Science.gov

Sample records for glycol copolymers evaluation

  1. Improved oral absorption of doxorubicin by amphiphilic copolymer of lysine-linked ditocopherol polyethylene glycol 2000 succinate: in vitro characterization and in vivo evaluation.

    PubMed

    Wang, Jinling; Li, Lin; Du, Yuqian; Sun, Jin; Han, Xiaopeng; Luo, Cong; Ai, Xiaoyu; Zhang, Qi; Wang, Yongjun; Fu, Qiang; Yang, Zhifu; He, Zhonggui

    2015-02-01

    In the previous study, we have synthesized an amphiphilic copolymer of nanostructure-forming material and P-glycoprotein (P-gp) inhibitor, lysine-linked ditocopherol polyethylene glycol 2000 succinate (PLV2K). The cytotoxicty in vitro and anticancer efficacy in vivo after intravenous administration of DOX-loaded PLV2K micelles (PLV2K-DOX) was found more effective than DOX solution (DOX-Sol). However, its performance and mechanism on oral absorption of doxorubicin are not well understood yet. PLV2K-DOX are spherical micelles with a narrow size distribution of 20.53 ± 2.44 nm. With an in situ intestinal perfusion model, the intestinal absorption potential of PLV2K-DOX was evaluated in comparison with DOX-Sol. PLV2K-DOX was specifically absorbed in duodenum and ileum sites of rats after oral administration. The intestinal absorption rate (Ka) of PLV2K-DOX is 3.19-, 1.61-, and 1.80-fold higher than that of DOX-Sol in duodenum, jejunum, and ileum, respectively. In Caco-2 uptake studies, PLV2K-DOX micelles significantly improve the internalized amount of DOX by P-gp inhibition of free PLV2K copolymer and endocytosis of DOX-loaded nanoparticles. Moreover, PLV2K-DOX micelles improve the membrane permeability of DOX by multiple transcytosis mechanisms, including caveolin-, clathrin-dependent, and caveolin-/clathrin-independent transcytosis in Caco-2 transport studies. However, the transepithelia electrical resistance (TEER) of Caco-2 cellular monolayer is not changed, suggesting no involvement of paracellular transport of PLV2K-DOX. In vivo pharmacokinetics in rats following oral administration demonstrated that PLV2K-DOX demonstrates higher AUC (5.6-fold) and longer t1/2 (1.2-fold) than DOX-Sol. The findings suggest the new PLV2K micelles might provide an effective nanoplatform for oral delivery of anticancer drugs with poor membrane permeability and low oral bioavailability. PMID:25581352

  2. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers.

    PubMed

    Díaz, A; Del Valle, L; Franco, L; Sarasua, J R; Estrany, F; Puiggalí, J

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N'-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. PMID:25063149

  3. Ultrasound responsive block copolymer micelle of poly(ethylene glycol)-poly(propylene glycol) obtained through click reaction.

    PubMed

    Li, Fayong; Xie, Chuan; Cheng, Zhengang; Xia, Hesheng

    2016-05-01

    The well-defined amphiphilic poly(ethylene glycol)-block-poly(propylene glycol) copolymer containing 1, 2, 3-triazole moiety and multiple ester bonds (PEG-click-PPG) was prepared by click reaction strategy. The PEG-click-PPG copolymer can self-assemble into spherical micelles in aqueous solution. It is found that high intensity focused ultrasound (HIFU) can open the copolymer PEG-click-PPG micelles and trigger the release of the payload in the micelle. The multiple ester bonds introduced in the junction point of the copolymer chain through click reactions were cleaved under HIFU, and leads to the disruption of the copolymer micelle and fast release of loaded cargo. The click reaction provides a convenient way to construct ultrasound responsive copolymer micelles with weak bonds. PMID:26703197

  4. Novel 4-Arm Poly(Ethylene Glycol)-Block-Poly(Anhydride-Esters) Amphiphilic Copolymer Micelles Loading Curcumin: Preparation, Characterization, and In Vitro Evaluation

    PubMed Central

    Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Mingna; Guo, Shengrong; Huang, Shengtang

    2013-01-01

    A novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer (4-arm PEG-b-PAE) was synthesized by esterization of 4-arm poly(ethylene glycol) and poly(anhydride-esters) which was obtained by melt polycondensation of α-, ω-acetic anhydride terminated poly(L-lactic acid). The obtained 4-arm PEG-b-PAE was characterized by 1H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL). The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells. PMID:23936812

  5. Crystallization studies of polyethylene -poly(ethylene glycol) graft copolymers

    NASA Astrophysics Data System (ADS)

    Mark, P. R.; Hovey, G. E.; Murthy, N. S.; Breitenkamp, K.; Kade, M.; Emerick, T.

    2006-03-01

    Structure and crystallization behavior of three copolymers obtained by grafting poly (ethylene glycol) (PEG) chains to polyethylene (PE) main chain was investigated by variable temperature x-ray diffraction and thermal analysis. The results show that PEG side chains and PE main chains crystallize into separate domains. This is especially true when grafted chains are long (50 and 100 repeat units), in which the PEG domains are same as in PEG homopolymer both in structure and in melting behavior. In the copolymer with shorter chains (25 repeat units), the PEG crystals are not distinct and melting is broad. The PEG domains can be dissolved in water or ethanol without altering the mechanical integrity of the film. PE crystallites in both samples are similar to that in PE homopolymer. For instance, the thermal expansion of the basal cell plane (a- and b-axes) of the PE domains agrees well with that of PE homopolymer over the entire temperature range from ambient to melt. However, the chain-axis dimension PE-lattice in the copolymer is shorter by ˜ 0.05 å and the basal dimensions are larger by ˜ 0.05 å. The changes in these dimensions due to the changes in the length of the grafted PEG chains were investigated.

  6. In vitro evaluation of poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    NASA Astrophysics Data System (ADS)

    Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria

    2016-06-01

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  7. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol) polycaprolactone poly(ethylene glycol) block copolymers

    NASA Astrophysics Data System (ADS)

    Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan

    2007-06-01

    A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).

  8. Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid

    NASA Astrophysics Data System (ADS)

    Burkeev, M. Zh.; Sarsenbekova, A. Zh.; Tazhbaev, E. M.; Figurinene, I. V.

    2015-12-01

    The results from thermogravimetric and kinetic studies of copolymers of polypropylene glycol maleate with acrylic acid at different molar ratios are presented. The results from conventional thermogravimetric studies are used to determine kinetic characteristics of the process of thermal decomposition, i.e., activation energy and pre-exponential factors. These parameters are determined in three ways: the Achar, Freeman-Carroll, and Sharp-Wentworth methods. Activation energies calculated using all the three methods confirm the dependence of the destruction process on the ratio of components in a synthesized copolymer. It is shown that the obtained values of the activation energies and thermodynamic characteristics allow us to predict a copolymer's composition.

  9. Surface segregation assessment in poly(epsilon-caprolactone)-poly(ethylene glycol) multiblock copolymer films.

    PubMed

    Cometa, Stefania; Chiellini, Federica; Bartolozzi, Irene; Chiellini, Emo; De Giglio, Elvira; Sabbatini, Luigia

    2010-03-10

    The ability to predict the in vivo performance of multiblock-copolymer-based biomaterials is crucial for their applicability in the biomedical field. In this work, XPS analysis of PCL-PEG copolymers was carried out, as well as morphological and wettability evaluations by SEM and CA measurements, respectively. XPS analysis on films equilibrated in PBS demonstrated a further enrichment in the PEG component on the surface. Copolymer films obtained by casting using different solvents showed a dependence in segregation according to the solvent employed. Cell adhesion tests demonstrated the importance of copolymer segregation and rearrangement in a wet environment, with a dependence of these phenomena on the copolymer molecular weight. PMID:19957286

  10. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers.

    PubMed

    Mao, Shirui; Shuai, Xintao; Unger, Florian; Wittmar, Matthias; Xie, Xiulan; Kissel, Thomas

    2005-11-01

    PEGylated trimethyl chitosan (TMC) copolymers were synthesized in an attempt to both increase the solubility of chitosan in water, and improve the biocompatibility of TMC. A series of copolymers with different degrees of substitution were obtained by grafting activated poly(ethylene glycol)s (PEG) of different MW onto TMC via primary amino groups. Structure of the copolymers was characterized using 1H, 13C NMR spectroscopy and GPC. Solubility experiments demonstrated that PEG-g-TMC copolymers were completely water-soluble over the entire pH range of 1-14 regardless of the PEG MW, even when the graft density was as low as 10%. Using the methyl tetrazolium (MTT) assay, the effect of TMC molecular weight, PEGylation ratio, PEG and TMC molecular weight in the copolymers, and complexation with insulin on the cytotoxicity of TMC was examined, and IC50 values were calculated with L929 cell line. All polymers exhibited a time- and dose-dependent cytotoxic response that increased with molecular weight. PEGylation can decrease the cytotoxicity of TMC to a great extent in the case of low molecular weight TMCs. According to the cytotoxicity results, PEG 5 kDa is superior for PEGylation when compared to PEG 550 Da at similar graft ratios. Complexation with insulin further increased cell viability. In addition, Lactate dehydrogenase (LDH) assays were performed to quantify the membrane-damaging effects of the copolymers, which is in line with the conclusion drawn from MTT assay. Moreover, the safety of the copolymers was corroborated by observing the morphological change of the cells with inverted phase contrast microscopy. Based upon these results PEG-g-TMC merits further investigations as a drug delivery vehicle. PMID:15913769

  11. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    NASA Astrophysics Data System (ADS)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Chien Dang, Mau

    2015-09-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, 1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable.

  12. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    NASA Astrophysics Data System (ADS)

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  13. Synthesis and characterization of biodegradable poly(ethylene glycol)-block-poly(5-benzyloxy-trimethylene carbonate) copolymers for drug delivery.

    PubMed

    Zeng, Faquan; Liu, Jubo; Allen, Christine

    2004-01-01

    Amphiphilic diblock copolymers with various block compositions were synthesized with monomethoxy-terminated poly(ethylene glycol) (MePEG) as the hydrophilic block and poly(5-benzyloxy-trimethylene carbonate) (PBTMC) as the hydrophobic block. When the copolymerization was conducted using MePEG as a macroinitiator and stannous 2-ethylhexanoate (Sn(Oct)2) as a catalyst, the molecular weight of the second block was uncontrollable, and the method only afforded a mixture of homopolymer and copolymer with a broad molecular weight distribution. By contrast, the use of the triethylaluminum-MePEG initiator yielded block copolymers with controllable molecular weight and a more narrow molecular weight distribution than the copolymers obtained using Sn(Oct)2. GPC and 1H NMR studies confirmed that the macroinitiator was consumed and the copolymer composition was as predicted. Two of the newly synthesized MePEG-b-PBTMC copolymers were evaluated in terms of properties primarily relating to their use in micellar drug delivery. MePEG-b-PBTMC micelles with a narrow monomodal size distribution were prepared using a high-pressure extrusion technique. The MePEG-b-PBTMC copolymers were also confirmed to be biodegradable and noncytotoxic. PMID:15360292

  14. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.

    PubMed

    Hsu, Shan-Hui; Tang, Cheng-Ming; Lin, Chu-Chieh

    2004-11-01

    In this study, we prepared diblock copolymers of poly(epsilon-caprolactone) (PCL) and poly(ethylene glycol) (PEG) by aluminum alkoxide catalysts. The biological responses to the spin cast surface of different PCL/PEG diblock copolymers were investigated in vitro. Our results showed that surface hydrophilicity improved with the increased PEG segments in diblock copolymers and that bacteria adhesion was inhibited by increased PEG contents. PCL-PEG 23:77 showed nanotopography on the surface. The number of adhered endothelial cells, platelets and monocytes on diblock copolymer surfaces was inhibited in PCL-PEG 77:23 and enhanced in PCL-PEG 23:77. Nevertheless, the platelet and monocyte activation on PCL-PEG 23:77 was reduced. PCL-PEG 23:77 had better cellular response as well as lower degree of platelet and monocyte activation. The current study was the first one to demonstrate that surface nanotopography could influence not only cell adhesion and growth but also platelet and monocyte activation. PMID:15159075

  15. Poly(ethylene glycol)-polypeptide Copolymer Micelles for Therapeutic Agent Delivery.

    PubMed

    Cheng, Yilong

    2016-01-01

    Poly(ethylene glycol)-polypeptide (PEG-polypeptide) based polymeric micelles as therapeutic agent carriers have received considerable interest due to their advanced achievements in clinical trials. Polypeptides not only show well-defined secondary structure (alfa-helix and beta-sheet) and good biocompatibility, but can also be functionalized with various groups by direct N-carboxyanhydrides (NCAs) polymerization or further modification. Additionally, the ionizable side chains enable them to deliver diverse therapeutic agents, such as negative nucleic acid and positive doxorubicin. In this review, we firstly summarized the synthetic methods of amphiphilic copolymers PEG-polypeptide, and emphatically discussed recent progress on their applications as nanocarriers for therapeutic agents from following aspects: PEG-nonionic polypeptide copolymer micelles, PEG-anionic polypeptide micelles, and PEGcationic polypeptide micelles. PMID:26696015

  16. Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer

    PubMed Central

    Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.

    2014-01-01

    Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653

  17. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials.

    PubMed

    Lucke, A; Tessmar, J; Schnell, E; Schmeer, G; Göpferich, A

    2000-12-01

    To obtain biodegradable polymers with variable surface properties for tissue culture applications, poly(ethylene glycol) blocks were attached to poly(lactic acid) blocks in a variety of combinations. The resulting poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether (Me.PEG-PLA) diblock copolymers were subject to comprehensive investigations concerning their bulk microstructure and surface properties to evaluate their suitability for drug delivery applications as well as for the manufacture of scaffolds in tissue engineering. Results obtained from 1H-NMR, gel permeation chromatography, wide angle X-ray diffraction and modulated differential scanning calorimetry revealed that the polymer bulk microstructure contains poly(ethylene glycol)-monomethyl ether (Me.PEG) domains segregated from poly(D,L-lactic acid) (PLA) domains varying with the composition of the diblock copolymers. Analysis of the surface of polymer films with atomic force microscopy and X-ray photoelectron spectroscopy indicated that there is a variable amount of Me.PEG chains present on the polymer surface, depending on the polymer composition. It could be shown that the presence of Me.PEG chains in the polymer surface had a suppressive effect on the adsorption of two model peptides (salmon calcitonin and human atrial natriuretic peptide). The possibility to modify polymer bulk microstructure as well as surface properties by variation of the copolymer composition is a prerequisite for their efficient use in the fields of drug delivery and tissue engineering. PMID:11055283

  18. Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin

    PubMed Central

    Alibolandi, Mona; Sadeghi, Fatemeh; Sazmand, Seyed Hossein; Shahrokhi, Seyed Mohammad; Seifi, Mahmoud; Hadizadeh, Farzin

    2015-01-01

    Introduction: The copolymer of polyethylene glycol (PEG) and polyesters has many interesting properties, such as amphiphilicity, biocompatibility, biodegradability, and self-assembly in an aqueous environment. Diblock copolymers of PEG-polyester can form different structures such as micelles, polymersome, capsules or micro-container in an aqueous environment according to the length of their blocks. Materials and Methods: Herein, a series of poly (lactic acid) (PLA) and PEG diblock copolymers were synthesized through the ring-opening polymerization. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The corresponding copolymers were implemented for the formation of polymersome structures using film rehydration method. Impact of methoxy PEG chain length and hydrophobic weight fraction on particle size of polymersomes were studied, and the proper ones were selected for loading of doxorubicin (DOX) via pH gradient method. Results and Discussion: Results obtained from 1HNMR and GPC revealed that microwave irradiation is a simple and reliable method for the synthesis of PEG-PLA copolymers. Further analysis indicated the copolymer with relative molecular weight of PLA to PEG ratios of 3 or fEo ~ 25% produced the smallest size polymersomes. Polymersomes prepared from PEG5000 to PLA15000 were more capable in loading and sustained release of DOX than those prepared from PEG2000 to PLA6000. Conclusion: In conclusion copolymers of PEG/PLA with fOE ~25% and relatively higher molecular weight are more suitable for encapsulation and providing sustained release of DOX. PMID:26258054

  19. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B

    PubMed Central

    2013-01-01

    Background The improvement of biomedical properties, e.g. biocompatibility, of poly(3-hydroxyalkanoates) (PHAs) by copolymerization is a promising trend in bioengineering. We used strain Azotobacter chroococcum 7B, an effective producer of PHAs, for biosynthesis of not only poly(3-hydroxybutyrate) (PHB) and its main copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV), but also alternative copolymer, poly(3-hydroxybutyrate)-poly(ethylene glycol) (PHB-PEG). Results In biosynthesis we used sucrose as the primary carbon source and valeric acid or poly(ethylene glycol) 300 (PEG 300) as additional carbon sources. The chemical structure of PHB-PEG and PHB-HV was confirmed by 1H nuclear-magnetic resonance (1H NMR) analysis. The physico-chemical properties (molecular weight, crystallinity, hydrophilicity, surface energy) and surface morphology of films from PHB copolymers were studied. To study copolymers biocompatibility in vitro the protein adsorption and COS-1 fibroblasts growth on biopolymer films by XTT assay were analyzed. Both copolymers had changed physico-chemical properties compared to PHB homopolymer: PHB-HV and PHB-PEG had less crystallinity than PHB; PHB-HV was more hydrophobic than PHB in contrast to PHB-PEG appeared to have greater hydrophilicity than PHB; whereas the morphology of polymer films did not differ significantly. The protein adsorption to PHB-PEG was greater and more uniform than to PHB and PHB-PEG copolymer promoted better growth of COS-1 fibroblasts compared with PHB homopolymer. Conclusions Thus, despite low EG-monomers content in bacterial origin PHB-PEG copolymer, this polymer demonstrated significant improvement in biocompatibility in contrast to PHB and PHB-HV copolymers, which may be coupled with increased protein adsorption and hydrophilicity of PEG-containing copolymer. PMID:23692611

  20. Block and random copolymers bearing cholic acid and oligo(ethylene glycol) pendant groups: aggregation, thermosensitivity, and drug loading.

    PubMed

    Shao, Yu; Jia, Yong-Guang; Shi, Changying; Luo, Juntao; Zhu, X X

    2014-05-12

    A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy. PMID:24725005

  1. Block and Random Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendant Groups: Aggregation, Thermosensitivity, and Drug Loading

    PubMed Central

    2015-01-01

    A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy. PMID:24725005

  2. Biosynthesis of natural-synthetic hybrid copolymers: polyhydroxyoctanoate-diethylene glycol.

    PubMed

    Sanguanchaipaiwong, Vorapat; Gabelish, Candace L; Hook, James; Scholz, Carmen; Foster, L John R

    2004-01-01

    A new natural-synthetic hybrid biomaterial has been isolated from the growth of Pseudomonas oleovorans in the presence of diethylene glycol (DEG). DEG was consumed by P. oleovorans with 20 mM sodium octanoate in modified E* medium, but its presence in the fermentation medium retarded cell growth and viability, influencing production and composition of polyhydroxyalkanoates with medium chain length substituents (mclPHAs) and consequently attenuating PHA yield. DEG affected the composition of the mclPHA with an increase in the C8 component: polyhydroxyoctanoate (PHO). Gas chromatography-mass spectrometry (GC-MS) was used to quantitatively monitor DEG in the system and reveal its cellular adsorption and penetration. Intracellularly, the DEG significantly reduced the molar mass of the mclPHA; PHO with a bimodal distribution of high and low molecular weight fractions was observed. 1H NMR, 2-D COSY, and heteronuclear single quantum coherence spectra confirmed that the high molecular weight fraction consisted of PHO chains terminated by DEG. Thus, the synthesis of this natural-synthetic hybrid copolymer, PHO-DEG, opens the way for microbial synthesis of a wide variety of PHA-DEG copolymers with a range of bioactive properties. PMID:15003032

  3. Unexpected Temperature Behavior of Polyethylene Glycol Spacers in Copolymer Dendrimers in Chloroform

    NASA Astrophysics Data System (ADS)

    Markelov, Denis A.; Matveev, Vladimir V.; Ingman, Petri; Nikolaeva, Marianna N.; Penkova, Anastasia V.; Lahderanta, Erkki; Boiko, Natalia I.; Chizhik, Vladimir I.

    2016-04-01

    We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by 1H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is “frozen” at high temperatures (above 260 K), but it unexpectedly becomes “unfrozen” at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors.

  4. Preventing corona effects: multiphosphonic acid poly(ethylene glycol) copolymers for stable stealth iron oxide nanoparticles.

    PubMed

    Torrisi, V; Graillot, A; Vitorazi, L; Crouzet, Q; Marletta, G; Loubat, C; Berret, J-F

    2014-08-11

    When dispersed in biological fluids, engineered nanoparticles are selectively coated with proteins, resulting in the formation of a protein corona. It is suggested that the protein corona is critical in regulating the conditions of entry into the cytoplasm of living cells. Recent reports describe this phenomenon as ubiquitous and independent of the nature of the particle. For nanomedicine applications, however, there is a need to design advanced and cost-effective coatings that are resistant to protein adsorption and that increase the biodistribution in vivo. In this study, phosphonic acid poly(ethylene glycol) copolymers were synthesized and used to coat iron oxide particles. The copolymer composition was optimized to provide simple and scalable protocols as well as long-term stability in culture media. It is shown that polymers with multiple phosphonic acid functionalities and PEG chains outperform other types of coating, including ligands, polyelectrolytes, and carboxylic acid functionalized PEG. PEGylated particles exhibit moreover exceptional low cellular uptake, of the order of 100 femtograms of iron per cell. The present approach demonstrates that the surface chemistry of engineered particles is a key parameter in the interactions with cells. It also opens up new avenues for the efficient functionalization of inorganic surfaces. PMID:25046557

  5. Polyethylene glycol-polyvinyl alcohol grafted copolymer: study of the bioavailability after oral administration to rats.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Fabian, Eric; Leibold, Edgar; van Ravenzwaay, Bennard

    2013-07-01

    The absorption, urinary excretion, and the biliary excretion of a single oral dose of 10 or 1000 mg/kg bw of (14)C-polyethylene glycol-polyvinyl alcohol (PEG-PVA) grafted copolymer were studied in adult male and female rats. In a balance/excretion experiment, the total excretion of ingested radioactivity was determined over a period of 168 h and residual radioactivity was detected in selected tissues and the carcass. In a biliary excretion experiment, excretion of radioactivity via the bile duct was determined over a period of 48 h after administration of the substance to cannulated rats. Most, if not all, of the radioactivity (>100%) was excreted within 48 h via the feces regardless of sex or dose. Urinary excretion was very limited: 0.45-0.50% of dose at the low dose and 0.22-0.27% of dose at the high dose. At both dose levels, residual radioactivity in the carcass and all organs and tissues after 168 h was ≤ 0.02% of dose. Biliary excretion was 0.01-0.02% of dose. Based on these findings, the bioavailability of PEG-PVA grafted copolymer was determined to be <1% demonstrating that absorption was virtually negligible following a single oral administration to male and female rats. PMID:23321424

  6. Unexpected Temperature Behavior of Polyethylene Glycol Spacers in Copolymer Dendrimers in Chloroform

    PubMed Central

    Markelov, Denis A.; Matveev, Vladimir V.; Ingman, Petri; Nikolaeva, Marianna N.; Penkova, Anastasia V.; Lahderanta, Erkki; Boiko, Natalia I.; Chizhik, Vladimir I.

    2016-01-01

    We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by 1H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is “frozen” at high temperatures (above 260 K), but it unexpectedly becomes “unfrozen” at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors. PMID:27052599

  7. Unexpected Temperature Behavior of Polyethylene Glycol Spacers in Copolymer Dendrimers in Chloroform.

    PubMed

    Markelov, Denis A; Matveev, Vladimir V; Ingman, Petri; Nikolaeva, Marianna N; Penkova, Anastasia V; Lahderanta, Erkki; Boiko, Natalia I; Chizhik, Vladimir I

    2016-01-01

    We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by (1)H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is "frozen" at high temperatures (above 260 K), but it unexpectedly becomes "unfrozen" at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors. PMID:27052599

  8. Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Ma, Yuandong; Zheng, Yi; Liu, Kexin; Tian, Ge; Tian, Yan; Xu, Lei; Yan, Fei; Huang, Laiqiang; Mei, Lin

    2010-07-01

    Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization using stannous octoate as catalyst. The obtained random copolymers were characterized by 1H NMR, FTIR, GPC and TGA. The docetaxel-loaded nanoparticles made of PLGA-TPGS copolymer were prepared by a modified solvent extraction/evaporation method. The nanoparticles were then characterized by various state-of-the-art techniques. The results revealed that the size of PLGA-TPGS nanoparticles was around 250 nm. The docetaxel-loaded PLGA-TPGS nanoparticles could achieve much faster drug release in comparison with PLGA nanoparticles. In vitro cellular uptakes of such nanoparticles were investigated by CLSM, demonstrating the fluorescence PLGA-TPGS nanoparticles could be internalized by human cervix carcinoma cells (HeLa). The results also indicated that PLGA-TPGS-based nanoparticles were biocompatible, and the docetaxel-loaded PLGA-TPGS nanoparticles had significant cytotoxicity against Hela cells. The cytotoxicity against HeLa cells for PLGA-TPGS nanoparticles was in time- and concentration-dependent manner. In conclusion, PLGA-TPGS random copolymer could be acted as a novel and promising biocompatible polymeric matrix material applicable to nanoparticle-based drug delivery system for cancer chemotherapy.

  9. Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wohl, Adam Richard

    Fine control of the physical and chemical properties of customized materials is a field that is rapidly advancing. This is especially critical in pursuits to develop and optimize novel nanoparticle drug delivery. Specifically, I aim to apply chemistry concepts to test the hypothesis "Silicate ester prodrugs of paclitaxel, customized to have the proper hydrophobicity and hydrolytic lability, can be formulated with well-defined, biocompatible, amphiphilic block copolymers into nanoparticles that are effective drugs." Chapter 1 briefly describes the context and motivation of the scientific pursuits described in this thesis. In Chapter 2, a family of model silicate esters is synthesized, the hydrolysis rate of each compound is benchmarked, and trends are established based upon the steric bulk and leaving group ability of the silicate substituents. These trends are then applied to the synthesis of labile silicate ester prodrugs in Chapter 3. The bulk of this chapter focuses on the synthesis, hydrolysis, and cytotoxicity of prodrugs based on paclitaxel, a widely used chemotherapeutic agent. In Chapter 4, a new methodology for the synthesis of narrowly dispersed, "random" poly(lactic-co-glycolic acid) polymers by a constant infusion of the glycolide monomer is detailed. Using poly(ethylene glycol) as a macroinitiator, amphiphilic block copolymers were synthesized. Co-formulating a paclitaxel silicate and an amphiphilic block copolymer via flash nanoprecipitation led to highly prodrug-loaded, kinetically trapped nanoparticles. Studies to determine the structure, morphology, behavior, and efficacy of these nanoparticles are described in Chapter 5. Efforts to develop a general strategy for the selective end-functionalization of the polyether block of these amphiphilic block copolymers are discussed in Chapter 6. Examples of this strategy include functionalization of the polyether with an azide or a maleimide. Finally, Chapter 7 provides an outlook for future development of

  10. In vitro degradation behavior of poly(lactide)-poly(ethylene glycol) block copolymer micelles in aqueous solution.

    PubMed

    Yang, Liu; El Ghzaoui, Abdeslam; Li, Suming

    2010-11-15

    Self-assembling micelles were prepared from polylactide-poly(ethylene glycol) (PLA-PEG) block copolymer by using two different methods: direct dissolution and dialysis. The in vitro degradation properties of the micelles were investigated at 37°C and monitored by using various techniques. During the investigated degradation time, the size of micelles by dialysis remains stable, while that of micelles by direct dissolution first increases, followed by a collapse of micellar structure. The composition of PLA-PEG copolymers greatly affects the degradation of micelles. Micelles with longer hydrophobic PLA blocks exhibit less size changes due to more compact structure. On the other hand, the structural integrity of L/D mixed micelles is preserved for longer time than that of single micelles, in agreement with the stereocomplexation effect between L-PLA and D-PLA blocks. As degradation proceeds, the average molar mass of copolymer decreases and the distribution becomes wider, especially for micelles by dialysis and L/D mixed micelles with a more compact structure. Additionally, the PEG content in the copolymer chains increases during degradation, leading to a decrease of glass transition and crystallization temperature of the copolymers. However, the residual LA fragments produced by degradation disfavors the crystallization of PEG blocks, thus resulting in the decrease of melting temperature and melting enthalpy. PMID:20816736

  11. Supramolecular assemblies of alkane functionalized poly ethylene glycol copolymer for drug delivery

    NASA Astrophysics Data System (ADS)

    Zhu, Lida

    The therapeutic effects of many modern drugs were limited owing to their physical properties and half-life in the blood stream. The purpose of this research is to study the relationship between drug delivery performances and chemical properties of the polymer micelle drug carriers. Polyethylene glycol (PEG) based alternating copolymer poly[(polyoxyethylene)-oxy-5-hydroxyisophthalic] (Ppeg) with PEG molecular weights of 600 and 1000 were synthesized and modified with different alkanes to study the effects of altering the hydrophobic and hydrophilic chain lengths. The nuclear magnetic resonance (NMR) spectrum, critical micelle concentration (CMC), micelle size, and micelle zeta potential of the synthesized polymers were measured. The resulting polymer particles were able to form micelles in aqueous solution with CMCs lower than 0.04 wt%. Drug delivery studies were performed with a model hydrophobic drug, pyrene. Drug loading data showed the polymer particles were able to encapsulate pyrene and has a loading capacity up to 8 wt%. The sustain release ability was measured and the pyrene release was extended over 5 days. Both loading capacity and sustain release ability were found to be highly dependent on CMC. Cell culture study was implemented with RAW 264.7 cells in order to determine the polymer micelle's cytocompatibility, Most Ppeg polymer micelles showed more than 85% cell viability with and without pyrene loading. Cell internalization of the micelles encapsulated drug was measured both quantitatively and qualitatively and was enhanced comparing to unencapsulated drug. The results indicated that the internalization enhancement effect of polymer micelle was mainly affected by hydrophilic chain length; neither hydrophobic chain length nor loading capacity has significant influence on internalization.

