 and 674 ppm are obtained. The first peak indicates six-coordinated mononuclear and dinuclear complexes with CdS(2)N(2)(N/O)(2) and CdSN(3)O(2) coordination in fast exchange, whereas the second corresponds to Cd(S-GS)(4) sites. At high ligand excess the tetrathiolate complex, Cd(S-GS)(4), characterized by a sharp delta((113)Cd) NMR signal at 677 ppm, predominates. The average Cd-S distance, obtained from the X-ray absorption spectra, varied within a narrow range, 2.49-2.53 A, for all solutions (pH 7.5 and 11.0) regardless of the coordination geometry. PMID:20035360

  10. Glutathione peroxidase in yeast. Presence of the enzyme and induction by oxidative conditions.

    PubMed

    Galiazzo, F; Schiesser, A; Rotilio, G

    1987-09-30

    The presence of glutathione peroxidase activity is reported for the first time for a wild type strain of Saccharomyces cerevisiae. Both forms of enzyme, i.e. that specifically active toward H2O2 alone and that decomposing also organic peroxides, were found to be present. The H2O2 specific form disappeared when cells were grown in the absence of oxygen, while the other form was much increased under the same conditions. Addition of copper to the culture greatly increased both forms. The results show that glutathione peroxidase is to be included, as an important component that is also highly responsive to oxidative environments, in the enzyme defense system of yeast against oxidative damage. PMID:3311044

  11. Effect of glutathione on peroxyoxalate chemiluminescence of hypericin as the fluorophore

    NASA Astrophysics Data System (ADS)

    Kazemi, Sayed Yahya; Abedirad, Seyed Mohammad

    2014-01-01

    Herein, the effect of amino acid Glutathione (GSH) on Peroxyoxalate Chemiluminescence was studied for the first time. Hypericin (HYP) was employed as the efficient fluorophore. The investigated parameters included rise and fall rate constant for the chemiluminescence burst, theoretical and experimental maximum intensity, the time-needed to reach maximum intensity and the total light yield emission which theoretically was evaluated using the pooled intermediate model by a computerized non-linear least-squares curve fitting program (KINFIT). Furthermore, based on observed quenching effect of GSH, the Stern-Volmer plot in quencher concentration range of 2.8 × 10-6 to 3.4 × 10-5 M with KQ value of 1.59 × 104 was calculated. The bimolecular quenching rate constant (Kq) was also estimated about 2.8 × 1012 and M-1 S-1. Moreover the system was applied successfully to determine glutathione in biological samples.

  12. Activities of gamma-glutamyl transpeptidase and erythrocyte glutathione dependent enzymes in nasopharyngeal carcinoma patients and normal controls.

    PubMed

    Ngah, W Z; Shamaan, N A; Said, M H; Azhar, M T

    1993-01-01

    Plasma gamma-glutamyltranspeptidase (gamma-GT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities were determined in normal and nasopharyngeal carcinoma (NPC) patients. No difference in enzyme activities was observed in the three major races of the Malaysian population, i.e. Malay, Chinese and Indian patients. However, plasma gamma-GT, erythrocyte glutathione S-transferase (GST) and GPx activities were significantly increased in all NPC patients, while GR activity remained unchanged. Patients with elevated plasma gamma-GT activities also had increased GST and GPx activities. Plasma gamma-GT and GPx activities were then found to be affected by treatment. Patients with plasma gamma-GT activity greater than 70 IU/l had very poor prognoses but patients with decreased gamma-GT activities were found to be in remission. PMID:8105826

  13. Sex Differences in Monocyte Activation in Systemic Lupus Erythematosus (SLE)

    PubMed Central

    Jiang, Wei; Zhang, Lumin; Lang, Ren; Li, Zihai; Gilkeson, Gary

    2014-01-01

    Introduction TLR7/8 and TLR9 signaling pathways have been extensively studied in systemic lupus erythematosus (SLE) as possible mediators of disease. Monocytes are a major source of pro-inflammatory cytokines and are understudied in SLE. In the current project, we investigated sex differences in monocyte activation and its implications in SLE disease pathogenesis. Methods Human blood samples from 27 healthy male controls, 32 healthy female controls, and 25 female patients with SLE matched for age and race were studied. Monocyte activation was tested by flow cytometry and ELISA, including subset proportions, CD14, CD80 and CD86 expression, the percentage of IL-6-producing monocytes, plasma levels of sCD14 and IL-6, and urine levels of creatinine. Results Monocytes were significantly more activated in women compared to men and in patients with SLE compared to controls in vivo. We observed increased proportions of non-classic monocytes, decreased proportions of classic monocytes, elevated levels of plasma sCD14 as well as reduced surface expression of CD14 on monocytes comparing women to men and lupus patients to controls. Plasma levels of IL-6 were positively related to sCD14 and serum creatinine. Conclusion Monocyte activation and TLR4 responsiveness are altered in women compared to men and in patients with SLE compared to controls. These sex differences may allow persistent systemic inflammation and resultant enhanced SLE susceptibility. PMID:25485543

  14. Do glutathione levels decline in aging human brain?

    PubMed

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. PMID:26845616

  15. A redox-dependent dimerization switch regulates activity and tolerance for reactive oxygen species of barley seed glutathione peroxidase.

    PubMed

    Navrot, Nicolas; Skjoldager, Nicklas; Bunkenborg, Jakob; Svensson, Birte; Hägglund, Per

    2015-05-01

    Monomeric and dimeric forms of recombinant barley (Hordeum vulgare subsp. vulgare) glutathione peroxidase 2 (HvGpx2) are demonstrated to display distinctly different functional properties in vitro. Monomeric HvGpx2 thus has five fold higher catalytic efficiency than the dimer towards tert-butyl hydroperoxide, but is more sensitive to inactivation by hydrogen peroxide. Treatment of the monomer with hydrogen peroxide results in dimer formation. This observed new behavior of a plant glutathione peroxidase suggests a mechanism involving a switch from a highly catalytically competent monomer to a less active, but more oxidation-resistant dimer. PMID:25796076

  16. Reduced Glutathione Mediates Resistance to H2S Toxicity in Oral Streptococci.

    PubMed

    Ooi, Xi Jia; Tan, Kai Soo

    2016-01-01

    Periodontal disease is associated with changes in the composition of the oral microflora, where health-associated oral streptococci decrease while Gram-negative anaerobes predominate in disease. A key feature of periodontal disease-associated anaerobes is their ability to produce hydrogen sulfide (H2S) abundantly as a by-product of anaerobic metabolism. So far, H2S has been reported to be either cytoprotective or cytotoxic by modulating bacterial antioxidant defense systems. Although oral anaerobes produce large amounts of H2S, the potential effects of H2S on oral streptococci are currently unknown. The aim of this study was to determine the effects of H2S on the survival and biofilm formation of oral streptococci. The growth and biofilm formation of Streptococcus mitis and Streptococcus oralis were inhibited by H2S. However, H2S did not significantly affect the growth of Streptococcus gordonii or Streptococcus sanguinis. The differential susceptibility of oral streptococci to H2S was attributed to differences in the intracellular concentrations of reduced glutathione (GSH). In the absence of GSH, H2S elicited its toxicity through an iron-dependent mechanism. Collectively, our results showed that H2S exerts antimicrobial effects on certain oral streptococci, potentially contributing to the decrease in health-associated plaque microflora. PMID:26801579

  17. Cell toxicity of methacrylate monomers-the role of glutathione adduct formation.

    PubMed

    Ansteinsson, V; Kopperud, H B; Morisbak, E; Samuelsen, J T

    2013-12-01

    Polymer-based dental restorative materials are designed to polymerize in situ. However, the conversion of methacrylate monomer to polymer is never complete, and leakage of the monomer occurs. It has been shown that these monomers are toxic in vitro; hence concerns regarding exposure of patients and dental personnel have been raised. Different monomer methacrylates are thought to cause toxicity through similar mechanisms, and the sequestration of cellular glutathione (GSH) may be a key event. In this study we examined the commonly used monomer methacrylates, 2-hydroxyethylmethacrylate (HEMA), triethylenglycol-dimethacrylate (TEGDMA), bisphenol-A-glycidyl-dimethacrylate (BisGMA), glycerol-dimethacrylate (GDMA) and methyl-methacrylate (MMA). The study aimed to establish monomers' ability to complex with GSH, and relate this to cellular toxicity endpoints. Except for BisGMA, all the monomer methacrylates decreased the GSH levels both in cells and in a cell-free system. The spontaneous formation of methacrylate-GSH adducts were observed for all methacrylate monomers except BisGMA. However, we were not able to correlate GSH depletion and toxic response measured as SDH activity and changes in cell growth pattern. Together, the current study indicates mechanisms other than GSH-binding to be involved in the toxicity of methacrylate monomers. PMID:23613115

  18. Selenium levels and Glutathione peroxidase activity in the plasma of patients with type II diabetes mellitus.

    PubMed

    González de Vega, Raquel; Fernández-Sánchez, María Luisa; Fernández, Juan Carlos; Álvarez Menéndez, Francisco Vicente; Sanz-Medel, Alfredo

    2016-09-01

    Selenium, an essential trace element, is involved in the complex system of defense against oxidative stress through selenium-dependent glutathione peroxidases (GPx) and other selenoproteins. Because of its antioxidant properties, selenium or its selenospecies at appropriate levels could hinder oxidative stress and so development of diabetes. In this vein, quantitative speciation of selenium in human plasma samples from healthy and diabetic patients (controlled and non-controlled) was carried out by affinity chromatography (AF) coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) and isotope dilution analysis (IDA). Similarly, it is well known that patients with diabetes who exhibit poor control of blood glucose show a decreased total antioxidant activity. Thus, we evaluated the enzymatic activity of GPx in diabetic and healthy individuals, using the Paglia and Valentine enzymatic method, observing a significant difference (p<0.05) between the three groups of assayed patients (healthy (n=24): 0.61±0.11U/ml, controlled diabetic (n=38): 0.40±0.12U/ml and non-controlled diabetic patients (n=40): 0.32±0.09U/ml). Our results show that hyperglycemia induces oxidative stress in diabetic patients compared with healthy controls. What is more, glycation of GPx experiments demonstrated that it is the degree of glycation of the selenoenzyme (another species of the Se protein) what actually modulates its eventual activity against ROS in type II diabetes mellitus patients. PMID:27473831

  19. MITOCHONDRIAL GLUTATHIONE: FEATURES, REGULATION AND ROLE IN DISEASE

    PubMed Central

    Marí, Montserrat; Morales, Albert; Colell, Anna; García-Ruiz, Carmen; Kaplowitz, Neil; Fernández-Checa, José C

    2012-01-01

    BACKGROUND Mitochondria are the powerhouse of mammalian cells and the main source of reactive oxygen species (ROS) associated with oxygen consumption. In addition, they also play a strategic role in controlling the fate of cells through regulation of death pathways. Mitochondrial ROS production fulfills a signaling role through regulation of redox pathways, but also contributes to mitochondrial damage in a number of pathological states. SCOPE OF REVIEW Mitochondria are exposed to the constant generation of oxidant species, and yet the organelle remains functional due to the existence of an armamentarium of antioxidant defense systems aimed to repair oxidative damage, of which mitochondrial glutathione (mGSH) is of particular relevance. Thus, the aim of the review is to cover the regulation of mGSH and its role in disease. MAJOR CONCLUSIONS Cumulating evidence over recent years has demonstrated the essential role for mGSH in mitochondrial physiology and disease. Despite its high concentration in the mitochondrial matrix, mitochondria lack the enzymes to synthesize GSH de novo, so that mGSH originates from cytosolic GSH via transport through specific mitochondrial carriers, which exhibit sensitivity to membrane dynamics. Depletion of mGSH sensitizes cells to stimuli leading to oxidative stress such as TNF, hypoxia or amyloid β-peptide, thereby contributing to disease pathogenesis. GENERAL SIGNIFICANCE Understanding the regulation of mGSH may provide novel insights to disease pathogenesis and toxicity and the opportunity to design therapeutic targets of intervention in cell death susceptibility and disease. PMID:23123815

  20. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Buschbacher, Ralph M.; Newton, Gerald L.

    1988-01-01

    The low molecular weight thiol composition of a variety of phototropic microorganisms is examined in order to ascertain how evolution of glutathione (GSH) production is related to the evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols (RSH) to fluorescent derivatives (RSmB) which were analyzed by high performance liquid chromatography (HPLC). Significant levels of GSH were not found in green sulfur bacteria. Substantial levels were present in purple bacteria, cyanobacteria, and eukaryotic algae. Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide. Many of the organisms also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability which was quenched by treatment with 2-pyridyl disulfide or 5,5 prime-bisdithio - (2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototropic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.

  1. Measuring glutathione-induced feeding response in hydra.

    PubMed

    Kulkarni, Ram; Galande, Sanjeev

    2014-01-01

    Hydra is among the most primitive organisms possessing a nervous system and chemosensation for detecting reduced glutathione (GSH) for capturing the prey. The movement of prey organisms causes mechanosensory discharge of the stinging cells called nematocysts from hydra, which are inserted into the prey. The feeding response in hydra, which includes curling of the tentacles to bring the prey towards the mouth, opening of the mouth and consequent engulfing of the prey, is triggered by GSH present in the fluid released from the injured prey. To be able to identify the molecular mechanism of the feeding response in hydra which is unknown to date, it is necessary to establish an assay to measure the feeding response. Here, we describe a simple method for the quantitation of the feeding response in which the distance between the apical end of the tentacle and mouth of hydra is measured and the ratio of such distance before and after the addition of GSH is determined. The ratio, called the relative tentacle spread, was found to give a measure of the feeding response. This assay was validated using a starvation model in which starved hydra show an enhanced feeding response in comparison with daily fed hydra. PMID:25490534

  2. Atherogenic diets exacerbate colitis in mice deficient in glutathione peroxidase

    PubMed Central

    Gao, Qiang; Esworthy, R. Steven; Kim, Byung-Wook; Synold, Timothy W.; Smith, David D.; Chu, Fong-Fong

    2010-01-01

    The pro-inflammatory effect of high-fat diet has been observed beyond the cardiovascular system, but there is little evidence to support its role in triggering inflammatory bowel disease. GPx1/2-double knockout (DKO) mice deficient in two intracellular glutathione peroxidases, GPx1 and GPx2, on a C57BL/6 (B6) background, have mild ileocolitis on a conventional chow. We fed B6 DKO mice two atherogenic diets to test the dietary effect on atherosclerosis and ileocolitis. Both atherogenic diets have high cholesterol, the Chol+/CA diet has cholic acid (CA) and the Chol+ diet has no CA. The Chol+/CA diet induced severe colitis, but not ileitis, in the DKO mice compared with Chol+ and a Chol- control diet. On the Chol+/CA diet, the wild-type (WT) mice had similar levels of aortic lesions and hypercholesterolemia as DKO mice did, but had no intestinal pathology. The diet-associated inflammatory responses in the DKO mice included increase of colonic pro-inflammatory serum amyloid A 3 expression, plasma lipopolysaccharide and TNF-α levels. The Chol+/CA diet has lowered the expression of unfolded protein response genes, ATF6, CHOP, unspliced XbpU and Grp78/Bip, in WT and DKO mice on the Chol- diet. Thus, we conclude that cholesterol diet weakens colon unfolded protein response, which can aggravate spontaneous colitis leading to gut barrier breakdown. GPx has no impact on atherosclerosis without ultra-hypercholesterolemia. PMID:20848490

  3. Purification, crystallization and preliminary X-ray analysis of glutathione peroxidase Gpx3 from Saccharomyces cerevisiae

    SciTech Connect

    Yang, Zhu; Zhou, Cong-Zhao

    2006-06-01

    The glutathione peroxidase Gpx3 from the yeast S. cerevisiae has been overexpressed, purified, crystallized and diffracted to 2.6 Å resolution. Gpx3 is a monomer in solution which is different from its counterparts in mammals. The glutathione peroxidase Gpx3 from the yeast Saccharomyces cerevisiae has been overexpressed, purified and crystallized. Both gel-filtration and dynamic light-scattering (DLS) results indicate that Gpx3 is a monomer in solution at a concentration of about 2 mg ml{sup −1}, whereas glutathione peroxidases are normally tetrameric or dimeric. X-ray diffraction data from a single crystal of Gpx3 have been collected to 2.6 Å resolution. The crystals are triclinic and belong to space group P1, with unit-cell parameters a = 38.187, b = 43.372, c = 56.870 Å, α = 71.405, β = 73.376, γ = 89.633°. There are two Gpx3 monomers in a crystallographic asymmetric unit. Preliminary analyses show that the yeast Gpx3 is quite different from those of mammals.

  4. Role of glutathione and glutathione S-transferases in the metabolism of busulfan

    SciTech Connect

    Marchand, D.H.

    1987-01-01

    Busulfan (1,4-dimethanesulfonate butanediol) is a bifunctional alkylating agent used in the treatment of chronic myelogenous leukemia. The major urinary metabolite of busulfan in mammals is 3-hydroxytetrahydrothiophene-1,1-dioxide (3-HOTHT). Previous metabolic studies with /sup 35/S-busulfan indicated that the sulfur in 3-HOTHT results from the reaction of busulfan with endogenous thiols. These studies also found that mixing L-cysteine with busulfan at pH 8.0 produced a tetrahydrothiophenium-cysteine conjugate (THT-cys). Treatment of THT-cys with sodium hydroxide produced tetrahydrothiophene (THT). Administration of THT-cyc or THT to rats resulted in the appearance of 3-HOTHT in rat urine. Glutathione (GSH) is the major non-protein thiol in cells. As part of the present studies, the reaction between GSH and busulfan was examined.

  5. Hepatic glutathione and glutathione S-transferase in selenium deficiency and toxicity in the chick

    SciTech Connect

    Kim, Y. S.

    1989-01-01

    First, the hepatic activity of GSH-T{sub CDNB} was increased only under conditions of severe oxidative stress produced by combined Se- and vitamin E (VE)-deficiency, indicating that VE also affects GSH metabolism. Second, the incorporation of {sup 35}S-methionine into GSH and protein was about 4- and 2-fold higher, respectively, in Se- and VE-deficient chick hepatocytes as compared to controls. Third, chicks injected with the glutathione peroxidase (SeGSHpx) inhibitor, aurothioglucose (AuTG), showed increase hepatic GSH-T{sub CDNB} activity and plasma GSH concentration regardless of their Se status. Fourth, the effect of ascorbic acid (AA), on GSH metabolism was studied. Chicks fed 1000 ppm AA showed decreased hepatic GSH concentration compared to chicks fed no AA in a Se- and VE-deficient diet. Fifth, chicks fed excess Se showed increase hepatic activity of GSH-T{sub CDNB} and GSH concentration regardless of VE status.

  6. Differences in the force system delivered by different beta-titanium wires in elaborate designs

    PubMed Central

    Martins, Renato Parsekian; Caldas, Sergei Godeiro Fernandes Rabelo; Ribeiro, Alexandre Antonio; Vaz, Luís Geraldo; Shimizu, Roberto Hideo; Martins, Lídia Parsekian

    2015-01-01

    Abstract Objective: Evaluation of the force system produced by four brands of b-Ti wires bent into an elaborate design. Methods: A total of 40 T-loop springs (TLS) hand-bent from 0.017 x 0.025-in b-Ti were randomly divided into four groups according to wire brand: TMATM(G1), BETA FLEXYTM (G2), BETA III WIRETM (G3) and BETA CNATM (G4). Forces and moments were recorded by a moment transducer, coupled to a digital extensometer indicator adapted to a testing machine, every 0.5 mm of deactivation from 5 mm of the initial activation. The moment-to-force (MF) ratio, the overlapping of the vertical extensions of the TLSs and the load-deflection (LD) ratio were also calculated. To complement the results, the Young's module (YM) of each wire was determined by the slope of the load-deflection graph of a tensile test. The surface chemical composition was also evaluated by an energy dispersive X-ray fluorescence spectrometer. Results: All groups, except for G2, produced similar force levels initially. G3 produced the highest LD rates and G1 and G4 had similar amounts of overlap of the vertical extensions of the TLSs in "neutral position". G1 and G3 delivered the highest levels of moments, and G2 and G3 produced the highest MF ratios. b-Ti wires from G3 produced the highest YM and all groups showed similar composition, except for G2. Conclusion: The four beta-titanium wires analyzed produced different force systems when used in a more elaborate design due to the fact that each wire responds differently to bends. PMID:26691975

  7. Activity of glutathione peroxidase, glutathione reductase, and lipid peroxidation in erythrocytes in workers exposed to lead.

