Science.gov

Sample records for glycine sodium nitrate

  1. Comment on the paper by R. Sankar, C.M. Ragahvan, R. Mohan Kumar, R. Jayavel, “Growth and characterization of bis-glycine sodium nitrate (BGSN), a novel semiorganic nonlinear optical crystal”, J. Crystal Growth 309 (2007) 30 36

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.

    2008-08-01

    It is argued that the conclusion of the authors of the title paper on obtaining of a new crystal bis-glycine sodium nitrate is erroneous. From an aqueous solution containing 2 glycine+NaNO 3 the authors actually have obtained earlier known crystals: glycine (alpha form) and glycine sodium nitrate.

  2. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  3. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  4. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  5. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  6. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued... potassium nitrite, in the production of cured red meat products and cured poultry products....

  7. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  8. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  9. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  10. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  11. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified foods in accordance with...

  12. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile. PMID:26474598

  13. Dislocations, microhardness and optical studies on glycine potassium nitrate crystal

    NASA Astrophysics Data System (ADS)

    Chandra, Ch. Sateesh; Nagaraju, D.; Shekar, P. V. Raja; Rao, T. Tirumal; Krishna, N. Gopi

    2015-06-01

    Single crystals of glycine potassium nitrate (GPN), a semiorganic nonlinear optical crystal, of dimensions 15×12×4 mm3 were grown in a period of 10 days. The defect content present in the crystals was estimated by chemical etching technique. The results indicate that the average dislocation density is about 4.1×103/cm2. The UV-Vis. studies indicate that the crystal has a wide transmission range. The Kurtz powder test indicates that the second harmonic generation efficiency of GPN is 2.5 times that of KDP. The load-hardness curves for GPN were studied over the load range 10-100 g. The anisotropy in hardness was studied using Knoop indentation technique.

  14. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a..., packaging, transporting, or holding food, subject to the provisions of this section. (a) Sodium...

  15. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium... the provisions of this section. (a) Sodium nitrate-urea complex is a clathrate of approximately...

  16. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in...

  17. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in...

  18. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in...

  19. Synthesis of alumina powders by the glycine-nitrate combustion process

    SciTech Connect

    Toniolo, J.C. . E-mail: jtoniolo@zipmail.com.br; Lima, M.D.; Takimi, A.S.; Bergmann, C.P.

    2005-03-08

    The combustion synthesis technique using glycine as fuel and aluminum nitrate as an oxidizer is able to produce alumina powders. Thermodynamic modeling of the combustion reaction shows that as the fuel-to-oxidant ratio increases, the amount of gases produced and adiabatic flame temperatures also increases. X-ray diffractions showed the amorphous structure for as-synthesized powder and presence of well-crystallized {alpha}-Al{sub 2}O{sub 3} after calcination at 1100 deg. C during soaking time of 1 h. Alumina's largest measured specific surface area was 15 m{sup 2}/g with BET method and 0.51 glycine-to-nitrate ratio.

  20. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite.

    PubMed

    Lim, Su-Chen; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is an important enteric pathogen of humans and food animals. Recently it has been isolated from retail foods with prevalences up to 42%, prompting concern that contaminated foods may be one of the reasons for increased community-acquired C. difficile infection (CA-CDI). A number of studies have examined the prevalence of C. difficile in raw meats and fresh vegetables; however, fewer studies have examined the prevalence of C. difficile in ready-to-eat meat. The aim of this study was to investigate the in vitro susceptibility of 11 C. difficile isolates of food animal and retail food origins to food preservatives commonly used in ready-to-eat meats. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for sodium nitrite, sodium nitrate and sodium metabisulphite against C. difficile. Checkerboard assays were used to investigate the combined effect of sodium nitrite and sodium nitrate, commonly used in combination in meats. Modal MIC values for sodium nitrite, sodium nitrate and sodium metabisulphite were 250 μg/ml, >4000 μg/ml and 1000 μg/ml, respectively. No bactericidal activity was observed for all three food preservatives. The checkerboard assays showed indifferent interaction between sodium nitrite and sodium nitrate. This study demonstrated that C. difficile can survive in the presence of food preservatives at concentrations higher than the current maximum permitted levels allowed in ready-to-eat meats. The possibility of retail ready-to-eat meats contaminated with C. difficile acting as a source of CDI needs to be investigated. PMID:26700884

  1. Comparative study of glycine single crystals with additive of potassium nitrate in different concentration ratios

    NASA Astrophysics Data System (ADS)

    Gujarati, Vivek P.; Deshpande, M. P.; Patel, Kamakshi R.; Chaki, S. H.

    2016-05-01

    Semi-organic crystals of Glycine Potassium Nitrate (GPN) with potential applications in Non linear optics (NLO) were grown using slow evaporation technique. Glycine and Potassium Nitrate were taken in three different concentration ratios of 3:1, 2:1 and 1:1 respectively. We checked the solubility of the material in distilled water at different temperatures and could observe the growth of crystals in 7 weeks time. Purity of the grown crystals was confirmed by Energy Dispersive X-ray Analysis (EDAX) and CHN analysis. GSN Powder X-ray diffraction pattern was recorded to confirm the crystalline nature. To confirm the applications of grown crystals in opto-electronics field, UV-Vis-NIR study was carried out. Dielectric properties of the samples were studied in between the frequency range 1Hz to 100 KHz.

  2. Heterogeneous Reaction gaseous chlorine nitrate and solid sodium chloride

    NASA Technical Reports Server (NTRS)

    Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun

    1994-01-01

    The heterogeneous reaction of gaseous chlorine nitrate and solid sodium chloride was investigated over a temperature range of 220 - 300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer.

  3. Immobilization of sodium nitrate waste with polymers: Topical report

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1987-04-01

    This report describes the development of solidification systems for sodium nitrate waste. Sodium nitrate waste was solidified in the polymers polyethylene, polyester-styrene (PES), and water-extendible polyester-styrene (WEP). Evaluations were made of the properties of waste forms containing various amounts of sodium nitrate by leaching immersion in water, measuring compressive strengths and by the EPA Extraction Procedure. Results of the leaching test are presented as cumulative fraction leached (CFL), incremental leaching rate, and average leaching indices (LI). For waste forms containing 30 to 70 wt% sodium nitrate, the CFL ranged from 9.0 x 10/sup -3/ to 7.3 x 10/sup -1/ and the LI from 11 to 7.8. After ninety days immersion in water, the compressive strengths ranged from 720 psi to 2550 psi. The nitrate releases from these samples using the EPA Extraction Procedure were below 500 ppM. The nitrate releases from PES waste forms were similar to those from polyethylene waste forms at the same waste loadings. The compressive yield strengths, measured after ninety-day immersion in water, ranged between 2070 and 7710 psi. In the case of WEP waste forms, only 30 wt% loaded samples passed the immersion test. 23 refs., 24 figs., 12 tabs.

  4. Sodium tris(glycinium) bis(hexafluorosilicate) glycine trisolvate.

    PubMed

    Narayana, Moolya B; Rai, Chitharanjan; Dharmaprakash, S M; Harrison, William T A

    2007-07-01

    The title compound, Na(+) x 3C(2)H(6)NO(2)(+) x 2SiF(6)(2-) x 3C(2)H(5)NO(2), arose from an unexpected reaction of glycine and HF with the glass container. It is an unusual hybrid organic-inorganic network built up from chains of vertex-sharing NaF(4)O(2) and SiF(6) octahedra. A pair of glycinium/glycine molecules bridges the chains into a sheet via a centrosymmetric O...H...O link. The other organic species interact with the network by an extensive N-H...F hydrogen-bond network, including bifurcated and trifurcated bonds. Finally, an extremely short C-H...O interaction (H...O = 2.25 Angstrom) is seen in the crystal structure. The Na atom has site symmetry overline1. PMID:17609553

  5. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    PubMed

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT. PMID:26988767

  6. Crystallization of sodium nitrate from radioactive waste

    SciTech Connect

    Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

  7. Blood pressure, sodium intake, insulin resistance, and urinary nitrate excretion.

    PubMed

    Facchini, F S; DoNascimento, C; Reaven, G M; Yip, J W; Ni, X P; Humphreys, M H

    1999-04-01

    The objective of this study was to investigate the relationships among various humoral factors thought to be involved in the regulation of blood pressure during high NaCl intake. Nineteen healthy subjects underwent sequential 5-day periods ingesting a low-sodium (25 mmol/d) or high-sodium (200 mmol/d) diet. Insulin resistance was assessed by the steady-state plasma glucose concentration at the end of a 3-hour insulin suppression test. Insulin resistance correlated inversely with natriuresis (P=0.04) and directly with increase in weight (P=0.03). The increase in mean arterial pressure associated with the high-sodium diet correlated directly with the gain in weight (P<0.05) and inversely with the increase in urinary nitrate excretion (P<0.0001). In a multiple regression model, more than 2/3 of the variance in mean arterial pressure was accounted for by the gain in weight and change in urinary nitrate excretion. The steady-state plasma glucose concentrations obtained with the 2 diets were similar, indicating that insulin resistance was unaffected by sodium intake. During high sodium intake, plasma renin activity and aldosterone decreased and plasma atrial natriuretic peptide increased; these changes did not correlate with the change in mean arterial pressure, insulin resistance, or change in urinary nitrate excretion. To the extent that urinary nitrate excretion reflects activity of the endogenous nitric oxide system, these results suggest that the salt sensitivity of mean arterial pressure may be related to blunted generation of endogenous nitric oxide. The results also demonstrate that insulin-resistant individuals have an impaired natriuretic response to high sodium intake. PMID:10205239

  8. Synthesis, growth and characterisations of semi-organic nonlinear optical crystal glycine barium nitrate (GBN)

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Ravi Kumar, S. M.; Elango, G.; Ravisankar, R.

    2014-12-01

    Transparent crystal of glycine barium nitrate (GBN) has been grown from aqueous solution by slow evaporation technique at room temperature. Powder XRD study reveals the crystalline nature of the grown sample. Single crystal XRD study shows that the GBN belongs to orthorhombic crystal system. FTIR spectral study confirms the presence of the functional groups in the grown crystal. The presence of wide transparency window in the UV-visible region makes GBN crystal suitable for opto-electronic device applications. The grown sample has SHG efficiency is 0.8 times that of standard KDP crystal. Dielectric studies reveal that both dielectric constant and dielectric loss decreases with increase in frequency. Photoconductivity study confirms the negative photoconducting nature of the crystal.

  9. Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder

    SciTech Connect

    Peng Tianyou . E-mail: typeng@whu.edu.cn; Liu Xun; Dai Ke; Xiao Jiangrong; Song Haibo

    2006-09-14

    Nanocrystalline alumina powders were prepared by combustion synthesis using glycine as fuel and nitrate as an oxidizer. The effect of the pH values in the precursor solutions on crystallite sizes, surface areas and morphologies of the synthesized alumina powder has been investigated by X-ray diffractometry, thermal analysis, nitrogen adsorption-desorption, and transmission electron microscopy. With decreasing the pH values in the precursor solutions, the obtained materials could be modified from segregated nanoparticles (pH 10.5) to aggregates of nanoparticles (pH 6.0), and finally to a flaky morphology (pH 2.5). The rates of decomposition, the interaction of coordination as well as the hydrogen bonding of the glycine and the Al-hydroxides species at different pH values were found to be responsible for the generation of flake and/or segregated nanoparticles during auto-ignition reactions. The as-prepared combustion ashes were converted into pure nanocrystalline alumina after calcination at elevated temperatures. The specific surface areas of the products calcined at 800 deg. C ranged from 96 to 39 m{sup 2}/g with the pH decreased from 10.5 to 2.5.

  10. Reduction of Sodium Nitrate Liquid Waste in Nuclear Reprocessing Plants

    SciTech Connect

    Numata, M.; Mihara, S.; Kojima, S.; Ito, H.; Kato, T.

    2006-07-01

    Sodium nitrate solution has been generated from nuclear reprocessing plant as a result of neutralization of nitric acid. The sodium nitrate has been immobilized by bitumen, cement or other material in the site and waste packages have been produced. In order to reduce an environmental impact of the waste packages from the reprocessing plant, it is preferable to decompose nitrate ion to harmless gases such as nitrogen. A combination of formic acid and catalyst has been proposed for this purpose. But, the method is inadequate for a full decomposition of the nitrate ion. In addition, a mixture of NO and NO{sub 2} is produced during the reaction. Formaldehyde and hydrazine were selected as reductants and a combined use of Pd-Cu catalyst was tried to decompose the nitrate ion. As a result, the nitrate ion can almost entirely be decomposed without any generation of NO and NO{sub 2}. The test was conducted by 1 L flask. In case of formaldehyde, nitrate ion concentration can be reduced from 0.017 mol/l to 3.9x10{sup -4} mol/l. In case of hydrazine, nitrate concentration can be decreased from 2.8 mol/l to 9.5 x 10{sup -3} mol/l and ammonium ion is detected. The ammonium ion concentration in the final solution is 0.12 mol/l when 2.8 mol/l nitrate is reduced by hydrazine. Chemical reactions for formaldehyde on the Pd-Cu catalyst are estimated as combination of: NO{sub 3-} + HCHO = NO{sub 2-} + HCOOH; 2NO{sub 2-} + 3HCOOH = N{sub 2} + 3CO{sub 2} + 2H{sub 2}O + 2OH-; 4NO{sub 2-} + 3HCHO = 2N{sub 2} + 3CO{sub 2} + H{sub 2}O + 4OH-. the other hand, for hydrazine with the Pd-Cu catalyst: 3N{sub 2}H{sub 4} = 2NH{sub 3} + 2N{sub 2} + 3H{sub 2}; NO{sub 3-} + H{sub 2} = NO{sub 2-} + H{sub 2}O; NO{sub 2-} + NH{sub 3} = N{sub 2} + H{sub 2}O + OH-. The fundamental research shows that the combination usage of the Pd-Cu catalyst and formaldehyde or hydrazine is applicable for the reduction of nitrate liquid waste in the nuclear reprocessing plant. (authors)

  11. Nitric oxide emissions from soybean leaves during in vivo nitrate reductase assays. [Glycine max (L. ) Merr

    SciTech Connect

    Klepper, L.A.

    1987-09-01

    Recent work identified acetaldehyde oxime as the predominant product purged by inert gases from anaerobic in vivo nitrate reductase (NR) assays of soybeans (Glycine max (L.) Merr.) leaves. Another recent study supported earlier research findings which identified the primary product evolved from soybean leaves as nitric oxide (NO). This paper provides evidence that eliminates acetaldehyde oxime and confirms that NO is the primary nitrogenous product purged from the in vivo NR assay system. A portion of the evidence is based on the high water solubility of acetaldehyde oxime. Other evidence presented is the failure by chemical and spectrophotometric means to detect oximes in gases emitted in the purging of the reaction medium or in the leaf tissues. The gaseous product from the in vivo NR assay system reacted identically to NO standards and did not resemble acetaldehyde oxime standards. It was concluded that the predominant N product within the leaves was nitrite and that the predominant gaseous N product evolved from the assay was NO.

  12. Magnetic characteristics of MgFe2O4 nanoparticles obtained by glycine-nitrate synthesis

    NASA Astrophysics Data System (ADS)

    Zhernovoi, A. I.; Komlev, A. A.; D'yachenko, S. V.

    2016-02-01

    The magnetic properties of magnesium-iron spinel (MgFe2O4) powdered nanoparticles obtained by glycine-nitrate synthesis are investigated by X-ray phase analysis and the NMR method. According to the results of X-ray phase analysis, the average size of the crystalline part of nanoparticles of the powder under investigation is 45 ± 4 nm. Magnetization J is determined using the formula J = (B/μ0)- H, where B and H are the induction and strength of the magnetic field in the sample, which are measured by the NMR method. The magnetic characteristics of MgFe2O4 are as follows: specific saturation magnetization J sat = 17.52 A m2/kg, specific residual magnetization J r = 5.73 A m2/kg, coercive force H c = 4600 A/m, and magnetic moment P sat = 371 × 10-20 A m2 in the magnetic saturation state and P r = 121 × 10-20 A m2 in the residual magnetization state.

  13. Catalytic effect of some oxides on calcination of sodium nitrate

    SciTech Connect

    Sembira, A.N.; Perez, M.M.

    1993-12-31

    The calcination process used for sodium nitrate could be the most important part of the liquid-waste calcination process used in high-level-waste (HLW) disposal. A French process that involves conversion of the solution of nitrate fission products into a solid mixture of oxides and undecomposed nitrates. These products are then mixed with a glass-making mixture (called a frit) in an induction melting pot. In 1984, Utake et.al., suggested that the use of the Sol-Gel technique to decrease the calcination temperature of NaNO{sub 3}. In this work, we used the thermal-analysis technique to study the catalytic effect of some glass network formers like SiO{sub 2}, B{sub 2}O{sub 3}, and of some network modifiers like Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, TiO{sub 2}, ZnO. The best effect was achieved by adding 20% diatomaceous earth (Kieselguhr) and 20% B{sub 2}O{sub 3}. In that case, the calcination temperature onset decreased from 780{degrees}C to 565{degrees}C. The advantages of this process are as follows: (1) The proposed additives (Kieselguhr and B{sub 2}O{sub 3}) are glass network formers that have to be added anyway in the next process step; (2) In the proposed process, no sodium is added, and the only process change suggested is that the glass formers (or part of them) should added at the calcination step, rather than at the glass-melting step; (3) The proposed modification is easily achieved and is expected to improve the homogenization of the final product.