  12. Synthesis and characterization of copolymer materials from chitosan and polyethylene glycol: Evaluation of potential for use in man-made blood vessels; and modeling of cell-material dynamic interactions

    NASA Astrophysics Data System (ADS)

    Zhong, Jingfang

    2005-11-01

    Blood vessel may have multi-layer structure with one layer offering the necessary mechanical properties, and the most inner layer offering blood compatibility. One goal of the research was to get some basic information about the in-vivo blood interaction and degradation properties of 3 types of modified chitosan materials: chitosan-g-PEG with 54.2% PEG, chitosan ionically bound with heparin, and chitosan crosslinked by sebacic acid and ionically bound with heparin. For studying the in-vivo blood interaction properties, the materials were processed in the way of mimicking blood vessels as two-layer structure, with outer layer as porous structure, and inner layer as smooth dense structure that were made from one of the 3 types of materials. They were implanted into rats to replace part of blood vessels, and the results of blood vessel replacement were observed. In recent studies, chitosan has been found to be a promising base material for a number of tissue engineering applications. The goal of this investigation was to modify the elastic modulus of chitosan material without loss of strength to make chitosan material have different suitable elastic modulus for different biomedical applications. PEG side chains were grafted onto chitosan to make copolymer material. Copolymer's mechanical, micro-structural, cell interaction properties were investigated. It was found that with increasing PEG content, the elastic modulus decreased because the crystal structure in chitosan was destroyed by the grafted PEG chains. Copolymer showed effect on inhibiting smooth muscle cell growth comparing with unmodified chitosan. When PEG content changed only in the small range of 0--10%, the changes of both mechanical properties and cell interaction properties were already very significant. 3 dynamic models addressing both receptor and ligand mobility, and various reaction geometries were developed. Model was validated with published data on interaction between lymphocytes and membrane

  13. 2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) copolymers for bioimaging

    PubMed Central

    Tian, Yanqing; Wu, Wen-Chung; Chen, Ching-Yi; Strovas, Tim; Li, Yongzhong; Jin, Yuguang; Su, Fengyu; Meldrum, Deirdre R.; Jen, Alex K.-Y.

    2010-01-01

    Summary 2,1,3-Benzothiadiazole (BTD)-containing red emitter was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers to form two new fluorophore-conjugated block copolymers (P5 and P7). P5 is a cationic amino group-containing polymer, whereas, P7 is a neutral polymer. The polymers formed micelles in aqueous solution with average diameters of 45 nm (P7) and 78 nm (P5), which were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM). Cell internalization of the micelles using mouse macrophage RAW 264.7 was investigated. The micelles formed from P5 were endocytosed into the cell's cytoplasm through a non-specific endocytosis process, which was affected by temperature and calcium ions. Micelles formed from P7 could not be endocytosed. The dramatic difference of cell uptake between P5 and P7 indicated the cationic amino groups had a strong influence on the cell internalization to enhance the endocytosis pathway. 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the P5 micelle and no significant toxicity was observed. This study is the first report regarding the synthesis of BTD-conjugated block copolymers and the application of the biomacromolecules for bioimaging. PMID:20454543

  14. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate)

    PubMed Central

    2014-01-01

    Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a 1H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes and their particle sizes were less than 100 nm. In a 1H-NMR study in D2O, specific peaks of PEG solely appeared while peaks of PHO disappeared, indicating that nanoparticles have core-shell structures. The higher M.W. of PEG decreased loading efficiency and particle size. The higher drug feeding increased drug contents and average size of nanoparticles. In the drug release study, the higher M.W. of PEG block induced the acceleration of drug release rate. The increase in drug contents induced the slow release rate of drug. In an antitumor activity study in vitro, paclitaxel nanoparticles have practically similar anti-proliferation activity against HCT116 human colon carcinoma cells. In an in vivo animal study using HCT116 colon carcinoma cell-bearing mice, paclitaxel nanoparticles have enhanced antitumor activity compared to paclitaxel itself. Therefore, paclitaxel-incorporated nanoparticles of PHO/PEG block copolymer are a promising vehicle for antitumor drug delivery. PMID:25288916

  15. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate).

    PubMed

    Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Son, Gyung Mo; Jeong, Young-Il; Kwak, Tae-Won; Kim, Do Hyung; Chung, Chung-Wook; Rhee, Young Ha; Kang, Dae Hwan; Kim, Hyung Wook

    2014-01-01

    Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a (1)H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes and their particle sizes were less than 100 nm. In a (1)H-NMR study in D2O, specific peaks of PEG solely appeared while peaks of PHO disappeared, indicating that nanoparticles have core-shell structures. The higher M.W. of PEG decreased loading efficiency and particle size. The higher drug feeding increased drug contents and average size of nanoparticles. In the drug release study, the higher M.W. of PEG block induced the acceleration of drug release rate. The increase in drug contents induced the slow release rate of drug. In an antitumor activity study in vitro, paclitaxel nanoparticles have practically similar anti-proliferation activity against HCT116 human colon carcinoma cells. In an in vivo animal study using HCT116 colon carcinoma cell-bearing mice, paclitaxel nanoparticles have enhanced antitumor activity compared to paclitaxel itself. Therefore, paclitaxel-incorporated nanoparticles of PHO/PEG block copolymer are a promising vehicle for antitumor drug delivery. PMID:25288916

  16. Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery.

    PubMed

    Jelonek, Katarzyna; Li, Suming; Wu, Xiaohan; Kasperczyk, Janusz; Marcinkowski, Andrzej

    2015-05-15

    Bioresorbable filomicelles present many advantageous as drug delivery systems e.g., long circulation time and high loading efficiency. The aim of this study was to develop polylactide/poly(ethylene glycol) (PLA/PEG) filomicelles for drug delivery applications. A series of PLA/PEG diblock copolymers were synthesized using non-toxic initiator, and characterized by means of NMR and GPC. Analysis of morphology of micelles determined by TEM revealed that apart from the weight fraction also the molar mass of PEG and the stereochemistry of PLA block must be considered for tailoring micellar structures. The CMC was found to be dependent on the length and structure of the hydrophobic block. It was observed that the drug loading properties could be improved by selection of appropriate copolymer and encapsulation method. Slower release of paclitaxel was observed for mPEG5000 initiated copolymers than mPEG2000 initiated copolymers. Moreover, the influence of the length of hydrophobic block and its stereoisomeric form on drug release rate was evidenced. Therefore, PLA/PEG filomicelles with good stability, high drug loading capacity and sustained drug release appear most attractive for drug delivery applications. PMID:25796125

  17. Synthesis of polycarbonate-r-polyethylene glycol copolymer for templated synthesis of mesoporous TiO2 films.

    PubMed

    Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak

    2014-12-01

    We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent. PMID:25971065

  18. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment. PMID:26497115

  19. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  20. Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (Polyactive) as substrate for human fibroblasts and keratinocytes.

    PubMed

    van Dorp, A G; Verhoeven, M C; Koerten, H K; van Blitterswijk, C A; Ponec, M

    1999-12-01

    The purpose of this study was to find an optimal polymer matrix and to optimize the culture conditions for human keratinocytes and fibroblasts for the development of a human skin substitute. For this purpose porous, dense bilayers made of a block copolymer of poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT; Polyactivetrade mark) with a PEGT/PBT weight ratio of 55/45 and a PEG molecular weight (MW) of 300, 600, 1000, or 4000 Da were used. The best performance was achieved with PEGT/PBT copolymer with MW of PEG 300 D (300PEG55PBT45). When fibroblasts were seeded into the porous underlayer and cultured for 3 weeks in medium supplemented with 100 microg/mL ascorbic acid, all pores were filled with fibroblasts and with extracellular matrix, which was judged from the presence of collagen types I, III, and IV, and laminin. When seeded onto the dense top layer of the bilayered (cell free or fibroblast populated) copolymer matrix, human keratinocytes grew out into confluent sheets. After subsequent lifting to the air-liquid interface, a multilayered epithelium with a morphology corresponding to that of the native epidermis was formed. Some differences could still be observed: the expression and localization of some differentiation specific proteins was different and close to that seen in hyperproliferative epidermis; a basal lamina and anchoring zone were absent. PMID:10487879

  1. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers.

    PubMed

    Chen, Cheng; Yu, Chung Him; Cheng, Yin Chung; Yu, Peter H F; Cheung, Man Ken

    2006-09-01

    New amorphous amphiphilic triblock copolymers of poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) (PHB-PEG-PHB) were synthesized using the ring-opening copolymerization of beta-butyrolactone monomer. They were characterized by fluorescence, SEM and (1)H NMR. These triblock copolymers can form biodegradable nanoparticles with core-shell structure in aqueous solution. Comparing to the poly(ethylene oxide)-PHB-poly(ethylene oxide) (PEO-PHB-PEO) copolymers, these nanoparticles exhibited much smaller critical micelle concentrations and better drug loading properties, which indicated that the nanoparticles were very suitable for delivery carriers of hydrophobic drugs. The drug release profile monitored by fluorescence showed that the release of pyrene from the PHB-PEG-PHB nanoparticles exhibited the second-order exponential decay behavior. The initial biodegradation rate of the PHB-PEG-PHB nanoparticles was related to the enzyme amount, the initial concentrations of nanoparticle dispersions and the PHB block length. The biodegraded products detected by (1)H NMR contained 3HB monomer, dimer and minor trimer, which were safe to the body. PMID:16740306

  2. Actuator based on sulfonated comb copolymer of poly (ethylene-co-vinyl alcohol) grafted by poly (ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Gong, Guifen; Li, Lei; Zhang, Yujun

    2007-07-01

    Comb copolymer consisting of poly (ethylene-co-vinyl alcohol) (EVAL) as backbone and poly (ethylene glycol) (PEG) as side chains (EVAL-g-PEG) has been synthesized, then it was sulfonated by 1,3-propane sultone to get the final ionomer (EVAL-g-SPEG), and ionic polymer-metal composite (IPMC) based on EVAL-g-SPEG was prepared through electroless deposition of platinum onto the surfaces of EVAL-g-SPEG membrane. The graft copolymers were characterized with respect to molecular weight using gel permeation chromatography (GPC) and composition using 1H-NMR. The results showed that the No. of PEG graft of the side chains is n=1, 2 and others. Thermal properties were examined by DSC and TG. The melt temperature (T m) and glass transition temperature (T g) of the comb copolymer increase with the increasing length and the number of the side chains. Moreover, the deformation performance of IPMC material was tested and its results show that the starting response voltage of IPMC actuator decreases with the increasing IEC value. On the other hand, the starting response voltage increases with the decreased side chain length. The IPMC with n=2 side chain length of PEG has the maximum tip displacement, and the maximum tip displacement of IPMC membrane generally decreases with the side chain length of EVAL-g-SPEG. This feature may be the reflection of two opposite effects, namely the decreasing ion densities and increasing water sorption of the membrane.

  3. Amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} graft copolymer nanoparticles as carriers for transdermal drug delivery

    PubMed Central

    Xing, Jinfeng; Deng, Liandong; Li, Jun; Dong, Anjie

    2009-01-01

    In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP)-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} (PEGECA) graft copolymer nanoparticles (PEGECAT NPs) were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. PMID:19918369

  4. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence.

    PubMed

    Mao, Hailiang; Shan, Guorong; Bao, Yongzhong; Wu, Zi Liang; Pan, Pengju

    2016-05-18

    CBABC-type poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) pentablock copolymers composed of a central PEG block (A) and enantiomeric poly(l-lactic acid) (PLLA, B), poly(d-lactic acid) (PDLA, C) blocks were synthesized. Such pentablock copolymers form physical hydrogels at high concentrations in an aqueous solution, which stem from the aggregation and physical bridging of copolymer micelles. These gels are thermoresponsive and turn into sols upon heating. Physical gelation, gel-to-sol transition, crystalline state, microstructure, rheological behavior, biodegradation, and drug release behavior of PLA/PEG pentablock copolymers and their gels were investigated; they were also compared with PLA-PEG-PLA triblock copolymers containing the isotactic PLLA or atactic poly(d,l-lactide) (PDLLA) endblocks and PLLA-PEG-PLLA/PDLA-PEG-PDLA enantiomeric mixtures. PLA hydrophobic domains in pentablock copolymer gels changed from a homocrystalline to stereocomplexed structure as the PLLA/PDLA block length ratio approached 1/1. The gel of symmetric pentablock copolymer exhibited a wider gelation region, higher gel-to-sol transition temperature, higher hydrophobic domain crystallinity, larger intermicellar distance, higher storage modulus, and slower degradation and drug release rate compared to those of the asymmetric PLA/PEG pentablock copolymers or triblock copolymers. SAXS results indicated that the PLLA/PDLA blocks stereocomplexation in pentablock copolymers facilitated the intermicellar aggregation and bridging. Cylindrical ordered structures were observed in all the gels formed from the PLA/PEG pentablock and triblock copolymers. The stereocomplexation degree and intermicellar distance of the pentablock copolymer gels increased with heating. PMID:27121732

  5. On the spectral behavior of an ionic styryl dye: effect of micelle-polyethylene-block-polyethylene glycol diblock copolymer assembly.

    PubMed

    Sahoo, Dibakar; Bhattacharya, Prosenjit; Chakravorti, Sankar

    2009-10-15

    The interaction of anionic micelle sodium dodecyl sulfate (SDS) and amphiphilic block copolymers polyethylene-b-polyethylene glycol (PE-b-PEG) and the sharp change of excited-state charge-transfer complex photophysics of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) inside of the supramolecular assembly have been addressed in the paper. The dramatic enhancement of emission intensity of DASPMI incorporated inside of the nanostructure formed by micellar and polymeric chains indicates a completely different environment compared to that in the water and micellar system. A huge increase in the rotational relaxation time obtained from time-resolved anisotropy decay and the value of the order parameter is indicative of a very restrictive regime in the self-assembly system. The wobbling and translational motion of the probe is also restricted inside of the micelle-polymer aggregate due to the presence of polymer chains. The translational diffusion coefficient is drastically reduced due to the aggregation. PMID:19761273

  6. Folic acid conjugated δ-valerolactone-poly(ethylene glycol) based triblock copolymer as a promising carrier for targeted doxorubicin delivery.

    PubMed

    Nair K, Lekha; Jagadeeshan, Sankar; Nair S, Asha; Kumar, G S Vinod

    2013-01-01

    The aim of this study is to test the hypothesis that the newly synthesized poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone) (VEV) copolymer grafted with folic acid would impart targetability and further enhance the anti-tumor efficacy of doxorubicin (DOX). Here, folic acid conjugated VEV (VEV-FOL) was synthesized by a modified esterification method and characterized using IR and NMR. DOX loaded VEV-FOL micelles were synthesized using a novel solvent evaporation method and were obtained with a mean diameter of 97 nm with high encapsulation efficiency and sustained in vitro release profile. Comparative studies of polymer micelles with and without folate for cellular uptake and cytotoxicity were done on folate receptor-positive breast cancer cell line, MDAMB231. The intracellular uptake tests showed significant increase in folate micellar uptake when compared to non-folate-mediated micelles. MTT assay followed by apoptosis assays clearly indicated that folate decorated micelles showed significantly better cytotoxicity (IC50 = 0.014 µM) and efficiency to induce apoptosis than other treated groups. Moreover, a significant G2/M arrest was induced by DOX loaded VEV-FOL micelles at a concentration where free drug failed to show any activity. Thus, our results show that the folic acid-labeled VEV copolymer is a promising biomaterial with controlled and sustainable tumor targeting ability for anticancer drugs which can open new frontiers in the area of targeted chemotherapy. PMID:23990912

  7. Folic Acid Conjugated δ-Valerolactone-Poly(ethylene glycol) Based Triblock Copolymer as a Promising Carrier for Targeted Doxorubicin Delivery

    PubMed Central

    Nair K, Lekha; Jagadeeshan, Sankar; Nair S, Asha; Kumar, G. S. Vinod

    2013-01-01

    The aim of this study is to test the hypothesis that the newly synthesized poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone) (VEV) copolymer grafted with folic acid would impart targetability and further enhance the anti-tumor efficacy of doxorubicin (DOX). Here, folic acid conjugated VEV (VEV-FOL) was synthesized by a modified esterification method and characterized using IR and NMR. DOX loaded VEV-FOL micelles were synthesized using a novel solvent evaporation method and were obtained with a mean diameter of 97 nm with high encapsulation efficiency and sustained in vitro release profile. Comparative studies of polymer micelles with and without folate for cellular uptake and cytotoxicity were done on folate receptor-positive breast cancer cell line, MDAMB231. The intracellular uptake tests showed significant increase in folate micellar uptake when compared to non-folate-mediated micelles. MTT assay followed by apoptosis assays clearly indicated that folate decorated micelles showed significantly better cytotoxicity (IC50 = 0.014 µM) and efficiency to induce apoptosis than other treated groups. Moreover, a significant G2/M arrest was induced by DOX loaded VEV-FOL micelles at a concentration where free drug failed to show any activity. Thus, our results show that the folic acid-labeled VEV copolymer is a promising biomaterial with controlled and sustainable tumor targeting ability for anticancer drugs which can open new frontiers in the area of targeted chemotherapy. PMID:23990912

  8. Preparation and Properties of Polysulfone-poly(ethylene glycol) graft copolymer membrane.

    PubMed

    Woo, Seung-Moon; Kim, Deuk-Ju; Nam, Sang-Yong

    2014-10-01

    In this study, Graft copolymers composed of PSf backbones and PEG side chains were synthesized to prepare gas separation membranes with enhancing permeability and selectivity on carbon dioxide separation. PSf-g-PEG copolymers were synthesized by two steps, chloromethylation and graft reactions. Grafted PEG segment of PSf was controlled by molecular weight of PEG. Thermal properties of prepared mebrane were studied by TGA and DSC. T(g) of the copolymers was decreased with increasing of molecular weight of PEG. Hydrophilicity of PSf-g-PEG copolymer membrane was measured using contact angle method, and PEG grafted polymers showed lower contact angles due to higher hydrophilicity. Gas permeation properties of CO2 and N2 gases through the membranes were measured using time-lag method. The permeability of CO2 was enhanced with PEG moiety contents and increasing of number of PEG segment. The selectivity of CO2/N2 was increased with introducing of PEG due to higher solubility with CO2 gas. PMID:25942870

  9. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use

    PubMed Central

    Shin, Chan Young; Kim, Kyu-Bong

    2015-01-01

    Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379

  10. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures.

    PubMed

    Lee, Jason S; Ray, Richard I; Lowe, Kristine L; Jones-Meehan, Joanne; Little, Brenda J

    2003-04-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures. PMID:14618716

  11. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    NASA Technical Reports Server (NTRS)

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  12. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    SciTech Connect

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  13. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.

    PubMed

    Boffito, Monica; Sirianni, Paolo; Di Rienzo, Anna Maria; Chiono, Valeria

    2015-03-01

    This review focuses on the challenges associated with the design and development of injectable hydrogels of synthetic origin based on FDA approved blocks, such as polyethylene glycol (PEG) and poly(ɛ-caprolactone) (PCL). An overview of recent studies on inverse thermosensitive PEG/PCL hydrogels is provided. These systems have been proposed to overcome the limitations of previously introduced degradable thermosensitive hydrogels [e.g., PEG/poly(lactide-co-glycolic acid) hydrogels]. PEG/PCL hydrogels are advantageous due to their higher gel strength, slower degradation rate and availability in powder form. Particularly, triblock PEG/PCL copolymers have been widely investigated, with PCL-PEG-PCL (PCEC) hydrogels showing superior gel strength and slower degradation kinetics than PEG-PCL-PEG (PECE) hydrogels. Compared to triblock PEG/PCL copolymers, concentrated solutions of multiblock PEG/PCL copolymers were stable due to their slower crystallization rate. However, the resulting hydrogel gel strength was low. Inverse thermosensitive triblock PEG/PCL hydrogels have been mainly applied in tissue engineering, to decrease tissue adherence or, in combination with bioactive molecules, to promote tissue regeneration. They have also found application as in situ drug delivery carriers. On the other hand, the wide potentialities of multiblock PEG/PCL hydrogels, associated with the stability of their water-based solutions under storage, their higher degradation time compared to triblock copolymer hydrogels and the possibility to insert bioactive building blocks along the copolymer chains, have not been fully exploited yet. A critical discussion is provided to highlight advantages and limitations of currently developed themosensitive PEG/PCL hydrogels, suggesting future strategies for the realization of PEG/PCL-based copolymers with improved performance in the different application fields. PMID:24912941

  14. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects. PMID:26633595

  15. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative.

    PubMed

    Ogawara, Ken-ichi; Shiraishi, Taro; Araki, Tomoya; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2016-01-20

    To develop potent and safer formulation of photosensitizer for cancer photodynamic therapy (PDT), we tried to formulate hydrophobic porphyrin derivative, photoprotoporphyrin IX dimethyl ester (PppIX-DME), into polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer (PN-Por). The mean particle size of PN-Por prepared was around 80nm and the zeta potential was determined to be weakly negative. In vitro phototoxicity study for PN-Por clearly indicated the significant phototoxicity of PN-Por for three types of tumor cells tested (Colon-26 carcinoma (C26), B16BL6 melanoma and Lewis lung cancer cells) in the PppIX-DME concentration-dependent fashion. Furthermore, it was suggested that the release of PppIX-DME from PN-Por would gradually occur to provide the sustained release of PppIX-DME. In vivo pharmacokinetics of PN-Por after intravenous administration was evaluated in C26 tumor-bearing mice, and PN-Por exhibited low affinity to the liver and spleen and was therefore retained in the blood circulation for a long time, leading to the efficient tumor disposition of PN-Por. Furthermore, significant and highly effective anti-tumor effect was confirmed in C26 tumor-bearing mice with the local light irradiation onto C26 tumor tissues after PN-Por injection. These findings indicate the potency of PN-Por for the development of more efficient PDT-based cancer treatments. PMID:26593985

  16. Hydration and phase separation of polyethylene glycol in copolymers of tyrosine derived carbonates.

    NASA Astrophysics Data System (ADS)

    Sanjeeva Murthy, N.; Wang, Wenjie; Kohn, Joachim

    2009-03-01

    Effect of PEG fraction and its block size on the temperature-induced phase transitions and the hydration-induced phase separation were investigated in a copolymer of desaminotyrosyl tyrosine ethyl ester (DTE) and PEG using simultaneous SAXS/WAXS/DSC. The PEG segments crystallized when the block size was at least 2000 Daltons and present at ˜ 40 wt%, and raised the Tg of the polymer by ˜ 15 ^oC. The PEG blocks in dry polymers with up to 50 wt% PEG, even when crystalline, were found to be uniformly distributed with no evidence of phase separation at 10 nm length scales. The non-iodinated PEG-rich sample with 30 mole% PEG2k showed the lower critical solution temperature (LCST) behavior with PEG blocks forming a separate phase above -21 ^oC. In the iodinated version of this polymer, the PEG2k blocks were phase separated in the solid phase. In all samples, whether PEG was crystalline or not, hydration induced PEG to separate into 15 nm hydrated domains. Phase behavior was dependent on whether poly(DTE) or the PEG was the major (matrix) phase. Changes in the mobility of the chains brought about by water-mediated hydrogen-bonding, and modulated by heat, appear to be the common underlying explanation for the range of observed phase behavior.

  17. Room temperature aqueous self-assembly of poly(ethylene glycol)-poly(4-vinyl pyridine) block copolymers: From spherical to worm-like micelles.

    PubMed

    Rodrigues, Daniela P; Costa, João R C; Rocha, Nuno; Góis, Joana R; Serra, Arménio C; Coelho, Jorge F J

    2016-09-01

    The solution self-assembly and the formation, at room temperature, of a wide range of nanostructures based on monomethyl ether poly(ethylene glycol)-b-poly(4-vinyl pyridine) (mPEG-b-P4VP) block copolymer is reported. Copolymers with different compositions and molecular weights were synthesized through Atom Transfer Radical Polymerization (ATRP) method. The solution self-assembly of the block copolymers was studied by transmission electron microscopy (TEM) for different solution pHs. It was found that the formation of non-spherical nanostructures, such as rod- and worm-like micelles can be easily achieved, at room temperature, by simply varying the molecular weight of the different segments as well as the mPEG to P4VP ratio in the block copolymer structure. Because P4VP segments are known to form strong complexes with metals, the nanostructures prepared in this manuscript can find innovative applications in the biomedical field and be used as nano-templates for inorganic materials. PMID:27232308

  18. A Solution-Processable (Tetraaniline-b-Polyethylene Glycol)3 Star-Shaped Rod-Coil Block Copolymer with Enhanced Electrochromic Properties.

    PubMed

    Cao, Linyu; Gong, Chen; Yang, Jiping

    2016-02-01

    A novel electroactive star-shaped rod-coil copolymer composed of a benzene core and three symmetrically positioned tetraaniline-b-poly(ethylene glycol) arms, (TAni-b-PEG)3 rod-coil block copolymer, is synthesized successfully and characterized using Fourier transform infrared spectroscopy (FTIR), UV-vis, (1)H NMR, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Uniform and high-quality (TAni-b-PEG)3 thin films onto indium tin oxide-coated glass surface are fabricated simply from its DMF solution. Resulting (TAni-b-PEG)3 copolymer thin films possess excellent electrochromic properties with a high optical contrast of 73.3%, superb coloration efficiency of 318.5 cm(2) C(-1) at 750 nm. Very short switching times, that is, 2.11 s and 2.14 s for coloring and bleaching times, respectively, are observed as well. The mechanism of these impressive electrochromic properties of (TAni-b-PEG)3 thin films possessed is proposed based on the atomic force microscopy investigation, star-shaped molecular geometry, synergetic electronic and ionic conductivity and amphiphilic self-assembly feature of (TAni-b-PEG)3 copolymer, which can self-assemble to form cylinder pattern consisting of quick pathways for electronic charges and ionic species, respectively. PMID:26663524

  19. Morphological Control of Anisotropic Self-Assemblies from Alternating Poly(p-dioxanone)-poly(ethylene glycol) Multiblock Copolymer Depending on the Combination Effect of Crystallization and Micellization.

    PubMed

    Wang, Mei-Jia; Wang, Hao; Chen, Si-Chong; Chen, Cheng; Liu, Ya

    2015-06-30

    A novel and facile method was developed for morphological controlling of self-assemblies prepared by crystallization induced self-assembly of crystalline-coil copolymer depending on the combination effect of crystallization and micellization. The morphological evolution of the self-assemblies of alternating poly(p-dioxanone)-block-poly(ethylene glycol) (PPDO-PEG) multiblock copolymer prepared by different solvent mixing methods in aqueous solution were investigated. "Chrysanthemum"-like and "star anise"-like self-assemblies were obtained at different rates of solvent mixing. The results suggested gradually change in solvent quality (slowly dropping water into DMF solution) leaded to a hierarchical micellization-crystallization process of core-forming PPDO blocks, and flake-like particles were formed at the initial stage of crystallization. Meanwhile, crystallization induced micellization process occurred when solvent quality changed drastically. Shuttle-like particles, which have much smaller size than those of flake-like particles, were formed at the initial stage of crystallization when quickly injecting water into DMF solution of the copolymer. Therefore, owing to the different changing rate of solvent quality, which may result in different combination effect of crystallization and micellization during self-assembly of the copolymer, PPDO-PEG self-assemblies with different hierarchical morphology in nano scale could be obtained. PMID:26061590

  20. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery.

    PubMed

    Wang, Rongrong; Xiao, Renzhong; Zeng, Zhaowu; Xu, Lili; Wang, Junjie

    2012-01-01

    Poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers are biocompatible and amphiphilic polymers that can be widely utilized in the preparation of liposomes, polymeric nanoparticles, polymer hybrid nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, and microemulsions. Particularly, the terminal groups of PEG can be activated and linked to various targeting ligands, which can prolong the circulation time, improve the drug bioavailability, reduce undesirable side effects, and especially target specific cells, tissues, and even the intracellular localization in organelles. This review herein aims to describe recent developments in drug carriers exploiting PEG-DSPE block copolymers and their derivatives, and the incorporation of different ligands to the end groups of PEG-DSPE to target delivery, focusing on their modification approaches, advantages, applications, and the probable associated drawbacks. PMID:22904628

  1. Lithographic Evaluation Of Copolymers With Enhanced Dry Etch Resistance

    NASA Astrophysics Data System (ADS)

    Namaste, Y. M.; Obendorf, S. K.; Rosenblum, J. M.; Gifford, G. G.; Dems, B. C.; Rodriguez, F.

    1987-08-01

    Alternating copolymers of alphamethylstyrene (AMS) with maleic anhydride (MA) and methyl maleate (MeM) are evaluated as positive electron resists. The chain scission efficiency (Gs) of P(AMS-MA), determined by exposure to 50 keV electrons, is 0.90 scissions/100 eV. When the maleic anhydride in the copolymer is reacted with sodium methoxide to form its methyl ester, P(AMS-MeM), the Gs increases to 2.9 for electrons and to 3.5 for gamma radiation. Based on these G-scission values, this copolymer is expected to exhibit enhanced sensitivity, while having good dry etch resistance due to the aromatic nature of alphamethylstyrene. Lithographically, P(AMS-MeM) is more sensitive than P(AMS-MA), as expected from G-scission data. Film properties such as adhesion are also superior for P(AMS-MeM). Using a one hour prebake at 140°C, 10% thinning of unexposed P(AMS-MeM) occurs upon development of pads exposed to an incident electron dose of 8 jC/cm2 (accelerating voltage = 20 kV). The contrast (1) is 2.0 for development of 12 iiC/cm exposur2es. In comparison, P(AMS-MA) exhibited 10% thinning for an incident dose of 40 pC/cm, which is similar to observations with PMMA. The copolymers are developed with mixtures of ethyl 3-ethoxypropionate and 1-methoxy-2-propanol acetate. The dry etch rate of P(AMS-MA) in CFI.' plasma with 8% 02 varies from 45 to 53% of the etch rate of a PMMA standard. The etch rate of P(AMS-MeM) after a 140°C prebake is about 65% that of PMMA. Thus, much of the etch resistance of alphamethylstyrene is maintained in copolymers with maleic anhydride or methyl maleate, while the copolymer with methyl maleate also exhibits significantly enhanced sensitivity.