    PubMed

    Kasperczyk, Slawomir; Kasperczyk, Aleksandra; Ostalowska, Alina; Dziwisz, Maria; Birkner, Ewa

    2004-01-01

    The aim of this study was to estimate the activity of glutathione peroxidase (GPx), glutathione reductase (GR), and malondialdehyde (MDA) in erythrocytes in healthy male employees of zinc and lead steelworks who were occupationally exposed to lead over a long period of time (about 15 yr). Workers were divided into two subgroups: the first included employees with low exposure to lead (LL) (n=75) with blood lead level PbB=25-40 microg/dL and the second with high exposure to lead (HL) (n=62) with PbB over 40 microg/dL. Administration workers (n=35) with normal levels of PbB and zinc protoporphyrin in blood (ZPP) in blood were the control group. The activity of GPx significantly increased in LL when compared to the control group (p<0.001) and decreased when compared to the HL group (p=0.036). There were no significant changes in activity of GR in the study population. MDA erythrocyte concentration significantly increased in the HL group compared to the control (p=0.014) and to the LL group (p=0.024). For the people with low exposure to lead (PbB=25-40 microg/dL), the increase of activity of GPx by about 79% in erythrocytes prevented lipid peroxidation and it appears to be the adaptive mechanism against the toxic effect of lead. People with high exposure to lead (with PbB over 40 microg/dL) have shown an increase in MDA concentration in erythrocytes by about 91%, which seems to have resulted from reduced activity of GPx and the lack of increase in activity of GR in blood red cells. PMID:15621928

  8. Beta-amyloidolysis and glutathione in Alzheimer’s disease

    PubMed Central

    Lasierra-Cirujeda, J; Coronel, P; Aza, MJ; Gimeno, M

    2013-01-01

    In this review, we hypothesized the importance of the interaction between the brain glutathione (GSH) system, the proteolytic tissue plasminogen activator (t-PA)/plasminogen/ plasmin system, regulated by plasminogen activator inhibitor (PAI-1), and neuroserpin in the pathogenesis of Alzheimer’s disease. The histopathological characteristic hallmark that gives personality to the diagnosis of Alzheimer’s disease is the accumulation of neurofibroid tangles located intracellularly in the brain, such as the protein tau and extracellular senile plaques made primarily of amyloidal substance. These formations of complex etiology are intimately related to GSH, brain protective antioxidants, and the proteolytic system, in which t-PA plays a key role. There is scientific evidence that suggests a relationship between aging, a number of neurodegenerative disorders, and the excessive production of reactive oxygen species and accompanying decreased brain proteolysis. The plasminogen system in the brain is an essential proteolytic mechanism that effectively degrades amyloid peptides (“beta-amyloidolysis”) through action of the plasmin, and this physiologic process may be considered to be a means of prevention of neurodegenerative disorders. In parallel to the decrease in GSH levels seen in aging, there is also a decrease in plasmin brain activity and a progressive decrease of t-PA activity, caused by a decrease in the expression of the t-PA together with an increase of the PAI-1 levels, which rise to an increment in the production of amyloid peptides and a lesser clearance of them. Better knowledge of the GSH mechanism and cerebral proteolysis will allow us to hypothesize about therapeutic practices. PMID:23650462

  9. Skin delivery of ferulic acid from different vesicular systems.

    PubMed

    Chen, Ming; Liu, Xiangli; Fahr, Alfred

    2010-10-01

    The aim of the present research is to evaluate the skin delivery capabilities of different vesicular systems, including conventional liposomes (CL), Tween 80-based deformable liposomes (DL), invasomes (INS) and ethosomes bearing ferulic acid (FA) being an antioxidant exhibiting a wide range of therapeutic effects against various diseases. All of the test formulations were characterized for particle size distribution, zeta-potential, vesicular shape and surface morphology, in vitro human skin permeation and skin deposition. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) defined that all of liposomal vesicles were almost spherical, displaying unilamellar structures with low polydispersity (PDI < 0.2) and nanometric size range (z-average no more than 150 nm). In addition, all the vesicular systems except conventional liposomes were negatively charged to a certain extent. In vitro skin permeation and skin deposition experiments demonstrated that the permeation profile of ferulic acid through human stratum corneum epidermis membrane (SCE) and the drug deposition in skin were both improved significantly using these vesicular liposomal systems. Permeation and skin deposition enhancing effect was highlighted by the ethosomal system containing 18.0 mg/ml of ferulic acid with an significantly (P < 0.01) enhanced skin flux (267.8 +/- 16.77 microg/cm2/h) and skin drug deposition (51.67 +/- 1.94 microg/cm2), which was 75 times and 7.3 times higher than those of ferulic acid from saturated PBS (pH 7.4) solution, respectively. This study demonstrated that ethosomes are promising vesicular carriers for delivering ferulic acid into or across the skin. PMID:21329050

  10. Nouns and verbs are retrieved with differently distributed neural systems.

    PubMed Central

    Damasio, A R; Tranel, D

    1993-01-01

    In a task designed to elicit the production of verbs, the patients known as AN-1033 and Boswell consistently produced the correct target words, performing no differently from normal controls. However, in a similar task designed to elicit the production of nouns, both patients performed quite defectively, and their scores were many SDs below those of controls. Language processing was otherwise normal--i.e., there were no impairments in grammar, morphology, phonetic implementation, or prosody; reading and writing were normal. In a third patient (KJ-1360), we obtained the reverse outcome--i.e., retrieval of common and proper nouns was preserved, but verb retrieval was defective. Together, the findings in the three patients constitute a double dissociation between noun and verb retrieval. In AN-1033 and Boswell, the lesions are located outside the so-called language areas (left frontoparietal operculum, posterior temporal region, inferior parietal lobule), where damage is associated with aphasia. The region of damage shared by the two patients is in left anterior and middle temporal lobe. This sector of left hemisphere contains systems for the retrieval of nouns that denote concrete entities. We propose that those systems are not essential for the retrieval of verbs and not involved in the vocal implementation of word forms. Those systems perform a two-way lexical-mediation role for concrete nouns and promote the reconstruction of a word form after the processing of sensory-motor characteristics of the entity denoted by that word. The findings in patient KJ-1360, whose lesion is in left premotor cortex, suggest that equivalent mediation systems for verbs are located in the left frontal region. Images Fig. 1 PMID:8506341

  11. Wiener spectrum of radiographic systems: comparison of different evaluation methods.

    PubMed

    Bregant, P; De Denaro, M; De Guarrini, F; Borasi, G

    1997-05-01

    The noise power spectrum, or Wiener spectrum, of the radiographic mottle is a fundamental quantity in film-screen image quality evaluation. In this paper, using a high-quality computerized microdensitometer, two different acquisition and calculation methods for noise evaluation are compared. The first one is the classic (unidimensional) method used in film noise evaluation: a long and narrow slit (10 x 400 microns2) is used to delimit the microdensitometer light beam and the transmission data are collected by scanning the sample in a rectilinear pattern. A section of the two-dimensional Wiener spectrum is thus obtained. The second (two-dimensional) method is similar to that used in digital image noise evaluation: a square slit is used on the microdensitometer window and data are collected by scanning the sample on a square pattern. To evaluate the effect of different sampling frequencies, our data were acquired both selecting a 50 x 50 microns2 square slit and a 20 x 20 microns2 square slit. The two-dimensional Wiener spectrum thus obtained is then reduced to a unidimensional function. The measurements were made on two different films (Kodak Ortho G e Kodak T-MAT G) exposed with the same screen (Kodak Lanex Regular). These films have the same sensitivity but a different emulsion structure. One film (Ortho G) is made of irregular halide silver grains and the other (T-MAT G) of tabular grains. A satisfactory agreement between the two procedures was found which makes the comparison of data from the laboratories using microdensitometers and those using TV-grabbing system for film-screen evaluation meaningful. PMID:9251741

  12. Voltammetric detection of glutathione: an adsorptive stripping voltammetry approach.

    PubMed

    Areias, Madalena C C; Shimizu, Kenichi; Compton, Richard G

    2016-05-10

    A simple, sensitive, and rapid detection of glutathione by cyclic voltammetry using a bare glassy carbon electrode is reported in which glutathione forms a 1 : 1 complex compound with copper(ii) ions. This complex compound is adsorbed onto the electrode surface and undergoes electrochemical oxidation at a characteristic oxidation potential of ca. -0.20 V vs. the standard mercury/mercurous sulphate reference electrode, which is used to detect the glutathione concentration. The linear dynamic range is obtained for a glutathione concentration from 1 μM to 12.5 μM, and the sensitivity is found to be 0.1 ± 0.002 μA μM(-1). A low limit of detection (n = 3) of 0.14 μM and a precision of 1.8% are achieved using a simple, unmodified electrode. The robustness of the present methodology is demonstrated by the successful quantitative analysis of glutathione in the presence of cysteine. PMID:27074944

  13. Glutathione is required for efficient production of infectious picornavirus virions

    SciTech Connect

    Smith, Allen D. . E-mail: smitha@ba.ars.usda.gov; Dawson, Harry . E-mail: dawsonh@ba.ars.usda.gov

    2006-09-30

    Glutathione is an intracellular reducing agent that helps maintain the redox potential of the cell and is important for immune function. The drug L-buthionine sulfoximine (BSO) selectively inhibits glutathione synthesis. Glutathione has been reported to block replication of HIV, HSV-1, and influenza virus, whereas cells treated with BSO exhibit increased replication of Sendai virus. Pre-treatment of HeLa cell monolayers with BSO inhibited replication of CVB3, CVB4, and HRV14 with viral titers reduced by approximately 6, 5, and 3 log{sub 1}, respectively. The addition of glutathione ethyl ester, but not dithiothreitol or 2-mercaptoethanol, to the culture medium reversed the inhibitory effect of BSO. Viral RNA and protein synthesis were not inhibited by BSO treatment. Fractionation of lysates from CVB3-infected BSO-treated cells on cesium chloride and sucrose gradients revealed that empty capsids but not mature virions were being produced. The levels of the 5S and 14S assembly intermediates, however, were not affected by BSO treatment. These results demonstrate that glutathione is important for production of mature infectious picornavirus virions.

  14. Vectorization of algorithms for solving systems of difference equations

    SciTech Connect

    Buzbee, B.L.

    1981-01-01

    Today's fastest computers achieve their highest level of performance when processing vectors. Consequently, considerable effort has been spent in the past decade developing algorithms that can be expressed as operations on vectors. In this paper two types of vector architecture are defined. A discussion is presented on the variation of performance that can occur on a vector processor as a function of algorithm and implementation, the consequences of this variation, and the performance of some basic operators on the two classes of vector architecture. Also discussed is the performance of higher-level operators, including some that should be used with caution. With both types of operators, the implementation of techniques for solving systems of difference equations is discussed. Included are fast Poisson solvers and point, line, and conjugate-gradient techniques. 1 figure.

  15. The mutagenicity of Gramoxone (paraquat) on different eukaryotic systems.

    PubMed

    el-Abidin Salam, A Z; Hussein, E H; el-Itriby, H A; Anwar, W A; Mansour, S A

    1993-10-01

    The possible mutagenicity of the herbicide Gramoxone was evaluated using five different living systems: Allium cepa, Vicia faba, yeast, Drosophila melanogaster and human lymphocytes. The results indicate that Gramoxone has mutagenic activity at the cytological level in Allium cepa, Vicia faba and human lymphocytes. All doses were effective in inducing chromosomal abnormalities and a clear dose-response relationship was observed in the various cytological tests. Analysis of chromosomal abnormalities revealed that this herbicide displays clastogenic and turbagenic activities. At the gene mutation level Gramoxone induced gene conversion at the trp-5 locus and reversion at the ilv locus in Saccharomyces cerevisiae. In Drosophila melanogaster, Gramoxone proved to be mutagenic to germ cells and induced a high frequency of sex-linked recessive lethals (SLRL). At the protein level, Gramoxone had detectable mutagenic effects on the genetic background of two enzymes, Adh and Est-6. Gramoxone should be considered a mutagenic herbicide. PMID:7692291

  16. A novel glutathione-S transferase immunosensor based on horseradish peroxidase and double-layer gold nanoparticles.

    PubMed

    Lu, Dingqiang; Lu, Fuping; Pang, Guangchang

    2016-06-01

    GSTs, a biotransformation enzyme group, can perform metabolism, drug transfer and detoxification functions. Rapid detection of the GSTs with more sensitive approaches is of great importance. In the current study, a novel double-layer gold nanoparticles-electrochemical immunosensor electrode (DGN-EIE) immobilized with Glutathione S-Transferase (GST) antibody derived from Balb/c mice was developed. To increase the fixed quantity of antibodies and electrochemical signal, an electrochemical biosensing signal amplification system was utilized with gold nanoparticles-thionine-chitosan absorbing horseradish peroxidase (HRP). In addition, transmission electron microscope (TEM) was used to characterize the nanogold solution. To evaluate the quality of DGN-EIE, the amperometric I-t curve method was applied to determine the GST in PBS. The results showed that the response current had a good linear correlation with the GST concentration ranged from 0.1-10(4) pg/mL. The lowest detection limit was found at 0.03 pg/mL(S/N = 3). The linear equation was deduced as △I/% = 7.386lgC + 22.36 (R(2) = 0.998). Moreover, it was validated with high sensitivity and reproducibility. Apparently, DGN-EIE may be a very useful tool for monitoring the GST. PMID:27220630

  17. Efficacy of free glutathione and niosomal glutathione in the treatment of acetaminophen-induced hepatotoxicity in cats

    PubMed Central

    Vulcano, L.A. Denzoin; Confalonieri, O.; Franci, R.; Tapia, M.O.; Soraci, A.L.

    2013-01-01

    Acetaminophen (APAP) administration results in hepatotoxicity and hematotoxicity in cats. The response to three different treatments against APAP poisoning was evaluated. Free glutathione (GSH) (200mg/kg), niosomal GSH (14 mg/kg) and free amino acids (180 mg/kg of N-acetylcysteine and 280 mg/kg of methionine) were administered to cats that were intoxicated with APAP (a single dose of 150 mg/kg, p.o.). Serum concentration of alanine aminotransferase (ALT) along with serum, liver and erythrocyte concentration of GSH and methemoglobin percentage were measured before and 4, 24 and 72 hours after APAP administration. Free GSH (200 mg/kg) and niosomal GSH (14 mg/kg) were effective in reducing hepatotoxicity and hematotoxicity in cats intoxicated with a dose of 150 mg/kg APAP. We conclude that both types of treatments can protect the liver and haemoglobin against oxidative stress in APAP intoxicated cats. Furthermore, our results showed that treatment with niosomal GSH represents an effective therapeutic approach for APAP poisoning. PMID:26623313

  18. Cadmium-glutathione complex formation in human t-cell and b-cell lymphocytes after their incubation with organo-cadmium diacetate.

    PubMed

    Ullah, Hashmat; Khan, Muhammad Farid; Jan, Syed Umer; Hashmat, Farwa

    2015-11-01

    Cadmium intake is associated with oxidative stress that causes depletion of intracellular as well as extra cellular reduced glutathione. There is strong evidence indicating that reactive oxygen species and reactive nitrogen species generated in the presence of cadmium could be responsible for its toxic effects in many cells and tissues. Depletion of reduced glutathione in various cells, especially in T and B-lymphocytes, causes extreme damage to the antioxidant defense system of body. The aim of this research work was to investigate the metabolic changes that occur in T and B lymphocytes after their incubation with organ cadmium diacetate by using Ellman's spectrophotometric method of thiol quantification. The results of the present study indicate that cadmium depleted T and B lymphocytes GSH to a harmful extent. It is proposed that this depletion is due to the bivalent cadmium glutathione complex formation, oxidation of reduced glutathione (GSH) to its oxidized form, or both. PMID:26639500

  19. Emergy analysis of biogas systems based on different raw materials.

    PubMed

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134

  20. Individual Differences in Premotor Brain Systems Underlie Behavioral Apathy

    PubMed Central

    Bonnelle, Valerie; Manohar, Sanjay; Behrens, Tim; Husain, Masud

    2016-01-01

    Lack of physical engagement, productivity, and initiative—so-called “behavioral apathy”—is a common problem with significant impact, both personal and economic. Here, we investigate whether there might be a biological basis to such lack of motivation using a new effort and reward-based decision-making paradigm, combined with functional and diffusion-weighted imaging. We hypothesized that behavioral apathy in otherwise healthy people might be associated with differences in brain systems underlying either motivation to act (specifically in effort and reward-based decision-making) or in action processing (transformation of an intention into action). The results demonstrate that behavioral apathy is associated with increased effort sensitivity as well as greater recruitment of neural systems involved in action anticipation: supplementary motor area (SMA) and cingulate motor zones. In addition, decreased structural and functional connectivity between anterior cingulate cortex (ACC) and SMA were associated with increased behavioral apathy. These findings reveal that effort sensitivity and translation of intentions into actions might make a critical contribution to behavioral apathy. We propose a mechanism whereby inefficient communication between ACC and SMA might lead to increased physiological cost—and greater effort sensitivity—for action initiation in more apathetic people. PMID:26564255

  1. Emergy Analysis of Biogas Systems Based on Different Raw Materials

    PubMed Central

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134

  2. Microsomal glutathione S-transferase A1-1 with glutathione peroxidase activity from sheep liver: molecular cloning, expression and characterization.

    PubMed Central

    Prabhu, K S; Reddy, P V; Gumpricht, E; Hildenbrandt, G R; Scholz, R W; Sordillo, L M; Reddy, C C

    2001-01-01

    A 25 kDa subunit of glutathione S-transferase (GST) from sheep liver microsomes (microsomal GSTA1-1) with a significant selenium-independent glutathione peroxidase activity has been isolated and characterized. Several analytical criteria, including EDTA stripping, protease protection assay and extraction with alkaline Na(2)CO(3), indicate that the microsomal GSTA1-1 is associated with the inner microsomal membrane. The specific cDNA nucleotide sequence reveals that the enzyme is made up of 222 amino acid residues and shares approx. 73-83% sequence similarity to Alpha-class GSTs from different species. The molecular mass, as determined by electrospray mass ionization, is 25611.3 Da. The enzyme is distinct from the previously reported rat liver microsomal GST in both amino acid sequence and catalytic properties [Morgenstern, Guthenberg and DePierre (1982) Eur. J. Biochem. 128, 243-248]. The microsomal GSTA1-1 differs from the sheep liver cytosolic GSTs, reported previously from this laboratory, in its substrate specificity profile and molecular mass [Reddy, Burgess, Gong, Massaro and Tu (1983) Arch. Biochem. Biophys. 224, 87-101]. In addition to catalysing the conjugation of 4-hydroxynonenal with GSH, the enzyme also exhibits significant glutathione peroxidase activity towards physiologically relevant fatty acid hydroperoxides, such as linoleic and arachidonic acid hydroperoxides, as well as phosphatidylcholine hydroperoxide, but not with H(2)O(2). Thus the microsomal GSTA1-1 isoenzyme might have an important role in the protection of biological membranes against oxidative damage. PMID:11716762

  3. Multiple System Searching: A Searcher's Guide to Making Use of Real Differences between Systems.

    ERIC Educational Resources Information Center

    Conger, Lucinda D.

    1980-01-01

    Examines the relative benefits and searching philosophies of five major search systems (DIALOG, ORBIT, BRS, NLM, and DOE/RECON) as a selection aid. Differences in command language, full text searching capability, use and expression of Boolean operators, and searching mechanisms are discussed, and comparison charts and system/database comparisons…

  4. [Activity of salivary glutathione-dependent enzymes in patients with periodontitis].

    PubMed

    Gavriliuk, L A; Shevchenko, N V; Spineĭ, A F; Vartichan, A I; Godorozha, P D; Lysyĭ, L T

    2008-07-01

    Forty-five patients aged 20-47 years who had mild, moderate, or severe periodontitis and 32 healthy individuals (a control group) were studied during 10-15-day treatment with traditional therapy and combined therapy including the traditional approach and the antihomotoxic agent Traumeel S ointment as a supplement. Increased free radical generation and lipid peroxidation were considered to play an important role in the pathogenesis of periodontitis. Salivary indices are a reflection of a patient's metabolic state and have clinical diagnostic values in patients with oral tissue inflammation. The activities of antioxidative enzymes (glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase) and the content of reduced glutathione (GSH) were determined in the saliva of patients with periodontitis during traditional and complex (traditional + Traumeel S) therapies. Inflammation led to metabolic disturbances and antioxidative defense system imbalance in patients with periodontitis. The findings suggest that the complex therapy with Traumeel S restored antioxidative defense balance and it was more effective than the traditional therapy in patients with periodontitis. An analysis showed a direct correlation between the activity of antioxidative enzymes and clinical characteristics of the disease. These results reflect the activity of a pathological process and the imbalance of antioxidative defense in patients with periodontitis. PMID:18756728

  5. Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape

    PubMed Central

    Nakamura, Shin-ichi

    2013-01-01

    Glutathione is a tripeptide involved in various aspects of plant metabolism. This study investigated the effects of the reduced form of glutathione (GSH) applied to specific organs (source leaves, sink leaves, and roots) on cadmium (Cd) distribution and behaviour in the roots of oilseed rape plants (Brassica napus) cultured hydroponically. The translocation ratio of Cd from roots to shoots was significantly lower in plants that had root treatment of GSH than in control plants. GSH applied to roots reduced the Cd concentration in the symplast sap of root cells and inhibited root-to-shoot Cd translocation via xylem vessels significantly. GSH applied to roots also activated Cd efflux from root cells to the hydroponic solution. Inhibition of root-to-shoot translocation of Cd was visualized, and the activation of Cd efflux from root cells was also shown by using a positron-emitting tracer imaging system (PETIS). This study investigated a similar inhibitory effect on root-to-shoot translocation of Cd by the oxidized form of glutathione, GSSG. Inhibition of Cd accumulation by GSH was abolished by a low-temperature treatment. Root cells of plants exposed to GSH in the root zone had less Cd available for xylem loading by actively excluding Cd from the roots. Consequently, root-to-shoot translocation of Cd was suppressed and Cd accumulation in the shoot decreased. PMID:23364937

  6. A small molecule that induces reactive oxygen species via cellular glutathione depletion.

    PubMed

    Kawamura, Tatsuro; Kondoh, Yasumitsu; Muroi, Makoto; Kawatani, Makoto; Osada, Hiroyuki

    2014-10-01

    Induction of excessive levels of reactive oxygen species (ROS) by small-molecule compounds has been considered a potentially effective therapeutic strategy against cancer cells, which are often subjected to chronic oxidative stress. However, to elucidate the mechanisms of action of bioactive compounds is generally a time-consuming process. We have recently identified NPD926, a small molecule that induces rapid cell death in cancer cells. Using a combination of two comprehensive and complementary approaches, proteomic profiling and affinity purification, together with the subsequent biochemical assays, we have elucidated the mechanism of action underlying NPD926-induced cell death: conjugation with glutathione mediated by GST, depletion of cellular glutathione and subsequent ROS generation. NPD926 preferentially induced effects in KRAS-transformed fibroblast cells, compared with their untransformed counterparts. Furthermore, NPD926 sensitized cells to inhibitors of system x(c)⁻, a cystine-glutamate antiporter considered to be a potential therapeutic target in cancers including cancer stem cells. These data show the effectiveness of a newly identified ROS inducer, which targets glutathione metabolism, in cancer treatment. PMID:25011393

  7. Modulation of Brain Glutathione Reductase and Peroxiredoxin 2 by α-Tocopheryl Phosphate.

    PubMed

    Uchoa, Mariana Figueiroa; de Souza, Luiz Felipe; Dos Santos, Danubia Bonfanti; Peres, Tanara Vieira; Mello, Danielle Ferraz; Leal, Rodrigo Bainy; Farina, Marcelo; Dafre, Alcir Luiz