  14. ION RECOGNITION APPROACH TO VOLUME REDUCTION OF ALKALINE TANK WASTE BY SEPARATION AND RECYCLE OF SODIUM HYDROXIDE AND SODIUM NITRATE

    EPA Science Inventory

    A 3-year collaborative project between Oak Ridge National Laboratory (Bruce A. Moyer) and the University of North Texas (Prof. Alan P. Marchand) is proposed to explore new approaches to the separation of sodium hydroxide and other predominant sodium salts such as sodium nitrate f...

  15. Electrodissolution studies of 304 stainless steel in sodium nitrate electrolyte

    SciTech Connect

    Weisbrod, K.R.; Trujillo, V.L.; Martinez, H.E.

    1997-12-01

    To explore the impact of a wide range of operating parameters upon 304 stainless steel (SS) dissolution in sodium nitrate (NaNO{sub 3}) electrolyte, the staff of Engineering Science Applications-Energy and Process Engineering performed a series of beaker experiments. The variables that the authors explored included NaNO{sub 3} concentration, chromate concentration, pH, stirring rate, and current density. They adjusted the run length to obtain approximately 10 mg/cm{sup 2} metal removal so that they could compare surface finishes under similar test conditions. Key findings may be summarized as follows. Current efficiency during dissolution depends most strongly upon current density and electrolyte concentration. At 0.05 A/cm{sup 2}, current density is more dependent upon chromium concentration than they previously thought. They obtained the best surface finish in a classical electropolishing regime at current densities above 1.5 A/cm{sup 2}. Mirror-like finishes were obtained at near 100% current efficiency. At 0.05 a/cm{sup 2} they obtained reasonable surface finishes, particularly at lower electrolyte concentration. Current efficiency was low (30%). At intermediate current densities, they obtained the worst surface finishes, that is, surfaces with severe pitting. Also, they explored preferential attack of the weld zone during electrodissolution of 304 stainless steel cans. Electrodissolution removed approximately twice as much material from cans with unshielded weld zones as from cans with shielded weld zones. The following implications are apparent. While operation above 1 A/cm{sup 2} yields the best surface finish at 100% current efficiency, equipment size and power feedthrough limitations reduce the attractiveness of this option. Because other Los Alamos researchers, obtained more favorable results with the sulfate electrolyte, the authors recommend no further work for the sodium nitrate electrolyte system.

  16. Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process

    NASA Astrophysics Data System (ADS)

    Hajarpour, S.; Gheisari, Kh.; Honarbakhsh Raouf, A.

    2013-03-01

    In this study, Mg-Zn ferrite with the chemical formula of Mg0.6Zn0.4Fe2O4 is synthesized through a modified combustion synthesis using glycine as fuel and metal (Mg, Zn and Fe) nitrates as reactants. The technique, known as glycine-nitrate process, involves exothermic decomposition of a viscous liquid, prepared by thermal dehydration of an aqueous solution containing metal nitrates and glycine. The product powders produced at seven different molar ratios of glycine to nitrate (G/N ratio), varying from 0.37 to 0.75, are agglomerates of fine particles whose typical diameter are several tens of nanometers. Thermodynamic modeling of the combustion reaction indicates that as the fuel-to-oxidant ratio increases, the amount of gases produced and the adiabatic flame temperature rise. X-ray diffraction shows that samples crystallize in a spinel-type structure in all reactions. The morphology of the powders is examined using field emission scanning electron microscopy and transmission electron microscopy. Through magnetic measurements conducted by a vibrating sample magnetometer, the maximum saturation magnetization (46 emu/g) is found to occur at the highest G/N ratio.

  17. Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply

    NASA Technical Reports Server (NTRS)

    Subbarao, G. V.; Wheeler, R. M.; Levine, L. H.; Stutte, G. W.; Sager, J. C. (Principal Investigator)

    2001-01-01

    Exposure of plants to sodium (Na) and salinity may increase glycine betaine accumulation in tissues. To study this, red-beet cvs. Scarlet Supreme and Ruby Queen, were grown for 42 days in a growth chamber using a re-circulating nutrient film technique with 0.25 mmol/L K and either 4.75 mmol/L (control) or 54.75 mmol/L (saline) Na (as NaCl). Plants were harvested at weekly intervals and measurements were taken on leaf water relations, leaf photosynthetic rates, chlorophyll fluorescence, chlorophyll levels, glycine betaine levels, and tissue elemental composition. Glycine betaine accumulation increased under salinity and this accumulation correlated with higher tissue levels of Na in both cultivars. Na accounted for 80 to 90% of the total cation uptake under the saline treatment. At final harvest (42 days), K concentrations in laminae ranged from approximately 65-95 micromoles g-1 dry matter (DM), whereas Na in shoot tissue ranged from approximately 3000-4000 micromoles g-1. Leaf sap osmotic potential at full turgor [psi(s100)] increased as lamina Na content increased. Glycine betaine levels of leaf laminae showed a linear relationship with leaf sap [psi(s100)]. Chlorophyll levels, leaf photosynthetic rates, and chlorophyll fluorescence were not affected by Na levels. These results suggest that the metabolic tolerance to high levels of tissue Na in red-beet could be due to its ability to synthesize and regulate glycine betaine production, and to control partitioning of Na and glycine betaine between the vacuole and the cytoplasm.

  18. A non-fatal intoxication with a high-dose sodium nitrate

    PubMed Central

    Joosen, Dorien; Stolk, Leo; Henry, Ronald

    2014-01-01

    A 67-year-old man accidentally ingested 75 g of sodium nitrate. He had instant gastrointestinal symptoms. On physical examination, he was respiratorily and haemodynamically stable and there were no signs of central or peripheral cyanosis. Repeated methaemoglobin levels were normal and he made an uneventful recovery. Sodium nitrate intoxication is rare. Serious effects can occur, mainly through formation of nitrite and nitric oxide, which can cause methaemoglobinaemia and vasodilation. Even if the presenting symptoms are mild, it is important to remain cautious since more serious symptoms can occur later. Monitoring of respiratory and haemodynamic status and repeated blood gas analysis in order to detect methaemoglobinaemia are recommended. PMID:24879739

  19. Structural evolution and magnetic properties of nanocrystalline magnesium-zinc soft ferrites synthesized by glycine-nitrate combustion process

    NASA Astrophysics Data System (ADS)

    Hajarpour, S.; Honarbakhsh Raouf, A.; Gheisari, Kh.

    2014-08-01

    In this study, nanocrystalline Mg1-xZnxFe2O4 soft magnetic ferrites are synthesized by varying x from 0.0 to 0.6 with a step size of 0.1. A new combustion synthesis approach is taken using glycine as fuel and metal (Fe, Mg and Zn) nitrates as reactants. The effect of varying chemical composition, i.e. changing the parameter x, on the structural and magnetic properties is evaluated. X-ray diffraction results confirm that all samples crystallize in a spinel-type structure. Lattice parameter (a) is found to increase with the substitution of Zn2+ ions. The field emission scanning electron microscopy (FESEM) is used for morphological investigations. Magnetic properties of Mg1-xZnxFe2O4 ferrites are also evaluated by a vibrating sample magnetometer (VSM). It is found that the saturation magnetization increases as the Zn content goes up to x===0.4 and decreases afterwards. The change in saturation magnetization with Zn content is attributed to the variation of cation distribution in the spinel structure as chemical composition is modified.

  20. Influence of chloride on the chronic toxicity of sodium nitrate to Ceriodaphnia dubia and Hyalella azteca.

    PubMed

    Soucek, David J; Dickinson, Amy

    2016-09-01

    While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable. PMID:27386878

  1. PERCHLORATE LEVELS IN SAMPLES OF SODIUM NITRATE FERTILIZER DERIVED FROM CHILEAN CALICHE

    EPA Science Inventory

    Paleogeochemical deposits in northern Chile are a rich source of naturally occurring sodium nitrate. These caliche ores are mined and processed to isolate NaNO3 (16-0-0) for use in fertilizers. Coincidentally, these very same deposits are a natural soure of perchlorate anion (C...

  2. DISTRIBUTION OF PERCHLORATE IN SAMPLES OF SODIUM NITRATE (CHILE SALTPETER) FERTILIZER DERIVED FROM NATURAL CALICHE

    EPA Science Inventory

    Two lots of sodium nitrate fertilizer derived from Chilean caliche were analyzed to determine the distribution of perchlorate throughout the material. Although our samples represent a limited amount, we found that distribution was essentially homogeneous in any 100-g portion. Whe...

  3. Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating

    DOEpatents

    Blake, R.D.; Meek, T.T.

    1984-10-10

    A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  4. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst

    SciTech Connect

    Wadley, D.C.; Tam, M.S.; Miller, D.J.

    1997-01-15

    Lactic acid is converted to 2,3-pentanedione, acrylic acid, and other products in vapor-phase reactions over silica-supported sodium lactate formed from sodium nitrate. Multiparameter optimization of reaction conditions using a Box-Benkhen experimental design shows that the highest yield and selectivity to 2,3-pentanedione are achieved at low temperature, elevated pressure, and long contact time, while yield and selectivity to acrylic acid are most favorable at high temperature, low pressure, and short contact time. Post-reaction Fourier transform infrared spectroscopic analyses of the catalyst indicate that sodium nitrate as the initial catalyst material is transformed to sodium lactate at the onset of reaction via proton transfer from lactic acid to nitrate. The resultant nitric acid vaporizes as it is formed, leaving sodium lactate as the sole sodium-bearing species on the catalyst during reaction. 19 refs., 8 figs., 5 tabs.

  5. [Influence of silver/silicon dioxide on infrared absorption spectroscopy of sodium nitrate].

    PubMed

    Yang, Shi-Ling; Yue, Li; Jia, Zhi-Jun

    2014-09-01

    Quickly detecting of ocean nutrient was one important task in marine pollution monitoring. We discovered the application of surface-enhanced infrared absorption spectroscopy in the detection of ocean nutrient through researching the evaporation of sodium nitrate solution. The silicon dioxide (SiO2) with highly dispersion was prepared by Stober method, The silver/silica (Ag/SiO2) composite materials were prepared by mixing ammonia solution and silicon dioxide aqueous solution. Three kinds of composite materials with different surface morphology were fabricated through optimizing the experimental parameter and changing the experimental process. The surface morphology, crystal orientation and surface plasmon resonance were investigated by means of the scanning electronic microscope (SEM), X-ray diffraction (XRD), UV-Visible absorption spectrum and infrared ab- sorption spectroscopy. The SEM images showed that the sample A was purified SiO2, sample B and sample C were mixture of silver nanoparticle and silicon dioxide, while sample D was completed nanoshell structure. The absorption spectroscopy showed that there was surface plasmon resonance in the UV-visible region, while there was possibility of surface plasmon resonance in the Infrared absorption region. The effect of Ag/SiO2 composite material on the infrared absorption spectra of sodium nitrite solution was investigated through systematically analyzing the infrared absorption spectroscopy of sodium nitrate solution during its evaporation, i. e. the peak integration area of nitrate and the peak integration area of water molecule. The experimental results show that the integration area of nitrate was enhanced greatly during the evaporation process while the integration area of water molecule decreased continuously. The integration area of nitrate comes from the anti-symmetric stretch vibration and the enhancement of the vibration is attributed to the interface effect of Ag/SiO2 which is consistent with Jensen T

  6. Reduction in Dental Hypersensitivity with Nano-Hydroxyapatite, Potassium Nitrate, Sodium Monoflurophosphate and Antioxidants#

    PubMed Central

    B. Low, Samuel; Allen, Edward P.; Kontogiorgos, Elias D.

    2015-01-01

    Objective: This clinical study aimed to evaluate effectiveness of a commercially available toothpaste containing potassium nitrate, sodium monoflurophosphate, and nano-hydroxyapatite as well as antioxidants phloretin, ferulic acid and silymarin in reducing dental hypersensitivity in adults. Methods: The clinical trial enrolled patients with a history of dentin hypersensitivity. A test toothpaste was introduced into the daily routine, which included initial instruction on usage. Patients completed a five-question visual analog scale (VAS) at the inception/baseline, after two days and after two weeks of using the toothpaste to determine their level of tooth sensitivity at baseline with the use of the toothpaste over time. Results: Patients that had significant sensitivity at baseline had a range of 52% to 76 % improvement after 48 hours and a range of 70% to 84% improvement after two weeks. Conclusion: A toothpaste containing potassium nitrate, sodium monoflurophosphate, and nano-hydroxyapatite plus antioxidants phloretin, ferulic acid and silymarin applied daily significantly decreased tooth pain of dentin hypersensitivity within a two-day and two-week time period. Clinical Significance: Based on the clinical study results, a daily application of a toothpaste containing potassium nitrate, sodium monofluorophosphate, and nano-hydroxyapatite plus antioxidants phloretin, ferulic acid and silymarin can significantly and quickly reduce tooth pain of dentin hypersensitivity. PMID:25834655

  7. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    PubMed

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating. PMID:26252873

  8. Glycine Betaine, Carnitine, and Choline Enhance Salinity Tolerance and Prevent the Accumulation of Sodium to a Level Inhibiting Growth of Tetragenococcus halophila

    PubMed Central

    Robert, Hervé; Le Marrec, Claire; Blanco, Carlos; Jebbar, Mohamed

    2000-01-01

    Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila. PMID:10653711

  9. Axial vibration control of melt structure of sodium nitrate in crystal growth process

    NASA Astrophysics Data System (ADS)

    Sadovskiy, Andrey; Sukhanova, Ekaterina; Belov, Stanislav; Kostikov, Vladimir; Zykova, Marina; Artyushenko, Maxim; Zharikov, Evgeny; Avetissov, Igor

    2015-05-01

    The melt structure evolution under the action of the low-frequency axial vibration control (AVC) technique was studied in situ by Raman spectroscopy for several complex chemical compound melts: sodium nitrate, margarine acid, paraffin mixture (C17-C20). The measurements were conducted in the temperature range from the melting point up to 60 °C above. Comparison of crystallization heats for AVC activated and steady melts with melting heats of AVC-CZ and conventional CZ produced powders allowed to propose the energy diagram of NaNO3 states for activated and non-activated melts and crystals based on DTA, XRD, DSC and Raman experimental data.

  10. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  11. Comparison of plasma generated nitrogen fertilizer to conventional fertilizers ammonium nitrate and sodium nitrate for pre-emergent and seedling growth

    NASA Astrophysics Data System (ADS)

    Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.

    2014-10-01

    Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.

  12. Hyparrhenia hirta: A potential protective agent against hematotoxicity and genotoxicity of sodium nitrate in adult rats.

    PubMed

    Bouaziz-Ketata, Hanen; Salah, Ghada Ben; Mahjoubi, Amira; Aidi, Zied; Kallel, Choumous; Kammoun, Hassen; Fakhfakh, Faiza; Zeghal, Najiba

    2015-11-01

    The present study was carried out to examine the adverse hematotoxic and genotoxic effects of water nitrate pollution on male adult rats and the use of hyparrhenia hirta methanolic extract in alleviating these effects. Sodium nitrate (NaNO3 ) was administered to adult rats by oral gavage at a dose of 400 mg kg(-1) bw daily for 50 days, while hyparrhenia hirta methanolic extract was given by drinking water at a dose of 1.5 mg mL(-1) (200 mg kg(-1) bw). The NaNO3 -treated group showed a significant decrease in red blood cell count, hemoglobin and hematocrit and a significant increase in total white blood cell, in neutrophil and eosinophil counts. Platelet count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration remained unchanged in treated groups compared to those of controls. Meanwhile, the results showed a marked reduction in the antioxidant enzyme activities, such as superoxide dismutase, catalase, and glutathione peroxidase, along with an elevation in the level of lipid peroxidation and a reduction in the total glutathione content, indicating the induction of oxidative stress in the erythrocytes of NaNO3 -treated group. Interestingly, NaNO3 treatment showed a significant increase in the frequencies of total chromosomal aberrations, aberrant metaphases and micronucleus in bone-marrow cells. The oxidative stress induced by nitrate treatment might be the major cause for chromosomal rearrangements as free radicals leading to DNA damage. Hyparrhenia hirta methanolic extract appeared to be effective against hematotoxic and genotoxic changes induced by nitrate, as evidenced by the improvement of the markers cited above. PMID:24740966

  13. A literature review of radiolytic gas generation as a result of the decomposition of sodium nitrate wastes

    SciTech Connect

    Kasten, J.L.