  2. pH-Sensitive Micelles Based on Double-Hydrophilic Poly(methylacrylic acid)-Poly(ethylene glycol)-Poly(methylacrylic acid) Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Tao, Youhua; Liu, Ren; Liu, Xiaoya; Chen, Mingqing; Yang, Cheng; Ni, Zhongbin

    2009-04-01

    pH-sensitive micelles with hydrophilic core and hydrophilic corona were fabricated by self-assembling of triblock copolymer of poly(methylacrylic acid)-poly(ethylene glycol)-poly(methylacrylic acid) at lower solution pH. Transmission electron microscopy and laser light scattering studies showed micelles were in nano-scale with narrow size distribution. Solution pH value and the micelles concentration strongly influenced the hydrodynamic radius of the spherical micelles (48-310 nm). A possible mechanism for the formation of micelles was proposed. The obtained polymeric micelle should be useful for biomedical materials such as carrier of hydrophilic drug.

  3. The heat-chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)-poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery.

    PubMed

    Payyappilly, Sanal Sebastian; Dhara, Santanu; Chattopadhyay, Santanu

    2014-04-01

    A new method is developed for preparation of amphiphilic block copolymer micellar nanoparticles and investigated as a delivery system for celecoxib, a hydrophobic model drug. Biodegradable block copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) were synthesized by ring opening copolymerization and characterized thoroughly using FTIR, (1)H NMR and GPC. The block copolymer was dispersed in distilled water at 60 °C and then it was chilled in an ice bath for the preparation of the micellar nanoparticles. Polymers self-assembled to form micellar nanoparticles (<50 nm) owing to their amphiphilic nature. The prepared micellar nanoparticles were analyzed using HR-TEM, DLS and DSC. The cytotoxicity of the polymer micellar nanoparticles was investigated against HaCaT cell lines. The study of celecoxib release from the micellar nanoparticles was carried out to assess their suitability as a drug delivery vehicle. Addition of the drug to the system at low temperature is an added advantage of this method compared to the other temperature assisted nanoparticle preparation techniques. In a nutshell, polymer micellar nanoparticles prepared using the heat-chill method are believed to be promising for the controlled drug release system of labile drugs, which degrade in toxic organic solvents and at higher temperatures. PMID:24651872

  4. Impact of molecular weight and degree of conjugation on the thermodynamics of DNA complexation and stability of polyethylenimine-graft-poly(ethylene glycol) copolymers.

    PubMed

    Smith, Ryan J; Beck, Rachel W; Prevette, Lisa E

    2015-01-01

    Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery. PMID:26001068

  5. Stereocomplex Film Using Triblock Copolymers of Polylactide and Poly(ethylene glycol) Retain Paxlitaxel on Substrates by an Aqueous Inkjet System.

    PubMed

    Ajiro, Hiroharu; Kuroda, Ayaka; Kan, Kai; Akashi, Mitsuru

    2015-09-29

    The stereocomplex formation of poly(L,L-lactide) (PLLA) and poly(D,D-lactide) (PDLA) using an inkjet system was expanded to the amphiphilic copolymers, using poly(ethylene glycol) (PEG) as a hydrophilic polymer. The diblock copolymers, which are composed of PEG and PLLA (MPEG-co-PLLA) and PEG and PDLA (MPEG-co-PDLA), were employed for thin-film preparation using an aqueous inkjet system. The solvent and temperature conditions were optimized for the stereocomplex formation between MPEG-co-PLLA and MPEG-co- PDLA. As a result, the stereocomplex was adequately formed in acetonitrile/water (1:1, v/v) at 40 °C. The aqueous conditions improved the stereocomplex film preparation, which have suffered from clogging when using the organic solvents in previous work. The triblock copolymers, PLLA-co-PEG-co-PLLA and PDLA-co-PEG-co-PDLA, were employed for square patterning with the inkjet system, which produced thin films. The amphiphilic polymer film was able to retain hydrophobic compounds inside. The present result contributed to the rapid film preparation by inkjet, retaining drugs with difficult solubility in water, such as paclitaxel within the films. PMID:26343286

  6. Organic solvent-free low temperature method of preparation for self assembled amphiphilic poly(ϵ-caprolactone)-poly(ethylene glycol) block copolymer based nanocarriers for protein delivery.

    PubMed

    Payyappilly, Sanal Sebastian; Panja, Sudipta; Mandal, Pijush; Dhara, Santanu; Chattopadhyay, Santanu

    2015-11-01

    Degradation and denaturation of labile biomolecules during preparation of micelles by organic solvent at high temperature are some of the limitations for fabrication of advanced polymer based protein delivery systems. In this paper, effectiveness of heat-chill method for preparation of micelles containing large labile biomolecules was investigated using insulin as a model protein molecule. Micelles (average size, <120 nm) were prepared using amphiphilic diblock and triblock copolymers of poly(ethylene glycol) (PEG) and poly(ϵ-caprolactone) (PCL). Micelles were prepared by heating PEG-PCL block copolymers with distilled water at 60 °C followed by sudden chilling in an ice-water bath. Effects of molecular architecture on morphology, stability and protein loading capacity of micelles were investigated. Micelles prepared using high molecular weight block copolymers exhibited good colloidal stability, encapsulation efficiency and insulin release characteristics. Insulin retained its secondary structure after micelles preparation as confirmed by CD spectroscopic study. Furthermore, in vitro cytotoxicity test suggested that the prepared micellar nanoparticles possessed biocompatibility. In a nut shell, heat-chill method of micellar nanoparticles preparation is well suited for encapsulating labile proteins and other allied biomolecules which degrade in presence of toxic organic solvents and at elevated temperatures. PMID:26291587

  7. Copolymer of poly(ethylene glycol) and poly(l-lysine) grafting polyethylenimine through a reducible disulfide linkage for siRNA delivery

    NASA Astrophysics Data System (ADS)

    Li, Jingguo; Cheng, Du; Yin, Tinghui; Chen, Weicai; Lin, Yujie; Chen, Jifeng; Li, Ruitang; Shuai, Xintao

    2014-01-01

    siRNA therapy research has primarily focused on the synthesis and development of effective siRNA delivery vectors with easy biodegradability and low toxicity. In the present study, we synthesized a ternary copolymer mPEG-b-PLL-g-(ss-lPEI), denoted as PLI, by introducing disulfide bond linkages to graft low molecular weight linear polyethylenimine (lPEI) to the block copolymer of poly(l-lysine) (PLL) and poly(ethylene glycol) (PEG) for siRNA delivery. The PLL block and disulfide linkage rendered the carrier biodegradability, while lPEI grafting brought about the proton buffering capacity for lysosomal siRNA release and low cationic toxicity. Conjugation of a single chain monoclonal antibody (Herceptin) to the carrier as a targeting ligand for the Her2/neu receptor significantly increased the transfection activity of the copolymer/siRNA nanocomplex (i.e. the polyplex) in Skov-3, a human ovarian cancer cell line. Determination of gene expression at both the mRNA and protein levels demonstrated that Her2-targeted delivery of siRNA (XIAP siRNA) effectively downregulated the targeted XIAP (X-linked inhibitor of apoptosis protein) gene, resulting in enhanced cancer cell apoptosis and improved therapeutic efficacy in vitro and in vivo. The distinct features of low cytotoxicity, easy degradability, and high siRNA transfection efficiency make the copolymer a promising candidate for siRNA therapy in tumors.siRNA therapy research has primarily focused on the synthesis and development of effective siRNA delivery vectors with easy biodegradability and low toxicity. In the present study, we synthesized a ternary copolymer mPEG-b-PLL-g-(ss-lPEI), denoted as PLI, by introducing disulfide bond linkages to graft low molecular weight linear polyethylenimine (lPEI) to the block copolymer of poly(l-lysine) (PLL) and poly(ethylene glycol) (PEG) for siRNA delivery. The PLL block and disulfide linkage rendered the carrier biodegradability, while lPEI grafting brought about the proton

  8. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Huanhuan; Li, Hongxiao; Fan, Li-Zhen; Shi, Qiao

    2014-03-01

    Gel polymer electrolytes (GPE) composed of triethylene glycol diacetate (TEGDA)-2-propenoic acid butyl ester (BA) copolymer and commercial used liquid organic electrolyte are prepared via in situ polymerization. The ionic conductivity of the as-prepared GPE can reach 5.5 × 10-3 S cm-1 with 6 wt% monomers and 94 wt% liquid electrolyte at 25 °C. Additionally, the temperature dependence of the ionic conductivity is consistent with an Arrhenius temperature behavior in a temperature range of 20-90 °C. Furthermore, the electrochemical stability window of the GPE is 5 V at 25 °C. A Li|GPE|(Li[Li1/6Ni1/4Mn7/12]O2) cell has been fabricated, which shows good charge-discharge properties and stable cycle performance compared to liquid electrolyte under the same test conditions.

  9. Dual-responsive polypseudorotaxanes based on block-selected inclusion between polyethylene-block-poly(ethylene glycol) diblock copolymers and 1,4-diethoxypillar[5]arene.

    PubMed

    Chen, Jianzhuang; Li, Nan; Gao, Yongping; Sun, Fugen; He, Jianping; Li, Yongsheng

    2015-10-21

    Based on the selective recognition of the polyethylene (PE) block of polyethylene-block-poly(ethylene glycol) (PE-b-PEG) by 1,4-diethoxypillar[5]arene (DEP5A), two novel thermo and competitive guest (1,4-dibromobutane or hexanedinitrile) responsive polypseudorotaxanes (PPRs) have been successfully constructed. The formation of PPRs both in solution and in the solid state was demonstrated by (1)H NMR, 2D NOESY, and WAXD analyses. TGA data illustrate that PPRs exhibit higher thermal stability than their precursor diblock copolymers. Moreover, intriguing porous disk-like aggregates are produced by electrospraying of PPRs in CHCl3 and the self-assembled structures of PPRs are totally changed by the addition of 1,4-dibromobutane or hexanedinitrile, demonstrating their competitive guest stimuli-responsiveness. PMID:26324953

  10. AN EVALUATION OF THE HUMAN CARCINOGENIC POTENTIAL OF ETHYLENE GLYCOL BUTYL ETHER: INTERIM FINAL POSITION PAPER

    EPA Science Inventory

    In order to determine the merit of a petition to remove ethylene glycol ether (EGBE) from the Agency's Hazardous Air Pollutant (HAP) list, EPA has developed an interim final position paper, An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether, t...

  11. Nonviral Plasmid DNA Carriers Based on N,N'-Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers.

    PubMed

    Mendrek, Barbara; Sieroń, Łukasz; Żymełka-Miara, Iwona; Binkiewicz, Paulina; Libera, Marcin; Smet, Mario; Trzebicka, Barbara; Sieroń, Aleksander L; Kowalczuk, Agnieszka; Dworak, Andrzej

    2015-10-12

    Star polymers with random and block copolymer arms made of cationic N,N'-dimethylaminoethyl methacrylate (DMAEMA) and nonionic di(ethylene glycol) methyl ether methacrylate (DEGMA) were synthesized via atom transfer radical polymerization (ATRP) and used for the delivery of plasmid DNA in gene therapy. All stars were able to form polyplexes with plasmid DNA. The structure and size of the polyplexes were precisely determined using light scattering and cryo-TEM microscopy. The hydrodynamic radius of a complex of DNA with star was dependent on the architecture of the star arms, the DEGMA content and the number of amino groups in the star compared to the number of phosphate groups of the nucleic acid (N/P ratio). The smallest polyplexes (Rh90°∼50 nm) with positive zeta potentials (∼15 mV) were formed of stars with N/P=6. The introduction of DEGMA into the star structure caused a decrease of polyplex cytotoxicity in comparison to DMAEMA homopolymer stars. The overall transfection efficiency using HT-1080 cells showed that the studied systems are prospective gene delivery agents. The most promising results were obtained for stars with random copolymer arms of high DEGMA content. PMID:26375579

  12. Design of Poly(l-lactide)-Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups.

    PubMed

    Xie, Hui; He, Man-Jie; Deng, Xiao-Ying; Du, Lan; Fan, Cheng-Jie; Yang, Ke-Ke; Wang, Yu-Zhong

    2016-04-13

    A novel light-induced shape-memory material based on poly(l-lactide)-poly(ethylene glycol) copolymer is developed successfully by dangling the photoresponsive anthracene group on the PEG soft segment selectively. For synthesis strategy, the preprepared photoresponsive monomer N,N-bis(2-hydroxyethyl)-9-anthracene-methanamine (BHEAA) is first embedded into PEG chains; then, we couple this anthracene-functionalized PEG precursor with PLA precursor to result in PLA-PEG-A copolymer. The composition of target product can be well-defined by simply adjusting the feed ratio. The chemical structures of intermediate and final products are confirmed by (1)H NMR. Differential scanning calorimetry analysis of material reveals that the PEG soft segment became noncrystallizable when 4% or more BHEAA is introduced, and this feature is beneficial to the mobility of anthracene groups in polymer matrix. The static tensile tests show that the samples exhibit rubberlike mechanical properties except for the PLA-dominant one. The reversibility of [4 + 4] cycloaddition reaction between pendant anthracene groups in PLA-PEG-A film is demonstrated by UV-vis. Eventually, the light-induced shape-memory effect (LSME) is successfully realized in PLA-PEG-A. The results of cyclic photomechanical tests also reveal that the content of PLA hard segment as well as photosensitive anthracene moieties plays a crucial role in LSME. PMID:27031590

  13. RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies

    PubMed Central

    2013-01-01

    A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by 1H NMR spectroscopy and relatively low diblock copolymer polydispersities (Mw/Mn < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMAx diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG113-PHPMAx phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications. PMID:24400622

  14. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies.

    PubMed

    Warren, Nicholas J; Mykhaylyk, Oleksandr O; Mahmood, Daniel; Ryan, Anthony J; Armes, Steven P

    2014-01-22

    A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by (1)H NMR spectroscopy and relatively low diblock copolymer polydispersities (M(w)/M(n) < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMA(x) diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG113-PHPMA(x) phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications. PMID:24400622

  15. Poly(ethylene glycol)-grafted copolymers as synthetic equivalents of benzyltriethylammonium chloride for triphase catalytic alkylation

    SciTech Connect

    Kimura, Y.; Kirszensztejn, P.; Regan, S.L.

    1983-02-11

    Synthetic results are reported, which show that simple poly(ethylene glycols) grafted to cross-linked polystyrene are remarkably active and stable triphase catalysts for the alkylation of nitriles, ketones, and alcohols. Resins were prepared from commercial chloromethylated polystyrene by using standard grafting procedures. For comparison of their efficacies for promoting alkylation, the conversion of phenylacetonitrile to 2-phenylhexane-nitrile was chosen as a standard reaction.

  16. Nano-ordered surface morphologies by stereocomplexation of the enantiomeric polylactide chains: specific interactions of surface-immobilized poly(D-lactide) and poly(ethylene glycol)-poly(L-lactide) block copolymers.

    PubMed

    Nakajima, Maho; Nakajima, Hajime; Fujiwara, Tomoko; Kimura, Yoshiharu; Sasaki, Sono

    2014-11-25

    Both AB diblock and ABA triblock copolymers consisting of poly(L-lactide) (PLLA: A) and poly(ethylene glycol) (PEG: B) were deposited on a silicon surface on which poly(D-lactide) (PDLA) had been preimmobilized. The deposit of the diblock copolymer (PLLA-PEG) formed band structures similar to those observed when the same copolymer was directly deposited on the silicon surface. In contrast, the deposit of the triblock copolymer (PLLA-PEG-PLLA) formed many particulates scattering over the surface. When the PLLA-PEG deposit was subjected to water-soaking, the original band morphology was completely replaced by the particulate morphology that was identical to that of the PLLA-PEG-PLLA deposit. Their FT-IR analyses revealed that both copolymers had been bound through the stereocomplex (sc) formation between the preimmobilized PDLA chains and the PLLA blocks of the copolymers. Grazing-incidence small-angle X-ray scattering (GISAXS) also supported these surface morphologies. It was therefore evident that hydrophilic PEG chains can be immobilized on the PDLA-preimmobilized surface by the sc formation. PMID:25365934

  17. Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine.

    PubMed

    Boylan, Nicholas J; Kim, Anthony J; Suk, Jung Soo; Adstamongkonkul, Pichet; Simons, Brian W; Lai, Samuel K; Cooper, Mark J; Hanes, Justin

    2012-03-01

    Highly compacted DNA nanoparticles, composed of single molecules of plasmid DNA compacted with block copolymers of polyethylene glycol and poly-L-lysine (PEG-CK(30)), have shown considerable promise in human gene therapy clinical trials in the nares, but may be less capable of transfecting cells that lack surface nucleolin. To address this potential shortcoming, we formulated pH-responsive DNA nanoparticles that mediate gene transfer via a nucleolin-independent pathway. Poly-L-histidine was inserted between PEG and poly-L-lysine to form a triblock copolymer system, PEG-CH(12)K(18). Inclusion of poly-L-histidine increased the buffering capacity of PEG-CH(12)K(18) to levels comparable with branched polyethyleneimine. PEG-CH(12)K(18) compacted DNA into rod-shaped DNA nanoparticles with similar morphology and colloidal stability as PEG-CK(30) DNA nanoparticles. PEG-CH(12)K(18) DNA nanoparticles entered human bronchial epithelial cells (BEAS-2B) that lack surface nucleolin by a clathrin-dependent endocytic mechanism followed by endo-lysosomal processing. Despite trafficking through the degradative endo-lysosomal pathway, PEG-CH(12)K(18) DNA nanoparticles improved the in vitro gene transfer by ~20-fold over PEG-CK(30) DNA nanoparticles, and in vivo gene transfer to lung airways in BALB/c mice by ~3-fold, while maintaining a favorable toxicity profile. These results represent an important step toward the rational development of an efficient gene delivery platform for the lungs based on highly compacted DNA nanoparticles. PMID:22182747

  18. Enhancement of Airway Gene Transfer by DNA Nanoparticles Using a pH-Responsive Block Copolymer of Polyethylene Glycol and Poly-L-lysine

    PubMed Central

    Boylan, Nicholas J.; Kim, Anthony J.; Suk, Jung Soo; Adstamongkonkul, Pichet; Simons, Brian W.; Lai, Samuel K.; Cooper, Mark J.; Hanes, Justin

    2011-01-01

    Highly compacted DNA nanoparticles, composed of single molecules of plasmid DNA compacted with block copolymers of polyethylene glycol and poly-L-lysine (PEG-CK30), have shown considerable promise in human gene therapy clinical trials in the nares, but may be less capable of transfecting cells that lack surface nucleolin. To address this potential shortcoming, we formulated pH-responsive DNA nanoparticles that mediate gene transfer via a nucleolin-independent pathway. Poly-L-histidine was inserted between PEG and poly-L-lysine to form a triblock copolymer system, PEG-CH12K18. Inclusion of poly-L-histidine increased the buffering capacity of PEG-CH12K18 to levels comparable with branched polyethyleneimine. PEG-CH12K18 compacted DNA into rod-shaped DNA nanoparticles with similar morphology and colloidal stability as PEG-CK30 DNA nanoparticles. PEG-CH12K18 DNA nanoparticles entered human bronchial epithelial cells (BEAS-2B) that lack surface nucleolin by a clathrin-dependent endocytic mechanism followed by endo-lysosomal processing. Despite trafficking through the degradative endo-lysosomal pathway, PEG-CH12K18 DNA nanoparticles improved the in vitro gene transfer by ~ 20-fold over PEG-CK30 DNA nanoparticles, and in vivo gene transfer to lung airways in BALB/c mice by ~ 3-fold, while maintaining a favorable toxicity profile. These results represent an important step toward the rational development of an efficient gene delivery platform for the lungs based on highly compacted DNA nanoparticles. PMID:22182747

  19. [The study of quality characteristics of the hydrogel ointments and films based on copolymers divinyl esters of diethylene glycol].

    PubMed

    Bakirova, R E; Tazhbaeva, E M; Muravleva, L E; Fazylov, S D; Akhmetova, S B

    2014-12-01

    The possibility of using a hydrogel based on divinyl ether co- and terpolymer of diethylene glycol as the backbone polymer for incorporating water-soluble medicinal substances was examined. The character of the influence of emulsifiers, plasticizers, high-boiling liquids and bioactive substances is defined within the changes of physical-chemical properties of obtained hydrogels. The obtained polyelectrolyte hydrogels by their homogeneity, dehydration and rheological characteristics may be of concern in function of matrices to create external prolonged-action dosage forms. PMID:25617104

  20. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications. PMID:24851333

  1. Studies of miscibility and specific interactions of antitumor-active anhydride copolymer and poly(ethylene glycol) blends.

    PubMed

    Can, Hatice Kaplan; Parvizikhosroshahi, Shahed; Uluışık, Erdem C

    2016-01-01

    The blending of polymers is of great interest, since the modification gives rise to diverse physical properties with the functionality of a polymer, without synthesis. Water-soluble antitumor-active poly(maleic anhydride-alt-acrylic acid) poly(MA-alt-AA) and poly(ethylene glycol) (PEG) blends were prepared by casting, and compatible properties were investigated by dilute solution viscometry. Viscosity measurements were made on ternary systems of polymer (1)/polymer (2)/solvent (H2O) and p-dioxane, at different concentrations of PEG and poly(MA-alt-AA). The interaction parameters Δβ, μ, Δk, Δb, β and α, which have been proposed, have been obtained using the viscosity data, to probe the miscibility of the polymer blends. The solid blends prepared were characterized with ATR-FTIR, (1)H-NMR, DTA and TGA. PMID:25406735

  2. AN EVALUATION OF THE HUMAN CARCINOGENIC POTENTIAL OF ETHYLENE GLYCOL BUTYL ETHER (EGBE)

    EPA Science Inventory

    Background

    The position paper, An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether, was developed in support of the Agency's evaluation of a petition from the...

  3. Synthesis and characterisation of a degradable poly(lactic acid)-poly(ethylene glycol) copolymer with biotinylated end groups.

    PubMed

    Salem, A K; Cannizzaro, S M; Davies, M C; Tendler, S J; Roberts, C J; Williams, P M; Shakesheff, K M

    2001-01-01

    Poly(lactic acid)-poly(ethylene glycol)-biotin (PLA-PEG-biotin) is a degradable polymer with protein resistant properties that can undergo rapid surface engineering in aqueous media to create biomimetic surfaces. Surface engineering of this polymer is dependent on biomolecular interactions between the biotin end group and the protein avidin. Given the vigorous conditions of synthesis, it is essential that the manufacture of the polymer does not alter the biotin structure or its molecular recognition. Equally, it is important that the incorporation of biotin does not adversely affect the physicochemical properties of the polymer. (1)H NMR provides evidence of biotin attachment and structural integrity. (1)H NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) analysis shows there is no significant effect on bulk properties induced by the biotin end group. Surface plasmon resonance (SPR) and fluorescent spectroscopy studies using the 2-(4'-hydroxyazobenzene) benzoic acid (HABA)/avidin complex show that the biotin moieties binding capabilities are not impaired by the synthesis. PMID:11749223

  4. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers

    PubMed Central

    Akbarzadeh, Abolfazl; Mikaeili, Haleh; Zarghami, Nosratollah; Mohammad, Rahmati; Barkhordari, Amin; Davaran, Soodabeh

    2012-01-01

    Background Superparamagnetic iron oxide nanoparticles are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging, and therapeutic applications. In our study, superparamagnetic iron oxide nanoparticles and the anticancer drug, doxorubicin hydrochloride, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. The magnetic properties conferred by superparamagnetic iron oxide nanoparticles could help to maintain the nanoparticles in the joint with an external magnet. Methods A series of PLGA:PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide with different molecular weights of polyethylene glycol (PEG2000, PEG3000, and PEG4000) as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In addition, the resulting particles were characterized by x-ray powder diffraction, scanning electron microscopy, and vibrating sample magnetometry. Results The doxorubicin encapsulation amount was reduced for PLGA:PEG2000 and PLGA:PEG3000 triblock copolymers, but increased to a great extent for PLGA:PEG4000 triblock copolymer. This is due to the increased water uptake capacity of the blended triblock copolymer, which encapsulated more doxorubicin molecules into a swollen copolymer matrix. The drug encapsulation efficiency achieved for Fe3O4 magnetic nanoparticles modified with PLGA:PEG2000, PLGA:PEG3000, and PLGA:PEG4000 copolymers was 69.5%, 73%, and 78%, respectively, and the release kinetics were controlled. The in vitro cytotoxicity test showed that the Fe3O4-PLGA:PEG4000 magnetic nanoparticles had no cytotoxicity and were biocompatible. Conclusion There is potential for use of these nanoparticles for biomedical application. Future work

  5. The evaluation of biodegradable four star PEO-PLA copolymer as a drug delivery vector

    NASA Astrophysics Data System (ADS)

    Salaam, Latisha Evette

    Current drug delivery vectors for sustained release include both naturally occurring and artificially synthesized polymers. Several linear copolymer systems have been explored for use as drug delivery systems because they form micelles and microspheres as a result of having hydrophobic and hydrophilic polymer portions. The pharmaceutical agent is released due to degradation of the polymer and/or by swelling of the polymer. This release is dependant upon the material containing the pharmaceutical agent; thus material design is a major parameter in establishing a drug delivery vector. Material design allows tailored physical and chemical characteristics, which are key to establishing release. The overall goal of this research is to obtain and evaluate an unstudied branched Polyethylene glycol based polyether ester as a drug delivery vector through assessing and characterizing the micellar aggregation state, neat material thermal characteristics and morphology, micellar material degradation, effect of degradation on the micelle structure, and computational estimation of molecular aggregate force. This system may present enhanced physical properties for containing and delivering hydrophobic drug molecules due to its covalently linked branches. Three constructs of four star polyethylene oxide polylactide copolymer were examined. The samples differed in molecular weight and chain length of the polylactide subunit and in stereo form. Characterization of micelles revealed that solubility decreased with increasing polylactide chain length and molecular aggregation in aqueous solution and that the critical micelle concentration was lower for the star system than for previously reported systems. Transmission electron microscopy and second virial calculations revealed polydispersity and batch to batch variation. Differential Scanning Calorimetry thermograms show two distinct transition peaks for the neat material samples. Thermogravimetric Analysis sample thermograms exhibited

  6. Superparamagnetic iron oxide--loaded poly(lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent.

    PubMed

    Prashant, Chandrasekharan; Dipak, Maity; Yang, Chang-Tong; Chuang, Kai-Hsiang; Jun, Ding; Feng, Si-Shen

    2010-07-01

    We developed a strategy to formulate supraparamagnetic iron oxides (SPIOs) in nanoparticles (NPs) of biodegradable copolymer made up of poly(lactic acid) (PLA) and d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) for medical imaging by magnetic resonance imaging (MRI) of high contrast and low side effects. The IOs-loaded PLA-TPGS NPs (IOs-PNPs) were prepared by the single emulsion method and the nanoprecipitation method. Effects of the process parameters such as the emulsifier concentration, IOs loading in the nanoparticles, and the solvent to non-solvent ratio on the IOs distribution within the polymeric matrix were investigated and the formulation was then optimized. The transmission electron microscopy (TEM) showed direct visual evidence for the well dispersed distribution of the IOs within the NPs. We further investigated the biocompatibility and cellular uptake of the IOs-PNPs in vitro with MCF-7 breast cancer cells and NIH-3T3 mouse fibroblast in close comparison with the commercial IOs imaging agent Resovist. MRI imaging was further carried out to investigate the biodistribution of the IOs formulated in the IOs-PNPs, especially in the liver to understand the liver clearance process, which was also made in close comparison with Resovist. We found that the PLA-TPGS NPs formulation at the clinically approved dose of 0.8 mg Fe/kg could be cleared within 24 h in comparison with several weeks for Resovist. Xenograft tumor model MRI confirmed the advantages of the IOs-PNPs formulation versus Resovist through the enhanced permeation and retention (EPR) effect of the tumor vasculature. PMID:20434210

  7. A pH and Redox Dual Responsive 4-Arm Poly(ethylene glycol)-block-poly(disulfide histamine) Copolymer for Non-Viral Gene Transfection in Vitro and in Vivo

    PubMed Central

    An, Kangkang; Zhao, Peng; Lin, Chao; Liu, Hongwei

    2014-01-01

    A novel 4-arm poly(ethylene glycol)-b-poly(disulfide histamine) copolymer was synthesized by Michael addition reaction of poly(ethylene glycol) (PEG) vinyl sulfone and amine-capped poly(disulfide histamine) oligomer, being denoted as 4-arm PEG-SSPHIS. This copolymer was able to condense DNA into nanoscale polyplexes (<200 nm in average diameter) with almost neutral surface charge (+(5–10) mV). Besides, these polyplexes were colloidal stable within 4 h in HEPES buffer saline at pH 7.4 (physiological environment), but rapidly dissociated to liberate DNA in the presence of 10 mM glutathione (intracellular reducing environment). The polyplexes also revealed pH-responsive surface charges which markedly increased with reducing pH values from 7.4–6.3 (tumor microenvironment). In vitro transfection experiments showed that polyplexes of 4-arm PEG-SSPHIS were capable of exerting enhanced transfection efficacy in MCF-7 and HepG2 cancer cells under acidic conditions (pH 6.3–7.0). Moreover, intravenous administration of the polyplexes to nude mice bearing HepG2-tumor yielded high transgene expression largely in tumor rather other normal organs. Importantly, this copolymer and its polyplexes had low cytotoxicity against the cells in vitro and caused no death of the mice. The results of this study indicate that 4-arm PEG-SSPHIS has high potential as a dual responsive gene delivery vector for cancer gene therapy. PMID:24853287

  8. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups.