    2016-08-01

    α-Tocopheryl phosphate (αTP) is a phosphorylated form of α-tocopherol. Since it is phosphorylated in the hydroxyl group that is essential for the antioxidant property of α-tocopherol, we hypothesized that αTP would modulate the antioxidant system, rather than being an antioxidant agent per se. α-TP demonstrated antioxidant activity in vitro against iron-induced oxidative stress in a mitochondria-enriched fraction preparation treated with 30 or 100 µM α-TP. However, this effect was not observed ex vivo with mitochondrial-enriched fraction from mice treated with an intracerebroventricular injection of 0.1 or 1 nmol/site of αTP. Two days after treatment (1 nmol/site αTP), peroxiredoxin 2 (Prx2) and glutathione reductase (GR) expression and GR activity were decreased in cerebral cortex and hippocampus. Glutathione content, glutathione peroxidase, and thioredoxin reductase activities were not affected by αTP. In conclusion, the persistent decrease in GR and Prx2 protein content is the first report of an in vivo effect of αTP on protein expression in the mouse brain, potentially associated to a novel and biologically relevant function of this naturally occurring compound. PMID:26749581

  8. Optical biosensor consisting of glutathione-S-transferase for detection of captan.

    PubMed

    Choi, Jeong-Woo; Kim, Young-Kee; Song, Sun-Young; Lee, In-ho; Lee, Won-Hong

    2003-10-15

    The optical biosensor consisting of a glutathione-S-transferase (GST)-immobilized gel film was developed to detect captan in contaminated water. The sensing scheme was based on the decrease of yellow product, s-(2,4-dinitrobenzene) glutathione, produced from substrates, 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), due to the inhibition of GST reaction by captan. Absorbance of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme reactor of the sensor system was fabricated by the gel entrapment technique for the immobilized GST film. The immobilized GST had the maximum activity at pH 6.5. The optimal concentrations of substrates were determined with 1 mM for both of CDNB and GSH. The optimum concentration of enzyme was also determined with 100 microg/ml. The activity of immobilized enzyme was fairly sustained during 30 days. The proposed biosensor could successfully detect the captan up to 2 ppm and the response time to steady signal was about 15 min. PMID:12941561

  9. Proteomic Analysis of Ketogulonicigenium vulgare under Glutathione Reveals High Demand for Thiamin Transport and Antioxidant Protection

    PubMed Central

    Ma, Qian; Zhang, Weiwen; Zhang, Lu; Qiao, Bin; Pan, Chensong; Yi, Hong; Wang, Lili; Yuan, Ying-jin

    2012-01-01

    Ketogulonicigenium vulgare, though grows poorly when mono-cultured, has been widely used in the industrial production of the precursor of vitamin C with the coculture of Bacillus megaterium. Various efforts have been made to clarify the synergic pattern of this artificial microbial community and to improve the growth and production ability of K. vulgare, but there is still no sound explanation. In previous research, we found that the addition of reduced glutathione into K. vulgare monoculture could significantly improve its growth and productivity. By performing SEM and TEM, we observed that after adding GSH into K. vulgare monoculture, cells became about 4–6 folds elongated, and formed intracytoplasmic membranes (ICM). To explore the molecular mechanism and provide insights into the investigation of the synergic pattern of the co-culture system, we conducted a comparative iTRAQ-2-D-LC-MS/MS-based proteomic analysis of K. vulgare grown under reduced glutathione. Principal component analysis of proteomic data showed that after the addition of glutathione, proteins for thiamin/thiamin pyrophosphate (TPP) transport, glutathione transport and the maintenance of membrane integrity, together with several membrane-bound dehydrogenases had significant up-regulation. Besides, several proteins participating in the pentose phosphate pathway and tricarboxylic acid cycle were also up-regulated. Additionally, proteins combating intracellular reactive oxygen species were also up-regulated, which similarly occurred in K. vulgare when the co-cultured B. megaterium cells lysed from our former research results. This study reveals the demand for transmembrane transport of substrates, especially thiamin, and the demand for antioxidant protection of K. vulgare. PMID:22384164

  10. Serum Malondialdehyde Concentration and Glutathione Peroxidase Activity in a Longitudinal Study of Gestational Diabetes

    PubMed Central

    Miranda, María; Muriach, María; Romero, Francisco J.; Villar, Vincent M.

    2016-01-01

    Aims The main goal of this study was to evaluate the presence of oxidative damage and to quantify its level in gestational diabetes. Methods Thirty-six healthy women and thirty-six women with gestational diabetes were studied in the three trimesters of pregnancy regarding their levels of oxidative stress markers. These women were diagnosed with diabetes in the second trimester of pregnancy. Blood glucose levels after 100g glucose tolerance test were higher than 190, 165 or 145 mg/dl, 1, 2 or 3 hours after glucose intake. Results The group of women with gestational diabetes had higher serum malondialdehyde levels, with significant differences between groups in the first and second trimester. The mean values of serum glutathione peroxidase activity in the diabetic women were significantly lower in the first trimester. In the group of women with gestational diabetes there was a negative linear correlation between serum malondialdehyde concentration and glutathione peroxidase activity in the second and third trimester. Conclusions In this observational and longitudinal study in pregnant women, the alterations attributable to oxidative stress were present before the biochemical detection of the HbA1c increase. Usual recommendations once GD is detected (adequate metabolic control, as well as any other normally proposed to these patients) lowered the concentration of malondialdehyde at the end of pregnancy to the same levels of the healthy controls. Serum glutathione peroxidase activity in women with gestational diabetes increased during the gestational period. PMID:27228087

  11. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    PubMed

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2 × 1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH(•), guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(•) complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels. PMID:24040010

  12. Long-term tocotrienol supplementation and glutathione-dependent enzymes during hepatocarcinogenesis in the rat.

    PubMed

    Rahmat, A; Wan Ngah, W Z; Gapor, A; Khalid, B A

    1993-09-01

    The effects of long-term administration of tocotrienol on hepatocarcinogenesis in rats induced by diethyl nitrosamine (DEN) and 2-acetylaminofluorene (AAF) were investigated by the determination of plasma and liver gamma-glutamyl transpeptidase (GGT), cytosolic glutathione reductase (GSSG-Rx), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). Twenty-eight male Rattus norwegicus rats (120-160g) were divided according to treatments into four groups: control group, tocotrienol - supplemented diet group (30mg/kg food), DEN/AAF-treated group and DEN/AAF treated plus tocotrienol-supplemented-diet group (30mg/kg food). The rats were sacrificed after nine months. The results obtained indicated no difference in the morphology and histology of the livers of control and tocotrienol-treated rats. Greyish-white neoplastic nodules (two per liver) were found in all the DEN/ AAF treated rats (n-10) whereas only one nodule was found in one of the carcinogen treated rats receiving tocotrienol supplementation (n-6). Histological examination showed obvious cellular damage for both the DEN/AAF-treated rats and the tocotrienol-supplemented rats but were less severe in the latter. Treatment with DEN/AAF caused increases in GGT, GSH-Px, GST and GSSG-Rx activities when compared to controls. These increases were also observed when tocotrienol was supplemented with DEN/AAF but the increases were less when compared to the rats receiving DEN/AAF only. PMID:24352144

  13. Glutathione transferase activity and formation of macromolecular adducts in two cases of acute methyl bromide poisoning.

    PubMed Central

    Garnier, R; Rambourg-Schepens, M O; Müller, A; Hallier, E

    1996-01-01

    OBJECTIVES: To determine the activity of glutathione transferase and to measure the S-methylcysteine adducts in blood proteins, after acute inhalation exposure to methyl bromide. To examine the influence of the polymorphism of glutathione-S-transferase theta (GSTT1) on the neurotoxicity of methyl bromide. METHODS: Two workers acutely exposed to methyl bromide with inadequate respiratory protective devices were poisoned. Seven weeks after the accident, blood samples were drawn from both patients, for measurement of glutathione transferase activity in erythrocytes (conjugator status--that is, GSTT1 phenotype) and measurement of binding products of methyl bromide with blood proteins. Conjugator status was determined by a standard procedure. The binding product of methyl bromide, S-methylcysteine, was measured in globin and albumin. RESULTS: Duration and intensity of exposure were identical for both patients as they worked together with the same protective devices and with similar physical effort. However, one patient had very severe poisoning, whereas the other only developed mild neurotoxic symptoms. The first patient was a "conjugator" with normal glutathone transferase activity, whereas this activity was undetectable in the erythrocytes of the second patient, who consequently had higher concentrations of S-methylcysteine adduct in albumin (149 v 91 nmol/g protein) and in globin (77 v 30 nmol/g protein). CONCLUSIONS: Methyl bromide is genotoxic and neurotoxic. Its genotoxicity seems to be the consequence of the alkylating activity of the parent compound, and conjugation to glutathione has a protective effect. The data presented here suggest a different mechanism for methyl bromide neurotoxicity which could be related to the transformation of methylglutathione into toxic metabolites such as methanethiol and formaldehyde. If such metabolites are the ultimate toxic species, N-acetylcysteine treatment could have a toxifying rather than a detoxifying effect. PMID:8704864

  14. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione.

    PubMed

    Knight, Tamara R; Ho, Ye-Shih; Farhood, Anwar; Jaeschke, Hartmut

    2002-11-01

    Acetaminophen (AAP) overdose causes formation of nitrotyrosine, a footprint of peroxynitrite, in centrilobular hepatocytes. The importance of peroxynitrite for the pathophysiology, however, is unclear. C3Heb/FeJ mice were treated with 300 mg/kg AAP. To accelerate the restoration of hepatic glutathione (GSH) levels as potential endogenous scavengers of peroxynitrite, some groups of animals received 200 mg of GSH/kg i.v. at different time points after AAP. AAP induced severe liver cell damage at 6 h. Total liver and mitochondrial glutathione levels decreased by >90% at 1 h but recovered to 75 and 45%, respectively, of untreated values at 6 h after AAP. In addition, the hepatic and mitochondrial glutathione disulfide (GSSG) content was significantly increased over baseline, suggesting a mitochondrial oxidant stress. Moreover, centrilobular hepatocytes stained for nitrotyrosine. Treatment with GSH at t = 0 restored hepatic GSH levels and completely prevented the mitochondrial oxidant stress, peroxynitrite formation, and liver cell injury. In contrast, treatment at 1.5 and 2.25 h restored hepatic and mitochondrial GSH levels but did not prevent the increase in GSSG formation. Nitrotyrosine adduct formation and liver injury, however, was substantially reduced. GSH treatment at 3 h after AAP was ineffective. Similar results were obtained when these experiments were repeated with glutathione peroxidase-deficient animals. Our data suggest that early GSH treatment (t = 0) prevented cell injury by improving the detoxification of the reactive metabolite of AAP. Delayed GSH treatment enhanced hepatic GSH levels, which scavenged peroxynitrite in a spontaneous reaction. Thus, peroxynitrite is an important mediator of AAP-induced liver cell necrosis. PMID:12388625

  15. Thioltransferase activity of bovine lens glutathione S-transferase.

    PubMed Central

    Dal Monte, M; Cecconi, I; Buono, F; Vilardo, P G; Del Corso, A; Mura, U

    1998-01-01

    A Mu-class glutathione S-transferase purified to electrophoretic homogeneity from bovine lens displayed thioltransferase activity, catalysing the transthiolation reaction between GSH and hydroxyethyldisulphide. The thiol-transfer reaction is composed of two steps, the formation of GSSG occurring through the generation of an intermediate mixed disulphide between GSH and the target disulphide. Unlike glutaredoxin, which is only able to catalyse the second step of the transthiolation process, glutathioneS-transferase catalyses both steps of the reaction. Data are presented showing that bovine lens glutathione S-transferase and rat liver glutaredoxin, which was used as a thioltransferase enzyme model, can operate in synergy to catalyse the GSH-dependent reduction of hydroxyethyldisulphide. PMID:9693102

  16. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions

    PubMed Central

    Lushchak, Volodymyr I.

    2012-01-01

    Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health. PMID:22500213

  17. New concept in nutrition for the maintenance of the aging eye redox regulation and therapeutic treatment of cataract disease; synergism of natural antioxidant imidazole-containing amino acid-based compounds, chaperone, and glutathione boosting agents: a systemic perspective on aging and longevity emerged from studies in humans.

    PubMed

    Babizhayev, Mark A

    2010-01-01

    Cataract, opacification of the lens, is one of the commonest causes of loss of useful vision during aging, with an estimated 16 million people world-wide affected. The role of nutritional supplementation in prevention of onset or progression of ocular disease is of interest to health care professionals and patients. The aging eye seems to be at considerable risk from oxidative stress. This review outlines the potential role of the new nutritional strategy on redox balance in age-related eye diseases and detail how the synergism and interaction of imidazole-containing amino acid-based compounds (nonhydrolized L-carnosine, histidine), chaperone agents (such as, L-carnosine, D-pantethine), glutathione-boosting agents (N-acetylcysteine, vitamin E, methionine), and N-acetylcarnosine eye drops plays key roles in the function and maintenance of the redox systems in the aging eye and in the treatment of human cataract disease. A novel patented oral health supplement is presented which enhances the anticataract activity of eye drops and activates functional visual acuity. The clinical data demonstrate the effectiveness and safety of a combined oral health care treatment with amino acids possessing chaperone-like activity with N-acetylcarnosine lubricant eye drops. L-carnosine and N-acetylcarnosine protected the chaperone activity of alpha-crystallin and reduced the increased posttranslational modifications of lens proteins. Biological activities of the nonhydrolyzed carnosine in the oral formulation are based on its antioxidant and antiglycating (transglycating) action that, in addition to heavy metal chelation and pH-buffering ability, makes carnosine an essential factor for preventing sight-threatening eye disorders having oxidative stress in their pathogenesis, neurodegeneration, and accumulation of senile features. The findings suggest that synergism is required between carnosine or other imidazole-containing compounds and reduced glutathione in tissues and cells for

  18. Evaluation of surface roughness of three different composite resins with three different polishing systems

    PubMed Central

    Abzal, Mohammed S; Rathakrishnan, Mensudar; Prakash, Venkatachalam; Vivekanandhan, Paramasivam; Subbiya, Arunajatesan; Sukumaran, Vridhachalam Ganapathy

    2016-01-01

    Aim: The aim of this study was to evaluate the surface roughness of three composites with three different polishing systems. Materials and Methods: Composite specimens were made from the Teflon mold with a standardized cavity size (6 mm diameter and 3 mm height). Group I — Filtek Z350XT (Nano clusters), group II — T-Econom plus (Microhybrid), group III — G-aenial Flo (True Nano). The samples were cured for 30 s from both sides with the matrices in place. The 60 samples were divided into 3 groups (N = 20), which accounted for 40 surfaces, (n = 20 × 2 = 40) in each groups. Each group were subdivided into four subgroups based on the type polishing material, subgroup A — Control, subgroup B — Astrobrush, subgroup C — Astropol, and subgroup D — Soflex spiral wheel. The samples of all groups except group A (control) were finished and polished according to the manufacture's instruction. Results: After polishing, the roughness (Ra) of the resin composite of all the specimens were measured using a profilometer. Soflex spiral wheel (group D) significantly had the least roughness (Ra) value as compared to the other groups. Conclusion: Among the three resin composites tested, G-aenial Flo exhibited least Ra value due to its reduced filler size and its uniform distribution. PMID:27099426

  19. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    PubMed

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. PMID:27581854

  20. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    speciation, as shown by the similarity of the EXAFS spectra obtained at room temperature for two parallel series of Hg(II)-glutathione solutions with C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3}, with and without 33% glycerol. Also, the {sup 199}Hg NMR chemical shifts of a series of {approx} 18 mmol dm{sup -3} mercury(II) glutathione solutions with 33% glycerol were not significantly different from those of the corresponding series in aqueous solution.

  1. Studies on glutathione S-alkyltransferase of the rat

    PubMed Central

    Johnson, M. K.

    1966-01-01

    1. A rat-liver enzyme catalysing the S-alkylation of glutathione by iodomethane and various other alkyl compounds has been identified and partially purified; its stability, specificity and response to inhibitors and activators and to changes in reaction pH have been studied. 2. The enzyme is distinct from glutathione S-aryltransferase, but both enzymes respond similarly to various inhibitors. 3. A similar enzyme has been found in the kidney and adrenal of rat and in the liver and kidney of numerous species. 4. The identity and the physiological role of the enzyme are discussed. PMID:5938663

  2. Effects of Elevated Cytosolic Glutathione Reductase Activity on the Cellular Glutathione Pool and Photosynthesis in Leaves under Normal and Stress Conditions.

    PubMed

    Foyer, C; Lelandais, M; Galap, C; Kunert, K J

    1991-11-01

    Tobacco (Nicotiana tabacum var Samsun) was transformed using the bacterial gor gene coding for the enzyme glutathione reductase. Transgenic plants were selected by their kanamycin resistence and expression of the bacterial gor gene. After separation by isoelectric focusing techniques, leaf extracts from transgenic plants having both native and bacterial glutathione reductase activity gave, in addition to the six bands of the native enzyme, two further closely running isoenzymes. These additional bands originating from the expression of the bacterial gor gene were nonchloroplastic. Leaves from transgenic plants had two- to 10-fold higher glutathione reductase activity than non-transgenic controls. The amount of extractable glutathione reductase activity obtained in transgenic plants was dependent on leaf age and the conditions to which leaves were exposed. Both light and exposure to methylviologen increased leaf glutathione reductase activity. Elevated levels of cytosolic glutathione reductase activity in transgenic plants had no effect on the amount or reduction state of the reduced glutathione/oxidized glutathione pool under optimal conditions or oxidative conditions induced by methylviologen. The glutathione pool was unaltered despite the oxidation-dependent loss of CO(2) assimilation and oxidation of enzymes involved in photosynthesis. However, the reduction state of the ascorbate pool was greater in transgenic plants relative to nontransgenic controls following illumination of methylviologen-treated leaf discs. Therefore, we conclude that in the natural state glutathione reductase is present in tobacco at levels above those required for maximal operation of the ascorbate-glutathione pathway. PMID:16668524

  3. Analysis of glutathione and glutathione disulfide in whole cells and mitochondria by postcolumn derivatization high-performance liquid chromatography with ortho-phthalaldehyde.

    PubMed

    Lenton, K J; Therriault, H; Wagner, J R

    1999-10-01

    A method is described for the detection of glutathione (GSH) and glutathione disulfide (GSSG) based on a HPLC postcolumn reaction with ortho-phthalaldehyde (OPT) at pH 12 followed by fluorescence detection. Although similar methods have been reported, the high pH of the postcolumn reaction adds considerable selectivity and sensitivity to the measurement of GSH and glutathione disulfide. The limit of detection approaches 100 fmol, which is sufficient to detect whole-cell glutathione disulfide in 10,000 cells or mitochondrial glutathione disulfide in 20 million cells. Using this method, glutathione and glutathione disulfide were measured in human lymphocytes, granulocytes, and cultured Jurkat T cells, as well as in the corresponding samples of mitochondria. The percentage of glutathione disulfide to total glutathione in whole-cell extracts was approximately 1%. In contrast, the percentage was relatively high in mitochondria, with the mitochondria of granulocytes having the highest (25%) followed by those of lymphocytes (15%) and finally by cultured Jurkat T cells (9%). This method extends the analysis of glutathione and glutathione disulfide to mitochondria obtained from a relatively small number of cells. PMID:10527505

  4. Function of glutathione peroxidases in legume root nodules.

    PubMed

    Matamoros, Manuel A; Saiz, Ana; Peñuelas, Maria; Bustos-Sanmamed, Pilar; Mulet, Jose M; Barja, Maria V; Rouhier, Nicolas; Moore, Marten; James, Euan K; Dietz, Karl-Josef; Becana, Manuel

    2015-05-01

    Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function. PMID:25740929

  5. Function of glutathione peroxidases in legume root nodules

    PubMed Central

    Matamoros, Manuel A.; Saiz, Ana; Peñuelas, Maria; Bustos-Sanmamed, Pilar; Mulet, Jose M.; Barja, Maria V.; Rouhier, Nicolas; Moore, Marten; James, Euan K.; Dietz, Karl-Josef; Becana, Manuel

    2015-01-01

    Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function. PMID:25740929

  6. Behavioral pattern of Rohilkhandi kids under different feeding systems

    PubMed Central

    Kumari, Anjali; Patel, B. H. M.; Maurya, Vipin; Godara, Asu Singh; Verma, Med Ram; Singh, Mukesh

    2016-01-01

    Aim: The present study designed to evaluate the effect of different feeding systems on the behavior of local Rohilkhandi kids. Materials and Methods: A total of 21 growing goats (local goat of Rohilkhand region), weighing around 7-11 kg and aging 4-5 months, were used. These animals were kept in three groups. Group I was fed un-chopped green fodder in circular feeder (newly designed). Group II was fed un-chopped green fodder in linear feeder that was similar to the existing farm practice. Group III was fed chopped green fodder in linear feeder (modified version). Amount of concentrate and dry fodder fed was kept constant for all the three groups subject to equal increment in accordance with their increasing age. Adlibitum green fodder was made available to the animals. The experiment was conducted for 3 months. On-going behavior was recorded each day 4 h (2 h in the morning from 9:00 am to 11:00 am, after offering the feed, and same was repeated for 2 h in the afternoon, i.e., from 2:00 pm to 4:00 pm) was made between 9 am and 5 pm. The individual behaviors, viz., feeding, drinking, lying down, ruminating, idling, butting, pressing, pushing, frontal clashing, and physical displacement at feed barrier (active and passive: Without physical contact) of the goat were recorded using time-sampling method. Further, incidental activities such as defecation and urination were also recorded. Results: Among all the groups, butting, head to head, and pushing were the common agonistic behavior found but values did not differ significantly. The pushing while feeding was relatively less in Group II (0.22±0.04 min) which differed significantly (p<0.05) from the other two groups. The idling time was found significantly (p<0.05) lower in Group II (1.68±0.21) as compared to Group I (4.67±0.52) and Group III (4.27±0.56). Time spent in rumination near the feeding trough as well as away from the feeding trough was also significantly higher in Group I (p<0.05) than the other two

  7. Investigation of TMA systems with different freeform surfaces

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Gross, H.; Broemel, A.; Kirschstein, S.; Petruck, P.; Tuennermann, A.