    1991-01-01

    The objective of this literature review is to determine expected chemical reactions and the gas generation associated with radiolytic decomposition of radioactive sodium nitrate wastes such as the wastes stored in the Melton Valley Storage Tanks (MVST) at Oak Ridge National Laboratory (ORNL). The literature survey summarizes expected chemical reactions and identifies the gases expected to be generated as a result of the radiolytic decomposition. The literature survey also identifies G values, which are the expression for radiation chemical yields as molecules of gas formed per 100 eV of absorbed energy, obtained from experimental studies of the radiolytic decomposition of water and sodium nitrate. 2 tabs., 32 refs.

  14. Glycine, Nitrate, and Ammonium Uptake by Classic and Modern Wheat Varieties in a Short-Term Microcosm Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract Plants take up nitrogen principally in the form of nitrate and ammonium; however, evidence is growing that they can also use organic N in the form of amino acids. Selecting varieties that better use organic N could be important in maximizing productivity in organic and low-input systems be...

  15. The removal of nitrate by nanoscale iron particles produced using the sodium borohydride method.

    PubMed

    Cho, Hyoung-Chan; Park, Sung Hoon; Ahn, Ho-Geun; Chung, Minchul; Kim, Byungwhan; Kim, Sun-Jae; Seo, Seong-Gyu; Jung, Sang-Chul

    2011-02-01

    This study was conducted to investigate removal of nitrate by nanoscale zero-valent iron (ZVI) particles in aqueous solution. ZVI particles was produced from wasted acid that is by-products of a pickling line at a steel work. The reaction activity of ZVI particles was evaluated through decomposition experiments of NO3-N aqueous solution. Addition of a larger amount of ZVI particles resulted in a higher decomposition rate. ZVI particles showed higher decomposition efficiencies than commercially purchased ZVI particles at all pH values. Both ZVIs showed a higher decomposition rate at a lower pH. Virtually no decomposition reaction was observed at pH of 4 or higher for purchased ZVI. The ZVI particles produced directly from wasted acid by the sodium borohydride method were not easy to handle because they were very small (10-200 nm) and were oxidized easily in the air. PMID:21456267

  16. Sodium nitrate alleviates functional muscle ischaemia in patients with Becker muscular dystrophy.

    PubMed

    Nelson, Michael D; Rosenberry, Ryan; Barresi, Rita; Tsimerinov, Evgeny I; Rader, Florian; Tang, Xiu; Mason, O'Neil; Schwartz, Avery; Stabler, Thomas; Shidban, Sarah; Mobaligh, Neigena; Hogan, Shomari; Elashoff, Robert; Allen, Jason D; Victor, Ronald G

    2015-12-01

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. BMD is caused by in-frame mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the sarcolemma. Among these is neuronal nitric oxide synthase mu (nNOSμ), which requires specific spectrin-like repeats (SR16/17) in dystrophin's rod domain and the adaptor protein α-syntrophin for sarcolemmal targeting. When healthy skeletal muscle is exercised, sarcolemmal nNOSμ-derived nitric oxide (NO) attenuates α-adrenergic vasoconstriction, thus optimizing perfusion. In the mdx mouse model of dystrophinopathy, this protective mechanism (functional sympatholysis) is defective, resulting in functional muscle ischaemia. Treatment with a NO-donating non-steroidal anti-inflammatory drug (NSAID) alleviates this ischaemia and improves the murine dystrophic phenotype. In the present study, we report that, in 13 men with BMD, sympatholysis is defective mainly in patients whose mutations disrupt sarcolemmal targeting of nNOSμ, with the vasoconstrictor response measured as a decrease in muscle oxygenation (near infrared spectroscopy) to reflex sympathetic activation. Then, in a single-arm, open-label trial in 11 BMD patients and a double-blind, placebo-controlled cross-over trial in six patients, we show that acute treatment with oral sodium nitrate, an inorganic NO donor without a NSIAD moiety, restores sympatholysis and improves post-exercise hyperaemia (Doppler ultrasound). By contrast, sodium nitrate improves neither sympatholysis, nor hyperaemia in healthy controls. Thus, a simple NO donor recapitulates the vasoregulatory actions of sarcolemmal nNOS in BMD patients, and constitutes a putative novel therapy for this disease. PMID:26437761

  17. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    SciTech Connect

    Ganot, Yuval E-mail: ibar@bgu.ac.il; Bar, Ilana E-mail: ibar@bgu.ac.il

    2015-09-28

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.

  18. From sodium intake restriction to nitrate supplementation: Different measures with converging mechanistic pathways?

    PubMed

    Clifton, P

    2015-12-01

    Endothelial nitric oxide synthase is at the centre of endothelial physiology producing nitric oxide which dilates blood vessels, inhibits platelet aggregation and smooth muscle cell proliferation and reduces adhesion molecule production. The laminar shear stress is a common test used usually as the flow mediated dilatation test (FMD) which is sensitive to saturated fat, sodium and potassium although with the latter ion it is possible potassium has direct effects on ion channels in the smooth muscle cell as well as the endothelial cell. High blood pressure and blood cholesterol both reduce nitric oxide production, the latter probably by increasing caveolin-1 which binds nitric oxide synthase. Saturated fat reduces nitric oxide by elevating LDL cholesterol and caveolin-1 while insulin stimulates nitric oxide synthase activity by serine phosphorylation. Polyphenols from tea, coffee and cocoa and virgin olive oil enhance FMD and eNOS activity is essential for this activity. Wine polyphenols produce mixed results and it is not clear at present that they are beneficial. Blackberries and other polyphenol-rich fruit also enhance FMD. Dietary nitrate from beetroot and green leafy vegetables is converted to nitrite by salivary microbes and then to nitric oxide and this acts directly on the smooth muscle to lower blood pressure particularly in a low oxygen environment. Dietary nitrate also improves work efficiency and improves flow mediated dilatation. PMID:26614018

  19. Continuing assessment of the 5 day sodium carbonate-ammonium nitrate extraction assay as an indicator test for silicon fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The five day sodium carbonate-ammonium nitrate extraction assay has been proposed by the AAFPCO as a standard test to identify fertilizers that provide plant-available Si. A single-lab validation test was previously performed; however, the analysis lacked any correlation to a grow-out study. To do...

  20. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  1. Growth, structural and optical studies on mixed glycine nitrate (d-GBC) crystals of non linear optical origin

    NASA Astrophysics Data System (ADS)

    Dongare, Shailesh S.; Patil, S. B.; Khandpekar, M. M.

    2015-06-01

    A semi organic crystal of mixed amino-nitrate d-GBC having non linear optical characteristics has been grown from solution by slow evaporation technique at room temperature. Transparent crystals (11 × 9 × 4 mm3) have been obtained in 3-4 weeks time. The solubility of d-GBC has been determined in water. The new d-GBC crystals have been characterized by powder XRD, FTIR and UV Spectra. The grown crystal belongs to orthorhombic system with cell parameters a=8.110 A.U, b=17.666 A.U, c=7.476 A.U and unit cell volume of 1071.14 A.U3. The presence of fundamental groups has been verified. A wide transparency window useful for optoelectronic applications is indicated by the UV Studies. The optical second harmonic generation conversion efficiency of d-GBC using characteristic 1064nm Nd-YAG laser (Kurtz and Perry method) is found to be 0.919 times that of KDP. Vickers Microhardness studies shows work hardening coefficient (n= 4.23) indicating soft category of Crystals.

  2. Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche.

    PubMed

    Urbansky, E T; Brown, S K; Magnuson, M L; Kelty, C A

    2001-01-01

    Paleogeochemical deposits in northern Chile are a rich source of naturally occurring sodium nitrate (Chile saltpeter). These ores are mined to isolate NaNO3 (16-0-0) for use as fertilizer. Coincidentally, these very same deposits are a natural source of perchlorate anion (ClO4-). At sufficiently high concentrations, perchlorate interferes with iodide uptake in the thyroid gland and has been used medicinally for this purpose. In 1997, perchlorate contamination was discovered in a number of US water supplies, including Lake Mead and the Colorado River. Subsequently, the Environmental Protection Agency added this species to the Contaminant Candidate List for drinking water and will begin assessing occurrence via the Unregulated Contaminants Monitoring Rule in 2001. Effective risk assessment requires characterizing possible sources, including fertilizer. Samples were analyzed by ion chromatography and confirmed by complexation electrospray ionization mass spectrometry. Within a lot, distribution of perchlorate is nearly homogeneous, presumably due to the manufacturing process. Two different lots we analyzed differed by 15%, containing an average of either 1.5 or 1.8 mg g-1. Inadequate sample size can lead to incorrect estimations; 100-g samples gave sufficiently consistent and reproducible results. At present, information on natural attenuation, plant uptake, use/application, and dilution is too limited to evaluate the significance of these findings, and further research is needed in these areas. PMID:11291435

  3. Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants

    PubMed Central

    Antoniou, Chrystalla; Filippou, Panagiota; Mylona, Photini; Fasoula, Dionysia; Ioannides, Ioannis; Polidoros, Alexios; Fotopoulos, Vasileios

    2013-01-01

    Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzymes. This study attempts to provide a novel insight into the effect of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the nitrosative status and nitrate metabolism of mature (40 d) and senescing (65 d) Medicago truncatula plants. Higher concentrations of SNP resulted in increased NO content, cellular damage levels and reactive oxygen species (ROS) concentration, further induced in older tissues. Senescing M. truncatula plants demonstrated greater sensitivity to SNP-induced oxidative and nitrosative damage, suggesting a developmental stage-dependent suppression in the plant’s capacity to cope with free oxygen and nitrogen radicals. In addition, measurements of the activity of nitrate reductase (NR), a key enzyme involved in the generation of NO in plants, indicated a differential regulation in a dose and time-dependent manner. Furthermore, expression levels of NO-responsive genes (NR, nitrate/nitrite transporters) involved in nitrogen assimilation and NO production revealed significant induction of NR and nitrate transporter during long-term 2.5 mM SNP application in mature plants and overall gene suppression in senescing plants, supporting the differential nitrosative response of M. truncatula plants treated with different concentrations of SNP. PMID:23838961

  4. Laboratory performance testing of an extruded bitumen containing a surrogate, sodium nitrate-based, low-level aqueous waste

    SciTech Connect

    Mattus, A.J.; Kaczmarsky, M.M.

    1986-12-15

    Laboratory results of a comprehensive, regulatory performance test program, utilizing an extruded bitumen and a surrogate, sodium nitrate-based waste, have been compiled at the Oak Ridge National Laboratory (ORNL). Using a 53 millimeter, Werner and Pfleiderer extruder, operated by personnel of WasteChem Corporation of Paramus, New Jersey, laboratory-scale, molded samples of type three, air blown bitumen were prepared for laboratory performance testing. A surrogate, low-level, mixed liquid waste, formulated to represent an actual on-site waste at ORNL, containing about 30 wt % sodium nitrate, in addition to eight heavy metals, cold cesium and strontium was utilized. Samples tested contained three levels of waste loading: that is, forty, fifty and sixty wt % salt. Performance test results include the ninety day ANS 16.1 leach test, with leach indices reported for all cations and anions, in addition to the EP Toxicity test, at all levels of waste loading. Additionally, test results presented also include the unconfined compressive strength and surface morphology utilizing scanning electron microscopy. Data presented include correlations between waste form loading and test results, in addition to their relationship to regulatory performance requirements.

  5. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    NASA Astrophysics Data System (ADS)

    Hilca, B. R.; Triyono

    2016-03-01

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO3) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate content as inhibitor.

  6. Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. [Glycine max L

    SciTech Connect

    Davis, K.R.; Darvill, A.G.; Albersheim, P.; Dell, A.

    1986-02-01

    Recent studies have demonstrated that an apparently homogeneous preparation of an ..cap alpha..-1,4-D-endopolygalacturonic acid lyase (EC 4.2,2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max (L.) Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate. The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysis of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of ..cap alpha..-1,4-D-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-..beta..-L-5-threo-hexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-..cap alpha..-1,4-D-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively.

  7. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect

    Scheele, R.D. ); Cady, H.H. )

    1992-01-01

    As part of the Hanford Site's evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL's thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  8. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect

    Scheele, R.D.; Cady, H.H.

    1992-01-01

    As part of the Hanford Site`s evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL`s thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  9. Study of the interactions of molten sodium nitrate-potassium nitrate 50 mol % mixture with water vapor and carbon dioxide in air. Final report, June 2, 1980-June 30, 1981

    SciTech Connect

    White, S.H.; Twardoch, U.M.

    1981-09-01

    The interactions of aerial components such as water, carbon dioxide, and oxygen with the binary 50 mol % mixture of sodium nitrate and potassium nitrate have been studied in the temperature range 300 to 600/sup 0/C using electrochemical methods. In addition, the behavior of nitrite ions in this melt was investigated electrochemically. By judicious choice of techniques, in situ electroanalysis was possible and the necessary relevant data to accomplish this is presented, as well as insight into the corresponding electrochemical mechanisms associated with the electroactive species. The influence of each atmospheric component was examined separately. At temperatures above 300/sup 0/C, nitrite ions are found to accumulate due to thermal decomposition of the nitrate. Water is highly soluble in the salt mixture, but no hydrolytic reactions were observed. Two methods of in situ analysis for water are described. Pure carbon dioxide is found to attack the melt at all temperatures above 250/sup 0/C producing carbonate. (LEW)

  10. A rare case of glycine encephalopathy unveiled by valproate therapy.

    PubMed

    Subramanian, Velusamy; Kadiyala, Pramila; Hariharan, Praveen; Neeraj, E

    2015-01-01

    Glycine encephalopathy (GE) or nonketotic hyperglycinemia is an autosomal recessive disorder due to a primary defect in glycine cleavage enzyme system. It is characterized by elevated levels of glycine in plasma and cerebrospinal fluid usually presenting with seizures, hypotonia, and developmental delay. In our case, paradoxical increase in seizure frequency on starting sodium valproate led us to diagnose GE. PMID:26167219

  11. Experiments on Suppression of Thermocapillary Oscillations in Sodium Nitrate Floating Half-Zones by High-frequency End-wall Vibrations

    NASA Technical Reports Server (NTRS)

    Anilkumar, A.; Grugel, R. N.; Bhowmick, J.; Wang, T.

    2004-01-01

    Experiments to suppress thermocapillary oscillations using high-frequency vibrations were carried out in sodium nitrate floating half-zones. Such a half-zone is formed by melting one end of a vertically held sodium nitrate crystal rod in contact with a hot surface at the top. Thermocapillary convection occurs in the melt because of the temperature gradient at the free surface of the melt. In the experiments, when thermocapillary oscillations occurred, the bottom end of the crystal rod was vibrated at a high frequency to generate a streaming flow in a direction opposite to that of the thermocapillary convection. It is observed that, by generating a sufficiently strong streaming flow, the thermocapillary flow can be offset enough such that the associated thermocapillary oscillations can be quenched.

  12. Effect of Dietary Sodium Nitrate Consumption on Egg Production, Egg Quality Characteristics and Some Blood Indices in Native Hens of West Azarbaijan Province

    PubMed Central

    Safary, H.; Daneshyar, M.

    2012-01-01

    The aim of the study was to evaluate the effect of sodium nitrate consumption on egg quality and quantity, and some blood parameters of native breeder hens of West Azerbaijan province. One hundred native hens were used from wk 25 to 32 of age. These birds were divided into two groups. One group was fed the control diet (CD) but the other fed the same diet supplemented with 4.2 g/kg sodium nitrate (ND). After 2 wks of adaptation, eggs were collected daily and egg mass and egg production were measured weekly for five weeks. To assess the egg quality parameters, two eggs from each replicate pen were collected for three consecutive days each week. At the end of experimental period (wk 32 of age), blood samples of 5 birds per replicate were collected from the wing vein into anticoagulant tubes. Dietary sodium nitrate didn’t affect the egg production, shell stiffness, shell thickness and Haugh unit (p>0.05) but it decreased the both egg production and egg mass during the last three weeks (wks 30, 31 and 32) (p<0.05). Furthermore, a treatment effect was observed for yolk colour (p<0.05). Both the egg production and egg mass were increased over time (p<0.05). No significant treatment×time interaction was observed for egg weight, egg production and egg mass (p>0.05). No effect of time or treatment×time were observed for shell stiffness (p>0.05). Over time, shell thickness was decreased while Haugh unit increased (p<0.05). None of the blood TP and TG or the activity of ALT, AST and LDH enzymes were affected by dietary consumption of sodium nitrate at wk 32 of age (p>0.05). Sodium nitrite decreased both the TAC and TC at wk 32 of age (p<0.001). It was concluded that the lower body antioxidant capacity of nitrate fed birds resulted in the lower performance (egg weight, egg production and egg mass). PMID:25049524

  13. A single dose of sodium nitrate does not improve oral glucose tolerance in patients with type 2 diabetes mellitus.

    PubMed

    Cermak, Naomi M; Hansen, Dominique; Kouw, Imre W K; van Dijk, Jan-Willem; Blackwell, Jamie R; Jones, Andrew M; Gibala, Martin J; van Loon, Luc J C

    2015-08-01

    Dietary nitrate (NO3(-)) supplementation has been proposed as an emerging treatment strategy for type 2 diabetes. We hypothesized that ingestion of a single bolus of dietary NO3(-) ingestion improves oral glucose tolerance in patients with type 2 diabetes. Seventeen men with type 2 diabetes (glycated hemoglobin, 7.3% ± 0.2%) participated in a randomized crossover experiment. The subjects ingested a glucose beverage 2.5 hours after consumption of either sodium NO3(-) (0.15 mmol NaNO3(-) · kg(-1)) or a placebo solution. Venous blood samples were collected before ingestion of the glucose beverage and every 30 minutes thereafter during a 2-hour period to assess postprandial plasma glucose and insulin concentrations. The results show that plasma NO3(-) and nitrite levels were increased after NaNO3(-) as opposed to placebo ingestion (treatment-effect, P = .001). Despite the elevated plasma NO3(-) and nitrite levels, ingestion of NaNO3(-) did not attenuate the postprandial rise in plasma glucose and insulin concentrations (time × treatment interaction, P = .41 for glucose, P = .93 for insulin). Despite the lack of effect on oral glucose tolerance, basal plasma glucose concentrations measured 2.5 hours after NaNO3(-) ingestion were lower when compared with the placebo treatment (7.5 ± 0.4 vs 8.3 ± 0.4 mmol/L, respectively; P = .04). We conclude that ingestion of a single dose of dietary NO3(-) does not improve subsequent oral glucose tolerance in patients with type 2 diabetes. PMID:26092495

  14. Electroreduction of nitrate ions in concentrated sodium hydroxide solutions at lead, zinc, nickel, and phthalocyanine-modified electrodes

    SciTech Connect

    Li, H. |; Chambers, J.Q.; Hobbs, D.T.