    PubMed

    Neradovic, D; Soga, O; Van Nostrum, C F; Hennink, W E

    2004-05-01

    Block copolymers of poly(ethylene glycol) (PEG) as a hydrophilic block and N-isopropylacrylamide (PNIPAAm) or poly (NIPAAm-co-N-(2-hydroxypropyl) methacrylamide-dilactate) (poly(NIPAAm-co-HPMAm-dilactate)) as a thermosensitive block, are able to self-assemble in water into nanoparticles above the cloud point (CP) of the thermosensitive block. The influence of processing and the formulation parameters on the size of the nanoparticles was studied using dynamic light scattering. PNIPAAm-b-PEG 2000 polymers were not suitable for the formation of small and stable particles. Block copolymers with PEG 5000 and 10000 formed relatively small and stable particles in aqueous solutions at temperatures above the CP of the thermosensitive block. Their size decreased with increasing molecular weight of the thermosensitive block, decreasing polymer concentration and using water instead of phosphate buffered saline as solvent. Extrusion and ultrasonication were inefficient methods to size down the polymeric nanoparticles. The heating rate of the polymer solutions was a dominant factor for the size of the nanoparticles. When an aqueous polymer solution was slowly heated through the CP, rather large particles (> or = 200 nm) were formed. Regardless the polymer composition, small nanoparticles (50-70 nm) with a narrow size distribution were formed, when a small volume of an aqueous polymer solution below the CP was added to a large volume of heated water. In this way the thermosensitive block copolymers rapidly pass their CP ('heat shock' procedure), resulting in small and stable nanoparticles. PMID:14741606

  9. Preparation and characterization of new zinc(II) phthalocyanine - Containing poly(l-lactide)-b-poly(ethylene glycol) copolymer micelles for photodynamic therapy.

    PubMed

    Lamch, Łukasz; Kulbacka, Julita; Pietkiewicz, Jadwiga; Rossowska, Joanna; Dubińska-Magiera, Magda; Choromańska, Anna; Wilk, Kazimiera A

    2016-07-01

    Poly(l-lactide)-b-poly(ethylene oxide) block copolymer (mPEG-b-PLLA) micelles were fabricated and applied as a new biodegradable and biocompatible nanocarrier for solubilization of hydrophobic zinc (II) phthalocyanine (ZnPc). The nanocarrier demonstrated a good colloidal stability and its in vitro sustained cargo release profile was assessed. Photobleaching of ZnPc, both in its native form and encapsulated in the obtained polymeric micelles, was studied by means of spectroscopic measurements. The photodynamic reaction (PDR) protocol for cyto- and photocytotoxicity was performed on metastatic melanoma cells (Me45), normal human keratinocytes (HaCaT) being used for comparison. The intracellular accumulation of free and encapsulated ZnPc was visualized at various time periods (1, 3 and 24h). The proapoptotic potential of the encapsulated phthalocyanine was evaluated by monitoring DNA double strand break damage fragmentation (TUNEL assay) and caspase 3/7 activity. In addition, in vitro biocompatibility studies were conducted by determining hemolytic activity of Zn-Pc-loaded mPEG-b-PLLA micelles and their lack of cytotoxicity against macrophages (P388/D1) and endothelial cells (HUV-EC-C). Our results suggest that the PDR using Zn-Pc-loaded mPEG-b-PLLA micelles can be effective in inhibiting tumor cell growth and apoptosis induction with higher responses, observed for Me45 cells. Additionally, the ZnPc-loaded micelles appear to be hemato-biocompatible and safe for normal keratinocytes, macrophages and endothelial cells. PMID:27113446

  10. Development and evaluation of ion exchange hollow fibers. [vinyl copolymers

    NASA Technical Reports Server (NTRS)

    Smith, J. K.

    1975-01-01

    An ion exchange hollow fiber impregnated with a vinylpyridine base was developed. The basic exchange resin used to impart the necessary permselectivity to the hollow fiber is a copolymer of vinylpyridine and dibromoethane prepared according to Rembaum. A slight pressure was used to impregnate the exchange monomer mixture into the void structure of the fiber wall, and with maintenance of subambient temperatures, the rate of cross-linking is slow enough to allow the growing polymer to permeate the wall structure before significant increase in polymer molecular weight. These ion exchange fibers are produced from polyacrylonitrile hollow fibers with an appropriate wall structure that enables the impregnating vinylpyridine monomer mixture to form a truly semipermeable anion barrier after curing.

  11. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells

    PubMed Central

    Erfani-Moghadam, Vahid; Nomani, Alireza; Zamani, Mina; Yazdani, Yaghoub; Najafi, Farhood; Sadeghizadeh, Majid

    2014-01-01

    Curcumin is a potent natural anticancer agent, but its effectiveness is limited by properties such as very low solubility, high rate of degradation, and low rate of absorption of its hydrophobic molecules in vivo. To date, various nanocarriers have been used to improve the bioavailability of this hydrophobic biomaterial. This study investigates the encapsulation of curcumin in a novel nanostructure of monomethoxy poly(ethylene glycol)-oleate (mPEG-OA) and its anticancer effect. Tests were done to determine the critical micelle concentration (CMC), encapsulation efficiency, drug-loading efficiency, and cytotoxicity (against U87MG brain carcinoma cells and HFSF-PI3 cells as normal human fibroblasts) of some nanodevice preparations. The results of fluorescence microscopy and cell-cycle analyses indicated that the in vitro bioavailability of the encapsulated curcumin was significantly greater than that of free curcumin. Cytotoxicity evaluations showed that half maximal inhibitory concentrations of free curcumin and curcumin-loaded mPEG-OA for the U87MG cancer cell line were 48 μM and 24 μM, respectively. The Annexin-V-FLUOS assay was used to quantify the apoptotic effect of the prepared nanostructures. Apoptosis induction was observed in a dose-dependent manner after curcumin-loaded mPEG-OA treatments. Two common self-assembling structures, micelles and polymersomes, were observed by atomic force microscopy and dynamic light scattering, and the abundance of each structure was dependent on the concentration of the diblock copolymer. The mPEG-OA micelles had a very low CMC (13.24 μM or 0.03 g/L). Moreover, atomic force microscopy and dynamic light scattering showed that the curcumin-loaded mPEG-OA polymersomes had very stable structures, and at concentrations 1,000 times less than the CMC, at which the micelles disappear, polymersomes were the dominant structures in the dispersion with a reduced size distribution below 150 nm. Overall, the results from these tests

  12. Exploring the influence of the poly(4-vinyl pyridine) segment on the solution properties and thermal phase behaviours of oligo(ethylene glycol) methacrylate-based block copolymers: the different aggregation processes with various morphologies.

    PubMed

    Dai, Yalan; Wu, Peiyi

    2016-08-01

    The assembly properties, thermal phase behavior and microdynamics of well-defined P(MEO2MA-co-OEGMA)-b-P4VP, (poly(2-(2-methoxyethoxy)ethylmethacrylate)-co-poly(oligo(ethylene glycol) methacrylate))-b-poly(4-vinyl pyridine), in aqueous solution during heating are investigated in detail by dynamic light scattering (DLS), turbidity measurements, temperature-variable (1)H NMR and FTIR spectroscopy in combination with two-dimensional correlation spectroscopy (2Dcos) and the perturbation correlation moving window (PCMW) technique. It is observed that the chain length of the relatively hydrophobic P4VP segment strongly affects the temperature-induced phase transition behavior of the block copolymers: the copolymers with shorter P4VP7/10 segments exhibit an abrupt phase transition process, while the copolymer with longer P4VP19 blocks presents a relatively gradual transition behavior. Moreover, the two systems with different P4VP segment lengths have different morphologies in aqueous solution: a single-chain globule for shorter P4VP7/10 systems and a core-shell micelle consisting of a relatively hydrophobic P4VP core and a hydrophilic POEGMA-based shell for the longer P4VP19 system. Analysis of spectral results clearly illustrates that the dehydration of the C[double bond, length as m-dash]O groups at the linkages between backbones and pendant chains predominates the sharp phase transition of P(MEO2MA-co-OEGMA)-b-P4VP10, while the dehydration of hydrophobic C-H groups on the side chains in P(MEO2MA-co-OEGMA)-b-P4VP19 leads to the continuous increase of the hydrodynamic diameter (Dh) upon heating. PMID:27425657

  13. The effect of insulin-loaded linear poly(ethylene glycol)-brush-like poly(l-lysine) block copolymer on renal ischemia/reperfusion-induced lung injury through downregulating hypoxia-inducible factor

    PubMed Central

    Tong, Fei; Tang, Xiangyuan; Li, Xin; Xia, Wenquan; Liu, Daojun

    2016-01-01

    The aim of this study was to observe the therapeutic effect of insulin-loaded linear poly(ethylene glycol)-brush-like poly(l-lysine) block copolymer poly(ethylene glycol)-b-(poly(ethylenediamine l-glutamate)-g-poly(l-lysine)) (PEG-b-(PELG-g-PLL) on renal ischemia/reperfusion-induced lung injury through downregulating hypoxia-inducible factor (HIF) as compared to free insulin. Sprague Dawley rats were pretreated with 30 U/kg insulin or insulin/PEG-b-(PELG-g-PLL) complex, and then subjected to 45 minutes of ischemia and 24 hours of reperfusion. The blood and lungs were collected, the level of serum creatinine and blood urea nitrogen were measured, and the dry/wet lung ratios, the activity of superoxide dismutase and myeloperoxidase, the content of methane dicarboxylic aldehyde and tumor necrosis factor-α, and the expression of HIF-1α and vascular endothelial growth factor (VEGF) were measured in pulmonary tissues. Both insulin and insulin/PEG-b-(PELG-g-PLL) preconditioning improved the recovery of renal function, reduced pulmonary oxidative stress injury, restrained inflammatory damage, and downregulated the expression of HIF-1α and VEGF as compared to ischemia/reperfusion group, while insulin/PEG-b-(PELG-g-PLL) significantly improved this effect. PMID:27175073

  14. In vitro and in vivo safety evaluation of biodegradable self-assembled monomethyl poly (ethylene glycol)-poly (ε-caprolactone)-poly (trimethylene carbonate) micelles.

    PubMed

    Yang, Xi; Cao, Dan; Wang, Ning; Sun, Lu; Li, Ling; Nie, Shihong; Wu, Qinjie; Liu, Xinyu; Yi, Cheng; Gong, Changyang

    2014-01-01

    Safety evaluation of self-assembled polymeric micelles is important for biomedical involvement in drug delivery systems in the future. In this study, biodegradable monomethyl poly (ethylene glycol)-poly (ε-caprolactone)-poly (trimethylene carbonate) [MPEG-P(CL-co-TMC)] copolymer was synthesized and characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance analysis, and gel permeation chromatography. MPEG-P(CL-co-TMC) micelles were prepared by self-assembly without any organic solvent. The present study was conducted to assess the safety of blank MPEG-P(CL-co-TMC) micelles both in vitro and in vivo. Particle size (30.09 ± 0.06 nm) and zeta potential (0.067 ± 0.027 mV) of obtained micelles were determined by Malvern laser particle size analyzer. The results of in vitro toxicity evaluation implied that the prepared micelles did not cause hemolysis or severely cell toxicity. Meanwhile, we did not observe any toxic response or histopathological changes in the study of in vivo acute toxicity evaluation and histopathological study of MPEG-P(CL-co-TMC) micelles. In conclusion, the maximal tolerance dose of MPEG-P(CL-co-TMC) micelles (100 mg/mL) by intravenous injection was supposed to be greater than 10 g/kg body weight. Therefore, it might have potential applications in biomedical field. PMID:24282070

  15. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine a.

    PubMed

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-01-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug. PMID:20671795

  16. Preparation and Evaluation of Poly(Ethylene Glycol)-Poly(Lactide) Micelles as Nanocarriers for Oral Delivery of Cyclosporine A

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-06-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  17. Particle formation and aggregation-collapse behavior of poly(N-isopropylacrylamide) and poly(ethylene glycol) block copolymers in the presence of cross-linking agent.

    PubMed

    Zhu, Peng-Wei

    2004-05-01

    The effect of feed molar ratio of N-isopropylacrylamide (NIPAM) to poly(ethylene oxide) (PEO) on the particle formation of poly(N-isopropylacrylamide) (PNIPAM) and PEO block copolymers (PNIPAM-b-PEO) and their aggregation-collapse behavior have been studied in aqueous solutions. It is found that in the presence of cross-linking agent N,N'-methylenebisacryla-mide (BIS), different morphologies of PNIPAM-b-PEO copolymers can be obtained, including a grafting-like structure, a hemispherical core-shell structure and a well-defined core-shell nanoparticle, as the feed molar amount of NIPAM in the copolymerization is increased. The increase in temperature causes the self-aggregation of grafting-like copolymers and hemispherical particles due to the hydrophobic interaction between locally unshielded PNIPAM blocks prior to the conformational transition of PNIPAM. When the feed molar ratio of NIPAM to PEO exceeds a certain value, a well-defined core-shell nanoparticle can be produced during the copolymerization. At low concentrations, PNIPAM cores of single core-shell nanoparticles can undergo the conformational transition without aggregation. The increase in the concentration of the well-defined core-shell nanoparticles, however, results in a week aggregation at temperatures lower than the theta-temperature of pure PNIPAM due to the association of methyl groups at the periphery of PEO shells. PMID:15386964

  18. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.

    PubMed

    Ge, Zigang; Tian, Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo, Jin Fei; Cao, Tong

    2009-04-01

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. PMID:19208943

  19. Preparation, blood coagulation and cell compatibility evaluation of chitosan-graft-polylactide copolymers.

    PubMed

    Wang, Qi; Liu, Pei; Liu, Peifeng; Gong, Tao; Li, Suming; Duan, Yourong; Zhang, Zhirong

    2014-02-01

    Biodegradable chitosan-graft-polylactide (PLA-CS) copolymers were prepared by the grafting of a poly(L-lactide) (PLLA) or poly(D-lactide) (PDLA) precursor to the backbone of chitosan using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC ⋅ HCl) and N-hydroxysuccinimide (NHS) as a coupling agent. The blood and cell compatibility of the graft copolymers were investigated in comparison to PLLA and PDLA homopolymers. The coagulation properties of PLA-CS were evaluated by hemolysis, plasma recalcification, dynamic blood clotting and protein absorption assays. PLA-CS copolymers present similar hemolysis ratio and plasma recalcification time as PLA, but slower dynamic blood clotting and lower protein absorption. The cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), agar diffusion and lactate dehydrogenase (LDH) experiments. All the samples presented no effect on the viability to cells. Inflammatory cytokine analysis using sandwich ELISAs revealed that PLA-CS would not stimulate inflammatory activity. PMID:24448591

  20. Evaluation of Propylene Glycol-Based Fluids for Constellation Habitats and Vehicles

    NASA Technical Reports Server (NTRS)

    Lee, Steve

    2009-01-01

    Two fluid life tests have been conducted to evaluate propylene glycol-based fluids for use in Constellation habitats and vehicles. The first test was conducted from November 2008 to January 2009 to help determine the compatibility of the propylene glycol-based fluid selected for Orion at the time. When the first test uncovered problems with the fluid selection, an investigation and selection of a new fluid were conducted. A second test was started in March 2010 to evaluate the new selection. For the first test, the fluid was subjected to a thermal fluid loop that had flight-like properties, as compared to Orion. The fluid loop had similar wetted materials, temperatures, flow rates, and aluminum wetted surface area to fluid volume ratio. The test was designed to last for 10 years, the life expectancy of the lunar habitat. However, the test lasted less than two months. System filters became clogged with precipitate, rendering the fluid system inoperable. Upon examination of the precipitate, it was determined that the precipitate composition contained aluminum, which could have only come from materials in the test stand, as aluminum is not part of the original fluid composition. Also, the fluid pH was determined to have increased from 10.1, at the first test sample, to 12.2, at the completion of the test. This high of a pH is corrosive to aluminum and was certainly a contributing factor to the development of precipitate. Due to the problems encountered during this test, the fluid was rejected as a coolant candidate for Orion. A new propylene glycol-based fluid was selected by the Orion project for use in the Orion vehicle. The Orion project has conducted a series of screening tests to help verify that there will be no problems with the new fluid selection. To compliment testing performed by the Orion project team, a new life test was developed to test the new fluid. The new test bed was similar to the original test bed, but with some improvements based on experience

  1. Evaluation of liquid chromatography column retentivity using macromolecular probes. IV. Poly(ethylene glycol) bonded phase.

    PubMed

    Berek, Dusan; Mendichi, Raniero

    2004-02-01

    Interaction properties of the novel HPLC silica gel-poly(ethylene glycol) (PEG) bonded phase were evaluated applying polymeric test substances, viz. polystyrenes, poly(methyl methacrylate)s, poly(ethylene oxide)s and poly(2-vinyl pyridine)s, and eluents of different polarities. Silanols on the silica gel surface are well shielded by the PEG phase, and silanophilic adsorption of macromolecules is suppressed in comparison with most silica C(18) bonded phases. The adsorption of solutes on the -OH groups of the PEG phase seems to be low as well. The partition of macromolecules in favor of the PEG phase is inferior to that observed in case of the silica C(18) phases. The volume of the PEG bonded phase is small and it is supposed that the PEG chains assume flat conformation on the silica gel surface. PMID:14698238

  2. Synthesis and In Vivo Pharmacokinetic Evaluation of Degradable Shell Crosslinked Polymer Nanoparticles with Poly(carboxybetaine) vs. Poly(ethylene glycol) Surface-grafted Coatings

    PubMed Central

    Li, Ang; Luehmann, Hannah P.; Sun, Guorong; Samarajeewa, Sandani; Zou, Jiong; Zhang, Shiyi; Zhang, Fuwu; Welch, Michael J.; Liu, Yongjian; Wooley, Karen L.

    2012-01-01

    Nanoparticles with tunable pharmacokinetics are desirable for various biomedical applications. Poly(ethylene glycol) (PEG) is well known to create “stealth” effects to stabilize and extend the blood circulation of nanoparticles. In this work, poly(carboxybetaine) (PCB), a new non-fouling polymer material, was incorporated as surface-grafted coatings, conjugated onto degradable shell crosslinked knedel-like nanoparticles (dSCKs) composed of poly(acrylic acid)- based shells and poly(lactic acid) (PLA) cores, to compare the in vivo pharmacokinetics to their PEG-functionalized analogs. A series of five dSCKs was prepared from amphiphilic block copolymers, having different numbers and lengths of either PEG or PCB grafts, by supramolecular assembly in water followed by shell crosslinking, and then studied by a lactate assay to confirm their core hydrolytic degradabilities. Each dSCK was also conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocyclic chelators and tyramine moieties to provide for 64Cu and/or radiohalogen labeling. The high specific activity of 64Cu radiolabeling ensured nanogram administration of dSCKs for in vivo evaluation of their pharmacokinetics. Biodistribution studies demonstrated comparable in vivo pharmacokinetic profiles of PCB-grafted dSCKs to their PEG-conjugated counterparts. These results indicated that PCB-functionalized dSCKs have great potential as a theranostic platform for translational research. PMID:23043240

  3. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes. PMID:2235892

  4. High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol)

    SciTech Connect

    Deng, Shawn; Hassan, Mohammad K.; Nalawade, Amol; Perry, Kelly A.; More, Karren L.; Mauritz, Kenneth A.; McDonnell, Marshall T.; Keffer, David J.; Mays, Jimmy W.

    2015-09-16

    Hot (at 120 °C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. In this paper, presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology with higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. Finally, this study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions.

  5. High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol)

    DOE PAGESBeta

    Deng, Shawn; Hassan, Mohammad K.; Nalawade, Amol; Perry, Kelly A.; More, Karren L.; Mauritz, Kenneth A.; McDonnell, Marshall T.; Keffer, David J.; Mays, Jimmy W.

    2015-09-16

    Hot (at 120 °C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. In this paper, presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology withmore » higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. Finally, this study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions.« less

  6. Evaluation of the Effect of Green Tea Extract on Mouth Bacterial Activity in the Presence of Propylene Glycol

    PubMed Central

    Moghbel, Abdolhossein; Farjzadeh, Ahmad; Aghel, Nasrin; Agheli, Homaun; Raisi, Nafiseh

    2012-01-01

    Background Compounds present in green tea have proved to inhibit the growth and activity of bacteria associated with infections. Objectives To assess the effects of green tea leaves extract in presence of propylene glycol on the aerobic mouth bacteria load. Materials and Methods Saliva of 25 volunteer girl students aging 20-25 years were selected and evaluated by a mouthwash sample containing 1% tannin, as the most effective antibacterial complex in green tea. Comparative studies were also conducted between green tea mouthwashes containing 1% tannin and a similar sample with 10% propylene glycol added during extraction. This comparison was applied for a chlorhexidine 0.2% sample as a chemical mouthwash brand, too. Results There was a meaningful difference between the green tea mouthwashes containing 10% propylene glycol and the simple green tea extract (P < 0.05). Significant difference was also seen between the herbal and chemical mouthwashes (P < 0.05). The extract 1% tannin containing 10% propylene glycol reduced the aerobic mouth bacterial load of the student salvia about 64 percent. The pH monotonousness in different days and temperatures approved the stability of tannin in liquid water medium. Conclusions Using green tea extract as a herbal mouthwash is safe and harmless specially for children and pregnant women. This result led us to suppose that green tea may prevent plaque formation on teeth, coming over halitosis due to mouth infection, too. These effects need to be approved in an in vivo trial as a second study. PMID:24624155

  7. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  8. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  9. Nonionic, water self-dispersible "hairy-rod" poly(p-phenylene)-g-poly(ethylene glycol) copolymer/carbon nanotube conjugates for targeted cell imaging.

    PubMed

    Yuksel, Merve; Colak, Demet Goen; Akin, Mehriban; Cianga, Ioan; Kukut, Manolya; Medine, E Ilker; Can, Mustafa; Sakarya, Serhan; Unak, Perihan; Timur, Suna; Yagci, Yusuf

    2012-09-10

    The generation and fabrication of nanoscopic structures are of critical technological importance for future implementations in areas such as nanodevices and nanotechnology, biosensing, bioimaging, cancer targeting, and drug delivery. Applications of carbon nanotubes (CNTs) in biological fields have been impeded by the incapability of their visualization using conventional methods. Therefore, fluorescence labeling of CNTs with various probes under physiological conditions has become a significant issue for their utilization in biological processes. Herein, we demonstrate a facile and additional fluorophore-free approach for cancer cell-imaging and diagnosis by combining multiwalled CNTs with a well-known conjugated polymer, namely, poly(p-phenylene) (PP). In this approach, PP decorated with poly(ethylene glycol) (PEG) was noncovalently (π-π stacking) linked to acid-treated CNTs. The obtained water self-dispersible, stable, and biocompatible f-CNT/PP-g-PEG conjugates were then bioconjugated to estrogen-specific antibody (anti-ER) via -COOH functionalities present on the side-walls of CNTs. The resulting conjugates were used as an efficient fluorescent probe for targeted imaging of estrogen receptor overexpressed cancer cells, such as MCF-7. In vitro studies and fluorescence microscopy data show that these conjugates can specifically bind to MCF-7 cells with high efficiency. The represented results imply that CNT-based materials could easily be fabricated by the described approach and used as an efficient "fluorescent probe" for targeting and imaging, thereby providing many new possibilities for various applications in biomedical sensing and diagnosis. PMID:22866988

  10. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats

    NASA Astrophysics Data System (ADS)

    Liao, Longfei; Zhang, Mengtian; Liu, Huan; Zhang, Xuanmiao; Xie, Zhaolu; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2014-06-01

    Although monomethoxy(polyethyleneglycol)-poly (D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) nanoparticles have been widely studied as a drug delivery system, little is known about their toxicity in vivo. Here we examined the subchronic toxicity and immunotoxicity of different doses of PELGE nanoparticles with diameters of 50 and 200 nm (PELGE50 and PELGE200) in rats. Neither size of PELGE nanoparticles showed obvious subchronic toxic effects during 28 d of continuous intravenous administration based on clinical observation, body weight, hematology parameters and histopathology analysis. PELGE200 nanoparticles showed no overt signs of immunotoxicity based on organ coefficients, histopathology analysis, immunoglobulin levels, blood lymphocyte subpopulations and splenocyte cytokines. Conversely, PELGE50 nanoparticles were associated with an increased organ coefficient and histopathological changes in the spleen, increased serum IgM and IgG levels, alterations in blood lymphocyte subpopulations and enhanced expression of spleen interferon-γ. Taken together, these results suggest that PELGE nanoparticles show low subchronic toxicity but substantial immunotoxicity, which depends strongly on particle size. These findings will be useful for safe application of PELGE nanoparticles in drug delivery systems.

  11. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity.

    PubMed Central

    Batrakova, E. V.; Dorodnych, T. Y.; Klinskii, E. Y.; Kliushnenkova, E. N.; Shemchukova, O. B.; Goncharova, O. N.; Arjakov, S. A.; Alakhov, V. Y.; Kabanov, A. V.

    1996-01-01

    The chemosensitising effects of poly(ethylene oxide)-poly(propylene oxide)-poly-(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronic) in multidrug-resistant cancer cells has been described recently (Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV 1996, Biocon. Chem., 7, 209). This paper presents initial studies on in vivo evaluation of Pluronic copolymers in the treatment of cancer. The anti-tumour activity of epirubicin (EPI) and doxorubicin (DOX), solubilised in micelles of Pluronic L61, P85 and F108, was investigated using murine leukaemia P388 and daunorubicin-sensitive Sp2/0 and -resistant Sp2/0(DNR) myeloma cells grown subcutaneously (s.c.). The study revealed that the lifespan of the animals and inhibition of tumour growth were considerably increased in mice treated with drug/copolymer compositions compared with animals treated with the free drugs. The anti-tumour activity of the drug/copolymer compositions depends on the concentration of the copolymer and its hydrophobicity, as determined by the ratio of the lengths of hydrophilic PEO and hydrophobic PPO segments. The data suggest that higher activity is associated with more hydrophobic copolymers. In particular, a significant increase in lifespan (T/C> 150%) and tumour growth inhibition (> 90%) was observed in animals with Sp2/0 tumours with EPI/P85 and DOX/L61 compositions. The effective doses of these compositions caused inhibition of Sp2/0 tumour growth and complete disappearance of tumour in 33-50% of animals. Future studies will focus on the evaluation of the activity of Pluronic-based compositions against human drug-resistant tumours. PMID:8932333

  12. Evaluation of glove material resistance to ethylene glycol dimethyl ether permeation.

    PubMed

    Menke, R; Chelton, C F

    1988-08-01

    Some glycol ethers have been reported to cause adverse reproductive effects in exposed male and female workers, and skin absorption has been determined to be an important route of entry of this class of chemicals. Because ethylene glycol dimethyl ether (EGDME) is a possible component of lithium-based primary battery electrolyte systems, a study was undertaken to determine the resistance of various commercially available gloves to permeation of this liquid. The gloves were tested by the ASTM Method F-739-81, and butyl rubber was found to be the most effective barrier to permeation. Further studies determined that the butyl gloves could be reused if they were reconditioned overnight in a vacuum oven at 50 degrees C. When a mixture of ethylene glycol dimethyl ether (30% v/v) and propylene carbonate (70% v/v) was tested, the results indicated that the propylene carbonate retards the permeation of the glycol ether by a factor of 10. This is believed to be caused by the propylene carbonate coating the surface of the butyl membrane to reduce the sorption of EGDME. PMID:3177216

  13. Evaluation of glove material resistance to ethylene glycol dimethyl ether permeation

    SciTech Connect

    Menke, R.; Chelton, C.F.

    1988-08-01

    Some glycol ethers have been reported to cause adverse reproductive effects in exposed male and female workers, and skin absorption has been determined to be an important route of entry of this class of chemicals. Because ethylene glycol dimethyl ether (EGDME) is a possible component of lithium-based primary battery electrolyte systems, a study was undertaken to determine the resistance of various commercially available gloves to permeation of this liquid. The gloves were tested by the ASTM Method F-739-81, and butyl rubber was found to be the most effective barrier to permeation. Further studies determined that the butyl gloves could be reused if they were reconditioned overnight in a vacuum oven at 50 degrees C. When a mixture of ethylene glycol dimethyl ether (30% v/v) and propylene carbonate (70% v/v) was tested, the results indicated that the propylene carbonate retards the permeation of the glycol ether by a factor of 10. This is believed to be caused by the propylene carbonate coating the surface of the butyl membrane to reduce the sorption of EGDME.

  14. Are block copolymer worms more effective Pickering emulsifiers than block copolymer spheres?

    PubMed

    Thompson, K L; Mable, C J; Cockram, A; Warren, N J; Cunningham, V J; Jones, E R; Verber, R; Armes, S P

    2014-11-21

    RAFT-mediated polymerisation-induced self-assembly (PISA) is used to prepare six types of amphiphilic block copolymer nanoparticles which were subsequently evaluated as putative Pickering emulsifiers for the stabilisation of n-dodecane-in-water emulsions. It was found that linear poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer spheres and worms do not survive the high shear homogenisation conditions used for emulsification. Stable emulsions are obtained, but the copolymer acts as a polymeric surfactant; individual chains rather than particles are adsorbed at the oil-water interface. Particle dissociation during emulsification is attributed to the weakly hydrophobic character of the PHPMA block. Covalent stabilisation of these copolymer spheres or worms can be readily achieved by addition of ethylene glycol dimethacrylate (EGDMA) during the PISA synthesis. TEM studies confirm that the resulting cross-linked spherical or worm-like nanoparticles survive emulsification and produce genuine Pickering emulsions. Alternatively, stabilisation can be achieved by either replacing or supplementing the PHPMA block with the more hydrophobic poly(benzyl methacrylate) (PBzMA). The resulting linear spheres or worms also survive emulsification and produce stable n-dodecane-in-water Pickering emulsions. The intrinsic advantages of anisotropic worms over isotropic spheres for the preparation of Pickering emulsions are highlighted. The former particles are more strongly adsorbed at similar efficiencies compared to spheres and also enable smaller oil droplets to be produced for a given copolymer concentration. The scalable nature of PISA formulations augurs well for potential applications of anisotropic block copolymer nanoparticles as Pickering emulsifiers. PMID:25254485

  15. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin.

    PubMed

    Flynn, Nicholas; Topal, Ç Özge; Hikkaduwa Koralege, Rangika S; Hartson, Steve; Ranjan, Ashish; Liu, Jing; Pope, Carey; Ramsey, Joshua D

    2016-05-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15-30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. PMID:26952455

  16. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing.

    PubMed

    Yang, Jen Ming; Huang, Huei Tsz

    2012-08-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. PMID:24364963

  17. A (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer)-dispersed sustained-release tablet for imperialine to simultaneously prolong the drug release and improve the oral bioavailability.