    2015-09-01

    Three mirror anastigmats (TMA) are telescopic optical systems with only plane symmetry, that allow for good image quality without any central obscuration. The complexities of manufacturing and alignment can be reduced by fabricating the first mirror and the third mirror in one piece and defining a common axis of all the mirrors. It is attractive to use off-axis used aspheres and to come to an acceptable performance with the smallest number of freeform surfaces. In this paper, different types of freeform surfaces are considered to evaluate their potential. In the performed case study, the correction of spherical aberration and coma is best corrected in the pupil with the second mirror and to select the Zernike representation with remaining x-symmetry is one of the best ways to do this. The use of the Chebyshev polynomials also gives good results. Furthermore it is found, that the first mirror and the third mirror are quite beneficial to be modelled as off-axis aspheres of the Q-type. The result shows that a combination of two Q-aspheres with a Zernike surface at the second mirror is one of the most favorable combinations.

  8. Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues.

    PubMed

    Kim, Areum Daseul; Zhang, Rui; Han, Xia; Kang, Kyoung Ah; Piao, Mei Jing; Maeng, Young Hee; Chang, Weon Young; Hyun, Jin Won

    2015-09-01

    Reduced glutathione (GSH) is an abundant tripeptide present in the majority of cell types. GSH is highly reactive and is often conjugated to other molecules, via its sulfhydryl moiety. GSH is synthesized from glutamic acid, cysteine, and glycine via two sequential ATP‑consuming steps, which are catalyzed by glutamate cysteine ligase (GCL) and GSH synthetase (GSS). However, the role of GSH in cancer remains to be elucidated. The present study aimed to determine the levels of GSH and GSH synthetic enzymes in human colorectal cancer. The mRNA and protein expression levels of GSH, the catalytic subunit of GCL (GCLC) and GSS were significantly higher in the following five colon cancer cell lines: Caco‑2, SNU‑407, SNU‑1033, HCT‑116, and HT‑29, as compared with the normal colon cell line, FHC. Similarly, in 9 out of 15 patients with colon cancer, GSH expression levels were higher in tumor tissue, as compared with adjacent normal tissue. In addition, the protein expression levels of GCLC and GSS were higher in the tumor tissue of 8 out of 15, and 10 out of 15 patients with colon cancer respectively, as compared with adjacent normal tissue. Immunohistochemical analyses confirmed that GCLC and GSS were expressed at higher levels in colon cancer tissue, as compared with normal mucosa. Since GSH and GSH metabolizing enzymes are present at elevated levels in colonic tumors, they may serve as clinically useful biomarkers of colon cancer, and/or targets for anti-colon cancer drugs. PMID:26059756

  9. Scientific Comparison of Different Online Heart Rate Monitoring Systems

    PubMed Central

    Schönfelder, Martin; Hinterseher, Georg; Peter, Philipp; Spitzenpfeil, Peter

    2011-01-01

    Recent technical development focused on real-time heart rate monitoring instead of postexercise evaluation of recorded data. There are several systems on the market that allow direct and real-time monitoring of several individuals at the same time. The present study compared the systems of Polar, Acentas, Activio, and Suunto in a field test with twelve subjects regarding failure quota, operating distance, and ECG validity. Moreover, the installation and use of software and hardware were evaluated with a quality rating system. Chest belts were evaluated with a questionnaire, too. Overall the system of Acentas reached the best mark of all systems, but detailed results showed that every system has its advantages and disadvantages depending on using purpose, location, and weather. So this evaluation cannot recommend a single system but rather shows strength and weakness of all systems and additionally can be used for further system improvements. PMID:21760780

  10. Prevention by alpha-tocopherol and rutin of glutathione and ATP depletion induced by oxidized LDL in cultured endothelial cells.

    PubMed Central

    Schmitt, A.; Salvayre, R.; Delchambre, J.; Nègre-Salvayre, A.

    1995-01-01

    1. Oxidized low density lipoproteins (LDL) are thought to play an important role in atherogenesis. Mildly oxidized LDL are cytotoxic to cultured endothelial cells. Toxic doses of oxidized LDL promote the peroxidation of cellular lipids (beginning at 6 h and being maximal after 12 h of pulse with oxidized LDL) and glutathione and ATP depletion (beginning after 15 h of pulse and evolving concurrently with the cytotoxicity). 2. Antioxidants from 3 different classes (rutin, ascorbic acid and alpha-tocopherol) were compared as to their ability to inhibit the cytotoxic effect of oxidized LDL to endothelial cells. 3. Effective concentrations of alpha-tocopherol inhibited cellular lipid peroxidation, glutathione and ATP depletion and the cytotoxic effect. 4. Ascorbic acid was less effective than alpha-tocopherol and rutin, and exhibited a dose-dependent biphasic effect in the presence of oxidized LDL. 5. Effective concentrations of rutin inhibited glutathione and ATP depletion as well as cytotoxicity, but did not block cellular lipid peroxidation. This suggests that the glutathione and ATP depletion is directly correlated to the cytotoxicity of oxidized LDL, whereas cellular lipid peroxidation is probably not directly the cause of cellular damage leading to cell death. 6. The association of antioxidants of 3 different classes allowed the suppression of the biphasic effect of ascorbic acid and increased the efficacy of the protective effect. The potential consequences for prevention of the pathogenic role of oxidized LDL in endothelial injury are discussed. PMID:8640336

  11. Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices

    NASA Astrophysics Data System (ADS)

    Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.

    2016-03-01

    Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b

  12. Association of mercury and selenium with altered glutathione metabolism and oxidative stress in diving ducks from the San Francisco Bay region, USA

    SciTech Connect

    Hoffman, D.J.; Pendleton, G.W.; Ohlendorf, H.M.; Marn, C.M.

    1998-02-01

    Adult male greater scaup (Aythya marila), surf scoters (Melanitta perspicillata), and ruddy ducks (Oxyura jamaicensis) were collected from Suisun Bay and coastal Tomales Bay in the greater San Francisco Bay area to assess exposure to inorganic contaminants. Hepatic Se concentrations were highest in greater scaup and surf scoters in Suisun Bay, whereas hepatic Hg was highest in greater scaup and surf scoters from Tomales Bay. Hepatic Se and Hg were lower in ruddy ducks and did not differ between locations. Hepatic supernatants were assayed for enzymes related to glutathione metabolism and antioxidant activity, including glucose-6-phosphate dehydrogenase (G-6-PDH), glutathione peroxidase (GSH peroxidase), glutathione reductase (GSSG reductase), and glutathione-S-transferase (GSH transferase). Glutathione peroxidase activity was higher in surf scoters and ruddy ducks, and G-6-PDH was higher in greater scaup and surf scoters from Suisun Bay than Tomales Bay. Glutathione reductase (GSSG) was higher in SS from Suisun Bay. The ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH) was greater in all species from Tomales Bay. The following significant relationships were found in one or more species with increasing hepatic Hg concentration; lower body, liver, and heart weights; decreased hepatic GSH concentration and G-6-PDH and GSH peroxidase activities; increased ratio of GSSG to GSH; and increased GSSG reductase activity. With increasing hepatic Se concentration, GSH peroxidase increased, but GSH decreased. It is concluded that measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. Concentrations of Hg and Se and the above variables affected have been associated with adverse effects on reproduction and neurological function in experimental studies with mallards.

  13. Hepatic ischemia-reperfusion syndrome after partial liver resection (LR): hepatic venous oxygen saturation, enzyme pattern, reduced and oxidized glutathione, procalcitonin and interleukin-6.

    PubMed

    Kretzschmar, Michael; Krüger, Antie; Schirrmeister, Wulf

    2003-06-01

    The hepatic ischemia-reperfusion syndrome was investigated in 28 patients undergoing elective partial liver resection with intraoperative occlusion of hepatic inflow (Pringle maneuver) using the technique of liver vein catheterization. Hepatic venous oxygen saturation (ShvO2) was monitored continuously up to 24 hours after surgery. Aspartate aminotransferase, glutamate dehydrogenase, gamma-glutamyl transpeptidase, pseudocholinesterase, alpha-glutathione S-transferase, reduced and oxidized glutathione, procalcitonine, and interleukin-6 were serially measured both before and after Pringle maneuver during the resection and postoperatively in arterial and/or hepatic venous blood. ShvO2 measurement demonstrated that peri- and postoperative management was suitable to maintain an optimal hepatic oxygen supply. As expected, we were able to demonstrate a typical enzyme pattern of postischemic liver injury. There was a distinct decrease of reduced glutathione levels both in arterial and hepatic venous plasma after LR accompanied by a strong increase in oxidized glutathione concentration during the phase of reperfusion. We observed increases in procalcitonin and interleukin-6 levels both in arterial and hepatic venous blood after declamping. Our data support the view that liver resection in man under conditions of inflow occlusion resulted in ischemic lesion of the liver (loss of glutathione synthesizing capacity with disturbance of protection against oxidative stress) and an additional impairment during reperfusion (liberation of reactive oxygen species, local and systemic inflammation reaction with cytokine production). Additionally, we found some evidence for the assumption that the liver has an export function for reduced glutathione into plasma in man. PMID:12877355

  14. Global metabolic profile identifies choline kinase alpha as a key regulator of glutathione-dependent antioxidant cell defense in ovarian carcinoma

    PubMed Central

    Granata, Anna; Nicoletti, Roberta; Perego, Paola; Iorio, Egidio; Krishnamachary, Balaji; Benigni, Fabio; Ricci, Alessandro; Podo, Franca; Bhujwalla, Zaver M.; Canevari, Silvana

    2015-01-01

    Epithelial Ovarian Cancer (EOC) “cholinic phenotype”, characterized by increased intracellular phosphocholine content sustained by over-expression/activity of choline kinase-alpha (ChoKα/CHKA), is a metabolic cellular reprogramming involved in chemoresistance with still unknown mechanisms. By stable CHKA silencing and global metabolic profiling here we demonstrate that CHKA knockdown hampers growth capability of EOC cell lines both in vitro and in xenotransplant in vivo models. It also affected antioxidant cellular defenses, decreasing glutathione and cysteine content while increasing intracellular levels of reactive oxygen species, overall sensitizing EOC cells to current chemotherapeutic regimens. Natural recovering of ChoKα expression after its transient silencing rescued the wild-type phenotype, restoring intracellular glutathione content and drug resistance. Rescue and phenocopy of siCHKA-related effects were also obtained by artificial modulation of glutathione levels. The direct relationship among CHKA expression, glutathione intracellular content and drug sensitivity was overall demonstrated in six different EOC cell lines but notably, siCHKA did not affect growth capability, glutathione metabolism and/or drug sensitivity of non-tumoral immortalized ovarian cells. The “cholinic phenotype”, by recapitulating EOC addiction to glutathione content for the maintenance of the antioxidant defense, can be therefore considered a unique feature of cancer cells and a suitable target to improve chemotherapeutics efficacy. PMID:25796169

  15. The Use of Screen-Printed Electrodes in a Proof of Concept Electrochemical Estimation of Homocysteine and Glutathione in the Presence of Cysteine Using Catechol

    PubMed Central

    Lee, Patricia T.; Lowinsohn, Denise; Compton, Richard G.

    2014-01-01

    Screen printed electrodes were employed in a proof of concept determination of homocysteine and glutathione using electrochemically oxidized catechol via a 1,4-Michael addition reaction in the absence and presence of cysteine, and each other. Using cyclic voltammetry, the Michael reaction introduces a new adduct peak which is analytically useful in detecting thiols. The proposed procedure relies on the different rates of reaction of glutathione and homocysteine with oxidized catechol so that at fast voltage scan rates only homocysteine is detected in cyclic voltammetry. At slower scan rates, both glutathione and homocysteine are detected. The combination of the two sets of data provides quantification for homocysteine and glutathione. The presence of cysteine is shown not to interfere provided sufficient high concentrations of catechol are used. Calibration curves were determined for each homocysteine and glutathione detection; where the sensitivities are 0.019 μA·μM−1 and 0.0019 μA·μM−1 and limit of detections are ca. 1.2 μM and 0.11 μM for homocysteine and glutathione, respectively, within the linear range. This work presents results with potential and beneficial use in re-useable and/or disposable point-of-use sensors for biological and medical applications. PMID:24926695

  16. Oxidation contributes to low glutathione in the airways of children with cystic fibrosis.

    PubMed

    Kettle, Anthony J; Turner, Rufus; Gangell, Catherine L; Harwood, D Timothy; Khalilova, Irada S; Chapman, Anna L; Winterbourn, Christine C; Sly, Peter D

    2014-07-01

    Glutathione is an important antioxidant in the lungs but its concentration is low in the airways of patients with cystic fibrosis. Whether this deficit occurs from an early age or how oxidative stress contributes to lowering glutathione is unknown. We measured glutathione, its oxidation products, myeloperoxidase, and biomarkers of hypochlorous acid in bronchoalveolar lavage from children with cystic fibrosis and disease controls using mass spectrometry and immunological techniques. The concentration of glutathione was lower in bronchoalveolar lavage from children with cystic fibrosis, whereas glutathione sulfonamide, a specific oxidation product of hypochlorous acid, was higher. Oxidised glutathione and glutathione sulfonamide correlated with myeloperoxidase and a biomarker of hypochlorous acid. The percentage of glutathione attached to proteins was higher in children with cystic fibrosis than controls. Pulmonary infections in cystic fibrosis resulted in lower levels of glutathione but higher levels of oxidised glutathione and glutathione sulfonamide in bronchoalveolar lavage. The concentration of glutathione is low in the airways of patients with cystic fibrosis from an early age. Increased oxidation of glutathione by hypochlorous acid and its attachment to proteins contribute to this deficiency. Therapies targeted against myeloperoxidase may boost antioxidant defence and slow the onset and progression of lung disease in cystic fibrosis. PMID:24659542

  17. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of

  18. Glutathione and cellular redox control in epigenetic regulation.

    PubMed

    García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V

    2014-10-01

    Epigenetics is defined as the mitotically/meiotically heritable changes in gene expression that are not due to changes in the primary DNA sequence. Over recent years, growing evidence has suggested a link between redox metabolism and the control of epigenetic mechanisms. The effect of the redox control, oxidative stress, and glutathione (GSH) on the epigenetic mechanisms occur at different levels affecting DNA methylation, miRNAs expression, and histone post-translational modifications (PTMs). Furthermore, a number of redox PTMs are being described, so enriching the histone code. Pioneer works showed how oxidized GSH inhibits the activity of S-adenosyl methionine synthetase, MAT1A, a key enzyme involved in the synthesis of S-adenosyl methionine (SAM), which is used by DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs). Alteration in NAD /NADH ratio affects the activity of class III histone deacetylases (HDACs) and poly-ADP ribosyltransferases (PARPs). Furthermore, the iron redox state of the catalytic center of key enzymes influences the activity of HDACs and the activity of Tet methylcytosine dioxygenases (DNA demetylases) and JmjC histone demethylases. In this communication, we will show the intricate mechanisms that participate in the redox control of the epigenetic mechanisms. We specially focus our work in the characterization of new PTMs in histones, such as histone carbonylation and glutathionylation. Demonstrating how GSH influences the epigenetic mechanisms beyond a mere regulation of SAM levels. The mechanisms described in this communication place GSH and redox control in the landscape of the epigenetic regulation. The results shown underscore the relevant role that oxidative stress and GSH play as key factors in epigenetics, opening a new window for understating the underlying mechanisms that control cell differentiation, proliferation, development, and disease. PMID:26461333

  19. Exercise-induced oxidative stress: glutathione supplementation and deficiency.

    PubMed

    Sen, C K; Atalay, M; Hänninen, O

    1994-11-01

    Glutathione (GSH) plays a central role in coordinating the synergism between different lipid- and aqueous-phase antioxidants. We documented 1) how exogenous GSH and N-acetylcysteine (NAC) may affect exhaustive exercise-induced changes in tissue GSH status, lipid peroxides [thiobarbituric acid-reactive substances (TBARS)], and endurance and 2) the relative role of endogenous GSH in the circumvention of exercise-induced oxidative stress by using GSH-deficient [L-buthionine-(S,R)-sulfoximine (BSO)-treated] rats. Intraperitoneal injection of GSH remarkably increased plasma GSH; exogenous GSH per se was an ineffective delivery agent of GSH to tissues. Repeated administration of GSH (1 time/day for 3 days) increased blood and kidney total GSH [TGSH; GSH+oxidized GSH (GSSG)]. Neither GSH nor NAC influenced endurance to exhaustion. NAC decreased exercise-induced GSH oxidation in the lung and blood. BSO decreased TGSH pools in the liver, lung, blood, and plasma by approximately 50% and in skeletal muscle and heart by 80-90%. Compared with control, resting GSH-deficient rats had lower GSSG in the liver, red gastrocnemius muscle, heart, and blood; similar GSSG/TGSH ratios in the liver, heart, lung, blood, and plasma; higher GSSG/TGSH ratios in the skeletal muscle; and more TBARS in skeletal muscle, heart, and plasma. In contrast to control, exhaustive exercise of GSH-deficient rats did not decrease TGSH in the liver, muscle, or heart or increase TGSH of plasma; GSSG of muscle, blood, or plasma; or TBARS of plasma or muscle. GSH-deficient rats had approximately 50% reduced endurance, which suggests a critical role of endogenous GSH in the circumvention of exercise-induced oxidative stress and as a determinant of exercise performance. PMID:7868431

  20. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu.

    PubMed Central

    't Hoen, Peter A C; Out, Ruud; Commandeur, Jan N M; Vermeulen, Nico P E; van Batenburg, F H D; Manoharan, Muthiah; van Berkel, Theo J C; Biessen, Erik A L; Bijsterbosch, Martin K

    2002-01-01

    The aim of the present study was to identify functional antisense oligodeoxynucleotides (ODNs) against the rat glutathione S-transferase Mu (GSTM) isoforms, GSTM1 and GSTM2. These antisense ODNs would enable the study of the physiological consequences of GSTM deficiency. Because it has been suggested that the effectiveness of antisense ODNs is dependent on the secondary mRNA structures of their target sites, we made mRNA secondary structure predictions with two software packages, Mfold and STAR. The two programs produced only marginally similar structures, which can probably be attributed to differences in the algorithms used. The effectiveness of a set of 18 antisense ODNs was evaluated with a cell-free transcription/translation assay, and their activity was correlated with the predicted secondary RNA structures. Four phosphodiester ODNs specific for GSTM1, two ODNs specific for GSTM2, and four ODNs targeted at both GSTM isoforms were found to be potent, sequence-specific, and RNase H-dependent inhibitors of protein expression. The IC50 value of the most potent ODN was approximately 100 nM. Antisense ODNs targeted against regions that were predicted by STAR to be predominantly single stranded were more potent than antisense ODNs against double-stranded regions. Such a correlation was not found for the Mfold prediction. Our data suggest that simulation of the local folding of RNA facilitates the discovery of potent antisense sequences. In conclusion, we selected several promising antisense sequences, which, when synthesized as biologically stable oligonucleotides, can be applied for study of the physiological impact of reduced GSTM expression. PMID:12515389

  1. Cystamine induces AIF-mediated apoptosis through glutathione depletion.

    PubMed

    Cho, Sung-Yup; Lee, Jin-Haeng; Ju, Mi-kyeong; Jeong, Eui Man; Kim, Hyo-Jun; Lim, Jisun; Lee, Seungun; Cho, Nam-Hyuk; Park, Hyun Ho; Choi, Kihang; Jeon, Ju-Hong; Kim, In-Gyu

    2015-03-01

    Cystamine and its reduced form cysteamine showed protective effects in various models of neurodegenerative disease, including Huntington's disease and Parkinson's disease. Other lines of evidence demonstrated the cytotoxic effect of cysteamine on duodenal mucosa leading to ulcer development. However, the mechanism for cystamine cytotoxicity remains poorly understood. Here, we report a new pathway in which cystamine induces apoptosis by targeting apoptosis-inducing factor (AIF). By screening of various cell lines, we observed that cystamine and cysteamine induce cell death in a cell type-specific manner. Comparison between cystamine-sensitive and cystamine-resistant cell lines revealed that cystamine cytotoxicity is not associated with unfolded protein response, reactive oxygen species generation and transglutaminase or caspase activity; rather, it is associated with the ability of cystamine to trigger AIF nuclear translocation. In cystamine-sensitive cells, cystamine suppresses the levels of intracellular glutathione by inhibiting γ-glutamylcysteine synthetase expression that triggers AIF translocation. Conversely, glutathione supplementation completely prevents cystamine-induced AIF translocation and apoptosis. In rats, cysteamine administration induces glutathione depletion and AIF translocation leading to apoptosis of duodenal epithelium. These results indicate that AIF translocation through glutathione depletion is the molecular mechanism of cystamine toxicity, and provide important implications for cystamine in the neurodegenerative disease therapeutics as well as in the regulation of AIF-mediated cell death. PMID:25549939

  2. METAL-INDUCED INHIBITION OF GLUTATHIONE S-TRANSFERASES

    EPA Science Inventory

    The glutathione S-transferases comprise a group of multi-functional enzymes involved in the biotransformation/detoxication of a broad spectrum of hydrophobic compounds bearing an electrophilic center. The enzymes facilitate the nucleophilic attack of the -SH group of reduced glut...

  3. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  4. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  5. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  6. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  7. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  8. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  9. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  10. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  11. Photoelastic analysis of stress distribution with different implant systems.