    1987-12-31

    The electrochemical reduction of nitrate in strongly alkaline solution has been studied using nickel, lead, zinc, and iron cathodes. Intermediate formation of nitrate ion and ammonia product was observed for all electrode materials. Coating a nickel sponge electrode with phthalocyanine renders it less active toward nitrate reduction, while iron electrodes appear to be activated. Electrolysis between a lead cathode and a nickel anode is an efficient means of removing nitrate from strongly alkaline solutions. Electrode pretreatment and solution conditions were chosen to correspond to those that might be encountered in practical applications, for example, the cleanup of radioactive waste solutions.

  15. Alloy 22 Localized Corrosion Susceptibility In Aqueous Solutions Of Chloride And Nitrate Salts Of Sodium And Potassium At 110 - 150?C

    SciTech Connect

    Felker, S; Hailey, P D; Lian, T; Staggs, K J; Gdowski, G E

    2006-01-17

    Alloy 22 (a nickel-chromium-molybdenum-tungsten alloy) is being investigated for use as the outer barrier of waste containers for a high-level nuclear waste repository in the thick unsaturated zone at Yucca Mountain, Nevada. Experiments were conducted to assess crevice corrosion of Alloy 22 in de-aerated aqueous solutions of chloride and nitrate salts of potassium and sodium in the temperature range 110-150 C (some limited testing was also conducted at 90 C). Electrochemical tests were run in neutral salt solutions without acid addition and others were run in salt solutions with an initial hydrogen ion concentration of 10{sup -4} molal. The Alloy 22 specimens were weld prism specimens and de-aeration was performed with nitrogen gas. No evidence of crevice corrosion was observed in the range 125-150 C. In the 120 to 160 C temperature range, the anionic concentration of stable aqueous solutions is dominated by nitrate relative to chloride. At nominally 120 C, the minimum nitrate to chloride ratio is about 4.5, and it increases to about 22 at nominally 155 C. The absence of localized corrosion susceptibility in these solutions is attributed to the known inhibiting effect of the nitrate anion. At 110 C, aqueous solutions can have dissolved chloride in excess of nitrate. Localized corrosion was observed at nitrate to chloride ratios up to 1.0, the highest ratio tested. The extent of localized corrosion was confined to the crevice region of the samples, and was limited for nitrate to chloride ratios greater than or equal to 0.3. Aqueous solution chemistry studies indicate that nitrate to chloride ratios of less than 0.5 are possible for temperatures up to nominally 116 C. However, the exact upper temperature limit is unknown and no electrochemical testing was done at these temperatures. Limited comparison between 8 m Cl aqueous solutions of Na + K on the one hand and Ca on the other indicated similar electrochemical E{sub crit} values and similar morphology of attack

  16. Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoliang; Liu, Limin; Zhen, Jiangman; Zhu, Shengcai; Li, Baowen; Sun, Kening; Wang, Peng

    BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ as a candidate electrolyte material is prepared by ethylene diamine tetraacetic acid assisted glycine-nitrate process. After calcining at 900 °C, the single-phase perovskite is obtained due to the better distribution of starting materials and the more feasible reaction kinetic conditions than solid state reaction method. The relative densities reach 96.8 and 98.4% respectively after sintering the pressed pellets at 1280 and 1400 °C for 10 h. In humidified oxygen the ionic conductivities are 0.015, 0.045, 0.101 and 0.207 S cm -1 at 500, 600, 700 and 800 °C, respectively. In air and humidified oxygen the activation energies for ionic conductivity are 66.1 and 68.9 kJ mol -1. In humidified hydrogen, however, different activation energies occur in low and high temperature ranges. The thermal expansion curve inflections at 500-800 °C with respect to possible phase changes are found. Zirconia aggregation possibly results in the higher activation energy and peculiar thermal expansion behavior. The results indicate the ethylene diamine tetraacetic acid assisted glycine-nitrate process is a very promising preparation method for solid oxide fuel cell practical application.

  17. Glycine crystallization during spray drying: the pH effect on salt and polymorphic forms.

    PubMed

    Yu, Lian; Ng, Kingman

    2002-11-01

    Spray drying of aqueous solutions of glycine revealed a strong pH effect on the salt and polymorphic forms of the resulting powders. Adjusting pH by aqueous HCl or NaOH between 1.7 and 10.0 caused the glycine solutions to crystallize as two polymorphs (alpha and gamma) of the neutral glycine ((+)H(3)NCH(2)CO(2) (-)) and as three salts (diglycine HCl, (+)H(3)NCH(2)CO(2) (-). (+)H(3)NCH(2)CO(2)H. C1(-); glycine HCl, (+)H(3)NCH(2)CO(2)H. C1(-); and sodium glycinate, H(2)NCH(2)CO(2) (-). Na(+)). Although alpha-glycine crystallized from solutions without pH adjustment (pH 6.2), changing the pH to 4.0 and 8.0 caused gamma-glycine to crystallize as the preferred polymorph. This phenomenon is attributed to the pH effect on the dimeric growth unit of alpha-glycine. The formation of alpha-glycine by spray drying solutions of neutral glycine contrasts the outcome of freeze drying, which yields beta-glycine. Because gamma-glycine is thermodynamically more stable than alpha-glycine, the crystallization of gamma-glycine by pH adjustment provides a way to improve the physical stability of glycine-containing formulations. Spray drying at low pH yielded various mixtures of neutral glycine and its HCl salts: pH 3.0, gamma-glycine and diglycine HCl; pH 2.0, diglycine HCl; and pH 1.7 (the natural pH of glycine HCl), diglycine HCl (major component) and glycine HCl (minor component). Spray drying glycine HCl solutions (pH 1.7) yielded the same diglycine HCl/glycine HCl mixture as did spray drying neutral glycine solutions acidified to pH 1.7. Obtaining diglycine HCl by spray drying glycine HCl solutions indicates a 50% loss of HCl during processing. The extent of HCl loss could be altered by changing the inlet temperature of the spray drier. Spray drying glycine solutions at pH 9.0 and 10.0 gave predominantly gamma-glycine and an additional crystalline product, possibly sodium glycinate. The glycine powders spray dried at different pH had different particle morphologies and sizes, which

  18. Sodium nitrate co-ingestion with protein does not augment postprandial muscle protein synthesis rates in older, type 2 diabetes patients.

    PubMed

    Kouw, Imre W K; Cermak, Naomi M; Burd, Nicholas A; Churchward-Venne, Tyler A; Senden, Joan M; Gijsen, Annemarie P; van Loon, Luc J C

    2016-08-01

    The age-related anabolic resistance to protein ingestion is suggested to be associated with impairments in insulin-mediated capillary recruitment and postprandial muscle tissue perfusion. The present study investigated whether dietary nitrate co-ingestion with protein improves muscle protein synthesis in older, type 2 diabetes patients. Twenty-four men with type 2 diabetes (72 ± 1 yr, 26.7 ± 1.4 m/kg(2) body mass index, 7.3 ± 0.4% HbA1C) received a primed continuous infusion of l-[ring-(2)H5]phenylalanine and l-[1-(13)C]leucine and ingested 20 g of intrinsically l-[1-(13)C]phenylalanine- and l-[1-(13)C]leucine-labeled protein with (PRONO3) or without (PRO) sodium nitrate (0.15 mmol/kg). Blood and muscle samples were collected to assess protein digestion and absorption kinetics and postprandial muscle protein synthesis rates. Upon protein ingestion, exogenous phenylalanine appearance rates increased in both groups (P < 0.001), resulting in 55 ± 2% and 53 ± 2% of dietary protein-derived amino acids becoming available in the circulation over the 5h postprandial period in the PRO and PRONO3 groups, respectively. Postprandial myofibrillar protein synthesis rates based on l-[ring-(2)H5]phenylalanine did not differ between groups (0.025 ± 0.004 and 0.021 ± 0.007%/h over 0-2 h and 0.032 ± 0.004 and 0.030 ± 0.003%/h over 2-5 h in PRO and PRONO3, respectively, P = 0.7). No differences in incorporation of dietary protein-derived l-[1-(13)C]phenylalanine into de novo myofibrillar protein were observed at 5 h (0.016 ± 0.002 and 0.014 ± 0.002 mole percent excess in PRO and PRONO3, respectively, P = 0.8). Dietary nitrate co-ingestion with protein does not modulate protein digestion and absorption kinetics, nor does it further increase postprandial muscle protein synthesis rates or the incorporation of dietary protein-derived amino acids into de novo myofibrillar protein in older, type 2 diabetes patients. PMID:27221118

  19. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    NASA Astrophysics Data System (ADS)

    Tripathy, Satya N.; Wojnarowska, Zaneta; Knapik, Justyna; Shirota, Hideaki; Biswas, Ranjit; Paluch, Marian

    2015-05-01

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10-1-106 Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai's coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  20. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts.

    PubMed

    Tripathy, Satya N; Wojnarowska, Zaneta; Knapik, Justyna; Shirota, Hideaki; Biswas, Ranjit; Paluch, Marian

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10(-1)-10(6) Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai's coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors. PMID:25978897

  1. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    SciTech Connect

    Tripathy, Satya N. Wojnarowska, Zaneta; Knapik, Justyna; Paluch, Marian; Shirota, Hideaki; Biswas, Ranjit

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  2. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses.

    PubMed

    Amooaghaie, Rayhaneh; Tabatabaei, Fatemeh; Ahadi, Ali-Mohammad

    2015-03-01

    Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials, although the mechanisms of AgNP toxicity in terrestrial plants is still unclear. We compared the toxic effects of AgNPs and AgNO3 on Brassica nigra seed germination at physiological and molecular levels. Both AgNPs and AgNO3 inhibited seed germination, lipase activity, soluble and reducing sugar contents in germinating seeds and seedlings. These reductions were more pronounced in AgNP treatments than AgNO3 treatments. Application of 200-400mg/L both AgNPs and AgNO3 increased transcription of heme oxygenase-1. However, at 800, 1600 mg/L, AgNPs or AgNO3 suppressed HO-1 expression. At 400mg/L, AgNPs or AgNO3-induced inhibitory effects on seed germination and were ameliorated by the HO-1 inducer, hematin, or NO donor, sodium nitroprusside (SNP). Additionally, 4 μM hematin and 400 μM SNP were able to markedly boost the HO/NO system. However, the addition of the HO-1 inhibitor (ZnPPIX) or the specific scavenger of NO (cPTIO) not only reversed the protective effects conferred by hematin, but also blocked the up-regulation of HO activity. In addition, hematin-drived NO production in B. niger seeds under AgNPs was confirmed. Our results at physiological and molecular levels suggested that AgNPs were more toxic than AgNO3. Based on these results, for the first time, we suggest that endogenous HO is needed to alleviate AgNPs-induced germination inhibition, which might have a possible interaction with NO. PMID:25528376

  3. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  4. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.).

    PubMed

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m(-2) s(-1)) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower (15)N-nitrate in root but higher in shoot and the higher (15)N-glycine in root but lower in shoot suggested that most (15)N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  5. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    PubMed Central

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m−2 s−1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  6. Effects of a mouthwash containing potassium nitrate, sodium fluoride, and cetylpyridinium chloride on dentin hypersensitivity: a randomized, double-blind, placebo-controlled study

    PubMed Central

    2016-01-01

    Purpose We evaluated the efficacy of a mouthwash containing potassium nitrate (KNO3) as its main component, along with sodium fluoride (NaF) and cetylpyridinium chloride (CPC). The primary endpoint was the relief of dentin hypersensitivity (DH) against the cold stimuli. The effects on other DH tests and periodontal inflammation were also evaluated. Methods We used a single-center, double-blind, placebo-controlled, randomized design. A total of 82 patients with DH (40 in the test group, 42 placebo controls) were analyzed using visual analog scales (VASs) for a cold test, a tactile test, a compressive air test, and self-reported pain during daily activities, as well as clinical parameters including plaque index, gingival index, modified sulcular bleeding index (mSBI), gingival recession, and probing depth, which were collected at baseline and after four and six weeks of mouthwash use. Results VAS scores for cold sensations, tactile sensations, the compressive air test, and self-reported pain significantly decreased from baseline during the six weeks in both groups (P<0.01), and no significant differences between the groups were found. In male patients (10 in the test group and 7 in the control group), both groups showed significant reductions in VAS scores for the cold test over the six weeks, and greater reductions were found in the test group than in the control group between four and six weeks (P=0.01) and between baseline and six weeks (P<0.01). In addition, the mSBI in the test group significantly decreased from baseline during the six weeks (P<0.01), and the changes at four and six weeks from baseline were significantly greater in the test group compared to the control group (P=0.03 and P=0.02, respectively). Conclusions A mouthwash containing a mixture of KNO3, NaF, and CPC reduced DH and gingival inflammation, however, the efficacy was comparable to the control group. PMID:26937293

  7. Catalyzed reduction of nitrate in aqueous solutions

    SciTech Connect

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH{sub 3}, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250{degree}C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs < 4 as HNO{sub 3} or NH{sub 4}NO{sub 3} is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO{sub 3} to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions.

  8. Genetics Home Reference: glycine encephalopathy

    MedlinePlus

    ... a molecule called glycine. This molecule is an amino acid , which is a building block of proteins. Glycine ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health ...

  9. Zinc Modulation of Glycine Receptors

    PubMed Central

    Trombley, Paul Q.; Blakemore, Laura J.; Hill, Brook J.

    2011-01-01

    Glycine receptors are widely expressed in the mammalian central nervous system, and previous studies have demonstrated that glycine receptors are modulated by endogenous zinc. Zinc is concentrated in synaptic vesicles in several brain regions but is particularly abundant in the hippocampus and olfactory bulb. In the present study, we used patch-clamp electrophysiology of rat hippocampal and olfactory bulb neurons in primary culture to examine the effects of zinc on glycine receptors. Although glycine has been reported to reach millimolar concentrations during synaptic transmission, most previous studies on the effects of zinc on glycine receptors have used relatively low concentrations of glycine. High concentrations of glycine cause receptor desensitization. Our current results extend our previous demonstration that the modulatory actions of zinc are largely prevented when co-applied with desensitizing concentrations of glycine (300 μM), suggesting that the effects of zinc are dependent on the state of the receptor. In contrast, pre-application of 300 μM zinc, prior to glycine (300 μM) application, causes a slowly developing inhibition with a slow rate of recovery, suggesting that the timing of zinc and glycine release also influences the effects of zinc. Furthermore, previous evidence suggests that synaptically released zinc can gain intracellular access, and we provide the first demonstration that low concentrations of intracellular zinc can potentiate glycine receptors. These results support the notion that zinc has complex effects on glycine receptors and multiple factors may interact to influence the efficacy of glycinergic transmission. PMID:21530619

  10. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredients: Sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  11. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredients: Sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  12. Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension.

    PubMed

    Pinheiro, Lucas C; Amaral, Jefferson H; Ferreira, Graziele C; Portella, Rafael L; Ceron, Carla S; Montenegro, Marcelo F; Toledo, Jose Carlos; Tanus-Santos, Jose E

    2015-10-01

    Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors. PMID:26159506

  13. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  14. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  15. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  16. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  17. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    NASA Astrophysics Data System (ADS)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  18. Glycine metabolism in rat kidney cortex slices.