    PubMed

    Lin, Qing; Fu, Yu; Li, Jia; Qu, Mengke; Deng, Li; Gong, Tao; Zhang, Zhirong

    2015-11-15

    Imperialine, extracted from Bulbus Fritillariae Cirrhosae, is an efficient antitussive and expectorant medicine. However, its short half-life and stomach degradation limited imperialine from further clinical use. The current study was conducted to develop a sustained-release tablet for imperialine both to prolong absorption time and to improve the oral bioavailability of the drug. The tablets were prepared by a direct compression method formulated on optimized solid dispersion (SD) for imperialine based on polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus(®)) with imperialine/Soluplus(®) ratio of 1:8 (w/w). In order to obtain the optimized formulation, factors that affected the drug release were investigated by in vitro dissolution studies in the media of pH1.2, 5.8, 7.0 and 7.4. Powder X-ray diffraction and scanning electron microscope confirmed that the imperialine in SD was amorphous instead of crystalline, and still stayed amorphous even after the direct compression. And besides, pharmacokinetic study in Beagle dogs was performed to inspect the in vivo sustained release. Plasma concentration-time curves and pharmacokinetic parameters were gained. As a result, the Cmax of imperialine was one-fold reduced and Tmax was two-fold prolonged, and the mean AUC0-24 was expressed as 89.581±21.243μgh/L, which showed that the oral bioavailability of imperialine was 2.46-fold improved. Moreover, the in vitro-in vivo correlation was recommended to carry out, demonstrating the percentages of drug release in vitro were well-correlated with the absorptive fraction in vivo with the correlation coefficients above 0.9900. By mathematically modeling and moment imaging of the drug release, Peppas equation was selected as the most fitted model for the sustained-release tablets with the diffusional coefficient in the range of 0.59-0.62, indicating the release of imperialine from the sustained-release tablets was an anomalous process involving

  18. Evaluation of tetrafunctional block copolymers as synthetic vectors for lung gene transfer.

    PubMed

    Richard-Fiardo, Peggy; Hervouet, Catherine; Marsault, Robert; Franken, Philippe R; Cambien, Béatrice; Guglielmi, Julien; Warnez-Soulie, Julie; Darcourt, Jacques; Pourcher, Thierry; Colombani, Thibault; Haudebourg, Thomas; Peuziat, Pauline; Pitard, Bruno; Vassaux, Georges

    2015-03-01

    In the present study, we evaluated, in mice, the efficacy of the tetrafunctional block copolymer 704 as a nonviral gene delivery vector to the lungs. SPECT/CT molecular imaging of gene expression, biochemical assays, and immunohistochemistry were used. Our dataset shows that the formulation 704 resulted in higher levels of reporter gene expression than the GL67A formulation currently being used in a clinical trial in cystic fibrosis patients. The inflammatory response associated with this gene transfer was lower than that induced by the GL67A formulation, and the 704 formulation was amenable to repeated administrations. The cell types transfected by the 704 formulation were type I and type II pneumocytes, and transgene expression could not be detected in macrophages. These results emphasize the relevance of the 704 formulation as a nonviral gene delivery vector for lung gene therapy. Further studies will be required to validate this vector in larger animals, in which the lungs are more similar to human lungs. PMID:25662490

  19. Preliminary evaluation of local drug delivery of amphotericin B and in vivo degradation of chitosan and polyethylene glycol blended sponges.

    PubMed

    Parker, Ashley Cox; Rhodes, Cheyenne; Jennings, Jessica Amber; Hittle, Lauren; Shirtliff, Mark; Bumgardner, Joel D; Haggard, Warren O

    2016-01-01

    This research investigated the combination of polyethylene glycol with chitosan in point-of-care loaded sponges made by one or two lyophilizations for adjunctive local antifungal delivery in musculoskeletal wounds. Blended and control chitosan sponges were evaluated in vitro for antifungal release and activity, degradation, cytocompatibility, and characterized for spectroscopic, crystallinity, thermal, and morphologic material properties. In vivo biocompatibility and degradation of sponges were also evaluated in a rat intramuscular pouch model 4 and 10 days after implantation. Blended sponges released amphotericin B active against Candida albicans (>0.25 µg/mL) over 72 h and did not elicit cytotoxicity response of fibroblasts. Blended sponges exhibited decreases in surface roughness, decreased thermal decomposition temperatures, as well as small Fourier transform infrared spectroscopy and crystallinity differences, compared with chitosan-only sponges. Three of the four blended sponge formulations exhibited 31%-94% increases in in vitro degradation from the chitosan sponges after 10 days, but did not demonstrate the same increase in in vivo degradation. Low inflammatory in vivo tissue response to blended and chitosan-only sponges was similar over 10 days. These results demonstrated that adding polyethylene glycol to chitosan sponges does improve local antifungal release, cytocompatibility, and in vitro degradation, but does not increase in vivo degradation. PMID:25615516

  20. In vitro evaluation of chemically cross-linked shape-memory acrylate-methacrylate copolymer networks as ocular implants.

    PubMed

    Song, Li; Hu, Wang; Zhang, Hongbin; Wang, Guojie; Yang, Huai; Zhu, Siquan

    2010-06-01

    Acrylates have been used in ophthalmic practice as a paradigmatic implant material for decades, especially as intraocular lens for their excellent transparency. A novel polymeric shape memory system of chemically cross-linked acrylate-methacrylate copolymer networks was developed and characterized in this study. The thermomechanical properties, shape memory properties, transparency, and surface wettability as well as cytotoxicity were systematically evaluated to mimic the in vivo situation by differential scanning calorimetry (DSC), tensile tests, spectrophotometer, Abbe refractometer, contact angle measurements, and MTT assay. It was found that the chemically cross-linked copolymer network behaves as an elastomer capable of arbitrary shaping above the glass-transition temperature. Transition temperatures of the networks were tunable through the change of the composition of monomers. PMID:20462221

  1. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption. PMID:26602293

  2. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid)

    PubMed Central

    Chen, Yongxia; Yang, Ziying; Liu, Chao; Wang, Cuiwei; Zhao, Shunxin; Yang, Jing; Sun, Hongfan; Zhang, Zhengpu; Kong, Deling; Song, Cunxian

    2013-01-01

    Background Star-shaped polymers provide more terminal groups, and are promising for application in drug-delivery systems. Methods A new series of six-arm star-shaped poly(lactic-co-glycolic acid) (6-s-PLGA) was synthesized by ring-opening polymerization. The structure and properties of the 6-s-PLGA were characterized by carbon-13 nuclear magnetic resonance spectroscopy, infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. Then, paclitaxel-loaded six-arm star-shaped poly(lactic-co-glycolic acid) nanoparticles (6-s-PLGA-PTX-NPs) were prepared under the conditions optimized by the orthogonal testing. High-performance liquid chromatography was used to analyze the nanoparticles’ encapsulation efficiency and drug-loading capacity, dynamic light scattering was used to determine their size and size distribution, and transmission electron microscopy was used to evaluate their morphology. The release performance of the 6-s-PLGA-PTX-NPs in vitro and the cytostatic effect of 6-s-PLGA-PTX-NPs were investigated in comparison with paclitaxel-loaded linear poly(lactic-co-glycolic acid) nanoparticles (L-PLGA-PTX-NPs). Results The results of carbon-13 nuclear magnetic resonance spectroscopy and infrared spectroscopy suggest that the polymerization was successfully initiated by inositol and confirm the structure of 6-s-PLGA. The molecular weights of a series of 6-s-PLGAs had a ratio corresponding to the molar ratio of raw materials to initiator. Differential scanning calorimetry revealed that the 6-s-PLGA had a low glass transition temperature of 40°C–50°C. The 6-s-PLGA-PTX-NPs were monodispersed with an average diameter of 240.4±6.9 nm in water, which was further confirmed by transmission electron microscopy. The encapsulation efficiency of the 6-s-PLGA-PTX-NPs was higher than that of the L-PLGA-PTX-NPs. In terms of the in vitro release of nanoparticles, paclitaxel (PTX) was released more slowly and more steadily from 6-s-PLGA than from

  3. Health Hazard Evaluation Report HETA 83-166-1594, Witco Chemical Corporation, Perth Amboy, New Jersey. [Ethylene oxide, glycols, and adipic acid

    SciTech Connect

    Cummings, C.E.; Roseman, J.

    1985-05-01

    Area and personel air samples were analyzed for ethylene oxide, glycols, and adipic-acid at the Witco Chemical Corporation, Perth Amboy, New Jersey from November to December, 1983 and May, 1984. The evaluation was requested by the union to investigate possible health effects due to polychlorinated biphenyls (PCBs), glycols, and ethylene oxide. The evaluation was assigned to the New Jersey State Department of Health. The authors conclude that health hazards due to ethylene oxide and airborne fatty acid exposures exist. Recommendations include improving ventilation and work practices and implementing an OSHA approved respirator program.

  4. Evaluation of zwitterionic polymersomes spontaneously formed by pH-sensitive and biocompatible PEG based random copolymers as drug delivery systems.

    PubMed

    Laskar, Partha; Dey, Joykrishna; Ghosh, Sudip kumar

    2016-03-01

    The development of stimuli-responsive biocompatible polymersomes is important for the improvement of drug delivery systems. Herein, we report the spontaneous formation of polymersomes by three random copolymers, l-cys-graft-poly[GMA-co-mPEG300], containing different ratios of l-cysteine (Cys) and methoxy poly(ethylene glycol) (mPEG) covalently linked to the polymer backbone. Cysteine was conjugated to the polymeric backbone through metal free thiol-epoxy 'click' chemistry at final step. The copolymers, without having any typical hydrophobe in the backbone, are sufficiently surface active. The self-assembly formation of the copolymers was studied in aqueous solution by steady-state fluorescence probe technique. Spontaneous polymersomes formation, without any help of stimuli and organic solvent, above a relatively low critical aggregation concentration was confirmed by dynamic light scattering and microscopic techniques. Polymersomes were shown to be able to encapsulate not only hydrophilic dye in their aqueous core but also hydrophobic guest molecules in the bilayer membrane constituted by the mPEG chains. The polymersomes are sufficiently stable under physiological condition. These nano-sized polymersomes exhibit pH-triggered release of encapsulated guest under acidic pH. All three copolymers were found to be completely cell viable and hemocompatible up to very high concentration. Their ability to cross cell membrane was demonstrated by use of a fluorescent dye-tagged polymer. Further, these copolymers did not show any denaturising effect on the secondary structure of the human serum albumin, a transport protein in the blood. Based on the results of this study it is concluded that these spontaneously formed stable and biocompatible polymersomes can have potential use as drug delivery systems. PMID:26704991

  5. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  6. Propylene glycol

    Integrated Risk Information System (IRIS)

    Propylene glycol ; CASRN 57 - 55 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  7. Evaluation of the polyethylene glycol-indirect antiglobulin test for routine compatibility testing.

    PubMed

    Slater, J L; Griswold, D J; Wojtyniak, L S; Reisling, M J

    1989-10-01

    All specimens received in the blood bank over a 5-month period for crossmatch or group and screen requests were tested in parallel by a polyethylene glycol-indirect antiglobulin test (PEG-IAT) and a low-ionic-strength saline (LISS)-IAT. The sera of 41 of 1471 patients had reactions, with 50 antibodies being detected. Ten antibodies reacted only on the PEG-IAT and 14 only by the LISS-IAT; the remaining 26 antibodies were detected by both methods. Of the antibodies that reacted only by the LISS-IAT, one (anti-Jka) was considered clinically significant, whereas five of the antibodies that reacted only by the PEG-IAT (1 anti-c, 2-Fya, 1-Jkb, and 1-S) were considered significant. Two antibodies of questionable clinical significance were detected only by the PEG-IAT. In 97 percent of the sera tested, no reaction was detected by either method. The PEG-IAT is an acceptable technique for routine compatibility testing. PMID:2799893

  8. Synthesis and Biological Evaluation of Novel Water-Soluble Poly-(ethylene glycol)-10-hydroxycamptothecin Conjugates.

    PubMed

    Guo, Na; Jiang, Du; Wang, Luyao; You, Xing; Teng, Yu-Ou; Yu, Peng

    2015-01-01

    In order to improve the antitumor activity and water solubility of 10-hydroxycamptothecin (HCPT), a series of novel HCPT conjugates were designed and synthesized by conjugating polyethylene glycol (PEG) to the 10-hydroxyl group of HCPT via a valine spacer. The in vitro stability of these synthesized compounds was determined in pH 7.4 buffer at 37 °C, and the results showed that they released HCPT at different rates. All the compounds demonstrated significant antitumor activity in vitro against K562, HepG2 and HT-29 cells. Among them, compounds, 4a, 4d, 4e and 4f, exhibited 2-5 times higher potency than HCPT. The stability and antitumor activity of these conjugates were found to be closely related to the length of PEG and the linker type, conjugates with a relatively short PEG chain and carbamate linkages (compounds 4a and 4f) exhibited controlled release of HCPT and excellent antitumor in vitro activity. PMID:26007190

  9. Arylenesiloxane copolymers

    NASA Technical Reports Server (NTRS)

    Breed, L. W.; Elliott, R. L.

    1967-01-01

    Arylenesiloxane copolymers with regularly ordered structures were discovered during efforts to develop organosilicon polymers. Arylenesilane and siloxane monomers were both synthesized in these experiments.

  10. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  11. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    PubMed

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use. PMID:27343696

  12. Mechanical evaluation of newly developed mouthpiece using polyethylene terephthalate glycol for transoral robotic surgery.

    PubMed

    Fujiwara, Kazunori; Fukuhara, Takahiro; Niimi, Koji; Sato, Takahiro; Kataoka, Hideyuki; Kitano, Hiroya; Takeuchi, Hiromi

    2015-12-01

    Transoral robotic surgery (TORS), performed with the da Vinci surgical system (da Vinci), has been classified as a surgical approach for benign and malignant lesions of the oral cavity and laryngopharynx. It provides several unique advantages, which include a three-dimensional magnified view, ability to see and work around curves or angles, and the availability of two or three robotic arms. At present, however, the da Vinci surgical system does not provide haptic feedback. The potential risks specific to the transoral use of the da Vinci include tooth injury, mucosal laceration, ocular injury, and mandibular fracture. To prevent such intra-operative tooth injuries, we created a mouthpiece made of polyethylene terephthalate glycol (PETG) individually shaped for the patient's teeth. We compared the safety and efficacy of the PETG mouthpiece with those of a conventional mouthpiece made of ethylene-vinyl acetate (EVA). To determine the difference in tooth injury resulting from the two types of mouthpiece, we constructed an experimental system to measure load and strain. We measured the dynamic load and the strain from the rod to the tooth using the PETG and EVA mouthpiece. The rod was pressed against the tooth model outfitted with two types of mouthpiece and the dynamic load was measured with a load cell and the strain with a strain gage. The maximum dynamic load was 1.29 ± 0.03 kgf for the PETG mouthpiece and 2.24 ± 0.05 kgf for the EVA mouthpiece. The load against the tooth was thus less for the EVA mouthpiece. The strain was -166.84 ± 3.94 and 48.24 ± 7.77 με, respectively, while the load direction was parallel to that of the tooth axis for the PETG mouthpiece and perpendicular to the tooth axis for the EVA mouthpiece. The PETG mouthpiece reduced the tooth load compared with the EVA mouthpiece and the load direction was in parallel to the tooth axis. The PETG mouthpiece thus enhances tooth safety for TORS. PMID:26530849

  13. Tissue engineering of fish skin: behavior of fish cells on poly(ethylene glycol terephthalate)/poly(butylene terephthalate) copolymers in relation to the composition of the polymer substrate as an initial step in constructing a robotic/living tissue hybrid.

    PubMed

    Pouliot, Roxane; Azhari, Rosa; Qanadilo, Hala F; Mahmood, Tahir A; Triantafyllou, Michael S; Langer, Robert

    2004-01-01

    This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds. PMID:15009926

  14. Cisplatin Loaded Poly(L-glutamic acid)-g-Methoxy Poly(ethylene glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, In Vitro and In Vivo Evaluation.

    PubMed

    Yu, Haiyang; Tang, Zhaohui; Li, Mingqiang; Song, Wantong; Zhang, Dawei; Zhang, Ying; Yang, Yan; Sun, Hai; Deng, Mingxiao; Chen, Xuesi

    2016-01-01

    A series of novel polypeptide-based graft copolymer poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol) (PLG-g-mPEG) was synthesized through a Steglich esterification reaction of PLG with mPEG. The structure of the copolymers was confirmed by nuclear magnetic resonance spectra (NMR) and gel permeation chromatography (GPC). MTT assay demonstrated that the PLG-g-mPEGs had good cell compatibility. The unreacted carboxyl groups of the PLG-g-mPEGs were used to complex cisplatin to form polymer-metal complex nanoparticles (CDDP/PLG-g-mPEG) for cancer therapy. The average hydrodynamic radius of the CDDP/PLG-g-mPEG nanoparticles was inr the range of 14-25 nm, which was beneficial for solid tumor targeting delivery. A sustained release without initial burst was achieved for the CDDP/PLG-g-mPEG nanoparticles, indicating that the CDDP-loaded nanoparticles had great potential to suppress the drug release in blood circulation before the nanoparticles had arrived at targeting tumors. The CDDP/PLG-g-mPEG nanoparticles showed a much longer blood retention profile as compared with the free CDDP. This indicated that the CDDP-loaded nanoparticles had much more opportunity to accumulate in tumor tissue by exerting the EPR effect. In vitro tests demonstrated that the CDDP/PLG-g-mPEG nanoparticles could inhibit the proliferation of HeLa, MCF-7 and A549 cancer cells. At equal dose (4 mg kg(-1)), the CDDP/PLG-g-mPEG nanoparticles showed comparable in vivo antitumor efficacy and significantly lower systemic toxicity as compared with free cis-Diaminedichloroplatinum (cisplatin, CDDP) in MCF-7 tumor bearing mice. These suggested that the CDDP/PLG-g-mPEG nanoparticle drug delivery system had a great potential to be used for cancer therapy. PMID:27301173

  15. Polyethylene Glycol 3350

    MedlinePlus

    Polyethylene glycol 3350 is used to treat occasional constipation. Polyethylene glycol 3350 is in a class of medications ... Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. ...

  16. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits

    PubMed Central

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery. PMID:25028546

  17. Synthesis and in vivo magnetic resonance imaging evaluation of biocompatible branched copolymer nanocontrast agents.

    PubMed

    Jackson, Alexander W; Chandrasekharan, Prashant; Shi, Jian; Rannard, Steven P; Liu, Quan; Yang, Chang-Tong; He, Tao

    2015-01-01

    Branched copolymer nanoparticles (D(h) =20-35 nm) possessing 1,4,7, 10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid macrocycles within their cores have been synthesized and applied as magnetic resonance imaging (MRI) nanosized contrast agents in vivo. These nanoparticles have been generated from novel functional monomers via reversible addition-fragmentation chain transfer polymerization. The process is very robust and synthetically straightforward. Chelation with gadolinium and preliminary in vivo experiments have demonstrated promising characteristics as MRI contrast agents with prolonged blood retention time, good biocompatibility, and an intravascular distribution. The ability of these nanoparticles to perfuse and passively target tumor cells through the enhanced permeability and retention effect is also demonstrated. These novel highly functional nanoparticle platforms have succinimidyl ester-activated benzoate functionalities within their corona, which make them suitable for future peptide conjugation and subsequent active cell-targeted MRI or the conjugation of fluorophores for bimodal imaging. We have also demonstrated that these branched copolymer nanoparticles are able to noncovalently encapsulate hydrophobic guest molecules, which could allow simultaneous bioimaging and drug delivery. PMID:26425088

  18. Synthesis and in vivo magnetic resonance imaging evaluation of biocompatible branched copolymer nanocontrast agents

    PubMed Central

    Jackson, Alexander W; Chandrasekharan, Prashant; Shi, Jian; Rannard, Steven P; Liu, Quan; Yang, Chang-Tong; He, Tao

    2015-01-01

    Branched copolymer nanoparticles (Dh =20–35 nm) possessing 1,4,7, 10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid macrocycles within their cores have been synthesized and applied as magnetic resonance imaging (MRI) nanosized contrast agents in vivo. These nanoparticles have been generated from novel functional monomers via reversible addition–fragmentation chain transfer polymerization. The process is very robust and synthetically straightforward. Chelation with gadolinium and preliminary in vivo experiments have demonstrated promising characteristics as MRI contrast agents with prolonged blood retention time, good biocompatibility, and an intravascular distribution. The ability of these nanoparticles to perfuse and passively target tumor cells through the enhanced permeability and retention effect is also demonstrated. These novel highly functional nanoparticle platforms have succinimidyl ester-activated benzoate functionalities within their corona, which make them suitable for future peptide conjugation and subsequent active cell-targeted MRI or the conjugation of fluorophores for bimodal imaging. We have also demonstrated that these branched copolymer nanoparticles are able to noncovalently encapsulate hydrophobic guest molecules, which could allow simultaneous bioimaging and drug delivery. PMID:26425088

  19. Reproductive toxicity evaluation of the dental resin monomer triethylene glycol dimethacrylate (CASRN 109-16-0) in mice.

    PubMed

    Moilanen, Lori H; Dahms, Janell K; Hoberman, Alan M

    2014-01-01

    The reproductive toxicity potential of the resin monomer triethylene glycol dimethacrylate (TEGDMA; Chemical Abstracts Service Registry Number 109-16-0) was investigated in male and female Crl:CD1(ICR) mice, 4 dosage groups, 25 mice/sex/group. Formulations of TEGDMA (0, 0.01, 0.1, or 1.0 mg/kg/d) in reverse osmosis-processed deionized water were intubated once daily beginning 28 days before cohabitation and continuing through mating (males) or through gestation day 17 (females). The following parameters were evaluated: viability, clinical signs, body weights, estrous cyclicity, necropsy observations, organ weights, sperm concentration/motility/morphology, cesarean-sectioning and litter observations, and histopathological evaluation of select tissues. No deaths or clinical signs related to TEGDMA occurred. No significant changes in male and female body weights and body weight gains were recorded for any of the administered dosages of TEGMDA. All mating and fertility parameters and all litter and fetal data were considered to be unaffected by dosages of TEGMDA as high as 1 mg/kg/d. Gross or histopathologic tissue changes attributable to the test article were not observed. Reproductive and developmental no observed adverse effect levels (NOAELs) for TEGMDA were 1.0 mg/kg/d, the highest dose tested. Comparison of conservatively estimated TEGDMA exposures from dental treatments to the NOAEL of 1.0 mg/kg/d identified in this study indicates margins of exposure of at least 120- to 3000-fold depending on the exposure scenario. The results of this study support the continued safe use of TEGDMA in polymeric dental products applied according to the manufacturers' instructions. PMID:24345749

  20. Bactericidal block copolymer micelles.

    PubMed

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo

    2011-05-12

    Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041

  1. Biomechanical Evaluation of an Injectable and Biodegradable Copolymer P(PF-co-CL) in a Cadaveric Vertebral Body Defect Model

    PubMed Central

    Fang, Zhong; Giambini, Hugo; Zeng, Heng; Camp, Jon J.; Dadsetan, Mahrokh; Robb, Richard A.; An, Kai-Nan; Yaszemski, Michael J.

    2014-01-01

    A novel biodegradable copolymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been developed in our laboratory as an injectable scaffold for bone defect repair. In the current study, we evaluated the ability of P(PF-co-CL) to reconstitute the load-bearing capacity of vertebral bodies with lytic lesions. Forty vertebral bodies from four fresh-frozen cadaveric thoracolumbar spines were used for this study. They were randomly divided into four groups: intact vertebral body (intact control), simulated defect without treatment (negative control), defect treated with P(PF-co-CL) (copolymer group), and defect treated with poly(methyl methacrylate) (PMMA group). Simulated metastatic lytic defects were made by removing a central core of the trabecular bone in each vertebral body with an approximate volume of 25% through an access hole in the side of the vertebrae. Defects were then filled by injecting either P(PF-co-CL) or PMMA in situ crosslinkable formulations. After the spines were imaged with quantitative computerized tomography, single vertebral body segments were harvested for mechanical testing. Specimens were compressed until failure or to 25% reduction in body height and ultimate strength and elastic modulus of each specimen were then calculated from the force–displacement data. The average failure strength of the copolymer group was 1.83 times stronger than the untreated negative group and it closely matched the intact vertebral bodies (intact control). The PMMA-treated vertebrae, however, had a failure strength 1.64 times larger compared with the intact control. The elastic modulus followed the same trend. This modulus mismatch between PMMA-treated vertebrae and the host vertebrae could potentially induce a fracture cascade and degenerative changes in adjacent intervertebral discs. In contrast, P(PF-co-CL) restored the mechanical properties of the treated segments similar to the normal, intact, vertebrae. Therefore, P(PF-co-CL) may be a suitable

  2. Biomechanical evaluation of an injectable and biodegradable copolymer P(PF-co-CL) in a cadaveric vertebral body defect model.

    PubMed

    Fang, Zhong; Giambini, Hugo; Zeng, Heng; Camp, Jon J; Dadsetan, Mahrokh; Robb, Richard A; An, Kai-Nan; Yaszemski, Michael J; Lu, Lichun

    2014-03-01

    A novel biodegradable copolymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been developed in our laboratory as an injectable scaffold for bone defect repair. In the current study, we evaluated the ability of P(PF-co-CL) to reconstitute the load-bearing capacity of vertebral bodies with lytic lesions. Forty vertebral bodies from four fresh-frozen cadaveric thoracolumbar spines were used for this study. They were randomly divided into four groups: intact vertebral body (intact control), simulated defect without treatment (negative control), defect treated with P(PF-co-CL) (copolymer group), and defect treated with poly(methyl methacrylate) (PMMA group). Simulated metastatic lytic defects were made by removing a central core of the trabecular bone in each vertebral body with an approximate volume of 25% through an access hole in the side of the vertebrae. Defects were then filled by injecting either P(PF-co-CL) or PMMA in situ crosslinkable formulations. After the spines were imaged with quantitative computerized tomography, single vertebral body segments were harvested for mechanical testing. Specimens were compressed until failure or to 25% reduction in body height and ultimate strength and elastic modulus of each specimen were then calculated from the force-displacement data. The average failure strength of the copolymer group was 1.83 times stronger than the untreated negative group and it closely matched the intact vertebral bodies (intact control). The PMMA-treated vertebrae, however, had a failure strength 1.64 times larger compared with the intact control. The elastic modulus followed the same trend. This modulus mismatch between PMMA-treated vertebrae and the host vertebrae could potentially induce a fracture cascade and degenerative changes in adjacent intervertebral discs. In contrast, P(PF-co-CL) restored the mechanical properties of the treated segments similar to the normal, intact, vertebrae. Therefore, P(PF-co-CL) may be a suitable

  3. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone.

    PubMed

    Khodaverdi, Elham; Gharechahi, Marzieh; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khashyarmanesh, Bibi Zahra; Hadizadeh, Farzin

    2016-01-01

    In this study, thermosensitive, water-soluble, and biodegradable triblock copolymer PCL600-PEG6000-PCL600 was used to form supramolecular hydrogel (SMGel) by inclusion complexation with γ-cyclodextrin (γ-CD). The prepared SMGel was investigated as a carrier for sustained release of dexamethasone. The triblock copolymer PCL-PEG-PCL [where PCL = polycaprolactone, PEG = poly(ethylene glycol)] was synthesized by the ring-opening polymerization method using microwave irradiation. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). SMGel was prepared in aqueous solution by blending an aqueous γ-CD solution with aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. The sol-to-gel transition time was measured at various concentrations of copolymer and γ-CD. As-prepared SMGel was used to prepare a sustained, controllable drug delivery system of dexamethasone sodium phosphate. The SMGel was also characterized in terms of rheological, morphological, and structural properties. Results obtained from proton nuclear magnetic resonance ( (1)H-NMR) and GPC demonstrated that microwave irradiation is a simple and reliable method for synthesis of PEG-PCL copolymer. The SMGel with excellent syringability was prepared by mixing of 20% wt γ-CD and 10% wt of copolymer within 4 s. The SMGel containing 10% wt copolymer, 20% wt γ-CD, and 0.5% or 0.1% wt dexamethasone released approximately 100% and 45% of drug over up to 23 days, respectively. It could be concluded that SMGel based on self-assembly of inclusion complexes between PCL-PEG-PCL copolymer and γ-CD could be used as a basis for injectable drug delivery systems that provide sustained and controlled release of macromolecular drugs such as dexamethasone. PMID:27051627

  4. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone

    PubMed Central

    Khodaverdi, Elham; Gharechahi, Marzieh; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khashyarmanesh, Bibi Zahra; Hadizadeh, Farzin

    2016-01-01

    In this study, thermosensitive, water-soluble, and biodegradable triblock copolymer PCL600-PEG6000-PCL600 was used to form supramolecular hydrogel (SMGel) by inclusion complexation with γ-cyclodextrin (γ-CD). The prepared SMGel was investigated as a carrier for sustained release of dexamethasone. The triblock copolymer PCL-PEG-PCL [where PCL = polycaprolactone, PEG = poly(ethylene glycol)] was synthesized by the ring-opening polymerization method using microwave irradiation. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). SMGel was prepared in aqueous solution by blending an aqueous γ-CD solution with aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. The sol-to-gel transition time was measured at various concentrations of copolymer and γ-CD. As-prepared SMGel was used to prepare a sustained, controllable drug delivery system of dexamethasone sodium phosphate. The SMGel was also characterized in terms of rheological, morphological, and structural properties. Results obtained from proton nuclear magnetic resonance ( 1H-NMR) and GPC demonstrated that microwave irradiation is a simple and reliable method for synthesis of PEG-PCL copolymer. The SMGel with excellent syringability was prepared by mixing of 20% wt γ-CD and 10% wt of copolymer within 4 s. The SMGel containing 10% wt copolymer, 20% wt γ-CD, and 0.5% or 0.1% wt dexamethasone released approximately 100% and 45% of drug over up to 23 days, respectively. It could be concluded that SMGel based on self-assembly of inclusion complexes between PCL-PEG-PCL copolymer and γ-CD could be used as a basis for injectable drug delivery systems that provide sustained and controlled release of macromolecular drugs such as dexamethasone. PMID:27051627

  5. Evaluation of anti-urolithiatic effect of aqueous extract of Bryophyllum pinnatum (Lam.) leaves using ethylene glycol-induced renal calculi

    PubMed Central

    Shukla, Apexa Bhanuprasad; Mandavia, Divyesh Rasikbhai; Barvaliya, Manish Jasmatbhai; Baxi, Seema Natvarlal; Tripathi, Chandrabhanu Rajkishore

    2014-01-01

    Materials and Methods : Thirty-six Wistar male rats were randomly divided into six equal groups. Group A animals received distilled water for 28 days. Group B to group F animals received 1% v/v ethylene glycol in distilled water for 28 days and group B served as ethylene glycol control. Groups C and D (preventive groups) received aqueous extract of leaves of B. pinnatum 50 and 100 mg/kg intraperitoneally, respectively for 28 days. Groups E and F (treatment groups) received aqueous extract of leaves of B. pinnatum 50 and 100 mg/kg intraperitoneally, respectively from 15th to 28th day. On days 0 and 28, 24 hrs urine samples were collected for urinary volume and urinary oxalate measurement. On day 28, blood was collected for serum creatinine and blood urea level monitoring. All animals were sacrificed and kidneys were removed, weighed, and histopathologically evaluated for calcium oxalate crystals deposition. Results: Administration of aqueous extract of leaves of B. pinnatum reduced urine oxalate level ‎significantly, as compared with Group B (p<0.001). Serum creatinine and blood urea level were ‎improved significantly in all aqueous extract of leaves of B. pinnatum-treated groups. Relative ‎kidney weight and calcium oxalate depositions were found significantly reduced in animals ‎received ABP as compared with Group B (p<0.001). ‎ Conclusions: B. pinnatum is effective in prevention and treatment of ethylene glycol-induced urolithiasis. PMID:25050313

  6. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.

    PubMed

    Kaith, B S; Jindal, R; Jana, A K; Maiti, M

    2010-09-01

    In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. PMID:20395134

  7. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  8. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles.

    PubMed

    Leroux, J; Roux, E; Le Garrec, D; Hong, K; Drummond, D C

    2001-05-14

    Hydrophobically-modified copolymers of N-isopropylacrylamide bearing a pH-sensitive moiety were investigated for the preparation of pH-responsive liposomes and polymeric micelles. The copolymers having the hydrophobic anchor randomly distributed within the polymeric chain were found to more efficiently destabilize egg phosphatidylcholine (EPC)/cholesterol liposomes than the alkyl terminated polymers. Release of both a highly-water soluble fluorescent contents marker, pyranine, and an amphipathic cytotoxic anti-cancer drug, doxorubicin, from copolymer-modified liposomes was shown to be dependent on pH, the concentration of copolymer, the presence of other polymers such as polyethylene glycol, and the method of preparation. Both polymers were able to partially stabilize EPC liposomes in human serum. These polymers were found to self-assemble to form micelles. The critical association concentration was low (9--34 mg/l) and influenced by the position of the alkyl chains. In phosphate buffered saline, the micelles had a bimodal size distribution with the predominant population having a mean diameter of 35 nm. The polymeric micelles were studied as a delivery system for the photosensitizer aluminum chloride phthalocyanine, (AlClPc), currently evaluated in photodynamic therapy. pH-Responsive polymeric micelles loaded with AlClPc were found to exhibit increased cytotoxicity against EMT-6 mouse mammary cells in vitro than the control Cremophor EL formulation. PMID:11389986

  9. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.

    PubMed

    Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun

    2016-07-18

    The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)

  10. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... glycol and 1 to 34 mole percent of 1,4-cyclo-hexanedimethanol (70 percent trans isomer, 30 percent cls isomer) Inherent viscosity of a 0.50 percent solution of the copolymer in phenol-tetrachloroethane (60:40... ethylene glycol and 1 to 15 mole percent of 1,4-cyclohexane-di-methanol (70 percent trans isomer,...

  11. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... glycol and 1 to 34 mole percent of 1,4-cyclo-hexanedimethanol (70 percent trans isomer, 30 percent cls isomer) Inherent viscosity of a 0.50 percent solution of the copolymer in phenol-tetrachloroethane (60:40... ethylene glycol and 1 to 15 mole percent of 1,4-cyclohexane-di-methanol (70 percent trans isomer,...

  12. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... glycol and 1 to 34 mole percent of 1,4-cyclo-hexanedimethanol (70 percent trans isomer, 30 percent cls isomer) Inherent viscosity of a 0.50 percent solution of the copolymer in phenol-tetrachloroethane (60:40... ethylene glycol and 1 to 15 mole percent of 1,4-cyclohexane-di-methanol (70 percent trans isomer,...

  13. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glycol and 1 to 34 mole percent of 1,4-cyclo-hexanedimethanol (70 percent trans isomer, 30 percent cls isomer) Inherent viscosity of a 0.50 percent solution of the copolymer in phenol-tetrachloroethane (60:40... ethylene glycol and 1 to 15 mole percent of 1,4-cyclohexane-di-methanol (70 percent trans isomer,...

  14. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for siRNA targeting HIF-1α for nasopharyngeal carcinoma therapy

    PubMed Central

    Chen, Yuhan; Xu, Gang; Zheng, Yi; Yan, Maosheng; Li, Zihuang; Zhou, Yayan; Mei, Lin; Li, Xianming

    2015-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is a crucial transcription factor that plays an important role in the carcinogenesis and development of nasopharyngeal carcinoma. In this research, a novel biodegradable D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) (TPGS-b-(PCL-ran-PGA)) nanoparticle (NP) was prepared as a delivery system for small interfering ribonucleic acid (siRNA) molecules targeting HIF-1α in nasopharyngeal carcinoma gene therapy. The results showed that the NPs could efficiently deliver siRNA into CNE-2 cells. CNE-2 cells treated with the HIF-1α siRNA-loaded TPGS-b-(PCL-ran-PGA) NPs showed reduction of HIF-1α expression after 48 hours of incubation via real-time reverse transcriptase-polymerase chain reaction and Western blot analysis. The cytotoxic effect on CNE-2 cells was significantly increased by HIF-1α siRNA-loaded NPs when compared with control groups. In a mouse tumor xenograft model, the HIF-1α siRNA-loaded NPs efficiently suppressed tumor growth, and the levels of HIF-1α mRNA and protein were significantly decreased. These results suggest that TPGS-b-(PCL-ran-PGA) NPs could function as a promising genetic material carrier in antitumor therapy, including therapy for nasopharyngeal carcinoma. PMID:25733830

  15. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms

    PubMed Central

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.

    2015-01-01

    Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles

  16. Solubility of block copolymer surfactants in compressed CO{sub 2} using a lattice fluid hydrogen-bonding model

    SciTech Connect

    Takishima, Shigeki; O`Neill, M.L.; Johnston, K.P.

    1997-07-01

    Supercritical carbon dioxide (CO{sub 2}) is an environmentally benign alternative to organic solvents in chemical processing. The solubilities of the homopolymers poly(ethylene glycol), poly(ethylene glycol) dimethyl ether (PEGDME), and poly(propylene glycol) (PPG) in CO{sub 2} were correlated with a lattice fluid hydrogen-bonding (LFHB) model, which was then used to predict solubilities of Pluronic L (PEG-PPG-PEG) and Pluronic R (PPG-PEG-PPG) triblock copolymers. Simple averaging rules were developed to evaluate the physical properties of the copolymers without introducing any adjustable parameters. For a given average molecular weight, the predictions of the model were quite reasonable and in some cases perhaps more accurate than the data, due to the large polydispersity of the samples. The model predicts the effects of total molecular weight, PEG/PPG ratio, terminal functional groups, temperature, and density on solubility. The much higher solubility of PPG versus PEG is due primarily to steric hindrance from the methyl branch, which weakens segment-segment interactions, and to a lesser extent to the stronger hydrogen bond donor strength of a primary (in the case of PEG) versus a secondary (in the case of PPG) alcohol terminal group. Consequently, the predicted solubilities of Pluronic L surfactants, which have stronger hydrogen bond donors on the terminal groups, are not much smaller than those of Pluronic R surfactants for given molecular weights of the blocks.

  17. Evaluation of hepatobiliary scintigraphy as an indicator of hepatic function in domestic pigeons (Columba livia) before and after exposure to ethylene glycol.

    PubMed

    Hadley, Tarah L; Daniel, Gregory B; Rotstein, David S; Avenell, James S; Zagaya, Nancy; Jones, Michael P

    2007-01-01

    This study investigated the use of quantitative hepatobiliary scintigraphy to assess liver function in 14 white Carneaux pigeons (Columba livia). Liver scintigraphy using 99mTc-mebrofenin was performed and liver function was quantified using deconvolutional analysis and the area under the normalized heart time-activity curve as previously described in the dog and horse. Liver biopsies were performed in all birds before and after toxin-induced liver damage with ethylene glycol. Before the induction of liver disease, all biopsy specimens showed varying degrees of granulomatous inflammation. After ethylene glycol administration, hepatic lesions were scored and compared with scintigraphic findings. Scintigraphic results showed a significant decrease (P = 0.04) in hepatic function using the area under the normalized time-activity curve. There was good correlation between the overall histologic score posttoxin exposure and scintigraphic measures of liver function (P < 0.03). Based upon these preliminary results, the area under the heart time-activity curve can determine hepatic extraction as a measure of hepatic parenchymal cell function. The results also showed that worsening hepatic cellular function correlated with increased histologic damage to the liver. The use of hepatobiliary scintigraphy using 99mTc-mebrofenin to determine liver function in pigeons has not been previously reported. Additional studies are warranted to evaluate the application of this technique in clinical patients and to establish the sensitivity of this technique. PMID:17385376

  18. Evaluation of the Water Potentials of Solutions of Polyethylene Glycol 8000 Both in the Absence and Presence of Other Solutes

    PubMed Central

    Michel, Burlyn E.

    1983-01-01

    Published and additional data for polyethylene glycol 8000 (PEG), formerly PEG 6000, solution water potentials (Ψ) are compared. Actual bars Ψ over the concentration range of 0 to 0.8 gram PEG per gram H2O and temperature (T) range of 5 to 40°C are best predicted (probably within ± 5%) by this equation: Ψ = 1.29[PEG]2T − 140[PEG]2 − 4.0[PEG]. Although transformable through division by [PEG] to virial equation form, results indicate that the coefficients are not virial. Mannitol (MAN) interacts with PEG to produce Ψ significantly lower than additive. Vapor pressure osmometer (VPO) data for MAN-PEG synergism compared favorably with those from thermocouple hygrometry; and VPO data showing the interactions between PEG and four salts are presented. The synergism of MAN-PEG and of NaCl-PEG are related linearly to the concentration of solute added with PEG. PMID:16662983

  19. Evaluation of Isoprene Chain Extension from PEO Macromolecular Chain Transfer Agents for the Preparation of Dual, Invertible Block Copolymer Nanoassemblies

    PubMed Central

    Bartels, Jeremy W.; Cauët, Solène I.; Billings, Peter L.; Lin, Lily Yun; Zhu, Jiahua; Fidge, Christopher; Pochan, Darrin J.; Wooley, Karen L.

    2010-01-01

    Two RAFT-capable PEO macro-CTAs, 2 and 5 kDa, were prepared and used for the polymerization of isoprene which yielded well-defined block copolymers of varied lengths and compositions. GPC analysis of the PEO macro-CTAs and block copolymers showed remaining unreacted PEO macro-CTA. Mathematical deconvolution of the GPC chromatograms allowed for the estimation of the blocking efficiency, about 50% for the 5 kDa PEO macro-CTA and 64% for the 2 kDa CTA. Self assembly of the block copolymers in both water and decane was investigated and the resulting regular and inverse assemblies, respectively, were analyzed with DLS, AFM, and TEM to ascertain their dimensions and properties. Assembly of PEO-b-PIp block copolymers in aqueous solution resulted in well-defined micelles of varying sizes while the assembly in hydrophobic, organic solvent resulted in the formation of different morphologies including large aggregates and well-defined cylindrical and spherical structures. PMID:21399721

  20. Evaluation of clinical outcomes in patients with dry eye disease using lubricant eye drops containing polyethylene glycol or carboxymethylcellulose

    PubMed Central

    Cohen, Stephen; Martin, Anna; Sall, Kenneth

    2014-01-01

    Background The purpose of this study was to compare changes in corneal staining in patients with dry eye after 6 weeks of treatment with Systane® Gel Drops or Refresh Liquigel® lubricant eye drops. Methods Patients aged ≥18 years with a sodium fluorescein corneal staining sum score of ≥3 in either eye and best-corrected visual acuity of 0.6 logarithm of the minimum angle of resolution or better in each eye who were using a lubricant eye gel or ointment for dry eye were included in this randomized, parallel-group, multicenter, double-blind trial. Patients were randomized to four times daily Systane® Gel Drops (polyethylene glycol 400 0.4% and propylene glycol 0.3%) or Refresh LiquiGel® Drops (carboxymethylcellulose sodium 1%) for 6 weeks. The primary efficacy outcome was mean change from baseline to week 6 in sodium fluorescein corneal staining. Supportive efficacy outcomes included conjunctival staining, tear film break-up time, Patient Global Assessment of Improvement, Impact of Dry Eye on Everyday Life (IDEEL) Treatment Satisfaction/Treatment Bother Questionnaire, Single Symptom Comfort Scale, and Ocular Symptoms Questionnaire. The safety analysis comprised recording of adverse events. Results In total, 147 patients (Systane group, n=73; Refresh group, n=74; mean ± standard deviation age, 57±16 years) were enrolled and included in the safety and efficacy analyses. Corneal staining was significantly reduced from baseline to week 6 for Systane and Refresh (−3.4±2.5 and −2.5±2.6 units, respectively; P<0.0001, t-test), with a significantly greater improvement with Systane versus Refresh (P=0.0294). Results for conjunctival staining, tear film break-up time, and patient-reported outcome questionnaires were not statistically different between groups. No safety issues were identified; adverse events were reported by 19% of patients with Systane and 30% of patients with Refresh eye drops. Conclusion Systane Gel Drops were associated with significantly

  1. Ion and temperature sensitive polypeptide block copolymer.

    PubMed

    Joo, Jae Hee; Ko, Du Young; Moon, Hyo Jung; Shinde, Usha Pramod; Park, Min Hee; Jeong, Byeongmoon

    2014-10-13

    A poly(ethylene glycol)/poly(L-alanine) multiblock copolymer incorporating ethylene diamine tetraacetic acid ([PA-PEG-PA-EDTA(m)) was synthesized as an ion/temperature dual stimuli-sensitive polymer, where the effect of different metal ions (Cu(2+), Zn(2+), and Ca(2+)) on the thermogelation of the polymer aqueous solution was investigated. The dissociation constants between the metal ions and the multiblock copolymer were calculated to be 1.2 × 10(-7), 6.6 × 10(-6), and 1.2 × 10(-4) M for Cu(2+), Zn(2+), and Ca(2+), respectively, implying that the binding affinity of the multiblock copolymer for Cu(2+) is much greater than that for Zn(2+) or Ca(2+). Atomic force microscopy and dynamic light scattering of the multiblock copolymer containing metal ions suggested micelle formation at low temperature, which aggregated as the temperature increased. Circular dichroism spectra suggested that changes in the α-helical secondary structure of the multiblock copolymer were more pronounced by adding Cu(2+) than other metal ions. The thermogelation of the multiblock copolymer aqueous solution containing Cu(2+) was observed at a lower temperature, and the modulus of the gel was significantly higher than that of the system containing Ca(2+) or Zn(2+), in spite of the same concentration of the metal ions and their same ionic valence of +2. The above results suggested that strong ionic complexes between Cu(2+) and the multiblock copolymer not only affected the secondary structure of the polymer but also facilitated the thermogelation of the polymer aqueous solution through effective salt-bridge formation even in a millimolar range of the metal ion concentration. Therefore, binding affinity of metal ions for polymers should be considered first in designing an effective ion/temperature dual stimuli-sensitive polymer. PMID:25178662

  2. Teratologic evaluation of ethylene glycol monobutyl ether in Fischer 344 rats and New Zealand white rabbits following inhalation exposure.

    PubMed Central

    Tyl, R W; Millicovsky, G; Dodd, D E; Pritts, I M; France, K A; Fisher, L C

    1984-01-01

    Timed-pregnant Fischer 344 rats and New Zealand White rabbits were exposed to ethylene glycol monobutyl ether vapors by inhalation on gestational days 6 through 15 (rats) or 6 through 18 (rabbits) at concentrations of 0, 25, 50, 100 or 200 ppm. The animals were sacrificed on gestational day 21 (rats) or 29 (rabbits). In rats, exposure to 200 or 100 ppm resulted in maternal toxicity (clinical signs, decreased body weight and weight gain, decreased absolute and relative organ weights, decreased food and water consumption and evidence of anemia), embryotoxicity (increased number of totally resorbed litters and decreased number of viable implantations per litter) and fetotoxicity (reductions in skeletal ossification). No increase in fetal malformations was observed in any exposure group relative to controls. At 50 or 25 ppm, there was no maternal, embryo or fetal toxicity (including malformations) in rats. In rabbits, exposure to 200 ppm resulted in maternal toxicity (apparent exposure-related increases in deaths and abortions, clinical signs, decreased weight during exposure and reduced gravid uterine weight at sacrifice) and embryotoxicity (reduced number of total and viable implantations per litter). No treatment-related fetotoxicity was seen. No treatment-related increased in fetal malformations or variations were seen at any exposure concentration tested. There was no evidence of maternal, embryo, or fetal toxicity (including malformations) at 100, 50 or 25 ppm in rabbits. PMID:6499818

  3. Evaluation of PEGylated exendin-4 released from poly (lactic-co-glycolic acid) microspheres for antidiabetic therapy.

    PubMed

    Lim, Sung Mook; Eom, Ha Na; Jiang, Hai Hua; Sohn, Minji; Lee, Kang Choon

    2015-01-01

    Peptide-based therapies have the potential to induce antibody formation if the molecules differ from a native human peptide. Several reports have disclosed the occurrence of antibody generation in a patient treated with exenatide. The immune response can be problematic from a clinical stand point, particularly if the antibodies neutralize the efficacy of the biotherapeutic agent or cause a general immune reaction. To overcome this limit, PEGylated exendin-4 analogs were designed and examined for metabolic stability and biological activity. To develop an extended release delivery system for exendin-4 for the safe and effective delivery of bioactive exendin-4 without peptide acylation and immunogenicity, PEGylated exendin-4 was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres by w/o/w double emulsion solvent evaporation method. Peptide-loaded microspheres were characterized in terms of morphology, particle diameter, and peptide encapsulation efficiency. Then, the release profile of the peptide from PLGA microspheres and the acylated products from PLGA polymer degradation was determined. The results obtained showed that the stability of exendin-4 was greatly improved by PEGylation. Moreover, eliminated acylation during PLGA polymer degradation in vitro and reduced immunogenicity in vivo were observed. The findings demonstrate that PEGylated exendin-4-loaded microspheres may be a safe and biocompatible system for clinical development. PMID:25407390

  4. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: Synthesis, characterization and evaluation for targeted drug delivery.

    PubMed

    Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar

    2016-07-25

    Diabetes mellitus represents a major metabolic disorder affecting millions of people all over the world. Currently available therapeutic treatments are not good enough to control the long-term complications of diabetes. Active targeting via inclusion of a specific ligand on the nanoparticles provides effective therapeutic approach in different diseases. However, such specific drug delivery systems have not been explored much in diabetes due to lack of suitable biological targets in this disorder. Our objective is to synthesize a ligand-tagged drug-loaded nanoparticle for delivery of the drug at specific sites to enhance its therapeutic efficiency in diabetic condition. The nanoparticles have been prepared by using biocompatible ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester) dimers. Although advanced glycation end products (AGEs) are the root causes of diabetic complications, argpyrimidine, an AGE, possesses antioxidant and reducing activities. AGE interacts selectively with its cell surface receptors (RAGE), which are significantly increased in diabetic condition. We have selected RAGE as the target of argpyrimidine, which is tagged on the nanoparticles as a ligand. Rutin, having anti-hyperglycemic and anti-glycating activities, has been used for nanoencapsulation. Rutin-loaded argpyrimidine-tagged nanoparticles have been synthesized and characterized. We have demonstrated the drug releasing capacity and target specificity of the synthesised drug delivery system under ex vivo and in vivo conditions. PMID:27234699

  5. GLYCOLIC - FORMIC ACID FLOWSHEET DEVELOPMENT

    SciTech Connect

    Pickenheim, B.; Stone, M.; Newell, J.

    2010-11-08

    glycolic acid added. The outstanding issues regarding the glycolic/formic flowsheet include increasing understanding of the impact on glass REDOX control and increased metal solubility, particularly iron, during processing. Additionally, evaluations of the utility of the flowsheet over varying sludge compositions should be completed to ensure flowsheet robustness. Work has already been initiated to further understand the REDOX and iron solubility areas.

  6. Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for (19)F and (1)H magnetic resonance imaging.

    PubMed

    De Luca, Elena; Harvey, Peter; Chalmers, Kirsten H; Mishra, Anurag; Senanayake, P Kanthi; Wilson, J Ian; Botta, Mauro; Fekete, Marianna; Blamire, Andrew M; Parker, David

    2014-02-01

    Medium molecular weight glycol chitosan conjugates have been prepared, linked by an amide bond to paramagnetic Gd(III), Ho(III) and Dy(III) macrocyclic complexes in which a trifluoromethyl reporter group is located 6.5 Å from the paramagnetic centre. The faster relaxation of the observed nucleus allows modified pulse sequences to be used with shorter acquisition times. The polydisperse materials have been characterised by gel permeation chromatography, revealing an average molecular weight on the order of 13,800 (Gd), 14,600 (Dy) and 16,200 (Ho), consistent with the presence of 8.5, 9.5 and 13 complexes, respectively. The gadolinium conjugate was prepared for both a q = 1 monoamide tricarboxylate conjugate (r1p 11.2 mM(-1) s(-1), 310 K, 1.4 T) and a q = 0 triphosphinate system, and conventional contrast-enhanced proton MRI studies at 7 T were undertaken in mice bearing an HT-29 or an HCT-116 colorectal tumour xenograft (17 μmol/kg). Enhanced contrast was observed following injection in the tail vein in tumour tissue, with uptake also evident in the liver and kidney with a tumour-to-liver ratio of 2:1 at 13 min, and large amounts in the kidney and bladder consistent with predominant renal clearance. Parallel experiments observing the (19)F resonance in the holmium conjugate complex using a surface coil did not succeed owing to its high R2 value (750 Hz, 7 T). However, the fluorine signal in the dysprosium triphosphinate chitosan conjugate [R1/R2 = 0.6 and R1 = 145 Hz (7 T)] was sharper and could be observed in vivo at -65.7 ppm, following intravenous tail vein injection of a dose of 34 μmol/kg. PMID:23955558

  7. Design and evaluation of inhalable chitosan-modified poly (DL-lactic-co-glycolic acid) nanocomposite particles.

    PubMed

    Yang, Mingshi; Yamamoto, Hiromitsu; Kurashima, Homare; Takeuchi, Hirofumi; Yokoyama, Toyokazu; Tsujimoto, Hiroyuki; Kawashima, Yoshiaki

    2012-08-30

    The aim of this study was to investigate two types of chitosan-modified poly (DL-lactic-co-glycolic acid) (PLGA) nanocomposite particles containing salmon calcitonin for pulmonary delivery, which were obtained using spray drying fluidized bed granulation (Agglomaster™) and dry powder coating techniques (Mechanofusion™), respectively. The physicochemical properties, pulmonary distribution, pulmonary clearance rate as well as in vivo hypocalcemia actions of the two types of nanocomposite particles were investigated. As indicated by scanning electron micrographs, soft matrix nanocomposite particles and soft ordered nanocomposite particles were produced by Agglomaster™ and Mechanofusion™, respectively. Both forms of chitosan-modified PLGA nanocomposite particles exhibited a high inhalation efficiency, i.e. more than 50% of the two types of nanocomposite particles could be deposited in the deep lung of male Wistar rats. However, the chitosan-modified PLGA nanocomposite particles designed by Agglomaster™ exhibited superior properties to those obtained by Mechanofusion™ with respect to the redispersibility of fine particles in aqueous liquid, the pulmonary retention time and pharmacological effects. In addition, compared with non-modified PLGA nanocomposite particles, the chitosan-modified PLGA nanocomposite particles obtained by Agglomaster™ exhibited enhanced pulmonary absorption of salmon calcitonin via the lung. The findings in this study suggest that the spray drying fluidized bed granulation technique is superior to the dry powder coating technique for producing chitosan-modified dry powder formulations containing salmon calcitonin for inhalation. This can be attributed to the avoidance of aggregation of chitosan-modified PLGA nanocomposite particles when using Agglomaster™ rather than Mechanofusion™. PMID:22683651

  8. Tailor-made pentablock copolymer based formulation for sustained ocular delivery of protein therapeutics.

    PubMed

    Patel, Sulabh P; Vaishya, Ravi; Mishra, Gyan Prakash; Tamboli, Viral; Pal, Dhananjay; Mitra, Ashim K

    2014-01-01

    The objective of this research article is to report the synthesis and evaluation of novel pentablock copolymers for controlled delivery of macromolecules in the treatment of posterior segment diseases. Novel biodegradable PB copolymers were synthesized by sequential ring-opening polymerization. Various ratios and molecular weights of each block (polyglycolic acid, polyethylene glycol, polylactic acid, and polycaprolactone) were selected for synthesis and to optimize release profile of FITC-BSA, IgG, and bevacizumab from nanoparticles (NPs) and thermosensitive gel. NPs were characterized for particle size, polydispersity, entrapment efficiency, and drug loading. In vitro release study of proteins from NPs alone and composite formulation (NPs suspended in thermosensitive gel) was performed. Composite formulations demonstrated no or negligible burst release with continuous near zero-order release in contrast to NPs alone. Hydrodynamic diameter of protein therapeutics and hydrophobicity of PB copolymer exhibited significant effect on entrapment efficiency and in vitro release profile. CD spectroscopy confirmed retention of structural conformation of released protein. Biological activity of released bevacizumab was confirmed by in vitro cell proliferation and cell migration assays. It can be concluded that novel PB polymers can serve a platform for sustained delivery of therapeutic proteins. PMID:25045540

  9. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration

    PubMed Central

    Li, Jingguo; Li, Zhanrong; Zhou, Tianyang; Zhang, Junjie; Xia, Huiyun; Li, Heng; He, Jijun; He, Siyu; Wang, Liya

    2015-01-01

    Purpose The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application. Methods The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application. Results The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea. Conclusion Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications. PMID:26451109

  10. Toxicity of ethylene glycol, diethylene glycol, and propylene glycol to human cells in culture

    SciTech Connect

    Mochida, K.; Gomyoda, M.

    1987-01-01

    Tissue culture toxicity of various alcohols has been reported by Dillingham who used mouse L cells and Koerker who used mouse neuroblastoma cells. The toxicity of various polyhydric alcohols (ethylene glycol, diethylene glycol and propylene glycol) has apparently not been determined, under conditions of culture. The authors report the toxicity of ethylene glycol, diethylene glycol and propylene glycol and KB cells and the results are compared with previous data obtained using their cell culture system.

  11. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  12. Genotoxicity of glycol ethers.

    PubMed Central

    McGregor, D B

    1984-01-01

    The genetic toxicology of glycol ethers is reviewed. Ethylene glycol monomethyl ether (EGME) and diglyme have been more extensively studied than other members of this series. Most results indicate a lack of genotoxic potential, but certain tests have yielded positive responses with certain compounds. Ethylene glycol monoethyl ether (EGEE) induced sister chromatid exchanges and chromosomal aberrations in cultured cells. Both EGME and diglyme induced mouse sperm head morphological changes, male rat weak dominant lethal mutations and marked, but reversible, loss of male rat fertility. PMID:6541999

  13. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications.

    PubMed

    Alexander, Amit; Ajazuddin; Khan, Junaid; Saraf, Swarnlata; Saraf, Shailendra

    2013-12-28

    Stimuli triggered polymers provide a variety of applications related with the biomedical fields. Among various stimuli triggered mechanisms, thermoresponsive mechanisms have been extensively investigated, as they are relatively more convenient and effective stimuli for biomedical applications. In a contemporary approach for achieving the sustained action of proteins, peptides and bioactives, injectable depots and implants have always remained the thrust areas of research. In the same series, Poloxamer based thermogelling copolymers have their own limitations regarding biodegradability. Thus, there is a need to have an alternative biomaterial for the formulation of injectable hydrogel, which must remain biocompatible along with safety and efficacy. In the same context, poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of their biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review stresses on the physicochemical property, stability and composition prospects of smart PEG/poly(lactic-co-glycolic acid) (PLGA) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. The manuscript also highlights the synthesis scheme and stability characteristics of these copolymers, which will surely help the researchers working in the same area. We have also emphasized the applied use of these smart copolymers along with their formulation problems, which could help in understanding the possible modifications related with these, to overcome their inherent associated limitations. PMID:24144918

  14. Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers.

    PubMed

    Wang, Yupeng; Yan, Lesan; Li, Bin; Qi, Yanxin; Xie, Zhigang; Jing, Xiabin; Chen, Xuesi; Huang, Yubin

    2015-09-01

    The protein adsorption and self-assembly behavior of biocompatible graft copolymer, poly(lactide-co-diazidomethyl trimethylene carbonate)-g-poly(ethylene glycol) [P(LA-co-DAC)-g-PEG], were systematically studied. The graft copolymers showed enhanced resistance to non-specific protein adsorption compared with their block copolymer counterparts, indicative of the increased effect of PEG density beyond PEG length. Diverse nanostructures including vesicles can be assembled from the amphiphilic graft copolymers with well-defined nano-sizes. Hemoglobin (Hb), as a model protein, can be entrapped in the formed vesicles and keep the gas-binding capacity. The reduced release rate of Hb from graft copolymer vesicles indicated the relatively stable membrane packing compared with block copolymer counterpart. PMID:26036907

  15. Formation of nanoparticles in aqueous solution from poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Hong Anh; Nguyen, Van Cuong

    2010-06-01

    The amphiphilic triblock copolymer of poly(ε-caprolactone)-b-poly(ethylene glycol)-b- poly(ε-caprolactone) (PCL–PEG–PCL) was prepared by ring opening polymerization of PEG and ε-caprolactone in the presence of stannous 2-ethyl hexanoate (Sn(Oct)2) as catalyst. The structure of triblock copolymer was characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The polymeric nanoparticles were prepared in aqueous solution by a co-solvent precipitation technique at room temperature. Nanoparticles were formed from the amphiphilic triblock copolymer, and the effect of organic solvent water-miscibility on the size of nanoparticles was also investigated. Polymeric nanoparticles were measured by dynamic light scattering (DLS), with sizes in the range of 70–90 nm and narrow polydispersity. Additionally, the toxicities of polymeric micelles were evaluated by MTT assay. These results confirmed low toxic polymeric micelles and suggest that the polymeric micelles hold a potential for anticancer drug delivery.

  16. Ethylene glycol poisoning

    MedlinePlus

    ... attempt or as a substitute for drinking alcohol (ethanol). This article is for information only. Do NOT ... attempt or as a substitute for drinking alcohol (ethanol). Ethylene glycol is found in many household products, ...

  17. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of methacrylic acid-methyl methacrylate- polyethylene glycol monomethyl ether methacrylate graft copolymer when used as an inert ingredient in a pesticide chemical formulation. Akzo Noel Surface Chemistry LLC submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting an......

  18. Synthesis and characterization of new poly(ortho ester amidine) copolymers for nonviral gene delivery

    PubMed Central

    Tang, Rupei; Ji, Weihang; Wang, Chun

    2011-01-01

    A new type of pH-labile cationic polymers, poly(ortho ester amidine) (POEAmd) copolymers, has been synthesized and characterized with potential future application as gene delivery carriers. The acid-labile POEAmd copolymer was synthesized by polycondensation of a new ortho ester diamine monomer with dimethylaliphatimidates, and a non-acid-labile polyamidine (PAmd) copolymer was also synthesized for comparison using a triethylene glycol diamine monomer. Both copolymers were easily dissolved in water, and can efficiently bind and condense plasmid DNA at neutral pH, forming nano-scale polyplexes. The physico-chemical properties of the polyplexes have been studied using dynamic light scattering, gel electrophoresis, ethidium bromide exclusion, and heparin competition. The average size of the polyplexes was dependent on the amidine: phosphate (N:P) ratio of the polymers to DNA. Polyplexes containing the acid-labile POEAmd or the non-acid-labile PAmd showed similar average particle size, comparable strength of condensing DNA, and resistance to electrostatic destabilization. They also share similar metabolic toxicity to cells as measured by MTT assay. Importantly, the acid-labile polyplexes undergo accelerated polymer degradation at mildly-acid-pHs, resulting in increasing particle size and the release of intact DNA plasmid. Polyplexes from both types of polyamidines caused distinct changes in the scattering properties of Baby Hamster Kidney (BHK-21) cells, showing swelling and increasing intracellular granularity. These cellular responses are uniquely different from other cationic polymers such as polyethylenimine and point to stress-related mechanisms specific to the polyamidines. Gene transfection of BHK-21 cells was evaluated by flow cytometry. The positive yet modest transfection efficiency by the polyamidines (acid-labile and non-acid-labile alike) underscores the importance of balancing polymer degradation and DNA release with endosomal escape. Insights gained from

  19. [Chronic ethylene glycol poisoning].

    PubMed

    Kaiser, W; Steinmauer, H G; Biesenbach, G; Janko, O; Zazgornik, J

    1993-04-30

    Over a six-week period a 60-year-old patient had several unexplained intoxication-like episodes. He finally had severe abdominal cramps with changes in the level of consciousness and oligoanuric renal failure (creatinine 4.7 mg/dl). The history, marked metabolic acidosis (pH 7.15, HCO3- 2.2 mmol/l, pCO2 6.6 mmHg) as well as raised anion residue (43 mmol/l) and the presence of oxalates in urine suggested poisoning by ethylene glycol contained in antifreeze liquid. Intensive haemodialysis adequately eliminated ethylene glycol and its toxic metabolites (glycol aldehyde, glycolic acid). Renal function returned within 10 days, although the concentrating power of the kidney remained impaired for several weeks because of interstitial nephritis. The intoxication had been caused by a defective heating-pipe system from which the antifreeze had leaked into the hot-water boiler (the patient had habitually prepared hot drinks by using water from the hot-water tap). Gas chromatography demonstrated an ethylene glycol concentration of 21 g per litre of water. PMID:8482240

  20. A facile method for construction of antifouling surfaces by self-assembled polymeric monolayers of PEG-silane copolymers formed in aqueous medium.

    PubMed

    Park, Sangjin; Chi, Young Shik; Choi, Insung S; Seong, Jiehyun; Jon, Sangyong

    2006-11-01

    Self-assembled polymeric monolayers (PMs) on Si/SiO2 wafers were prepared in water from a series of random copolymers of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3-(trimethoxysilyl)propyl methacrylate (TMSMA), denoted as poly(TMSMA-r-PEGMA). Four polymers of poly(TMSMA-r-PEGMA) were synthesized by free radical polymerization with a systematic variation of co-monomer feed ratios. Regardless of PEG grafting density in the copolymers, all PMs formed approximately 1 nm-thick film as measured by ellipsometry. However, the PMs with a higher grafting density of PEG resulted in more hydrophilic surfaces in terms of water contact angle. The protein resistance of the PMs was evaluated using bovine serum albumin (BSA) as a model protein. Analyses by ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) showed that the PMs of the copolymers markedly reduced the nonspecific adsorption of proteins compared to the unmodified Si/SiO2 wafers. The study also revealed that the PMs prepared from the copolymers with a higher PEG grafting density were more effective in resisting the nonspecific protein adsorption. PMID:17252800

  1. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function

    NASA Astrophysics Data System (ADS)

    Subramani, K.; Birch, M. A.

    2006-09-01

    The aims of this study were to fabricate poly(ethylene glycol) (PEG) hydrogel micropatterns on a biomaterial surface to guide osteoblast behaviour and to study how incorporating vascular endothelial growth factor (VEGF) within the adhered hydrogel influenced cell morphology. Standard photolithographic procedures or photopolymerization through a poly(dimethyl siloxane) (PDMS) mould were used to fabricate patterned PEG hydrogels on the surface of silanized silicon wafers. Hydrogel patterns were evaluated by light microscopy and surface profilometry. Rat osteoblasts were cultured on these surfaces and cell morphology investigated by fluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Release of protein trapped in the polymerized PEG was evaluated and VEGF-PEG surfaces were characterized for their ability to support cell growth. These studies show that photopolymerized PEG can be used to create anti-adhesive structures on the surface of silicon that completely control where cell interaction with the substrate takes place. Using conventional lithography, structures down to 50 µm were routinely fabricated with the boundaries exhibiting sloping sides. Using the PDMS mould approach, structures were fabricated as small as 10 µm and boundaries were very sharp and vertical. Osteoblasts exhibiting typical morphology only grew on the silicon wafer surface that was not coated with PEG. Adding BSA to the monomer solution showed that protein could be released from the hydrogel for up to 7 days in vitro. Incorporating VEGF in the hydrogel produced micropatterns that dramatically altered osteoblast behaviour. At boundaries with the VEGF-PEG hydrogel, there was striking formation of cellular processes and membrane ruffling indicative of a change in cell morphology. This study has explored the morphogenetic properties of VEGF and the applications of nano/microfabrication techniques for guided tissue (bone) regeneration in dental and

  2. Science and the perceived environmental risk from ethylene glycol and propylene glycol

    SciTech Connect

    Snellings, W.M.; Shah, S.I.; Garska, D.; Williams, J.B.

    1994-12-31

    Ethylene glycol and propylene glycol are widely used in aircraft deicing fluids (ADF), heat transfer fluids, and engine coolants. Discharges of these compounds to the environment have been reduced in recent years, but remain significant. The perceived environmental risk affects the decisions of businesses and regulatory agencies. There is a perception that propylene glycol poses a lower environmental risk than ethylene glycol. This perception is an inference from the use of low concentrations of propylene glycol in food additives -- something safe for food must be safe for fish. Environmental risk, however, must be established on the basis of scientific data, including acute and chronic toxicity to freshwater and saltwater species, oxygen demand, and persistence. A review of aquatic toxicity data for marine and freshwater species, and a review of treatability data in wastewater and soil for these widely used compounds has been completed. The data show that the two compounds, in fact, pose similar environmental risks, and in certain aspects one or the other glycol appears to be preferable. All aspects must be considered to give a valid perception of risk. The role of additives in deicing fluids is significant. Environmental fate and effect data indicate that additives are usually more toxic than the glycols, and environmental data for particular formulations must be evaluated as part of any risk assessment.

  3. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation.

    PubMed

    Jesus, D; Oliveira, J R; Oliveira, F E; Higa, K C; Junqueira, J C; Jorge, A O C; Back-Brito, G N; Oliveira, L D

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%. PMID:26605376

  4. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    PubMed Central

    Jesus, D.; Oliveira, J. R.; Oliveira, F. E.; Higa, K. C.; Junqueira, J. C.; Jorge, A. O. C.; Back-Brito, G. N.; Oliveira, L. D.

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%. PMID:26605376

  5. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  6. Radiosynthesis and preliminary biological evaluation of a new (18)F-labeled triethylene glycol derivative of triphenylphosphonium.

    PubMed

    Tominaga, Takahiro; Ito, Hiroaki; Ishikawa, Yoichi; Iwata, Ren; Ishiwata, Kiichi; Furumoto, Shozo

    2016-03-01

    Delocalized lipophilic cations such as [(18)F]fluorobenzyltriphenylphosphonium ([(18)F]FBnTP) can accumulate in mitochondria and have been used in myocardial perfusion imaging (MPI). In this study, we established a simplified method for [(18)F]FBnTP synthesis using triphenylphosphine hydrobromide (PPh3 •HBr) without preparing an intermediate that contains benzyl bromide structure. Applying this new method, we synthesized and evaluated a novel (18)F-labeled PEGylated BnTP derivative ([(18)F]FPEGBnTP). In vitro cellular uptake study demonstrated that [(18)F]FPEGBnTP accumulated in cells in proportion to the relative intensity of mitochondrial membrane potential. Biodistribution study revealed that the heart : liver uptake ratio of [(18)F]FPEGBnTP (4.00 at 60 min) was superior to that of [(18)F]FBnTP (1.50 at 60 min). However, [(18)F]FPEGBnTP showed slow blood clearance and high radioactivity uptake in bone at 120-min post-injection. These results imply the possibility of [(18)F]FPEGBnTP being used as a MPI agent. However, there is a need of further structural optimization and flow-dependent uptake study. PMID:26861736

  7. Indoor air guide values for glycol ethers and glycol esters-A category approach.

    PubMed

    Mangelsdorf, Inge; Kleppe, Sara Nordqvist; Heinzow, Birger; Sagunski, Helmut

    2016-07-01

    The German Committee on Indoor Guide Values issues indoor air guide values to protect public health. For health evaluation of glycol ethers and glycol esters in air, the entire group of substances with data for 47 chemicals was analyzed in order to gain a consistent assessment. For some glycol ethers reproductive and hematological effects are of central interest, whereas for others effects on liver and kidneys are crucial. Moreover, some glycol ethers have also been shown to cause irritation of the respiratory tract. For 14 chemicals, suitable inhalation studies were available for deriving specific guide values, or analogies to closely related substances could be drawn. For these chemicals individual indoor air guide values were derived, the respective guide value I ranging from 0.02 to 2mg/m(3). Guide values were derived according to the procedures issued by the Committee, considering the exposure duration in indoor air compared to animal studies or the situation at workplaces, the duration of the respective study, species differences, and interindividual variability including special sensitivity of children. For glycol ethers with insufficient data default guide values II and I of 0.05 and 0.005ppm, respectively, were recommended based on statistical analyses of the available data on all glycol ethers and on evaluation of single studies. For evaluation of combined effects additivity is assumed. PMID:27157117

  8. Radical-cured block copolymer-modified thermosets

    SciTech Connect

    Redline, Erica M.; Francis, Lorraine F.; Bates, Frank S.

    2013-01-10

    Poly(ethylene-alt-propylene)-b-poly(ethylene oxide) (PEP-PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP-PEO. The diblock copolymers self-assembled into well-dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer-modified epoxies, and an explanation is proposed.

  9. Synthesis and characterization of poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s

    NASA Astrophysics Data System (ADS)

    Haw, Tan Ching; Ahmad, Azizan; Anuar, Farah Hannan

    2015-09-01

    In this study, poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s was synthesized in the framework of environmental friendly products to meet the need for highly flexible polymers. Triblock copolymer with poly(ethylene glycol) as center block and poly(D,L-lactide) as side block were first synthesized by ring-opening polymerization of D,L-lactide, followed by chain extension reaction of triblocks using hexamethylene diisocyanate (HMDI). NMR and infra-red spectroscopies were used to determine the molecular composition whereas XRD analysis revealed crystallinity behavior of synthesized multiblock copolymers.

  10. The effect of glycerol, propylene glycol and polyethylene glycol 400 on the partition coefficient of benzophenone-3 (oxybenzone).

    PubMed

    Mbah, C J

    2007-01-01

    Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin. PMID:17294811

  11. Evaluation of propanediol, ethylene glycol, sucrose and antifreeze proteins on the survival of slow-cooled mouse pronuclear and 4-cell embryos.

    PubMed

    Shaw, J M; Ward, C; Trounson, A O

    1995-02-01

    Mouse pronuclear and 4-cell embryos were cryopreserved by slow cooling to -33 degrees C in 1.5 M 1,2-propanediol or 1.5 M ethylene glycol, with or without 0.1 M sucrose. Straws were thawed by immersion into a 37 degrees C water bath, immediately after their removal from liquid nitrogen (protocol 1), or after being held in air for 15 (protocol 2) or 30 s (protocol 3). Others were held in air until the ice melted (protocol 4). Embryos which formed blastocysts that hatched and attached to the Petri dish in vitro (plated) were considered viable. The thawing protocol did not significantly influence the viability of embryos frozen in propanediol with 0.1 M sucrose (52-72% of pronuclear and 69-97% of 4-cell embryos plated). In the other solutions tested, propanediol without sucrose and ethylene glycol with/without sucrose, only protocol 2 resulted in uniformly high development of both pronuclear (45-65% plating) and 4-cell embryos (70-97% plating). Thawing protocol 4 significantly reduced development, in particular for embryos frozen in ethylene glycol (0% 1-cell; 0-25% 4-cell plating). The difference between thawing protocols 2 and 4 was reduced by continuing slow cooling of ethylene glycol solutions to lower temperatures (-41 degrees C). Adding antifreeze proteins type I or III did not improve survival or development. Thus, although mouse pronuclear and 4-cell embryos can be frozen-thawed in either ethylene glycol or propanediol without significant loss of viability, an appropriate thawing protocol is essential for embryos frozen in ethylene glycol or propanediol-sucrose. PMID:7769070

  12. Synthesis and dose interval dependent hepatotoxicity evaluation of intravenously administered polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticle on Wistar rats.

    PubMed

    Rajan, Balan; Sathish, Shanmugam; Balakumar, Subramanian; Devaki, Thiruvengadam

    2015-03-01

    Superparamagnetic iron oxide nanoparticles are being used in medical imaging, drug delivery, cancer therapy, and so on. However, there is a direct need to identify any nanotoxicity associated with these nanoparticles. However uncommon, drug-induced liver injury (DILI) is a major health concern that challenges pharmaceutical industry and drug regulatory agencies alike. In this study we have synthesized and evaluated the dose interval dependent hepatotoxicity of polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticles (PUSPIOs). To assess the hepatotoxicity of intravenously injected PUSPIOs, alterations in basic clinical parameters, hematological parameters, hemolysis assay, serum levels of liver marker enzymes, serum and liver lipid peroxidation (LPO) levels, enzymatic antioxidant levels, and finally histology of liver, kidney, spleen, lung, brain, and heart tissues were studied in control and experimental Wistar rat groups over a 30-day period. The results of our study showed a significant increase in the aspartate transaminase (AST) enzyme activity at a dose of 10mg/kg b.w. PUSPIOs twice a week. Besides, alanine transaminase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) enzyme activity showed a slender increase when compared with control experimental groups. A significant increase in the serum and liver LPO levels at a dose of 10mg/kg b.w. PUSPIOs twice a week was also observed. Histological analyses of liver, kidney, spleen, lung, brain and heart tissue samples showed no obvious uncharacteristic changes. In conclusion, PUSPIOs were found to posses excellent biocompatibility and Wistar rats showed much better drug tolerance to the dose of 10mg/kg b.w. per week than the dose of 10mg/kg b.w. twice a week for the period of 30 days. PMID:25721486

  13. Evaluation of a novel tetra-functional branched poly(ethylene glycol) crosslinker for manufacture of crosslinked, decellularized, porcine aortic valve leaflets.

    PubMed

    Hu, Xing-Jian; Dong, Nian-Guo; Shi, Jia-Wei; Deng, Cheng; Li, Hua-Dong; Lu, Cui-Fen

    2014-02-01

    To address concerns over limitations in the clinical use of glutaraldehyde (GA) fixation in bioprosthetic heart valves, we manufactured novel, branched poly(ethylene glycol) tetraacrylate (PEG-TA) crosslinked valve leaflets and evaluated cytotoxic, thrombogenic, hemolytic, and anticalcification effects, thermal stability, and mechanical properties, in comparison to decellularized valves (control) and GA crosslinked valves. Thermal denaturation temperatures were higher for PEG-TA valve leaflets compared to control and GA crosslinked valves (p < 0.001). Leaflet hydrolyzation rate was lower for the PEG-TA group than for GA and control groups (p < 0.05). Superior cytocompatibility was found for PEG-TA group leaflets (MTT, p < 0.01. apoptosis assay, p > 0.05). No thrombogenesis was found in platelet activation tests (p < 0.0001). Hemolysis assays showed that PEG-TA leaflets would not cause damage to blood cells (p > 0.05). Excellent anticalcification properties were confirmed by von Kossa staining, western blot, and atomic absorption spectroscopy (p < 0.0001) in a rat subcutaneous embedding model. Finally, the novel PEG-TA crosslinked material exhibits improved mechanical properties as compared to GA crosslinked materials (tensile strength, p < 0.001, Young's modulus, p < 0.001). On the basis of all results presented, it is clear that the performance characteristics of PEG-TA crosslinked valve leaflets make PEG-TA crosslinked leaflets a promising alternative for the next generation of bioprosthetic heart valve. PMID:24115395

  14. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats.

    PubMed

    Lewandrowski, K U; Gresser, J D; Wise, D L; Trantol, D J

    2000-04-01

    Bioresorbable bone graft substitutes may significantly reduce the disadvantages associated with autografts, allografts and other synthetic materials currently used in bone graft procedures. We investigated the biocompatibility and osteointegration of a bioresorbable bone graft substitute made from the unsaturated polyester poly(propylene-glycol-co-fumaric acid), or simply poly(propylene fumarate), PPF, which is crosslinked in the presence of soluble and insoluble calcium filler salts. Four sets of animals each having three groups of 8 were evaluated by grouting bone graft substitutes of varying compositions into 3-mm holes that were made into the anteromedial tibial metaphysis of rats. Four different formulations varying as to the type of soluble salt filler employed were used: set 1--calcium acetate, set 2--calcium gluconate, set 3--calcium propionate, and set 4--control with hydroxapatite, HA, only. Animals of each of the three sets were sacrificed in groups of 8 at postoperative week 1, 3, and 7. Histologic analysis revealed that in vivo biocompatibility and osteointegration of bone graft substitutes was optimal when calcium acetate was employed as a soluble salt filler. Other formulations demonstrated implant surface erosion and disintegration which was ultimately accompanied by an inflammatory response. This study suggested that PPF-based bone graft substitutes can be designed to provide an osteoconductive pathway by which bone will grow in faster because of its capacity to develop controlled porosities in vivo. Immediate applicability of this bone graft substitute, the porosity of which can be tailored for the reconstruction of defects of varying size and quality of the recipient bed, is to defects caused by surgical debridement of infections, previous surgery, tumor removal, trauma, implant revisions and joint fusion. Clinical implications of the relation between developing porosity, resulting osteoconduction, and bone repair in vivo are discussed. PMID

  15. Triethylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monoethyl ether ; CASRN 112 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  16. Triethylene glycol monobutyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monobutyl ether ; CASRN 143 - 22 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  17. Propylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Propylene glycol monoethyl ether ; CASRN 52125 - 53 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  18. Diethylene glycol dinitrate (DEGDN)

    Integrated Risk Information System (IRIS)

    Diethylene glycol dinitrate ( DEGDN ) ; CASRN 693 - 21 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments

  19. Polyethylene Glycol 3350

    MedlinePlus

    Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. It is usually taken once a day as needed for up to ... to produce a bowel movement.To use the powder, follow these steps: If you are using polyethylene ...

  20. Review of glycol ether and glycol ether ester solvents used in the coating industry.

    PubMed Central

    Smith, R L

    1984-01-01

    Ethylene oxide-based glycol ether and glycol ether ester solvents have been used in the coatings industry for the past fifty years. Because of their excellent performance properties (evaporation rate, blush resistance, flow-out and leveling properties, solubility for coating resins, solvent activity, mild odor, good coupling ability, good solvent release) a complete line of ethylene oxide-based solvents of various molecular weights has been developed. These glycol ether and glycol ether ester solvents have better solvent activity for coating resin than ester or ketone solvents in their evaporation rate range. The gloss, flow and leveling, and general performance properties of many coating systems are dependent on the use of these products in the coating formula. Because of the concern about the toxicity of certain ethylene oxide-based solvents, other products are being evaluated as replacements in coating formulas. PMID:6499793

  1. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  2. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  3. Confinement of block copolymers

    SciTech Connect

    1995-12-31

    The following were studied: confinement of block copolymers, free surface confinement, effects of substrate interactions, random copolymers at homopolymer interfaces, phase separation in thin film polymer mixtures, buffing of polymer surfaces, and near edge x-ray absorption fine structure spectroscopy.

  4. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  5. Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis.

    PubMed

    Tai, Hongyun; Wang, Wenxin; Vermonden, Tina; Heath, Felicity; Hennink, Wim E; Alexander, Cameron; Shakesheff, Kevin M; Howdle, Steven M

    2009-04-13

    Thermoresponsive and photocrosslinkable polymers can be used as injectable scaffolds in tissue engineering to yield gels in situ with enhanced mechanical properties and stability. They allow easy handling and hold their shapes prior to photopolymerization for clinical practice. Here we report a novel copolymer with both thermoresponsive and photocrosslinkable properties via a facile one-step deactivation enhanced atom transfer radical polymerization (ATRP) using poly(ethylene glycol) methyl ether methylacrylate (PEGMEMA, M(n) = 475) and poly(propylene glycol) methacrylate (PPGMA, M(n) = 375) as monofunctional vinyl monomers and up to 30% of ethylene glycol dimethacrylate (EGDMA) as multifunctional vinyl monomer. The resultant PEGMEMA-PPGMA-EGDMA copolymers have been characterized by gel permeation chromatography (GPC) and 1H NMR analysis, which demonstrate their multivinyl functionality and hyperbranched structures. These water-soluble copolymers show lower critical solution temperature (LCST) behavior at 32 degrees C, which is comparable to poly(N-isopropylacrylamide) (PNIPAM). The copolymers can also be cross-linked by photopolymerization through their multivinyl functional groups. Rheological studies clearly demonstrate that the photocrosslinked gels formed at a temperature above the LCST have higher storage moduli than those prepared at a temperature below the LCST. Moreover, the cross-linking density of the gels can be tuned to tailor their porous structures and mechanical properties by adjusting the composition and concentration of the copolymers. Hydrogels with a broad range of storage moduli from 10 to 400 kPa have been produced. PMID:19226106

  6. Effects of polyalkylene glycols and fatty acid soaps on properties of synthetic lubricating-cooling fluids

    SciTech Connect

    Stulii, A.A.

    1983-01-01

    The lack of any effect of the polyalkylene glycols on the series of properties of the fatty acid soaps was confirmed by replacing the PEG-35 in the synthetic lubricating-cooling fluid (LCF) by a polyethylene glycol with a molecular weight of 400 or 6000, a propylene oxide oligomer with a molecular weight of 700, or a copolymer of ethylene and propylene oxides (Pluronic 44, Pluriol PE-6400, Hydropol 200). Attempts to select surfactants and optimal concentrations in synthetic LCFs based on polyalkylene glycols. Indicates that of the studied soaps, those of the most interest are the triethanolamine soaps of individual C/sub 6/-C/sub 10/ fatty acids and commercial mixed C/sub 7/-C/sub 9/ synthetic fatty acids. Finds that the polyalkylene glycols and the indicated soaps supplement each other, imparting the required set of properties to the LCF.

  7. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, Saeid; Sano, Rie; Ishigami, Toru; Kakihana, Yuriko; Ohmukai, Yoshikage; Matsuyama, Hideto

    2015-01-01

    Hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties were prepared from brominated vinyl chloride-hydroxyethyl methacrylate copolymer (poly(VC-co-HEMA-Br)). The base membrane was grafted with two different zwitterionic monomers, (2-methacryloyloxyethylphosphorylcholine) (MPC) and [2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide) (MEDSAH), and poly(ethylene glycol) methyl ether methacrylate (PEGMA). The effect of the grafting on the base membrane hydrophilicity and antifouling properties was investigated. For comparison of the results, the pure water permeabilities and pore sizes at the outer surfaces of the grafted hollow fiber membranes were controlled to be similar. A poly(VC-co-HEMA-Br) hollow fiber membrane with similar pure water permeability and pore size was also prepared as a control membrane. A BSA solution was used as a model fouling solution for evaluation of the antifouling properties. Grafting with zwitterionic monomers and PEGMA improved the antifouling properties compared with the control membrane. The PEGMA grafted membrane showed the best antifouling properties among the grafted membranes

  8. Bismaleimide Copolymer Matrix Resins

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  9. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  10. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate.

    PubMed

    Abbad, Sarra; Wang, Cheng; Waddad, Ayman Yahia; Lv, Huixia; Zhou, Jianping

    2015-01-01

    Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH), based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate) (HA-PBCA) block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA "plain" nanoparticle (MH-PNs) and HA-PBCA/TPGS "mixed" nanoparticles (MH-MNs) were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs. PMID:25609946

  11. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate

    PubMed Central

    Abbad, Sarra; Wang, Cheng; Waddad, Ayman Yahia; Lv, Huixia; Zhou, Jianping

    2015-01-01

    Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH), based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate) (HA-PBCA) block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs) and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs) were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs. PMID:25609946

  12. Glycol Ethers As Groundwater Contaminants

    NASA Astrophysics Data System (ADS)

    Ross, Benjamin; Johannson, Gunnar; Foster, Gregory D.; Eckel, William P.

    1992-01-01

    Ether derivatives of dihydroxy alcohols, which are formed from ethylene or propylene, comprise an important group of groundwater contaminants known as glycol ethers. Compounds in this group are used as solvents, cleaning agents, and emulsifiers in many chemical products and manufacturing operations. Glycol ethers have been associated with a variety of toxic effects, and some compounds in the group are relatively potent teratogens. The limited information available suggests that glycol ethers are contaminants in groundwater, especially in anaerobic plumes emanating from disposal of mixed industrial and household waste. Most methods used to analyze groundwater samples cannot adequately detect μg/? (ppb) concentrations of glycol ethers, and the existing methods perform worst for the most widely used and toxic species. A new method capable of analyzing μg/? concentrations of glycol ethers was recently developed, and its use is recommended for groundwater samples where glycol ethers are likely to be present.

  13. Desorption ElectroSpray Ionization - Orbitrap Mass Spectrometry of synthetic polymers and copolymers.

    PubMed

    Friia, Manel; Legros, Véronique; Tortajada, Jeanine; Buchmann, William

    2012-08-01

    Desorption ElectroSpray Ionization (DESI) - Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol(-1) up to more than 20 000 g.mol(-1) . Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI-MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of M(n) , M(w) and PDI values. DESI-Orbitrap MS results were compared to those obtained from matrix-assisted laser desorption/ionization- time-of-flight MS and gel permeation chromatography. An application of DESI-Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. PMID:22899511

  14. Polyethylene Glycol Propionaldehydes

    NASA Technical Reports Server (NTRS)

    Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.

    1992-01-01

    New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.

  15. Synthesis and cytotoxicity of brefeldin A conjugated monomethoxy-poly(ethylene glycol)-b-poly(L-lactide) polymeric micelles.

    PubMed

    Liu, Wanyun; Wei, Junchao; Huo, Ping; Lu, Yunhua; Chen, Yiwang; Wei, Yen

    2013-01-01

    A diblock copolymer of monomethoxy-poly(ethylene glycol)-b-poly(L-lactide) (MePEG-PLLA)/brefeldin A (BFA) conjugate was synthesized by the reaction of carboxyl-terminated copolymer MePEG-PLLA with BFA in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugation efficiency was found to be 95%. Its structure was confirmed by (1)H nuclear magnetic resonance and gel permeation chromatography. The MePEG-PLLA/BFA conjugate could self-assemble into micelles in aqueous solutions with a low critical micelle concentration of 1.8 × 10(-3 )g/L. Dynamic light scattering and transmission electron microscopy analyses of the MePEG-PLLA/BFA micelles revealed their spherical structure with an average diameter of 120 nm. The release profiles of BFA in PBS were measured by high performance liquid chromatography (HPLC), demonstrating that the controlled release of BFA can be gained for long time. The in vitro antitumor activity of the conjugate micelles against human liver carcinoma HepG2 cells was evaluated by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide method, and the results showed that BFA can be released from the conjugate micelles without losing cytotoxicity. PMID:23647253

  16. Microgels of polyaspartamide and poly(ethylene glycol) derivatives obtained by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Pitarresi, Giovanna; Licciardi, Mariano; Craparo, Emanuela Fabiola; Calderaro, Elio; Spadaro, Giuseppe; Giammona, Gaetano

    2002-09-01

    The copolymer PHG based on α, β-poly( N-2-hydroxyethyl)- DL-aspartamide (PHEA) functionalized with glycidyl methacrylate has been exposed in aqueous solution to a γ-ray source at different irradiation doses (2, 2.5 and 3.5 kGy), alone or in combination with poly(ethylene glycol)dimethacrylate (PEGDMA) or poly(ethylene glycol)diacrylate (PEGDA). The irradiation produces microgel systems that have been characterized by viscosity measurements. Lyophilization of microgels gives rise to samples able to swell instantaneously in water whereas their treatment with acetone produces swellable microparticles that have been characterized.

  17. Interstellar Antifreeze: Ethylene Glycol

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-05-01

    Interstellar ethylene glycol (HOCH2CH2OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  18. Interstellar Antifreeze: Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  19. [Interference of ethylene glycol on lactate assays].

    PubMed

    Graïne, H; Toumi, K; Roullier, V; Capeau, J; Lefèvre, G

    2007-01-01

    Ethylene glycol is broken down to three main organic acids: glycolic acid, glyoxylic acid and oxalic acid which cause severe metabolic acidosis. Effect of these three acids on lactate assays was evaluated in five blood gas analysers and two clinical chemistry analysers. For all systems, no influence of oxalic acid on lactate results could be demonstrated. No interference of glycolic acid could be observed on lactate assay performed with Rapid Lab 1265 (R: 104,9 +/- 12,1%), Vitros 950 (R: 105,7 +/- 5,3 %) and Architect ci8200 (R: 104,9 +/- 4,7%), but on the contrary, CCX 4, OMNI S, ABL 725 and 825 demonstrated a concentration-dependent interference. No interference of glyoxylic acid could be observed with Vitros 950, but a positive interference could be observed with ABL 725 and 825, OMNI S, CCX4 and Architect ci8200 A linear relationship between apparent lactate concentration found with ABL 725 and 825, OMNI S, CCX 4, and glyoxylic acid could be observed (0,94 < r < 0,99), a weaker interference being observed with Rapid Lab 1265 and Architect ci 8200. Our results demonstrated that in case of ethylene glycol poisoning, cautious interpretation of lactate assay should be done, since wrong results of lactacidemia could lead to misdiagnostic and delay patient treatment. PMID:17627925

  20. Amphiphilic PEO-b-PBLG diblock and PBLG-b-PEO-b-PBLG triblock copolymer based nanoparticles: doxorubicin loading and in vitro evaluation.

    PubMed

    Kakkar, Dipti; Mazzaferro, Silvia; Thevenot, Julie; Schatz, Christophe; Bhatt, Anant; Dwarakanath, Bilikere S; Singh, Harpal; Mishra, Anil K; Lecommandoux, Sebastien

    2015-01-01

    Huisgen's 1,3-dipolar cycloaddition ("Click Chemestry") has been used to prepare amphiphilic PEO-b-PBLG diblock and PBLG-b-PEO-b-PBLG triblock copolymers as potential carriers of anticancer drugs. Spherical and flower shaped micelles (D ≈ 100 nm) were obtained from diblock and triblock copolymers respectively. DOX was effectively encapsulated up to 18 wt.% and 50-60% of it was steadily released from the micelles over a period of 7 d. Flow cytometry and fluorescence microscopy confirmed the effective intracellular uptake as well as the sustained release of DOX from micelles. These results suggest that the diblock as well as triblock copolymers are promising carriers for intra-cellular drug delivery. PMID:25557884

  1. Design and Comparative Evaluation of In-vitro Drug Release, Pharmacokinetics and Gamma Scintigraphic Analysis of Controlled Release Tablets Using Novel pH Sensitive Starch and Modified Starch- acrylate Graft Copolymer Matrices.

    PubMed

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-01-01

    The present investigation deals with the development of controlled release tablets of salbutamol sulphate using graft copolymers (St-g-PMMA and Ast-g-PMMA) of starch and acetylated starch. Drug excipient compatibility was spectroscopically analyzed via FT-IR, which confirmed no interaction between drug and other excipients. Formulations were evaluated for physical characteristics like hardness, friability, weight variations, drug release and drug content analysis which satisfies all the pharmacopoeial requirement of tablet dosage form. Release rate of a model drug from formulated matrix tablets were studied at two different pH namely 1.2 and 6.8, spectrophotometrically. Drug release from the tablets of graft copolymer matrices is profoundly pH-dependent and showed a reduced release rate under acidic conditions as compared to the alkaline conditions. Study of release mechanism by Korsmeyer's model with n values between 0.61-0.67, proved that release was governed by both diffusion and erosion. In comparison to starch and acetylated starch matrix formulations, pharmacokinetic parameters of graft copolymers matrix formulations showed a significant decrease in Cmax with an increase in tmax, indicating the effect of dosage form would last for longer duration. The gastro intestinal transit behavior of the formulation was determined by gamma scintigraphy, using (99m)Tc as a marker in healthy rabbits. The amount of radioactive tracer released from the labelled tablets was minimal when the tablets were in the stomach, whereas it increased as tablets reached to intestine. Thus, in-vitro and in-vivo drug release studies of starch-acrylate graft copolymers proved their controlled release behavior with preferential delivery into alkaline pH environment. PMID:26330856

  2. Design and Comparative Evaluation of In-vitro Drug Release, Pharmacokinetics and Gamma Scintigraphic Analysis of Controlled Release Tablets Using Novel pH Sensitive Starch and Modified Starch- acrylate Graft Copolymer Matrices

    PubMed Central

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-01-01

    The present investigation deals with the development of controlled release tablets of salbutamol sulphate using graft copolymers (St-g-PMMA and Ast-g-PMMA) of starch and acetylated starch. Drug excipient compatibility was spectroscopically analyzed via FT-IR, which confirmed no interaction between drug and other excipients. Formulations were evaluated for physical characteristics like hardness, friability, weight variations, drug release and drug content analysis which satisfies all the pharmacopoeial requirement of tablet dosage form. Release rate of a model drug from formulated matrix tablets were studied at two different pH namely 1.2 and 6.8, spectrophotometrically. Drug release from the tablets of graft copolymer matrices is profoundly pH-dependent and showed a reduced release rate under acidic conditions as compared to the alkaline conditions. Study of release mechanism by Korsmeyer’s model with n values between 0.61-0.67, proved that release was governed by both diffusion and erosion. In comparison to starch and acetylated starch matrix formulations, pharmacokinetic parameters of graft copolymers matrix formulations showed a significant decrease in Cmax with an increase in tmax, indicating the effect of dosage form would last for longer duration. The gastro intestinal transit behavior of the formulation was determined by gamma scintigraphy, using 99mTc as a marker in healthy rabbits. The amount of radioactive tracer released from the labelled tablets was minimal when the tablets were in the stomach, whereas it increased as tablets reached to intestine. Thus, in-vitro and in-vivo drug release studies of starch-acrylate graft copolymers proved their controlled release behavior with preferential delivery into alkaline pH environment. PMID:26330856

  3. Complete Genome Sequence of Polypropylene Glycol- and Polyethylene Glycol-Degrading Sphingopyxis macrogoltabida Strain EY-1

    PubMed Central

    Nagata, Yuji; Numata, Mitsuru; Tsuchikane, Kieko; Hosoyama, Akira; Yamazoe, Atsushi; Tsuda, Masataka; Fujita, Nobuyuki; Kawai, Fusako

    2015-01-01

    Strain EY-1 was isolated from a microbial consortium growing on a random polymer of ethylene oxide and propylene oxide. Strain EY-1 grew on polyethylene glycol and polypropylene glycol and identified as Sphingopyxis macrogoltabida. Here, we report the complete genome sequence of Sphingopyxis macrogoltabida EY-1. The genome of strain EY-1 is comprised of a 4.76-Mb circular chromosome, and five plasmids. The whole finishing was conducted in silico, with aids of computational tools GenoFinisher and AceFileViewer. Strain EY-1 is available from Biological Resource Center, National Institute of Technology and Evaluation (Tokyo, Japan) (NITE). PMID:26634754

  4. Bacterial Utilization of Ether Glycols

    PubMed Central

    Fincher, Edward L.; Payne, W. J.

    1962-01-01

    A soil bacterium capable of using oligo- and polyethylene glycols and ether alcohols as sole sources of carbon for aerobic growth was isolated. The effects of substituent groups added to the ether bonds on the acceptability of the compounds as substrates were studied. Mechanisms for the incorporation of two-carbon compounds were demonstrated by the observation that acetate, glyoxylate, ethylene glycol, and a number of the tricarboxylic acid cycle intermediates served as growth substrates in minimal media. The rate of oxidation of the short-chained ethylene glycols by adapted resting cells varied directly with increasing numbers of two-carbon units in the chains from one to four. The amount of oxygen consumed per carbon atom of oligo- and polyethylene glycols was 100% of theoretical, but only 67% of theoretical for ethylene glycol. Resting cells oxidized oligo- and polyethylene glycols with 2 to 600 two-carbon units in the chains. Longer chained polyethylene glycols (up to 6,000) were oxidized at a very slow rate by these cells. Dehydrogenation of triethylene glycol by adapted cells was observed, coupling the reaction with methylene blue reduction. PMID:13945208

  5. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo.

    PubMed

    Du, Xiao-Jiao; Wang, Ji-Long; Liu, Wei-Wei; Yang, Jin-Xian; Sun, Chun-Yang; Sun, Rong; Li, Hong-Jun; Shen, Song; Luo, Ying-Li; Ye, Xiao-Dong; Zhu, Yan-Hua; Yang, Xian-Zhu; Wang, Jun

    2015-11-01

    Poly(ethylene glycol) (PEG) is usually used to protect nanoparticles from rapid clearance in blood. The effects are highly dependent on the surface PEG density of nanoparticles. However, there lacks a detailed and informative study in PEG density and in vivo drug delivery due to the critical techniques to precisely control the surface PEG density when maintaining other nano-properties. Here, we regulated the polymeric nanoparticles' size and surface PEG density by incorporating poly(ε-caprolactone) (PCL) homopolymer into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) and adjusting the mass ratio of PCL to PEG-PCL during the nanoparticles preparation. We further developed a library of polymeric nanoparticles with different but controllable sizes and surface PEG densities by changing the molecular weight of the PCL block in PEG-PCL and tuning the molar ratio of repeating units of PCL (CL) to that of PEG (EG). We thus obtained a group of nanoparticles with variable surface PEG densities but with other nano-properties identical, and investigated the effects of surface PEG densities on the biological behaviors of nanoparticles in mice. We found that, high surface PEG density made the nanoparticles resistant to absorption of serum protein and uptake by macrophages, leading to a greater accumulation of nanoparticles in tumor tissue, which recuperated the defects of decreased internalization by tumor cells, resulting in superior antitumor efficacy when carrying docetaxel. PMID:26275857

  6. Evaluation of adhesive-free crossed-electrode poly(vinylidene fluoride) copolymer array transducers for high frequency imaging

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank

    2016-07-01

    High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride–trifluoroethylene) [P(VDF–TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse–echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and ‑6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.

  7. Design strategies for 157-nm single-layer photoresists: lithographic evaluation of a poly(α -trifluoromethyl vinyl alcohol) copolymer

    NASA Astrophysics Data System (ADS)

    Schmaljohann, Dirk; Bae, Young C.; Weibel, Gina L.; Hamad, Alyssandrea H.; Ober, Christopher K.

    2000-06-01

    Poly(vinyl alcohol-co-(alpha) -trifluoromethyl vinyl alcohol) (PVA-co-CF3PVA) protected with an acid cleavable group was prepared as a single-layer photoresist for use in 157 nm VUV lithography. It was found that the (alpha) -trifluoromethyl substituent renders PVA-co-CF3PVA readily soluble in 0.262 N TMAH. The protected polymer can be spin-coated from PGMEA and preliminary studies using 248 nm exposure showed a THP protected PVA-co-CF3PVA undergoes chemically amplified deprotection with a clearing dose of approximately 15 mJ/cm2. Using a VUV spectrometer, absorption coefficients of approximately 3 micrometer-1 were observed at 157 nm with PVA-co-CF3PVA and THP protected PVA-co-CF3PVA. Detailed lithographic evaluation of the polymer is underway and design strategies for 157 nm single-layer photoresists will be discussed.

  8. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Pickenheim, B.; Bibler, N.

    2010-06-08

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be

  9. In vitro and in vivo evaluation of folate receptor-targeting amphiphilic copolymer-modified liposomes loaded with docetaxel

    PubMed Central

    Li, Xiang; Tian, Xin; Zhang, Jing; Zhao, Xu; Chen, Xiaohui; Jiang, Youhong; Wang, Dongkai; Pan, Weisan

    2011-01-01

    Background: The purpose of this study was to develop folate-poly (PEG-cyanoacrylate-co-cholesteryl cyanoacrylate) (FA-PEG-PCHL)-modified freeze-dried liposomes for targeted chemotherapy using docetaxel as a model drug. Methods: FA-PEG-PCHL was synthesized and its cytotoxicity was evaluated by CCK-8 assay in L929. Docetaxel-loaded liposomes modified by FA-PEG-PCHL were prepared by an organic solvent injection method and lyophilized to obtain freeze-dried FA-PEG-PCHL-docetaxel liposomes (FA-PDCT-L). Two carcinoma cell lines (MCF-7 and A-549 cells) were cultured with docetaxel solution, conventional docetaxel-loaded liposomes, or FA-PDCT-L, and the cytotoxicity and apoptosis was evaluated for each preparation. The uptake of the docetaxel preparations into MCF-7 cells was studied by confocal laser scanning microscopy. Liquid chromatography-mass spectrometry was used to study the pharmacokinetics and tissue distribution characteristics of the preparations. Results: The existence of an enlarged fixed aqueous layer on the surface of the liposomes was affirmed by zeta potential analysis. The entrapment efficiency and particle size distribution were almost the same as those of docetaxel-loaded liposomes. The drug release profile showed that the release rate was faster at higher molecular weight of the polymer. Compared with docetaxel solution and docetaxel-loaded liposomes, FA-PDCT-L demonstrated the strongest cytotoxicity against two carcinoma cell lines, the greatest intracellular uptake especially in the nucleus, as well as the most powerful apoptotic efficacy. In pharmacokinetic studies, the area under the plasma concentration-time curve of FA-PDCT-L was increased 3.82 and 6.23 times in comparison with the values for the docetaxel-loaded liposomes and docetaxel solution, respectively. Meanwhile, a lower concentration of docetaxel was observed for FA-PDCT-L in the liver and spleen, and a significantly higher concentration of FA-PDCT-L in tumors suggested that the

  10. Supramolecular self-assembly of conjugated diblock copolymers.

    PubMed

    Wang, Hengbin; You, Wei; Jiang, Ping; Yu, Luping; Wang, H Hau

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles. PMID:14978825

  11. Supramolecular self-assembly of conjugated diblock copolymers.

    SciTech Connect

    Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H.; Univ. of Chicago

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.

  12. Absorption of some glycol ethers through human skin in vitro.

    PubMed Central

    Dugard, P H; Walker, M; Mawdsley, S J; Scott, R C

    1984-01-01

    To assist evaluation of the hazards of skin contact with selected undiluted glycol ethers, their absorption across isolated human abdominal epidermis was measured in vitro. Epidermal membranes were set up in glass diffusion cells and, following an initial determination of permeability to tritiated water, excess undiluted glycol ether was applied to the outer surface for 8 hr. The appearance of glycol ether in an aqueous "receptor" phase bathing the underside of the epidermis was quantified by a gas chromatographic technique. A final determination of tritiated water permeability was compared with initial values to establish any irreversible alterations in epidermal barrier function induced by contact with the glycol ethers. 2-methoxyethanol (EM) was most readily absorbed (mean steady rate 2.82 mg/cm2/hr), and a relatively high absorption rate (1.17 mg/cm2/hr) was also apparent for 1-methoxypropan-2-ol (PM). There was a trend of reducing absorption rate with increasing molecular weight or reducing volatility for monoethylene glycol ethers (EM, 2.82 mg/cm2/hr; 2-ethoxyethanol, EE, 0.796 mg/cm2/hr; 2-butoxyethanol, EB, 0.198 mg/cm2/hr) and also within the diethylene glycol series: 2-(2-methoxyethoxy) ethanol (DM, 0.206 mg/cm2/hr); 2-(2-ethoxyethoxy) ethanol (DE, 0.125 mg/cm2/hr) and 2-(2-butoxyethoxy) ethanol (DB, 0.035 mg/cm2/hr). The rate of absorption of 2-ethoxyethyl acetate (EEAc) was similar to that of the parent alcohol, EE. Absorption rates of diethylene glycol ethers were slower than their corresponding monoethylene glycol equivalents. Combination of intrinsic toxicity and ability to pass across skin contribute to assessment of hazards of contact with undiluted glycol ethers. PMID:6499804

  13. Novel pentablock copolymer-based nanoparticulate systems for sustained protein delivery.

    PubMed

    Patel, Sulabh P; Vaishya, Ravi; Pal, Dhananjay; Mitra, Ashim K

    2015-04-01

    The design, synthesis, and application of novel biodegradable and biocompatible pentablock (PB) copolymers, i.e., polyglycolic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polyglycolic acid (PGA-PCL-PEG-PCL-PGA) and polylactic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polylactic acid (PLA-PCL-PEG-PCL-PLA) for sustained protein delivery, are reported. The PB copolymers can be engineered to generate sustained delivery of protein therapeutics to the posterior segment of the eye. PB copolymers with different block arrangements and molecular weights were synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance ((1)H-NMR), gel permeation chromatography (GPC), and X-ray diffraction (XRD) spectroscopy. Immunoglobulin G (IgG) was selected as a model protein due to its structural similarity to bevacizumab. The influence of polymer molecular weight, composition, and isomerism on formulation parameters such as entrapment efficiency, drug loading, and in vitro release profile was delineated. Crystallinity and molecular weight of copolymers exhibited a substantial effect on formulation parameters. A secondary structure of released IgG was confirmed by circular dichroism (CD) spectroscopy. In vitro cytotoxicity, cell viability, and biocompatibility studies performed on human retinal pigment epithelial cells (ARPE-19) and/or macrophage cell line (RAW 264.7) demonstrated PB copolymers to be excellent biomaterials. Novel PB polymers may be the answer to the unmet need of a sustained release protein formulation. PMID:25319053

  14. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  15. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  16. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  17. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  18. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel.

    PubMed

    Yu, Lin; Zhang, Zheng; Zhang, Huan; Ding, Jiandong

    2009-06-01

    A facile method to obtain a thermoreversible physical hydrogel was found by simply mixing an aqueous sol of a block copolymer with a precipitate of a similar copolymer but with a different block ratio. Two ABA-type triblock copolymers poly(D,L-lactic acid-co-glycolic acid)-B-poly(ethylene glycol)-B-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) were synthesized. One sample in water was a sol in a broad temperature region, while the other in water was just a precipitate. The mixture of these two samples with a certain mix ratio underwent, however, a sol-to-gel-to-precipitate transition upon an increase of temperature. A dramatic tuning of the sol-gel transition temperature was conveniently achieved by merely varying mix ratio, even in the case of a similar molecular weight. Our study indicates that the balance of hydrophobicity and hydrophilicity within this sort of amphiphilic copolymers is critical to the inverse thermal gelation in water resulting from aggregation of micelles. The availability of encapsulation and sustained release of lysozyme, a model protein by the thermogelling systems was confirmed. This "mix" method provides a very convenient approach to design injectable thermogelling biomaterials with a broad adjustable window, and the novel copolymer mixture platform is potentially used in drug delivery and other biomedical applications. PMID:19385649

  19. Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers.

    PubMed

    Khan, Imran; Umapathi, Reddicherla; Neves, Márcia C; Coutinho, João A P; Venkatesu, Pannuru

    2016-03-16

    Symmetrical poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) triblock copolymer with 82.5% PEG as the hydrophilic end blocks, and PPG as the hydrophobic middle block, was chosen to study the effect of ionic liquids (ILs) on the critical micellization temperature (CMT) of block copolymers in aqueous solution. In the present work, cholinium-based ILs were chosen to explore the effect of the anions on the copolymer CMT using fluorescence spectroscopy, dynamic light scattering (DLS), viscosity (η), FT-IR spectroscopy, nuclear magnetic resonance (NMR), and direct visualization of the various self-assembled nanostructures by scanning electron microscopy (SEM). The result suggests that ILs have the ability to decrease the CMT of the aqueous copolymer solution which is dependent on the nature of the anions of the ILs. The present study reveals that the hydrophobic part PPG of the copolymer has more influence on this behavior than the PEG hydrophilic part. PMID:26700649

  20. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  1. Endocytic uptake of a large array of HPMA copolymers: Elucidation into the dependence on the physicochemical characteristics

    PubMed Central

    Liu, Jihua; Bauer, Hillevi; Callahan, Jon; Kopečková, Pavla; Pan, Huaizhong; Kopeček, Jindřich

    2010-01-01

    Endocytic uptake and subcellular trafficking of a large array of HPMA (N-(2-hydroxypropyl)methacrylamide) based copolymers possessing positively or negatively charged residues, or hydrophobic groups were evaluated by flow cytometry and living cell confocal microscopy in cultured prostate cancer cells. The degrees of cellular uptake of various copolymer fractions with narrow polydispersities were quantified. The copolymer charge was the predominant physicochemical feature in terms of cellular uptake. Fast and efficient uptake occurred in positively charged copolymers due to non-specific adsorptive endocytosis, whereas slow uptake of negatively charged copolymers was observed. The uptake of copolymers was also molecular weight dependent. The copolymers were internalized into the cells through multiple endocytic pathways: positively charged copolymers robustly engaged clathrin-mediated endocytosis, macropinocytosis and dynamin-dependent endocytosis, while weakly negatively charged copolymers weakly employed these pathways; strongly negatively charged copolymers only mobilized macropinocytosis. HPMA copolymer possessing 4 mol% of moderately hydrophobic functional groups did not show preferential uptake. All copolymers ultimately localized in late endosomes/lysosomes via early endosomes; with varying kinetics among the copolymers. This study indicates that cell entry and subsequent intracellular trafficking of polymeric drug carriers are strongly dependent on the physicochemical characteristics of the nanocarrier, such as charge and molecular weight. PMID:20043962

  2. HPMA copolymers: Origins, early developments, present, and future☆

    PubMed Central

    Kopeček, Jindřich; Kopečková, Pavla

    2010-01-01

    The overview covers the discovery of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, initial studies on their synthesis, evaluation of biological properties, and explorations of their potential as carriers of biologically active compounds in general and anticancer drugs in particular. The focus is on the research in the authors’ laboratory – the development of macromolecular therapeutics for the treatment of cancer and musculoskeletal diseases. In addition, the evaluation of HPMA (co)polymers as building blocks of mod and new biomaterials is presented: the utilization of semitelechelic poly(HPMA) and HPMA copolymers for the modification of biomaterial and protein surfaces and the design of hybrid block and graft HPMA copolymers that self-assemble into smart hydrogels. Finally, suggestions for the design of second-generation macromolecular therapeutics are portrayed. PMID:19919846

  3. Photorespiratory glycolate-glyoxylate metabolism.

    PubMed

    Dellero, Younès; Jossier, Mathieu; Schmitz, Jessica; Maurino, Veronica G; Hodges, Michael

    2016-05-01

    Photorespiration is one of the major carbon metabolism pathways in oxygen-producing photosynthetic organisms. This pathway recycles 2-phosphoglycolate (2-PG), a toxic metabolite, to 3-phosphoglycerate when ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) uses oxygen instead of carbon dioxide. The photorespiratory cycle is in competition with photosynthetic CO2 fixation and it is accompanied by carbon, nitrogen and energy losses. Thus, photorespiration has become a target to improve crop yields. Moreover, during the photorespiratory cycle intermediate metabolites that are toxic to Calvin-Benson cycle and RuBisCO activities, such as 2-PG, glycolate and glyoxylate, are produced. Thus, the presence of an efficient 2-PG/glycolate/glyoxylate 'detoxification' pathway is required to ensure normal development of photosynthetic organisms. Here we review our current knowledge concerning the enzymes that carry out the glycolate-glyoxylate metabolic steps of photorespiration from glycolate production in the chloroplasts to the synthesis of glycine in the peroxisomes. We describe the properties of the proteins involved in glycolate-glyoxylate metabolism in Archaeplastida and the phenotypes observed when knocking down/out these specific photorespiratory players. Advances in our understanding of the regulation of glycolate-glyoxylate metabolism are highlighted. PMID:26994478

  4. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Hay, M.

    2011-06-20

    The Defense Waste Processing Facility (DWPF) is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and

  5. Preparation and evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) nanoparticles.

    PubMed

    Pradhan, Roshan; Poudel, Bijay Kumar; Choi, Ju Yeon; Choi, Im Soon; Shin, Beom Soo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-01-01

    In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate and poloxamer 407 as the anionic and non-ionic surfactant for stabilization. The PLGA NPs were prepared by emulsification/solvent evaporation method. Both the drug/polymer ratio and phase ratio were 1:10 (w/w). The optimized formulation of 17-AAG-loaded PLGA NPs had a particle size and polydispersity index of 151.6 ± 2.0 and 0.152 ± 0.010 nm, respectively, which was further supported by TEM image. The encapsulation efficiency and drug loading capacity were 69.9 and 7.0%, respectively. In vitro release study showed sustained release. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.468, which suggested that the drug was released by anomalous or non-Fickian diffusion. In addition, 17-AAG-loaded PLGA NPs in 72 h, displayed approximately 60% cell viability reduction at 10 µg/ml 17-AAG concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of 17-AAG into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer. PMID:24824337

  6. Plasma-mediated grafting of poly(ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates.

    PubMed

    Dong, Baiyan; Jiang, Hongquan; Manolache, Sorin; Wong, Amy C Lee; Denes, Ferencz S

    2007-06-19

    A simple cold plasma technique was developed to functionalize the surfaces of polyamide (PA) and polyester (PET) for the grafting of polyethylene glycol (PEG) with the aim of reducing biofilm formation. The surfaces of PA and PET were treated with silicon tetrachloride (SiCl4) plasma, and PEG was grafted onto plasma-functionalized substrates (PA-PEG, PET-PEG). Different molecular weights of PEG and grafting times were tested to obtain optimal surface coverage by PEG as monitored by electron spectroscopy for chemical analysis (ESCA). The presence of a predominant C-O peak on the PEG-modified substrates indicated that the grafting was successful. Data from hydroxyl group derivatization and water contact angle measurement also indicated the presence of PEG after grafting. The PEG-grafted PA and PET under optimal conditions had similar chemical composition and hydrophilicity; however, different morphology changes were observed after grafting. Both PA-PEG and PET-PEG surfaces developed under optimal plasma conditions showed about 96% reduction in biofilm formation by Listeria monocytogenes compared with that of the corresponding unmodified substrates. This plasma functionalization method provided an efficient way to graft PEG onto PA and PET surfaces. Because of the high reactivity of Si-Cl species, this method could potentially be applied to other polymeric materials. PMID:17500575

  7. Design, synthesis and in vitro evaluation of a novel "stealth" polymeric gene vector.

    PubMed

    Guosen, He; Min, Feng; Xin, Luo; Venkatraman, Subbu

    2008-02-28

    We report on the synthesis of a novel gene carrier that has low interaction with serum components, as well as low cytotoxicity. Cationic copolymers composing branched poly(ethylenimine) (PEI) grafted with hydrophilic poly(ethylene glycol) (PEG) and poly(l-lactic acid) (PLLA) or small-molecule oleoyl were synthesized and evaluated as novel gene carriers in this study. The copolymers were complexed with plasmid DNA and the resulting polyplexes were approximately 140nm in diameter and had a positive surface potential (zeta=+13.8mV) at the N/P ratio of 10/1. The experiments showed that copolymers with the oleoyl moiety were superior to the other two copolymers (with PLLA), in terms of in vitro gene transfection efficiency. Safety studies using MTT assay indicated much lower cytotoxicity of the oleoyl polyplexes than the pDNA/PEI complexes. The intracellular behavior of the polyplexes was monitored by confocal laser scanning microscopy, and it was found that the polyplexes were internalized into HeLa cells very effectively. At the same time, the plasmid DNA carried by the oleoyl-containing copolymers was found to localize in the nucleus of the recipient cells. One experiment comparing serum-free and serum-containing media indicated that the oleoyl polyplexes may be able to evade the reticulo-endothelial system (RES) better than the PEI-pDNA complex. PMID:17928176

  8. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  9. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  10. Evaluation of the diffusion coefficient for controlled release of oxytetracycline from alginate/chitosan/poly(ethylene glycol) microbeads in simulated gastrointestinal environments.

    PubMed

    Cruz, Maria C Pinto; Ravagnani, Sergio P; Brogna, Fabio M S; Campana, Sérgio P; Triviño, Galo Cardenas; Lisboa, Antonio C Luz; Mei, Lucia H Innocentini

    2004-12-01

    Diffusion studies of OTC (oxytetracycline) entrapped in microbeads of calcium alginate, calcium alginate coacervated with chitosan (of high, medium and low viscosity) and calcium alginate coacervated with chitosan of low viscosity, covered with PEG [poly(ethylene glycol) of molecular mass 2, 4.6 and 10 kDa, were carried out at 37+/-0.5 degrees C, in pH 7.4 and pH 1.2 buffer solutions - conditions similar to those found in the gastrointestinal system. The diffusion coefficient, or diffusivity (D), of OTC was calculated by equations provided by Crank [(1975) Mathematics in Diffusion, p. 85, Clarendon Press, Oxford] for diffusion, which follows Fick's [(1855) Ann. Physik (Leipzig) 170, 59] second law, considering the diffusion from the inner parts to the surface of the microbeads. The least-squares and the Newton-Raphson [Carnahan, Luther and Wilkes (1969) Applied Numerical Methods, p. 319, John Wiley & Sons, New York] methods were used to obtain the diffusion coefficients. The microbead swelling at pH 7.4 and OTC diffusion is classically Fickian, suggesting that the OTC transport, in this case, is controlled by the exchange rates of free water and relaxation of calcium alginate chains. In case of acid media, it was observed that the phenomenon did not follow Fick's law, owing, probably, to the high solubility of the OTC in this environment. It was possible to modulate the release rate of OTC in several types of microbeads. The presence of cracks formed during the process of drying the microbeads was observed by scanning electron microscopy. PMID:15281914