    PubMed

    Pellizzer, Eduardo Piza; Carli, Rafael Imai; Falcón-Antenucci, Rosse Mary; Verri, Fellippo Ramos; Goiato, Marcelo Coelho; Villa, Luiz Marcelo Ribeiro

    2014-04-01

    The aim of this study was to evaluate stress distribution with different implant systems through photoelasticity. Five models were fabricated with photoelastic resin PL-2. Each model was composed of a block of photoelastic resin (10 × 40 × 45 mm) with an implant and a healing abutment: model 1, internal hexagon implant (4.0 × 10 mm; Conect AR, Conexão, São Paulo, Brazil); model 2, Morse taper/internal octagon implant (4.1 × 10 mm; Standard, Straumann ITI, Andover, Mass); model 3, Morse taper implant (4.0 × 10 mm; AR Morse, Conexão); model 4, locking taper implant (4.0 × 11 mm; Bicon, Boston, Mass); model 5, external hexagon implant (4.0 × 10 mm; Master Screw, Conexão). Axial and oblique load (45°) of 150 N were applied by a universal testing machine (EMIC-DL 3000), and a circular polariscope was used to visualize the stress. The results were photographed and analyzed qualitatively using Adobe Photoshop software. For the axial load, the greatest stress concentration was exhibited in the cervical and apical thirds. However, the highest number of isochromatic fringes was observed in the implant apex and in the cervical adjacent to the load direction in all models for the oblique load. Model 2 (Morse taper, internal octagon, Straumann ITI) presented the lowest stress concentration, while model 5 (external hexagon, Master Screw, Conexão) exhibited the greatest stress. It was concluded that Morse taper implants presented a more favorable stress distribution among the test groups. The external hexagon implant showed the highest stress concentration. Oblique load generated the highest stress in all models analyzed. PMID:22208909

  12. The role of mitochondrial phospholipid hydroperoxide glutathione peroxidase in cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Hong

    Phospholipid hydroperoxide glutathione peroxidase (PhGPx) is a unique selenoenzyme that directly detoxifies lipid hydroperoxides in situ . It therefore plays an important role in the protection of cellular membranes. PhGPx is expressed in most mammalian tissues. It is present as a mitochondrial form (L-PhGPx) and a cytosolic form (S-PhGPx). Overexpression of PhGPx has been shown to significantly protect cells from oxidative damage. The hypothesis of this thesis is that mitochondrial PhGPx (L-PhGPx) may play an important role in the resistance of cells to certain oxidative stress- mediated cancer therapies. A human breast carcinoma MCF-7 cell line was used as a cell model system in this research. It was stably transfected with human L-PhGPx sense cDNA. Four clones (P-1, P-2, P-3, and P-4) with 3- to 7-fold increases in PhGPx activity were selected for study. Overexpression of L-PhGPx did not significantly influence other cellular antioxidants, including superoxide dismutases, cytosolic glutathione peroxidase, catalase, glutathione reductase, and glutathione. However, L-PhGPx did decrease the rate of cell growth. Cell plating efficiency was inversely correlated with effective PhGPx activity, which is defined as the product of cellular PhGPx activity and total glutathione. The biological functions of L-PhGPx have been investigated in cancer treatment, including photodynamic therapy (PDT) and hyperthermia (HT). Both PDT and HT can induce oxidative stress. Overexpression of L-PhGPx in MCF-7 cells significantly increased the resistance of cells to PDT- and HT-mediated cytotoxicity. The effective PhGPx activity had a remarkable inverse linear correlation (r = -0.80) to the rate of removal of lipid hydroperoxides in living cells, and correlated positively with cell survival after photooxidation (r = 0.91). L-PhGPx protected mitochondrial function by preserving the mitochondrial membrane potential. These data demonstrate that L-PhGPx provides significant protection against

  13. The comparison of different medical electronic endoscope systems

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Wang, Liqiang; Duan, Huilong

    2011-11-01

    This paper presents a miniaturized CMOS camera for high-definition (HD) medical electronic endoscope system with resolution of 1.3 MegaPixel. LVDS technology is used for image data stream transmission between the sensor and the HD image workstation to realize a long distance, high speed, high signal integrity and low noise system. Considering the real-time video image processing and the complexity of the design of HD image workstation, four solutions for medical electronic endoscope systems, namely USB based image acquisition system, PCIe acquisition data board based method, ARM embedded system based solution and DSP based electronic endoscope system have been proposed, analyzed and compared with each other. We found that the four solutions have their own advantages and disadvantages. Taking into account the strong control capacity of ARM, powerful data processing ability and high operating speed of DSP, good portability and other factors, we decided to use ARM + DSP embedded based system.

  14. Effects of chlorpyrifos on life cycle parameters, cytochrome P450S expression, and antioxidant systems in the monogonont rotifer Brachionus koreanus.

    PubMed

    Kim, Ryeo-Ok; Kim, Bo-Mi; Jeong, Chang-Bum; Lee, Jae-Seong; Rhee, Jae-Sung

    2016-06-01

    Chlorpyrifos is a widely used organophosphorus insecticide for controlling diverse insect pests of crops. In the monogonont rotifer Brachionus koreanus, population growth retardation with the inhibition of lifespan, fecundity, and individual body size of ovigerous females was shown over 10 d in response to chlorpyrifos exposure. At the molecular and biochemical levels, the rotifer B. koreanus defensome, composed of cytochrome P450 complements, heat shock protein 70, and antioxidant enzymatic systems (i.e., glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase), was significantly induced in response to different concentrations of chlorpyrifos. Thus, chlorpyrifos strongly induced a defensome system to mitigate the deleterious effects of chlorpyrifos at in vivo and in vitro levels as a trade-off in fitness costs. Environ Toxicol Chem 2016;35:1449-1457. © 2015 SETAC. PMID:26496856

  15. Effect of human glutathione S-transferases on glutathione-dependent inactivation of cytochrome P450-dependent reactive intermediates of diclofenac.

    PubMed

    Dragovic, Sanja; Boerma, Jan Simon; Vermeulen, Nico P E; Commandeur, Jan N M

    2013-11-18

    Idiosyncratic adverse drug reactions due to the anti-inflammatory drug diclofenac have been proposed to be caused by the generation of reactive acyl glucuronides and oxidative metabolites. For the oxidative metabolism of diclofenac by cytochromes P450 at least five different reactive intermediates have been proposed previously based on structural identification of their corresponding GSH-conjugates. In the present study, the ability of four human glutathione S-transferases (hGSTs) to catalyze the GSH-conjugation of the different reactive intermediates formed by P450s was investigated. Addition of pooled human liver cytosol and recombinant hGSTA1-1, hGSTM1-1, and hGSTP1-1 to incubations of diclofenac with human liver microsomes or purified CYP102A1M11 L437N as a model system significantly increased total GSH-conjugation. The strongest increase of total GSH-conjugation was observed by adding hGSTP1-1, whereas hGSTM1-1 and hGSTA1-1 showed lower activity. Addition of hGSTT1-1 only showed a minor effect. When considering the effects of hGSTs on GSH-conjugation of the different quinoneimines of diclofenac, it was found that hGSTP1-1 showed the highest activity in GSH-conjugation of the quinoneimine derived from 5-hydroxydiclofenac (5-OH-DF). hGSTM1-1 showed the highest activity in inactivation of the quinoneimine derived from 4'-hydroxydiclofenac (4'-OH-DF). Separate incubations with 5-OH-DF and 4'-OH-DF as substrates confirmed these results. hGSTs also catalyzed GSH-conjugation of the o-iminemethide formed by oxidative decarboxylation of diclofenac as well as the substitution of one of the chlorine atoms of DF by GSH. hGSTP1-1 showed the highest activity for the formation of these minor GSH-conjugates. These results suggest that hGSTs may play an important role in the inactivation of DF quinoneimines and its minor reactive intermediates especially in stress conditions when tissue levels of GSH are decreased. PMID:24083800

  16. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-06-01

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. The energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  17. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE PAGESBeta

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  18. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  19. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  20. Algorithmic requirements for swarm intelligence in differently coupled collective systems.

    PubMed

    Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas

    2013-05-01

    Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments. PMID:23805030

  1. Algorithmic requirements for swarm intelligence in differently coupled collective systems

    PubMed Central

    Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas

    2013-01-01

    Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments. PMID:23805030

  2. A Chaotic System with Different Shapes of Equilibria

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Thanh; Jafari, Sajad; Wang, Xiong; Ma, Jun

    Although many chaotic systems have been introduced in the literature, a few of them possess uncountably infinite equilibrium points. The aim of our short work is to widen the current knowledge of the chaotic systems with an infinite number of equilibria. A three-dimensional system with special properties, for example, exhibiting chaotic attractor with circular equilibrium, chaotic attractor with ellipse equilibrium, chaotic attractor with square-shaped equilibrium, and chaotic attractor with rectangle-shaped equilibrium, is proposed.

  3. Evaluation of aflatoxin B/sub 1/ mutagenesis: addition of glutathione and glutathione-S-transferase to the Salmonella mutagenicity assay

    SciTech Connect

    Jorgensen, K.V.; Clayton, J.W.; Price, R.L.

    1987-01-01

    The effects of glutathione (GSH) and the combination of GSH and glutathione-S-transferase (GST) on aflatoxin B/sub 1/ (AFB/sub 1/) mutagenesis in the Salmonella mutagenicity assay using Salmonella typhimurium strains TA98 and TA100 were tested. Ten concentrations of AFB/sub 1/ (0-1.0 ..mu..g/plate) were added to a liver microsomal homogenate (S9 mix) or to S9 mix containing GSH or S9 mix containing the combination of GSH + GST. One third of the samples were plated directly. Two-thirds were incubated for 30 min at 37/sup 0/C prior to plating, and of those, half included bacteria. The results show that the addition of GSH and GSH + GST affected AFB/sub 1/ mutagenesis by forming the AFB/sub 1/-GSH conjugate and decreasing the availability of AFB/sub 1/-8,9-epoxide. The effect of GST on GSH activity varied with the strain because of the different amounts of S9 mix used. The formation of the AFB/sub 1/-GSH conjugate was verified by using reverse-phase high-performance liquid chromatography for quantitation of AFB/sub 1/ and detection of AFB/sub 1/-GSH.

  4. Partial characterization of glutathione S-transferases from wheat (Triticum spp.) and purification of a safener-induced glutathione S-transferase from Triticum tauschii.

    PubMed Central

    Riechers, D E; Irzyk, G P; Jones, S S; Fuerst, E P

    1997-01-01

    Hexaploid wheat (Triticum aestivum L.) has very low constitutive glutathione S-transferase (GST) activity when assayed with the chloroacetamide herbicide dimethenamid as a substrate, which may account for its low tolerance to dimethenamid in the field. Treatment of seeds with the herbicide safener fluxofenim increased the total GST activity extracted from T. aestivum shoots 9-fold when assayed with dimethenamid as a substrate, but had no effect on glutathione levels. Total GST activity in crude protein extracts from T. aestivum, Triticum durum, and Triticum tauschii was separated into several component GST activities by anion-exchange fast-protein liquid chromatography. These activities (isozymes) differed with respect to their activities toward dimethenamid or 1-chloro-2,4-dinitrobenzene as substrates and in their levels of induction by safener treatment. A safener-induced GST isozyme was subsequently purified by anion-exchange and affinity chromatography from etiolated shoots of the diploid wheat species T. tauschii (a progenitor of hexaploid wheat) treated with the herbicide safener cloquintocet-mexyl. The isozyme bound to a dimethenamid-affinity column and had a subunit molecular mass of 26 kD based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme (designated GST TSI-1) was recognized by an antiserum raised against a mixture of maize (Zea mays) GSTs. Amino acid sequences obtained from protease-digested GST TSI-1 had significant homology with the safener-inducible maize GST V and two auxin-regulated tobacco (Nicotiana tabacum) GST isozymes. PMID:9276955

  5. Effects of N-acetyl-L-cysteine and glutathione on antioxidant status of human serum and 3T3 fibroblasts.

    PubMed Central

    Hong, Sae-Yong; Yang, Jong-Oh; Lee, Eun-Young; Lee, Zee-Won

    2003-01-01

    The effectiveness of several sulfhydryl compounds in the treatment of paraquat intoxication has been previously tested based on their antioxidant ability. However, practical guidelines for their clinical use remain to be determined. As a preliminary pharmacokinetic study on sulfhydryl compounds, we attempted to establish the optimal concentration of N-acetyl-L-cysteine, glutathione, superoxide dismutase, and catalase. We measured the antioxidant effect of these antioxidants in normal pooled plasma and on intracellular reactive oxygen species (ROS) induced by paraquat. N-acetyl-L-cysteine begins to suppress the production of ROS in plasma at concentrations as low as 5 mM, with the suppression being maximal at 40 mM. In the same way, glutathione increased the total antioxidant status in plasma at concentrations of 5-40 mM in a dose-dependent manner. Complete suppression of ROS in plasma induced by exposure to 500 micro M paraquat for 40 min was observed when using 40 mM N-acetyl-L-cysteine and 5 mM glutathione. These concentrations are comparable with 50 units of catalase, which reduced ROS at concentrations of 5-100 units. Further pharmacokinetic study into the systemic administration of these antioxidants is necessary, using effective concentrations of 5-40 mM for both N-acetyl-L-cysteine and glutathione, and 1-50 units of catalase. PMID:14555815

  6. Development of a functional assay to detect inhibitors of Plasmodium falciparum glutathione reductase utilizing liquid chromatography-mass spectrometry.

    PubMed

    Burkard, Lexi; Scheuermann, Alexis; Simithy, Johayra; Calderón, Angela I

    2016-04-01

    Plasmodium falciparum (Pf) like most other organisms, has a sophisticated antioxidant system, part of which includes glutathione reductase (GR). GR works by recycling toxic glutathione disulfide to glutathione, thereby reducing reactive oxygen species and making a form of glutathione (GSH) the parasite can use. Inhibition of this enzyme in Pf impedes parasite growth. In addition, it has been confirmed that PfGR is not identical to human GR. Thus, PfGR is an excellent target for antimalarial drug development. A functional assay utilizing liquid chromatography-mass spectrometry was developed to specifically identify and evaluate inhibitors of PfGR. Using recombinant PfGR enzyme and 1,4-naphthoquinone (1) as a reference compound and 4-nitrobenzothiadiazole (2) and methylene blue (3) as additional compounds, we quantified the concentration of GSH produced compared with a control to determine the inhibitory effect of these compounds. Our results coincide with that presented in literature: compounds 1-3 inhibit PfGR with IC50 values of 2.71, 8.38, and 19.23 µm, respectively. Good precision for this assay was exhibited by low values of intraday and interday coefficient of variation (3.1 and 2.4%, respectively). Thus, this assay can be used to screen for other potential inhibitors of PfGR quickly and accurately. PMID:26257195

  7. Co-oxidation of 2-bromohydroquinone by renal prostaglandin synthase. Modulation of prostaglandin synthesis by 2-bromohydroquinone and glutathione.

    PubMed

    Lau, S S; Monks, T J

    1987-01-01

    Homogenates from rat renal papillae, a rich source of the prostaglandin (PG) H synthase system (PHS), metabolized [14C]2-bromohydroquinone, in the presence of arachidonic acid, to products which are covalently bound to protein. The co-oxidation of 2-bromohydroquinone caused a concentration-dependent stimulation in 6-keto-PGF1 alpha, thromboxane B2, PGF2 alpha, PGE2, and PGD2 formation. Glutathione (1 mM) caused a decrease in prostaglandin formation and inhibited the arachidonic acid-supported covalent binding of [14C]2-bromohydroquinone with the concomitant formation of [14C]2-bromohydroquinone-glutathione conjugates, oxidized glutathione, and an increase in the recovery of [14C]2-bromohydroquinone. NADPH also inhibited [14C]2-bromohydroquinone covalent binding, probably by reduction of the semiquinone radical back to the hydroquinone. Indomethacin and aspirin, inhibitors of the cyclooxygenase component of PHS, and propylthiouracil and methimazole, inhibitors of the hydroperoxidase component of PHS, inhibited the arachidonic acid-supported covalent binding of [14C]2-bromohydroquinone by 94%, 52%, 78%, and 79% respectively. These data suggest that 1) renal PHS may play a role in activating the nephrotoxin, 2-bromohydroquinone, and that 2) xenobiotic metabolism and its subsequent effects on glutathione levels can modulate renal prostaglandin synthesis. PMID:2893705

  8. Purified gamma-glutamyl transpeptidases from tomato exhibit high affinity for glutathione and glutathione S-conjugates.

    PubMed

    Martin, M N; Slovin, J P

    2000-04-01

    gamma-Glutamyl transpeptidases (gammaGTases) are the only enzymes known to hydrolyze the unique N-terminal amide bonds of reduced glutathione (gamma-L-glutamyl-cysteinyl-glycine), oxidized glutathione, and glutathione S-conjugates. Two gammaGTases (I and II) with K(m) values for glutathione of 110 and 90 microM were purified 2,977-fold and 2,152-fold, respectively, from ripe tomato (Lycopersicon esculentum) pericarp. Both enzymes also hydrolyze dipeptides and other tripeptides with N-terminal, gamma-linked Glu and the artificial substrates gamma-L-glutamyl-p-nitroanilide and gamma-L-glutamyl(7-amido-4-methylcoumarin). They transfer the glutamyl moiety to water or acceptor amino acids, including L-Met, L-Phe, L-Trp, L-Ala, or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. gammaGTase I and II were released from a wall and membrane fraction of a tomato fruit extract with 1.0 M NaCl, suggesting that they are peripheral membrane proteins. They were further purified by acetone precipitation, Dye Matrex Green A affinity chromatography, and hydrophobic interaction chromatography. The two gammaGTases were resolved by concanavalin A (Con A) affinity chromatography, indicating that they are differentially glycosylated. The native and SDS-denatured forms of both enzymes showed molecular masses of 43 kD. PMID:10759537

  9. CHARACTERIZATION OF DANSYLATED CYSTEINE, CYSTINE, GLUTATHIONE, AND GLUTATHIONE DISULFIDE BY NARROW BORE LIQUID CHROMATOGRAPHY - ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    A method using reversed phase high performance liquid chromtography/electrospray ionization-mass spectrometry (RP-LC/ESI-MS) has been developed to confirm the dientity of dansylated derivatives of cysteine (C) and glutathione (GSH), and their respective dimers, cystine (CSSC) and...

  10. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings

    PubMed Central

    Sytykiewicz, Hubert

    2016-01-01

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants. PMID:26907270

  11. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    PubMed

    Sytykiewicz, Hubert

    2016-01-01

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants. PMID:26907270

  12. Biotransformation of nitrosobenzene in the red cell and the role of glutathione.

    PubMed

    Eyer, P; Lierheimer, E

    1980-01-01

    1. In the red cell nitrosobenzene formed glutathione-sulphinanilide from reduced glutathione, and the corresponding sulphinanilide with the reactive cysteine residues of haemoglobin. 2. Glutathionesulphinanilide was reductively cleaved by an NADPH-linked reductase with formation of free analine half an equivalent of reduced glutathione and half of glutathione sulphinic acid. 3. About three quarters of the aniline produced from nitrosobenzene or phenylhydroxylamine was formed via this pathway within the red cell. PMID:6893778

  13. Blood glutathione status and activity of glutathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training.

    PubMed

    Janiak, M; Suska, M; Dudzińska, W; Skotnicka, E

    2010-04-01

    The aim of this study was to evaluate response of blood glutathione status and activity of glutathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training. Nine untrained trotters (aged 16-20 months) were exposed to a 4-month training program based on exercises at low-to-moderate intensity. The conditioning consisted of breaking the horses and running them on distances varying from 4 to 40 km a week. The workloads were increased on a 3-week basis. Exercise intensity was monitored by measuring heart rate and blood lactate. Blood samples were collected at rest, before (RES0) and after (RESt) the conditioning period; moreover, on the latter occasion (on day 112 of training), the blood was also taken immediately after the routine exercise (EXE0) and 60 min thereafter (EXE60). The whole blood samples were analysed for the concentration of reduced, oxidized and total glutathione (GSH, GSSG and TGSH, respectively), while the activities of glutathione peroxidase (GPX) and glutathione-disulfide reductase (GR) were determined in haemolysates. Additionally, the erythrocytic concentrations of oxidized nicotinamide adenine dinucleotide (NAD(+)) and its phosphate (NADP(+)) were measured. All investigated parameters except NAD(+) and reduced/oxidized glutathione ratio (GSH/GSSG) changed during the training period. Following the effortm GPX, NADP(+) and GSH/GSSG were significantly lower (p < 0.05, p < 0.01, p < 0.001, respectively) while GSSG was markedly higher than at rest (RESt). The drop in NADP(+), low GSH/GSSG and high GSSG concentration were sustained at EXE60. Glutathione-disulfide reductase activity was higher after the workout but only at EXE60 the increase in activity was significant. Despite the activities of the GSH-GSSG cycle, enzymes were considerably higher after the training period, the elevated concentration of GSSG and significantly lower GSH/GSSG ratio in the post-exercise measurements suggest that production of reactive oxygen

  14. The Stress Response Systems: Universality and Adaptive Individual Differences

    ERIC Educational Resources Information Center

    Ellis, Bruce J.; Jackson, Jenee James; Boyce, W. Thomas

    2006-01-01

    Biological reactivity to psychological stressors comprises a complex, integrated system of central neural and peripheral neuroendocrine responses designed to prepare the organism for challenge or threat. Developmental experience plays a role, along with heritable variation, in calibrating the response dynamics of this system. This calibration…

  15. Jamming and chaotic dynamics in different granular systems

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Homayoon; Luijten, Erik

    Although common in nature and industry, the jamming transition has long eluded a concrete, mechanistic explanation. Recently, Banigan et al. (Nat. Phys. 9, 288-292, 2013) proposed a method for characterizing this transition in a granular system in terms of the system's chaotic properties, as quantified by the largest Lyapunov exponent. They demonstrated that in a two-dimensional shear cell the jamming transition coincides with the bulk density at which the system's largest Lyapunov exponent changes sign, indicating a transition between chaotic and non-chaotic regimes. To examine the applicability of this observation to realistic granular systems, we study a model that includes frictional forces within an expanded phase space. Furthermore, we test the generality of the relation between chaos and jamming by investigating the relationship between jamming and the chaotic properties of several other granular systems, notably sheared systems (Howell, D., Behringer R. P., Veje C., Phys. Rev. Lett. 82, 5241-5244, 1999) and systems with a free boundary. Finally, we quantify correlations between the largest Lyapunov vector and collective rearrangements of the system to demonstrate the predictive capabilities enabled by adopting this perspective of jamming.

  16. Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Liu, Shiying; Kang, Yuejun; Wang, Mingfeng

    2015-03-01

    A myriad of drug delivery systems such as liposomes, micelles, polymers and inorganic nanoparticles (NPs) have been developed for cancer therapy. Very few of them, however, have the ability to integrate multiple functionalities such as specific delivery, high circulation stability, controllable release and good biocompatibility and biodegradability in a single system to improve the therapeutic efficacy. Herein, we report two types of stimuli-responsive nonporous silica prodrug NPs towards this goal for controlled release of anticancer drugs and efficient combinatorial cancer therapy. As a proof of concept, anticancer drugs camptothecin (CPT) and doxorubicin (DOX) were covalently encapsulated into silica matrices through glutathione (GSH)-responsive disulfide and pH-responsive hydrazone bonds, respectively, resulting in NPs with sizes tunable in the range of 50-200 nm. Both silica prodrug NPs showed stimuli-responsive controlled release upon exposure to a GSH-rich or acidic environment, resulting in improved anticancer efficacy. Notably, two prodrug NPs simultaneously taken up by HeLa cells showed a remarkable combinatorial efficacy compared to free drug pairs. These results suggest that the stimuli-responsive silica prodrug NPs are promising anticancer drug carriers for efficient cancer therapy.A myriad of drug delivery systems such as liposomes, micelles, polymers and inorganic nanoparticles (NPs) have been developed for cancer therapy. Very few of them, however, have the ability to integrate multiple functionalities such as specific delivery, high circulation stability, controllable release and good biocompatibility and biodegradability in a single system to improve the therapeutic efficacy. Herein, we report two types of stimuli-responsive nonporous silica prodrug NPs towards this goal for controlled release of anticancer drugs and efficient combinatorial cancer therapy. As a proof of concept, anticancer drugs camptothecin (CPT) and doxorubicin (DOX) were

  17. Reversal of an aluminium induced alteration in redox status in different regions of rat brain by administration of centrophenoxine.

    PubMed

    Nehru, Bimla; Bhalla, Punita

    2006-10-01

    Aluminium is one of the most studied neurotoxin, and its effects on nervous system are both structural and functional, involving various regions of brain. Aluminium toxicity is known to have multiple mechanisms of action in the central nervous system. Affinity of aluminium for thiol substrates is considered a possible molecular mechanism involved in aluminium neurotoxicity. The reduced glutathione (GSH) is especially important for cellular defence against aluminium toxicity. This study pertains to the modulatory action of centrophenoxine on GSH status in aluminium exposed different brain regions of the female rats. Aluminium was administered orally at a dose of 40 mg/Kg x b x wt x /day for a period of eight weeks whereas, centrophenoxine was administered intraperitoneally at a dose of 100 mg/Kg x b x wt x /day for a period of six weeks. The study was carried out in different regions of brain namely cerebrum, cerebellum, medulla oblongata and hypothalamus. Animals exposed to aluminum, registered a significant decrease in the levels of reduced glutathione, and oxidized glutathione as well as in the activity of glutathione reductase in all the different regions studied when compared to normal control animals. Post-treatment with centrophenoxine, showed a significant improvement in the thiol levels in different regions. Centrophenoxine when administered alone also had a profound effect on the levels of reduced glutathione as well as on the activity of glutathione reductase. From the present results, it can be stated that centrophenoxine administration, as a thiol-antioxidant, arrests the aluminium induced cellular damage by improving the thiol status in brain regions. PMID:16969688

  18. Performance on the Coordinate Reference System: Are Gender Differences Universal?

    ERIC Educational Resources Information Center

    Ohuche, Nancy M.

    1984-01-01

    Explored gender differences in performance on Piagetian tasks of horizontality and verticality, in a stratified random sample of 192 Igbo primary school, secondary school, and university students. Some results supported previous findings on sex differences in reference task performance, but other findings did not fit the predicted pattern. (GC)

  19. Macrophages require different nucleoside transport systems for proliferation and activation.

    PubMed

    Soler, C; García-Manteiga, J; Valdés, R; Xaus, J; Comalada, M; Casado, F J; Pastor-Anglada, M; Celada, A; Felipe, A

    2001-09-01

    To evaluate the mechanisms involved in macrophage proliferation and activation, we studied the regulation of the nucleoside transport systems. In murine bone marrow-derived macrophages, the nucleosides required for DNA and RNA synthesis are recruited from the extracellular medium. M-CSF induced macrophage proliferation and DNA and RNA synthesis, whereas interferon gamma (IFN-gamma) led to activation, blocked proliferation, and induced only RNA synthesis. Macrophages express at least the concentrative systems N1 and N2 (CNT2 and CNT1 genes, respectively) and the equilibrative systems es and ei (ENT1 and ENT2 genes, respectively). Incubation with M-CSF only up-regulated the equilibrative system es. Inhibition of this transport system blocked M-CSF-dependent proliferation. Treatment with IFN-gamma only induced the concentrative N1 and N2 systems. IFN-gamma also down-regulated the increased expression of the es equilibrative system induced by M-CSF. Thus, macrophage proliferation and activation require selective regulation of nucleoside transporters and may respond to specific requirements for DNA and RNA synthesis. This report also shows that the nucleoside transporters are critical for macrophage proliferation and activation. PMID:11532978

  20. Prevalence of gastrointestinal helminths in different poultry production systems.

    PubMed

    Permin, A; Bisgaard, M; Frandsen, F; Pearman, M; Kold, J; Nansen, P

    1999-09-01

    A cross-sectional prevalence study of gastrointestinal helminths in Danish poultry production systems was conducted on 268 adult chickens selected at random from 16 farms in Denmark from October 1994 to October 1995. The trachea and the gastrointestinal tract of each bird was examined for the presence of helminths. In the free-range/organic systems the following helminths were found: Ascaridia galli (63.8%), Heterakis gallinarum (72.5%), Capillaria obsignata (53.6%), Capillaria anatis (31.9%) and Capillaria caudinflata (1.5%). In the deep-litter systems: A. galli (41.9%), H. gallinarum (19.4%) and C. obsignata (51.6%). In the battery cages: A. galli (5%) and Raillietina cesticillus or Choanotaenia infundibulum (3.3%). Exact identification of the cestodes was not possible because of missing scolexices. In the broiler/parent system: C. obsignata (1.6%), and finally for the backyard system: A. galli (37.5%) H. gallinarum (68.8%), C. obsignata (50.0%), C. anatis (56.3%) and C. caudinflata (6.3%). The results confirm the higher risk of helminth infections in free-range and backyard systems but prevalence may also be high in deep litter systems. PMID:10579399

  1. Lead concentration and the level of glutathione, glutathione S-transferase, reductase and peroxidase in the blood of some occupational workers from Irbid City, Jordan.

    PubMed

    Hunaiti, A; Soud, M; Khalil, A

    1995-08-18

    Blood samples were collected from 263 lead-exposed suspected males living in Irbid area in the northern part of Jordan. The blood lead concentrations in the samples were determined by atomic absorption and were related to the type of work performed by the workers. The blood lead concentration was higher in metal casters, 41.6, and radiator welders, 32,8 micrograms/dl, compared to non-suspected lead-exposed university students, 5.7 micrograms/dl. Workers such as mechanics, bus drivers, car painters and gas station workers showed slightly higher but not significant blood lead. The blood glutathione content and the activities of glutathione reductase, glutathione peroxidase and glutathione S-transferase were also determined in non-suspected subjects and in those with occupational exposure to lead. With increasing blood lead concentration, glutathione content decreases as well as the activities of the glutathione utilizing enzymes. PMID:7569882

  2. Interaural intensity and latency difference in the dolphin's auditory system.

    PubMed

    Popov, V V; Supin AYa

    1991-12-01

    Binaural hearing mechanisms were measured in dolphins (Inia geoffrensis) by recording the auditory nerve evoked response from the body surface. The azimuthal position of a sound source at 10-15 degrees from the longitudinal axis elicited interaural intensity disparity up to 20 dB and interaural latency difference as large as 250 microseconds. The latter was many times greater than the acoustical interaural time delay. This latency difference seems to be caused by the intensity disparity. The latency difference seems to be an effective way of coding of intensity disparity. PMID:1816509

  3. The gut microbiota modulates host amino acid and glutathione metabolism in mice.

    PubMed

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-10-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  4. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    PubMed Central

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-01-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  5. Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles.

    PubMed

    Curcio, Manuela; Blanco-Fernández, Bárbara; Costoya, Alejandro; Concheiro, Angel; Puoci, Francesco; Alvarez-Lorenzo, Carmen

    2015-06-01

    The aim of this work was to prepare polysaccharide-based nanoparticles (NPs) sensitive to glutathione (GSH), and to elucidate the effect of the concentration of glucose used as cryoprotectant during freeze-drying on the GSH-responsiveness. NPs were obtained via ionic interaction between negatively charged polysaccharides, chondroitin sulfate and dermatan sulfate, and the positively charged thiolated chitosan (CSSH), and crosslinking of CSSH before or after the nanoparticles formation with a disulfide-bond containing crosslinker, N,N'-bis(acryloyl)cystamine (BAC). NPs were freeze-dried with glucose at two different concentrations (0.5 and 5.0%w/w) and then characterized as methotrexate delivery systems, studying the effect of GSH concentration on drug release, efficacy against tumor cells and cellular internalization. Non-loaded NPs were highly compatible with murine fibroblasts and showed a suitable size for being used in anticancer therapy. When methotrexate-loaded NPs were freeze-dried with the highest glucose concentration, they lost their responsiveness to GSH concentration in vitro. Drug-loaded NPs were shown to inhibit the growth of tumor cells (HeLa and CHO-K1) with greater efficiency than free methotrexate, disregarding the concentration of glucose used for freeze-drying. Nevertheless, confocal microscopy studies revealed that cellular internalization of NPs freeze-dried with 5.0% glucose is more difficult than for NPs freeze-dried with lower glucose concentration. Thus, concentration of glucose cryoprotectant should be taken into account during development of NPs intended to release the drug as a function of GSH levels, due to the specific interactions of glucose with GSH. PMID:25917641

  6. A biophysically based mathematical model for the catalytic mechanism of glutathione reductase.

    PubMed

    Pannala, Venkat R; Bazil, Jason N; Camara, Amadou K S; Dash, Ranjan K

    2013-12-01

    Glutathione reductase (GR) catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) using NADPH as the reducing cofactor, and thereby maintains a constant GSH level in the system. GSH scavenges superoxide (O2(*-)) and hydroxyl radicals (OH) nonenzymatically or by serving as an electron donor to several enzymes involved in reactive oxygen species (ROS) detoxification. In either case, GSH oxidizes to GSSG and is subsequently regenerated by the catalytic action of GR. Although the GR kinetic mechanism has been extensively studied under various experimental conditions with variable substrates and products, the catalytic mechanism has not been studied in terms of a mechanistic model that accounts for the effects of the substrates and products on the reaction kinetics. The aim of this study is therefore to develop a comprehensive mathematical model for the catalytic mechanism of GR. We use available experimental data on GR kinetics from various species/sources to develop the mathematical model and estimate the associated model parameters. The model simulations are consistent with the experimental observation that GR operates via both ping-pong and sequential branching mechanisms based on relevant concentrations of its reaction substrate GSSG. Furthermore, we show the observed pH-dependent substrate inhibition of GR activity by GSSG and bimodal behavior of GR activity with pH. The model presents a unique opportunity to understand the effects of products on the kinetics of GR. The model simulations show that under physiological conditions, where both substrates and products are present, the flux distribution depends on the concentrations of both GSSG and NADP(+), with ping-pong flux operating at low levels and sequential flux dominating at higher levels. The kinetic model of GR may serve as a key module for the development of integrated models for ROS-scavenging systems to understand protection of cells under normal and oxidative stress

  7. Glutathione-Responsive Multilayer Coated Gold Nanoparticles for Targeted Gene Delivery.

    PubMed

    Yu, Feifei; Huang, Jingbin; Yu, Yuan; Lu, Ying; Chen, Yan; Zhang, He; Zhou, Guichen; Sun, Zhiguo; Liu, Junjie; Sun, Duxin; Zhang, Guoqing; Zou, Hao; Zhong, Yanqiang

    2016-03-01

    Efficient gene release after intracellular uptake is very important for non-viral gene delivery systems. To construct a glutathione-responsive gene delivery system, we developed gold-cysteamine (AuCM)/plasmid DNA (pDNA)/poly TAT (pTAT)/hyaluronic acid (HA) nanocomplexes (AuCM/pDNA/pTAT/HA) in this study. The AuCM/pDNA/pTAT/HA nanocomplexes possessed a small size less than 200 nm and negative zeta potential of -17 ± 4 mV. The multilayer structure was verified by UV-Vis spectra, surface charges, dynamic light scattering. Morphology was observed by transmission electron microscope. The AuCM/pDNA/pTAT/HA nanocomplexes could completely protect pDNA against enzymatic degradation. These nanocomplexes showed effective cellular uptake in CD44 receptors over-expressed HepG 2 cells in a HA/CD44 interaction dependent manner. Moreover, transfection efficacy was significantly enhanced in AuCM/pDNA/pTAT/HA treated HepG 2 cells compared with AuCM/pDNA/pTAT, and was further enhanced in the presence of GSH, indicating that AuCM/pDNA/pTAT/HA was glutathione-responsive. Biodistribution revealed that AuCM/pDNA/pTAT/HA nanocomplexes mainly accumulated in liver. In conclusion, AuCM/pDNA/pTAT/HA nanocomplexes may serve as glutathione-responsive gene carriers for actively targeting gene delivery to CD44 receptors over-expressed liver cancers. PMID:27280248

  8. Lightning characteristics in Eastern Mediterranean thunderstorms during different synoptic systems

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Altaratz, O.; Yair, Y.; Koren, I.

    2015-06-01

    Thunderstorms activity takes place in the Eastern Mediterranean mainly along the boreal fall and winter seasons during synoptic systems of Red Sea Trough (RST), Red Sea Trough that closed a low over the sea (RST-CL), and Cyprus Low (during fall - FCL and Winter - WCL). In this work we used the Israeli Lightning Location System ground strokes dataset (between October 2004 and December 2010) for studying the lightning strokes properties and their link to the thermodynamic conditions in each synoptic system. It is shown that the lightning activity dominates over sea during WCL and FCL systems (with maximum values of 37 strokes per 25 km2 day-1 in WCL, and 54 in FCL) and have a dominant component over land during the RST and RST-CL days. The stronger instability (high CAPE values of 621 ± 466 J kg-1) during RST-CL days together with the higher altitude of the clouds' mixed-phase region (3630 ± 316 m) result in higher ground strokes density during this system (compared to all other) but lower fraction of positive ground strokes (3 ± 0.5%). In general the fraction of positive strokes was found to be positively correlated with the wind shear values in the layer between 0 and -25 °C. It increases from the 1.2 ± 1% in early fall to 17 ± 7% in late winter, (during FCL and WCL days) and can be linked to the decrease in the sea surface (and lower troposphere) temperature during those months, due to an impact on the charge centers vertical location. The diurnal cycle in the lightning activity was examined for each synoptic system. During WCL conditions no preferred times were found along the day (as it relates to the timing of frontal systems). During the fall systems (FCL and RST-CL) there is a peak in lightning activity during the morning hours, probably related to the enhanced convection driven by the convergence between the eastern land breeze and the western synoptic winds. The distributions of peak currents in FCL and WCL systems also change from fall to winter and

  9. Different roles in the quest for system resilience.

    PubMed

    Borges, Fábio Morais; Menegon, Nilton Luiz

    2012-01-01

    Into dangerous and complex systems with high degree of interactivity between its components, the variability is present at all time, demanding a high degree of control of its operation. Maintaining or recovering the normality, when the system is under some stress (instability) is a function of Resilience. To cope with prevention, forecast, recovery and with memory of experiences from learned lessons requires some features from the companies. This paper purposes a structure that enables the Total Resilience of a system production that defines the assignments for Workers, Designers and Management Team, according to its features and possibilities. During one year and a half developing studies on ergonomics area of a Brazilian Oil Refinery, several situations were observed and studied using Work Ergonomic Analysis. These situations show actions and strategies that workers use to maintain the system stability. Furthermore, they revealed the importance that these actions are stored in a database of learned lessons from the Company. The research resulted in a broad scheme. It places each of these groups in the process of Total Resilience. It also shows the human like a center of actions that ensure the continuity of the system, main element at Resilience (Anthropocentric View). PMID:22317211

  10. 5 CFR 536.105 - Comparing grades under different pay systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a covered pay system to a lower-graded position under a different covered pay system (including... position under a different covered pay system and the action is taken for personal cause or at the employee... terminated based on movement to a position under a different covered pay system with an equal or higher...

  11. 5 CFR 536.105 - Comparing grades under different pay systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a covered pay system to a lower-graded position under a different covered pay system (including... position under a different covered pay system and the action is taken for personal cause or at the employee... terminated based on movement to a position under a different covered pay system with an equal or higher...

  12. 5 CFR 536.105 - Comparing grades under different pay systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... a covered pay system to a lower-graded position under a different covered pay system (including... position under a different covered pay system and the action is taken for personal cause or at the employee... terminated based on movement to a position under a different covered pay system with an equal or higher...

  13. Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.

    PubMed

    Zhang, Long-Bin; Tang, Li; Ying, Sheng-Hua; Feng, Ming-Guang

    2016-07-01

    Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2-4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx1-3 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe(3+)-inclusive medium perhaps due to elevated transcripts of two Fe(3+) transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen. PMID:26969041

  14. Finite difference identification of noisy distributed systems using scanning measurements

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1975-01-01

    Most of the present-day literature concerned with identification theory and techniques is directed toward lumped parameter systems, and many comprehensive surveys of the field are available. Relatively little has appeared in the literature concerning distributed identification, and even more noticeable is the scarcity of papers dealing with systems described by the one-dimensional wave equation. Perdeauville and Goodson were perhaps the first researchers with a workable but time consuming method for the identification of coefficients of the wave equation. Fairman and Shen, also considering the wave equation, used the technique of finite differencing to approximate spatial derivatives, and Poisson filter chains to approximate temporal derivatives.

  15. Different approaches to overcome uncertainties of production systems

    NASA Astrophysics Data System (ADS)

    Azizi, Amir; Sorooshian, Shahryar

    2015-05-01

    This study presented a comprehensive review on the understanding of uncertainty and the current approaches that have been proposed to handle the uncertainties in the production systems. This paper classified proposed approaches into 11 groups. The paper studied 114 scholarly papers through various international journals. The paper added the latest findings to the body of knowledge to the current reservoir of understanding of the production uncertainties. Thus, the paper prepared the needs of researchers and practitioners for easy references in this area. This review also provided an excellent source to continue further studies on how to deal with the uncertainties of production system.

  16. Differences in seminal plasma and spermatozoa antioxidative systems and seminal plasma lipid and protein levels among boar breeds and hybrid genetic traits.

    PubMed

    Žura Žaja, Ivona; Samardžija, Marko; Vince, Silvijo; Vilić, Marinko; Majić-Balić, Ivanka; Đuričić, Dražen; Milinković-Tur, Suzana

    2016-07-01

    The objectives of this study were to determine the influence of breed and hybrid genetic traits of boars on lipid and protein concentrations and antioxidative system variables in seminal plasma (SP) and spermatozoa and their correlations with semen quality variables. Semen samples from 27 boars: Swedish Landraces (SL), German Landraces (GL), Large Whites (LW), Pietrains (P) and Pig Improvement Company hybrids (PIC-hybrid), aged from 1.5 to 3 years old, were collected. SP was spectrophotometrically analyzed to determine total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triacylglycerol (TAG), total protein (TP), albumin, and zinc concentrations. The antioxidative system in SP and spermatozoa was established spectrophotometrically by determining total antioxidative status (TAS), total superoxide dismutase (TSOD) and glutathione peroxidase (GSH-Px) parameters, as well as copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) activity in spermatozoa. The hybrid boars had higher (P<0.05) SP concentrations of: TC, LDL-C and TAG than P and GL; HDL-C than P, GL and SL; and TP than P and LW. PIC-hybrid had lower values (P<0.05) in spermatozoa of: TAS and CuZnSOD than SL; TSOD and GSH-Px than SL and P; and MnSOD than SL and LW. Differences in SP and spermatozoa antioxidative system variables and the significant differences in SP protein and lipid variables exist among boars of different breeds and hybrid. Novel data and observed differences in semen variables among boar breeds and hybrids and their correlations with semen quality parameters in this study could contribute to better assessment of boar semen quality. PMID:27072624

  17. Changes in Antioxidant Defense System Using Different Lipid Emulsions in Parenteral Nutrition in Children after Hematopoietic Stem Cell Transplantation

    PubMed Central

    Baena-Gómez, María Auxiliadora; De La Torre Aguilar, María José; Mesa, María Dolores; Pérez Navero, Juan Luis; Gil-Campos, Mercedes

    2015-01-01

    Background: Traditionally, lipids used in parenteral nutrition (PN) are based on ω-6 fatty acid-rich vegetable oils, such as soybean oil, with potential adverse effects involving oxidative stress. Methods: We evaluated the antioxidant defense system in children, after hematopoietic stem cell transplantation (HSCT), who were randomized to use a lipid emulsion with fish oil or soybean oil. Blood samples at baseline, at 10 days, and at the end of the PN were taken to analyze plasma retinol, α-tocopherol, β-carotene, coenzyme Q9 and coenzyme Q10 levels, and catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPOX), and superoxide dismutase (SOD) levels in lysed erythrocytes. Results: An increase in plasma α-tocopherol levels in the group of patients receiving the fish oil-containing emulsion (FO) compared with the group receiving the soybean emulsion was observed at day 10 of PN. Concurrently, plasma α-tocopherol increased in the FO group and β-carotene decreased in both groups at day 10 compared with baseline levels, being more significant in the group receiving the FO emulsion. Conclusion: FO-containing emulsions in PN could improve the antioxidant profile by increasing levels of α-tocopherol in children after HSCT who are at higher risk of suffering oxidative stress and metabolic disorders. PMID:26343717

  18. Describing Polygonum aviculare emergence in different tillage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of four tillage systems (direct drill, subsoiler, chisel plough and mouldboard plough) on the dynamics of Polygonum aviculare populations were studied over three growing seasons. Densities before and after herbicide application and cumulative emergence on a weekly basis were determined in ea...