    PubMed

    Rowsell, E V; Al-Naama, M M; Rowsell, K V

    1982-04-15

    When rat kidney cortex slices were incubated with glycine or [1-14C]glycine, after correcting for metabolite changes with control slices, product formation and glycine utilization fitted the requirements of the equation: 2 Glycine leads to ammonia + CO2 + serine. Evidence is presented that degradation via glyoxylate, by oxidation or transamination, is unlikely to have any significant role in kidney glycine catabolism. It is concluded that glycine metabolism in rat kidney is largely via glycine cleavage closely coupled with serine formation. 1-C decarboxylation and urea formation with glycine in rat hepatocyte suspensions were somewhat greater than decarboxylation or ammonia formation in kidney slices, showing that in the rat, potentially, the liver is quantitatively the more important organ in glycine catabolism. There was no evidence of ammonia formation from glycine with rat brain cortex, heart, spleen or diaphragm and 1-C decarboxylation was very weak. PMID:6810880

  19. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    SciTech Connect

    Caime, W.J.; Hoeffner, S.L.

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  20. A 5-day method for determination of soluble silicon concentrations in nonliquid fertilizer materials using a sodium carbonate-ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis: single-laboratory validation.

    PubMed

    Sebastian, Dennis; Rodrigues, Hugh; Kinsey, Charles; Korndörfer, Gaspar; Pereira, Hamilton; Buck, Guilherme; Datnoff, Lawrence; Miranda, Stephen; Provance-Bowley, Mary

    2013-01-01

    A 5-day method for determining the soluble silicon (Si) concentrations in nonliquid fertilizer products was developed using a sodium carbonate (Na2CO3)-ammonium nitrate (NH4NO3) extractant followed by visible spectroscopy with heteropoly blue analysis at 660 nm. The 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method can be applied to quantify the plant-available Si in solid fertilizer products at levels ranging from 0.2 to 8.4% Si with an LOD of 0.06%, and LOQ of 0.20%. This Si extraction method for fertilizers correlates well with plant uptake of Si (r2 = 0.96 for a range of solid fertilizers) and is applicable to solid Si fertilizer products including blended products and beneficial substances. Fertilizer materials can be processed as received using commercially available laboratory chemicals and materials at ambient laboratory temperatures. The single-laboratory validation of the 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method has been approved by The Association of American Plant Food Control Officials for testing nonliquid Si fertilizer products. PMID:23767347

  1. Glycine enhanced separation of Co(II) and Ni(II) with bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) by liquid-liquid extraction and supported liquid membranes

    SciTech Connect

    Reichley-Yinger, L.; Danesi, P.R.

    1985-01-01

    The extraction behavior of Co and Ni ions from aqueous nitrate solution containing glycine, and their separation by liquid-liquid extraction and supported liquid membranes (SLMs) has been studied. The separation factor between the two metals is greatly enhanced by the presence of glycine. The enhancement is due to the preferential complexation of the Ni ions by glycine. The conditional equilibrium constants of the extraction reactions and the SLM permeability coefficients have been measured. The results indicate that metal glycinate complexes are not extracted and that in presence of glycine very clean Co-Ni separation can be obtained in a single SLM pass.

  2. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    SciTech Connect

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-05-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. /sup 14/CO/sub 2/ production from the catabolism of /sup 14/C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. /sup 14/CO/sub 2/ formation from (1-/sup 14/C)- and (2-/sup 14/C)glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate.

  3. Nitrate inhibition of legume nodule growth and activity. II. Short term studies with high nitrate supply

    SciTech Connect

    Streeter, J.G.

    1985-02-01

    Soybean plants (Glycine max (L.) Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR/sup +/ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR/sup -/ rhizobia appeared to be too low to explain the inhibition of nitrogenase. Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N/sub 2/ fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR/sup +/ and one NR/sup -/.

  4. Glycine modulates membrane potential, cell volume, and phagocytosis in murine microglia.

    PubMed

    Komm, Barbara; Beyreis, Marlena; Kittl, Michael; Jakab, Martin; Ritter, Markus; Kerschbaum, Hubert H

    2014-08-01

    Phagocytes form engulfment pseudopodia at the contact area with their target particle by a process resembling cell volume (CV) regulatory mechanisms. We evaluated whether the osmoregulatory active neutral amino acid glycine, which contributes to CV regulation via activation of sodium-dependent neutral amino acid transporters (SNATs) improves phagocytosis in isotonic and hypertonic conditions in the murine microglial cell line BV-2 and primary microglial cells (pMG). In BV-2 cells and pMG, RT-PCR analysis revealed expression of SNATs (Slc38a1, Slc38a2), but not of GlyRs (Glra1-4). In BV-2 cells, glycine (5 mM) led to a rapid Na(+)-dependent depolarization of membrane potential (V mem). Furthermore, glycine increased CV by about 9%. Visualizing of phagocytosis of polystyrene microspheres by scanning electron microscopy revealed that glycine (1 mM) increased the number of BV-2 cells containing at least one microsphere by about 13%. Glycine-dependent increase in phagocytosis was suppressed by the SNAT inhibitor α-(methylamino)isobutyric acid (MeAIB), by replacing extracellular Na(+) with choline, and under hypertonic conditions, but not by the GlyR antagonist strychnine or the GlyR agonist taurine. Interestingly, hypertonicity-induced suppression of phagocytosis was rescued by glycine. These findings demonstrate that glycine increases phagocytosis in iso- and hypertonic conditions by activation of SNATs. PMID:24760586

  5. Effect of additives on mechanical and electrical properties of semi organic non linear material-γ-glycine

    NASA Astrophysics Data System (ADS)

    Ravishankar, M. N.; Chandramani, R.; Prakash, A. P. Gnana

    2012-06-01

    The semi-organic non-linear optical (NLO) crystals of γ-Glycine (G), with additives like Ammonium Oxalate (AO), Barium Nitrate (BN) and Potassium Nitrate (PN) were grown by aqueous solution method. The mechanical properties, dielectric constant, dielectric loss, AC conductivity of the grown crystals were studied. Studies confirm that the grown NLO crystals retain the merits of organic (SHG response and flexibility) and inorganic (good hardness) properties.

  6. N-[[(Mercaptoacetyl)amino]benzoyl]glycines as mucolytic agents.

    PubMed

    Martin, T A; Comer, W T

    1985-07-01

    m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series. PMID:4009614

  7. Standard thermodynamic functions of complex formation between Cu2+ and glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2013-05-01

    Heat effects of the interaction of copper(II) solutions with aminoacetic acid (glycine) are measured by the direct calorimetry at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 against a background of potassium nitrate. Standard enthalpy values for reactions of the formation of aminoacetic acid copper complexes in aqueous solutions are obtained using an equation with a single individual parameter by extrapolating it to zero ionic strength. The standard thermodynamic characteristics of complex formation in the Cu2+-glycine system are calculated. It is shown that glycine-like coordination is most likely in Cu(II) complexes with L-asparagine, L-glutamine, and L-valine.

  8. Some History of Nitrates

    NASA Astrophysics Data System (ADS)

    Barnum, Dennis W.

    2003-12-01

    The history of saltpeter is an interesting combination of chemistry, world trade, technology, politics, and warfare. Originally it was obtained from the dirt floors of stables, sheep pens, pigeon houses, caverns, and even peasants' cottages; any place manure and refuse accumulated in soil under dry conditions. When these sources became inadequate to meet demand it was manufactured on saltpeter plantations, located in dry climates, where piles of dirt, limestone, and manure were allowed to stand for three to five years while soil microbes oxidized the nitrogen to nitrate—an example of early bioengineering. Extensive deposits of sodium nitrate were mined in the Atacama Desert in northern Chile from 1830 until the mid 1920s when the mines were displaced by the Haber Ostwald process.

  9. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  10. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  11. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  12. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  13. Serine and glycine metabolism in cancer☆

    PubMed Central

    Amelio, Ivano; Cutruzzolá, Francesca; Antonov, Alexey; Agostini, Massimiliano; Melino, Gerry

    2014-01-01

    Serine and glycine are biosynthetically linked, and together provide the essential precursors for the synthesis of proteins, nucleic acids, and lipids that are crucial to cancer cell growth. Moreover, serine/glycine biosynthesis also affects cellular antioxidative capacity, thus supporting tumour homeostasis. A crucial contribution of serine/glycine to cellular metabolism is through the glycine cleavage system, which refuels one-carbon metabolism; a complex cyclic metabolic network based on chemical reactions of folate compounds. The importance of serine/glycine metabolism is further highlighted by genetic and functional evidence indicating that hyperactivation of the serine/glycine biosynthetic pathway drives oncogenesis. Recent developments in our understanding of these pathways provide novel translational opportunities for drug development, dietary intervention, and biomarker identification of human cancers. PMID:24657017

  14. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  15. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  16. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  17. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  18. 75 FR 62141 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... glycine from China (60 FR 16116). Following first five-year reviews by Commerce and the Commission... from China (65 FR 45752). Following second five-year reviews by Commerce and the Commission, effective... glycine from China (70 FR 69316). The Commission is now conducting a third review to determine...

  19. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  20. Osmotic and Chill Activation of Glycine Betaine Porter II in Listeria monocytogenes Membrane Vesicles

    PubMed Central

    Gerhardt, Paul N. M.; Tombras Smith, Linda; Smith, Gary M.

    2000-01-01

    Listeria monocytogenes is a foodborne pathogen known for its tolerance to conditions of osmotic and chill stress. Accumulation of glycine betaine has been found to be important in the organism's tolerance to both of these stresses. A procedure was developed for the purification of membranes from L. monocytogenes cells in which the putative ATP-driven glycine betaine permease glycine betaine porter II (Gbu) is functional. As is the case for the L. monocytogenes sodium-driven glycine betaine uptake system (glycine betaine porter I), uptake in this vesicle system was dependent on energization by ascorbate-phenazine methosulfate. Vesicles lacking the gbu gene product had no uptake activity. Transport by this porter did not require sodium ion and could be driven only weakly by artificial gradients. Uptake rates could be manipulated under conditions not affecting secondary transport but known to affect ATPase activity. The system was shown to be both osmotically activated and cryoactivated. Under conditions of osmotic activation, the system exhibited Arrhenius-type behavior although the uptake rates were profoundly affected by the physical state of the membrane, with breaks in Arrhenius curves at approximately 10 and 18°C. In the absence of osmotic activation, the permease could be activated by decreasing temperature within the range of 15 to 4°C. Kinetic analyses of the permease at 30°C revealed Km values for glycine betaine of 1.2 and 2.9 μM with Vmax values of 2,200 and 3,700 pmol/min · mg of protein under conditions of optimal osmotic activation as mediated by KCl and sucrose, respectively. PMID:10762257

  1. Regulation of the Neurospora crassa assimilatory nitrate reductase.

    PubMed Central

    Ketchum, P A; Zeeb, D D; Owens, M S

    1977-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase from Neurospora crassa was purified and found to be stimulated by certain amino acids, citrate, and ethylenediaminetetraacetic acid (EDTA). Stimulation by citrate and the amino acids was dependent upon the prior removal of EDTA from the enzyme preparations, since low quantities of EDTA resulted in maximal stimulation. Removal of EDTA from enzyme preparations by dialysis against Chelex-containing buffer resulted in a loss of nitrate reductase activity. Addition of alanine, arginine, glycine, glutamine, glutamate, histidine, tryptophan, and citrate restored and stimulated nitrate reductase activity from 29- to 46-fold. The amino acids tested altered the Km of NADPH-nitrate reductase for NADPH but did not significantly change that for nitrate. The Km of nitrate reductase for NADPH increased with increasing concentrations of histidine but decreased with increasing concentrations of glutamine. Amino acid modulation of NADPH-nitrate reductase activity is discussed in relation to the conservation of energy (NADPH) by Neurospora when nitrate is the nitrogen source. PMID:19423

  2. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  3. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrite and potassium nitrite. 181.34... nitrite and potassium nitrite. Sodium nitrite and potassium nitrite are subject to prior sanctions issued... without sodium or potassium nitrate, in the curing of red meat and poultry products....

  4. The glycine deportation system and its pharmacological consequences☆

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2013-01-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800 mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  5. The glycine deportation system and its pharmacological consequences.

    PubMed

    Beyoğlu, Diren; Idle, Jeffrey R

    2012-08-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  6. Synthesis, growth and characterization of γ-glycine - A promising material for optical applications

    NASA Astrophysics Data System (ADS)

    Sivakumar, N.; Jayaramakrishnan, V.; Baskar, K.; Anbalagan, G.

    2014-11-01

    Single crystals of γ-glycine have been grown by a slow evaporation solution growth technique (SEST) in presence of barium nitrate. The single crystal XRD confirms the hexagonal structure with the non-centrosymmetric space group P31. A high-resolution X-ray diffraction (HRXRD) rocking curve measurement reveals the good crystalline perfection. The linear refractive index estimated from the UV-Vis spectral data were fitted with Sellmeier's equation and the refractive index was found to be constant (n ≈ 2.55) over a wide range of wavelength. Hence, γ-glycine crystal can be used for optical waveguide applications. The relative SHG efficiency of γ-glycine crystal was studied by Kurtz and Perry powder technique. The third order nonlinear optical susceptibility was measured by Z-scan technique and the value was found to be χ(3) = 9.06 × 10-6 esu. The dispersion behavior of the linear refractive index was analyzed using the single oscillator model. The laser damage threshold value of γ-glycine crystal was estimated in single and multiple shot methods by using Nd:YAG laser.

  7. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  8. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  9. Nitrate Concentration near the Surface of Frozen Aqueous Solutions.

    PubMed

    Marrocco, Harley A; Michelsen, Rebecca R H

    2014-12-26

    Photolysis of nitrate plays an important role in the emission of nitrogen oxides from snow and ice, which affects the composition of the overlying atmosphere. In order to quantify these reactions, it is necessary to know how much nitrate is available for photolysis near the surfaces of snow and ice. The concentration of nitrate excluded from frozen solutions of nitric acid, sodium nitrate, and magnesium nitrate was measured with attenuated total reflection infrared spectroscopy. Liquid water and nitrate were observed at and near the bottom surface of frozen aqueous solutions during annealing from -18 to -2 °C. At -2 °C, the nitrate concentration was determined to be ∼1.0 mol/L for frozen NaNO(3) and Mg(NO(3))(2) solutions and ∼0.8 mol/L for frozen HNO(3) solutions. At lower temperatures, nitrate concentration ranged from 1.6 to 3.7 mol/L. Ideal thermodynamics overestimates nitrate concentration at colder temperatures where the brine is highly concentrated for all solutions. The nitrate concentration at ice surfaces is well described by bulk freezing point depression data close to the melting point of ice and for nitric acid at colder temperatures. Effects of temperature and counterions and implications for modeling snow chemistry are discussed. PMID:25495473

  10. Organic foliar Milstop shows efficacy against soybean aphid (Aphis glycines) on soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) has been produced in the United States since 1765. Soybean aphids (Aphis glycines Matsumura) were first detected on soybean in the United States in 2000 and now cause an estimated yield loss of up to US$4.9 billion annually. Organic soybean producers have few insecti...

  11. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  12. Sodium Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Sodium Share this page: Was this page helpful? Also known as: Na Formal name: Sodium Related tests: Chloride , Bicarbonate , Potassium , Electrolytes , Osmolality , Basic ...

  13. IR manifestation of water intermediates formation with sodium hydroxide and sodium salts in KBr matrix

    NASA Astrophysics Data System (ADS)

    Grinvald, I. I.; Vorotyntsev, V. M.; Vorotyntsev, I. V.; Kalagaev, I. Yu.; Vorotyntsev, A. V.; Salkina, S. V.; Petukhov, A. N.; Spirin, I. A.; Grushevskaya, A. I.

    2015-12-01

    The association of water with sodium hydroxide, sodium carbonate and sodium nitrate in a KBr matrix at room temperature, exhibited by FTIR data, was established. It was found that water intermediates form due to the intermolecular hydrogen bond and can be stabilized in the solid phase. The revealed clusters can exist in several shape of hydrates shell with different geometry and number of involved water molecules.

  14. High pressure Raman spectra of monoglycine nitrate single crystal

    NASA Astrophysics Data System (ADS)

    Carvalho, J. O.; Moura, G. M.; Dos Santos, A. O.; Lima, R. J. C.; Freire, P. T. C.; Façanha Filho, P. F.

    2016-05-01

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm- 1 point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal.

  15. High pressure Raman spectra of monoglycine nitrate single crystal.

    PubMed

    Carvalho, J O; Moura, G M; Dos Santos, A O; Lima, R J C; Freire, P T C; Façanha Filho, P F

    2016-05-15

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm(-1) point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal. PMID:26967511

  16. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase

    PubMed Central

    Ticak, Tomislav; Kountz, Duncan J.; Girosky, Kimberly E.; Krzycki, Joseph A.; Ferguson, Donald J.

    2014-01-01

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptors such as nitrate or fumarate, producing dimethylglycine and CO2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. In addition, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. They are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health. PMID:25313086

  17. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  18. Nonaqueous purification of mixed nitrate heat transfer media

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  19. Comment on Egami's concept of the evolution of nitrate respiration

    NASA Technical Reports Server (NTRS)

    Rambler, M.; Margulis, L.

    1976-01-01

    Recent results suggest that the presence of common nitrogen salts (sodium nitrite and nitrate) in the irradiation medium can markedly protect filamentous blue-green algae from potentially lethal ultraviolet irradiation. The present results as well as general biological arguments of Egami support and extend Egami's original view that anaerobic respiratory pathways using nitrite and nitrate as terminal electron acceptors evolved prior to oxygen requiring aerobic respiratory pathways.

  20. Antidepressants modulate glycine action in rat hippocampus.

    PubMed

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-12-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  1. Antidepressants modulate glycine action in rat hippocampus

    PubMed Central

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-01-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  2. Chemical basis of glycine riboswitch cooperativity

    PubMed Central

    Kwon, Miyun; Strobel, Scott A.

    2008-01-01

    The glycine binding riboswitch forms a unique tandem aptamer structure that binds glycine cooperatively. We employed nucleotide analog interference mapping (NAIM) and mutagenesis to explore the chemical basis of glycine riboswitch cooperativity. Based on the interference pattern, at least two sites appear to facilitate cooperative tertiary interactions, namely, the minor groove of the P1 helix from aptamer 1 and the major groove of the P3a helix from both aptamers. Mutation of these residues altered both the cooperativity and binding affinity of the riboswitch. The data support a model in which the P1 helix of the first aptamer participates in a tertiary interaction important for cooperativity, while nucleotides in the P1 helix of the second aptamer interface with the expression platform. These data have direct analogy to well-characterized mutations in hemoglobin, which provides a framework for considering cooperativity in this RNA-based system. PMID:18042658

  3. 68. INTERIOR VIEW LOOKING OF THE CAUSTIC SODA (SODIUM HYDROXIDE) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. INTERIOR VIEW LOOKING OF THE CAUSTIC SODA (SODIUM HYDROXIDE) BUILDING, LOOKING AT CAUSTIC SODA MEASURING TANKS. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  4. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  5. Nitrate inhibition of legume nodule growth and activity. I. Long term studies with a continuous supply of nitrate

    SciTech Connect

    Streeter, J.G.

    1985-02-01

    The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max (L.) Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NR/sup -/ R. japonicum as in nodules formed by NR/sup +/ R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. The very small concentration of nitrite found in P. vulgaris nodules was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.

  6. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L.; Hallen, Richard T.; Lilga, Michael A.

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  7. Field determination of nitrate using nitrate reductase

    SciTech Connect

    Campbell, E.R.; Corrigan, J.S.; Campbell, W.H.

    1997-12-31

    Nitrate is routinely measured in a variety of substrates - water, tissues, soils, and foods - both in the field and in laboratory settings. The most commonly used nitrate test methods involve the reduction of nitrate to nitrite via a copper-cadmium reagent, followed by reaction of the nitrite with the Griess dye reagents. The resulting color is translated into a nitrate concentration by comparison with a calibrated color chart or comparator, or by reading the absorbance in a spectrophotometer. This basic method is reliable and sufficiently sensitive for many applications. However, the cadmium reagent is quite toxic. The trend today is for continued increase in concern for worker health and safety; in addition, there are increasing costs and logistical problems associated with regulatory constraints on transport and disposal of hazardous materials. Some suppliers have substituted a zinc-based reagent powder for the cadmium in an effort to reduce toxicity. We describe here an enzyme-based nitrate detection method as an improvement on the basic Griess method that demonstrates equal or superior sensitivity, superior selectivity, and is more environmentally benign. Comparisons between the enzyme-based method and some standard field test kits being used today are made.

  8. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  9. Engineering and characterization of fluorogenic glycine riboswitches.

    PubMed

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-07-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (k(on)), and dissociation (k(off)) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. k(on) and k(off) were in the order of 10(-3)s(-1) and 10(-2)s(-1), respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  10. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES... food additive glycine may be safely used for technological purposes in food in accordance with the following prescribed conditions: (a) The additive meets the specifications of the Food Chemicals Codex,...

  11. Identification of Rotylenchulus reniformis resistant Glycine lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  12. Glycine production in severe childhood undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Although nutritionally dispensable amino acids are not essential in the diet, from a biochemical standpoint, dispensable amino acids such as glycine are essential for life. This is especially true under unique circumstances, such as when the availability of labile nitrogen for dispensabl...

  13. Engineering and characterization of fluorogenic glycine riboswitches

    PubMed Central

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-01-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  14. Effect of composition on the density of multi-component molten nitrate salts.

    SciTech Connect

    Bradshaw, Robert W.

    2009-12-01

    The density of molten nitrate salts was measured to determine the effects of the constituents on the density of multi-component mixtures. The molten salts consisted of various proportions of the nitrates of potassium, sodium, lithium and calcium. Density measurements ere performed using an Archimedean method and the results were compared to data reported in the literature for the individual constituent salts or simple combinations, such as the binary Solar Salt mixture of NaNO3 and KNO3. The addition of calcium nitrate generally ncreased density, relative to potassium nitrate or sodium nitrate, while lithium nitrate decreased density. The temperature dependence of density is described by a linear equation regardless of composition. The molar volume, and thereby, density of multi-component mixtures an be calculated as a function of temperature using a linear additivity rule based on the properties of the individual constituents.

  15. A Novel Glycinate-based Body Wash

    PubMed Central

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  16. Glycine Betaine Biosynthesized from Glycine Provides an Osmolyte for Cell Growth and Spore Germination during Osmotic Stress in Myxococcus xanthus▿

    PubMed Central

    Kimura, Yoshio; Kawasaki, Shinji; Yoshimoto, Hinae; Takegawa, Kaoru

    2010-01-01

    Glycine sarcosine methyltransferase (Gsm) and sarcosine dimethylglycine methyltransferase (Sdm) catalyze glycine betaine synthesis from glycine. Disruption of the M. xanthus gsmA (MXAN 7068) or sdmA (MXAN 3190) gene, encoding Gsm or Sdm homologue proteins, respectively, generated mutants that exhibited a longer lag period of growth and delayed spore germination under osmostress. PMID:20023011

  17. Application of classification-tree methods to identify nitrate sources in ground water

    USGS Publications Warehouse

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  18. Sodium Oxybate

    MedlinePlus

    ... if you use or have ever used street drugs, or if you have overused prescription medications. Sodium oxybate may be harmful when taken by people other than the person for whom it was prescribed. Do not sell or give your sodium oxybate to anyone else; selling or sharing it is against the law. Store ...

  19. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  20. The Chilean nitrate deposits.

    USGS Publications Warehouse

    Ericksen, G.E.

    1983-01-01

    The nitrate deposits in the arid Atacama desert of northern Chile consist of saline-cemented surficial material, apparently formed in and near a playa lake that formerly covered the area. Many features of their distribution and chemical composition are unique. The author believes the principal sources of the saline constituents were the volcanic rocks of late Tertiary and Quaternary age in the Andes and that the nitrate is of organic origin. Possible sources of the nitrate, iodate, perchlorate and chromate are discussed. -J.J.Robertson

  1. Compositions containing poly (.gamma.-glutamylcysteinyl)glycines

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1992-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  2. Aza-Glycine Induces Collagen Hyperstability.

    PubMed

    Zhang, Yitao; Malamakal, Roy M; Chenoweth, David M

    2015-10-01

    Hydrogen bonding is fundamental to life on our planet, and nature utilizes H-bonding in nearly all biomolecular interactions. Often, H-bonding is already maximized in natural biopolymer systems such as nucleic acids, where Watson-Crick H-bonds are fully paired in double-helical structures. Synthetic chemistry allows molecular editing of biopolymers beyond nature's capability. Here we demonstrate that substitution of glycine (Gly) with aza-glycine in collagen may increase the number of interfacial cross-strand H-bonds, leading to hyperstability in the triple-helical form. Gly is the only amino acid that has remained intolerant to substitution in collagen. Our results highlight the vital importance of maximizing H-bonding in higher order biopolymer systems using minimally perturbing alternatives to nature's building blocks. PMID:26368649

  3. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  4. Differential Light Induction of Nitrate Reductases in Greening and Photobleached Soybean Seedlings 1

    PubMed Central

    Kakefuda, Genichi; Duke, Stanley H.; Duke, Stephen O.

    1983-01-01

    Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3−, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3− and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3− and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3−. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3−, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3− requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3− requirement for induction were quite different. Km values for NO3− were identical for both nitrate reductases. PMID:16663185

  5. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    SciTech Connect

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  6. Thermodynamics of the formation of the Ni2+-glycine-L-histidine complex in aqueous solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.; Bychkova, S. A.

    2015-05-01

    The Ni2+-glycine-L-histidine system in aqueous solution at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 with potassium nitrate as the supporting electrolyte has been investigated calorimetrically. Standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°) of complexation have been determined. The NiLY complex is highly stable with respect to decomposition into homoligand complexes.

  7. Evaluation of mechanical properties of some glycine complexes

    SciTech Connect

    Nagaraju, D.; Raja Shekar, P. V.; Chandra, Ch. Sateesh; Rao, K. Kishan; Krishna, N. Gopi

    2014-04-24

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young’s modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  8. Evaluation of mechanical properties of some glycine complexes

    NASA Astrophysics Data System (ADS)

    Nagaraju, D.; Raja Shekar, P. V.; Chandra, Ch. Sateesh; Rao, K. Kishan; Krishna, N. Gopi

    2014-04-01

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young's modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  9. Identification and characterization of heptapeptide modulators of the glycine receptor.

    PubMed

    Cornelison, Garrett L; Pflanz, Natasha C; Tipps, Megan E; Mihic, S John

    2016-06-01

    The glycine receptor is a member of the Cys-loop receptor superfamily of ligand-gated ion channels and is implicated as a possible therapeutic target for the treatment of diseases such as alcoholism and inflammatory pain. In humans, four glycine receptor subtypes (α1, α2, α3, and β) co-assemble to form pentameric channel proteins as either α homomers or αβ heteromers. To date, few agents have been identified that can selectively modulate the glycine receptor, especially those possessing subtype specificity. We used a cell-based method of phage display panning, coupled with two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, to identify novel heptapeptide modulators of the α1β glycine receptor. This involved a panning procedure in which the phage library initially underwent subtractive panning against Human Embryonic Kidney (HEK) 293 cells expressing alternative glycine receptor subtypes before panning the remaining library over HEK 293 cells expressing the target, the α1β glycine receptor. Peptides were identified that act with selectivity on α1β and α3β, compared to α2β, glycine receptors. In addition, peptide activity at the glycine receptor decreased when zinc was chelated by tricine, similar to previous observations of a decrease in ethanol's enhancing actions at the receptor in the absence of zinc. Comparisons of the amino acid sequences of heptapeptides capable of potentiating glycine receptor function revealed several consensus sequences that may be predictive of a peptide's enhancing ability. PMID:27038522

  10. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  11. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference.

    PubMed

    Wang, Geliang; Xu, Yinong

    2008-07-01

    An efficient system of gene transformation is necessary for soybean [Glycine max (L.) Merrill] functional genomics and gene modification by using RNA interference (RNAi) technology. To establish such system, we improved the conditions of tissue culture and transformation for increasing the frequency of adventitious shoots and decreasing the browning and necrosis of hypocotyls. Adding N(6)-benzylaminopurine (BAP) and silver nitrate in culture medium enhanced the shoot formation on hypocotyls. BAP increased the frequency of the hypocotyls containing adventitious shoots, while silver nitrate increased the number of shoots on the hypocotyls. As a result, the number of adventitious shoots on hypocotyls cultured in medium containing both BAP and silver nitrate was 5-fold higher than the controls. Adding antioxidants in co-cultivation medium resulted in a significant decrease in occurrence of browning and necrosis of hypocotyls and increase in levels of beta-Glucuronidase (GUS) gene expression. Histochemical assays showed that the apical meristem of hypocotyls was the "target tissue" for Agrobacterium tumefaciens transformation of soybean. Gene silencing of functional gene by using RNAi technology was carried out under above conditions. A silencing construct containing an inverted-repeat fragment of the GmFAD2 gene was introduced into soybean by using the A. tumefaciens-mediated transformation. Several lines with high oleic acid were obtained, in which mean oleic acid content ranged from 71.5 to 81.9%. Our study demonstrates that this transgenic approach could be efficiently used to improve soybean quality and productivity through functional genomics. PMID:18347801

  12. Linear free energy relationship rate constants and basicities of N-substituted phenyl glycines in positronium-glycine complex formation

    NASA Astrophysics Data System (ADS)

    Chen, Rongti; Liang, Jiachang; Du, Youming; Cao, Chun; Yin, Dinzhen; Wang, Shuying; Zhang, Tianbao

    1987-06-01

    Complex formation between positronium and glycine derivatives in solution is discussed and the complex reaction rate constants obtained by means of a positron annihilation lifetime spectrometer with BaF 2 detectors. Rate constants mainly depend on the conjugation effect at the benzene ring and the induction effect of the substituents at the phenyl. There is a linear free energy relationship between rate constants and basicities of N-substituted phenyl glycines in orthopositronium-glycine complex formation.

  13. Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Kageyama, Hakuto; Tanaka, Yoshito; Incharoensakdi, Aran; Takabe, Teruhiro

    2015-01-01

    Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed. PMID:25421789

  14. Dietary nitrate improves cardiac contractility via enhanced cellular Ca²⁺ signaling.

    PubMed

    Pironti, Gianluigi; Ivarsson, Niklas; Yang, Jiangning; Farinotti, Alex Bersellini; Jonsson, William; Zhang, Shi-Jin; Bas, Duygu; Svensson, Camilla I; Westerblad, Håkan; Weitzberg, Eddie; Lundberg, Jon O; Pernow, John; Lanner, Johanna; Andersson, Daniel C

    2016-05-01

    The inorganic anion nitrate (NO3 (-)), which is naturally enriched in certain vegetables (e.g., spinach and beetroot), has emerged as a dietary component that can regulate diverse bodily functions, including blood pressure, mitochondrial efficiency, and skeletal muscle force. It is not known if dietary nitrate improves cardiac contractility. To test this, mice were supplemented for 1-2 weeks with sodium nitrate in the drinking water at a dose similar to a green diet. The hearts from nitrate-treated mice showed increased left ventricular pressure and peak rate of pressure development as measured with the Langendorff heart technique. Cardiomyocytes from hearts of nitrate-treated and control animals were incubated with the fluorescent indicator Fluo-3 to measure cytoplasmic free [Ca(2+)] and fractional shortening. Cardiomyocytes from nitrate-treated mice displayed increased fractional shortening, which was linked to larger Ca(2+) transients. Moreover, nitrate hearts displayed increased protein expression of the L-type Ca(2+) channel/dihydropyridine receptor and peak L-type Ca(2+) channel currents. The nitrate-treated hearts displayed increased concentration of cAMP but unchanged levels of cGMP compared with controls. These findings provide the first evidence that dietary nitrate can affect the expression of important Ca(2+) handling proteins in the heart, resulting in increased cardiomyocyte Ca(2+) signaling and improved left ventricular contractile function. Our observation shows that dietary nitrate impacts cardiac function and adds understanding to inorganic nitrate as a physiological modulator. PMID:27071401

  15. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    SciTech Connect

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  16. Acifluorfen, sodium

    Integrated Risk Information System (IRIS)

    Acifluorfen , sodium ; CASRN 62476 - 59 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  17. Sodium diethyldithiocarbamate

    Integrated Risk Information System (IRIS)

    Sodium diethyldithiocarbamate ; CASRN 148 - 18 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  18. Sodium fluoroacetate

    Integrated Risk Information System (IRIS)

    Sodium fluoroacetate ; CASRN 62 - 74 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  19. Sodium azide

    Integrated Risk Information System (IRIS)

    Sodium azide ; CASRN 26628 - 22 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  20. Sodium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for sodium cyanide is included in the

  1. Role of 3-Nitropropanoic Acid in Nitrate Formation by Aspergillus flavus1

    PubMed Central

    Doxtader, K. G.; Alexander, M.

    1966-01-01

    Doxtader, K. G. (Cornell University, Ithaca, N.Y.), and M. Alexander. Role of 3-nitropropanoic acid in nitrate formation by Aspergillus flavus. J. Bacteriol. 91:1186–1191. 1966.—Aspergillus flavus formed nitrate, 3-nitropropanoic acid (3-NPA), kojic acid, and a substance tentatively identified as N-formyl-N-hydroxy-glycine during growth in a medium with ammonium as sole nitrogen source. The concentration of the nitro compound reached a maximum prior to the appearance of nitrate; the 3-NPA level subsequently decreased with a concomitant increase in nitrate concentration. Replacement cultures of A. flavus produced nitrate from culture filtrates containing 3-NPA or from synthetic 3-NPA but not when supplied with fresh ammonium-sucrose medium, the nitrate-nitrogen formed being equivalent to 50% of the quantity of the 3-NPA-nitrogen initially present. Neither nitrate nor 3-NPA was synthesized by the fungus during growth in media with low pH or low ammonium concentrations. It is proposed that 3-NPA is either an intermediate or is in equilibrium with an intermediate in nitrification by the fungus. PMID:5929750

  2. The Effect of Potassium Nitrate on the Reduction of Phytophthora Stem Rot Disease of Soybeans, the Growth Rate and Zoospore Release of Phytophthora Sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium nitrate (KNO3) application on Phytophthora stem rot disease reduction of Glycine max (L.) Merr. cvs. Chusei-Hikarikuro and Sachiyutaka, and fungal growth and zoospore release of a Phytophthora sojae isolate were investigated under laboratory conditions. The application of 4-...