  19. Detecting Water Stress in Cotton Under Different Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation production systems alter the soil water availability. Our research is focused on developing methods to detect the onset of water stress in cotton (Gossypium hirsutum L. sps). In this study, we examined soil and plant water status in a conventional (subsoiled, no cover crop) and a conser...

  20. Validating the Airspace Concept Evaluation System for Different Weather Days

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Meyn, Larry

    2006-01-01

    This paper extends the process for validating the Airspace Concept Evaluation System using real-world historical flight operational data. System inputs such as flight plans and airport en-route capacities, are generated and processed to create a realistic reproduction of a single day's operations within the National Airspace System. System outputs such as airport throughput, delays, and en-route sector loads are then compared to real world operational metrics and delay statistics for the reproduced day. The process is repeated for 4 historical days with high and low traffic volume and delay attributed to weather. These 4 days are simulated using default en-route capacities and variable en-route capacities used to emulate weather. The validation results show that default enroute capacity simulations are closer to real-world data for low weather days than high weather days. The use of reduced variable enroute capacities adds a large delay bias to ACES but delay trends between weather days are better represented.

  1. Geographic Information Systems: Empowering Kinds to Make a Difference.

    ERIC Educational Resources Information Center

    Michelsen, Michael W., Jr.

    1996-01-01

    Describes ArcView, a Geographic Information System (GIS) that enables K-12 classrooms to access electronic maps and information databases for specific communities. Presents actual applications of ArcView at an elementary school and a high school. Finds that students are using GIS technology to collect, analyze, and apply local data to real…

  2. Efficiency of phosphorus cycling in different grassland systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reliance of dairy farms on grassland is currently expanding, particularly in areas where confined operations have recently predominated. At the same time, some pasture based dairy systems, such as those found in New Zealand, are turning toward seasonal confinement of herds for production and eve...

  3. Beyond different levels: embodiment and the developmental system

    PubMed Central

    Marshall, Peter J.

    2014-01-01

    The value of studying a phenomenon at multiple levels of analysis is often emphasized in psychology, but a lack of clarity about the nature of levels and the relations among them remains an impediment to progress. The suggestion here is that an approach combining the tenets of embodiment with the construct of the developmental system provides a way forward. Embodiment opposes the splitting off and elevation of a level of mechanisms that has characterized much of cognitive science. In contrast, a constructivist embodied approach places a level of mechanisms in the context of a formal or systems level of analysis, with developmental process framing the interpenetrating relations between levels. Such an approach stems from a relational worldview that opposes conceptual splits and posits that levels of structure and process comprise an indissociable complementarity. The combination of embodiment and developmental systems within a relational worldview is discussed and elaborated through outlining the integrative approach of relational developmental systems, which has been proposed as a scientific paradigm within which formulations of the interrelations among brain, body, and mind can be advanced. PMID:25191302

  4. Differences in the Classroom Systems of Expert and Novice Teachers.

    ERIC Educational Resources Information Center

    O'Connor, Evelyn A.; Fish, Marian C.

    This study investigated whether there were differences between classrooms of expert and novice elementary teachers, examining whether teaching experience would affect flexibility in the clasroom, whether teaching experience would influence communications between all members of the classroom, and whether teaching experience would affect the degree…

  5. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. PMID:26091838

  6. Hepatic glutathione content in patients with alcoholic and non alcoholic liver diseases

    SciTech Connect

    Altomare, E.; Vendemiale, G.; Albano, O.

    1988-01-01

    Reduced and oxidized hepatic glutathione was evaluated during alcoholic and non alcoholic liver injury. We studied 35 chronic alcoholics, 20 patients with non alcoholic liver diseases, 15 control subjects. Hepatic glutathione was measured in liver biopsies and correlated with histology and laboratory tests. Alcoholic and non alcoholic patients exhibited a significant decrease of hepatic glutathione compared to control subjects. Oxidized glutathione was significantly higher in the two groups of patients compared to controls. The decreased hepatic glutathione level in patients with alcoholic and non alcoholic liver diseases may represent a contributing factor of liver injury and may enhance the risk of toxicity in these patients.

  7. In vitro developmental potential of macaque oocytes, derived from unstimulated ovaries, following maturation in the presence of glutathione ethyl ester

    PubMed Central

    Curnow, E.C.; Ryan, J.P.; Saunders, D.M.; Hayes, E.S.

    2010-01-01

    BACKGROUND The inadequacies of oocyte in vitro maturation (IVM) systems for both non-human primates and humans are evidenced by reduced fertilization and poor embryonic development, and may be partly explained by significantly lower glutathione (GSH) contents compared with in vivo matured (IVO) oocytes. As this influence has not been fully explored, this study investigated the effect of the GSH donor, glutathione ethyl ester (GSH-OEt), on the IVM and development of macaque oocytes as a model of human oocyte IVM. METHODS Macaque oocytes derived from unstimulated ovaries were cultured in mCMRL-1066 alone or supplemented with 3 or 5 mM GSH-OEt. In vitro matured oocytes were subjected to the GSH assay, fixed for the assessment of spindle morphology or prepared ICSI. Embryo development of zygotes cultured in mHECM-9 was assessed up to Day 9 post-ICSI. RESULTS Supplementation of the maturation medium with GSH-OEt significantly increased oocyte maturation and normal fertilization rates compared with control oocytes, but only 5 mM GSH-OEt significantly increased the oocyte and cumulus cell GSH content. Confocal microscopy revealed significant differences in the spindle morphology between IVO and control in vitro matured metaphase II oocytes. Oocytes matured with 5 mM GSH-OEt exhibited spindle area and spindle pole width similar to that seen in the IVO oocyte. While no significant differences were observed in blastocyst rates, addition of 3 mM GSH-OEt during IVM significantly increased the proportion of embryos developing to the 5–8 cell stage while 5 mM GSH-OEt significantly increased the proportion of morula-stage embryos compared with controls. CONCLUSIONS Supplementation of the IVM medium with GSH-OEt promotes better maturation and normal fertilization of macaque oocytes compared with non-supplemented medium. However, further improvement of the primate oocyte IVM culture system is required to support better blastocyst development of oocytes derived from unstimulated

  8. Towards one PC for systems with different security levels

    NASA Astrophysics Data System (ADS)

    Kleidermacher, David N.; Zimmer, Joerg

    Companies and organisations caring about the protection of critical data or critical systems have long struggled with the burden of maintaining separate computers. Commercial grade operating systems and virtualization solutions such as Windows, Linux, and VMware are unsuitable for security assurance to the high levels required for this kind of application sharing on a single PC platform. Custom solutions have failed to gain acceptance as cost containment pressures favour commercial, off-the-shelf (COTS) platforms. In addition, common PC hardware has had serious security limitations that prevent even a high assurance software solution from achieving the required domain separation. The hope for a truly high assurance, multi-level secure PC is coming closer to reality by virtue of recent innovations, both in software and hardware.

  9. Thermal power transfer system using applied potential difference to sustain operating pressure difference

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep (Inventor); Fujita, Toshio (Inventor)

    1991-01-01

    A thermal power transfer system using a phase change liquid gas fluid in a closed loop configuration has a heat exchanger member connected to a gas conduit for inputting thermal energy into the fluid. The pressure in the gas conduit is higher than a liquid conduit that is connected to a heat exchanger member for outputting thermal energy. A solid electrolyte member acts as a barrier between the gas conduit and the liquid conduit adjacent to a solid electrolyte member. The solid electrolyte member has the capacity of transmitting ions of a fluid through the electrolyte member. The ions can be recombined with electrons with the assistance of a porous electrode. An electrical field is applied across the solid electrolyte member to force the ions of the fluid from a lower pressure liquid conduit to the higher pressure gas conduit.

  10. Hydraulic transmission control system having different state corresponding to different octane fuels

    SciTech Connect

    Yamamori, T.; Takagi, Y.; Furukawa, J.

    1987-07-07

    A vehicle is described having a road wheel and an engine for operating on a fuel having an octane number, wherein the tendency of the engine to knock differs depending on the octane number of the fuel: a transmission having an input member drivingly connected to the engine to receive the output produced by the engine and an output member drivingly connected to the road wheel; the transmission constructed to produce a shift in ratio between the rotational speed of the input member and the rotational speed of the output member; means for hydraulically controlling the transmission; means for generating a fuel octane number indicative signal when a change in octane number of the fuel on which the engine is operating occurs; and means for modifying operation of the hydraulically controlling means in response to the fuel octane number indicative signal.

  11. Comparative Analysis of Different LIDAR System Calibration Techniques

    NASA Astrophysics Data System (ADS)

    Miller, M.; Habib, A.

    2016-06-01

    With light detection and ranging (LiDAR) now being a crucial tool for engineering products and on the fly spatial analysis, it is necessary for the user community to have standardized calibration methods. The three methods in this study were developed and proven by the Digital Photogrammetry Research Group (DPRG) for airborne LiDAR systems and are as follows; Simplified, Quasi-Rigorous, and Rigorous. In lieu of using expensive control surfaces for calibration, these methods compare overlapping LiDAR strips to estimate the systematic errors. These systematic errors are quantified by these methods and include the lever arm biases, boresight biases, range bias and scan angle scale bias. These three methods comprehensively represent all of the possible flight configurations and data availability and this paper will test the limits of the method with the most assumptions, the simplified calibration, by using data that violates the assumptions it's math model is based on and compares the results to the quasi-rigorous and rigorous techniques. The overarching goal is to provide a LiDAR system calibration that does not require raw measurements which can be carried out with minimal control and flight lines to reduce costs. This testing is unique because the terrain used for calibration does not contain gable roofs, all other LiDAR system calibration testing and development has been done with terrain containing features with high geometric integrity such as gable roofs.

  12. Glutamine: a precursor of glutathione and its effect on liver

    PubMed Central

    Yu, Jian-Chun; Jiang, Zhu-Ming; Li, De-Min

    1999-01-01

    AIM To investigate the relationship between alanyl-glutamine (ALA-GLN) and glutathione (GSH) biosynthesis in hepatic protection. METHODS Twenty male Wistar rats were randomly divided into two groups: one receiving standard parenteral nutrition (STD) and the other supplemented with or without ALA-GLN for 7 days. The blood and liver tissue samples were examined after 5-fluorouracil (5-FU) was injected peritoneally. RESULTS The concentration measurements were significantly highe r in ALA-GLN group than in STD group in serum GLN (687 μmol/ L ± 50 μmol/L vs 505 μmol/L ± 39 μmol/L,P < 0.05), serum GSH (14 μmol/L ± 5 μmol/L vs 7 μmol/L ± 3 μmol/L, P < 0.01) and in liver GSH content (6.9 μmol/g ± 2.5 μmol/g vs 4.4 μmol/ g ± 1.6 μmol/g liver tissue, P < 0.05). Rats in ALA-GLN group had lesser elevations in hepatic enzymes after 5-FU administration. CONCLUSION The supplemented nutrition ALA-GLN can protect the liver function through increasing the glutathione biosynthesis and pre-serving the glutathione stores in hepatic tissue. PMID:11819414

  13. Glutathione conjugation of chlorambucil: measurement and modulation by plant polyphenols.

    PubMed

    Zhang, K; Wong, K P

    1997-07-15

    Chlorambucil (CMB), an anticancer drug, was cytotoxic at concentrations of 5-20 microM to human colon adenocarcinoma cells. It inhibited [14C]thymidine uptake in a dose-dependent manner. Both effects were potentiated by simultaneous exposure of the cells to 10 microM plant polyphenols. In an attempt to explain the possible mechanism of action of the polyphenols in relation to these observations, an HPLC-radiometric method was developed to measure the conjugation of CMB with glutathione in these cells and to monitor the export of monochloromonoglutathionyl CMB (MG-CMB), its main glutathione conjugate. At micromolar concentrations, five polyphenols, namely quercetin, butein, tannic acid, 2'-hydroxychalcone and morin, inhibited the efflux of CMB significantly; an inhibition of 40% was observed with 10 microM quercetin. The glutathione S-transferase (GST) activity of the cancer cells, measured with 1-chloro-2,4-dinitrobenzene, was also inhibited by the polyphenols. Their combined action on GST and on the efflux of MG-CMB conjugate could provide an enhanced positive modulation of sensitivity of the tumour cells to CMB. PMID:9230122

  14. Benzene oxide is a substrate for glutathione S-transferases.

    PubMed

    Zarth, Adam T; Murphy, Sharon E; Hecht, Stephen S

    2015-12-01

    Benzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published. Therefore, we incubated GSTA1, GSTT1, GSTM1, and GSTP1 with glutathione and BO and quantified the formation of S-phenylglutathione. Kinetic parameters were determined for GSTT1 and GSTP1. At 37 °C, the putative Km and Vmax values for GSTT1 were 420 μM and 450 fmol/s, respectively, while those for GSTP1 were 3600 μM and 3100 fmol/s. GSTA1 and GSTM1 did not exhibit sufficient activity for determination of kinetic parameters. We conclude that GSTT1 is a critical enzyme in the detoxification of BO and that GSTP1 may also play an important role, while GSTA1 and GSTM1 seem to be less important. PMID:26554337

  15. Dissecting the role of glutathione biosynthesis in Plasmodium falciparum

    PubMed Central

    Patzewitz, Eva-Maria; Wong, Eleanor H; Müller, Sylke

    2012-01-01

    Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG. PMID:22151036

  16. Lung glutathione adaptive responses to cigarette smoke exposure

    PubMed Central

    2011-01-01

    Background Smoking tobacco is a leading cause of chronic obstructive pulmonary disease (COPD), but although the majority of COPD cases can be directly related to smoking, only a quarter of smokers actually develop the disease. A potential reason for the disparity between smoking and COPD may involve an individual's ability to mount a protective adaptive response to cigarette smoke (CS). Glutathione (GSH) is highly concentrated in the lung epithelial lining fluid (ELF) and protects against many inhaled oxidants. The changes in GSH that occur with CS are not well investigated; therefore the GSH adaptive response that occurs with a commonly utilized CS exposure was examined in mice. Methods Mice were exposed to CS for 5 h after which they were rested in filtered air for up to 16 h. GSH levels were measured in the ELF, bronchoalveolar lavage cells, plasma, and tissues. GSH synthesis was assessed by measuring γ-glutamylcysteine ligase (GCL) activity in lung and liver tissue. Results GSH levels in the ELF, plasma, and liver were decreased by as much as 50% during the 5 h CS exposure period whereas the lung GSH levels were unchanged. Next, the time course of rebound in GSH levels after the CS exposure was examined. CS exposure initially decreased ELF GSH levels by 50% but within 2 h GSH levels rebound to about 3 times basal levels and peaked at 16 h with a 6-fold increase and over repeat exposures were maintained at a 3-fold elevation for up to 2 months. Similar changes were observed in tissue GCL activity which is the rate limiting step in GSH synthesis. Furthermore, elevation in ELF GSH levels was not arbitrary since the CS induced GSH adaptive response after a 3d exposure period prevented GSH levels from dropping below basal levels. Conclusions CS exposures evoke a powerful GSH adaptive response in the lung and systemically. These data suggests there may be a sensor that sets the ELF GSH adaptive response to prevent GSH levels from dipping below basal levels. Factors

  17. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Guan, Yueping; Yang, Mingzhu

    2012-10-01

    The superparamagnetic poly-(MA-DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA-DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA-DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione.

  18. Effects of cold stress on glutathione and related enzymes in rat erythrocytes

    NASA Astrophysics Data System (ADS)

    Ohno, Hideki; Kondo, Takahito; Fujiwara, Yutaka; Tagami, Sei-Ichi; Kuroshima, Akihiro; Kawakami, Yoshikazu

    1991-06-01

    Effects of acute and chronic cold stress on glutathione and related enzymes in rat erythrocytes were investigated. Blood from both cold-acclimated (CA) and cold-adapted (CG) rats had significantly lower concentrations of glutathione than blood from control animals. Superoxide dismutase activity was increased significantly in CA rats and tended to rise in CG rats. Activity of glutathione peroxidase in erythrocytes was inconsistent in that it tended to increase in CA rats but decreased significantly in CG rats. The results may imply that CG rats suffered deleterious effects of hydrogen peroxide. On the other hand, there were marked decreases in glutathione peroxidase and glutathione reductase activities in acutely cold-exposed rats in conjunction with unchanged levels of glutathione. In all treatments the state of riboflavin metabolism was estimated to be adequate, since no increases were observed in the erythrocyte glutathione reductase activity coefficient.

  19. Effect of glutathione on phytochelatin synthesis in tomato cells. [Lycopersicon esculentum

    SciTech Connect

    Mendum, M.L.; Gupta, S.C.; Goldsbrough, P.B. )

    1990-06-01

    Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably ({gamma}-Glu-Cys){sub 2}-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmium incorporate little ({sup 35}S)cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione.

  20. Photosynthesis and antioxidant defense system of Gynura Bicolor DC grown at different elevated CO2 levels

    NASA Astrophysics Data System (ADS)

    Wang, Minjuan; Liu, Hong; Fu, Yuming

    Atmospheric carbon dioxide concentration [CO _{2}] will increase in the future and will affect global climate and ecosystem productivity. However, this is not clearly an area that requires further study on the most appropriate [CO _{2}] selection for plant growth and quality in a closed, controlled environment. The aim of this study was to determine the variation of photosynthetic characteristics and antioxidant status under five CO _{2} concentration (400, 800, 1200, 2000 and 3000 umol mol (-1) ) on the leaf of Gynura bicolor DC. Here the results show that net photosynthetic rate(Pn), Chl content, edible biomass(EB), leaf blade width(LBW), root weight(RW), fructose(Fru) and sucrose(Suc) of Gynura bicolor DC increased under elevated [CO _{2}] of 800 umol mol (-1) , 1200 umol mol (-1) and 2000 umol mol (-1) . On the contrary, photosynthesis and biomass production declined significantly at 3000 umol mol (-1) CO _{2}, While Lipid peroxidation (LPO), malondialdehyde (MDA) and hydrogen peroxide (H _{2}O _{2}) achieved the highest levels. Furthermore, the contents of glutathione (GSH), vitamin C (VC), and vitamin E (VE), and total antioxidant capacity (T-AOC), the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) reached the highest level at 2000 umol mol ({-1) }CO _{2}. Results imply that a significant increase in growth and antioxidant defense system of Gynura bicolor DC occurred under 800-2000 umol mol (-1) of CO _{2} concentration provided a theoretical basis for the application for plants selection in Bioregeneration Life Support System (BLSS) and a closed controlled environment.

  1. Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress.

    PubMed Central

    Raza, Haider; Robin, Marie-Anne; Fang, Ji-Kang; Avadhani, Narayan G

    2002-01-01

    The mitochondrial respiratory chain, which consumes approx. 85-90% of the oxygen utilized by cells, is a major source of reactive oxygen species (ROS). Mitochondrial genetic and biosynthetic systems are highly susceptible to ROS toxicity. Intramitochondrial glutathione (GSH) is a major defence against ROS. In the present study, we have investigated the nature of the glutathione S-transferase (GST) pool in mouse liver mitochondria, and have purified three distinct forms of GST: GSTA1-1 and GSTA4-4 of the Alpha family, and GSTM1-1 belonging to the Mu family. The mitochondrial localization of these multiple GSTs was confirmed using a combination of immunoblot analysis, protease protection assay, enzyme activity, N-terminal amino acid sequencing, peptide mapping and confocal immunofluorescence analysis. Additionally, exogenously added 4-hydroxynonenal (HNE), a reactive byproduct of lipid peroxidation, to COS cells differentially affected the cytosolic and mitochondrial GSH pools in a dose- and time-dependent manner. Our results show that HNE-mediated mitochondrial oxidative stress caused a decrease in the GSH pool, increased membrane lipid peroxidation, and increased levels of GSTs, glutathione peroxidase and Hsp70 (heat-shock protein 70). The HNE-induced oxidative stress persisted for longer in the mitochondrial compartment, where the recovery of GSH pool was slower than in the cytosolic compartment. Our study, for the first time, demonstrates the presence in mitochondria of multiple forms of GSTs that show molecular properties similar to those of their cytosolic counterparts. Our results suggest that mitochondrial GSTs may play an important role in defence against chemical and oxidative stress. PMID:12020353

  2. The phagocytosis-associated respiratory burst in human monocytes is associated with increased uptake of glutathione.

    PubMed

    Seres, T; Knickelbein, R G; Warshaw, J B; Johnston, R B

    2000-09-15

    During the phagocytic respiratory burst, oxygen is converted to potent cytotoxic oxidants. Monocytes and macrophages are potentially long-lived, and we have hypothesized that protective mechanisms against oxidant stress are varied and fully expressed in these cells. We report here that the respiratory burst in monocytes is accompanied by an increase in the uptake of [35S]glutathione ([35S]GSH) after 20-30 min to levels up to 10-fold greater than those at baseline. By 30 min, 49% of the cell-associated radioactivity was in the cytosol, 41% was in membrane, and 10% was associated with the nuclear fraction. GSH uptake was inhibited by catalase, which removes hydrogen peroxide (H2O2), and micromolar H2O2 stimulated GSH uptake effectively in monocytes and also lymphocytes. Oxidation of GSH to glutathione disulfide with H2O2 and glutathione peroxidase prevented uptake. Acivicin, which inhibits GSH breakdown by gamma-glutamyl transpeptidase (GGT), had no effect on the enhanced uptake seen during the respiratory burst. Uptake of cysteine or cystine, possible products of GGT activity, stayed the same or decreased during the respiratory burst. These results suggest that a GGT-independent mechanism is responsible for the enhanced GSH uptake seen during the respiratory burst. We describe here a sodium-independent, methionine-inhibitable transport system with a Km (8.5 microM) for GSH approximating the plasma GSH concentration. These results suggest that monocytes have a specific GSH transporter that is triggered by the release of H2O2 during the respiratory burst and that induces the uptake of GSH into the cell. Such a mechanism has the potential to protect the phagocyte against oxidant damage. PMID:10975851

  3. Two different motor systems are needed to generate human speech.

    PubMed

    Holstege, Gert; Subramanian, Hari H

    2016-06-01

    Vocalizations such as mews and cries in cats or crying and laughter in humans are examples of expression of emotions. These vocalizations are generated by the emotional motor system, in which the mesencephalic periaqueductal gray (PAG) plays a central role, as demonstrated by the fact that lesions in the PAG lead to complete mutism in cats, monkeys, as well as in humans. The PAG receives strong projections from higher limbic regions and from the anterior cingulate, insula, and orbitofrontal cortical areas. In turn, the PAG has strong access to the caudal medullary nucleus retroambiguus (NRA). The NRA is the only cell group that has direct access to the motoneurons involved in vocalization, i.e., the motoneuronal cell groups innervating soft palate, pharynx, and larynx as well as diaphragm, intercostal, abdominal, and pelvic floor muscles. Together they determine the intraabdominal, intrathoracic, and subglottic pressure, control of which is necessary for generating vocalization. Only humans can speak, because, via the lateral component of the volitional or somatic motor system, they are able to modulate vocalization into words and sentences. For this modulation they use their motor cortex, which, via its corticobulbar fibers, has direct access to the motoneurons innervating the muscles of face, mouth, tongue, larynx, and pharynx. In conclusion, humans generate speech by activating two motor systems. They generate vocalization by activating the prefrontal-PAG-NRA-motoneuronal pathway, and, at the same time, they modulate this vocalization into words and sentences by activating the corticobulbar fibers to the face, mouth, tongue, larynx, and pharynx motoneurons. PMID:26355872

  4. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals.

    PubMed

    Goodrich, Jaclyn M; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2011-12-01

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione S-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n=515), and total mercury content was measured. Average urine (1.06±1.24 microg/L) and hair mercury levels (0.49±0.63 microg/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5'), or both (SEPP1 3'UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). PMID:21967774

  5. Effect of glutathione S-transferase M1 polymorphisms on biomarkers of exposure and effects.

    PubMed Central

    Srám, R J

    1998-01-01

    Genotypes responsible for interindividual differences in ability to activate or detoxify genotoxic agents are recognized as biomarkers of susceptibility. Among the most studied genotypes are human glutathione transferases. The relationship of genetic susceptibility to biomarkers of exposure and effects was studied especially in relation to the genetic polymorphism of glutathione S-transferase M1 (GSTM1). For this review papers reporting the effect of GSTM1 genotype on DNA adducts, protein adducts, urine mutagenicity, Comet assay parameters, chromosomal aberrations, sister chromatid exchanges (SCE), micronuclei, and hypoxanthine-guanine phosphoribosyl transferase mutations were assessed. Subjects in groups occupationally exposed to polycyclic aromatic hydrocarbons, benzidine, pesticides, and 1,3-butadiene were included. As environmentally exposed populations, autopsy donors, coal tar-treated patients, smokers, nonsmokers, mothers, postal workers, and firefighters were followed. From all biomarkers the effect of GSTM1 and N-acetyl transferase 2 was seen in coke oven workers on mutagenicity of urine and of glutathione S-transferase T1 on the chromosomal aberrations in subjects from 1,3-butadiene monomer production units. Effects of genotypes on DNA adducts were found from lung tissue of autopsy donors and from placentas of mothers living in an air-polluted region. The GSTM1 genotype affected mutagenicity of urine in smokers and subjects from polluted regions, protein adducts in smokers, SCE in smokers and nonsmokers, and Comet assay parameters in postal workers. A review of all studies on GSTM1 polymorphisms suggests that research probably has not reached the stage where results can be interpreted to formulate preventive measures. The relationship between genotypes and biomarkers of exposure and effects may provide an important guide to the risk assessment of human exposure to mutagens and carcinogens. PMID:9539016

  6. A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo.

    PubMed

    Yin, Kun; Yu, Fabiao; Zhang, Weiwei; Chen, Lingxin

    2015-12-15

    We establish a near-infrared (NIR) ratiometric fluorescent probe Cy-NB for the selective detection of cysteine (Cys) over glutathione (GSH) and homocysteine (Hcy) in mitochondria to indicate oxidative stress. Heptamethine cyanine dye is chosen as the fluorophore of Cy-NB whose emission locates in NIR region. And p-nitrobenzoyl is employed as the fluorescent modulator due to its capability of selective-Cys response. Once triggered by Cys, the uncaged p-nitrobenzoyl rearranges the polymethine π-electron system of the fluorophore, which leads to a remarkable spectrum shifts in absorption and emission profiles. Taking advantage of these spectroscopic properties, we construct a ratiometric fluorescent signal for the detection of Cys with a detection limit of 0.2 µM within 5 min. Our probe Cy-NB can sensitively detect the mitochondrial Cys pool changes under different oxidative stress status in HepG2 cells. We also successfully employ Cy-NB to imaging Cys level changes in living mice. It suggests that mitochondrial Cys can be used as an oxidative stress biomarker with simple potential clinical applications. And our probe Cy-NB is of great potential for further utilizing in exploring the physiological function of Cys in biological systems. PMID:26141101

  7. Melatonin not only restores but also prevents the inhibition of the intestinal Ca(2+) absorption caused by glutathione depleting drugs.

    PubMed

    Areco, Vanessa; Rodriguez, Valeria; Marchionatti, Ana; Carpentieri, Agata; Tolosa de Talamoni, Nori

    2016-07-01

    We have previously demonstrated that melatonin (MEL) blocks the inhibition of the intestinal Ca(2+) absorption caused by menadione (MEN). The purpose of this study were to determine whether MEL not only restores but also prevents the intestinal Ca(2+) absorption inhibited either by MEN or BSO, two drugs that deplete glutathione (GSH) in different ways, and to analyze the mechanisms by which MEN and MEL alter the movement of Ca(2+) across the duodenum. To know this, chicks were divided into four groups: 1) controls, 2) MEN treated, 3) MEL treated, and 4) treated sequentially with MEN and MEL or with MEN and MEL at the same time. In a set of experiments, chicks treated with BSO or sequentially with BSO and MEL or with BSO and MEL at the same time were used. MEL not only restored but also prevented the inhibition of the chick intestinal Ca(2+) absorption produced by either MEN or BSO. MEN altered the protein expression of molecules involved in the transcellular as well as in the paracellular pathway of the intestinal Ca(2+) absorption. MEL restored partially both pathways through normalization of the O2(-) levels. The nitrergic system was not altered by any treatment. In conclusion, MEL prevents or restores the inhibition of the intestinal Ca(2+) absorption caused by different GSH depleting drugs. It might become one drug for the treatment of intestinal Ca(2+) absorption under oxidant conditions having the advantage of low or null side effects. PMID:26970583

  8. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  9. Cooperation of different exchange mechanisms in confined magnetic systems

    NASA Astrophysics Data System (ADS)

    Schwabe, Andrej; Hänsel, Mirek; Potthoff, Michael

    2014-09-01

    The diluted Kondo lattice model is investigated at strong antiferromagnetic local exchange couplings J, where almost-local Kondo clouds drastically restrict the motion of conduction electrons, giving rise to the possibility of quantum localization of conduction electrons for certain geometries of impurity spins. This localization may lead to the formation of local magnetic moments in the conduction-electron system, and the inverse indirect magnetic exchange (IIME) provided by virtual excitations of the Kondo singlets couples those local moments to the remaining electrons. Exemplarily, we study the one-dimensional two-impurity Kondo model with impurity spins near the chain ends, which supports the formation of conduction-electron magnetic moments at the edges of the chain for sufficiently strong J. Employing degenerate perturbation theory as well as analyzing spin gaps numerically by means of the density-matrix renormalization group, it is shown that the low-energy physics of the model can be well captured within an effective antiferromagnetic Ruderman-Kittel-Kasuya-Yosida-like two-spin model ("RKKY from IIME") or within an effective central-spin model, depending on edge-spin distance and system size.

  10. Toxicity of nickel and silver to Nostoc muscorum: interaction with ascorbic acid, glutathione, and sulfur-containing amino acids

    SciTech Connect

    Rai, L.C.; Raizada, M.

    1987-08-01

    Exposure of Nostoc muscorum to different concentrations of Ni and Ag brought about reduction in growth, carbon fixation, heterocyst production, and nitrogenase activity and increase in the loss of ions (K+, Na+). In an attempt to ameliorate the toxicity of test metals by ascorbic acid, glutathione, and sulfur-containing amino acids (L-cysteine and L-methionine), it was found that the level of protection by ascorbic acid and glutathione was more for Ag than Ni. However, metal-induced inhibition of growth and carbon fixation was equally ameliorated by methionine. But the level of protection by cysteine was quite different, i.e., 27% for Ni and 22% for Ag. Protection of metal toxicity in N. muscorum by amino acids lends further support to self-detoxifying ability of cyanobacteria because they are known to synthesize all essential amino acids.

  11. Leaf physiognomy and climate: Are monsoon systems different?

    NASA Astrophysics Data System (ADS)

    Jacques, Frédéric M. B.; Su, Tao; Spicer, Robert A.; Xing, Yaowu; Huang, Yongjiang; Wang, Weiming; Zhou, Zhekun

    2011-03-01

    Our understanding of past climatic changes depends on our ability to obtain reliable palaeoclimate reconstructions. Climate Leaf Analysis Multivariate Program (CLAMP) uses the physiognomy of woody dicot leaf assemblages to quantitatively reconstruct terrestrial palaeoclimates. However, the present calibrations do not always allow us to reconstruct correctly the climate of some regions due to differing palaeofloristic histories. Present calibrations are also inappropriate for regions experiencing strong monsoon regimes. To help solve this problem, we have established a new calibration that can accommodate monsoonal climates in Asia. Our new calibration is based on the Physg3brcAZ dataset with 45 new Chinese sites added. These Chinese sites are taken from humid to mesic vegetations across China, and all are influenced by monsoonal conditions to some extent. They plot in a distinct part of physiognomic space, whether they are analysed as passive or active samples. The standard deviations for the new monsoonal calibration (1.25 °C for MAT and 217.7 mm for GSP) are in the same range as those observed for previous calibrations. The new monsoonal calibration was tested using a cross validation procedure. The estimates derived from the new monsoonal calibration (PhysgAsia1) for the Chinese sites are more accurate than those obtained from the Physg3brcAZ calibration, especially for the moisture related parameters. The mean absolute error for GSP of the Chinese sites is 294.6 mm in the new monsoonal calibration, whereas it was 1609.6 mm in the Physg3brcAZ calibration. Results for the three wettest months and three driest months are also more accurate and precise, which allows us to study the seasonality of the precipitation, and hence the monsoon. The new monsoonal calibration also gives accurate results for enthalpy reconstruction. Enthalpy is a parameter that is used for palaeoaltimetry, the new calibration is therefore useful for studies of land surface height changes in

  12. Effect of ovariectomy and sex hormone replacement on glutathione and glutathione-related enzymes in rat hepatocarcinogenesis.

    PubMed

    Hambali, Z; Ngah, W Z; Wahid, S A; Kadir, K A

    1995-01-01

    The effects of ovariectomy and hormone replacement in control and carcinogen treated female rats were investigated by measuring whole blood and liver glutathione (WGSH, HGSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GRx) and histological evaluation. Hepatocarcinogenesis was induced by diethylnitrosamine and 2-acetylaminofluorene. In control rats not receiving carcinogen, ovariectomy significantly increased the GST and GRx activities. Replacement with either estrogen or progesterone reduced the GST activities to below intact female values whereas replacement of both hormones together brought the GST activities to that of intact females. GRx activities were brought to intact female values by replacement with estrogen or progesterone, either singly or in combination. Neither ovariectomy nor sex hormone/s replacement influenced the levels of WGSH, HGSH and GPx activities. Carcinogen administration to intact rats increased all the parameters measured. Ovariectomized rats treated with carcinogen showed lower GPx and GRx activities at 2 mths. However, replacement with either progesterone or combined estrogen and progesterone increased GPx and GRx activities to original values. On the other hand GST and GPx activities in ovariectomized rats which had carcinogen treatment were lower than intact rats after 5 mths. Replacement with hormones either singly or both brought GST and GPx activities up to intact rat levels receiving carcinogen. The levels of WGSH, HGSH and GRx activities (5 mths) in carcinogen treated rats were not influenced by ovariectomy and/or hormone/s replacement. The results from this study suggested that ovariectomy reduced the severity of hepatocarcinogenesis which was restored by sex hormone/s replacement. PMID:7603748

  13. Nesfatin-1 and its effects on different systems

    PubMed Central

    Ayada, C; Toru, Ü; Korkut, Y

    2015-01-01

    Nesfatin-1 is a peptide secreted by peripheral tissues, central and peripheral nervous system. It is involved in the regulation of energy homeostasis related with food regulation and water intake. Nesfatin-1 can pass through the blood-brain barrier in both directions. It suppresses feeding independently from the leptin pathway and increases insulin secretion from pancreatic beta islet cells. That is why nesfatin-1 has drawn attention as a new therapeutic agent, especially for the treatment of obesity and diabetes mellitus. Its effects on nutrition have been studied in more detail in literature. On the other hand, its effects on other physiological parameters and mechanisms of action still need to be clarified. Synthesizing the research on nesfatin-1 can help us better understand this field. Hippokratia 2015, 19 (1): 4-10. PMID:26435639

  14. A simple microfluidic integrated with an optical sensor for micro flow injection colorimetric determination of glutathione.

    PubMed

    Supharoek, Sam-ang; Youngvises, Napaporn; Jakmunee, Jaroon

    2012-01-01

    A simple and inexpensive method for fabricating a microfluidic platform was developed. A printed circuit board (PCB) was used to make a master mold for replicating a polydimethylsiloxane (PDMS) microchannel. The master mold was fabricated by a simple photolithographic method, employing a photoresist dry film. The process did not use hazardous chemicals, a clean room or any expensive instrument. The PDMS microchannel was clamped with polymethylmethacrylate (PMMA) plates, where a light emitting diode (LED) as a light source and a light dependent resistor (LDR) as a light sensor were attached to form a simple optical sensor. The system was successfully employed as a micro flow injection analysis for the determination of glutathione in dietary supplement samples. A linear calibration graph in the range of 5.0 - 60.0 mg L(-1) glutathione was obtained with a detection limit of 0.01 mg L(-1). The system provided a sample throughput of 48 h(-1), with microliter consumption of the reagent. PMID:22790365

  15. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.

    PubMed

    Garg, Seema; De, Arnab; Mozumdar, Subho

    2015-05-01

    Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability, and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple, and reliable immobilization strategy for the enzyme. In this study, the carboxyl terminated surface of glutathione-capped gold nanoparticles have been utilized as a solid support for the covalent attachment of urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bioactivity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like ultraviolet-visible spectroscopy, intrinsic steady state fluorescence, and circular dichorism. The bioactivity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nanoconjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. PMID:25227875

  16. Synthesis and glutathione S-transferase structure-affinity relationships of nonpeptide and peptidase-stable glutathione analogues.

    PubMed

    Klotz, P; Slaoui-Hasnaoui, A; Banères, J L; Duckert, J F; Rossi, J C; Kerbal, A

    1998-06-18

    A series of nonpeptidic glutathione analogues where the peptide bonds were replaced by simple carbon-carbon bonds or isosteric E double bonds were prepared. The optimal length for the two alkyl chains on either side of the mercaptomethyl group was evaluated using structure-affinity relationships. Affinities of the analogues 14a-f, 23, and 25 were evaluated for a recombinant GST enzyme using a new affinity chromatography method previously developed in our laboratory. Analysis of these analogues gives an additional understanding for GST affinity requirements: (a) the carbon skeleton must conserve that of glutathione since analogue 14a showed the best affinity (IC50 = 5.2 microM); (b) the GST G site is not able to accommodate a chain length elongation of one methylene group (no affinity for analogues 14c,f); (c) a one-methylene group chain length reduction is tolerated, much more for the "Glu side" (14d, IC50 = 10.1 microM) than for the "Gly side" (14b, IC50 = 1800 microM); (d) the mercaptomethyl group must remain at position 5 as shown from the null affinity of the 6-mercaptomethyl analogue 14e; (e) the additional peptide isosteric E double bond (25) or hydroxyl derivative (23) in 14e did not help to retrieve affinity. This work reveals useful information for the design of new selective nonpeptidic and peptidase-stable glutathione analogues. PMID:9632361

  17. [Individual and joint stress of lead and mercury on growth, glutathione and glutathione-related enzymes of Scenedesmus quadricauda].

    PubMed

    Li, Yan; Zhu, Lin; Liu, Shuo

    2009-01-01

    To understand the toxicity mechanisms of mixed heavy metals on aquatic plant, indicators of algea growth rate,content of reduced glutathione (GSH), activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx) of green algae, Scenedesmus quadricauda were measured to analyze the individual and joint toxic effects of lead and mercury. The results show that the 96h EC50 of algae growth inhibition by lead [Pb(NO3)2] and mercury (HgCl2) are 0.6789 mg/L and 0.1401 mg/L respectively. After 12 h individual and joint lead and mercury exposure, the content of GSH in alga cells is decreased to about 70% of the level of the control, and keeps a steady level with the increase of the exposure concentration. The GST activities are increased to a peak in lower concentration groups and then decrease with the increase of the exposure concentration. Indeed,the higher concentration of lead and mercury combined-poisoning can inhibit the activities of GST significantly, with 13.04% inhibitory rate. The activity of GPx is almost suppressed continuously with the increase of the exposure concentration, and the lowest activity is only 38.77% of the control. The toxic action of the mixture of Pb and Hg on growth inhibition,GSH content,activities of GST and activities of GPx for Scenedesmus quadricauda are addition. PMID:19353889

  18. Drop-Out: Problems of Comparing Drop-Out in Different Distance Education Systems.

    ERIC Educational Resources Information Center

    Bartels, Jorn; Willen, Brigitta

    It is argued that because the term "dropout" has different meanings in different systems of distance education, it is difficult to compare dropout rates of two or more distance education universities. Two very different European distance education systems, the FernUniversitat in West Germany and the Swedish system, are examined. Background…

  19. Structure-activity relationships for chemical and glutathione S-transferase-catalysed glutathione conjugation reactions of a series of 2-substituted 1-chloro-4-nitrobenzenes.

    PubMed Central

    Van der Aar, E M; Bouwman, T; Commandeur, J N; Vermeulen, N P

    1996-01-01

    Glutathione S-transferases (GSTs) constitute an important class of phase II (de)toxifying enzymes, catalysing the conjugation of glutathione (GSH) with electrophilic compounds. In the present study, Km, kcat and kcat/Km values for the rat GST 1-1-, 3-3-, 4-4- and 7-7-catalysed conjugation reactions between GSH and a series of 10 different 2-substituted 1-chloro-4-nitrobenzenes, and the second-order rate constants (ks) of the corresponding base-catalysed reactions, were correlated with nine classical physicochemical parameters (electronic, steric and lipophilic) of the substituents and with 16 computer-calculated molecular parameters of the substrates and of the corresponding Meisenheimer complexes with MeS- as a model nucleophile for GS- (charge distributions and several energy values), giving structure-activity relationships. On the basis of an identical dependence of the base-catalysed as well as the GST 1-1- and GST 7-7-catalysed reactions on electronic parameters (among others, Hammett substituent constant sigma p and charge on p-nitro substituents), and the finding that the corresponding reactions catalysed by GSTs 3-3 and 4-4 depend to a significantly lesser extent on these parameters, it was concluded that the Mu-class GST isoenzymes have a rate-determining transition state in the conjugation reaction between 2-substituted 1-chloro-4-nitrobenzenes and GSH which is different from that of the other two GSTs. Several alternative rate-limiting transition states for GST 3-3 and 4-4 are discussed. Furthermore, based on the obtained structure-activity relationships, it was possible to predict the kcat/Km values of the four GST isoenzymes and the ks of the base-catalysed GSH conjugation of 1-chloro-4-nitrobenzene. PMID:8973562

  20. LPS alters pattern of sickness behavior but does not affect glutathione level in aged male rats.

    PubMed

    Wrotek, Sylwia; Jędrzejewski, Tomasz; Nowakowska, Anna; Kozak, Wiesław

    2016-08-01

    Behavioral symptoms of sickness, such as fever and motor activity are a coordinated set of changes that develop during infection. The aim of study was to compare the sickness behaviour (SB) in healthy old and young rats treated with pyrogenic dose of endotoxin and to check their glutathione level. Before experimentation male Wistar rats were selected according to standard body mass, motor activity, and white blood cells count. Intraperitoneal injection of lipopolysaccharide (LPS) from E. coli was used to provoke SB. The level of liver glutathione, interleukin (IL) -6, deep body temperature (Tb) and motor activity were measured. Glutathione level in old and young rats did not differ significantly. In both young and old rats LPS administration provoked fever (the mean value of Tb was 38.06 ± 0.01 °C in old rats, and 38.19 ± 0.06 °C in young rats). LPS injection affected night-time activity in both groups (12 h averages were 1.56 ± 0.40 counts in old LPS-treated rats vs 2.74 ± 0.53 counts in not-treated old rats and 3.44 ± 0.60 counts for young LPS-treated vs 4.28 ± 0.57 counts for young not-treated rats). The injection of LPS provoked an elevation of plasma IL-6 concentration (from values below the lowest detectable standard in not-treated groups of animals to 6322.82 ± 537.00 pg/mL in old LPS-treated rats and 7415.62 ± 451.88 pg/mL in young LPS-treated rats). Based on these data, we conclude that good health of aged rats prevents decrease in the glutathione level. Old rats are still able to develop SB in response to pyrogenic dose of LPS, although its components have changed pattern compared to young animals. PMID:26829940

  1. S-adenosyl-L-methionine modifies antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus-expressing cells

    PubMed Central

    Lozano-Sepulveda, Sonia Amelia; Bautista-Osorio, Eduardo; Merino-Mascorro, Jose Angel; Varela-Rey, Marta; Muñoz-Espinosa, Linda Elsa; Cordero-Perez, Paula; Martinez-Chantar, María Luz; Rivas-Estilla, Ana Maria

    2016-01-01

    AIM: To elucidate the mechanism(s) by which S-adenosyl-L-methionine (SAM) decreases hepatitis C virus (HCV) expression. METHODS: We examined the effects of SAM on viral expression using an HCV subgenomic replicon cell culture system. Huh7 HCV-replicon cells were treated with 1 mmol/L SAM for different t