  3. Activation of presynaptic glycine receptors facilitates glycine release from presynaptic terminals synapsing onto rat spinal sacral dorsal commissural nucleus neurons

    PubMed Central

    Jeong, Hyo-Jin; Jang, Il-Sung; Moorhouse, Andrew J; Akaike, Norio

    2003-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Here we report the novel finding that presynaptic glycine autoreceptors modulate release from terminals synapsing onto rat spinal sacral dorsal commissural nucleus (SDCN) neurons. In mechanically dissociated SDCN neurons, in which functional presynaptic nerve terminals remain adherent to the isolated neurons, exogenously applied glycine (3 μM) increased the frequency of glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) without affecting their amplitudes or decay times. This suggests that glycine acts presynaptically to increase glycine release probability. Picrotoxin, at a concentration that had little direct effect on sIPSC frequency and amplitude (30 μM), significantly attenuated glycine-induced presynaptic sIPSC facilitation. The glycine-induced sIPSC frequency facilitation was completely abolished either in a Ca2+-free external solution or in the presence of 100 μM Cd2+, suggesting the involvement of extracellular Ca2+ influx into the nerve terminals. The glycine action was also completely occluded in the presence of 300 nM tetrodotoxin. In recordings from SDCN neurons in spinal cord slices, glycine (10 μM) increased evoked IPSC (eIPSC) amplitude and decreased the extent of paired-pulse facilitation. In response to brief high frequency stimulus trains the eIPSCs displayed a profound frequency-dependent facilitation that was greatly reduced by picrotoxin (30 μM). These results indicate that glycine acts at presynaptic autoreceptors, causing depolarization of the glycinergic nerve terminals, the subsequent activation of voltage-dependent Na+ and Ca2+ channels, and facilitation of glycine release. Furthermore, this presynaptic facilitation was observed under more physiological conditions, suggesting that these glycinergic autoreceptors may contribute to the integration of local inhibitory inputs to SDCN neurons. PMID:12754315

  4. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.).

    PubMed

    Watkins, Andrew J; Roussel, Erwan G; Parkes, R John; Sass, Henrik

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners. PMID:24162571

  5. Glycine receptor mechanism elucidated by electron cryo-microscopy.

    PubMed

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-10-01

    The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  6. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520.550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine/electrolyte. (a) Specifications. The product...

  7. Glycine transporter2 inhibitors: Getting the balance right.

    PubMed

    Vandenberg, Robert J; Mostyn, Shannon N; Carland, Jane E; Ryan, Renae M

    2016-09-01

    Neurotransmitter transporters are targets for a wide range of therapeutically useful drugs. This is because they have the capacity to selectively manipulate the dynamics of neurotransmitter concentrations and thereby enhance or diminish signalling through particular brain pathways. High affinity glycine transporters (GlyTs) regulate extracellular concentrations of glycine and provide novel therapeutic targets for neurological disorders. PMID:26723543

  8. New soybean accessions identified with resistance to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious root-parasite of soybean [Glycine max (L.) Merr.], in USA and worldwide. Annual yield losses in USA are estimated to be nearly $1 billion. These losses have remained stable at current levels with the use of resistant cultivars bu...

  9. New soybean accessions evaluated for reaction to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. Annual yield losses in the USA are estimated to be over $1 billion. These losses have remained stable with the use of resistant cultivars but over time nematode...

  10. Population genetic structure of the soybean aphid, Aphis glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) is an invasive pest of cultivated soybean [Glycine max (L.)] in North America. After the initial invasion in 2000, the aphid has quickly spread across most of the U.S. and Canada, suggesting large scale dispersals and rapid adaptations to new environment...

  11. Glycine Betaine as a Direct Substrate for Methanogens (Methanococcoides spp.)

    PubMed Central

    Watkins, Andrew J.; Roussel, Erwan G.; Parkes, R. John

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners. PMID:24162571

  12. NECTAR COMPOSITION OF WILD PERENNIAL GLYCINE (SOYBEAN) SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Glycine contains the cultivated annual soybean G. max, the wild annual, G. soja, and about 21 wild perennial Glycine species. The perennials are largely indigenous to Australia, but are found in Papua New Guinea, Timor, Philippines, Japan and Taiwan. Outcrossing rates in the cultivated s...

  13. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  14. Can supplemental nitrate in cured meats be used as a means of increasing residual and dietary nitrate and subsequent potential for physiological nitric oxide without affecting product properties?

    PubMed

    Usinger, Emily L; Larson, Elaine M; Niebuhr, Steven E; Fedler, Christine A; Prusa, Kenneth J; Dickson, James S; Tarté, Rodrigo; Sebranek, Joseph G

    2016-11-01

    The effects of formulated sodium nitrate plus supplemental nitrate (SN) from celery juice powder on residual nitrite, residual nitrate, rancidity, microbial growth, color, sensory properties, and proximate composition of frankfurters, cotto salami and boneless ham during storage (1°C) were studied. The products were assigned one of two treatments, which were each replicated twice: control (156ppm sodium nitrite) or SN (156ppm sodium nitrite and 1718ppm sodium nitrate in combination with 2% VegStable 502). Sensory parameters and proximate composition were measured once for each replication. All other analytical measurements were conducted at regular intervals for 97-98days. The SN showed no increase in residual nitrite compared to the control. No changes (P>0.05) were observed in residual nitrate during storage for any of the products. The results showed that addition of SN did not significantly alter most physical, chemical or microbial properties of cured meat products during refrigerated storage, but some product dependent sensory effects were observed. PMID:27411075

  15. Low sodium level

    MedlinePlus

    Low sodium level is a condition in which the amount of sodium (salt) in the blood is lower ... and this causes many of the symptoms of low sodium. With low sodium level (hyponatremia), the imbalance of ...

  16. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  17. Thermodynamics and mechanisms of glycine solvation in aqueous NaCl and KCl solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Roy, S.; Hossain, A.; Mahali, K.; Dolui, B. K.

    2015-11-01

    In the present study the solubility of glycine in aqueous sodium chloride and potassium chloride solution was determined under different experimental conditions using `formol titrimetry' method. The thermodynamic parameters like standard transfer Gibbs energies and entropies have been evaluated at 298.15 K. Other important parameters like molar volume, densities, solvent diameter, etc., of the experimental solutions have also been determined in this study. The above mentioned parameters have been used to determine ∆ t,ch 0 ( i)i.e., chemical effects of the transfer Gibbs energies and T∆ t, ch 0 ( i)i.e., chemical effects of the transfer entropy. The solvation of glycine is influenced by different factors such as nature of the solute, interactions between solute and solvents, etc., which has been explained by different physical and analytical approach.

  18. Effect of Nutrient/Carbon Supplements on Biological Phosphate and Nitrate Uptake by Protozoan Isolates

    NASA Astrophysics Data System (ADS)

    Akpor, O. B.; Momba, M. N. B.; Okonkwo, J.

    This study was aimed at investigating the effect of nine different nutrient/carbon supplements in mixed liquor on nutrient uptake ability of three wastewater protozoan isolates, which have previously been screened for phosphate and nitrate uptake efficiency. The results revealed that over 50% of phosphate was removed in the presence of sodium acetate, glucose or sucrose. Similarly, nitrate uptake of over 60% was observed in the presence of sodium acetate, sodium succinate, glucose or sucrose. These trends were common in all the isolates. Chemical Oxygen Demand (COD) removal in the mixed liquor was only found to be significantly removed in mixed liquors that were supplemented with glucose, sucrose or sodium succinate. In the presence of sodium acetate, COD was observed to increase. The findings of this investigation have revealed that nutrient uptake and COD removal by the test protozoan isolates may be dependent primarily on the initial nutrient supplement in mixed liquor.

  19. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  20. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  1. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  2. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  3. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  4. Low sodium diet (image)

    MedlinePlus

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ...

  5. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  6. Ammonium nitrate explosive systems

    SciTech Connect

    Coburn, M.D.; Stinecipher, M.M.

    1981-11-17

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  7. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  8. Positive Modulation of the Glycine Receptor by Means of Glycine Receptor–Binding Aptamers

    PubMed Central

    Aneiros, Eduardo; Blank, Michael; Mueller, Johan; Nyman, Eva; Blind, Michael; Dabrowski, Michael A.; Andersson, Christin V.; Sandberg, Kristian

    2015-01-01

    According to the gate control theory of pain, the glycine receptors (GlyRs) are putative targets for development of therapeutic analgesics. A possible approach for novel analgesics is to develop a positive modulator of the glycine-activated Cl− channels. Unfortunately, there has been limited success in developing drug-like small molecules to study the impact of agonists or positive modulators on GlyRs. Eight RNA aptamers with low nanomolar affinity to GlyRα1 were generated, and their pharmacological properties analyzed. Cytochemistry using fluorescein-labeled aptamers demonstrated GlyRα1-dependent binding to the plasma membrane but also intracellular binding. Using a fluorescent membrane potential assay, we could identify five aptamers to be positive modulators. The positive modulation of one of the aptamers was confirmed by patch-clamp electrophysiology on L(tk) cells expressing GlyRα1 and/or GlyRα1β. This aptamer potentiated whole-cell Cl− currents in the presence of low concentrations of glycine. To our knowledge, this is the first demonstration ever of RNA aptamers acting as positive modulators for an ion channel. We believe that these aptamers are unique and valuable tools for further studies of GlyR biology and possibly also as tools for assay development in identifying small-molecule agonists and positive modulators. PMID:26071243

  9. Sources of nitrate yields in the Mississippi River Basin.

    PubMed

    David, Mark B; Drinkwater, Laurie E; McIsaac, Gregory F

    2010-01-01

    Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico. PMID:21043271

  10. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes.

    PubMed

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  11. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes

    PubMed Central

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  12. Corrosion-electrochemical properties of the anodic oxide films formed on aluminum in a chloride-nitrate melt in a 0.5 M Aqueous NaCl solution

    NASA Astrophysics Data System (ADS)

    Elshina, L. A.; Malkov, V. B.; Kudyakov, V. Ya.; Gnedenkov, S. V.; Sinebryukhov, S. L.; Egorkin, V. S.; Mashtalyar, D. V.

    2014-02-01

    The corrosion-electrochemical behavior of aluminum is studied in a chloride-nitrate melt containing 50 wt % eutectic mixture of cesium and sodium chlorides and 50 wt % sodium nitrate in the temperature range 790-900 K in an argon atmosphere.

  13. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  14. DETECTABILITY OF GLYCINE IN SOLAR-TYPE SYSTEM PRECURSORS

    SciTech Connect

    Jiménez-Serra, Izaskun; Testi, Leonardo; Caselli, Paola; Viti, Serena E-mail: ltesti@eso.org E-mail: sv@star.ucl.ac.uk

    2014-06-01

    Glycine (NH{sub 2}CH{sub 2}COOH) is the simplest amino acid relevant to life. Its detection in the interstellar medium is key to understanding the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has been extensively searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant to the study of pre-biotic chemistry in young solar system analogs. We present one-dimensional spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapor has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (∼0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ∼10{sup –4} with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility of detecting glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.

  15. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  16. Destruction of nitrates, organics, and ferrocyanides by hydrothermal processing

    SciTech Connect

    Robinson, J.M.; Foy, B.R.; Dell`Orco, P.C.; Anderson, G.; Archuleta, F.; Atencio, J.; Breshears, D.; Brewer, R.; Eaton, H.; McFarland, R.; McInroy, R.; Reynolds, T.; Sedillo, M.; Wilmanns, E.; Buelow, S.J.

    1993-03-01

    This work targets the remediation of the aqueous mixed wastes stored in the underground tanks at the Department of Energy site in Hanford, Washington via hydrothermal processing. The feasibility of destroying the nitrate, organic, and ferrocyanide components of the wastes under supercritical and near critical conditions (623 {degree}K to 873{degree}K, 22.1 MPa to 103.4 MPa) is addressed. A novel method was developed for determining the solubility of nitrate salts in supercritical water solutions at pressures ranging from 24.8 MPa to 30.3 MPa (3600 psi to 4400 psi) and temperatures from 723 {degree}K to 798 {degree}K. Sodium nitrate solubilities ranged from 293 mg/kg at 24.8 MPa and 798 {degree}K to 1963 mg/kg at 30.3 MPa and 723{degree}K. Solubility was found to vary directly with pressure, and inversely with temperature. An empirical relationship was developed for the estimation of sodium nitrate solubility at water densities between 0.08 and 0.16 kg/L and temperatures between 723{degree}K and 798{degree}K. A small volume batch reactor equipped with optical diagnostics was used to monitor the phase behavior of a diluted variant of a tank 101-SY simulant. Preliminary results suggest that a single phase is formed at 83 MPa at 773 {degree}K.

  17. Nitrate biosensors and biological methods for nitrate determination.

    PubMed

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. PMID:27130094

  18. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions.

    PubMed

    Wang, Xiaoli; Tang, Dongmei; Huang, Danfeng

    2014-02-01

    The physiological and differential proteomic responses of pakchoi leaves and roots to glycine-nitrogen (Gly-N) treatments were determined. Two pakchoi (Brassica campestris ssp. chinensis L. Makino. var. communis Tsen et Lee) cultivars, 'Huawang' and 'Wuyueman', were grown under sterile hydroponic conditions with different N forms (Gly-N and nitrate-N). Gly-N-treated pakchoi exhibited decreased fresh weights, total N uptake, leaf areas, and net photosynthetic rates than those treated with nitrate-N. Differentially regulated proteins were selected after image analysis and identified using MALDI-TOF MS. A total of 23 proteins was up- or down-regulated following Gly-N treatment. These spots are involved in several processes, such as energy synthesis, N metabolism, photosynthesis, and active antioxidant defense mechanisms, that could enhance plant adaptation to Gly-N. The superior Gly tolerance of 'Huawang' was predominantly associated with a less severe down-regulation of proteins that are involved in the electron transport chain and N metabolism. Other factors could include less ribulose-1,5-bisphosphate carboxylase/oxygenase turnover or a higher up-regulation of stress defense proteins. These characteristics demonstrated that maintaining ATP synthesis, N metabolism, photosynthesis, and active defense mechanisms play a critical role in pakchoi adaptation to Gly-N. PMID:24429133

  19. Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzyl isothiocyanate (BITC) applied at micromolar doses decreased Heterodera glycines J2 movement, H. glycines hatching, and reproduction of H. glycines on soybean, Glycine max. Direct exposure of J2 to 30 microM BITC caused an immediate decrease (17%; P < 0.05) in J2 movement relative to 1% methan...

  20. Nitrate therapy in the elderly.

    PubMed

    Alpert, J S

    1990-06-01

    Changes in the heart and blood vessels with age alter the response of the cardiovascular system to pharmacologic agents. Nitrate plasma half-life is longer and volume of distribution is larger in older persons. Apparently, these pharmacokinetic differences in older persons lead to increased venous smooth muscle responsivity to nitrates which, in turn, leads to greater reductions in central venous and pulmonary arterial pressures after nitrate administration. This is probably the explanation for the greater frequency of nitrate-induced severe hypotension and bradycardia in elderly patients with myocardial infarction compared with younger patients. Clinicians should be cognizant of the changes in the cardiovascular system which occur with age that sensitize the elderly patient to the action of organic nitrates. Initial dosages of nitrates should accordingly be less than in younger patients. PMID:2112335

  1. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACYL NITRATES

    EPA Science Inventory

    Salmonella typhimurium strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chlororoxyacetyl nitrate (CPAN). as phase concentrations for the individ...

  2. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACL NITRATES

    EPA Science Inventory

    Salmonella typhimurium, strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chloroperoxyacetyl nitrate (CPAN). as-phase concentrations for t...

  3. Mode of Action of Glycine on the Biosynthesis of Peptidoglycan

    PubMed Central

    Hammes, W.; Schleifer, K. H.; Kandler, O.

    1973-01-01

    The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to

  4. Viscosity of multi-component molten nitrate salts : liquidus to 200 degrees C.

    SciTech Connect

    Bradshaw, Robert W.

    2010-03-01

    The viscosity of molten salts comprising ternary and quaternary mixtures of the nitrates of sodium, potassium, lithium and calcium was determined experimentally. Viscosity was measured over the temperature range from near the relatively low liquidus temperatures of he individual mixtures to 200C. Molten salt mixtures that do not contain calcium nitrate exhibited relatively low viscosity and an Arrhenius temperature dependence. Molten salt mixtures that contained calcium nitrate were relatively more viscous and viscosity increased as the roportion of calcium nitrate increased. The temperature dependence of viscosity of molten salts containing calcium nitrate displayed curvature, rather than linearity, when plotted in Arrhenius format. Viscosity data for these mixtures were correlated by the Vogel-Fulcher- ammann-Hesse equation.

  5. Spectral Luminescent Properties of the Glycine Molecule in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    General, A. A.; Migovich, M. I.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-01-01

    We have experimentally studied the luminescence spectra of glycine powder in the plasma of a repetitively pulsed longitudinal discharge in argon-glycine and helium-glycine mixtures. We have identified the main fragments of the glycine molecule emitting in the 200-1000 nm region. The emitting molecules due to fragmentation of glycine and dissociation of the carboxyl (-COOH) and amino (-NH2) groups are nitrogen, carbon monoxide, and cyanogen molecules.

  6. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  7. Effect of temperature and pressure on the protonation of glycine

    PubMed Central

    Izatt, R. M.; Oscarson, J. L.; Gillespie, S. E.; Grimsrud, H.; Renuncio, J. A. R.; Pando, C.

    1992-01-01

    Flow calorimetry has been used to study the interaction of glycine with protons in water at temperatures of 298.15, 323.15, and 348.15 K and pressures up to 12.50 MPa. By combining the measured heat for glycine solutions titrated with NaOH with the heat of ionization for water, the enthalpy of protonation of glycine is obtained. The reaction is exothermic at all temperatures and pressures studied. The effect of pressure on the enthalpy of reaction is very small. The experimental heat data are analyzed to yield equilibrium constant (K), enthalpy change (ΔH), and entropy change (ΔS) values for the protonation reaction as a function of temperature. These values are compared with those reported previously at 298.15 K. The ΔH and ΔS values increase (become more positive), whereas log K values decrease, as temperature increases. The trends for ΔH and ΔS with temperature are opposite to those reported previously for the protonation of several alkanolamines. However, log K values for proton interaction with both glycine and the alkanolamines decrease with increasing temperature. The effect of the nitrogen atom substituent on log K for protonation of glycine and alkanolamines is discussed in terms of changes in long-range and short-range solvent effects. These effects are used to explain the difference in ΔH and ΔS trends between glycine protonation and those found earlier for alkanolamine protonation. PMID:19431832

  8. Regulation of Serine, Glycine, and One-Carbon Biosynthesis.

    PubMed

    Stauffer, George V

    2004-12-01

    The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins. PMID:26443363

  9. Low sodium level

    MedlinePlus

    Low sodium level is a condition in which the amount of sodium (salt) in the blood is lower than normal. The ... Sodium is found mostly in the body fluids outside the cells. It is very important for maintaining ...

  10. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    PubMed

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production. PMID

  11. Blockade of glycine transporter 1 by SSR-504734 promotes cognitive flexibility in glycine/NMDA receptor-dependent manner.

    PubMed

    Nikiforuk, Agnieszka; Kos, Tomasz; Rafa, Dominik; Behl, Berthold; Bespalov, Anton; Popik, Piotr

    2011-01-01

    Accumulating evidence suggests that cognitive processes may be regulated by glycine concentration in the local environment of glutamate N-methyl-d-aspartate receptor (NMDAR). The concentration of glycine is controlled, among other factors, by the glycine transporter 1 (GlyT1). While GlyT1 inhibitors are developed for a number of indications including cognitive improvement, little is known about their effects in tasks depending on prefrontal cortical function. We examined the effect of GlyT1 inhibitor SSR-504734 on cognitive flexibility assessed in the attentional set-shifting task in rats (ASST). The second goal was to elucidate whether SSR-504734 effect has been due to the compound's action at glycine/NMDAR site. Rats treated with SSR-504734 (3 and 10 mg/kg, IP) required significantly less trials to criteria during extra-dimensional shift (EDs) phase of the ASST. The effect of SSR-504734 (3 mg/kg) was completely prevented by the glycine/NMDAR site antagonist, L-687,414 (30 mg/kg, IP) that by itself exerted no effect on cognitive flexibility. Present study demonstrates that the elevation of glycine concentration through the blockade of its reuptake facilitates cognitive flexibility. As this effect was fully blocked by glycine/NMDAR antagonist, SSR-504734-induced cognitive improvement is likely mediated through glycine action at NMDAR. It is suggested that GlyT1 inhibitors like SSR-504734 may represent a useful pharmacological approach for cognitive enhancement, especially in domains critically affected in schizophrenia. PMID:21530555

  12. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  13. Electronic structure analysis of glycine oligopeptides and glycine-tryptophan oligopeptides

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yu, Shuai; Yang, Mengshi; Xu, Can; Wang, Yu; Chen, Liang

    2014-03-01

    Using the density functional theory (DFT), we have studied the energy gap, charge distribution, density of states and chemical activity of glycine (Gn) oligopeptides and glycine-tryptophan (GWn) oligopeptides. The results show that: (1) with the increasing of Gn residues, the chemical activity of Gn oligopeptides focuses on the terminal amino and carboxyl groups, which may be the main cause of self-assembly behaviors in Gn oligopeptide chains; (2) the chemical reaction activity has size effect. The size effect disappears when the residue number exceeds 7. The Gn oligopeptides with 7 residues is the shortest chain which has the same reaction activity as that of longer size peptide; (3) the activity of GWn oligopeptides presents size effect and odd-even effect. However, the size effect and odd-even effect both vanish when the chain of GWn oligopeptides is longer than 12 residues. (4) It is difficult in self-assembly for GWn oligopeptide chains, because its activity mainly focuses on the indole ring and the Gn residues at the end of oligopeptides. (5) The big side groups result in the very near energy level of LUMO and LUMO+1 of GWn oligopeptide chains. It shows that the electron-accepting ability of oligopeptide chainsis composed of two orbitals addition. The results in the paper may help us understand the changes of physical and chemical properties of peptide synthesis process.

  14. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  15. Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls.

    PubMed

    Tinajero-Trejo, Mariana; Denby, Katie J; Sedelnikova, Svetlana E; Hassoubah, Shahira A; Mann, Brian E; Poole, Robert K

    2014-10-24

    CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3(-)). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)(3)Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo. PMID:25193663

  16. Carbon Monoxide-releasing Molecule-3 (CORM-3; Ru(CO)3Cl(Glycinate)) as a Tool to Study the Concerted Effects of Carbon Monoxide and Nitric Oxide on Bacterial Flavohemoglobin Hmp

    PubMed Central

    Tinajero-Trejo, Mariana; Denby, Katie J.; Sedelnikova, Svetlana E.; Hassoubah, Shahira A.; Mann, Brian E.; Poole, Robert K.

    2014-01-01

    CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3−). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)3Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo. PMID:25193663

  17. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  18. Mortality of nitrate fertiliser workers.

    PubMed

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-08-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  19. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2006-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Studies at PNNL are directed toward new solvent formulation for the practical sodium pseudohydroxide extraction systems.

  20. GABAA- and glycine-mediated inhibitory modulation of the cough reflex in the caudal nucleus tractus solitarii of the rabbit.

    PubMed

    Cinelli, Elenia; Iovino, Ludovica; Bongianni, Fulvia; Pantaleo, Tito; Mutolo, Donatella

    2016-09-01

    Cough-related sensory inputs from rapidly adapting receptors (RARs) and C fibers are processed by second-order neurons mainly located in the caudal nucleus tractus solitarii (NTS). Both GABAA and glycine receptors have been proven to be involved in the inhibitory control of second-order cells receiving RAR projections. We investigated the role of these receptors within the caudal NTS in the modulation of the cough reflex induced by either mechanical or chemical stimulation of the tracheobronchial tree in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of the receptor antagonists bicuculline and strychnine as well as of the receptor agonists muscimol and glycine were performed. Bicuculline (0.1 mM) and strychnine (1 mM) caused decreases in peak abdominal activity and marked increases in respiratory frequency due to decreases in both inspiratory time (Ti) and expiratory time (Te), without concomitant changes in arterial blood pressure. Noticeably, these microinjections induced potentiation of the cough reflex consisting of increases in the cough number associated with decreases either in cough-related Ti after bicuculline or in both cough-related Ti and Te after strychnine. The effects caused by muscimol (0.1 mM) and glycine (10 mM) were in the opposite direction to those produced by the corresponding antagonists. The results show that both GABAA and glycine receptors within the caudal NTS mediate a potent inhibitory modulation of the pattern of breathing and cough reflex responses. They strongly suggest that disinhibition is one important mechanism underlying cough regulation and possibly provide new hints for novel effective antitussive strategies. PMID:27402692

  1. Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Rongyu; Yang, Xu; Zhang, Dong; Qiu, Hailong; Fu, Qiang; Na, Hui; Guo, Zhendong; Du, Fei; Chen, Gang; Wei, Yingjin

    2015-07-01

    ZnFe2O4 nano particles as an anode material for lithium ion batteries are prepared by the glycine-nitrate combustion method. The mixture of styrene butadiene rubber and sodium carboxyl methyl cellulose (SBR/CMC) with the weight ratio of 1:1 is used as the binder for ZnFe2O4 electrode. Compared with the conventional polyvinylidene-fluoride (PVDF) binder, the SBR/CMC binder is much cheaper and environment benign. More significantly, this water soluble binder significantly improves the rate capability and cycle stability of ZnFe2O4. A discharge capacity of 873.8 mAh g-1 is obtained after 100 cycles at the 0.1C rate, with a very little capacity fading rate of 0.06% per cycle. Studies show that the SBR/CMC binder enhances the adhesion of the electrode film to the current collector, and constructs an effective three-dimensional network for electrons transport. In addition, the SBR/CMC binder helps to form a uniform SEI film thus prohibiting the formation of lithium dendrite. Electrochemical impedance spectroscopy shows that the SBR/CMC binder lowers the ohmic resistance of the electrode, depresses the formation of SEI film and facilitates the charge transfer reactions at the electrode/electrolyte interface. These advantages highlight the potential applications of SBR/CMC binder in lithium ion batteries.

  2. Nitrate Effects on Nodule Oxygen Permeability and Leghemoglobin (Nodule Oximetry and Computer Modeling).

    PubMed Central

    Denison, R. F.; Harter, B. L.

    1995-01-01

    Two current hypotheses to explain nitrate inhibition of nodule function both involve decreased O2 supply for respiration in support of N2 fixation. This decrease could result from either (a) decreased O2 permeability (PO) of the nodule cortex, or (b) conversion of leghemoglobin (Lb) to an inactive, nitrosyl form. These hypotheses were tested using alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus) plants grown in growth pouches under controlled conditions. Nodulated roots were exposed to 10 mM KNO3 or KCI. Fractional oxygenation of Lb under air (FOLair), relative concentration of functional Lb, apparent PO, and O2-saturated central zone respiration rate were all monitored by nodule oximetry. Apparent PO and FOLair in nitrate-treated nodules decreased to <50% of values for KCI controls within 24 h, but there was no decrease in functional Lb concentration during the first 72 h. In nitrate-treated alfalfa, but not in birdsfoot trefoil, FOLair, apparent PO, and O2-saturated central zone respiration rate decreased during each light period and recovered somewhat during the subsequent dark period. This species difference could be explained by greater reliance on photoreduction of nitrate in alfalfa than in birdsfoot trefoil. Computer simulations extended the experimental results, showing that previously reported decreases in apparent PO of Glycine max nodules with nitrate exposure cannot be explained by hypothetical decreases in the concentration or O2 affinity of Lb. PMID:12228439

  3. Diclofenac sodium.

    PubMed

    Small, R E

    1989-08-01

    The pharmacology, pharmacokinetics, clinical efficacy, adverse effects, and dosage of diclofenac sodium are reviewed. Diclofenac, the first nonsteroidal anti-inflammatory agent (NSAID) to be approved that is a phenylacetic acid derivative, competes with arachidonic acid for binding to cyclo-oxygenase, resulting in decreased formation of prostaglandins. The drug has both analgesic and antipyretic activities. Diclofenac is efficiently absorbed from the gastrointestinal tract; peak plasma concentrations occur 1.5 to 2.0 hours after ingestion in fasting subjects. Even though diclofenac has a relatively short elimination half-life in plasma (1.5 hours), it persists in synovial fluid. The drug is metabolized in the liver and is eliminated by urinary and biliary excretion. In clinical trials, diclofenac was as effective as aspirin, diflunisal, indomethacin, sulindac, ibuprofen, ketoprofen, and naproxen in improving function and reducing pain in patients with rheumatoid arthritis. For treatment of osteoarthritis, diclofenac was equivalent in efficacy to aspirin, diflunisal, indomethacin, sulindac, ibuprofen, ketoprofen, naproxen, flurbiprofen, mefenamic acid, and piroxicam. Diclofenac was as effective as indomethacin or sulindac in treating ankylosing spondylitis. The most frequent adverse effects reported for diclofenac were gastrointestinal, but these effects were fewer and less serious than occurred with aspirin or indomethacin; in addition, diclofenac caused fewer central nervous system reactions than indomethacin. Diclofenac is administered in divided doses with meals. The recommended total daily dosage is 100 to 150 mg (osteoarthritis and ankylosing spondylitis) or 150 to 200 mg (rheumatoid arthritis). Diclofenac is effective, but no more so than other NSAIDs. It is structurally distinct and offers another choice in the treatment of rheumatological conditions. PMID:2670397

  4. A Role for Accumbal Glycine Receptors in Modulation of Dopamine Release by the Glycine Transporter-1 Inhibitor Org25935

    PubMed Central

    Lidö, Helga Höifödt; Ericson, Mia; Marston, Hugh; Söderpalm, Bo

    2010-01-01

    Accumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc) as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935–ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol's effects within this system. PMID:21556278

  5. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  6. Sodium blood test

    MedlinePlus

    ... foods. The most common form of sodium is sodium chloride, which is table salt. This test is usually done as part of an electrolyte or basic metabolic panel blood test . Your blood sodium level represents a balance between the sodium and ...

  7. A NO way to BOLD? Dietary nitrate alters the hemodynamic response to visual stimulation.

    PubMed

    Aamand, Rasmus; Dalsgaard, Thomas; Ho, Yi-Ching Lynn; Møller, Arne; Roepstorff, Andreas; Lund, Torben E

    2013-12-01

    Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway. On this basis, we hypothesized that dietary nitrate (NO3-) could influence the brain's hemodynamic response to neuronal stimulation. In the present study, 20 healthy male participants were given either sodium nitrate (NaNO3) or sodium chloride (NaCl) (saline placebo) in a crossover study and were shown visual stimuli based on the retinotopic characteristics of the visual cortex. Our primary measure of the hemodynamic response was the blood oxygenation level dependent (BOLD) response measured with high-resolution functional magnetic resonance imaging (0.64×0.64×1.8 mm) in the visual cortex. From this response, we made a direct estimate of key parameters characterizing the shape of the BOLD response (i.e. lag and amplitude). During elevated nitrate intake, corresponding to the nitrate content of a large plate of salad, both the hemodynamic lag and the BOLD amplitude decreased significantly (7.0±2% and 7.9±4%, respectively), and the variation across activated voxels of both measures decreased (12.3±4% and 15.3±7%, respectively). The baseline cerebral blood flow was not affected by nitrate. Our experiments demonstrate, for the first time, that dietary nitrate may modulate the local cerebral hemodynamic response to stimuli. A faster and smaller BOLD response, with less variation across local cortex, is consistent with an enhanced hemodynamic coupling during elevated nitrate intake. These findings suggest that dietary patterns, via the nitrate-nitrite-NO pathway, may be a potential way to affect key properties of neurovascular coupling. This could have major clinical implications, which remain to be explored. PMID:23827330

  8. Nitrate and chloride in Antarctic ice cores - postdepositional effects and the preservation of atmospheric signals (Invited)

    NASA Astrophysics Data System (ADS)

    Pasteris, D.; McConnell, J. R.; Edwards, R.; Isaksson, E. D.; Albert, M. R.

    2013-12-01

    Continuous nitrate and chloride measurements have been made from an array of ice cores located in interior Dronning Maud Land that cover the last 2000 years. The average snow accumulation rates at the ice core sites range from 2.7 to 10 cm weq yr-1, which has enabled the study of how accumulation rate affects the preservation and diffusion of nitrate and chloride in the snow. High-resolution dating of the ice cores by tie-point matching with the WAIS Divide ice core has allowed the effects of temporal changes in accumulation rate to also be observed. Results show a strong linear dependence of nitrate concentration on site-average accumulation rate, suggesting that fresh snow concentrations and reemission rates of nitrate from the snowpack are homogenous across the study area. Bulk chloride to sodium ratios over scales greater than 1 m are close to bulk sea salt composition at all of the sites, suggesting that little net gain or loss of volatile chloride has occurred. However, the chloride signal is heavily diffused relative to sodium and the extent of diffusion does not increase with depth in the ice cores, suggesting that it is a near-surface phenomenon. Possible mechanisms behind the observed chloride diffusion pattern will be discussed. Lastly, a sustained decline in nitrate concentration occurred during the Little Ice Age (LIA, 1500-1900 C.E.), but the high-resolution snow accumulation records show that it is not caused by a decrease in accumulation rate during that time. The nitrate record is highly correlated with published methane isotope data from Antarctica (δ13CH4), suggesting that the decline during the LIA was caused by a decrease in a biomass burning nitrate source. Average nitrate concentration versus site-average inverse accumulation rate Composite time series of nitrate (thick black line), δ13CH4 (thin red line with diamonds), and black carbon (dashed black line).

  9. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    PubMed Central

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  10. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    PubMed

    Tiso, Mauro; Schechter, Alan N

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome