Science.gov

Sample records for glycolipidic bio surfactants

  1. Natural surfactants used in cosmetics: glycolipids.

    PubMed

    Lourith, N; Kanlayavattanakul, M

    2009-08-01

    Cosmetic surfactant performs detergency, wetting, emulsifying, solubilizing, dispersing and foaming effects. Adverse reactions of chemical synthesis surfactant have an effect on environment and humans, particularly severe in long term. Biodegradability, low toxicity and ecological acceptability which are the benefits of naturally derived surfactant that promises cosmetic safety are, therefore, highly on demand. Biosurfactant producible from microorganisms exhibiting potential surface properties suitable for cosmetic applications especially incorporate with their biological activities. Sophorolipids, rhamnolipids and mannosylerythritol lipids are the most widely used glycolipids biosurfactant in cosmetics. Literatures and patents relevant to these three glycolipids reviewed were emphasizing on the cosmetic applications including personal care products presenting the cosmetic efficiency, efficacy and economy benefits of glycolipids biosurfactant. PMID:19496839

  2. Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants.

    PubMed

    Hirata, Yoshihiko; Ryu, Mizuyuki; Oda, Yuka; Igarashi, Keisuke; Nagatsuka, Asami; Furuta, Taro; Sugiura, Masaki

    2009-08-01

    Sophorolipids (SLs) are a family of glycolipid type biosurfactants, which are largely produced by the non-pathogenic yeast, Candida bombicola. In order to investigate the possibility of SLs for industrial use, here we examined the interfacial activities, cytotoxicity and biodegradability of SLs, and compared these properties with those of two lipopeptide type biosurfactants (surfactin and arthrofactin), sodium laurate (soap, SP) and four kinds of chemically synthesized surfactants including two block-copolymer nonionic surfactants (BPs), polyoxyethylene lauryl ether (AE) and sodium dodecyl sulfate (SDS). It was indicated that SLs had extremely low-foaming properties and high detergency comparable with commercially available low-foaming BPs. These interfacial activities of SLs were maintained under 100 ppm water hardness. Cytotoxicity of SLs on human keratinocytes was the same as surfactin, which has already been commercialized as cosmetic material, but higher than BPs. Moreover, biodegradability of SLs using the OECD Guidelines for Testing of Chemicals (301C, Modified MITI Test) displayed that SLs can be classified as "readily" biodegradable chemicals, which are defined as chemicals that are degraded 60% within 28 days under specified test methods. We observed 61% degradation of SLs on the eighth day of cultivation. Our results indicate that SLs are low-foaming surfactants with high detergency, which also exhibit both low cytotoxicity and readily biodegradable properties. PMID:19619862

  3. Synthesis of β-arabinofuranoside glycolipids, studies of their binding to surfactant protein-A and effect on sliding motilities of M. smegmatis.

    PubMed

    Naresh, Kottari; Avaji, Prakash Gouda; Maiti, Krishnagopal; Bharati, Binod K; Syal, Kirtimaan; Chatterji, Dipankar; Jayaraman, Narayanaswamy

    2012-04-01

    Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, β-arabinofuranoside trisaccharide glycolipids constituted with β-(1→2), β-(1→3) and β-(1→2), β-(1→5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying β-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few α-anomeric arabinofuranoside glycolipids showed that glycolipids with β-anomeric linkages were having relatively lower equilibrium binding constants than those with α-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with α-anomeric linkages. PMID:22258791

  4. Glycolipid transfer proteins

    PubMed Central

    Brown, Rhoderick E.; Mattjus, Peter

    2007-01-01

    Glycolipid transfer proteins (GLTPs) are small (24 kD), soluble, ubiquitous proteins characterized by their ability to accelerate the intermembrane transfer of glycolipids in vitro. GLTP specificity encompasses both sphingoid- and glycerol-based glycolipids, but with a strict requirement that the initial sugar residue be beta-linked to the hydrophobic lipid backbone. The 3D protein structures of GLTP reveal liganded structures with unique lipid binding modes. The biochemical properties of GLTP action at the membrane surface have been studied rather comprehensively, but the biological role of GLTP remains enigmatic. What is clear is that GLTP differs distinctly from other known glycolipid-binding proteins, such as nonspecific lipid transfer proteins, lysosomal sphingolipid activator proteins, lectins, lung surfactant proteins as well as other lipid binding/transfer proteins. Based on the unique conformational architecture that targets GLTP to membranes and enables glycolipid binding, GLTP is now considered the prototypical and founding member of a new protein superfamily in eukaryotes. PMID:17320476

  5. Experimental and numerical simulation study of microbial enhanced oil recovery using bio-surfactants

    NASA Astrophysics Data System (ADS)

    Maudgalya, Saikrishna

    An experimental and numerical study were conducted to investigate the ability of bio-surfactant produced by the microbe Bacillus mojavensis strain JF-2 to recover residual oil from consolidated porous media. Experiments showed that the bio-surfactant at concentrations as low as 40.0 ppm. (0.04 mg/scc) and viscosified with 1000.0 ppm of polymer could recover 10.0 % to 40.0 % of residual oil when injected through sandstone cores at typical field rates. A 2-phase, 10-component microbial enhanced oil recovery numerical simulator was modified to include reservoir salinity and facilitate surfactant and polymer injection. The effects of reservoir brine salinity and divalent ion effects on bio-surfactant and polymer adsorption, polymer retention, polymer viscosity, bio-surfactant interfacial tension and the shear rate effect on polymer viscosity were added to the simulator. Core flood experiments where JF-2 bio-surfactant viscosified with partially hydrolyzed polyacrylamide was injected into Berea cores at waterflood residual oil saturation were simulated. The effects of brine salinity and hardness on surfactant and polymer behavior were tested and the core flood simulation results compared with the experimental results. After the laboratory and simulation studies, a residual oil recovery method based on non-aqueous phase liquid (NAPL) contaminant removal from aquifers is discussed and functional form of the transport equation presented. In this method, residual oil is treated as another chemical species dispersed in porous media instead of a phase that is uniformly distributed across the media.

  6. ‘GREENER’ SURFACTANTS FROM BIO-BASED WASTE AS EFFICIENT ALTERNATIVES TO NONYLPHENOL ETHOXYLATES

    EPA Science Inventory

    All bio-based surfactants synthesized over the course of the project will be tested for their ability to lower the surface tension at the air-water interface using a Du Nüoy ring tensiometer. The cleaning efficiency of the surfactants will be tested at the Toxics Use Reduc...

  7. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  8. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  9. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants.

    PubMed

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m(-1) at a low dosage as 0.100 g L(-1) of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  10. Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant

    NASA Astrophysics Data System (ADS)

    Behera, M.; Giri, G.

    2014-12-01

    Herein, we report a facile green synthesis of Cu2O nanoparticles (NPs) using copper sulfate as precursor salt and hydrazine hydrate as reducing agent in presence of bio-surfactant (i.e. leaves extract of arka — a perennial shrub) at 60 to 70 °C in an aqueous medium. A broad band centered at 460 nm in absorption spectrum reveals the formation of surfactant stabilized Cu2O NPs. X-ray diffraction pattern of the surfactant stabilized NPs suggests the formation of only Cu2O phase in assistance of a bio-surfactant with the crystallite size of ˜8 nm. A negative zeta potential of -12 mV at 8.0 pH in surfactant stabilized Cu2O NPs hints non-bonding electron transfer from O-atom of saponin to the surface of NP. Red-shift in the vibrational band (Cu-O stretching) of Cu2O from 637 cm-1 to 640 cm-1 in presence of bio-surfactant suggests an interfacial interaction between NPs and O-atoms of -OH groups of saponin present in the plant (i.e. Calotropis gigantean) extract. From X-ray photoelectron spectroscopy spectra, a decrease in binding energy of both 2p3/2 and 2p1/2 bands in Cu2O with saponin molecules as compared to bulk Cu atom reveals a charge transfer interaction between NP and saponin surfactant molecules. Transmission electron microscopy images show crystalline nature of Cu2O NPs with an fcc lattice.

  11. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives.

    PubMed

    Cortés-Sánchez, Alejandro de Jesús; Hernández-Sánchez, Humberto; Jaramillo-Flores, María Eugenia

    2013-01-15

    Several biological processes in prokaryotic and eukaryotic organisms require the presence of glycolipids (biosurfactants), compounds with both hydrophilic and hydrophobic groups in their structure. They constitute the backbone of different metabolic functions and biological structures such as cell membranes. Besides being structural components, glycolipids show surface activity in the interfaces and are mainly produced by microorganisms. Interest in biosurfactants has increased considerably in recent times due to their applications in the environmental, oil, food, and pharmaceutical industries, since they have unique properties such as low toxicity, high biodegradability, environmentally friendly, foaming capacity, high selectivity and specificity at extreme temperatures, pH and salinity, as well as biological activity. All of these properties are considered advantages over other chemical surfactants, and therefore glycolipids are considered a good alternative, given the current interest on sustainable development. The present work shows a general view of bio-surfactants of microbial origin, particularly of glycolipids, referring to several studies on their biological activity that have revealed their great potential in the medical-biological field, discovering interesting possibilities for their therapeutic application in the near future. PMID:22959834

  12. Biosynthesis and skin health applications of antimicrobial glycolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial-produced glycolipids (MGLs) such as sophorolipids (SLs), rhamnolipids (RLs), and mannosylerythritol lipids (MELs) are amphiphilic molecules, and thus have been widely explored for use as surfactants/detergents, emulsifiers, and lubricants. One major hindrance to their widespread commercia...

  13. Production and antimicrobial property of glycolipid biosurfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycolipids such as rhamnolipid (RL) and sophorolipid (SL) are an important class of biosurfactants with excellent surface tension-lowering activity. Besides their surfactant- and environment-friendly properties, however, additional value-added property such as bacteriocidal activity is n...

  14. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  15. Characteristic of flotation deinking using bio and synthetic surfactant at different air flow rate

    NASA Astrophysics Data System (ADS)

    Trismawati, Wardana, I. N. G.; Hamidi, Nurkholis; Sasongko, Mega Nur

    2016-03-01

    Flotation deinking has industrially applied but several problems keep unsolved because limitations have to compete with several variables present. Flotation deinking is multi variables process, so studying flotation deinking is still interesting. In this research, the amount of variables was reduced and focused to the performance comparison between flotation deinking of old newspaper (ONP) using biodegradable fatty acid of morinda citrifolia as the raw bio surfactant (RBS) and biodegradable fatty acid of palm oil that had been converted to be commercial surfactant (CS). The flotation was done at laboratory flotation cell equipped with orifice at different diameter (orifice number 20, 40 and 60) with adjustable airflow rate. Brightness and Effective Residual Ink Concentration (ERIC) of the deinked pulp were measured. The best results were achieved on orifice number 40 with the highest brightness of 41.96 °ISO and 40.96 °ISO when using CS and RBS respectively, and lowest ERIC of 896.82 ppm and 1001.72 ppm when using CS and RBS respectively. The percentage delta of deinking power characteristic between CS and RBS was 2.36% and 11.70% for brightness and ERIC, respectively.

  16. Chlorpyrifos-methyl solubilisation by humic acids used as bio-surfactants extracted from lignocelluloses and kitchen wastes.

    PubMed

    Scaglia, Barbara; Baglieri, Andrea; Tambone, Fulvia; Gennari, Mara; Adani, Fabrizio

    2016-09-01

    Chlorpyrifos-methyl (CLP-m) is a widely used organophosphate insecticide that can accumulate in soil and become toxic to humans. CLP-m can be removed from soil by its solubilisation using synthetic surfactants. However, synthetic surfactants can accumulate in soil causing contamination phenomena themselves. Bio-surfactants can be used as an alternative to synthetic ones, reducing costs and environmental issues. In this work, humic acid (HA) extracted from raw biomasses, i.e. lignocelluloses (HAL) and lignocelluloses plus kitchen food waste (HALF), corresponding composts (C) (HALC and HALFC) and leonardite (HAc), were tested in comparison with commercial surfactants, i.e. SDS, Tween 20 and DHAB, to solubilize CLP-m. Results obtained indicated that only biomass-derived HA, composted biomass-derived HA, and SDS solubilized CLP-m: SDS = 0.006; HAL = 0.007; HALC = 0.009 g; HALF = 0.025; HALFC = 0.024) (g CLP-m g(-1) surfactant). Lignocelluloses HAs (HAL, HALF) solubilized CLP-m just as well as SDS while lignocellulosic plus kitchen food waste HA (HALF, HALFC) showed a three times higher CLP-m solubilisation capability. This difference was attributed to the higher concentration of alkyl-Carbon that creates strong links with CLP-m in the hydrophobic micelle-core of the surfactants. PMID:27289207

  17. Stem cell glycolipids.

    PubMed

    Yanagisawa, Makoto

    2011-09-01

    Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety. Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss their availability as biomarkers for identifying and isolating stem cells. PMID:21161592

  18. Alkyl triazole glycosides (ATGs)--a new class of bio-related surfactants.

    PubMed

    Sani, Faramarz Aliasghari; Heidelberg, Thorsten; Hashim, Rauzah; Farhanullah

    2012-09-01

    A series of glucose based surfactants varying in chain length and anomeric configuration were synthesized and investigated on their surfactant properties. The synthesis applied glycosylation of propargyl alcohol followed by cycloaddition with alkyl azides in CLICK chemistry fashion. This approach enables a homogeneous coupling of hydrophilic unprotected sugars and hydrophobic paraffin components in low molecular weight alcohols without solvent side reactions, as commonly found for APGs. The combination of alcohols as inert medium with practically quantitative coupling of the surfactant domains avoids particularly hydrophobic contaminations of the surfactant, thus providing access to pure surfactants. ATGs with chain lengths up to 12 carbons exhibit Krafft points below room temperature and no cloud points were detected. The values for the CMC of ATGs with 12 carbon alkyl chains and above were in good agreement with those of corresponding alkyl glucosides. However, lower homologues exhibited significantly smaller CMCs, and the trend of the CMC upon the chain length did not match common surfactant behavior. This deviation may be related to the triazole that links the two surfactant domains. PMID:22609603

  19. Production of glycolipid biosurfactants by basidiomycetous yeasts.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2009-05-01

    BSs (biosurfactants) produced by various micro-organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy-saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation-inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described. PMID:19341364

  20. Production of microbial glycolipid biosurfactants and their antimicrobial activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycolipids produced by bacteria or yeast as secondary metabolites, such as sophorolipids (SLs), rhamnolipids (RLs) and mannosylerythritol lipids (MELs) are “green” biosurfactants desirable in a bioeconomy. High cost of production is a major hurdle toward widespread commercial use of bios...

  1. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGESBeta

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; Gerdes, Kirk; Sabolsky, Edward M.

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  2. Biocatalytic production of novel glycolipids with cellodextrin phosphorylase.

    PubMed

    Tran, Hai Giang; Desmet, Tom; Saerens, Karen; Waegeman, Hendrik; Vandekerckhove, Stéphanie; D'hooghe, Matthias; Van Bogaert, Inge; Soetaert, Wim

    2012-07-01

    Glycolipids have gained increasing attention as natural surfactants with a beneficial environmental profile. They are typically produced by fermentation, which only gives access to a limited number of structures. Here we describe the biocatalytic production of novel glycolipids with the cellodextrin phosphorylase from Clostridium stercorarium. This enzyme was found to display a broad donor and acceptor specificity, allowing the synthesis of five different products. Indeed, using either α-glucose 1-phosphate or α-galactose 1-phosphate as glycosyl donor, sophorolipid as well as glucolipid could be efficiently glycosylated. The transfer of a glucosyl moiety afforded a mixture of products that precipitated from the solution, resulting in near quantitative yields. The transfer of a galactosyl moiety, in contrast, generated a single product that remained in solution at thermodynamic equilibrium. These glycolipids not only serve as a new class of biosurfactants, but could also have applications in the pharmaceutical and nanomaterials industries. PMID:22000964

  3. Myelin glycolipids and their functions.

    PubMed

    Stoffel, W; Bosio, A

    1997-10-01

    During myelination, oligodendrocytes in the CNS and Schwann cells in the PNS synthesise myelin-specific proteins and lipids for the assembly of the axon myelin sheath. A dominant class of lipids in the myelin bilayer are the glycolipids, which include galactocerebroside (GalC), galactosulfatide (sGalC) and galactodiglyceride (GalDG). A promising approach for unravelling the roles played by various lipids in the myelin membrane involves knocking out the genes encoding important enzymes in lipid biosynthesis. The recent ablation of the ceramide galactosyltransferase ( cgt) gene in mice is the first example. The cgt gene encodes a key enzyme in glycolipid biosynthesis. Its absence causes glycolipid deficiency in the lipid bilayer, breakdown of axon insulation and loss of saltatory conduction. Additional knock-out studies should provide important insights into the various functions of glycolipids in myelinogenesis and myelin structure. PMID:9384539

  4. Removal of BTEX by using a surfactant--Bio originated composite.

    PubMed

    Shakeri, H; Arshadi, M; Salvacion, J W L

    2016-03-15

    The application of ostrich bone waste-loaded a cationic surfactant (OBW-OH-CTABr) bioadsorbent for benzene, toluene, ethylbenzene and p-xylene (BTEX) removal from the synthetic and real waters have been studied, and the prepared biomaterials were studied by Fourier transform infrared (FTIR), X-ray diffraction (XRD), surface area measurements (BET), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) and point of zero (pH(PZC)). The immobilization of CTABr molecules on the framework of modified OBW showed good tendency to adsorb BTEX from aqueous solution. The exposure time to obtain equilibrium for maximum removal of BTEX was observed to be 60 min. The removal kinetics of BTEX has been evaluated in terms of pseudo-first- and -second-order kinetics, and the Freundlich and Langmuir isotherm models have also been utilized to the equilibrium removal data. The removal process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. The immobilized CTABr showed high reusability because of its high adsorption efficiency after 12th cycles. The proposed low-cost bioadsorbent could also be utilized to adsorb BTEX from the real water (Anzali lagoon water). The OBW-OH-CTABr composite is indeed an attractive biomaterial for drinking water-based pollutants and act as an adsorbent for BTEX and oil spills especially in third world due to its low-cost preparation and regeneration and clean processing of the biomaterial with no byproducts after utilize. PMID:26724701

  5. Improved microbial growth inhibition activity of bio-surfactant induced Ag-TiO2 core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Nithyadevi, D.; Kumar, P. Suresh; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.; Meena, P.

    2015-02-01

    Surfactant induced silver-titanium dioxide core shell nanoparticles within the size range of 10-50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver-titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver-titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV-vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver-titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell nanoparticles have comparatively rapid, less expensive and wider applications in modern antibacterial therapy.

  6. Dehydration resistance of liposomes containing trehalose glycolipids

    NASA Astrophysics Data System (ADS)

    Nyberg, Kendra; Goulding, Morgan; Parthasarathy, Raghuveer

    2010-03-01

    The pathogen, Mycobacterium tuberculosis, has an unusual outer membrane containing trehalose glycolipids that may contribute to its ability to survive freezing and dehydration. Based on our recent discovery that trehalose glycolipids confer dehydration resistance to supported lipid monolayers (Biophys. J. 94: 4718-4724 (2008); Langmuir 25: 5193-5198, (2009)), we hypothesized that liposomes containing synthetic trehalose glycolipids may be dehydration-resistant as well. To test this, we measured the leakage of encapsulated fluorophores and larger macromolecular cargo from such liposomes subject to freeze drying. Both leakage assays and size measurements show that the liposomes are dehydration-resistant. In addition to demonstrating a possibly technologically useful encapsulation platform, our results corroborate the view that encapsulation in a trehalose-glycolipid-rich membrane is a biophysically viable route to protection of mycobacteria from environmental stresses.

  7. Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317(T).

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Microbial conversion of glycerol into functional bio-based materials was investigated, aiming to facilitate the utilization of waste glycerol. A basidiomycete yeast, Pseudozyma antarctica JCM 10317, efficiently produced mannosylerythritol lipids (MELs) as glycolipid biosurfactants from glycerol. The amount of MEL yield reached 16.3 g l(-1) by intermittent feeding of glycerol. PMID:17697987

  8. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  9. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage.

    PubMed

    Stefanutti, E; Papacci, F; Sennato, S; Bombelli, C; Viola, I; Bonincontro, A; Bordi, F; Mancini, G; Gigli, G; Risuleo, G

    2014-10-01

    Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage. PMID:25017801

  10. N-linked glycolipids by Staudinger coupling of glycosylated alkyl diazides with fatty acids.

    PubMed

    Salman, Salih Mahdi; Heidelberg, Thorsten; Bin Tajuddin, Hairul Anuar

    2013-06-28

    Aiming for new glycolipids with enhanced chemical stability and close structural similarity to natural cell membrane lipids for the development of a drug delivery system, we have synthesized double amide analogs of glyco-glycerolipids. The synthesis applied a Staudinger reaction based coupling of a 1,3-diazide with fatty acid chlorides. While the concept furnished the desired glucosides in reasonable yields, the corresponding lactosides formed a tetrahydropyrimidine based 1:1 coupling product instead. This unexpected coupling result likely originates from steric hindrance at the iminophosphorane intermediate and provides an interesting core structure for potentially bioactive surfactants. The assembly behavior of both glycolipid types was investigated by optical polarizing microscopy, DSC and surface tension studies. PMID:23685811

  11. Formation of W/O microemulsion based on natural glycolipid biosurfactant, mannosylerythritol lipid-a.

    PubMed

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Morita, Tomotake; Fukuoka, Tokuma; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipid-A (MEL-A) is a glycolipid biosurfactant abundantly produced from soybean oil by microorganisms at a yield of up to 100 g/L. In this study, the formation of water-in-oil (W/O) microemulsion based on the single component of MEL-A was confirmed using dynamic light scattering (DLS) and freeze fracture electron microscopy (FF-EM). DLS and FF-EM measurements revealed that the diameter of the microemulsion increases with an increase in water-to-surfactant mole ratio (W(0)) ranging from 20 to 60 nm, and the maximum W(0) value was found to be 20, which is as high as that of soybean lecithin. Glycolipid biosurfactant has a great potential for the formation of W/O microemulsion without using any cosurfactants. PMID:18075224

  12. Genetic control of glycolipid expression.

    PubMed

    Yamakawa, T; Suzuki, A; Hashimoto, Y

    1986-12-15

    A polymorphic variation of sialic acid species of sialosyllactosylceramide was found in dog erythrocytes. The analysis of the glycolipids in the erythrocytes of the individual dogs in a family of a Japanese breed of dog, Shiba-Inu, showed that the expression of sialosyllactosylceramide containing N-glycolylneuraminic acid was an autosomal dominant trait over the expression of that containing N-acetylneuraminic acid. Polymorphic variations of major liver gangliosides were also found in various strains of inbred mice. The strains were classified into three groups; the first group possessed only II3 NeuGc-LacCer, the second group possessed II3NeuGc-GgOse3Cer in addition to II3NeuGc-LacCer and the third group possessed II3NeuGc-GgOse4Cer and II3NeuGc,IV3NeuGc-GgOse4Cer as well as the above two gangliosides. By subjecting mice of these three groups to genetic analysis, the strain of the first group (WHT/Ht mice) was demonstrated to be a recessive homozygote which had a single autosomal defective gene making it unable to express N-acetylgalactosaminyltransferase activity to produce II3NeuGc-GgOse3Cer. The strains of the second group (BALB/c and C57BL/10 mice) were also demonstrated to be recessive homozygotes which had a single autosomal defective gene making them unable to express high enough level of galactosyltransferase activity to produce II3NeuGc-GgOse4Cer. By the analysis of gangliosides and the enzyme activity of H-2 congenic mice and mice produced by a mating, this defective gene controlling the expression of II3NeuGc-GgOse4-Cer through the regulation of the transferase activity was demonstrated to be linked to H-2 complex on chromosome 17. PMID:3103940

  13. Biosurfactants: a sustainable replacement for chemical surfactants?

    PubMed

    Marchant, Roger; Banat, Ibrahim M

    2012-09-01

    Glycolipid biosurfactants produced by bacteria and yeasts provide significant opportunities to replace chemical surfactants with sustainable biologically produced alternatives in bulk commercial products such as laundry detergents and surface cleaners. Sophorolipids are already available in sufficient yield to make their use feasible while rhamnolipids and mannosylerythritol lipids require further development. The ability to tailor the biosurfactant produced to the specific needs of the product formulation will be an important future step. PMID:22618240

  14. Novel 3-Dimensional Dendrimer Platform for Glycolipid Microarray

    PubMed Central

    Zhang, Jian; Zhou, Xichun

    2011-01-01

    Glycolipids are important biological molecules that modulate cellular recognitions and pathogen adhesions. In this paper, we report a sensitive glycolipid microarray for non-covalently immobilizing glycolipids on a microarray substrate and we perform a set of immunoassays to explore glycolipid-protein interactions. This substrate utilizes a three-dimensional hydrazide-functionalized dendrimer monolayer attached onto a microscopic glass surface, which possesses the characteristics to adsorb glycoliplids non-covalently and facilitates multivalent attributes on the substrate surface. In the proof-of-concept experiments, gangliosides such as GM1, FucGM1, GM3, GD1b, GT1b, and GQ1b, and a lipoarabinomannan were tested on the substrate and interrogated with toxins and antibodies. The resulting glycolipid microarrays exhibited hypersensitivity and specificity for detection of glycolipid-protein interactions. In particular, a robust and specific binding of a pentameric cholera toxin B subunit to the GM1 glycolipid spotted on the array has demonstrated its superiority in sensitivity and specificity. In addition, this glycolipid microarray substrate was used to detect lipoarabinomannan in buffer within a limit-of-detection of 125 ng/mL. Furthermore, Mycobacterium tuberculosis (Mtb) Lipoarabinomannan was tested in human urine specimens on this platform, which can effectively identify urine samples either infected or not infected with Mtb. The results of this work suggest the possibility of using this glycolipid microarray platform to fabricate glycoconjugate microarrays, which includes free glycans and glycolipids and potential application in detection of pathogen and toxin. PMID:21820887

  15. Application of yeast glycolipid biosurfactant, mannosylerythritol lipid, as agrospreaders.

    PubMed

    Fukuoka, Tokuma; Yoshida, Shigenobu; Nakamura, Junichi; Koitabashi, Motoo; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai; Kitamoto, Hiroko

    2015-01-01

    The spreading property of mannosylerythritol lipids (MELs) was investigated in connection with our search for new application in agriculture. The wetting ability of MEL solutions for hydrophobic surfaces was evaluated based on contact angle measurements for several surfactant solutions on abiotic and biotic surfaces. The contact angle of MEL-A solution on a hydrophobic plastic surface at 100 s after placement decreased to 8.4°, and those of other MEL solutions decreased more significantly compared to those of commonly-used nonionic surfactants. In addition, the contact angle of MEL solutions also dropped down to around 10° on various plant leaf surfaces. MEL solutions, in particular, efficiently spread even on poorly wettable Gramineae plant surfaces on which general nonionic surfactant solutions could not. Moreover, the wetting ability of MEL solutions was found to be greatly affected by the structural difference in their carbohydrate configuration. Furthermore, surface pretreatment with MEL solution led to more efficient spreading and fixing of microbial cells onto plant leaf surface compared to several conventional surfactants used in this study. These results suggested that MELs have a potential to use as a natural bio-based spreading agent, particularly as agrochemical spreader for biopesticides. PMID:25891117

  16. Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases.

    PubMed

    Imura, Tomohiro; Hikosaka, Yusuke; Worakitkanchanakul, Wannasiri; Sakai, Hideki; Abe, Masahiko; Konishi, Masaaki; Minamikawa, Hiroyuki; Kitamoto, Dai

    2007-02-13

    The aqueous-phase behavior of mannosylerythritol lipid A (MEL-A), which is a glycolipid biosurfactant produced from vegetable oils by yeast strains of the genus Pseudozyma, was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). MEL-A was found to self-assemble into a variety of distinctive lyotropic liquid crystals including sponge (L3), bicontinuous cubic (V2), and lamella (Lalpha) phases. On the basis of SAXS measurements, we determined the structure of the liquid crystals. The estimated lattice constant for Lalpha was 3.58 nm. DSC measurement revealed that the phase transition enthalpies from the liquid crystal to the fluid isotropic phase were in the range of 0.22-0.44 kJ/mol. Although the present MEL-A phase diagram closely resembled that obtained from relatively hydrophobic poly(oxyethylene) or fluorinated surfactants, the MEL-A L3 region was spread considerably over a wide temperature range (20-65 degrees C) compared to L3 of those surfactants: this is probably due to the unique structure which is molecularly engineered by microorganisms. In this paper, we clarify the aqueous phase diagram of the natural glycolipid biosurfactant MEL-A, and we suggest that the obtained lyotropic crystals are potentially useful as novel nanostructured biomaterials. PMID:17279642

  17. Analysis of glycolipids by fast atom bombardment mass spectrometry.

    PubMed

    Bosch, M P; Parra, J L; Manresa, M A; Ventura, F; Rivera, J

    1989-12-01

    The positive and negative ion fast atom bombardment (FAB) mass spectra of four glycolipids obtained from microbial cultures are reported. The spectra of the glycolipids in the positive ion mode are characterized by abundant [M + Na]+, [M + Na + matrix]+ and [M + 2Na - H]+ species. In negative FAB conditions the molecules yield [M - H]-. Our understanding of the FAB behaviour of glycolipids in both positive and negative modes has been considerably aided in the structure elucidation, without any derivatization or degradation reaction of the compounds studied. The technique allows unambiguous molecular weight determination of low-microgram amounts of these glycolipids purified from biological sources and provides useful fragmentation information. PMID:2611417

  18. [Advance in glycolipid biosurfactants--mannosylerythritol lipids].

    PubMed

    Fan, Linlin; Zhang, Jun; Cai, Jin; Dong, Yachen; Xu, Tengyang; He, Guoqing; Chen, Qihe

    2013-09-01

    Mannosylerythritol lipids (MELs), mainly produced by Ustilago and Pseudozyma, are surface active compounds that belong to the glycolipid class of biosurfactants. MELs have potential application in food, pharmaceutical and cosmetics industries due to their excellent surface activities and other peculiar bioactivities. In recent years, the research field of MELs has regained much attention abroad. However, MELs are rarely studied in China. In this review, the producing microorganisms and production conditions, diverse structures, biochemical properties, structure-function relationship and biosynthetic pathways of MELs are described. Some research problems and prospects are summarized and discussed as well. PMID:24409686

  19. Stimulation of Natural Killer T Cells by Glycolipids

    PubMed Central

    Anderson, Brian L.; Teyton, Luc; Bendelac, Albert; Savage, Paul B.

    2014-01-01

    Natural killer T (NKT) cells are a subset of T cells that recognize glycolipid antigens presented by the CD1d protein. The initial discovery of immunostimulatory glycolipids from a marine sponge and the T cells that respond to the compounds has led to extensive research by chemists and immunologists to understand how glycolipids are recognized, possible responses by NKT cells, and the structural features of glycolipids necessary for stimulatory activity. The presence of this cell type in humans and most mammals suggests that it plays critical roles in antigen recognition and the interface between innate and adaptive immunity. Both endogenous and exogenous natural antigens for NKT cells have been identified, and it is likely that glycolipid antigens remain to be discovered. Multiple series of structurally varied glycolipids have been synthesized and tested for stimulatory activity. The structural features of glycolipids necessary for NKT cell stimulation are moderately well understood, and designed compounds have proven to be much more potent antigens than their natural counterparts. Nevertheless, control over NKT cell responses by designed glycolipids has not been optimized, and further research will be required to fully reveal the therapeutic potential of this cell type. PMID:24352021

  20. Nitrogen and hydrophosphate affects glycolipids composition in microalgae

    PubMed Central

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L−1 hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L−1 d−1. Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  1. Nitrogen and hydrophosphate affects glycolipids composition in microalgae.

    PubMed

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L(-1) hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L(-1) d(-1). Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  2. The uptake of trehalose glycolipids by macrophages is independent of Mincle.

    PubMed

    Kodar, Kristel; Eising, Selma; Khan, Ashna A; Steiger, Stefanie; Harper, Jacquie L; Timmer, Mattie S M; Stocker, Bridget L

    2015-03-01

    Trehalose glycolipids play an important role in the pathogenesis of Mycobacterium tuberculosis and are used as adjuvants for vaccines; however, much still remains unanswered about the mechanisms through which these glycolipids exert their immunomodulatory potential. Recently, the macrophage-inducible C-type lectin Mincle was determined to be the receptor for trehalose glycolipids, yet the role played by Mincle in glycolipid uptake is unknown. Accordingly, we developed several fluorescent trehalose glycolipid reporter systems that can be used to study the uptake of soluble trehalose glycolipids and glycolipid-coated particles by macrophages. Our studies revealed that, although Mincle is essential for the activation of macrophages by trehalose glycolipids, the receptor does not play a role in the uptake of these glycolipids or of glycolipid-coated particles. PMID:25645884

  3. Gene therapy: prospects for glycolipid storage diseases.

    PubMed Central

    Gieselmann, Volkmar; Matzner, Ulrich; Klein, Diana; Mansson, Jan Eric; D'Hooge, Rudi; DeDeyn, Peter D; Lüllmann Rauch, Renate; Hartmann, Dieter; Harzer, Klaus

    2003-01-01

    Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases. PMID:12803926

  4. Gene therapy: prospects for glycolipid storage diseases.

    PubMed

    Gieselmann, Volkmar; Matzner, Ulrich; Klein, Diana; Mansson, Jan Eric; D'Hooge, Rudi; DeDeyn, Peter D; Lüllmann Rauch, Renate; Hartmann, Dieter; Harzer, Klaus

    2003-05-29

    Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases. PMID:12803926

  5. Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Ito, Seya; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are secreted by yeasts and are promising glycolipid biosurfactants. In our study on the non-aqueous phase behaviors of MEL homologues, we found that MEL-D (4-O-[2',3'-di-O-alka(e)noyl-β-D-mannopyranosyl]-(2R,3S)-erythritol) forms aggregates in decane. The microscopic observation and the X-ray scattering measurement of these aggregates revealed that they are reverse vesicles that consist of bilayers whose hydrophilic domains are located in the interior of the bilayers. In addition, MEL-D formed reverse vesicles without co-surfactants and co-solvents in various oily solutions, such as n-alkanes, cyclohexane, squalane, squalene, and silicone oils at a concentration below 10 mM. This is the first report on the reverse vesicle formation from biosurfactants. PMID:22531056

  6. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications.

    PubMed

    Inès, Mnif; Dhouha, Ghribi

    2015-10-30

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively. Rhamnolipids, trehalolipids, mannosylerythritol-lipids and cellobiose lipids are among the most popular glycolipids. Moreover, their ability to form pores and destabilize biological membrane permits their use in biomedicine as antibacterial, antifungal and hemolytic agents. Their antiviral and antitumor effects enable their use in pharmaceutic as therapeutic agents. Also, glycolipids can inhibit the bioadhesion of pathogenic bacteria enabling their use as anti-adhesive agents and for disruption of biofilm formation and can be used in cosmetic industry. Moreover, they have great potential application in industry as detergents, wetting agents and for flotation. Furthermore, glycolipids can act at the surface and can modulate enzyme activity permitting the enhancement or the inhibition of the activity of certain enzymes. PMID:26359535

  7. Microbial production of glycolipids from lipids and related feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycolipids are secondary metabolites produced by many microorganisms. They are environmentally "green" compounds useful as biosurfactants, cosmetic active-ingredients, antimicrobial agents, and enhancers for bioremediation and oil recovery operations. There is a need, however, to lower the cost o...

  8. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  9. Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.

    PubMed

    Imura, Tomohiro; Ohta, Noboru; Inoue, Katsuaki; Yagi, Naoto; Negishi, Hideyuki; Yanagishita, Hiroshi; Kitamoto, Dai

    2006-03-01

    Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The

  10. Deconvolution procedure of the UV-vis spectra. A powerful tool for the estimation of the binding of a model drug to specific solubilisation loci of bio-compatible aqueous surfactant-forming micelle.

    PubMed

    Calabrese, Ilaria; Merli, Marcello; Turco Liveri, Maria Liria

    2015-05-01

    UV-vis-spectra evolution of Nile Red loaded into Tween 20 micelles with pH and [Tween 20] have been analysed in a non-conventional manner by exploiting the deconvolution method. The number of buried sub-bands has been found to depend on both pH and bio-surfactant concentration, whose positions have been associated to Nile Red confined in aqueous solution and in the three micellar solubilisation sites. For the first time, by using an extended classical two-pseudo-phases-model, the robust treatment of the spectrophotometric data allows the estimation of Nile Red binding constant to the available loci. Hosting capability towards Nile Red is exalted by the pH enhancement. Comparison between binding constant values classically evaluated and those estimated by the deconvolution protocol unveiled that overall binding values perfectly match with the mean values of the local binding sites. This result suggests that deconvolution procedure provides more precise and reliable values, which are more representative of drug confinement. PMID:25703359

  11. Deconvolution procedure of the UV-vis spectra. A powerful tool for the estimation of the binding of a model drug to specific solubilisation loci of bio-compatible aqueous surfactant-forming micelle

    NASA Astrophysics Data System (ADS)

    Calabrese, Ilaria; Merli, Marcello; Turco Liveri, Maria Liria

    2015-05-01

    UV-vis-spectra evolution of Nile Red loaded into Tween 20 micelles with pH and [Tween 20] have been analysed in a non-conventional manner by exploiting the deconvolution method. The number of buried sub-bands has been found to depend on both pH and bio-surfactant concentration, whose positions have been associated to Nile Red confined in aqueous solution and in the three micellar solubilisation sites. For the first time, by using an extended classical two-pseudo-phases-model, the robust treatment of the spectrophotometric data allows the estimation of Nile Red binding constant to the available loci. Hosting capability towards Nile Red is exalted by the pH enhancement. Comparison between binding constant values classically evaluated and those estimated by the deconvolution protocol unveiled that overall binding values perfectly match with the mean values of the local binding sites. This result suggests that deconvolution procedure provides more precise and reliable values, which are more representative of drug confinement.

  12. One-Pot Syntheses of Immunostimulatory Glycolipids

    PubMed Central

    Schombs, Matthew; Park, Francine E.; Du, Wenjun; Kulkarni, Suvarn S.; Gervay-Hague, Jacquelyn

    2010-01-01

    Glycolipids containing α-linked galactosyl and glucosyl moieties have been shown to possess unique immunostimulatory activity creating a need for access to diverse and anomerically pure sources of these compounds for immunological studies. To meet this demand, glycosyl iodides were enlisted in the synthesis of these biologically relevant glycoconjugates. In the first generation protocol per-O-benzyl galactosyl iodide was efficiently coupled with activated sphingosine acceptors, but fully functionalized ceramides were found to be unreactive. To overcome this obstacle, per-O-trimethylsilyl glycosyl iodides were investigated and shown to undergo highly efficient coupling with ceramide and glycerol ester acceptors. Contrary to what has been observed with other donors, we detected little difference between the reactivity of glucosyl and galactosyl iodides. The trimethylsilyl protecting groups play a dual role in activating the donor toward nucleophilic attack while at the same time providing transient protection: the silyl groups are readily removed upon methanolysis. All reactions proceeded with complete acceptor regioselectivity, eliminating the need for additional protecting group manipulations, and the desired α -anomers were formed exclusively. This three step one-pot synthetic platform provides rapid access to an important class of immunostimulatory molecules including the first reported synthesis of the glucosyl analog of the bacterial antigen BbGL-II. PMID:20387787

  13. Swelling of Bicontinuous Cubic Phases in Guerbet Glycolipid: Effects of Additives.

    PubMed

    Salim, Malinda; Wan Iskandar, Wan Farah Nasuha; Patrick, Melonney; Zahid, N Idayu; Hashim, Rauzah

    2016-06-01

    Inverse bicontinuous cubic phases of lyotropic liquid crystal self-assembly have received much attention in biomedical, biosensing, and nanotechnology applications. An Ia3d bicontinuous cubic based on the gyroid G-surface can be formed by the Guerbet synthetic glucolipid 2-hexyl-decyl-β-d-glucopyranoside (β-Glc-OC6C10) in excess water. The small water channel diameter of this cubic phase could provide nanoscale constraints in encapsulation of large molecules and crystallization of membrane proteins, hence stresses the importance of water channel tuning ability. This work investigates the swelling behavior of lyotropic self-assembly of β-Glc-OC6C10 which could be controlled and modulated by different surfactants as a hydration-modulating agent. Our results demonstrate that addition of nonionic glycolipid octyl-β-d-glucopyranoside (β-Glc-OC8) at 20 and 25 mol % gives the largest attainable cubic water channel diameter of ca. 62 Å, and formation of coacervates which may be attributed to a sponge phase were seen at 20 mol % octyl-β-d-maltopyranoside (β-Mal-OC8). Swelling of the cubic water channel can also be attained in charged surfactant-doped systems dioctyl sodium sulfosuccinate (AOT) and hexadecyltrimethylammonium bromide (CTAB), of which phase transition occurred from cubic to a lamellar phase. Destabilization of the cubic phase to an inverse hexagonal phase was observed when a high amount of charged lecithin (LEC) and stearylamine (SA) was added to the lipid self-assembly. PMID:27183393

  14. CD1 mediated T cell recognition of glycolipids

    PubMed Central

    Zajonc, Dirk M.; Kronenberg, Mitchell

    2007-01-01

    Summary Specialized subsets of T lymphocytes can distinguish the carbohydrate portions of microbial and self-glycolipids when they are presented by proteins in the CD1 family of antigen presenting molecules. Recent immunochemical and structural analyses indicate that the chemical composition of the presented carbohydrate, together with its precise orientation above the CD1 binding groove, determines if a particular T cell is activated. More recently, however, it has been shown that the lipid backbone of the glycolipid, buried inside the CD1 protein, also can have an impact on T cell activation. While glycolipid recognition is a relatively new category of T cell specificity, the powerful combination of microbial antigen discovery and structural biochemistry has provided great insight into the mechanism of carbohydrate recognition. PMID:17951048

  15. The Liganding of Glycolipid Transfer Protein Is Controlled by Glycolipid Acyl Structure

    PubMed Central

    Kanack, Alex T; Lu, Min; Abagyan, Ruben; Brown, Rhoderick E; Patel, Dinshaw J

    2006-01-01

    Glycosphingolipids (GSLs) play major roles in cellular growth and development. Mammalian glycolipid transfer proteins (GLTPs) are potential regulators of cell processes mediated by GSLs and display a unique architecture among lipid binding/transfer proteins. The GLTP fold represents a novel membrane targeting/interaction domain among peripheral proteins. Here we report crystal structures of human GLTP bound to GSLs of diverse acyl chain length, unsaturation, and sugar composition. Structural comparisons show a highly conserved anchoring of galactosyl- and lactosyl-amide headgroups by the GLTP recognition center. By contrast, acyl chain chemical structure and occupancy of the hydrophobic tunnel dictate partitioning between sphingosine-in and newly-observed sphingosine-out ligand-binding modes. The structural insights, combined with computed interaction propensity distributions, suggest a concerted sequence of events mediated by GLTP conformational changes during GSL transfer to and/or from membranes, as well as during GSL presentation and/or transfer to other proteins. PMID:17105344

  16. Controlled release of diclofenac sodium in glycolipid incorporated micro emulsions.

    PubMed

    Premarathne, E P N; Karunaratne, D N; Perera, A D L Chandani

    2016-09-25

    The effect of the glycolipid, hexadecyl-β-d-glucopyranoside, incorporated in microemulsions (ME(1)) towards the enhancement of skin absorption and skin permeation of Diclofenac sodium (DS(2)) was evaluated. A Franz diffusion cell with a piece of pig's ear epidermis indicated that the optimized ME formulation with glycolipid (0.05wt%) exhibited significantly higher permeability than the conventional formulations. The releasing profiles of DS from ME formulations exhibited first order release kinetics resembling a diffusion controlled release model for the first 8h. Incorporating hexadecyl-β-D glucopyranoside in ME formulations shows significant potential as a delivery vehicle in the cosmetics and pharmaceutical industry. PMID:27477103

  17. Acanthamoebae bind to glycolipids of rabbit corneal epithelium.

    PubMed Central

    Panjwani, N; Zhao, Z; Baum, J; Pereira, M; Zaidi, T

    1992-01-01

    By use of a thin-layer chromatogram (TLC) overlay procedure, 35S-labeled acanthamoebae were shown to bind to seven glycolipids of rabbit corneal epithelium. Corneal epithelial cells were grown in culture and were subjected to Folch extraction to isolate a chloroform-rich lower phase containing neutral glycosphingolipids (NGSL) and an aqueous upper phase containing gangliosides, i.e., sialic acid-containing glycolipids. Thin-layer chromatography of the upper phase revealed the presence of 10 ganglioside components. Acanthamoebae were shown to bind to four of these components, referred to as 2, 3, 6, and 7. On TLC plates, ganglioside components 2 and 3 migrated slightly ahead of the glycolipid standard GD1a, component 7 comigrated with standard GM3, and component 6 migrated a little more slowly than GM3. Likewise, of the 10 NGSL known to be present in the lower phase, acanthamoebae bound to components 1, 5, and 6. NGSL components 1, 5, and 6 migrated on TLC plates with relative mobilities similar to those of standards asialo GM1, asialo GM2, and ceramidetrihexoside, respectively. We propose that one or more of the Acanthamoeba-reactive glycolipids of corneal epithelium identified in this study may play a role in the pathogenesis of Acanthamoeba keratitis by mediating the adherence of the parasites to the cornea. Images PMID:1639517

  18. Isolation and screening of glycolipid biosurfactant producers from sugarcane.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Hirose, Naoto; Kitamoto, Dai

    2012-01-01

    Forty-three fungal producers for glycolipid biosurfactants, mannosylerythritol lipids (MELs), were isolated from leaves and smuts of sugarcane plants. These isolates produced MELs with sugarcane juice as nutrient source. The strains were taxonomically categorized into the genera Pseudozyma and Ustilago on the basis of partial sequences of the ribosomal RNA gene. PMID:22972331

  19. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion

    NASA Astrophysics Data System (ADS)

    Schmieg, John; Yang, Guangli; Franck, Richard W.; van Rooijen, Nico; Tsuji, Moriya

    2005-01-01

    It has been shown that dendritic cells (DCs) are able to present glycolipids to natural killer (NK) T cells in vivo. However, the essential role of DCs, as well as the role of other cells in glycolipid presentation, is unknown. Here, we show that DCs are the crucial antigen-presenting cells (APCs) for splenic NK T cells, whereas Kupffer cells are the key APCs for hepatic NK T cells. Both cell types stimulate cytokine production by NK T cells within 2 h of glycolipid administration, but only DCs are involved in the systemic, downstream responses to glycolipid administration. More specifically, CD8+ DCs produce IL-12 in response to glycolipid presentation, which stimulates secondary IFN- production by NK cells in different organs. Different APCs participate in glycolipid presentation to NK T cells in vivo but differ in their involvement in the overall glycolipid response. dendritic cell | Kupffer cell

  20. Current Uses of Vegetable Oil in the Surfactant, Fuel, and Lubrication Industries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New developments in the surfactant, bio-diesel, and lubricant industries are discussed in a review with 46 references on the recent use of vegetable oil for non-food applications. Highlighted in the surfactant section, is the development of a glycerol and vegetable oil based surfactant which disp...

  1. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  2. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation. PMID:15248431

  3. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  4. Synthesis of glycoaminooxy acid and N-oxyamide-linked glycolipids.

    PubMed

    Chen, N; Xie, J

    2016-01-21

    Aminooxyl sugar derivatives are versatile building blocks for the generation of various glycoconjugates with interesting bioactivities. We report herein a synthetic method for the preparation of orthogonally protected glycoaminooxy acid from methyl α-d-glycopyranoside in 7 steps. The key steps involve the selective protection, O-alkylation and Mitsunobu reaction. Fully deprotected N-oxyamide-linked novel glycolipids can be easily generated from the glycoaminooxy ester or from the 2-hydroxy free sugar in 5 or 6 steps. PMID:26646087

  5. Peroxisomes contribute to biosynthesis of extracellular glycolipids in fungi.

    PubMed

    Freitag, Johannes; Ast, Julia; Linne, Uwe; Stehlik, Thorsten; Martorana, Domenica; Bölker, Michael; Sandrock, Björn

    2014-07-01

    Many microorganisms secrete surface-active glycolipids. The basidiomycetous fungus Ustilago maydis produces two different classes of glycolipids, mannosylerythritol lipids (MEL) and ustilagic acids (UAs). Here we report that biosynthesis of MELs is partially localized in peroxisomes and coupled to peroxisomal fatty acid degradation. The acyltransferases, Mac1 and Mac2, which acylate mannosylerythritol with fatty acids of different length, contain a type 1 peroxisomal targeting signal (PTS1). We demonstrate that Mac1 and Mac2 are targeted to peroxisomes, while other enzymes involved in MEL production reside in different compartments. Mis-targeting of Mac1 and Mac2 to the cytosol did not block MEL synthesis but promoted production of MEL species with altered acylation pattern. This is in contrast to peroxisome deficient mutants that produced MELs similar to the wild type. We could show that cytosolic targeting of Mac1 and Mac2 reduces the amount of UA presumably due to competition for overlapping substrates. Interestingly, hydroxylated fatty acids characteristic for UAs appear in MELs corroborating cross-talk between both biosynthesis pathways. Therefore, peroxisomal localization of MEL biosynthesis is not only prerequisite for generation of the natural spectrum of MELs, but also facilitates simultaneous assembly of different glycolipids in a single cell. PMID:24835306

  6. Glycolipids from a colloid chemical point of view.

    PubMed

    Thiesen, P H; Rosenfeld, H; Konidala, P; Garamus, V M; He, L; Prange, A; Niemeyer, B

    2006-06-25

    Glycolipids are a group of compounds with a broad range of applications. Two types of glycolipids (alkylpolyglycosides and gangliosides) were examined with regard to their physicochemical properties. Despite their structural differences, they have in common that they are amphiphilic molecules and able to aggregate to form monolayers, bilayers, micelles, lyothropic mesophases or vesicles. The structures of glycolipid micelles were investigated by different experimental techniques in addition to molecular dynamic simulations. The knowledge of the physicochemical properties of gangliosides enables a better understanding of their biological functions. Structural features were obtained for the monosialogangliosides GM1, GM2 and GT1b from bovine brain by means of mass spectrometry. Further the aggregation behaviour was determined by small-angle neutron and dynamic light scattering experiments. Interaction studies of these compounds were carried out by means of surface plasmon resonance using gangliosides incorporated liposomes. They were used as model membranes that interact with the lectins WGA, RCA and HPA. The interaction of lectins immobilized to a modified silicon surface was investigated by in-situ ellipsometry. PMID:16707183

  7. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01.

    PubMed

    Abdul Salam, Jaseetha; Das, Nilanjana

    2013-11-28

    Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindanecontaminated environments. PMID:23928846

  8. A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants.

    PubMed

    Fukuoka, Tokuma; Kawamura, Mayo; Morita, Tomotake; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2008-11-24

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties, but also versatile biochemical actions. During a survey of new MEL producers, we found that a basidiomycetous yeast, Pseudozyma crassa, extracellularly produces three glycolipids. When glucose and oleic acid were used as the carbon source, the total amount of glycolipids reached approximately 4.6g/L in the culture medium. The structures of these glycolipids were similar to those of well-known MEL-A, -B, and -C, respectively. Very interestingly, in all the present glycolipids, the configuration of the erythritol moiety was entirely opposite to that of conventional MELs. The present glycolipids were identified to have the carbohydrate structure of 4-O-beta-D-mannopyranosyl-(2R,3S)-erythritol, stereochemically different from 4-O-beta-D-mannopyranosyl-(2S,3R)-erythritol of conventional MELs. Furthermore, these new glycolipids possessed both short-chain acids (C(2) or C(4)) and long-chain acids (C(14), C(16), or C(18)) on the mannose moiety. The major component of the present glycolipids clearly showed different interfacial and biological properties, compared to conventional MELs comprising two medium-chain acids on the mannose moiety. Accordingly, the novel MEL diastereomers produced by P. crassa should provide us with different glycolipid functions, and facilitate a broad range of applications of MELs. PMID:18805521

  9. Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria.

    PubMed

    Burbaud, Sophie; Laval, Françoise; Lemassu, Anne; Daffé, Mamadou; Guilhot, Christophe; Chalut, Christian

    2016-02-18

    Mycobacteria synthesize a variety of structurally related glycolipids with major biological functions. Common themes have emerged for the biosynthesis of these glycolipids, including several families of proteins. Genes encoding these proteins are usually clustered on bacterial chromosomal islets dedicated to the synthesis of one glycolipid family. Here, we investigated the function of a cluster of five genes widely distributed across non-tuberculous mycobacteria. Using defined mutant analysis and in-depth structural characterization of glycolipids from wild-type or mutant strains of Mycobacterium smegmatis and Mycobacterium abscessus, we established that they are involved in the formation of trehalose polyphleates (TPP), a family of compounds originally described in Mycobacterium phlei. Comparative genomics and lipid analysis of strains distributed along the mycobacterial phylogenetic tree revealed that TPP is synthesized by a large number of non-tuberculous mycobacteria. This work unravels a novel glycolipid biosynthetic pathway in mycobacteria and extends the spectrum of bacteria that produce TPP. PMID:27028886

  10. Activation of human neutrophils by mycobacterial phenolic glycolipids

    PubMed Central

    Fäldt, J; Dahlgren, C; Karlsson, A; Ahmed, A M S; Minnikin, D E; Ridell, M

    1999-01-01

    The interaction between mycobacterial phenolic glycolipids (PGLs) and phagocytes was studied. Human neutrophils were allowed to interact with each of four purified mycobacterial PGLs and the neutrophil production of reactive oxygen metabolites was followed kinetically by luminol-/isoluminol-amplified chemiluminescence. The PGLs from Mycobacterium tuberculosis and Mycobacterium kansasii, respectively, were shown to stimulate the production of oxygen metabolites, while PGLs from Mycobacterium marinum and Mycobacterium bovis BCG, respectively, were unable to induce an oxidative response. Periodate treatment of the M. tuberculosis PGL decreased the production of oxygen radicals, showing the importance of the PGL carbohydrate moiety for the interaction. The activation, however, could not be inhibited by rhamnose or fucose, indicating a complex interaction which probably involves more than one saccharide unit. This is in line with the fact that the activating PGLs from M. tuberculosis and M. kansasii contain tri- and tetrasaccharides, respectively, while the nonactivating PGLs from M. marinum and M. bovis BCG each contain a monosaccharide. The complement receptor 3 (CR3) has earlier been shown to be of importance for the phagocyte binding of mycobacteria, but did not appear to be involved in the activation of neutrophils by PGLs. The subcellular localization of the reactive oxygen metabolites formed was related to the way in which the glycolipids were presented to the cells. PMID:10540187

  11. Tridimensional ultrastructure and glycolipid pattern studies of Trypanosoma dionisii.

    PubMed

    Oliveira, Miriam Pires de Castro; Ramos, Thiago Cesar Prata; Pinheiro, Adriana Maria V N; Bertini, Silvio; Takahashi, Helio Kiyoshi; Straus, Anita Hilda; Haapalainen, Edna Freymuller

    2013-12-01

    Trypanosoma (Schizotrypanum) dionisii is a non-pathogenic bat trypanosome closely related to Trypanosoma cruzi, the etiological agent of Chaga's disease. Both kinetoplastids present similar morphological stages and are able to infect mammalian cells in culture. In the present study we examined 3D ultrastructure aspects of the two species by serial sectioning epimastigote and trypomastigote forms, and identified common carbohydrate epitopes expressed in T. dionisii, T. cruzi and Leishmania major. A major difference in 3D morphology was that T. dionisii epimastigote forms present larger multivesicular structures, restricted to the parasite posterior region. These structures could be related to T. cruzi reservosomes and are also rich in cruzipain, the major cysteine-proteinase of T. cruzi. We analyzed the reactivity of two monoclonal antibodies: MEST-1 directed to galactofuranose residues of glycolipids purified from Paracoccidioides brasiliensis, and BST-1 directed to glycolipids purified from T. cruzi epimastigotes. Both antibodies were reactive with T. dionisii epimastigotes by indirect immunofluorescense, but we noted differences in the location and intensity of the epitopes, when compared to T. cruzi. In summary, despite similar features in cellular structure and life cycle of T. dionisii and T. cruzi, we observed a unique morphological characteristic in T. dionisii that deserves to be explored. PMID:23933185

  12. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  13. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  14. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry.

    PubMed

    Mnif, Inès; Ghribi, Dhouha

    2016-10-01

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Rhamnolipids, trehalolipids, mannosylerythritol lipids and cellobiose lipids are among the most popular glycolipids. They have received much practical attention as biopesticides for controlling plant diseases and protecting stored products. As a result of their antifungal activity towards phytopathogenic fungi and larvicidal and mosquitocidal potencies, glycolipid biosurfactants permit the preservation of plants and plant crops from pest invasion. Also, as a result of their emulsifying and antibacterial activities, glycolipids have great potential as food additives and food preservatives. Furthermore, the valorization of food byproducts via the production of glycolipid biosurfactant has received much attention because it permits the bioconversion of byproducts on valuable compounds and decreases the cost of production. Generally, the use of glycolipids in many fields requires their retention from fermentation media. Accordingly, different strategies have been developed to extract and purify glycolipids. © 2016 Society of Chemical Industry. PMID:27098847

  16. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms.

    PubMed

    Hori, Koichi; Nobusawa, Takashi; Watanabe, Tei; Madoka, Yuka; Suzuki, Hideyuki; Shibata, Daisuke; Shimojima, Mie; Ohta, Hiroyuki

    2016-09-01

    In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27108062

  17. Characterization of glycolipid galactosyltransferases from embryonic chicken brain

    SciTech Connect

    Kyle, J.W.

    1985-01-01

    Glycolipid galactosyltransferases (GalT-3 and GalT-4) were solubilized from a membrane fraction isolated from embryonic chicken brain. The profiles of specific activity and total units per brain of GalT-3 and GalT-4 varied with embryonic age. GalT-4 had the highest specific activity at 9 days of embryonic development and showed a steady decrease until hatching. GalT-3 showed a gradual increase in specific activity. Both GalT3 and GalT-4 showed a steady increase in total units per brain throughout embryonic development. The solubilized enzymes could be separated using gel filtration, ion exchange chromatography or affinity chromatography on ..cap alpha..-lactalbumin-agarose. Data obtained in the study imply that GalT-4 is involved in both glycoprotein and glycolipid biosynthesis. Glycosphingolipid products from GalT-3 and GalT-4 catalyzed reactions labeled with (/sup 14/C)galactose comigrated with authentic GMI and nLcOse/sub 4/Cer, when examined by thin layer chromatography and autoradiography. Studies with galactosidases revealed that all of the enzyme products formed by GalT-3 and GalT-4 contained a (/sup 14/C)-galactose in a ..beta.. anomeric linkage. Periodate oxidation studies of Gal-(/sup 14/C)GlcNAc, formed by purified GalT-4 using (/sup 14/C)GlcNAc as the acceptor, demonstrated that approximately 70% of the linkage formed was Gal..beta..1-4GlcNAc and 30% was Gal..beta..1-3GlcNAc. Studies on the susceptibility of (/sup 14/C)Gal-GlcNAc to base catalyzed ..beta..-elimination also suggested the presence of approximately 30% Gal..beta..1-3GlcNAc.

  18. Genome and Transcriptome Analysis of the Basidiomycetous Yeast Pseudozyma antarctica Producing Extracellular Glycolipids, Mannosylerythritol Lipids

    PubMed Central

    Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials. PMID:24586250

  19. Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Koike, Hideaki; Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials. PMID:24586250

  20. Triazole-Linked Glycolipids Enhance the Susceptibility of MRSA to β-Lactam Antibiotics

    PubMed Central

    2015-01-01

    We show here that a series of triazolyl glycolipid derivatives modularly synthesized by a “click” reaction have the ability to increase the susceptibility of a drug-resistant bacterium to β-lactam antibiotics. We determine that the glycolipids can suppress the minimal inhibitory concentration of a number of ineffective β-lactams, upward of 256-fold, for methicillin-resistant Staphylococuss aureus (MRSA). The mechanism of action has been preliminarily probed and discussed. PMID:26191368

  1. Triazole-Linked Glycolipids Enhance the Susceptibility of MRSA to β-Lactam Antibiotics.

    PubMed

    Hu, Xi-Le; Li, Dan; Shao, Lei; Dong, Xiaojing; He, Xiao-Peng; Chen, Guo-Rong; Chen, Daijie

    2015-07-01

    We show here that a series of triazolyl glycolipid derivatives modularly synthesized by a "click" reaction have the ability to increase the susceptibility of a drug-resistant bacterium to β-lactam antibiotics. We determine that the glycolipids can suppress the minimal inhibitory concentration of a number of ineffective β-lactams, upward of 256-fold, for methicillin-resistant Staphylococuss aureus (MRSA). The mechanism of action has been preliminarily probed and discussed. PMID:26191368

  2. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy

    PubMed Central

    Durrant, L G; Noble, P; Spendlove, I

    2012-01-01

    Research into aberrant glycosylation and over-expression of glycolipids on the surface of the majority of cancers, coupled with a knowledge of glycolipids as functional molecules involved in a number of cellular physiological pathways, has provided a novel area of targets for cancer immunotherapy. This has resulted in the development of a number of vaccines and monoclonal antibodies that are showing promising results in recent clinical trials. PMID:22235996

  3. Glycosylation of Glycolipids in Cancer: Basis for Development of Novel Therapeutic Approaches

    PubMed Central

    Daniotti, Jose L.; Vilcaes, Aldo A.; Torres Demichelis, Vanina; Ruggiero, Fernando M.; Rodriguez-Walker, Macarena

    2013-01-01

    Altered networks of gene regulation underlie many pathologies, including cancer. There are several proteins in cancer cells that are turned either on or off, which dramatically alters the metabolism and the overall activity of the cell, with the complex machinery of enzymes involved in the metabolism of glycolipids not being an exception. The aberrant glycosylation of glycolipids on the surface of the majority of cancer cells, associated with increasing evidence about the functional role of these molecules in a number of cellular physiological pathways, has received considerable attention as a convenient immunotherapeutic target for cancer treatment. This has resulted in the development of a substantial number of passive and active immunotherapies, which have shown promising results in clinical trials. More recently, antibodies to glycolipids have also emerged as an attractive tool for the targeted delivery of cytotoxic agents, thereby providing a rationale for future therapeutic interventions in cancer. This review first summarizes the cellular and molecular bases involved in the metabolic pathway and expression of glycolipids, both in normal and tumor cells, paying particular attention to sialosylated glycolipids (gangliosides). The current strategies in the battle against cancer in which glycolipids are key players are then described. PMID:24392350

  4. Novel Glycolipids Synthesized Using Plant Essential Oils and Their Application in Quorum Sensing Inhibition and as Antibiofilm Agents

    PubMed Central

    Prabhune, Asmita

    2014-01-01

    Essential oils (EOs) form an important part of traditional medicine so their anti-microbial and, in the recent past, antiquorum sensing activity has been well studied. However it is likely that due to their hydrophobic nature and reduced solubility in aqueous environments full potential of their activity cannot be realized. hence it is only rational to formulate a process to make these molecules more polar in nature. The present paper reports synthesis of sophorolipids using 12 different essential oils as substrates, thus providing surfactant-like properties to these EOs. The synthesis protocol makes the use of Candida bombicola ATCC 22214 as producer organism. The production process required 7 days of incubation at 28°C and 180 rpm. Preliminary characterization of the synthesized essential oil sophorolipids (EOSLs) was performed using thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Additionally, essential oils that were incapable of mediating quorum sensing inhibition (QSI) on their own became potent quorum sensing inhibitors upon conversion into their corresponding EOSLs. Antibiofilm potential of these EOSLs was also demonstrated using V. cholerae as test organism. Use of essential oils as substrates for glycolipid synthesis has not been attempted previously, and hence this is the first report. PMID:24558341

  5. Enhanced Selectivity for Sulfatide by Engineered Human Glycolipid Transfer Protein

    PubMed Central

    Samygina, Valeria R.; Popov, Alexander N.; Cabo-Bilbao, Aintzane; Ochoa-Lizarralde, Borja; Goni-de-Cerio, Felipe; Zhai, Xiuhong; Molotkovsky, Julian G.; Patel, Dinshaw J.; Brown, Rhoderick E.; Malinina, Lucy

    2011-01-01

    SUMMARY Human glycolipid transfer protein (GLTP) fold represents a novel structural motif for lipid binding/transfer and reversible membrane translocation. GLTPs transfer glycosphingolipids (GSLs) which are key regulators of cell growth, division, surface adhesion, and neurodevelopment. Herein, we report structure-guided engineering of the lipid binding features of GLTP. New crystal structures of wild-type GLTP and two mutants (D48V and A47D||D48V), each containing bound N-nervonoyl-sulfatide, reveal the molecular basis for selective anchoring of sulfatide (3-O-sulfo-galactosylceramide) by D48V-GLTP. Directed point mutations of ‘portal entrance’ residues, A47 and D48, reversibly regulate sphingosine access to the hydrophobic pocket via a mechanism that could involve homo-dimerization. ‘Door-opening’ conformational changes by phenylalanines within the hydrophobic pocket are revealed during lipid encapsulation by new crystal structures of bona fide apo-GLTP and GLTP complexed with N-oleoyl-glucosylceramide. The development of ‘engineered GLTPs’ with enhanced specificity for select GSLs provides a potential new therapeutic approach for targeting GSL-mediated pathologies. PMID:22078563

  6. Characterization of glycolipids synthesized in an identified neuron of Aplysia californica

    SciTech Connect

    Sherbany, A.A.; Ambron, R.T.; Schwartz, J.H.

    1984-07-01

    Because radioactive precursors can be injected directly into the cell body or axon of R2, a giant, identified neuron of the Aplysia abdominal ganglion, it was possible to show that glycolipid is synthesized in the cell body, inserted into membranes along with glycoprotein, and then exported into the axon within organelles that are moved by fast axonal transport. After intrasomatic injection of N-(/sup 3/H)-acetyl-D-galactosamine, five major /sup 3/H-glycolipids were identified using thin layer polysilicic acid glass fiber chromatography. At least two of the lipids are negatively charged. Analysis of /sup 32/P-labeled lipid from the abdominal ganglion revealed the presence of 2-aminoethylphosphonate, indicating that these polar substances are sphingophosphonoglycolipids. The major /sup 3/H-glycolipids synthesized in R2 are similar to a family of phospholipids isolated from the skin of A. kurodai. Since sialic acid is absent in Aplysia as in other invertebrates, these polar glycolipids may function like gangliosides in vertebrates. The polar /sup 3/H-glycolipids are synthesized and incorporated into intracytoplasmic membranes solely in the cell body. Direct injection of the labeled sugar into the axon revealed no local synthesis or exchange of glycolipid. Moreover, there was no indication for transfer from glial cells into axoplasm. Although the incorporation of N-(/sup 3/H)-acetyl-D-galactosamine into glycolipid is not affected by anisomycin, an effective inhibitor of protein synthesis, the export into the axon of membranes containing the newly synthesized lipid is completely blocked by the drug.

  7. Towards unravelling surfactant transport

    NASA Astrophysics Data System (ADS)

    Sellier, Mathieu; Panda, Satyananda

    2015-11-01

    Surfactant transport arises in many natural or industrial settings. Examples include lipid tear layers in the eye, pulmonary surfactant replacement therapy, or industrial coating flows. Flows driven by the surface tension gradient which arises as a consequence of surfactant concentration inhomogeneity, also known as Marangoni-driven flows, have attracted the attention of fluid dynamists for several decades and has led to the development of sophisticated models and the undeniable advancement of the understanding of such flows. Yet, experimental confirmation of these models has been hampered by the difficulty in reliably and accurately measuring the surfactant concentration and its temporal evolution. In this contribution, we propose a methodology which may help shed some light on surfactant transport at the surface of thin liquid films. The surface stress induced by surfactant concentration induces a flow at the free surface which is visible and measurable. In the context of thin film flows for which the lubrication approximation hold, we demonstrate how the knowledge of this free surface flow field provides sufficient information to reconstruct the surfactant tension field. From the surface tension and an assumed equation of state, the local surfactant concentration can also be calculated and other transport parameters such as the surfactant surface diffusivity indirectly inferred. In this contribution, the proposed methodology is tested with synthetic data generated by the forward solution of the governing partial differential equations in order to illustrate the feasibility of the algorithm and highlight numerical challenges.

  8. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions surfactant dysfunction surfactant dysfunction Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Surfactant dysfunction is a lung disorder that causes breathing ...

  9. Potential commercial applications of microbial surfactants.

    PubMed

    Banat, I M; Makkar, R S; Cameotra, S S

    2000-05-01

    Surfactants are surface-active compounds capable of reducing surface and interfacial tension at the interfaces between liquids, solids and gases, thereby allowing them to mix or disperse readily as emulsions in water or other liquids. The enormous market demand for surfactants is currently met by numerous synthetic, mainly petroleum-based, chemical surfactants. These compounds are usually toxic to the environment and non-biodegradable. They may bio-accumulate and their production, processes and by-products can be environmentally hazardous. Tightening environmental regulations and increasing awareness for the need to protect the ecosystem have effectively resulted in an increasing interest in biosurfactants as possible alternatives to chemical surfactants. Biosurfactants are amphiphilic compounds of microbial origin with considerable potential in commercial applications within various industries. They have advantages over their chemical counterparts in biodegradability and effectiveness at extreme temperature or pH and in having lower toxicity. Biosurfactants are beginning to acquire a status as potential performance-effective molecules in various fields. At present biosurfactants are mainly used in studies on enhanced oil recovery and hydrocarbon bioremediation. The solubilization and emulsification of toxic chemicals by biosurfactants have also been reported. Biosurfactants also have potential applications in agriculture, cosmetics, pharmaceuticals, detergents, personal care products, food processing, textile manufacturing, laundry supplies, metal treatment and processing, pulp and paper processing and paint industries. Their uses and potential commercial applications in these fields are reviewed. PMID:10855707

  10. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents

    PubMed Central

    Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A

    2016-01-01

    Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed. PMID:27195112

  11. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  12. SURFACTANTS IN LUBRICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  13. Advances in reactive surfactants.

    PubMed

    Guyot, A

    2004-05-20

    The study of reactive surfactants and their applications in the synthesis of latexes for waterborne coatings has been recently boosted by two successive European programmes, involving all together eight academic and five industrial laboratories. The most significant results were obtained using surfactants derived from maleic and related anhydrides, or both nonionic and anionic reactive polymeric surfactants. Such surfactants are able to improve the stability of styrenic and acrylic latexes vs. various constraints, such as electrolyte addition, freeze-thawing tests or extraction with alcohol or acetone. The properties of films used in waterborne coatings are also improved in case of water exposure (less water uptake, dimensional stability), as well as improved weatherability, and blocking properties. Formulations for woodstain varnishes, metal coating of printing inks, based on the use of simple polymerizable surfactants, are now in the market. PMID:15072924

  14. Glycolipids produced by Rouxiella sp. DSM 100043 and isolation of the biosurfactants via foam-fractionation.

    PubMed

    Kügler, Johannes H; Muhle-Goll, Claudia; Hansen, Silla H; Völp, Annika R; Kirschhöfer, Frank; Kühl, Boris; Brenner-Weiss, Gerald; Luy, Burkhard; Syldatk, Christoph; Hausmann, Rudolf

    2015-12-01

    Microorganisms produce a great variety of secondary metabolites that feature surface active and bioactive properties. Those possessing an amphiphilc molecular structure are also termed biosurfactant and are of great interest due to their often unique properties. Rouxiella sp. DSM 100043 is a gram negative enterobacter isolated from peat-bog soil and described as a new biosurfactant producing species in this study. Rouxiella sp. produces glycolipids, biosurfactants with a carbohydrate moiety in its structure. This study characterizes the composition of glycolipids with different hydrophobicities that have been produced during cultivation in a bioreactor and been extracted and purified from separated foam. Using two dimensional nuclear magnetic resonance spectroscopy, the hydrophilic moieties are elucidated as glucose with various acylation sites and as talose within the most polar glycolipids. The presence of 3' hydroxy lauroleic acid as well as myristic and myristoleic acid has been detected. PMID:26698314

  15. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids. PMID:17417694

  16. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells

    PubMed Central

    Venkataswamy, Manjunatha M.; Porcelli, Steven A.

    2009-01-01

    In spite of their relatively limited antigen receptor repertoire, CD1d-restricted NKT cells recognize a surprisingly diverse range of lipid and glycolipid antigens. Recent studies of natural and synthetic CD1d presented antigens provide an increasingly detailed picture of how the specific structural features of these lipids and glycolipids influence their ability to be presented to NKT cells and stimulate their diverse immunologic functions. Particularly for synthetic analogues of α-galactosylceramides which have been the focus of intense recent investigation, it is becoming clear that the design of glycolipid antigens with the ability to precisely control the specific immunologic activities of NKT cells is likely to be feasible. The emerging details of the mechanisms underlying the structure-activity relationship of NKT cell antigens will assist greatly in the design and production of immunomodulatory agents for the precise manipulation of NKT cells and the many other components of the immune system that they influence. PMID:19945296

  17. Phenolic glycolipids of Mycobacterium bovis: new structures and synthesis of a corresponding seroreactive neoglycoprotein.

    PubMed Central

    Chatterjee, D; Bozic, C M; Knisley, C; Cho, S N; Brennan, P J

    1989-01-01

    The glycolipid that characterizes the majority of isolates of Mycobacterium bovis and that has come to be known as M. bovis-identifying lipid is the phenolic glycolipid mycoside B described in the literature by others. However, when mycoside B obtained from M. bovis BCG, field isolates, and infected tissues was examined in detail, it was shown to be different from that described in the literature in some important respects. In particular, the glycosyl substituent is 2-O-methyl-alpha-L-rhamnopyranose rather than 2-O-methyl-beta-D-rhamnopyranose. With this information, a seroreactive neoglycoprotein (neoantigen) containing the 2-O-methyl-alpha-L-rhamnopyranosyl substituent suitable for the serodiagnosis of bovine tuberculosis was synthesized. M. bovis also contains other minor seroreactive phenolic glycolipids, one of which is a deacylated form of mycoside B and another of which contains an alpha-L-rhamnopyranosyl unit rather than 2-O-methyl-alpha-L-rhamnopyranose. Images PMID:2643563

  18. Induction of inflammatory mediator release (serotonin and 12-hydroxyeicosatetraenoic acid) from human platelets by Pseudomonas aeruginosa glycolipid.

    PubMed Central

    König, B; Bergmann, U; König, W

    1992-01-01

    Purified glycolipid from Pseudomonas aeruginosa induced the generation of significant amounts of 12-hydroxyeicosatetraenoic acid (12-HETE) and serotonin release from human platelets. The release of serotonin was first observed 2 min after addition of the glycolipid and increased with time. Significant serotonin release was obtained at glycolipid concentrations above 5 micrograms/ml and increased dose-dependently up to 100% at glycolipid concentrations above 40 micrograms/ml. Glycolipid induced 12-HETE in a time- and dose-dependent manner. 12-HETE formation was first measured after 10 min of incubation and increased with time. Optimal 12-HETE formation was obtained at a glycolipid concentration of 50 micrograms/ml; higher concentrations of glycolipid led to a decrease in 12-HETE formation, indicating a cytotoxic effect. Stimulation of platelets with glycolipid (12-HETE formation and serotonin release) was accompanied by calcium influx, translocation of protein kinase C, activation of guanylylimidodiphosphate binding, and increased GTPase activity in platelet membranes within the same concentration range. PMID:1639485

  19. Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Yamamoto, Shuhei; Kitagawa, Masaru; Sogabe, Atsushi; Kitamoto, Dai

    2009-07-01

    The development of a novel glycolipid biosurfactant was undertaken using the high-level producers of mannosylerythritol lipids (MELs) such as Pseudozyma parantarctica, Pseudozyma antarctica, and Pseudozyma rugulosa. Besides the conventional MELs (MEL-A, MEL-B, and MEL-C), these yeasts produced an unknown glycolipid when they were cultivated in a medium containing 4% (w/v) olive oil and 4% (w/w) mannitol as the carbon source. The unknown glycolipid extracted from the culture medium of P. parantarctica JCM 11752(T) displayed the spot with lower mobility than that of known MELs on TLC and provided mainly two peaks identical to mannose and mannitol on high-performance liquid chromatography after acid hydrolysis. Based on structural analysis by (1)H and (13)C nuclear magnetic resonance, the novel glycolipid was composed of mannose and mannitol as the hydrophilic sugar moiety and was identified as mannosylmannitol lipid (MML). Of the strains tested, P. parantarctica JCM 11752(T) gave the best yield of MML (18.2 g/L), which comprised approximately 35% of all glycolipids produced. We further investigated the interfacial properties of the MML, considering the unique hydrophilic structure. The observed critical micelle concentration (CMC) and the surface tension at CMC of the MML were 2.6 x 10(-6) M and 24.2 mN/m, respectively. In addition, on a water-penetration scan, the MML efficiently formed not only the lamella phase (Lalpha) but also the myelins at a wide range of concentrations, indicating its excellent self-assembling properties and high hydrophilicity. The present glycolipid should thus facilitate the application of biosurfactants as new functional materials. PMID:19296097

  20. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications

    PubMed Central

    Garidel, Patrick; Kaconis, Yani; Heinbockel, Lena; Wulf, Matthias; Gerber, Sven; Munk, Ariane; Vill, Volkmar; Brandenburg, Klaus

    2015-01-01

    Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance. PMID:26464591

  1. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  2. Structural Determination and Tryptophan Fluorescence of Heterokaryon Incompatibility C2 Protein (HET-C2), a Fungal Glycolipid Transfer Protein (GLTP), Provide Novel Insights into Glycolipid Specificity and Membrane Interaction by the GLTP Fold

    SciTech Connect

    Kenoth, Roopa; Simanshu, Dhirendra K.; Kamlekar, Ravi Kanth; Pike, Helen M.; Molotkovsky, Julian G.; Benson, Linda M.; Bergen, III, H. Robert; Prendergast, Franklyn G.; Malinina, Lucy; Venyaminov, Sergei Y.; Patel, Dinshaw J.; Brown, Rhoderick E.

    2010-06-21

    HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 {angstrom}) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp{sup 66}, Asn{sup 70}, Lys{sup 73}, Trp{sup 109}, and His{sup 147}) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by {alpha}-helices and a cooperative thermal unfolding transition of 49 C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at {approx}355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum ({approx}6 nm) permitting determination of binding affinities. The unique positioning of Trp{sup 208} at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi.

  3. Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Sakai, Hideki; Kitamoto, Dai

    2007-09-01

    Mannosylerythritol lipids (MELs), which are glycolipid biosurfactants produced by Pseudozyma yeasts, show not only excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from glucose as the sole carbon source, P. antarctica was found to produce unknown glycolipids more hydrophilic than conventional "di-acylated MELs," which have two fatty acyl esters on the mannose moiety. Based on a detailed characterization, the most hydrophilic one was identified as 4-O-(3'-O-alka(e)noyl-beta-D: -mannopyranosyl)-D: -erythritol namely, "mono-acylated MEL." The mono-acylated MEL reduced the surface tension of water to 33.8 mN/m at a critical micelle concentration (CMC) of 3.6 x 10(-4) M, and its hydrophilic-lipophilic balance was tentatively calculated to be 12.15. The observed CMC was 100-fold higher than that of the MELs hitherto reported. Interestingly, of the yeast strains of the genus Pseudozyma, only P. antarctica and P. parantarctica gave the mono-acylated MEL from glucose, despite a great diversity of di-acylated MEL producers in the genus. These strains produced MELs including the mono-acylated one at a rate of 20-25%. From these results, the new MEL is likely to have great potential for use in oil-in-water-type emulsifiers and washing detergents because of its higher water solubility compared to conventional MELs and will thus contribute to facilitating a broad range of applications for the environmentally advanced surfactants. PMID:17607573

  4. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  5. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. PMID:26869216

  6. Surfactant phospholipid metabolism.

    PubMed

    Agassandian, Marianna; Mallampalli, Rama K

    2013-03-01

    Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23026158

  7. Waterflooding employing amphoteric surfactants

    SciTech Connect

    Stournas, S.

    1980-08-05

    Process for the recovery of oil from a subterranean oil reservoir involving the injection into the reservoir of an aqueous solution of an amphoteric surfactant having an inner quaternary ammonium group linked to a terminal sulfonate or carboxylate group is described. The amphoteric surfactants may be employed in relatively low concentrations within the range of 0.0005 to 0.1% by weight and injected in a slug of at least 0.5 pv. The apparatus may be applied in situations in which the reservoir waters and/or the waters employed in formulating the surfactant solution contain relatively high amounts of divalent metal ions. Specifically described amphoteric surfactants include hydrocarby dialkyl or dihydroxyalkyl ammonium alkane sulfonates and carboxylates in which the hydrocarbyl group contains from 8 to 26 carbon atoms. 29 claims.

  8. Rhamnolipids--next generation surfactants?

    PubMed

    Müller, Markus Michael; Kügler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hörmann, Barbara; Pöhnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2012-12-31

    The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of renewable resources for chemical synthesis of already established product classes, (2) the replacement of chemical synthesis of already established product classes by new biotechnological processes based on renewable resources, and (3) the biotechnological production of new molecules with new features or better performances than already established comparable chemically synthesized products. All three approaches are currently being pursued for surfactant production. Biosurfactants are a very promising and interesting substance class because they are based on renewable resources, sustainable, and biologically degradable. Alkyl polyglycosides are chemically synthesized biosurfactants established on the surfactant market. The first microbiological biosurfactants on the market were sophorolipids. Of all currently known biosurfactants, rhamnolipids have the highest potential for becoming the next generation of biosurfactants introduced on the market. Although the metabolic pathways and genetic regulation of biosynthesis are known qualitatively, the quantitative understanding relevant for bioreactor cultivation is still missing. Additionally, high product titers have been exclusively described with vegetable oil as sole carbon source in combination with Pseudomonas aeruginosa strains. Competitive productivity is still out of reach for heterologous hosts or non-pathogenic natural producer strains. Thus, on the one hand there is a need to gain a deeper understanding of the regulation of rhamnolipid production on process and cellular level during bioreactor cultivations. On the other hand, there is a need for metabolizable renewable substrates, which do not compete with food and feed. A sustainable bioeconomy approach should

  9. Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80

    PubMed Central

    Wang, Cindy; Mahrous, Engy A.; Lee, Richard E.; Vestling, Martha M.; Takayama, Kuni

    2011-01-01

    The addition of polyoxyethylene sorbitan monooleate (Tween 80) to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria) converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, 1H-NMR, and 13C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C36:2-corynomycolate-6′-polyoxyethylenate and series-2B glycolipid is trehalose 6-C36:2-corynomycolate-6′-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity. PMID:21490808

  10. Iminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases—Not Glycolipid Processing Enzymes

    PubMed Central

    Sayce, Andrew C.; Alonzi, Dominic S.; Killingbeck, Sarah S.; Tyrrell, Beatrice E.; Hill, Michelle L.; Caputo, Alessandro T.; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J. L.; Beatty, P. Robert; Kato, Atsushi; Harris, Eva; Dwek, Raymond A.; Miller, Joanna L.; Zitzmann, Nicole

    2016-01-01

    It has long been thought that iminosugar antiviral activity is a function of inhibition of endoplasmic reticulum-resident α-glucosidases, and on this basis, many iminosugars have been investigated as therapeutic agents for treatment of infection by a diverse spectrum of viruses, including dengue virus (DENV). However, iminosugars are glycomimetics possessing a nitrogen atom in place of the endocyclic oxygen atom, and the ubiquity of glycans in host metabolism suggests that multiple pathways can be targeted via iminosugar treatment. Successful treatment of patients with glycolipid processing defects using iminosugars highlights the clinical exploitation of iminosugar inhibition of enzymes other than ER α-glucosidases. Evidence correlating antiviral activity with successful inhibition of ER glucosidases together with the exclusion of alternative mechanisms of action of iminosugars in the context of DENV infection is limited. Celgosivir, a bicyclic iminosugar evaluated in phase Ib clinical trials as a therapeutic for the treatment of DENV infection, was confirmed to be antiviral in a lethal mouse model of antibody-enhanced DENV infection. In this study we provide the first evidence of the antiviral activity of celgosivir in primary human macrophages in vitro, in which it inhibits DENV secretion with an EC50 of 5 μM. We further demonstrate that monocyclic glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. By comparison to bicyclic glucose-mimicking iminosugars which inhibit glycoprotein processing but do not inhibit glycolipid processing and galactose-mimicking iminosugars which do not inhibit glycoprotein processing but do inhibit glycolipid processing, we demonstrate that inhibition of endoplasmic reticulum-resident α-glucosidases, not glycolipid processing, is responsible for iminosugar antiviral activity against DENV. Our data suggest that

  11. Amphitropic liquid crystal phases from polyhydroxy sugar surfactants: Fundamental studies

    NASA Astrophysics Data System (ADS)

    Abou Zied, Osama K.; Hashim, Rauzah; Timimi, B. A.

    2015-03-01

    The self-assembly phenomena on a special class of poly-hydroxy sugar surfactant have been studied extensively. This class of material is classified as amphitropic liquid crystals since they exhibit both thermotropic and lyotropic liquid crystalline properties. Hence the potential applications of these non-ionic surfactants are more versatile than those from the conventional lyotropic liquid crystals including those from thermotropic phases, but the latters are yet to be realized. Unfortunately, due to the lack of interest (or even awareness), fundamental studies in thermotropic glycolipids are scanty to support application development, and any tangible progress is often mired by the complexity of the sugar stereochemistry. However, some applications may be pursued from these materials by taking the advantage of the sugar chirality and the tilted structure of the lipid organization which implies ferroelectric behavior. Here, we present our studies on the stereochemical diversity of the sugar units in glycosides that form the thermotropic/lyotropic phases. The structure to property relationship compares different chain designs and other popular polyhydroxy compounds, such as monooleins and alkylpolyglucosides. Different structural properties of these glycosides are discussed with respect to their self-assembly organization and potential applications, such as delivery systems and membrane mimetic study.

  12. Genetic disorders of surfactant homeostasis.

    PubMed

    Whitsett, Jeffrey A

    2006-01-01

    Pulmonary surfactant reduces surface tension at the air-liquid interface in the alveolus, thereby maintaining lung volumes during the respiratory cycle. In premature newborn infants, the lack of surfactant causes atelectasis and respiratory failure, characteristic of respiratory of distress syndrome. Surfactant is comprised of lipids and associated proteins that are required for surfactant function. Surfactant proteins B and C and a lamellar body associated transport protein, ABCA3 play critical roles in surfactant synthesis and function. Mutations in the genes encoding these proteins cause lethal respiratory distress in newborn infants. This review discusses the clinical and pathological findings associated with these inherited disorders of alveolar homeostasis. PMID:16798578

  13. Genome Sequence of the Basidiomycetous Yeast Pseudozyma antarctica T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids.

    PubMed

    Morita, Tomotake; Koike, Hideaki; Koyama, Yoshinori; Hagiwara, Hiroko; Ito, Emi; Fukuoka, Tokuma; Imura, Tomohiro; Machida, Masayuki; Kitamoto, Dai

    2013-01-01

    The basidiomycetous yeast Pseudozyma antarctica T-34 is an excellent producer of mannosylerythritol lipids (MELs), members of the multifunctional extracellular glycolipids, from various feedstocks. Here, the genome sequence of P. antarctica T-34 was determined and annotated. Analysis of the sequence might provide insights into the properties of this yeast that make it superior for use in the production of functional glycolipids, leading to the further development of P. antarctica for industrial applications. PMID:23558529

  14. Genome Sequence of the Basidiomycetous Yeast Pseudozyma antarctica T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids

    PubMed Central

    Morita, Tomotake; Koike, Hideaki; Koyama, Yoshinori; Hagiwara, Hiroko; Ito, Emi; Fukuoka, Tokuma; Imura, Tomohiro; Machida, Masayuki

    2013-01-01

    The basidiomycetous yeast Pseudozyma antarctica T-34 is an excellent producer of mannosylerythritol lipids (MELs), members of the multifunctional extracellular glycolipids, from various feedstocks. Here, the genome sequence of P. antarctica T-34 was determined and annotated. Analysis of the sequence might provide insights into the properties of this yeast that make it superior for use in the production of functional glycolipids, leading to the further development of P. antarctica for industrial applications. PMID:23558529

  15. Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-11-01

    In order to develop novel glycolipid biosurfactants, Pseudozyma parantarctica JCM 11752(T), which is known as a producer of mannosylerythritol lipids (MEL), was cultivated using different sugar alcohols with the presence of vegetable oil. When cultivated in a medium containing 4 % (w/v) olive oil and 4 % D-ribitol or D-arabitol, the yeast strain provided different glycolipids, compared to the case of no sugar alcohol. On TLC, both of the extracted glycolipid fractions gave two major spots corresponding to MEL-A (di-acetylated MEL) and MEL-B (mono-acetylated MEL). Based on (1)H NMR analysis, one glycolipid was identified as MEL-A, but the other was not MEL-B. On high-performance liquid chromatography after acid hydrolysis, the unknown glycolipid from the D-ribitol culture provided mainly two peaks identical to D-mannose and D-ribitol, and the other unknown glycolipid from the D-arabitol culture did two peaks identical to D-mannose and D-arabitol. Accordingly, the two unknown glycolipids were identified as mannosylribitol lipid (MRL) and mannosylarabitol lipid (MAL), respectively. The observed critical micelle concentration (CMC) and surface tension at CMC of MRL were 1.6 × 10(-6) M and 23.7 mN/m, and those of MAL were 1.5 × 10(-6) M and 24.2 mN/m, respectively. These surface-tension-lowering activities were significantly higher compared to conventional MEL. Furthermore, on a water-penetration scan, MRL and MAL efficiently formed not only the lamella phase (L(α)) but also the myelins at a wide range of concentrations, indicating their excellent self-assembling properties and high hydrophilicity. The present two glycolipids should thus facilitate the application of biosurfactants as new functional materials. PMID:22722912

  16. Surfactant mixing rules applied to surfactant enhanced alkaline flooding

    SciTech Connect

    Taylor, K.C. )

    1992-01-01

    This paper discusses surfactant mixing rules which have been used to describe crude oil/alkali/surfactant phase behavior, using David Lloydminster crude oil and the surfactant Neodol 25-3S. It was found that at a fixed salinity and alkali concentration, a specific mole fraction of synthetic surfactant to petroleum soap was required to produce optimal phase behavior as the water-to-oil ratio varied. This methodology is useful in understanding the relationship between the variables of water-to-oil ratio and synthetic surfactant concentration in phase behavior systems that produce a petroleum soap.

  17. Antimycobacterial action of a new glycolipid-peptide complex obtained from extracellular metabolites of Raoultella ornithinolytica.

    PubMed

    Fiołka, Marta J; Grzywnowicz, Krzysztof; Mendyk, Ewaryst; Zagaja, Mirosław; Szewczyk, Rafał; Rawski, Michał; Keller, Radosław; Rzymowska, Jolanta; Wydrych, Jerzy

    2015-12-01

    In this paper, an antimycobacterial component of extracellular metabolites of a gut bacterium Raoultella ornithinolytica from D. veneta earthworms was isolated and its antimycobacterial action was tested using Mycobacterium smegmatis. After incubation with the complex obtained, formation of pores and furrows in cell walls was observed using microscopic techniques. The cells lost their shape, stuck together and formed clusters. Surface-enhanced Raman spectroscopy analysis showed that, after incubation, the complex was attached to the cell walls of the Mycobacterium. Analyses of the component performed with Fourier transform infrared spectroscopy demonstrated high similarity to a bacteriocin nisin, but energy dispersive X-ray spectroscopy analysis revealed differences in the elemental composition of this antimicrobial peptide. The component with antimycobacterial activity was identified using mass spectrometry techniques as a glycolipid-peptide complex. As it exhibits no cytotoxicity on normal human fibroblasts, the glycolipid-peptide complex appears to be a promising compound for investigations of its activity against pathogenic mycobacteria. PMID:26547373

  18. Production of glycolipid biosurfactants, mannosylerythritol lipids, by a smut fungus, Ustilago scitaminea NBRC 32730.

    PubMed

    Morita, Tomotake; Ishibashi, Yuko; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2009-03-23

    A smut fungus Ustilago scitaminea NBRC 32730 on sugar cane (Saccharum) was found to accumulate a large amount of glycolipids in the culture medium. As a result of structural characterization, the main glycolipid was identified as MEL-B, 4-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-erythritol. The MEL-B was sufficiently produced from a variety of sugars such as sucrose, glucose, fructose, and mannose. Olive oil and methyl oleate were also available as carbon sources to produce MEL-B. However, these residual oils made product recovery very complicated. Under optimal conditions, a maximum MEL yield of 12.8 g/l was achieved by feeding of sucrose. PMID:19270362

  19. Localization of glycolipids in membranes by in vivo labeling and neutron diffraction.

    PubMed

    Weik, M; Patzelt, H; Zaccai, G; Oesterhelt, D

    1998-02-01

    Evidence is accumulating for the lateral organization of cell membrane lipids and proteins in the context of sorting or intracellular signaling. So far, however, information has been lacking on the details of protein-lipid interactions in such aggregates. Purple membranes are patches made up of lipids and the protein bacteriorhodopsin in the plasma membrane of certain Archaea. Naturally crystalline, they provide a unique opportunity to study the structure of a natural membrane at submolecular resolution by diffraction methods. We present a direct structural determination of the glycolipids with respect to bacteriorhodopsin in these membranes. Deuterium labels incorporated in vivo into the sugar moieties of the major glycolipid were localized by neutron diffraction. The data suggest a role for specific aromatic residue-carbohydrate stacking interactions in the formation of the purple membrane crystalline patches. PMID:9660925

  20. Membrane Glycolipids Content Variety in Gastrointestinal Tumors and Transplantable Hepatomas in Mice

    PubMed Central

    Lv, Jun; Lv, Can Qun; Wang, Bo-Liang; Mei, Ping; Xu, Lei

    2016-01-01

    Background The aim of this study was to investigate the variety of plasma contents of membrane glycolipids in 65 gastrointestinal tumors and 31 transplant hepatomas in mice. Material/Methods The experimental model was a transplantable murine hepatoma. Experimental mice were divided into 3 groups. Results The LSA and TSA content in the 2 groups were significantly difference (p<0.01), and were significantly lower in the therapeutic group than in the control group (p<0.01). Conclusions These results indicate that membrane glycolipids index LSA and TSA are sensitive markers in gastrointestinal tumors. In the transplanted hepatomas in mice, they may be considered as ancillary indicators for judging the therapeutic effect of hepatoma. PMID:27554918

  1. Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum.

    PubMed

    Tsukatani, Yusuke; Mizoguchi, Tadashi; Thweatt, Jennifer; Tank, Marcus; Bryant, Donald A; Tamiaki, Hitoshi

    2016-06-01

    Chlorosomes are large and efficient light-harvesting organelles in green photosynthetic bacteria, and they characteristically contain large numbers of bacteriochlorophyll c, d, or e molecules. Self-aggregated bacteriochlorophyll pigments are surrounded by a monolayer envelope membrane comprised of glycolipids and Csm proteins. Here, we analyzed glycolipid compositions of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum mutants lacking one, two, or three Csm proteins by HPLC equipped with an evaporative light-scattering detector. The ratio of monogalactosyldiacylglyceride (MGDG) to rhamnosylgalactosyldiacylglyceride (RGDG) was smaller in chlorosomes from mutants lacking two or three proteins in CsmC/D/H motif family than in chlorosomes from the wild-type, whereas chlorosomes lacking CsmIJ showed relatively less RGDG than MGDG. The results suggest that the CsmC, CsmD, CsmH, and other chlorosome proteins are involved in organizing MGDG and RGDG and thereby affect the size and shape of the chlorosome. PMID:26869354

  2. Novel ATP-driven Pathway of Glycolipid Export Involving TolC Protein*

    PubMed Central

    Staron, Peter; Forchhammer, Karl; Maldener, Iris

    2011-01-01

    Upon depletion of combined nitrogen, N2-fixing heterocysts are formed from vegetative cells in the case of the filamentous cyanobacterium Anabaena sp. strain PCC 7120. A heterocyst-specific layer composed of glycolipids (heterocyst envelope glycolipids (HGLs)) that functions as an O2 diffusion barrier is deposited over the heterocyst outer membrane and is surrounded by an outermost heterocyst polysaccharide envelope. Mutations in any gene of the devBCA operon or tolC result in the absence of the HGL layer, preventing growth on N2 used as the sole nitrogen source. However, those mutants do not have impaired HGL synthesis. In this study, we show that DevBCA and TolC form an ATP-driven efflux pump required for the export of HGLs across the Gram-negative cell wall. By performing protein-protein interaction studies (in vivo formaldehyde cross-linking, surface plasmon resonance, and isothermal titration calorimetry), we determined the kinetics and stoichiometric relations for the transport process. For sufficient glycolipid export, the membrane fusion protein DevB had to be in a hexameric form to connect the inner membrane factor DevC and the outer membrane factor TolC. A mutation that impaired the ability of DevB to form a hexameric arrangement abolished the ability of DevC to recognize its substrate. The physiological relevance of a hexameric DevB is shown in complementation studies. We provide insights into a novel pathway of glycolipid export across the Gram-negative cell wall. PMID:21917923

  3. Accumulation of novel glycolipids and ornithine lipids in Mesorhizobium loti under phosphate deprivation.

    PubMed

    Diercks, Hannah; Semeniuk, Adrian; Gisch, Nicolas; Moll, Hermann; Duda, Katarzyna A; Hölzl, Georg

    2015-02-01

    Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and two so far unknown glycolipids, which were identified in this study by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy as O-methyl-digalactosyl diacylglycerol (Me-DGD) and glucuronosyl diacylglycerol (GlcAD). Me-DGD is a novel glycolipid, whose synthesis depends on Pgt-Ml activity and the involvement of an unknown methyltransferase, while GlcAD is formed by a novel glycosyltransferase encoded by the open reading frame (ORF) mlr2668, using UDP-glucuronic acid as a sugar donor. Deletion mutants lacking GlcAD are not impaired in growth. Our data suggest that the different glycolipids in Mesorhizobium can mutually replace each other. This may be an adaptation mechanism to enhance the competitiveness in natural environments. A further nonphospholipid in Mesorhizobium was identified as a hydroxylated form of an ornithine lipid with the additional hydroxy group linked to the amide-bound fatty acid, introduced by the hydroxylase OlsD. The presence of this lipid has not been reported for rhizobia yet. The hydroxy group is placed on the C-2 position of the acyl chain as determined by NMR spectroscopy. Furthermore, the isolated ornithine lipids contained up to 80 to 90% d-configured ornithine, a stereoform so far undescribed in bacteria. PMID:25404698

  4. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    PubMed Central

    Im, Jae Hong; Nakane, Takashi; Yanagishita, Hiroshi; Ikegami, Toru; Kitamoto, Dai

    2001-01-01

    Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A) and human immunoglobulin G (HIgG). Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate) (polyHEMA) beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1) for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid. PMID:11604104

  5. Accumulation of Novel Glycolipids and Ornithine Lipids in Mesorhizobium loti under Phosphate Deprivation

    PubMed Central

    Diercks, Hannah; Semeniuk, Adrian; Gisch, Nicolas; Moll, Hermann; Duda, Katarzyna A.

    2014-01-01

    Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and two so far unknown glycolipids, which were identified in this study by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy as O-methyl-digalactosyl diacylglycerol (Me-DGD) and glucuronosyl diacylglycerol (GlcAD). Me-DGD is a novel glycolipid, whose synthesis depends on Pgt-Ml activity and the involvement of an unknown methyltransferase, while GlcAD is formed by a novel glycosyltransferase encoded by the open reading frame (ORF) mlr2668, using UDP-glucuronic acid as a sugar donor. Deletion mutants lacking GlcAD are not impaired in growth. Our data suggest that the different glycolipids in Mesorhizobium can mutually replace each other. This may be an adaptation mechanism to enhance the competitiveness in natural environments. A further nonphospholipid in Mesorhizobium was identified as a hydroxylated form of an ornithine lipid with the additional hydroxy group linked to the amide-bound fatty acid, introduced by the hydroxylase OlsD. The presence of this lipid has not been reported for rhizobia yet. The hydroxy group is placed on the C-2 position of the acyl chain as determined by NMR spectroscopy. Furthermore, the isolated ornithine lipids contained up to 80 to 90% d-configured ornithine, a stereoform so far undescribed in bacteria. PMID:25404698

  6. Draft Genome Sequence of the Yeast Starmerella bombicola NBRC10243, a Producer of Sophorolipids, Glycolipid Biosurfactants

    PubMed Central

    Matsuzawa, Tomohiko; Koike, Hideaki; Saika, Azusa; Fukuoka, Tokuma; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2015-01-01

    The yeast Starmerella bombicola NBRC10243 is an excellent producer of sophorolipids (SLs) from various feedstocks. Here, we report the draft genome sequence of S. bombicola NBRC10243. Analysis of the sequence may provide insight into the properties of this yeast that make it superior for use in the production of functional glycolipids and biomolecules, leading to the further development of S. bombicola NBRC10243 for industrial applications. PMID:25814600

  7. Human blood group activity of human and canine intestinal glycolipids containing fucose

    PubMed Central

    Smith, E. L.; Bowdler, A. J.; Bull, R. W.; McKibbin, J. M.

    1973-01-01

    A number of fucose-containing glycolipids (fuco-lipids), which are similar in composition to those of human normal and malignant gastrointestinal tissue, have been isolated from whole small intestines of individual dogs. Dogs from which these fuco-lipids were isolated fell into two types according to the qualitative sugar composition of their fuco-lipids. Glycolipids from type I dogs contained glucose, galactose, glucosamine, galactosamine and fucose, while those from type II dogs contained the same sugars but lacked galactosamine. Fucolipids isolated from type I and II dogs were tested for both canine blood group and human A, B, H and Lea and Leb blood group activity. At the concentrations tested, only human blood group A activity was found in significant amounts, and only in those fuco-lipids which contained galactosamine (type I dogs). Of the fuco-lipids with human blood group A activity, some had activity comparable to that of glycoprotein blood group substances, while others had lower, but significant, activity. These latter fuco-lipids also had marked chromatographic differences, indicating that they are of several different structural types, a finding similar to the A active glycolipids of human red cell stroma. None of the isolated intestinal fuco-lipids had canine blood group activity. A fuco-lipid with Lea activity was also isolated in relatively large amounts from a normal human whole small intestine. PMID:4753403

  8. Possible role of ceramide in defining structure and function of membrane glycolipids.

    PubMed Central

    Kannagi, R; Nudelman, E; Hakomori, S

    1982-01-01

    A possible role of ceramide in defining the carbohydrate structure of glycolipids and the expression of glycolipid function has been proposed, on the basis of our finding that the ceramide composition of "lacto-series" glycosphingolipid isolated from human erythrocytes shows a remarkable correlation with the terminal carbohydrate structure: (i) The ceramides of three glycosphingolipids with Lex (or x) determinant [Gal beta 1 leads to 4(Fuc alpha 1 leads to 3) GlcNAc] had almost exclusively 16:0 fatty acid; in contrast, the ceramide of its positional isomer H determinant had mainly 20--24:0 fatty acids. (ii) The ceramide of two glycosphingolipids with NeuAc alpha 2 leads to 6GAL structure was predominantly of 16:0 fatty acid, in contrast to that of its positional isomer NeuAc alpha 2 leads to 3Gal residue, in which the ceramide had 20--24:0 fatty acids. These results, together with our previous observation that ceramide composition of mouse lymphoma and myelocytic leukemia MI cells affects their antigenicity, suggest that ceramide structure may define the organization of glycosyltransferase for synthesis of the carbohydrate determinants and may affect the organization and orientation of the carbohydrate chain in membranes, eliciting or suppressing the reactivity to its ligand. Because these glycolipids with Lex and NeuAc alpha 2 leads to 6Gal structures are developmentally regulated and are highly expressed in certain tumors, ceramide composition may affect development, differentiation, and oncogenesis. Images PMID:6954491

  9. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria.

    PubMed

    Bauersachs, Thorsten; Speelman, Eveline N; Hopmans, Ellen C; Reichart, Gert-Jan; Schouten, Stefan; Damsté, Jaap S Sinninghe

    2010-11-01

    N(2)-fixing cyanobacteria play an essential role in sustaining primary productivity in contemporary oceans and freshwater systems. However, the significance of N(2)-fixing cyanobacteria in past nitrogen cycling is difficult to establish as their preservation potential is relatively poor and specific biological markers are presently lacking. Heterocystous N(2)-fixing cyanobacteria synthesize unique long-chain glycolipids in the cell envelope covering the heterocyst cell to protect the oxygen-sensitive nitrogenase enzyme. We found that these heterocyst glycolipids are remarkably well preserved in (ancient) lacustrine and marine sediments, unambiguously indicating the (past) presence of N(2)-fixing heterocystous cyanobacteria. Analysis of Pleistocene sediments of the eastern Mediterranean Sea showed that heterocystous cyanobacteria, likely as epiphytes in symbiosis with planktonic diatoms, were particularly abundant during deposition of sapropels. Eocene Arctic Ocean sediments deposited at a time of large Azolla blooms contained glycolipids typical for heterocystous cyanobacteria presently living in symbiosis with the freshwater fern Azolla, indicating that this symbiosis already existed in that time. Our study thus suggests that heterocystous cyanobacteria played a major role in adding "new" fixed nitrogen to surface waters in past stratified oceans. PMID:20966349

  10. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria

    PubMed Central

    Bauersachs, Thorsten; Speelman, Eveline N.; Hopmans, Ellen C.; Reichart, Gert-Jan; Schouten, Stefan; Damsté, Jaap S. Sinninghe

    2010-01-01

    N2-fixing cyanobacteria play an essential role in sustaining primary productivity in contemporary oceans and freshwater systems. However, the significance of N2-fixing cyanobacteria in past nitrogen cycling is difficult to establish as their preservation potential is relatively poor and specific biological markers are presently lacking. Heterocystous N2-fixing cyanobacteria synthesize unique long-chain glycolipids in the cell envelope covering the heterocyst cell to protect the oxygen-sensitive nitrogenase enzyme. We found that these heterocyst glycolipids are remarkably well preserved in (ancient) lacustrine and marine sediments, unambiguously indicating the (past) presence of N2-fixing heterocystous cyanobacteria. Analysis of Pleistocene sediments of the eastern Mediterranean Sea showed that heterocystous cyanobacteria, likely as epiphytes in symbiosis with planktonic diatoms, were particularly abundant during deposition of sapropels. Eocene Arctic Ocean sediments deposited at a time of large Azolla blooms contained glycolipids typical for heterocystous cyanobacteria presently living in symbiosis with the freshwater fern Azolla, indicating that this symbiosis already existed in that time. Our study thus suggests that heterocystous cyanobacteria played a major role in adding “new” fixed nitrogen to surface waters in past stratified oceans. PMID:20966349

  11. Sterol-modulated glycolipid sorting occurs in niemann-pick C1 late endosomes.

    PubMed

    Zhang, M; Dwyer, N K; Neufeld, E B; Love, D C; Cooney, A; Comly, M; Patel, S; Watari, H; Strauss, J F; Pentchev, P G; Hanover, J A; Blanchette-Mackie, E J

    2001-02-01

    The Niemann-Pick C1 (NPC1) protein and endocytosed low density lipoprotein (LDL)-derived cholesterol were shown to enrich separate subsets of vesicles containing lysosomal associated membrane protein 2. Localization of Rab7 in the NPC1-containing vesicles and enrichment of lysosomal hydrolases in the cholesterol-containing vesicles confirmed that these organelles were late endosomes and lysosomes, respectively. Lysobisphosphatidic acid, a lipid marker of the late endosomal pathway, was found in the cholesterol-enriched lysosomes. Recruitment of NPC1 to Rab7 compartments was stimulated by cellular uptake of cholesterol. The NPC1 compartment was shown to be enriched in glycolipids, and internalization of GalNAcbeta1-4[NeuAcalpha2-3]Galbeta1-4Glcbeta1-1'-ceramide (G(M2)) into endocytic vesicles depends on the presence of NPC1 protein. The glycolipid profiles of the NPC1 compartment could be modulated by LDL uptake and accumulation of lysosomal cholesterol. Expression in cells of biologically active NPC1 protein fused to green fluorescent protein revealed rapidly moving and flexible tubular extensions emanating from the NPC1-containing vesicles. We conclude that the NPC1 compartment is a dynamic, sterol-modulated sorting organelle involved in the trafficking of plasma membrane-derived glycolipids as well as plasma membrane and endocytosed LDL cholesterol. PMID:11032830

  12. Surfactant-enhanced bioremediation

    SciTech Connect

    Churchill, P.F.; Dudley, R.J.; Churchill, S.A.

    1995-12-31

    This study was undertaken to examine the effect of three structurally related, non-ionic surfactants, Triton X-45, Triton X-100 and Triton X-165, as well as the oleophilic fertilizer, Inipol EAP 22, on the rate of biodegradation of phenanthrene by pure bacterial cultures. Each surfactant dramatically increased the apparent aqueous solubility of phenanthrene. Model studies were conducted to investigate the ability of these surfactants to enhance the rate of transport and uptake of polycyclic aromatic hydrocarbons into bacterial cells, and to assess the impact that increasing the aqueous solubility of hydrocarbons has on their rate of biodegradation. The results indicate that increasing the apparent aqueous solubility of hydrocarbons can lead to enhanced biodegradation rates by two Pseudomonas saccharophila strains. However, the experiments also suggest that some surfactants can inhibit aromatic hydrocarbon biodegradation by certain bacteria. The data also support the hypothesis that surface-active components present in the oleophilic fertilizer formulation, Inipol EAP 22, may have significantly contributed to the positive results reported in tests of remedial agent impact on bioremediation, which was used as a supplemental clean-up technology on Exxon Valdez crude oil-contaminated Alaskan beaches.

  13. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  14. Diseases of pulmonary surfactant homeostasis.

    PubMed

    Whitsett, Jeffrey A; Wert, Susan E; Weaver, Timothy E

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  15. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-05-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MELs), was undertaken on the basis of the analysis of ribosomal DNA sequences of yeast strains of the genus Pseudozyma. In the course of the investigation, Pseudozyma siamensis CBS 9960, which is closely related to Pseudozyma shanxiensis, a known MEL-C producer but with a different morphology, was found to accumulate a large amount of glycolipids. On thin layer chromatography, the extracellular glycolipids showed nearly the same spots as those of the MELs produced by P. shanxiensis. However, the result of high-performance liquid chromatography analysis revealed that the present strain has a much higher glycolipid production yield than P. shanxiensis. From the structural characterization by (1)H and (13)C NMR, the major glycolipid (more than 84% of the total) was identified as a mixture of 4-O-[(2',4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, both of which are types of MEL-C. The present MEL-C possessed a short-chain acid (C(2) or C(4)) at the C-2' position and a long-chain acid (C(16)) at the C-3' position of the mannose moiety, and thus, the hydrophobic part was considerably different from that of conventional MELs, which mainly possess two medium-chain acids (C(10)) at the C-2' and C-3' positions. Under optimal growth conditions with safflower oil in a shake culture, the total amount of MELs reached approximately 19 g/l after 9 d at 25 degrees C. We further investigated the interfacial properties of the present MEL-C, considering its unique hydrophobic structure. The observed critical micelle concentration (CMC) and the surface tension at the CMC of the MEL were 4.5 x 10(-6) M and 30.7 mN/m, respectively. In addition, on a water penetration scan, the MEL efficiently formed the liquid crystal phases such as hexagonal (H) and lamella (L(a)) at a wide range of

  16. Bio-based polyurethane foams from renewable resources

    NASA Astrophysics Data System (ADS)

    Stanzione, M.; Russo, V.; Sorrentino, A.; Tesser, R.; Lavorgna, M.; Oliviero, M.; Di Serio, M.; Iannace, S.; Verdolotti, L.

    2016-05-01

    In the last decades, bio-derived natural materials, such as vegetable oils, polysaccharides and biomass represent a rich source of hydroxyl precursors for the synthesis of polyols which can be potentially used to synthesize "greener" polyurethane foams. Herein a bio-based precursor (obtained from succinic acid) was used as a partial replacement of conventional polyol to synthesize PU foams. A mixture of conventional and bio-based polyol in presence of catalysts, silicone surfactant and diphenylmethane di-isocyanate (MDI) was expanded in a mold and cured for two hours at room temperature. Experimental results highlighted the suitability of this bio-precursor to be used in the production of flexible PU foams. Furthermore the chemo-physical characterization of the resulting foams show an interesting improvement in thermal stability and elastic modulus with respect to the PU foams produced with conventional polyol.

  17. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    PubMed

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings. PMID:26781714

  18. Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of alpha(1,2)fucosyltransferase genes.

    PubMed Central

    Iwamori, Masao; Domino, Steven E

    2004-01-01

    Glycolipids in epithelial tissues of the gastrointestinal tract act as receptors for enteric bacteria and are implicated in the activation of the intestinal immune system. To clarify the genes involved in the fucosylation of the major glycolipids, substrate glycolipids and fucosylated products were measured in tissues of wild-type and mutant mice lacking alpha(1,2)fucosyltransferase genes FUT1 or FUT2. Quantitative determination was performed by TLC-immunostaining for GA1 (Gg4Cer), FGA1 (fucosyl GA1), GM1 (II3NeuAc-Gg4Cer), FGM1 (fucosyl GM1), and Forssman glycolipids. Both FGM1 and FGA1 completely disappeared from the antrum, cecum, and colon of FUT2-null mice, but not those of FUT1-null and wild-type mice. Precursor glycolipids, GM1 and GA1, accumulated in tissues of FUT2-null mice, indicating that the FUT2-encoded enzyme preferentially participates in the fucosylation of GA1 and GM1 in these tissues. Female reproductive organs were similarly found to utilize FUT2 for the fucosylation of glycolipids FGA1 (uterus and cervix), and FGM1 (ovary), due to their absence in FUT2-null mice. In FUT1-null mice FGA1 was lost from the pancreas, but was present in wild-type and FUT2-null mice, indicating that FUT1 is essential for fucosylation of GA1 in the pancreas. Ulex europaeus agglutinin-I lectin histochemistry for alpha(1,2)fucose residues confirmed the absence of alpha(1,2)fucose residues from the apical surface of pancreatic acinar glands of FUT1-null mice. Ileum, epididymis, and testis retained specific fucosylated glycolipids, irrespective of targeted deletion of either gene, indicating either compensation for or redundancy of the alpha(1,2)fucosyltransferase genes in these tissues. PMID:14967068

  19. Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of alpha(1,2)fucosyltransferase genes.

    PubMed

    Iwamori, Masao; Domino, Steven E

    2004-05-15

    Glycolipids in epithelial tissues of the gastrointestinal tract act as receptors for enteric bacteria and are implicated in the activation of the intestinal immune system. To clarify the genes involved in the fucosylation of the major glycolipids, substrate glycolipids and fucosylated products were measured in tissues of wild-type and mutant mice lacking alpha(1,2)fucosyltransferase genes FUT1 or FUT2. Quantitative determination was performed by TLC-immunostaining for GA1 (Gg4Cer), FGA1 (fucosyl GA1), GM1 (II3NeuAc-Gg4Cer), FGM1 (fucosyl GM1), and Forssman glycolipids. Both FGM1 and FGA1 completely disappeared from the antrum, cecum, and colon of FUT2-null mice, but not those of FUT1-null and wild-type mice. Precursor glycolipids, GM1 and GA1, accumulated in tissues of FUT2-null mice, indicating that the FUT2-encoded enzyme preferentially participates in the fucosylation of GA1 and GM1 in these tissues. Female reproductive organs were similarly found to utilize FUT2 for the fucosylation of glycolipids FGA1 (uterus and cervix), and FGM1 (ovary), due to their absence in FUT2-null mice. In FUT1-null mice FGA1 was lost from the pancreas, but was present in wild-type and FUT2-null mice, indicating that FUT1 is essential for fucosylation of GA1 in the pancreas. Ulex europaeus agglutinin-I lectin histochemistry for alpha(1,2)fucose residues confirmed the absence of alpha(1,2)fucose residues from the apical surface of pancreatic acinar glands of FUT1-null mice. Ileum, epididymis, and testis retained specific fucosylated glycolipids, irrespective of targeted deletion of either gene, indicating either compensation for or redundancy of the alpha(1,2)fucosyltransferase genes in these tissues. PMID:14967068

  20. Effects of a nutrient-surfactant compound on solubilization rates of TCE

    SciTech Connect

    Gillespie, M.T.; Strong-Gunderson, J.M.

    1997-12-31

    BioTreat{trademark}, a commercially available nutrient-surfactant compound, was investigated for its ability to solubilize TCE. Potential mechanisms for enhancing biodegradation rates by the use of nutrient-surfactant mixtures are: increased solubilization of TCE into the aqueous phase, and increased nutrients for the bacteria and greater numbers of colony forming units (CFUs). In aqueous systems, no measured solubilization of 0.1 and 1.0 ppm TCE from the headspace into the liquid phase was observed with BioTreat added at concentrations <0.5%. However, at BioTreat concentrations in excess of the CMC (>0.5%), increased solubilization of TCE was measured. A second question was the nutrient effect of BioTreat on the growth of the TCE-degrading bacterium, Burkholderia cepacia G4 PR1{sub 301}. The added nutrients provided by BioTreat was evident and lead to increased cell numbers. The effect of BioTreat on the expression of ortho-monooxgenase, the enzyme necessary for TCE degradation by B. cepacia was also investigated. Enzyme expression as detected by a calorimetric assay was inhibited for BioTreat concentrations >0.05%. 17 refs., 5 figs., 3 tabs.

  1. Surfactant studies for coal liquefaction

    SciTech Connect

    Hsu, G.C.

    1990-12-20

    Objectives of this project include: select economical/practical surfactants for use in coal liquefaction; screen surfactants for the proposed work through simple laboratory screening tests; and check the survivability of the selected surfactants at 350{degrees}C and 2000 psi using a 1-hour residence time for the thermal treatment in a stirred autoclave. Surfactant screening studies have shown the lignin sulfonate salt being the best candidate studied. Based upon the findings from the screening studies and practical considerations (e.g., potential cost, thermal survivability and recycling recovery), two surfactant choices in the anionic and nonionic categories were tested further in the autoclave reactor and engineering experiments at JPL. The goal of the autoclave work was to engineering experiments at JPL. The goal of the autoclave work was to determine the effects of surfactants on coal liquefaction performance and to test surfactant survivability. A eight of (8) autoclave experiments using 100 grams of as-received coal were performed. Two commercial surfactant choices were evaluated. They were: Sodium Lignin Sulfonate (LS) as a colloidal (heterogenous) surfactant of anionic type; and Triton X-100 (TRI) (trade name of a polyoxyethylated tert-octyphenol) as a liquid (homogenous) surfactant of nonionic type. Two additional reference tests were performed. 10 refs., 15 figs., 7 tabs.

  2. Surfactants and atherogenesis.

    PubMed

    Seely, S

    1977-01-01

    In previous publications (1,2) the hypothesis was put forward that atheroma is caused by some pathogen or metabolic fault which impairs the transportability of cholesterol in the plasma. The lipoproteins containing the faulty metabolites are assumed to be incapable of traversing the capillary endothelium and continue to circulate uselessly in the blood stream, possibly giving rise to hypercholesterolaemia, until captured by lipophages which, if they can successfully complete their journey, void them into the gall bladder. The present paper takes the argument a step further by pointing out that the types of substances most likely to cause the described impairment are surfactants. A surfactant finding its way into the plasma could separate cholesterol from its carrier protein and itself become its carrier. The complex would still be kept in suspension in the plasma, but unable to cross biological barriers like the capillary endothelium. An important argument in favour of the hypothesis is that it can offer an explanation of the long-standing medical mystery of the connection between atheroma and the hardness or softness of the water supply. Infant deaths from coronary occlusion present a similar enigma. The paper points out that surfactants can conceivably find their way into infants' feeding bottles. PMID:593183

  3. Clouding behaviour in surfactant systems.

    PubMed

    Mukherjee, Partha; Padhan, Susanta K; Dash, Sukalyan; Patel, Sabita; Mishra, Bijay K

    2011-02-17

    A study on the phenomenon of clouding and the applications of cloud point technology has been thoroughly discussed. The phase behaviour of clouding and various methods adopted for the determination of cloud point of various surfactant systems have been elucidated. The systems containing anionic, cationic, nonionic surfactants as well as microemulsions have been reviewed with respect to their clouding phenomena and the effects of structural variation in the surfactant systems have been incorporated. Additives of various natures control the clouding of surfactants. Electrolytes, nonelectrolytes, organic substances as well as ionic surfactants, when present in the surfactant solutions, play a major role in the clouding phenomena. The review includes the morphological study of clouds and their applications in the extraction of trace inorganic, organic materials as well as pesticides and protein substrates from different sources. PMID:21296314

  4. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2

    SciTech Connect

    Drage, Michael G.; Tsai, Han-Chun; Pecora, Nicole D.; Cheng, Tan-Yun; Arida, Ahmad R.; Shukla, Supriya; Rojas, Roxana E.; Seshadri, Chetan; Moody, D. Branch; Boom, W. Henry; Sacchettini, James C.; Harding, Clifford V.

    2010-09-27

    Knockout of lprG results in decreased virulence of Mycobacterium tuberculosis (MTB) in mice. MTB lipoprotein LprG has TLR2 agonist activity, which is thought to be dependent on its N-terminal triacylation. Unexpectedly, here we find that nonacylated LprG retains TLR2 activity. Moreover, we show LprG association with triacylated glycolipid TLR2 agonists lipoarabinomannan, lipomannan and phosphatidylinositol mannosides (which share core structures). Binding of triacylated species was specific to LprG (not LprA) and increased LprG TLR2 agonist activity; conversely, association of glycolipids with LprG enhanced their recognition by TLR2. The crystal structure of LprG in complex with phosphatidylinositol mannoside revealed a hydrophobic pocket that accommodates the three alkyl chains of the ligand. In conclusion, we demonstrate a glycolipid binding function of LprG that enhances recognition of triacylated MTB glycolipids by TLR2 and may affect glycolipid assembly or transport for bacterial cell wall biogenesis.

  5. Identification of Ustilago cynodontis as a new producer of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequences.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants known because of their multifunctionality and biocompatibility. The search for novel producers of MELs was undertaken based on the analysis of ribosomal DNA sequences on basidiomycetous yeasts. The bermuda grass smut fungus Ustilago cynodontis NBRC 7530, which taxonomically relates to Pseudozyma shanxiensis known as a MEL-C producer, was found to accumulate glycolipids in the cultured medium. Under a shake flask culture with soybean oil, the amount of the glycolipids was 1.4 g/L for 7 days at 25 degrees C. As a result of the structural characterization, the main glycolipids was identified as 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, and the major fatty acids were C(14) and C(16) ones. The glycolipid was highly hydrophilic MEL-C, and very similar to those produced by P. shanxiensis. The fungi of the genus Ustilago are thus likely to be potential producers of MELs as well as the yeasts of the genus Pseudozyma. PMID:18781055

  6. A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens

    PubMed Central

    Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.

    2014-01-01

    Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610

  7. Surfactant and process for enhanced oil recovery

    SciTech Connect

    Stapp, P. R.

    1984-12-11

    A novel surfactant is formed by reacting maleic anhydride with either a petroleum sulfonate or an alkaryl sulfonate. A surfactant system containing the above surfactant useful in enhanced oil recovery processes is also provided.

  8. Effects of metformin and sitagliptin on glycolipid metabolism in type 2 diabetic rats on different diets

    PubMed Central

    Yang, Juhong; Ba, Tu; Chen, Liming; Shan, Chunyan; Zheng, Miaoyan; Wang, Ying; Ren, Huizhu; Chen, Jingli; Xu, Jie; Han, Fei; Zhang, Yi; Yang, Xiaoyun

    2016-01-01

    Introduction The aim of the study was to investigate the effects of metformin and sitagliptin on glycolipid metabolism in type 2 diabetes after different diets. Material and methods Seventy Male Sprague Dawley rats were fed with a high fat diet followed by streptozotocin treatment to induce type 2 diabetes. Then all rats were randomly divided into a control group, a metformin group (200 mg/kg), and a sitagliptin group (10 mg/kg). Each group was further divided into 4 groups receiving one load of high carbohydrate diet (45% glucose, 4.5 ml/kg), high fat diet (20% lipid emulsion, 4.5 ml/kg), high protein diet (20% whey protein, 10 ml/kg) or mixed meal, respectively. The caloric densities were all 33 kJ/kg. Postprandial blood glucose (P2BG), triglyceride (TG), glucagon-like peptide-1 (GLP-1), glucagon and insulin levels were measured. Results In the high carbohydrate group, sitagliptin was more efficient in lowering P2BG compared with metformin (p < 0.05). In the high-fat group, metformin was more powerful in lowering TG (p < 0.05) and P2BG (p < 0.05) levels because of its improvement of insulin sensitivity. In the high protein diet group, metformin did not reduce the P2BG level (p > 0.05), although it did reduce the TG level (p < 0.05). In the mixed diet group, metformin was more efficient in lowering P2BG (p < 0.05) but had a similar effect on TG (p > 0.05) compared with sitagliptin. Conclusions In the type 2 diabetic model, metformin and sitagliptin have different effects on glycolipid metabolism after different diets. If it is proved in type 2 diabetic patients, then different medicines may be recommended according to different diets in order to improve glycolipid metabolism. PMID:27186166

  9. Effect of glycolipids of Leishmania parasites on human monocyte activity. Inhibition by lipophosphoglycan.

    PubMed

    Frankenburg, S; Leibovici, V; Mansbach, N; Turco, S J; Rosen, G

    1990-12-15

    Lipophosphoglycan (LPG) and glycosyl phosphatidylinositol Ag (GPI), are glycolipids present on the membrane of Leishmania parasites. Both glycolipids have been chemically characterized. LPG is a polysaccharide of repeating phosphorylated units linked to a phosphocarbohydrate core that is anchored to the membrane by lysoalkyl phosphatidylinositol (PI). The GPI are smaller glycolipids with a structure resembling the phosphocarbohydrate core of the LPG. They are anchored to the membrane by alkyl acyl PI. Their relative abundance, uniqueness of structure, and cellular location suggest a role in interactions of the parasites with host cells. In the present study we examined the effect of LPG and GPI on the activation of human peripheral blood monocytes. Three parameters were studied: the production of IL-1, chemotactic locomotion, and oxidative burst. We found that whereas neither GPI nor LPG directly affected monocyte activity, preincubation of the monocytes with LPG strongly inhibited further activation: The production of IL-1, after stimulation with LPS, was decreased in a dose-dependent manner. Previous incubation with LPG also inhibited chemotactic locomotion of monocytes and neutrophils in response to diacylglycerol, zymosan-activated serum, FMLP and LTB4. Luminol-dependent chemiluminiscence caused by stimulation of the monocytes with streptococci and histone was also inhibited. After fragmentation of the LPG into phosphoglycan and 1-O-alkylglycerol by phosphatidylinositol-phospholipase C, only the phosphoglycan retained inhibitory activity. No difference in inhibitory activity was found between LPG prepared from Leishmania major or Leishmania donovani promastigotes. These results show that the phosphoglycan of LPG inhibits the immunologic response of normal human monocytes and neutrophils, and suggest that LPG may influence the nature of the inflammatory response surrounding infected cells. PMID:2147940

  10. Properties of immunotoxins against a glycolipid antigen associated with Burkitt's lymphoma.

    PubMed

    Wiels, J; Junqua, S; Dujardin, P; Le Pecq, J B; Tursz, T

    1984-01-01

    A monoclonal immunoglobulin M (IgM) antibody (38-13) which recognizes Burkitt's lymphoma (BL) cells, by reacting with the neutral glycolipid Gal alpha 1 leads to 4-Gal beta 1 leads to 4-Glc beta 1 leads to 1-ceramide, was recently characterized. This monoclonal IgM was coupled to either ricin A chain or gelonin. The two different immunotoxins obtained retained the apparent immunological specificity of 38-13 IgM, as shown by flow cytofluorometry analysis and complement-dependent cytotoxicity test. The BL Ramos cells and the apparently irrelevant Epstein-Barr virus-containing lymphoblastoid Priess cells were used as targets in in vitro assays of the cytotoxic properties of the two immunotoxins by measuring the inhibition of protein synthesis. Isolated ricin A chain, gelonin, and 38-13 IgM exhibited very low intrinsic cytotoxicity on both target cells. 38-13 ricin A chain and 38-13 gelonin conjugates exerted toxic effects on both target cells which were about 6000-fold and 3000-fold higher than uncoupled ricin A chain and gelonin, respectively. The toxicity of these conjugates almost reached that of intact ricin. On Ramos BL cells, the kinetics of action of the 38-13 ricin A chain conjugate was almost as fast as that of intact ricin, because 50% protein synthesis inhibition was reached after 3 hr. In contrast, the kinetics of action in the non-BL Priess was much slower (50% protein synthesis inhibition after 10 hr). An obviously irrelevant immunotoxin (anti-trinitrophenol IgM-ricin A chain) had no significant cytotoxic effect on BL Ramos and non-BL Priess cells. An excess of D-galactose was shown previously to inhibit the 38-13 IgM from binding to the reactive glycolipid antigen bearing a terminal galactose. An excess of D-galactose (0.1 M) inhibited the cytotoxic effect of the two 38-13 immunotoxins, whereas it did not prevent the cytotoxic effect of the anti-trinitrophenol immunotoxin on the same trinitrophenol labeled target cells. These data suggest that the

  11. The structure and possible function of the glycolipid from Staphylococcus lactis I3

    PubMed Central

    Brundish, D. E.; Shaw, N.; Baddiley, J.

    1967-01-01

    1. The total lipid was extracted from Staphylococcus lactis I3 with chloroform–methanol mixtures and the glycolipid component was isolated by chromatography on silicic acid. 2. Saponification yielded a non-crystalline glycoside for which the structure O-β-d-glucopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→1)-d-glycerol has been established by chemical degradations and by comparison with synthetic material. 3. The role of the glycosyl diglycerides in bacterial membranes is discussed. ImagesFig. 1. PMID:5584025

  12. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    SciTech Connect

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-02-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs.

  13. Interaction of nonionic surfactant AEO9 with ionic surfactants*

    PubMed Central

    Zhang, Zhi-guo; Yin, Hong

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, α AEO9=0.5. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γ CMC), maximum surface excess concentration (Γ max) and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness. PMID:15909351

  14. Novel Approaches to Surfactant Administration

    PubMed Central

    Gupta, Samir; Donn, Steven M.

    2012-01-01

    Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. For the most part, surfactant is administered intratracheally, followed by mechanical ventilation. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. This paper will review these techniques and the associated clinical evidence. PMID:23243504

  15. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  16. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  17. NATURAL SURFACTANTS IN PAPER RECYCLING

    EPA Science Inventory

    The objective of this project is to introduce new types of surfactants based on renewable materials (sugar surfactants) for use in ink removal from recycled paper. By applying green chemistry approaches we not only will solve an important industry and environmental problem but...

  18. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  19. Expression of α2,6-sialic acid-containing and Lewis-active glycolipids in several types of human ovarian carcinomas

    PubMed Central

    TANAKA, KYOKO; MIKAMI, MIKIO; AOKI, DAISUKE; KIGUCHI, KAZUSHIGE; ISHIWATA, ISAMU; IWAMORI, MASAO

    2010-01-01

    To identify glycolipid antigens associated with histologically defined types of ovarian carcinomas, we determined the amounts of α2,6-sialyl and Lewis-active glycolipids, the specific activities of the α2,3- and α2,6-sialyltransferases, and the gene expression of sugar transferases in mucinous and serous cystadenocarcinoma, clear cell adenocarcinoma and endometrioid carcinoma tissues and cell lines derived from them. α2,6-sialyl glycolipid IV6NeuAcα-nLc4Cer detected with a newly developed monoclonal antibody, Y916, was present in 5/7 serous cystadenocarcinoma cases in relatively higher amounts than those in the other carcinoma tissues. On the other hand, the amounts of Lewis-active glycolipids in serous cystadenocarcinoma tissues were lower than those in the other carcinoma tissues. No correlation was observed between the structures of Lewis glycolipids and the histological classification. The gene expression of α2,3- and α2,6-sialyltransferases and α1,3/4-fucosyltransferase for the synthesis of Lewis-active glycolipids was not positively correlated with the amounts of the respective glycolipids, probably due to the epigenetic regulation of transferases in the overall metabolic pathways for lacto-series glycolipids. However, the amounts of GM3 and GD3 with short carbohydrate chains correlated with the relative intensities of GM3 and GD3 synthase gene expression, respectively. Among ovarian carcinoma-derived cell lines, the serous cystadenocarcinoma-derived ones exhibited a lower frequency of Lewis-active glycolipid expression than the other carcinoma-derived ones, which was similar to that in the respective tissues. Thus, malignancy-related Lewis-active glycolipids were shown to be regulated in different modes in ovarian serous cystadenocarcinomas and the other carcinomas. PMID:22870113

  20. On-line surfactant monitoring

    SciTech Connect

    Mullen, K.I.; Neal, E.E.; Soran, P.D.; Smith, B.

    1995-04-01

    This group has developed a process to extract metal ions from dilute aqueous solutions. The process uses water soluble polymers to complex metal ions. The metal/polymer complex is concentrated by ultrafiltration and the metals are recovered by a pH adjustment that frees the metal ions. The metal ions pass through the ultrafiltration membrane and are recovered in a concentrated form suitable for reuse. Surfactants are present in one of the target waste streams. Surfactants foul the costly ultrafiltration membranes. It was necessary to remove the surfactants before processing the waste stream. This paper discusses an on-line device the authors fabricated to monitor the process stream to assure that all the surfactant had been removed. The device is inexpensive and sensitive to very low levels of surfactants.

  1. Computer simulations of lung surfactant.

    PubMed

    Baoukina, Svetlana; Tieleman, D Peter

    2016-10-01

    Lung surfactant lines the gas-exchange interface in the lungs and reduces the surface tension, which is necessary for breathing. Lung surfactant consists mainly of lipids with a small amount of proteins and forms a monolayer at the air-water interface connected to bilayer reservoirs. Lung surfactant function involves transfer of material between the monolayer and bilayers during the breathing cycle. Lipids and proteins are organized laterally in the monolayer; selected species are possibly preferentially transferred to bilayers. The complex 3D structure of lung surfactant and the exact roles of lipid organization and proteins remain important goals for research. We review recent simulation studies on the properties of lipid monolayers, monolayers with phase coexistence, monolayer-bilayer transformations, lipid-protein interactions, and effects of nanoparticles on lung surfactant. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26922885

  2. Isolation of two glycolipid transfer proteins from bovine brain: reactivity toward gangliosides and neutral glycosphingolipids.

    PubMed

    Gammon, C M; Vaswani, K K; Ledeen, R W

    1987-09-22

    Two glycolipid transfer proteins that catalyze the transfer of gangliosides and neutral glycosphingolipids from phosphatidylcholine vesicles to erythrocyte ghosts have been isolated from calf brain. Purification procedures included differential centrifugation, precipitation at pH 5.1, ammonium sulfate precipitation, and gel filtration on Sephadex G-50 and G-75. The final stage employed fast protein liquid chromatography (Mono S), producing two peaks of activity. Apparent purity of the major peak (TP I) was approximately 85-90%, as judged by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis. That of the minor fraction (TP II) was less. The major band of both fractions had a molecular mass of approximately 20,000 daltons. Both proteins catalyzed the transfer of ganglioside GM1 as well as asialo-GM1, but transfer protein I was more effective with di- and trisialogangliosides. Transfer protein II appeared to be somewhat more specific for neutral glycolipids in that GA1 was transferred more rapidly than any of the gangliosides; however, lactosylceramide transfer was relatively slow. Neither protein catalyzed transfer of phosphatidylcholine. PMID:3689771

  3. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle

    PubMed Central

    Ishikawa, Eri; Ishikawa, Tetsuaki; Morita, Yasu S.; Toyonaga, Kenji; Yamada, Hisakata; Takeuchi, Osamu; Kinoshita, Taroh; Akira, Shizuo; Yoshikai, Yasunobu

    2009-01-01

    Tuberculosis remains a fatal disease caused by Mycobacterium tuberculosis, which contains various unique components that affect the host immune system. Trehalose-6,6′-dimycolate (TDM; also called cord factor) is a mycobacterial cell wall glycolipid that is the most studied immunostimulatory component of M. tuberculosis. Despite five decades of research on TDM, its host receptor has not been clearly identified. Here, we demonstrate that macrophage inducible C-type lectin (Mincle) is an essential receptor for TDM. Heat-killed mycobacteria activated Mincle-expressing cells, but the activity was lost upon delipidation of the bacteria; analysis of the lipid extracts identified TDM as a Mincle ligand. TDM activated macrophages to produce inflammatory cytokines and nitric oxide, which are completely suppressed in Mincle-deficient macrophages. In vivo TDM administration induced a robust elevation of inflammatory cytokines in sera and characteristic lung inflammation, such as granuloma formation. However, no TDM-induced lung granuloma was formed in Mincle-deficient mice. Whole mycobacteria were able to activate macrophages even in MyD88-deficient background, but the activation was significantly diminished in Mincle/MyD88 double-deficient macrophages. These results demonstrate that Mincle is an essential receptor for the mycobacterial glycolipid, TDM. PMID:20008526

  4. Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2011-02-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. In this study, we succeeded in the preparation of a novel MEL homolog having no acetyl groups, namely MEL-D. MEL-D was synthesized by lipase-catalyzed hydrolysis of acetyl groups from a known MEL, and identified as 4-O-[2',3'-di-O-alka(e)noyl-β-d-mannopyranosyl]-(2R,3S)-erythritol. The obtained MEL-D showed a higher critical aggregation concentration (CAC=1.2 × 10(-5)M) and hydrophilicity compared to known MELs, retaining an excellent surface tension lowering activity (the surface tension at the CAC was 24.5mN/m). In addition, we estimated the binary phase diagram of the MEL-D-water system based on a combination of visual inspection, polarized optical microscopy, and SAXS measurement. From these results, MEL-D was found to self-assemble into a lamellar (L(α)) structure over all ranges of concentration. Meanwhile, the one-phase L(α) region of MEL-D was extended wider than those of known MELs. MEL-D might keep more water between the polar layers in accordance with the extension of the interlayer spacing (d). These results suggest that the newly obtained MEL-D would facilitate the application of MELs in various fields as a lamellar-forming glycolipid with higher hydrate ability. PMID:21163471

  5. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    PubMed

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products. PMID:22790172

  6. The neurite-initiating effect of microbial extracellular glycolipids in PC12 cells.

    PubMed

    Isoda, H; Shinmoto, H; Matsumura, M; Nakahara, T

    1999-09-01

    The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. PMID:19003137

  7. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.

    PubMed

    Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments. PMID:22247593

  8. The processing and presentation of lipids and glycolipids to the immune system.

    PubMed

    Vartabedian, Vincent F; Savage, Paul B; Teyton, Luc

    2016-07-01

    The recognition of CD1-lipid complexes by T cells was discovered 20 years ago and has since been an emerging and expanding field of investigation. Unlike protein antigens, which are presented on MHC class I and II molecules, lipids can only be presented by CD1 molecules, a unique family of MHC-like proteins whose singularity is a hydrophobic antigen-binding groove. The processing and loading of lipid antigens inside this groove of CD1 molecules require localization to endosomal and lysosomal subcellular compartments and their acidic pHs. This particular environment provides the necessary glycolytic enzymes and lipases that process lipid and glycolipid antigens, as well as a set of lipid transfer proteins that load the final version of the antigen inside the groove of CD1. The overall sequence of events needed for efficient presentation of lipid antigens is now understood and presented in this review. However, a large number of important details have been elusive. This elusiveness is linked to the inherent technical difficulties of studying lipids and the lipid-protein interface in vitro and in vivo. Here, we will expose some of those limitations and describe new approaches to address them during the characterization of lipids and glycolipids antigen presentation. PMID:27319346

  9. Major surface antigen, P30, of Toxoplasma gondii is anchored by a glycolipid

    SciTech Connect

    Nagel, S.D.; Boothroyd, J.C.

    1989-04-05

    P30, the major surface antigen of the parasitic protozoan Toxoplasma gondii, can be specifically labeled with (/sup 3/H)palmitic acid and with myo-(2-/sup 3/H)inositol. The fatty acid label can be released by treatment of P30 with phosphatidylinositol-specific phospholipase C (PI-PLC). Such treatment exposes an immunological cross-reacting determinant first described on Trypanosoma brucei variant surface glycoprotein. PI-PLC cleavage of intact parasites metabolically labeled with (/sup 35/S)methionine results in the release of intact P30 polypeptide in a form which migrates faster in polyacrylamide gel electrophoresis. These results argue that P30 is anchored by a glycolipid. Results from thin layer chromatography analysis of purified (/sup 3/H) palmitate-labeled P30 treated with PI-PLC, together with susceptibility to mild alkali hydrolysis and to cleavage with phospholipase A2, suggest that the glycolipid anchor of T. gondii P30 includes a 1,2-diacylglycerol moiety.

  10. Mycobacteria glycolipids as potential pathogenicity effectors: alteration of model and natural membranes.

    PubMed

    Sut, A; Sirugue, S; Sixou, S; Lakhdar-Ghazal, F; Tocanne, J F; Lanéelle, G

    1990-09-11

    Four mycobacterial wall glycolipids were tested for their effects on phospholipidic liposome organization and passive permeability and on oxidative phosphorylation of isolated mitochondria. From fluorescence polarization of diphenylhexatriene performed on liposomes it was concluded that the two trehalose derivatives (dimycoloyltrehalose and polyphthienoyltrehalose) rigidified the fluid state of liposomes, the triglycosyl phenolphthiocerol slightly fluidized the gel state, while the peptidoglycolipid ("apolar" mycoside C) just shifted the phase transition temperature upward. Dimycoloyltrehalose was without effect on liposome passive permeability, as estimated from dicarboxyfluorescein leak rates, and polyphthienoyltrehalose and triglycosyl phenolphthiocerol slightly decreased leaks, while mycoside C dramatically increased leaks. Activity of these lipids on mitochondrial oxidative phosphorylation was examined. The two trehalose derivatives have been tested previously: both had the same type of inhibitory activity, dimycoloyltrehalose being the most active. Triglycosyl phenolphthiocerol was inactive. Mycoside C was very active, with effects resembling those of classical uncouplers: this suggested that its activity on mitochondria was related to its effect on permeability. All these membrane alterations were called nonspecific because it is likely that they result from nonspecific lipid-lipid interactions, and not from recognition between specific molecular structures. Such nonspecific interactions could be at the origin of some of the effects of mycobacteria glycolipids on cells of the immune system observed in the last few years. PMID:2123718

  11. Surfactant induced autophobing.

    PubMed

    Bera, B; Duits, M H G; Cohen Stuart, M A; van den Ende, D; Mugele, F

    2016-05-18

    Surfactant adsorption in a three-phase system and its influence on wetting properties are relevant in various applications. Here, we report a hitherto not observed phenomenon, namely the retraction of an aqueous drop on hydrophilic solid substrates (which we refer to as 'autophobing') in ambient oil containing water-insoluble fatty acids, caused by the deposition of these fatty acids from the ambient oil onto the solid substrate. AFM measurements confirm that the surfactant is deposited on the solid by the moving contact line. This leads to a more hydrophobic substrate, the retraction of the contact line and a concomitant increase in the contact angle. The deposition process is enabled by the formation of a reaction product between deprotonated fatty acids and Ca(2+) ions at the oil/water interface. We investigate how the transition to a new equilibrium depends on the concentrations of the fatty acids, the aqueous solute, the chain lengths of the fatty acid, and the types of alkane solvent and silica or mica substrates. This phenomenon is observed on both substrates and for all explored combinations of fatty acids and solvents and thus appears to be generic. In order to capture the evolution of the contact angle, we develop a theoretical model in which the rate of adsorption at the oil-water interface governs the overall kinetics of autophobing, and transfer to the solid is determined by a mass flux balance (similar to a Langmuir Blodgett transfer). PMID:27102975

  12. Surfactant protein B deficiency: insights into surfactant function through clinical surfactant protein deficiency.

    PubMed

    Thompson, M W

    2001-01-01

    Surfactant protein B (SP-B) deficiency is a disorder of surfactant function with complete or transient absence of SP-B in term neonates. SP-B, 1 of 4 described surfactant-associated proteins, plays a key role in surfactant metabolism, particularly in intracellular packaging of surfactant components, formation of tubular myelin, and the presentation of the surfactant phospholipid monolayer to the air-fluid interface within the alveolus. Neonates with clinical SP-B deficiency best demonstrate the key role of SP-B in surfactant function. "Classic" deficiency results in severe respiratory failure in term infants and death unless lung transplantation is performed. Because the initial description of complete deficiency secondary to a homozygous frameshift mutation in codon 121 of the SP-B cDNA, partial deficiencies with differing genetic backgrounds and less severe clinical courses have been reported. These partial deficiency states may provide a clearer picture of genotype/phenotype relationships in SP-B function and surfactant metabolism. SP-B deficiency or dysfunction may be more common than once thought and may play a significant role in neonatal lung disease. PMID:11202476

  13. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  14. Genetic disorders of surfactant homeostasis.

    PubMed

    Whitsett, Jeffrey A; Wert, Susan E; Xu, Yan

    2005-01-01

    Adaptation to air breathing at birth requires the precise orchestration of cellular processes to initiate fluid clearance, enhance pulmonary blood flow, and to synthesize and secrete pulmonary surfactant needed to reduce surface tension at the air-liquid interface in the alveoli. Genetic programs regulating the synthesis of the surfactant proteins and lipids required for the production and function of pulmonary surfactant are highly conserved across vertebrates, and include proteins that regulate the synthesis and packaging of pulmonary surfactant proteins and lipids. Surfactant proteins B and C (SP-B and -C) are small, uniquely hydrophobic proteins that play important roles in the stability and spreading of surfactant lipids in the alveolus. Deletion or mutations in SP-B and -C cause acute and chronic lung disease in neonates and infants. SP-B and -C are synthesized and packaged with surfactant phospholipids in lamellar bodies. Normal lamellar body formation requires SP-B and a member of the ATP-binding cassette (ABC) family of ATP-dependent membrane-associated transport proteins, ABCA3. Mutations in ABCA3 cause fatal respiratory disease in newborns and severe chronic lung disease in infancy. Expression of SP-B, -C, and ABCA3 are coregulated during late gestation by transcriptional programs influenced by thyroid transcription factor-1 and forkhead box a2, transcription factors that regulate both differentiation of the respiratory epithelium and transcription of genes required for perinatal adaptation to air breathing. PMID:15985750

  15. Surfactant and process for enhanced oil recovery

    SciTech Connect

    Stapp, P. R.

    1985-03-12

    A novel surfactant is formed by reacting maleic anhydride with a polynuclear aromatic compound having a molecular weight of at least 155. A novel surfactant system useful in enhanced oil recovery containing the above surfactant is also provided. In addition, an improved process for the enhanced recovery of oil is provided utilizing the novel surfactant system.

  16. Strain variations in the murine cellular immune response to the phenolic glycolipid I antigen of Mycobacterium leprae.

    PubMed Central

    Koster, F T; Teuscher, C; Matzner, P; Umland, E; Yanagihara, D; Brennan, P J; Tung, K S

    1986-01-01

    The cellular immune response to the Mycobacterium leprae-specific phenolic glycolipid I was examined in inbred mice immunized with M. leprae by in vivo delayed cutaneous hypersensitivity and in vitro lymphocyte proliferation. Whereas all mouse strains responded to M.leprae-induced delayed-type hypersensitivity and lymphocyte proliferation, only BALB.K was responsive in both assays to the glycolipid. Responsiveness was determined in part by non-H-2 genes, while the influence of H-2 genes was not apparent. Among congenic BALB/c mice differing only at Igh-C allotype loci, variations in responsiveness were found in both delayed-type hypersensitivity and lymphocytes proliferation assays, indicating a possible role for Igh-C loci-linked genes. Unresponsiveness in the lymphocyte proliferation assay to the glycolipid was inherited as a dominant trait in one set of responder X nonresponder F1 progeny. We conclude that after immunization with M. leprae organisms, the cell-mediated responses to the glycolipid, endowed with a single carbohydrate epitope, are under polygenic control, predominantly non-H-2-linked genes. PMID:3510979

  17. Draft Genome Sequence of the Yeast Pseudozyma antarctica Type Strain JCM10317, a Producer of the Glycolipid Biosurfactants, Mannosylerythritol Lipids

    PubMed Central

    Saika, Azusa; Koike, Hideaki; Hori, Tomoyuki; Fukuoka, Tokuma; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    The basidiomycetous yeast Pseudozyma antarctica is known as a producer of industrial enzymes and the extracellular glycolipids, mannosylerythritol lipids. Here, we report the draft genome sequence of the type strain JCM10317. The draft genome assembly has a size of 18.1 Mb and a G+C content of 60.9%, and it consists of 197 scaffolds. PMID:25291760

  18. Draft Genome Sequence of the Yeast Pseudozyma antarctica Type Strain JCM10317, a Producer of the Glycolipid Biosurfactants, Mannosylerythritol Lipids.

    PubMed

    Saika, Azusa; Koike, Hideaki; Hori, Tomoyuki; Fukuoka, Tokuma; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai; Morita, Tomotake

    2014-01-01

    The basidiomycetous yeast Pseudozyma antarctica is known as a producer of industrial enzymes and the extracellular glycolipids, mannosylerythritol lipids. Here, we report the draft genome sequence of the type strain JCM10317. The draft genome assembly has a size of 18.1 Mb and a G+C content of 60.9%, and it consists of 197 scaffolds. PMID:25291760

  19. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations. PMID:12640270

  20. Surfactant-enhanced aquifier remediation

    SciTech Connect

    Fountain, J.C.

    1996-12-31

    Surfactants can be used to rapidly remove NAPL from contaminated aquifers. They are effective for virtually any organic contaminant. Use in LNAPL contaminated sites requires adequate hydraulic conductivity and control of flow using either hydraulic or physical methods. The presence of DNAPL requires consideration of vertical mobility; a competent confining layer (aquitard) is required if additional aquifers are present at greater depths. Surfactant processes, whether based upon mobilization or solubilization, can be effective at mass removal, but cannot be expected to provide resortation to drinking water standards. The fraction of mass removal, and the cost of remediation using surfactants are dependent upon a sites hydrogeology. Both minimization of cost and maximization of NAPL removal requires detailed characterization of sites contaminant distribution and hydrogeology. Assessment of the feasibility of surfactant-enhanced remediation is dependent upon a detailed site characterization.

  1. Protein recovery from surfactant precipitation.

    PubMed

    Cheng, Shu Ian; Stuckey, David C

    2011-01-01

    The recovery of lysozyme from an aqueous solution containing precipitated lysozyme-AOT complexes formed by the direct addition of sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) to a lysozyme solution was studied using both solvents, and a counterionic surfactant. Ethanol,methanol and solvent mixtures dissolved the surfactant precipitate and recovered lysozyme as a solid. Recovery efficiency and protein stability varied with the type of solvent used. An entirely different method of recovery was also evaluated using a counterionic surfactant: tri-octylmethylammonium chloride (TOMAC) which bound to AOT releasing lysozyme into solution.Complete recovery (100%) of lysozyme was achieved at a molar ratio of 2:1(TOMAC:AOT), and the original protein activity was maintained in the final aqueous phase.The recovered lysozyme retained its secondary structure as observed in circular dichroism(CD) spectra. Specific activity studies show that counterionic surfactant extraction does not alter the biological activity of the enzyme. PMID:22235487

  2. pH-triggered formation of nanoribbons from yeast-derived glycolipid biosurfactants.

    PubMed

    Cuvier, Anne-Sophie; Berton, Jan; Stevens, Christian V; Fadda, Giulia C; Babonneau, Florence; Van Bogaert, Inge N A; Soetaert, Wim; Pehau-Arnaudet, Gérard; Baccile, Niki

    2014-06-14

    In the present paper, we show that the saturated form of acidic sophorolipids, a family of industrially scaled bolaform microbial glycolipids, unexpectedly forms chiral nanofibers only at pH below 7.5. In particular, we illustrate that this phenomenon derives from a subtle cooperative effect of molecular chirality, hydrogen bonding, van der Waals forces and steric hindrance. The pH-responsive behaviour was shown by Dynamic Light Scattering (DLS), pH-titration and Field Emission Scanning Electron Microscopy (FE-SEM) while the nanoscale chirality was evidenced by Circular Dichroism (CD) and cryo Transmission Electron Microscopy (cryo-TEM). The packing of sophorolipids within the ribbons was studied using Small Angle Neutron Scattering (SANS), Wide Angle X-ray Scattering (WAXS) and 2D (1)H-(1)H through-space correlations via Nuclear Magnetic Resonance under very fast (67 kHz) Magic Angle Spinning (MAS-NMR). PMID:24728486

  3. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B.

    PubMed

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2008-08-01

    Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants produced by yeast strains of the genus Pseudozyma. In this study, the aqueous-phase behavior of a new monoacetyl MEL derivative, 1-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-d-mannopyranosyl)-d-erythritol (MEL-B), was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), confocal laser scanning microscopy (CLSM), and differential scanning calorimetry (DSC). The present MEL-B was found to self-assemble into a lamellar (L(alpha)) phase over remarkably wide concentration and temperature ranges. According to SAXS measurement, the interlayer spacing (d) was estimated to be almost constant (about 4.7 nm) at the low MEL-B concentration (60 wt.%) region, the d-spacing gradually decreased to 3.1 nm with an increase in the MEL-B concentration. The thermal stability of the liquid crystalline phase was investigated by DSC measurement. The obtained L(alpha) phase was found to be stable up to 95 degrees C below a MEL-B concentration of 85 wt.%; then, the melting temperature of the liquid crystalline phase dramatically decreased with an increase in MEL-B concentration (above 85 wt.%). Furthermore, we found relatively large vesicles (1-5 microm) at the low MEL-B concentration using CLSM observation. The trapped volume of the obtained MEL-B vesicle was estimated to be about 0.42 microL/mumol by glucose dialysis method. These results suggest that the natural glycolipid biosurfactant, the newly found MEL-B, would be useful in various fields of applications as an L(alpha) phase- and/or vesicle-forming lipid. PMID:18456469

  4. Enterococcus faecalis Glycolipids Modulate Lipoprotein-Content of the Bacterial Cell Membrane and Host Immune Response

    PubMed Central

    Otto, Andreas; Sava, Irina G.; Wobser, Dominique; Bao, Yinyin; Hese, Katrin; Broszat, Melanie; Henneke, Philipp; Becher, Dörte; Huebner, Johannes

    2015-01-01

    In this study, we investigated the impact of the cell membrane composition of E. faecalis on its recognition by the host immune system. To this end, we employed an E. faecalis deletion mutant (ΔbgsA) that does not synthesize the major cell membrane glycolipid diglycosyl-diacylglycerol (DGlcDAG). Proteomic analysis revealed that 13 of a total of 21 upregulated surface-associated proteins of E. faecalis ΔbgsA were lipoproteins. This led to a total lipoprotein content in the cell membrane of 35.8% in ΔbgsA compared to only 9.4% in wild-type bacteria. Increased lipoprotein content strongly affected the recognition of ΔbgsA by mouse macrophages in vitro with an increased stimulation of TNF-α production by heat-fixed bacteria and secreted antigens. Inactivation of the prolipoprotein diacylglycerol transferase (lgt) in ΔbgsA abrogated TNF-α induction by a ΔbgsA_lgt double mutant indicating that lipoproteins mediate increased activation of mouse macrophages by ΔbgsA. Heat-fixed ΔbgsA bacteria, culture supernatant, or cell membrane lipid extract activated transfected HEK cells in a TLR2-dependent fashion; the same was not true of wild-type bacteria. In mice infected intraperitoneally with a sublethal dose of E. faecalis we observed a 70% greater mortality in mice infected with ΔbgsA compared with wild-type-infected mice. Increased mortality due to ΔbgsA infection was associated with elevated plasma levels of the inflammatory cytokines TNF-α, IL-6 and MIP-2. In summary, our results provide evidence that an E. faecalis mutant lacking its major bilayer forming glycolipid DGlcDAG upregulates lipoprotein expression leading to increased activation of the host innate immune system and virulence in vivo. PMID:26172831

  5. Th1-skewed tissue responses to a mycolyl glycolipid in mycobacteria-infected rhesus macaques

    SciTech Connect

    Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki; Komori, Takaya; Nakamura, Takashi; Igarashi, Tatsuhiko; Harashima, Hideyoshi; Sugita, Masahiko

    2013-11-08

    Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cell responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection.

  6. Soluble human TLR2 ectodomain binds diacylglycerol from microbial lipopeptides and glycolipids

    PubMed Central

    Jiménez-Dalmaroni, Maximiliano J; Radcliffe, Catherine M; Harvey, David J; Wormald, Mark R; Verdino, Petra; Ainge, Gary D; Larsen, David S; Painter, Gavin F; Ulevitch, Richard; Beutler, Bruce; Rudd, Pauline M; Dwek, Raymond A; Wilson, Ian A

    2015-01-01

    Toll-like receptors (TLRs) are key innate immune receptors that recognize conserved features of biological molecules that are found in microbes. In particular, TLR2 has been reported to be activated by different kinds of microbial ligands. To advance our understanding of the interaction of TLR2 with its ligands, the recombinant human TLR2 ectodomain (hTLR2ED) was expressed using a baculovirus/insect cell expression system, and its biochemical as well as ligand binding properties were investigated. The hTLR2ED binds synthetic bacterial and mycoplasmal lipopeptides, lipoteichoic acid (LTA) from Staphylococcus aureus, and synthetic lipoarabinomannan precursors from Mycobacterium at extracellular physiological conditions, in the absence of its co-receptors TLR1 and TLR6. We also determined that lipopeptides and glycolipids cannot bind simultaneously to hTLR2ED and that the phosphatidyl inositol mannoside 2 (Pim2) is the minimal lipoarabinomannan structure for binding to hTLR2ED. Binding of hTLR2ED to Pim4, which contains a diacylglycerol group with one of its acyl chain containing 19 carbon atoms, indicates that hTLR2ED can bind ligands with acyl chains longer than 16 carbon atoms. In summary, our data indicate that diacylglycerol is the ligand moiety of microbial glycolipids and lipoproteins that bind to hTLR2ED and that both types of ligands bind to the same binding site of hTLR2ED. The design of novel inhibitors of TLR2, based on their ability to bind to TLR2 but not activate the TLR2 signaling pathway, may lead to the development of novel treatments for septic shock caused by Gram- positive bacteria. PMID:24591200

  7. pH-Driven Self-Assembly of Acidic Microbial Glycolipids.

    PubMed

    Baccile, Niki; Selmane, Mohamed; Le Griel, Patrick; Prévost, Sylvain; Perez, Javier; Stevens, Christian V; Delbeke, Elisabeth; Zibek, Susanne; Guenther, Michael; Soetaert, Wim; Van Bogaert, Inge N A; Roelants, Sophie

    2016-06-28

    Microbial glycolipids are a class of well-known compounds, but their self-assembly behavior is still not well understood. While the free carboxylic acid end group makes some of them interesting stimuli-responsive compounds, the sugar hydrophilic group and the nature of the fatty acid chain make the understanding of their self-assembly behavior in water not easy and highly unpredictable. Using cryo-transmission electron microscopy (cryo-TEM) and both pH-dependent in situ and ex situ small angle X-ray scattering (SAXS), we demonstrate that the aqueous self-assembly at room temperature (RT) of a family of β-d-glucose microbial glycolipids bearing a saturated and monounsaturated C18 fatty acid chain cannot be explained on the simple basis of the well-known packing parameter. Using the "pH-jump" process, we find that the molecules bearing a monosaturated fatty acid forms vesicles below pH 6.2, as expected, but the derivative with a saturated fatty acid forms infinite bilayer sheets below pH 7.8, instead of vesicles. We show that this behavior can be explained on the different bilayer membrane elasticity as a function of temperature. Membranes are either flexible or stiff for experiments performed at a temperature respectively above or below the typical melting point, TM, of the lipidic part of each compound. Finally, we also show that the disaccharide-containing acidic cellobioselipid forms a majority of chiral fibers, instead of the expected micelles. PMID:27307097

  8. Pulmonary Surfactant: An Immunological Perspective

    PubMed Central

    Chroneos, Zissis C.; Sever-Chroneos, Zvjezdana; Shepherd, Virginia L.

    2009-01-01

    Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; their distinct interactions with surfactant phospholipids are necessary for the ultra-structural organization, stability, metabolism, and lowering of surface tension. In addition, SP-A and SP-D bind pathogens, inflict damage to microbial membranes, and regulate microbial phagocytosis and activation or deactivation of inflammatory responses by alveolar macrophages. SP-A and SP-D, also known as pulmonary collectins, mediate microbial phagocytosis via SP-A and SP-D receptors and the coordinated induction of other innate receptors. Several receptors (SP-R210, CD91/calreticulin, SIRPα, and toll-like receptors) mediate the immunological functions of SP-A and SP-D. However, accumulating evidence indicate that SP-B and SP-C and one or more lipid constituents of surfactant share similar immuno-regulatory properties as SP-A and SP-D. The present review discusses current knowledge on the interaction of surfactant with lung innate host defense. PMID:20054141

  9. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  10. Charged nanoparticles as supramolecular surfactants for controlling the growth and stability of microcrystals

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Bartlomiej; Bishop, Kyle J. M.; Lagzi, Istvan; Wang, Dawei; Wei, Yanhu; Han, Shuangbing; Grzybowski, Bartosz A.

    2012-03-01

    Microcrystals of desired sizes are important in a range of processes and materials, including controlled drug release, production of pharmaceutics and food, bio- and photocatalysis, thin-film solar cells and antibacterial fabrics. The growth of microcrystals can be controlled by a variety of agents, such as multivalent ions, charged small molecules, mixed cationic-anionic surfactants, polyelectrolytes and other polymers, micropatterned self-assembled monolayers, proteins and also biological organisms during biomineralization. However, the chief limitation of current approaches is that the growth-modifying agents are typically specific to the crystalizing material. Here, we show that oppositely charged nanoparticles can function as universal surfactants that control the growth and stability of microcrystals of monovalent or multivalent inorganic salts, and of charged organic molecules. We also show that the solubility of the microcrystals can be further tuned by varying the thickness of the nanoparticle surfactant layers and by reinforcing these layers with dithiol crosslinks.

  11. Surfactant therapy and spontaneous diuresis.

    PubMed

    Bhat, R; John, E; Diaz-Blanco, J; Ortega, R; Fornell, L; Vidyasagar, D

    1989-03-01

    The effect of artificial surfactant therapy on renal function and the onset of spontaneous diuresis was prospectively evaluated in 19 infants with hyaline membrane disease in a double-blind, controlled study. Twelve infants were in the surfactant group; seven infants received placebo (0.9% saline solution). There was no difference in the time of onset of spontaneous diuresis (as defined by output greater than or equal to 80% of intake). The glomerular filtration rate, determined by endogenous creatinine clearance, was also similar in the surfactant- and placebo-treated infants during the first 3 days of life. The fractional excretion of sodium was significantly higher in the placebo group at 24 hours and 36 hours. Infants in the placebo group had a higher negative sodium balance than those in the surfactant group. Ventilatory status improved significantly soon after surfactant treatment, as evidenced by improvement in the alveolar/arterial oxygen pressure ratio and by a lower mean airway pressure. These data suggest that ventilatory status can be improved without diuresis; the factors that regulate diuresis are multiple and not fully understood. PMID:2646416

  12. Forensic Analysis of BIOS Chips

    NASA Astrophysics Data System (ADS)

    Gershteyn, Pavel; Davis, Mark; Shenoi, Sujeet

    Data can be hidden in BIOS chips without hindering computer performance. This feature has been exploited by virus writers and computer game enthusiasts. Unused BIOS storage can also be used by criminals, terrorists and intelligence agents to conceal secrets. However, BIOS chips are largely ignored in digital forensic investigations. Few techniques exist for imaging BIOS chips and no tools are available specifically for analyzing BIOS data.

  13. Genetic regulations of the biosynthesis of microbial surfactants: an overview.

    PubMed

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2008-01-01

    Microbial biosurfactants are surface active metabolites synthesized by microbes growing on a variety of substrates. In spite of having great potential for commercial, therapeutic and environmental applications, industrial level production has not been realized for their low yields and productivities. One vital factor determining their biosynthesis is the genetic makeup of the producer organisms. Studies on molecular genetics and biochemistry of the synthesis of several biosurfactants have revealed the operons, the enzymes and the metabolic pathways required for their extracellular production. Surfactin, a cyclic lipopeptide biosurfactant is a potent antimicrobial agent and is produced as a result of non-ribosomal biosynthesis catalyzed by a large multienzyme peptide synthetase complex called the surfactin synthetase. Pathways for the synthesis of other lipopeptides such as iturin, lichenysin and arthrofactin are also mediated by similar enzyme complexes. These non-ribosomal peptide synthetases (NRPSs) responsible for lipopeptide biosynthesis display a high degree of structural similarity among themselves even from distant microbial species. Plasmid-encoded- rhlA, B, R and I genes of rhl quorum sensing system are required for production of glycolipid biosurfactants by Pseudomonas species. Molecular genetics of biosynthesis of alasan and emulsan by Acinetobacter species and of the fungal biosurfactants such as mannosylerythritol lipids (MEL) and hydrophobins have been deciphered. However, limited genetic information is available about biosynthesis of other biosurfactants such as viscosin, amphisin and putisolvin produced by some strains of Pseudomonas species. Understanding of the genetic regulatory mechanisms would help to develop metabolically engineered hyper-producing strains with better product characteristics and acquired capability of utilizing cheap agro-industrial wastes as substrates. This article thus provides an overview of the role and importance of

  14. Microbial production of surfactants and their commercial potential.

    PubMed Central

    Desai, J D; Banat, I M

    1997-01-01

    Many microorganisms, especially bacteria, produce biosurfactants when grown on water-immiscible substrates. Biosurfactants are more effective, selective, environmentally friendly, and stable than many synthetic surfactants. Most common biosurfactants are glycolipids in which carbohydrates are attached to a long-chain aliphatic acid, while others, like lipopeptides, lipoproteins, and heteropolysaccharides, are more complex. Rapid and reliable methods for screening and selection of biosurfactant-producing microorganisms and evaluation of their activity have been developed. Genes involved in rhamnolipid synthesis (rhlAB) and regulation (rhlI and rhlR) in Pseudomonas aeruginosa are characterized, and expression of rhlAB in heterologous hosts is discussed. Genes for surfactin production (sfp, srfA, and comA) in Bacillus spp. are also characterized. Fermentative production of biosurfactants depends primarily on the microbial strain, source of carbon and nitrogen, pH, temperature, and concentration of oxygen and metal ions. Addition of water-immiscible substrates to media and nitrogen and iron limitations in the media result in an overproduction of some biosurfactants. Other important advances are the use of water-soluble substrates and agroindustrial wastes for production, development of continuous recovery processes, and production through biotransformation. Commercialization of biosurfactants in the cosmetic, food, health care, pulp- and paper-processing, coal, ceramic, and metal industries has been proposed. However, the most promising applications are cleaning of oil-contaminated tankers, oil spill management, transportation of heavy crude oil, enhanced oil recovery, recovery of crude oil from sludge, and bioremediation of sites contaminated with hydrocarbons, heavy metals, and other pollutants. Perspectives for future research and applications are also discussed. PMID:9106364

  15. Production of glycolipid biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties.

    PubMed

    Morita, Tomotake; Ishibashi, Yuko; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2009-10-01

    Glycolipid biosurfactants, mannosylerythritol lipids (MELs), were produced from glucose and sucrose without vegetable oils. Pseudozyma antarctica JCM 10317, Ustilago maydis NBRC 5346, U. scitaminea NBRC 32730, and P. siamensis CBS 9960 produced mainly MEL-A, MEL-A, MEL-B, and MEL-C respectively. The sucrose-derived MELs showed excellent interfacial properties: low critical micelle concentration as well as that of oil-derived MELs. PMID:19809166

  16. Polymer/surfactant transport in micellar flooding

    SciTech Connect

    Chiou, C.S.; Kellerhals, G.E.

    1981-10-01

    For the surfactant formulations used (particular surfactant concentration, surfactant type, cosolvent type, cosolvent concentration, etc.), the results show that surfactant systems containing polymer as a mobility control agent may exhibit adverse polymer transport behavior during flow through porous media. Polymer generally lagged behind the surfactant even though the two species were injected simultaneously in the surfactant slug. This poor polymer transport definitely could have a detrimental effect on the efficiency of a micellar flooding process in the field. Phase studies show that when some surfactant systems containing xanthan gum are mixed with crude oil at various salinities, a polymer-rich, gel-like phase forms. The polymer lag phenomenon in core tests can be related to phase separation due to divalent cations generated in situ as a result of ion exchange with the clays and the surfactant. 18 refs.

  17. CHARACTERISTICS OF SURFACTANTS IN TOXICITY IDENTIFICATION EVALUATIONS

    EPA Science Inventory

    The behavior of a number of anionic, nonionic and cationic surfactants in manipulations associated with toxicity identification evaluations was studied. t was found that toxicity of the surfactants could be removed from aqueous samples via aeration, apparently through sublation. ...

  18. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  19. Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres.

    PubMed

    You, Jian; Wang, Zuhua; Du, Yongzhong; Yuan, Hong; Zhang, Peizun; Zhou, Jialin; Liu, Fei; Li, Chun; Hu, Fuqiang

    2013-06-01

    It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR

  20. Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Yamamoto, Shuhei; Kitagawa, Masaru; Sogabe, Atsushi; Kitamoto, Dai

    2008-01-01

    A basidiomycetous yeast, Pseudozyma graminicola CBS 10092, was found to accumulate a large amount of glycolipids in the cultured medium when grown on soybean oil as the sole carbon source. Based on thin layer chromatography, the extracellular glycolipids gave spots corresponding to those of mannosylerythritol lipids (MELs), which are highly functional and promising biosurfactants. From the structural characterization by 1H and 13C NMR, the main product was identified as 4-O-[(4'-mono-O-acetyl-2', 3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, which is a highly hydrophilic derivative of MELs known as MEL-C. According to high-performance liquid chromatography analysis, the main product, MEL-C, comprised approximately 85% of all the MELs, and the total amount reached approximately 10 g/L for 7 days. The fatty acids of the present MEL-C consisted of mainly C6, C8 and C14 acids, considerably different from those of MEL-C produced by other Pseudozyma strains such as P. antarctica and P. shanxiensis. The observed critical micelle concentration (CMC) and the surface-tension at CMC of the MEL-C were 4.0 x 10(-6) M and 24.2 mN/m, respectively, while those of MEL-A, the most intensively studied MEL, were 2.7 x 10(-6) M and 28.4 mN/m, respectively. This implied that the MEL-C has higher hydrophilicity than conventional MELs hitherto reported. In addition, on a water-penetration scan, the MEL-C efficiently formed the lamella phase (Lalpha) at a wide range of concentrations, indicating its excellent self-assembling properties. From these results, the newly identified MELs produced by P. graminicola are likely to have great potential for use in oil-in-water type emulsifiers and/or washing detergents, and would thus facilitate a broad range of applications for the promising yeast biosurfactants. PMID:18198469

  1. Functions and potential applications of glycolipid biosurfactants--from energy-saving materials to gene delivery carriers.

    PubMed

    Kitamoto, Dai; Isoda, Hiroko; Nakahara, Tadaatsu

    2002-01-01

    Biosurfactants (BS) produced by various microorganisms show unique properties (e.g., mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared to their chemical counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in environmental protection and energy-saving technology as well. Glycolipid BS are the most promising, due to high productivity from renewable resources and versatile biochemical properties. Mannosylerythritol lipids (MEL), which are glycolipid BS produced by a yeast Candida antarctrica, exhibit not only excellent interfacial properties but also remarkable differentiation-inducing activities against human leukemia cells. MEL also show a potential anti-agglomeration effect on ice particles in ice slurry used for cold thermal storage. Recently, the cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BS should broaden its applications in new advanced technologies. The current status of research and development on glycolipid BS, especially their function and potential applications, is discussed. PMID:16233292

  2. Removal of surfactants from hydrocarbons with alcohol

    SciTech Connect

    Aiello, R.P.; Poling, D.E.; Stefanidakis, G.

    1984-02-07

    A method is disclosed for removing hydrocarbon-soluble anionic surfactants from gasoline or kerosene boiling range hydrocarbons. The method comprises (a) contacting a hydrocarbon mixture containing surfactants with a lower alcohol which is miscible with the hydrocarbon mixture to extract the surfactants; (b) contacting the mixture with water or caustic solution to extract the lower alcohol and surfactants from the hydrocarbon mixture; (c) separating the water or caustic solution from the hydrocarbons; and (d) removing the hydrocarbons.

  3. Genetic Disorders of Surfactant Dysfunction

    PubMed Central

    Wert, Susan E.; Whitsett, Jeffrey A.; Nogee, Lawrence M.

    2010-01-01

    Mutations in the genes encoding the surfactant proteins B and C (SP-B and SP-C) and the phospholipid transporter, ABCA3, are associated with respiratory distress and interstitial lung disease in the pediatric population. Expression of these proteins is regulated developmentally, increasing with gestational age, and is critical for pulmonary surfactant function at birth. Pulmonary surfactant is a unique mixture of lipids and proteins that reduces surface tension at the air-liquid interface, preventing collapse of the lung at the end of expiration. SP-B and ABCA3 are required for the normal organization and packaging of surfactant phospholipids into specialized secretory organelles, known as lamellar bodies, while both SP-B and SP-C are important for adsorption of secreted surfactant phospholipids to the alveolar surface. In general, mutations in the SP-B gene SFTPB are associated with fatal respiratory distress in the neonatal period, and mutations in the SP-C gene SFTPC are more commonly associated with interstitial lung disease in older infants, children, and adults. Mutations in the ABCA3 gene are associated with both phenotypes. Despite this general classification, there is considerable overlap in the clinical and histologic characteristics of these genetic disorders. In this review, similarities and differences in the presentation of these disorders with an emphasis on their histochemical and ultrastructural features will be described, along with a brief discussion of surfactant metabolism. Mechanisms involved in the pathogenesis of lung disease caused by mutations in these genes will also be discussed. PMID:19220077

  4. Agglutination of lung surfactant with glucan.

    PubMed Central

    De Lucca, A J; Brogden, K A; French, A D

    1992-01-01

    Respirable cotton dust, implicated in the pathogenesis of byssinosis, contains a number of bioactive compounds. These include lipopolysaccharide (LPS), tannins, bacterial peptides, byssinosin, iacinilene C, and 1,3-beta-D-glucan. The exact aetiological agent of byssinosis in such dust has not been definitively identified nor has its mechanism of action on lower lung surfaces been determined. In the present study 1,3-beta-D-glucan, Enterobacter agglomerans LPS, and ovine pulmonary surfactant were mixed in varying combinations. After incubation, their characteristics were determined by sucrose density centrifugation, TLC, and carbohydrate analysis. Precipitates were found in mixtures containing surfactant-glucan and surfactant-glucan-LPS, but not in surfactant-LPS. Precipitates were not seen in the surfactant, LPS, and glucan controls. The formation of a precipitate did not increase the density of the surfactant glucan mixture when compared by density gradient centrifugation with the surfactant control. The interaction between surfactant and glucan was analysed by molecular modelling. The energy of a surfactant-glucan complex (60.07 kcal/mol) was calculated to be much lower than the sum of glucan (47.09 kcal/mol) and surfactant (30.98 kcal/mol) when added separately. The results indicate that 1,3-beta-D-glucan does interact with surfactant and this complex may play a part in the pathogenesis of byssinosis by altering lung physiology maintained by pulmonary surfactant. Images PMID:1463675

  5. SURFACTANT ENHANCED AQUIFER REMEDIATION WITH SURFACTANT REGENERATION/REUSE

    EPA Science Inventory

    A demonstration of surfactant-enhanced aquifer remediation was conducted during the spring of 1999 at Marine Corps Base, Camp LeJeune, NC. A PCE-DNAPL zone was identified and delineated by extensive soil sampling in 1997, and was further characteized by a partitioning interwell t...

  6. Deciphering the Glycolipid Code of Alzheimer's and Parkinson's Amyloid Proteins Allowed the Creation of a Universal Ganglioside-Binding Peptide

    PubMed Central

    Yahi, Nouara; Fantini, Jacques

    2014-01-01

    A broad range of microbial and amyloid proteins interact with cell surface glycolipids which behave as infectivity and/or toxicity cofactors in human pathologies. Here we have deciphered the biochemical code that determines the glycolipid-binding specificity of two major amyloid proteins, Alzheimer's β-amyloid peptide (Aβ) and Parkinson's disease associated protein α-synuclein. We showed that both proteins interact with selected glycolipids through a common loop-shaped motif exhibiting little sequence homology. This 12-residue domain corresponded to fragments 34-45 of α-synuclein and 5-16 of Aβ. By modulating the amino acid sequence of α-synuclein at only two positions in which we introduced a pair of histidine residues found in Aβ, we created a chimeric α-synuclein/Aβ peptide with extended ganglioside-binding properties. This chimeric peptide retained the property of α-synuclein to recognize GM3, and acquired the capacity to recognize GM1 (an Aβ-inherited characteristic). Free histidine (but not tryptophan or asparagine) and Zn2+ (but not Na+) prevented this interaction, confirming the key role of His-13 and His-14 in ganglioside binding. Molecular dynamics studies suggested that the chimeric peptide recognized cholesterol-constrained conformers of GM1, including typical chalice-shaped dimers, that are representative of the condensed cholesterol-ganglioside complexes found in lipid raft domains of the plasma membrane of neural cells. Correspondingly, the peptide had a particular affinity for raft-like membranes containing both GM1 and cholesterol. The chimeric peptide also interacted with several other gangliosides, including major brain gangliosides (GM4, GD1a, GD1b, and GT1b) but not with neutral glycolipids such as GlcCer, LacCer or asialo-GM1. It could inhibit the binding of Aβ1-42 onto neural SH-SY5Y cells and did not induce toxicity in these cells. In conclusion, deciphering the glycolipid code of amyloid proteins allowed us to create a universal

  7. Immunological characteristics of the glycolipid antigen of Leptospira interrogans serovar lai.

    PubMed Central

    Masuzawa, T; Nakamura, R; Shimizu, T; Iwamoto, Y; Morita, T; Yanagihara, Y

    1989-01-01

    The protective antigen (PAg), a glycolipid substance, was extracted from Leptospira interrogans serovar lai strain 017 with a chloroform-methanol-water (1:2:0.8 [vol/vol/vol]) solution and partially purified by silica gel column chromatography. The PAg was not detected by Coomassie brilliant blue staining in sodium dodecyl sulfate-polyacrylamide gel electrophoresis but was observed as a smearlike band, which corresponded to a 24- to 30-kilodalton standard protein, by silver staining. The outer envelope (OE) fraction showed the same band, suggesting that the PAg was one of the chemical components of the OE. The immunogenicity and protective activity of the PAg were compared with those of the OE. The PAg as well as the OE and whole cells was able to induce agglutinating antibody against L. interrogans. Furthermore, the immune sera exhibited opsonic activity against L. interrogans, as observed by measurement of chemical luminescence derived from reactive oxygen. The PAg exhibited protective activity in hamsters challenged with lethal doses of L. interrogans. Therefore, the antigen may be useful as a component vaccine against leptospiral infection. Images PMID:2744857

  8. Design, synthesis and in vitro evaluation of d-glucose-based cationic glycolipids for gene delivery.

    PubMed

    He, Chengxi; Wang, Shang; Liu, Meiyan; Zhao, Chunyan; Xiang, Shuanglin; Zeng, Youlin

    2016-02-01

    A cationic lipid consists of a hydrophilic headgroup, backbone and hydrophobic tails which have an immense influence on the transfection efficiency of the lipid. In this paper, two novel series of cationic cyclic glycolipids with a quaternary ammonium headgroup and different-length hydrophobic tails (dodecyl, tetradecyl, hexadecyl) have been designed and synthesized for gene delivery. One contains lipids 1-3 with two hydrophobic alkyl chains linked to the glucose ring directly via an ether link. The other contains lipids 4-6 with two hydrophobic chains on the positively charged nitrogen atoms. All of the lipids were characterized for their ability to bind to DNA, size, ζ-potential, and toxicity. Atomic force microscopy showed that the lipids and DNA-lipid complexes were sphere-like forms. The lipids were used to transfer enhanced green fluorescent protein (EGFP-C3) to HEK293 cells without a helper lipid, the results indicated that lipids 4-6 have better transfection efficiency, in particular lipids 5-6 have similar or better efficiency, compared with the commercial transfection reagent lipofectamine 2000. PMID:26670704

  9. Activation of fibroblast and papilla cells by glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Yamamoto, Shuhei; Suzuki, Michiko; Sogabe, Atsushi; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2010-01-01

    Mannosylerythritol lipids (MELs), the extracellular glycolipids produced from feedstock by yeasts belonging to the genus Pseudozyma, are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics, the cell activating property of MELs was investigated using cultured fibroblast and papilla cells, and a three-dimensional cultured human skin model. The di-acetylated MEL (MEL-A) produced from soybean oil significantly increased the viability of the fibroblast cells over 150% compared with that of control cells. On the other hand, no cell activation was observed by the treatment with MEL-A produced from olive oil. The mono-acetylated MEL (MEL-B) hardly increased the cell viability. The viability of the fibroblast cells decreased with the addition of more than 1 microg/L of MELs, whereas the cultured human skin cells showed high viability with 5 microg/L of MELs. Interestingly, the papilla cells were dramatically activated with 0.001 microg/L of MEL-A produced from soybean oil: the cell viability reached at 150% compared with that of control cells. Consequently, the present MEL-A produced from soybean oil should have a potential as a new hair growth agent stimulating the papilla cells. PMID:20625237

  10. Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Hiroko K; Kitamoto, Dai

    2007-03-01

    Pseudozyma antarctica is one of the best producers of the glycolipid biosurfactants known as mannosylerythritol lipids (MELs), which show not only excellent surface-active properties but also versatile biochemical actions. In order to obtain a variety of producers, all the species of the genus were examined for their production of MELs from soybean oil. Pseudozyma fusiformata, P. parantarctica and P. tsukubaensis were newly identified to be MEL producers. Of the strains tested, P. parantarctica gave the best yield of MELs (30 g L(-1)). The obtained yield corresponded to those of P. antarctica, P. aphidis and P. rugulosa, which are known high-level MEL producers. Interestingly, P. parantarctica and P. fusiformata produced mainly 4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alkanoyl)-beta-d-mannopyranosyl]-meso-erythritol (MEL-A), whereas P. tsukubaensis produced mainly 4-O-[(6'-mono-O-acetyl-2',3'-di-O-alkanoyl)-beta-d-mannopyranosyl]-meso-erythritol (MEL-B). Consequently, six of the nine species clearly produced MELs. Based on the MEL production pattern, the nine species seemed to fall into four groups: the first group produces large amounts of MELs; the second produces both MELs and other biosurfactants; the third mainly produces MEL-B; and the fourth is non-MEL-producing. Thus, MEL production may be an important taxonomic index for the Pseudozyma yeasts. PMID:17328742

  11. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids.

    PubMed

    da Costa, Elisabete; Silva, Joana; Mendonça, Sofia Hoffman; Abreu, Maria Helena; Domingues, Maria Rosário

    2016-05-01

    In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs' bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals. PMID:27213410

  12. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid.

    PubMed Central

    Saltiel, A R; Cuatrecasas, P

    1986-01-01

    Insulin binding to plasma membrane receptors results in the generation of substances that acutely mimic the actions of the hormone on certain target enzymes. Two such substances, which modulate the activity of the high-affinity cAMP phosphodiesterase (EC 3.1.4.17), have been purified from hepatic plasma membranes. The two have similar properties and activities but can be resolved by ion-exchange chromatography and high-voltage electrophoresis. They exhibit a net negative charge, even at pH 1.9, and an apparent molecular weight of approximately 1400. The generation of these substances from membranes by insulin can be reproduced by addition of a phosphatidylinositol-specific phospholipase C purified from Staphylococcus aureus. This enzyme is known to selectively hydrolyze phosphatidylinositol and release from membranes several proteins that are covalently linked to phosphatidylinositol by a glycan anchor. Both enzyme-modulating substances appear to be generated by the phosphodiesterase cleavage of a phosphatidylinositol-containing glycolipid precursor that has been characterized by thin-layer chromatography. Some of the chemical properties of these substances have been examined. They appear to be related complex carbohydrate-phosphate substances containing glucosamine and inositol. These findings suggest that insulin may activate a selective phospholipase activity that hydrolyzes a membrane phospholipid, releasing a carbohydrate-containing molecule that regulates cAMP phosphodiesterase and perhaps other insulin-sensitive enzymes. PMID:3016721

  13. Mycoplasma fermentans glycolipid-antigen as a pathogen of rheumatoid arthritis

    SciTech Connect

    Kawahito, Yutaka; Ichinose, Sizuko; Sano, Hajime; Tsubouchi, Yasunori; Kohno, Masataka; Yoshikawa, Toshikazu; Tokunaga, Daisaku; Hojo, Tatsuya; Harasawa, Ryo; Nakano, Teruaki; Matsuda, Kazuhiro

    2008-05-02

    Mycoplasma fermentans has been suspected as one of the causative pathogenic microorganisms of rheumatoid arthritis (RA) however, the pathogenic mechanism is still unclear. We, previously, reported that glycolipid-antigens (GGPL-I and III) are the major antigens of M. fermentans. Monoclonal antibody against the GGPL-III could detect the existence of the GGPL-III antigens in synovial tissues from RA patients. GGPL-III antigens were detected in 38.1% (32/84) of RA patient's tissues, but not in osteoarthritis (OA) and normal synovial tissues. Immunoelectron microscopy revealed that a part of GGPL-III antigens are located at endoplasmic reticulum. GGPL-III significantly induced TNF-{alpha} and IL-6 production from peripheral blood mononulear cells, and also proliferation of synovial fibroblasts. Further study is necessary to prove that M. fermentans is a causative microorganism of RA; however, the new mechanisms of disease pathogenesis provides hope for the development of effective and safe immunotherapeutic strategies based on the lipid-antigen, GGPL-III, in the near future.

  14. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids

    PubMed Central

    da Costa, Elisabete; Silva, Joana; Mendonça, Sofia Hoffman; Abreu, Maria Helena; Domingues, Maria Rosário

    2016-01-01

    In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals. PMID:27213410

  15. Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin.

    PubMed Central

    Paruchuri, D K; Seifert, H S; Ajioka, R S; Karlsson, K A; So, M

    1990-01-01

    We recently identified a set of mammalian cell receptors for Neisseria gonorrhoeae that are glycolipids. These receptors, lactosylceramide [Gal(beta 1-4)Glc(beta 1-1)Cer], gangliotriosylceramide [GalNAc( beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], and gangliotetraosylceramide [Gal(beta 1-3)GalNAc(beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], were shown to be specifically bound by a gonococcal outer membrane protein distinct from pilin and protein II. Here we report the isolation of the gene encoding the gangliotetraosylceramide-binding adhesin from a N. gonorrhoeae MS11 gene bank in Escherichia coli. Transposon mutagenesis studies in E. coli indicate that the adhesion is a protein with a molecular mass of 36,000 Da. The gene encoding the 36-kDa protein is duplicated in MS11 since two transposon insertions were required to abolish expression of the gene in this bacterium. This protein is present on the surface of the gonococcus and is not associated with the pilus. Images PMID:2153292

  16. Glycolipid biosynthesis in cyanobacteria. [Anabaena variabilis; Chlorogloeopsis sp. ; Schizothrix calcicola; Anacystis nidulans; Anacystis marina

    SciTech Connect

    Van Dusen, W.J.; Jaworski, J.G.

    1987-05-01

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with /sup 14/C)CO/sub 2/ for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation.

  17. Molecular dynamics of anhydrous glycolipid self-assembly in lamellar and hexagonal phases.

    PubMed

    Velayutham, T S; Nguan, H S; Ng, B K; Gan, W C; Manickam Achari, V; Zahid, N I; Abd Majid, W H; Zannoni, C; Hashim, R

    2016-06-01

    The molecular dynamics of a synthetic branched chain glycolipid, 2-decyl-tetradecyl-β-d-maltoside (C14-10G2), in the dry assemblage of smectic and columnar liquid crystal phases has been studied by dielectric spectroscopy as a function of frequency and temperature during the cooling process. Strong relaxation modes were observed corresponding to the tilted smectic and columnar phases, respectively. At low frequency (∼900 Hz to 1 kHz) in the smectic phase, Process I* was observed due to the tilted sugar bilayer structure. The process continued in the columnar phase (Process I) with an abrupt dynamic change due to phase transition in the frequency range of ∼1.3 kHz to 22 kHz. An additional process (Process II) was observed in the columnar phase with a broader relaxation in the frequency range of ∼10 Hz to 1 kHz. A bias field dependence study was performed in the columnar phase and we found that the relaxation strength rapidly decreased with increased applied dc bias field. This relaxation originates from a collective motion of polar groups within the columns. The results of dielectric spectroscopy were supported by a molecular dynamics simulation study to identify the origin of the relaxation processes, which could be related to the chirality and hydrogen bonds of the sugar lipid. PMID:27199168

  18. Modulation of the Cytokine Response in Human Monocytes by Mycobacterium leprae Phenolic Glycolipid-1

    PubMed Central

    Manca, Claudia; Peixoto, Blas; Malaga, Wladimir; Guilhot, Christophe

    2012-01-01

    Leprosy is a chronic but treatable infectious disease caused by the intracellular pathogen Mycobacterium leprae. M. leprae cell wall is characterized by a unique phenolic glycolipid-1 (PGL-1) reported to have several immune functions. We have examined the role of PGL-1 in the modulation of monocyte cytokine/chemokine production in naive human monocytes. PGL-1 in its purified form or expressed in a recombinant Mycobacterium bovis Bacillus Colmette-Guérin (BCG) background (rBCG-PGL-1) was tested. We found that PGL-1 selectively modulated the induction of specific monocyte cytokines and chemokines and, when used as prestimulus, exerted priming and/or inhibitory effects on the induction of selected cytokines/chemokines in response to a second stimulus. Taken together, the results of this study support a modulatory role for PGL-1 in the innate immune response to M. leprae. Thus, PGL-1 may play an important role in the development of the anergic clinical forms of disease and in tissue damage seen in lepromatous patients and during the reactional states of leprosy. PMID:21981546

  19. Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin.

    PubMed

    Paruchuri, D K; Seifert, H S; Ajioka, R S; Karlsson, K A; So, M

    1990-01-01

    We recently identified a set of mammalian cell receptors for Neisseria gonorrhoeae that are glycolipids. These receptors, lactosylceramide [Gal(beta 1-4)Glc(beta 1-1)Cer], gangliotriosylceramide [GalNAc( beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], and gangliotetraosylceramide [Gal(beta 1-3)GalNAc(beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], were shown to be specifically bound by a gonococcal outer membrane protein distinct from pilin and protein II. Here we report the isolation of the gene encoding the gangliotetraosylceramide-binding adhesin from a N. gonorrhoeae MS11 gene bank in Escherichia coli. Transposon mutagenesis studies in E. coli indicate that the adhesion is a protein with a molecular mass of 36,000 Da. The gene encoding the 36-kDa protein is duplicated in MS11 since two transposon insertions were required to abolish expression of the gene in this bacterium. This protein is present on the surface of the gonococcus and is not associated with the pilus. PMID:2153292

  20. Glycolipid dynamics in generation and differentiation of induced pluripotent stem cells

    PubMed Central

    Ojima, Takuma; Shibata, Eri; Saito, Shiho; Toyoda, Masashi; Nakajima, Hideki; Yamazaki-Inoue, Mayu; Miyagawa, Yoshitaka; Kiyokawa, Nobutaka; Fujimoto, Jun-ichiro; Sato, Toshinori; Umezawa, Akihiro

    2015-01-01

    Glycosphingolipids (GSLs) are glycoconjugates that function as mediators of cell adhesion and modulators of signal transduction. Some well-defined markers of undifferentiated human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are glycoconjugates, such as SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. However, Comprehensive GSL profiles of hiPSCs have not yet been elucidated. The global images of GSLs from the parental cells, hiPSCs, and differentiated cells revealed that there are parental cell-independent specific glycolipids, including Globo H (fucosyl-Gb5Cer) and H type1 antigen (fucosyl-Lc4Cer) that are novel markers for undifferentiated hiPSCs. Interestingly, undifferentiated hiPSCs expressed H type 1 antigen, specific for blood type O, regardless of the cells’ genotypes. Thus, in this study, we defined the dynamics of GSL remodeling during reprogramming from parental cell sets to iPSC sets and thence to iPSC-neural cells. PMID:26477663

  1. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  2. Aerosol delivery of synthetic lung surfactant

    PubMed Central

    Hernández-Juviel, José M.; Waring, Alan J.

    2014-01-01

    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C) and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant), a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant), with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity), we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg), aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory support

  3. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Gal alpha 1-3Gal beta 1-4GlcNAc sequences

    SciTech Connect

    Clark, G.F.; Krivan, H.C.; Wilkins, T.D.; Smith, D.F.

    1987-08-15

    The binding of Toxin A isolated from Clostridium difficile to rabbit erythrocyte glycolipids has been studied. Total lipid extracts from rabbit erythrocytes were subjected to thin-layer chromatography and toxin-binding glycolipids detected by using /sup 125/I-labeled Toxin A in a direct binding overlay technique. Two major and several minor toxin-binding glycolipids were detected in rabbit erythrocytes by this method. The results of structural analyses of the major toxin-binding glycolipids were consistent with a pentasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) and a branched decasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3(Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) previously identified as the two most abundant glycolipids in rabbit erythrocytes. /sup 125/I-Toxin A binding to these glycolipids could be inhibited by bovine thyroglobulin, monospecific antiserum to the toxin, or by treatment of the glycolipids with alpha-galactosidase. The absence of toxin interaction with isoglobotriaosylceramide (Gal alpha 1-3Gal beta 1-4Glc-Cer) isolated from canine intestine suggested that the GlcNAc residue present in the terminal Gal alpha 1-3Gal beta 1-4GLcNAc sequence common to all known toxin binding glycoconjugates is required for carbohydrate-specific recognition by Toxin A. These observations are consistent with the proposed carbohydrate binding specificity of Toxin A for the nonreducing terminal sequence, Gal alpha 1-3Gal beta 1-4GlcNAc.

  4. Phase I study to evaluate toxicity and feasibility of intratumoral injection of α-gal glycolipids in patients with advanced melanoma.

    PubMed

    Albertini, Mark R; Ranheim, Erik A; Zuleger, Cindy L; Sondel, Paul M; Hank, Jacquelyn A; Bridges, Alan; Newton, Michael A; McFarland, Thomas; Collins, Jennifer; Clements, Erin; Henry, Mary Beth; Neuman, Heather B; Weber, Sharon; Whalen, Giles; Galili, Uri

    2016-08-01

    Effective uptake of tumor cell-derived antigens by antigen-presenting cells is achieved pre-clinically by in situ labeling of tumor with α-gal glycolipids that bind the naturally occurring anti-Gal antibody. We evaluated toxicity and feasibility of intratumoral injections of α-gal glycolipids as an autologous tumor antigen-targeted immunotherapy in melanoma patients (pts). Pts with unresectable metastatic melanoma, at least one cutaneous, subcutaneous, or palpable lymph node metastasis, and serum anti-Gal titer ≥1:50 were eligible for two intratumoral α-gal glycolipid injections given 4 weeks apart (cohort I: 0.1 mg/injection; cohort II: 1.0 mg/injection; cohort III: 10 mg/injection). Monitoring included blood for clinical, autoimmune, and immunological analyses and core tumor biopsies. Treatment outcome was determined 8 weeks after the first α-gal glycolipid injection. Nine pts received two intratumoral injections of α-gal glycolipids (3 pts/cohort). Injection-site toxicity was mild, and no systemic toxicity or autoimmunity could be attributed to the therapy. Two pts had stable disease by RECIST lasting 8 and 7 months. Tumor nodule biopsies revealed minimal to no change in inflammatory infiltrate between pre- and post-treatment biopsies except for 1 pt (cohort III) with a post-treatment inflammatory infiltrate. Two and four weeks post-injection, treated nodules in 5 of 9 pts exhibited tumor cell necrosis without neutrophilic or lymphocytic inflammatory response. Non-treated tumor nodules in 2 of 4 evaluable pts also showed necrosis. Repeated intratumoral injections of α-gal glycolipids are well tolerated, and tumor necrosis was seen in some tumor nodule biopsies after tumor injection with α-gal glycolipids. PMID:27207605

  5. Interactions of surfactants with lipid membranes.

    PubMed

    Heerklotz, Heiko

    2008-01-01

    Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes. PMID:19079805

  6. An anionic surfactant for EOR applications

    NASA Astrophysics Data System (ADS)

    Sagir, Muhammad; Tan, Isa M.; Mushtaq, Muhammad

    2014-10-01

    This work is to investigate the new anionic surfactants for the Enhanced Oil Recovery (EOR) application. Sulfonated anionic surfactant was produced by attaching SO3 to an ethoxylated alcohol to increase the performance of the surfactant. Methallyl chloride and ethoxylated alcohol was reacted followed by the reaction with sodium bisulfite to produce anionic sulfonated surfactant in 80.3 % yield. The sulfonation reaction parameters such as reactants mole ratio, reaction temperature and catalyst amount were optimized. The generation and stability of foam from the synthesized surfactant is also tested and results are reported. The synthesized novel surfactant was further investigated for the effect on the CO2 mobility in porous media and the findings are presented here. This in house developed surfactant has a great potential for CO2- EOR applications.

  7. The Role of Surfactant in Respiratory Distress Syndrome

    PubMed Central

    Ma, Christopher Cheng-Hwa; Ma, Sze

    2012-01-01

    The key feature of respiratory distress syndrome (RDS) is the insufficient production of surfactant in the lungs of preterm infants. As a result, researchers have looked into the possibility of surfactant replacement therapy as a means of preventing and treating RDS. We sought to identify the role of surfactant in the prevention and management of RDS, comparing the various types, doses, and modes of administration, and the recent development. A PubMed search was carried out up to March 2012 using phrases: surfactant, respiratory distress syndrome, protein-containing surfactant, protein-free surfactant, natural surfactant, animal-derived surfactant, synthetic surfactant, lucinactant, surfaxin, surfactant protein-B, surfactant protein-C. Natural, or animal-derived, surfactant is currently the surfactant of choice in comparison to protein-free synthetic surfactant. However, it is hoped that the development of protein-containing synthetic surfactant, such as lucinactant, will rival the efficacy of natural surfactants, but without the risks of their possible side effects. Administration techniques have also been developed with nasal continuous positive airway pressure (nCPAP) and selective surfactant administration now recommended; multiple surfactant doses have also reported better outcomes. An aerosolised form of surfactant is being trialled in the hope that surfactant can be administered in a non-invasive way. Overall, the advancement, concerning the structure of surfactant and its mode of administration, offers an encouraging future in the management of RDS. PMID:22859930

  8. Structural Characterization and Anti-HSV-1 and HSV-2 Activity of Glycolipids from the Marine Algae Osmundaria obtusiloba Isolated from Southeastern Brazilian Coast

    PubMed Central

    de Souza, Lauro M.; Sassaki, Guilherme L.; Romanos, Maria Teresa Villela; Barreto-Bergter, Eliana

    2012-01-01

    Glycolipids were extracted from the red alga Osmundaria obtusiloba from Southeastern Brazilian coast. The acetone insoluble material was extracted with chloroform/methanol and the lipids, enriched in glycolipids, were fractionated on a silica gel column eluted with chloroform, acetone and then methanol. Three major orcinol-positive bands were found in the acetone and methanol fractions, being detected by thin layer chromatography. The structures of the corresponding glycolipids were elucidated by ESI-MS and 1H/13C NMR analysis, on the basis of their tandem-MS behavior and HSQC, TOCSY fingerprints. For the first time, the structure of sulfoquinovosyldiacylglycerol from the red alga Osmundaria obtusiloba was characterized. This molecule exhibited potent antiviral activity against HSV-1 and HSV-2 with EC50 values of 42 µg/mL to HSV-1 and 12 µg/mL to HSV-2, respectively. Two other glycolipids, mono- and digalactosyldiacylglycerol, were also found in the alga, being characterized by ESI-MS/MS. The structural elucidation of algae glycolipids is a first step for a better understanding of the relation between these structures and their biological activities. PMID:22690151

  9. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents

    PubMed Central

    Daniotti, Jose Luis; Lardone, Ricardo D.; Vilcaes, Aldo A.

    2016-01-01

    Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation, and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets. PMID:26779443

  10. New tailor-made bio-organoclays for the remediation of olive mill waste water

    NASA Astrophysics Data System (ADS)

    Calabrese, Ilaria; Gelardi, Giulia; Merli, Marcello; Rytwo, Giora; Sciascia, Luciana; Liria Turco Liveri, Maria

    2013-12-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied.

  11. Antibodies to the neutral glycolipid asialo ganglio-N-tetraosylceramide: association with gynecologic cancers.

    PubMed

    Witkin, S S; Bongiovanni, A M; Birnbaum, S; Caputo, T; Ledger, W J

    1985-03-01

    As part of our efforts to define subpopulations at increased risk for gynecologic malignancies, sera from 145 women were obtained prior to diagnosis and analyzed for antibody to asialo ganglio-N-tetraosylceramide. This neutral glycolipid is present on the surface of thymocytes and natural killer cells, and asialo ganglio-N-tetraosylceramide antibody has been shown in animals to block natural killer cell activity and promote tumor cell proliferation. With the use of an enzyme-linked immunosorbent assay and with a value of 2 SD above the mean for healthy women designated as the boundary for a positive response, antibody to asialo ganglio-N-tetraosylceramide was detected in only one of 30 (3%) healthy women, none of 16 pregnant women, none of 18 women with benign masses, and two of 24 (8%) women with microbial infections. All of the above samples that contained antibodies were barely over the 2 SD limit. In marked contrast, 19 of 35 (54%) women with gynecologic malignancies had asialo ganglio-N-tetraosylceramide antibodies, with positive values ranging to greater than 10 SD above the control mean. Asialo ganglio-N-tetraosylceramide antibody was found in six of eight (75%) patients with cervical cancer, five of eight (63%) with endometrial cancer, and seven of 15 (47%) with ovarian cancer. Of the eight patients with Stage I gynecologic cancer at any site, five (62%) had asialo ganglio-N-tetraosylceramide antibodies. Four of 22 (18%) women with Hodgkin's disease also had antibodies, with values just exceeding 2 SD above control levels. The presence of these antibodies may contribute to an impaired immune surveillance system in these women and so increase their susceptibility to malignancy. PMID:3976767

  12. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048(T).

    PubMed

    Faria, Nuno Torres; Marques, Susana; Fonseca, César; Ferreira, Frederico Castelo

    2015-04-01

    Mannosylerythritol lipids (MEL) are glycolipid biosurfactants, produced by Pseudozyma spp., with increasing commercial interest. While MEL can be produced from d-glucose and d-xylose, the direct conversion of the respective lignocellulosic polysaccharides, cellulose and xylan, was not reported yet. The ability of Pseudozyma antarctica PYCC 5048(T) and Pseudozyma aphidis PYCC 5535(T) to use cellulose (Avicel(®)) and xylan (beechwood) as carbon and energy source has been assessed along with their capacity of producing cellulolytic and hemicellulolytic enzymes, toward a consolidated bioprocess (CBP) for MEL production. The yeasts assessed were neither able to grow in medium containing Avicel(®) nor produce cellulolytic enzymes under the conditions tested. On contrary, both yeasts were able to efficiently grow in xylan, but MEL production was only detected in P. antarctica PYCC 5048(T) cultures. MEL titers reached 1.3g/l after 10 days in batch cultures with 40g/l xylan, and 2.0g/l in fed-batch cultures with xylan feeding (additional 40g/l) at day 4. High levels of xylanase activities were detected in xylan cultures, reaching 47-62U/ml (31-32U/mg) at 50°C, and still exhibiting more than 10U/ml under physiological temperature (28°C). Total β-xylosidase activities, displayed mainly as wall-bounded and extracellular activity, accounted for 0.154 and 0.176U/ml in P. antarctica PYCC 5048(T) and P. aphidis PYCC 5535(T) cultures, respectively. The present results demonstrate the potential of Pseudozyma spp. for using directly a fraction of lignocellulosic biomass, xylan, and combining in the same bioprocess the production of xylanolytic enzymes with MEL production. PMID:25765311

  13. A novel glycolipid antigen for NKT cells that preferentially induces IFN-γ production

    PubMed Central

    Birkholz, Alysia M.; Girardi, Enrico; Wingender, Gerhard; Khurana, Archana; Wang, Jing; Zhao, Meng; Zahner, Sonja; Illarionov, Petr A.; Wen, Xiangshu; Li, Michelle; Yuan, Weiming; Porcelli, Steven A.; Besra, Gurdyal S.; Zajonc, Dirk M.; Kronenberg, Mitchell

    2015-01-01

    Here we characterize a novel Ag for invariant natural killer T-cells (iNKT cells) capable of producing an especially robust Th1 response. This glycosphingolipid (GSL), DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), the only change being in a single atom, the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared to αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by DCs in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB061 compared to αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Our data are therefore consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result in part from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10 producing iNKT cells, which could counteract the benefits of increased, early IFN-γ production. PMID:26078271

  14. A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-γ Production.

    PubMed

    Birkholz, Alysia M; Girardi, Enrico; Wingender, Gerhard; Khurana, Archana; Wang, Jing; Zhao, Meng; Zahner, Sonja; Illarionov, Petr A; Wen, Xiangshu; Li, Michelle; Yuan, Weiming; Porcelli, Steven A; Besra, Gurdyal S; Zajonc, Dirk M; Kronenberg, Mitchell

    2015-08-01

    In this article, we characterize a novel Ag for invariant NKT (iNKT) cells capable of producing an especially robust Th1 response. This glycosphingolipid, DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), with the only change being a single atom: the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared with αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by dendritic cells in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB06-1 compared with αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Therefore, our data are consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result, in part, from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10-producing iNKT cells, which could counteract the benefits of increased early IFN-γ production. PMID:26078271

  15. The Lipoprotein LpqW Is Essential for the Mannosylation of Periplasmic Glycolipids in Corynebacteria*

    PubMed Central

    Rainczuk, Arek K.; Yamaryo-Botte, Yoshiki; Brammananth, Rajini; Stinear, Timothy P.; Seemann, Torsten; Coppel, Ross L.; McConville, Malcolm J.; Crellin, Paul K.

    2012-01-01

    Phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM) are essential components of the cell wall and plasma membrane of mycobacteria, including the human pathogen Mycobacterium tuberculosis, as well as the related Corynebacterineae. We have previously shown that the lipoprotein, LpqW, regulates PIM and LM/LAM biosynthesis in mycobacteria. Here, we provide direct evidence that LpqW regulates the activity of key mannosyltransferases in the periplasmic leaflet of the cell membrane. Inactivation of the Corynebacterium glutamicum lpqW ortholog, NCgl1054, resulted in a slow growth phenotype and a global defect in lipoglycan biosynthesis. The NCgl1054 mutant lacked LAMs and was defective in the elongation of the major PIM species, AcPIM2, as well as a second glycolipid, termed Gl-X (mannose-α1–4-glucuronic acid-α1-diacylglycerol), which function as membrane anchors for LM-A and LM-B, respectively. Elongation of AcPIM2 and Gl-X was found to be dependent on expression of polyprenol phosphomannose (ppMan) synthase. However, the ΔNCgl1054 mutant synthesized normal levels of ppMan, indicating that LpqW is not required for synthesis of this donor. A spontaneous suppressor strain was isolated in which lipoglycan synthesis in the ΔNCgl1054 mutant was partially restored. Genome-wide sequencing indicated that a single amino acid substitution within the ppMan-dependent mannosyltransferase MptB could bypass the need for LpqW. Further evidence of an interaction is provided by the observation that MptB activity in cell-free extracts was significantly reduced in the absence of LpqW. Collectively, our results suggest that LpqW may directly activate MptB, highlighting the role of lipoproteins in regulating key cell wall biosynthetic pathways in these bacteria. PMID:23091062

  16. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.

    PubMed

    Duman, John G

    2015-06-01

    Ice-binding proteins (IBPs) assist in subzero tolerance of multiple cold-tolerant organisms: animals, plants, fungi, bacteria etc. IBPs include: (1) antifreeze proteins (AFPs) with high thermal hysteresis antifreeze activity; (2) low thermal hysteresis IBPs; and (3) ice-nucleating proteins (INPs). Several structurally different IBPs have evolved, even within related taxa. Proteins that produce thermal hysteresis inhibit freezing by a non-colligative mechanism, whereby they adsorb onto ice crystals or ice-nucleating surfaces and prevent further growth. This lowers the so-called hysteretic freezing point below the normal equilibrium freezing/melting point, producing a difference between the two, termed thermal hysteresis. True AFPs with high thermal hysteresis are found in freeze-avoiding animals (those that must prevent freezing, as they die if frozen) especially marine fish, insects and other terrestrial arthropods where they function to prevent freezing at temperatures below those commonly experienced by the organism. Low thermal hysteresis IBPs are found in freeze-tolerant organisms (those able to survive extracellular freezing), and function to inhibit recrystallization - a potentially damaging process whereby larger ice crystals grow at the expense of smaller ones - and in some cases, prevent lethal propagation of extracellular ice into the cytoplasm. Ice-nucleator proteins inhibit supercooling and induce freezing in the extracellular fluid at high subzero temperatures in many freeze-tolerant species, thereby allowing them to control the location and temperature of ice nucleation, and the rate of ice growth. Numerous nuances to these functions have evolved. Antifreeze glycolipids with significant thermal hysteresis activity were recently identified in insects, frogs and plants. PMID:26085662

  17. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin.

    PubMed Central

    Sandberg, A L; Ruhl, S; Joralmon, R A; Brennan, M J; Sutphin, M J; Cisar, J O

    1995-01-01

    Recognition of receptors on sialidase-treated polymorphonuclear leukocytes (PMNs) by the Gal/GalNAc lectin associated with the type 2 fimbriae of certain strains of actinomyces results in activation of the PMNs, phagocytosis, and destruction of the bacteria. In the present study, plant lectins were utilized as probes to identify putative PMN receptors for the actinomyces lectin. The Gal-reactive lectin from Ricinus communis (RCAI), the Gal/GalNAc-reactive lectins from R. communis (RCAII) and Bauhinia purpurea (BPA), as well as the Gal beta 1-3GalNAc-specific lectins from Arachis hypogaea (PNA) and Agaricus bisporus (ABA) inhibited killing of Actinomyces naeslundii WVU45 by sialidase-treated PMNs. These five lectins detected a 130-kDa surface-labeled glycoprotein on nitrocellulose transfers of PMN extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This glycoprotein was revealed only after treatment of the transfers with sialidase, a condition analogous to the sialidase dependence of the lectin-mediated biological responses of the PMNs to the actinomyces. The mannose-reactive lectin concanavalin A did not inhibit killing of the actinomyces and failed to detect the 130-kDa glycoprotein but did block PMN-dependent killing of Escherichia coli B, a bacterium that possesses mannose-sensitive fimbriae. Therefore, the PMN glycoprotein receptor for A. naeslundii is clearly distinct from those recognized by E. coli. Two major putative glycolipid receptors were also identified by actinomyces and RCAI overlays on sialidase-treated thin-layer chromatograms of PMN gangliosides. Thus, both a 130-kDa glycoprotein and certain gangliosides are implicated in the attachment of the actinomyces to PMNs. PMID:7790078

  18. Diamond bio electronics.

    PubMed

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions. PMID:19745488

  19. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Ye, Feng; Guo, Haifeng; Zhang, Haijiao

    2008-06-01

    Highly oriented organization of hydroxyapatite (HAP) nanorods was achieved through a simple reflux method using mixtures of triblock copolymer pluronic P123 and tween-60 as the mediated agents. Raft-like organized complexes were prepared when the nanorods were only directed by the mixed surfactants. Bundles of nanorod-like HAP crystals were obtained when urea was used as the cosurfactant. These HAP nanorods with a large amount of uniform 4 nm worm-like mesopores were arranged in parallel to each other along the c axis of HAP. The raft-like complexes might be mediated by the reverse lamellar micelles. And the added urea transformed the reverse lamellar micelles into hexagonal ones due to its association with the surfactant molecules by hydrogen bonds, resulting in the formation of bundles of nanorod-like HAP crystals. The regulation of the oriented HAP complexes in morphology extends the understanding of biomineralization and permits controllable design of biomimetic materials. In addition, the c-axis oriented raft-like HAP complex has great potential in selective bio-absorption and separation.

  20. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants.

    PubMed

    Ye, Feng; Guo, Haifeng; Zhang, Haijiao

    2008-06-18

    Highly oriented organization of hydroxyapatite (HAP) nanorods was achieved through a simple reflux method using mixtures of triblock copolymer pluronic P123 and tween-60 as the mediated agents. Raft-like organized complexes were prepared when the nanorods were only directed by the mixed surfactants. Bundles of nanorod-like HAP crystals were obtained when urea was used as the cosurfactant. These HAP nanorods with a large amount of uniform 4 nm worm-like mesopores were arranged in parallel to each other along the c axis of HAP. The raft-like complexes might be mediated by the reverse lamellar micelles. And the added urea transformed the reverse lamellar micelles into hexagonal ones due to its association with the surfactant molecules by hydrogen bonds, resulting in the formation of bundles of nanorod-like HAP crystals. The regulation of the oriented HAP complexes in morphology extends the understanding of biomineralization and permits controllable design of biomimetic materials. In addition, the c-axis oriented raft-like HAP complex has great potential in selective bio-absorption and separation. PMID:21825817

  1. A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum.

    PubMed

    Smith, Derek D N; Nickzad, Arvin; Déziel, Eric; Stavrinides, John

    2016-01-01

    Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections. PMID:27303689

  2. A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Smith, Derek D. N.; Nickzad, Arvin

    2016-01-01

    ABSTRACT Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections. PMID

  3. Surfactant transport on viscous bilayers

    NASA Astrophysics Data System (ADS)

    Matar, Omar; Craster, Richard; Warner, Mark

    2001-11-01

    We model the external delivery of surfactant to pulmonary airways, an integral part of Surfactant Replacement Therapy (SRT), a method of treatment of Respiratory Distress Syndrome in neonates. We examine the spreading dynamics of insoluble surfactant by Marangoni stresses along the mucus-perciliary liquid bilayers that line the inside of airways. The bilayer is modelled as a thin highly viscous mucus surface film (mucus) overlying a much less viscous perciliary liquid layer (PCL); this is appropriate for small airways. By exploiting this large viscosity constrast, a variant of standard lubrication theory is adopted wherein terms, which would have otherwise been neglected in the lubrication approximation, are promoted in order to model correctly the presence of the mucus. Inclusion of van der Waals forces in the model permit the study of the effect of this mucus 'skin' on the possibility of bilayer rupture, a potential cause of failure of SRT. We find that increasing the viscosity contrast and initial mucus layer thickness delays the onset of rupture, while increasing the relative significance of Marangoni stresses leads to more marked thinning and rapid bilayer rupture [1]. [1] O. K. Matar, R. V. Craster and M. R. Warner, submitted to J. Fluid Mech. (2001).

  4. Strong IgG Antibody Responses to Borrelia burgdorferi Glycolipids in Patients with Lyme Arthritis, a Late Manifestation of the Infection

    PubMed Central

    Jones, Kathryn L.; Seward, Robert J.; Ben-Menachem, Gil; Glickstein, Lisa J.; Costello, Catherine E.; Steere, Allen C.

    2009-01-01

    In this study, the membrane lipids of B. burgdorferi were separated into 16 fractions; the components in each fraction were identified, and the immunogenicity of each fraction was determined by ELISA using sera from Lyme disease patients. Only the 2 glycolipids, acylated cholesteryl galactoside (ACG, BbGL-I) and monogalactosyl diacylglycerol (MgalD, BbGL-II), were immunogenic. Early in the infection, 24 of 84 patients (29%) who were convalescent from erythema migrans and 19 of the 35 patients (54%) with neuroborreliosis had weak IgG responses to purified MgalD, and a smaller percentage of patients had early responses to synthetic ACG. However, almost all of 75 patients with Lyme arthritis, a late disease manifestation, had strong IgG reactivity with both glycolipids. Thus, almost all patients with Lyme arthritis have strong IgG antibody responses to B. burgdorferi glycolipid antigens. PMID:19342303

  5. Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure.

    PubMed

    Devínsky, Ferdinand; Pisárcik, Martin; Lacko, Ivan

    2009-06-01

    The present study deals with the determination of hydrodynamic size of DNA/cationic gemini surfactant complex in sodium bromide solution using the dynamic light scattering method. Cationic gemini surfactants with polymethylene spacer of variable length were used for the interaction with DNA. The scattering experiments were performed at constant DNA and sodium bromide concentrations and variable surfactant concentration in the premicellar and micellar regions as a function of surfactant spacer length. It was found that the DNA conformation strongly depends on the polymethylene spacer length as well as on the surfactant concentration relative to the surfactant critical micelle concentration. Gemini surfactant molecules with 4 methylene groups in the spacer were found to be the least efficient DNA compacting agent in the region above the surfactant cmc. Gemini molecules with the shortest spacer length (2 methylene groups) and the longest spacer length (8 methylene groups) investigated showed the most efficient DNA compaction ability. PMID:19592712

  6. Dynamics of Liquid Plugs of Buffer and Surfactant Solutions in a Micro-Engineered Pulmonary Airway Model

    PubMed Central

    Tavana, Hossein; Kuo, Chuan-Hsien; Lee, Qian Yi; Mosadegh, Bobak; Huh, Dongeun; Christensen, Paul J.; Grotberg, James B.; Takayama, Shuichi

    2009-01-01

    We describe a bio-inspired microfluidic system that resembles pulmonary airways and enables on-chip generation of airway occluding liquid plugs from a stratified air-liquid two-phase flow. User-defined changes in the air stream pressure facilitated by mechanical components and tuning the wettability of the microchannels enable generation of well-defined liquid plugs. Significant differences are observed in liquid plug generation and propagation when surfactant is added to the buffer. The plug flow patterns suggest a protective role of surfactant for airway epithelial cells against pathological flow-induced mechanical stresses. We discuss the implications of the findings for clinical settings. This approach and the described platform will enable systematic investigation of the effect of different degrees of fluid mechanical stresses on lung injury at the cellular level and administration of exogenous therapeutic surfactants. PMID:20017471

  7. Surfactant adsorption to soil components and soils.

    PubMed

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  8. Surfactant Therapy of ALI and ARDS

    PubMed Central

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exogenous surfactant therapy is a routine intervention in neonatal intensive care, and is life-saving in preventing or treating the neonatal respiratory distress syndrome (NRDS) in premature infants. In applications relevant for lung injury-related respiratory failure and ALI/ARDS, surfactant therapy has been shown to be beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. Coverage here reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, particularly focusing on its potential advantages in patients with direct pulmonary forms of these syndromes. Also discussed is the rationale for mechanism-based therapies utilizing exogenous surfactant in combination with agents targeting other aspects of the multifaceted pathophysiology of inflammatory lung injury. Additional factors affecting the efficacy of exogenous surfactant therapy in ALI/ARDS are also described, including the difficulty of effectively delivering surfactants to injured lungs and the existence of activity differences between clinical surfactant drugs. PMID:21742216

  9. Intensification of evaporation processes using surfactants

    NASA Astrophysics Data System (ADS)

    Sharifullin, V. N.; Sharifullin, A. V.

    2015-06-01

    The effect of a group of low molecular surfactants on the evaporation rate during nucleate boiling of water is investigated. It is found that the vaporization rate and heat flux from the heater increase by 4-8% in an electric boiler with surfactants. The analysis of the process based on the model of the phase contact surface restoration made it possible to formulate the mechanism of the effect of considered surfactants.

  10. Cholesterol-mediated surfactant dysfunction is mitigated by surfactant protein A.

    PubMed

    Hiansen, Joshua Qua; Keating, Eleonora; Aspros, Alex; Yao, Li-Juan; Bosma, Karen J; Yamashita, Cory M; Lewis, James F; Veldhuizen, Ruud A W

    2015-03-01

    The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-β-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant. PMID:25522687

  11. BioReactor

    Energy Science and Technology Software Center (ESTSC)

    2003-04-18

    BioReactor is a simulation tool kit for modeling networks of coupled chemical processes (or similar productions rules). The tool kit is implemented in C++ and has the following functionality: 1. Monte Carlo discrete event simulator 2. Solvers for ordinary differential equations 3. Genetic algorithm optimization routines for reverse engineering of models using either Monte Carlo or ODE representation )i.e., 1 or 2)

  12. Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis.

    PubMed

    Zhou, Aijuan; Liu, Wenzong; Varrone, Cristiano; Wang, Youzhao; Wang, Aijie; Yue, Xiuping

    2015-09-01

    The effects of three widely-used surfactants on waste activated sludge (WAS) fermentation and microbial community structures were investigated. Rhamnolipid bio-surfactants (RL) showed more positive effects on WAS hydrolysis and acidification compared to chemosynthetic surfactants, such as sodium dodecylsulphate (SDS) and sodium dodecyl benzene sulfonate (SDBS). The highest SCOD and VFAs concentrations obtained with RL were 1.15-fold and 1.16-fold that of SDS, and up to 1.73 and 3.63 times higher than those obtained with SDBS. Pyrosequencing analysis showed that an evident reduction in bacterial diversity in surfactant-treated WAS. Moreover, acid-producing bacteria (such as Megasphaera and Oscillibacter), detected with RL, were (6.8% and 6.4% in proportion) more abundant than with SDS, and were rarely found in SDBS and the control. The results also revealed that RL allowed efficient hydrolysis enhancement and was favorable to functional microorganisms for further acidification during WAS fermentation. PMID:26081163

  13. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid based molecular thermometers

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-01-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g. surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs preserved in Lake Schreventeich sediments record summer surface water temperatures. As N2-fixing

  14. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  15. Antibody to endotoxin core glycolipid reverses reticuloendothelial system depression in an animal model of severe sepsis and surgical injury

    SciTech Connect

    Aldridge, M.C.; Chadwick, S.J.; Cheslyn-Curtis, S.; Rapson, N.; Dudley, H.A.

    1987-10-01

    To study the effect of severe sepsis on the function of the reticuloendothelial system (RES) we have measured the clearance kinetics and organ distribution of both low-dose technetium tin colloid (TTC) and /sup 75/selenomethionine-labelled E. coli in rabbits 24 hours after either sham laparotomy or appendix devascularization. Sepsis resulted in similar delayed blood clearance and reduced liver (Kupffer cell) uptake of both TTC and E. coli. To investigate the ability of polyclonal antibody to E. coli-J-5 (core glycolipid) to improve RES function in the same model of sepsis, further animals were pretreated with either core glycolipid antibody or control serum (10 ml IV) 2 hours before induction of sepsis. TTC clearance kinetics were determined 24 hours later. Antibody pretreated animals showed: a reduced incidence of bacteremia; normalization of the rate of blood clearance and liver uptake of TTC; and a 'rebound' increase in splenic uptake of TTC. We conclude that antibody to E. coli-J-5 enhances bacterial clearance by the RES.

  16. Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Ogura, Yuki; Takashima, Masako; Hirose, Naoto; Fukuoka, Tokuma; Imura, Tomohiro; Kondo, Yukishige; Kitamoto, Dai

    2011-08-01

    An ustilaginomycetous anamorphic yeast species isolated from the leaves of Saccharum officinarum (sugarcane) in Okinawa, Japan, was identified as a novel Pseudozyma species based on morphological and physiological aspects and molecular taxonomic analysis using the D1/D2 domains of the large subunit (26S) rRNA gene and the internal transcribed spacer 1 (ITS1)-5.8S-ITS2 regions. The name Pseudozyma churashimaensis sp. nov. was proposed for the novel species, with JCM 16988(T) as the type strain. Interestingly, P. churashimaensis was found to produce glycolipid biosurfactants, a mixture of mannosylerythritol lipids (MELs), including a novel tri-acetylated derivative (MEL-A2), from glucose. The observed critical micelle concentration (CMC) and the surface tension at CMC of MEL-A2 were 1.7 × 10⁻⁶ M and 29.2 mN/m, respectively. Moreover, on a water-penetration scan, MEL-A2 efficiently formed different lyotropic liquid crystalline phases, including the lamella phase at a wide range of concentrations, indicating its excellent surface-active and self-assembling properties. The novel strain of the genus Pseudozyma should thus facilitate the application of glycolipid biosurfactants in combination with other MEL producers. PMID:21606002

  17. Glycosylphosphatidylinositols of Plasmodium chabaudi chabaudi: a basis for the study of malarial glycolipid toxins in a rodent model.

    PubMed Central

    Gerold, P; Vivas, L; Ogun, S A; Azzouz, N; Brown, K N; Holder, A A; Schwarz, R T

    1997-01-01

    Free and protein-bound glycosylphosphatidylinositols (GPIs) of the blood stages of the rodent malarial parasite Plasmodium chabaudi chabaudi AS were identified and characterized. TLC analysis of material extracted by organic solvents from metabolically labelled parasites revealed a distinct set of glycolipids. These glycolipids were identified as GPIs by specific chemical and enzymic treatments and by structural analysis of their glycan and hydrophobic parts. These analyses revealed that P.c.chabaudi AS synthesizes a set of GPI-biosynthesis intermediates and two potential GPI-anchor precursors exhibiting the following structures: ethanolamine-phosphate [(alpha1-2)mannose]mannose (alpha 1-2) mannose (alpha 1-6) mannose (alpha 1-4) glucosamine - (acyl) inositol-phosphate-diacylglycerol (P.ch. alpha) and ethanolamine-phosphate - mannose (alpha 1-2) mannose (alpha 1-6) mannose (alpha 1-4) glucosamine-(acyl)inositol-phosphate-diacylglycerol (P.ch. beta). One of these GPI-anchor precursors (P.ch. alpha) possesses the same carbohydrate structure as the GPI membrane anchor of merozoite surface protein-1 from P.c.chabaudi AS. PMID:9396737

  18. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells. PMID:7872771

  19. Hemolysis by surfactants--A review.

    PubMed

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency. PMID:26687805

  20. Oil recovery by fluorochemical surfactant waterflooding

    SciTech Connect

    Cooke, T.W.

    1984-07-17

    The instant invention relates to the recovery of oil from subterranean oil reservoirs involving the injection of an aqueous based liquid containing a fluorochemical surfactant possessing an oleophobic-hydrophobic fluoroaliphatic group, a hydrophilic group and an oleophilic group, optionally in conjugation with a conventional enhanced oil recovery surfactant.

  1. SURFACTANT ENHANCED PHOTO-OXIDATION OF WASTEWATERS

    EPA Science Inventory

    Initial research projects using the nonionic surfactant Brij-35 established that this surfactant could successfully adsolublize aromatic organic pollutants such as anthracene, naphthalene, benzoic acid, chlorophenol, and benzene onto the surface of TiO2 par...

  2. Surfactant Adsorption: A Revised Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  3. Measuring surfactant concentration in plating solutions

    DOEpatents

    Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.

    1989-01-01

    An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.

  4. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil-wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate-wet for many surfactants and water-wet for one surfactant. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting core adsorption, phase behavior, wettability and mobilization studies.

  5. Surfactant effects on soil aggregate tensile strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  6. Clinical application of bio ceramics

    NASA Astrophysics Data System (ADS)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  7. A test to illustrate the effects of BioSolve on the mobility of contaminated soils

    SciTech Connect

    Jackson, Lorri M.

    1999-05-27

    Mountain States BioSolve manufactures products for in-situ bioremediation projects. One of their products, BioSolve, desorbs and emulsifies hydrocarbons in a contaminated substrate. BioSolve is a blend of water-based, biodegradable surfactants which were engineered as a clean-up and mitigation agent for hydrocarbon products. Its basic mechanism is to emulsify the hydrocarbon into small encapsulated particles in a water/oxygen-bearing solution, desorbing hydrocarbon molecules from soil particles. This allows bacteria to more effectively metabolize the contaminate. During desorption, Total Petroleum Hydrocarbons (TPH) levels may increase shortly after application due to the removal of contaminate from soil particles which increases the total recoverable hydrocarbon. This allows the hydrocarbon, in the pump and treat process, to become mobile, and thus carried with the water to the recovery wells where it can be removed. This testing does not address pump and treat technology but only the increased surface area for bioremediation enhancement.

  8. Toxin a from Clostridium difficile binds to rabbit erythrocyte glycolipids with therminal Gal. cap alpha. 1-3Gal. beta. 1-4GlcNaC sequences

    SciTech Connect

    Clark, G.F.; Krivan, H.; Wilkins, T.; Smith, D.F.

    1987-05-01

    Toxin A is one of two clostridial toxins implicated as the causative agent of pseudomembranous colitis in patients undergoing postoperative antibiotic therapy. Evidence that the carbohydrate binding determinant for this toxin is a glycoconjugate(s) with non-reducing Gal..cap alpha..1-3Gal..beta..1-4GlcNAc has recently been reported. Specific agglutination of rabbit erythrocytes by Toxin A is inhibited by bovine thyroglobulin and prevented by pretreatment of cells with ..cap alpha..-galactosidase. Total lipid extracts from rabbit erythrocytes were subjected to thin layer chromatography and the chromatogram overlaid with purified /sup 125/I-labeled Toxin A. Two major and several minor toxin-binding glycolipids were detected following autoradiography. The major toxin-binding glycolipids were identified as pentasaccharide- and decasaccharide-ceramides expressing terminal Gal..cap alpha..1-3Gal..beta..1-4GlcNAc sequences. Treatment of the toxin-binding glycolipids with ..cap alpha..-galactosidase abolished binding. Forsmann glycolipid, globoside, Gal..cap alpha..1-4 Gal..beta..1-4Glc-cer, and Gal..cap alpha..1-3Gal..beta..1-4Glc-cer did not bind the toxin. These observations are consistent with the proposed carbohydrate specificity of the toxin for the non-reducing terminal sequence, Gal..cap alpha..1-3Gal..beta..1-4GlcNAc.

  9. Effects of structural variations in synthetic glycolipids upon mitogenicity for spleen lymphocytes, adjuvancy for humoral immune response and on anti-tumour potential.

    PubMed

    Nigam, V N; Bonaventure, J; Chopra, C; Brailovsky, C A

    1982-11-01

    Synthetic glycolipids prepared by esterification of various sugars and sorbitol, and containing various numbers of saturated or unsaturated fatty acid residues as well as bacterial lipid A and lipopolysaccharide, were tested for mitogenicity of splenic cells of Fischer rats and Swiss mice and for the augmentation of humoral immune response against sheep red blood cells in these species. Subsequently a few of the humoral immune-response-enhancing glycolipids were compared with non-enhancers in their anti-tumour activity against 13762 rat mammary carcinoma in inbred Fischer 344 rats and Ehrlich tumour in Swiss mice. They were given systemically after tumour inoculation and intratumourally in squalene and Tween emulsion after intradermal MAC tumour development. It was observed that certain structural characteristics in glycolipids with respect to the type of sugar, the type and number of fatty-acid residues were needed for their adjuvant action of the humoral arm of the immune response. Although humoral immune-response enhancers were somewhat superior to non-enhancers in their anti-tumour activity, the correlation coefficient demonstrated a lack of significant concordance. It is concluded that glycolipids selected for their ability to augment humoral immune responses against standard antigens need not be suspect as tumour-enhancers on the grounds that they would elicit blocking antibodies in vivo against tumour-associated antigens. PMID:6756461

  10. Hyperreactive malarial splenomegaly is associated with low levels of antibodies against red blood cell and Plasmodium falciparum derived glycolipids in Yanomami Amerindians from Venezuela.

    PubMed

    Vivas, Livia; O'Dea, Kieran P; Noya, Oscar; Pabon, Rosalba; Magris, Magda; Botto, Carlos; Holder, Anthony A; Brown, K Neil

    2008-03-01

    The immunological basis of the aberrant immune response in hyperreactive malarial splenomegaly (HMS) is poorly understood, but believed to be associated with polyclonal B cell activation by an unidentified malaria mitogen, leading to unregulated immunoglobulin and autoantibody production. HMS has been previously reported in Yanomami communities in the Upper Orinoco region of the Venezuelan Amazon. To investigate a possible association between antibody responses against Plasmodium falciparum and uninfected red blood cell (URBC) glycolipids and splenomegaly, a direct comparison of the parasite versus host anti-glycolipid antibody responses was made in an isolated community of this area. The anti-P. falciparum glycolipid (Pfglp) response was IgG3 dominated, whereas the uninfected red blood cell glycolipid (URBCglp) response showed a predominance of IgG1. The levels of IgG1 against Pfglp, and of IgG4 and IgM against URBCglp were significantly higher in women, while the anti-Pfglp or URBCglp IgM levels were inversely correlated with the degree of splenomegaly. Overall, these results suggest differential regulation of anti-parasite and autoreactive responses and that these responses may be linked to the development and evolution of HMS in this population exposed to endemic malaria. The high mortality rates associated with HMS point out that its early diagnosis together with the implementation of malaria control measures in these isolated Amerindian communities are a priority. PMID:18243148

  11. Bio-forensics

    SciTech Connect

    Trewhella, J.

    2004-01-01

    Bioforensics presents significant technical challenges. Determining if an outbreak is natural or not, and then providing evidence to trace an outbreak to its origin is very complex. Los Alamos scientists pioneered research and development that has generated leading edge strain identification methods based on sequence data. Molecular characterization of environmental background samples enable development of highly specific pathogen signatures. Economic impacts of not knowing the relationships at the molecular level Many different kinds of data are needed for DNA-based bio-forensics.

  12. A surfactant film spreading regime

    SciTech Connect

    Nikishov, V.I.

    1984-06-01

    Interest has recently increased in the study of the mechanisms whereby oil spills spread over sea and ocean surfaces. In the later stages of this process, when the petroleum film thickness becomes sufficiently small, the main forces determining the growth of its horizontal dimensions are surface tension and viscosity. In this case the flow characteristics do not depend on total quantity of spreading substance nor its surface concentration distribution. However, in the final stages of the spreading process the film becomes so thin that it is necessary to consider the effect of surface concentration distribution of the material on the process. Similar problems occur in the study of the spreading of a surfactant in the case where the total quantity of material is small and the surface tension regime sets in quickly. Therefore, the author examines here the spreading of a film in a regime wherein it is necessary to consider the total quantity of surfactant present, initially located on the surface of a viscous incompressible liquid.

  13. Fibrinogen stability under surfactant interaction.

    PubMed

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. PMID:21722913

  14. The glycoinositol phospholipids of Leishmania mexicana promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis.

    PubMed

    McConville, M J; Collidge, T A; Ferguson, M A; Schneider, P

    1993-07-25

    Most macromolecules at the cell surface of parasitic protozoa of the genus Leishmania, including the major surface glycoproteins and a complex lipophosphoglycan (LPG), are attached to the plasma membrane via glycosyl-phosphatidylinositol (GPI) anchors. Free glycoinositol phospholipids (GIPLs) which are not linked to protein or phosphoglycan have also been found. In this study, we show that L. mexicana promastigotes synthesize two distinct GIPL lineages, comprising at least 10 glycolipid species. These structures were characterized using a combination of gas-liquid chromatography-mass spectrometry, methylation linkage analysis, and chemical and exoglycosidase sequencing. The major lineage contains GIPLs with the glycan structures Man alpha 1-3Man alpha 1-4GlcN (iM2), Man alpha 1-6(Man alpha 1-3)Man alpha 1-4GlcN (iM3), and Man alpha 1-2Man alpha 1-6(Man alpha 1-3)Man alpha 1-4GlcN (iM4), which are linked to alkylacyl-PI containing predominantly C16:0 and C18:0 fatty acids and C18:0 alkyl chains (referred to as the hybrid type GIPLs). A proportion of the iM3 and iM4 species (32 and 4%, respectively) are substituted with an ethanolamine-phosphate residue. The location of this residue on the core glucosamine residue was inferred from the results of methylation analyses and alpha-mannosidase digestion. The minor GIPL lineage contains GIPLs with the same glycan sequences as the glycolipid anchor of LPG (referred to as the type-2 GIPLs). The alkylacyl-PI or lyso-alkyl-PI lipid moieties of these GIPLs differ from those of the hybrid type GIPLs and from the main pool of alkylacyl-PI in containing significant levels of C24:0 and C26:0 alkyl chains. The most polar of these GIPLs, LPGp, has the properties expected of a biosynthetic precursor to the LPG, having the structure, [formula: see text] Finally, the GPI anchors of the major promastigote proteins were found to contain the glycan sequence Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN, and an alkylacyl-PI lipid moiety which

  15. Bio-tribology.

    PubMed

    Dowson, Duncan

    2012-01-01

    It is now forty six years since the separate topics of friction, lubrication, wear and bearing design were integrated under the title 'Tribology' [Department of Education and Science, Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs, HMSO, London, 1966]. Significant developments have been reported in many established and new aspects of tribology during this period. The subject has contributed to improved performance of much familiar equipment, such as reciprocating engines, where there have been vast improvements in engine reliability and efficiency. Nano-tribology has been central to remarkable advances in information processing and digital equipment. Shortly after widespread introduction of the term tribology, integration with biology and medicine prompted rapid and extensive interest in the fascinating sub-field now known as Bio-tribology [D. Dowson and V. Wright, Bio-tribology, in The Rheology of Lubricants, ed. T. C. Davenport, Applied Science Publishers, Barking, 1973, pp. 81-88]. An outline will be given of some of the developments in the latter field. PMID:23285619

  16. Bio-coal briquette

    SciTech Connect

    Honda, Hiroshi

    1993-12-31

    Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

  17. Sequential treatments of premature lambs with an artificial surfactant and natural surfactant.

    PubMed Central

    Ikegami, M; Jobe, A; Jacobs, H; Jones, S J

    1981-01-01

    To test an artificial surfactant in vivo, six 120-d gestational age lambs were treated at birth with a mixture of a 9:1 M ratio of [14C]dipalmitoyl phosphatidylcholine (DPC) and phosphatidylglycerol at a dose of 100 mg DPC/kg. Nine other lambs were not treated. The mean PO2 values of the lambs treated with artificial surfactant were 65.7 +/- 11 mm Hg vs. 24.8 +/- 1.6 mm Hg for the untreated lambs (P less than 0.001). All lambs then were treated with 50 mg/natural surfactant lipid per kg, which promptly improved PO2 in all lambs. The PO2 values of those lambs previously treated with artificial surfactant remained greater than 100 mm Hg for 2.5 +/- 0.5 h vs. 0.9 +/- 0.3 h for lambs untreated with artificial surfactant (P less than 0.01). The pH and PCO2 values were not strikingly different between the two groups of lambs. Airway samples taken from lambs treated with artificial surfactant before treatment with natural surfactant had minimal surface tensions of 32 +/- 2.9 dyn/cm, whereas the artificial surfactant reisolated from these samples by centrifugation had minimum surface tension of 0 dyn/cm. The minimum surface tension of artificial surfactant was inhibited by fetal lung fluid from the premature lambs, whereas the minimum surface tension of natural surfactant was much less sensitive to inhibition. Artificial surfactant did not improve the pressure-volume characteristics of unventilated premature lung, whereas natural surfactant did. The change in specific activity of [14C]DPC following treatment with natural surfactant indicated that approximately 50% of the DPC initially administered was no longer associated with the airways. PMID:6790576

  18. Bio-threat microparticle simulants

    DOEpatents

    Farquar, George Roy; Leif, Roald N

    2012-10-23

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  19. Bio-threat microparticle simulants

    SciTech Connect

    Farquar, George Roy; Leif, Roald

    2014-09-16

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  20. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    SciTech Connect

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  1. A study of surfactant-assisted waterflooding

    SciTech Connect

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  2. Pinchoff dynamics of surfactant covered viscous threads

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Demetrios; Matar, Omar; Craster, Richard

    2001-11-01

    We study the breakup of a viscous thread covered with insoluble surfactant. One-dimensional evolution equations for the interface location, surfactant concentration and axial velocity are derived in the long wavelength approximation. The effect of surfactant is parameterized by its initial concentration, its strength and the Schmidt number, Sc, the ratio of kinematic viscosity to surface diffusion. Numerical solutions suggest that the presence of surfactant, which gives rise to Marangoni stresses, affect drastically the transient dynamics. The effective radius of the satellite formed during breakup decreases with increasing initial concentration and surfactant strength. For Sc > 10, increasing Sc has little effect on satellite effective radius [1]. These numerical solutions also show that the self-similar breakup dynamics of a surfactant-free viscous thread in the vicinity of the pinchoff region [2] are preserved even in the presence of surfactant. [1] R. V. Craster, O. K. Matar and D. T. Papageorgiou, submitted to Phys. Fluids (2001). [2] J. Eggers, Phys. Rev. Lett., 71, 3458 (1993).

  3. DNA compaction by azobenzene-containing surfactant

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina; Santer, Svetlana

    2011-08-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  4. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  5. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. PMID:26057244

  6. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  7. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    NASA Astrophysics Data System (ADS)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  8. Preparation and characterization of zwitterionic surfactant-modified montmorillonites.

    PubMed

    Zhu, Jianxi; Qing, Yanhong; Wang, Tong; Zhu, Runliang; Wei, Jingming; Tao, Qi; Yuan, Peng; He, Hongping

    2011-08-15

    A series of zwitterionic surfactant-modified montmorillonites (ZSMMs) were synthesized using montmorillonite and three zwitterionic surfactants with different alkyl chain lengths at different concentrations [0.2-4.0 cation exchange capacity (CEC)]. These ZSMMs were characterized by X-ray diffraction (XRD), thermo-gravimetric analysis and differential thermo-gravimetric (TG/DTG) analyses. The zwitterionic surfactant could be intercalated into the interlayer spaces of montmorillonites and causing interlayer space-swelling. From XRD measurements, the amount of the surfactants loaded and the basal spacing increased with surfactant concentration and alkyl chain length. One endothermic DTG peak occurred at ~390 °C, which was assigned to the decomposition of the zwitterionic surfactant on the organo-montmorillonites from 0.2 to 0.6 CEC. When the surfactant loading was increased, a new endothermic peak appeared at ~340 °C. From the microstructures of these ZSMMs, the mechanism of zwitterionic surfactant adsorption was proposed. At relatively low loadings of the zwitterionic surfactant, most of surfactants enter the spacing by an ion-exchange mechanism and are adsorbed onto the interlayer cation sites. When the concentration of the zwitterionic surfactant exceeds the CEC of montmorillonite, the surfactant molecules then adhere to the surface-adsorbed surfactant. Some surfactants enter the interlayers, whereas the others are attached to the clay surface. When the concentration of surfactant increases further beyond 2.0 CEC, the surfactants may occupy the inter-particle space within the house-of-cards aggregate structure. PMID:21575956

  9. Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730.

    PubMed

    Morita, Tomotake; Ishibashi, Yuko; Hirose, Naoto; Wada, Koji; Takahashi, Makoto; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2011-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants excreted by fungal strains. They show not only excellent surface-active properties but also versatile biochemical actions. Ustilago scitaminea NBRC 32730 has been reported mainly to produce a mono-acetylated and di-acylated MEL, MEL-B, from sucrose as sole carbon source. In order to make biosurfactant production more efficient, we focused our attention on the use of sugarcane juice, one of the most economical resources. The fungal strain produced MEL-B at the yield of 12.7 g/L from only sugarcane juice containing 22.4% w/w sugars. Supplementation with organic (yeast extract, peptone, and urea) and inorganic (sodium nitrate and ammonium nitrate) nitrogen sources markedly enhanced the production yield. Of the nitrogen sources, urea gave the best yield. Under optimum conditions, the strain produced 25.1 g/L of MEL-B from the juice (19.3% sugars) supplemented with 1 g/L of urea in a jar fermenter at 25 °C over 7 d. The critical micelle concentration (CMC) and the surface-tension at the CMC for the present MEL-B were 3.7×10(-6) M and 25.2 mN/m respectively. On water-penetration scan, the biosurfactant efficiently formed the lamella phase (L(α)) and myelins over a wide range of concentrations, indicating excellent surface-active and self-assembling properties. More significantly, the biosurfactant showed a ceramide-like skin-care property in a three-dimensional cultured human skin model. Thus, sugarcane juice is likely to be effective in glycolipid production by U. scitaminea NBRC 32730, and should facilitate the application of MELs. PMID:21737925

  10. Dynamic micelles of mannoside glycolipids are more efficient than polymers for inhibiting HIV-1 trans-infection.

    PubMed

    Schaeffer, Evelyne; Dehuyser, Laure; Sigwalt, David; Flacher, Vincent; Bernacchi, Serena; Chaloin, Olivier; Remy, Jean-Serge; Mueller, Christopher G; Baati, Rachid; Wagner, Alain

    2013-11-20

    Mannoside glycolipid conjugates are able to inhibit human immunodeficiency virus type 1 (HIV-1) trans-infection mediated by human dendritic cells (DCs). The conjugates are formed by three building blocks: a linear or branched mannose head, a hydrophilic linker, and a 24-carbon lipid chain. We have shown that, even as single molecules, these compounds efficiently target mannose-binding lectins, such as DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) important for HIV-1 transmission. With the goal to optimize their inhibitory activity by supramolecular structure formation, we have compared saturated and unsaturated conjugates, as single molecules, self-assemblies of dynamic micelles, and photopolymerized cross-linked polymers. Surface plasmon resonance showed that, unexpectedly, polymers of trivalent conjugates did not display a higher binding affinity for DC-SIGN than single molecules. Interactions on a chip or in solution were independent of calcium; however, binding to DCs was inhibited by a calcium chelator. Moreover, HIV-1 trans-infection was mostly inhibited by dynamic micelles and not by rigid polymers. The inhibition data revealed a clear correlation between the structure and molecular assembly of a conjugate and its biological antiviral activity. We present an interaction model between DC-SIGN and conjugates-either single molecules, micelles, or polymers-that highlights that the most effective interactions by dynamic micelles involve both mannose heads and lipid chains. Our data reveal that trivalent glycolipid conjugates display the highest microbicide potential for HIV prophylaxis, as dynamic micelles conjugates and not as rigid polymers. PMID:24134734

  11. Surfactant-Assisted Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  12. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGESBeta

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; Naalla, Mahesh

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  13. Precipitation of mixtures of anionic and cationic surfactants; 3: Effect of added nonionic surfactant

    SciTech Connect

    Shiau, B.J.; Harwell, J.H.; Scamehorn, J.F. . Inst. for Applied Surfactant Research)

    1994-10-15

    The precipitation of an anionic surfactant by a cationic surfactant in the presence of a nonionic surfactant is examined. The precipitation domains for sodium dodecyl sulfate/dodecyl-pyridinium chloride were measured over a wide range of surfactant concentrations as a function of nonylphenol polyethoxylate concentration. Increasing the nonylphenol polyethoxylate concentration decreases the tendency for precipitation to occur. A model for predicting precipitation domains in ternary surfactant mixtures has been developed and verified experimentally. The model allows the nonionic surfactant to affect the precipitation behavior only by lowering the critical micelle concentration of the mixture. Small deviations between theory and experiments along part of the anionic-rich micelle boundary result from adsorption of SDS on the precipitate which gives the microcrystals a negative charge and prevents their growth to a visible size.

  14. Structural and biological evaluation of a multifunctional SWCNT-AgNPs-DNA/PVA bio-nanofilm.

    PubMed

    Subbiah, Ramesh P; Lee, Haisung; Veerapandian, Murugan; Sadhasivam, Sathya; Seo, Soo-Won; Yun, Kyusik

    2011-04-01

    A bio-nanofilm consisting of a tetrad nanomaterial (nanotubes, nanoparticles, DNA, polymer) was fabricated utilizing in situ reduction and noncovalent interactions and it displayed effective antibacterial activity and biocompatibility. This bio-nanofilm was composed of homogenous silver nanoparticles (AgNPs) coated on single-walled carbon nanotubes (SWCNTs), which were later hybridized with DNA and stabilized in poly(vinyl alcohol) (PVA) in the presence of a surfactant with the aid of ultrasonication. Electron microscopy and bio-AFM (atomic force microscopy) images were used to assess the morphology of the nanocomposite (NC) structure. Functionalization and fabrication were examined using FT-Raman spectroscopy by analyzing the functional changes in the bio-nanofilm before and after fabrication. UV-visible spectroscopy and X-ray powder diffraction (XRD) confirmed that AgNPs were present in the final NC on the basis of its surface plasmon resonance (370 nm) and crystal planes. Thermal gravimetric analysis was used to measure the percentage weight loss of SWCNT (17.5%) and final SWCNT-AgNPs-DNA/PVA (47.7%). The antimicrobial efficiency of the bio-nanofilm was evaluated against major pathogenic organisms. Bactericidal ratios, zone of inhibition, and minimum inhibitory concentration were examined against gram positive and gram negative bacteria. A preliminary cytotoxicity analysis was conducted using A549 lung cancer cells and IMR-90 fibroblast cells. Confocal laser microscopy, bio-AFM, and field emission scanning electron microscopy (FE-SEM) images demonstrated that the NCs were successfully taken up by the cells. These combined results indicate that this bio-nanofilm was biocompatible and displayed antimicrobial activity. Thus, this novel bio-nanofilm holds great promise for use as a multifunctional tool in burn therapy, tissue engineering, and other biomedical applications. PMID:21336791

  15. Bio-photonics workstation

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Perch-Nielsen, Ivan; Dam, Jeppe S.; Palima, Darwin Z.

    2007-01-01

    We outline the specifications of a portable Bio-photonics Workstation we have developed that utilizes just a single spatial light modulator to generate an array of up to 100 reconfigurable laser-traps with adjustable power ratios making 3D real-time optical manipulation possible with the click of a laptop mouse. We employ a simple patented optical mapping approach from a fast spatial light modulator to obtain reconfigurable intensity patterns corresponding to two independently addressable regions relayed to the sample volume where the optical manipulation of a plurality of nano-featured micro-objects takes place. The stand-alone Biophotonics Workstation is currently being tested by external partners with micro-biologic and chemistry expertise.

  16. Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents.

    PubMed

    Ubeda, Juan F; Maldonado, María; Briones, Ana I; Francisco, J Fernández; González, Francisco J

    2014-05-01

    This work constitutes a preliminary study in which the capacity of non-Saccharomyces yeasts isolated from ancient distilleries as bio-control agents against moulds and in the treatment of waste waters contaminated by heavy metals-i.e. bio-remediation-is shown. In the first control assays, antagonist effect between non-Saccharomyces yeasts, their extracts and supernatants against some moulds, analysing the plausible (not exhaustive) involved factors were qualitatively verified. In addition, two enzymatic degrading properties of cell wall plant polymers, quitinolitic and pectinolitic, were screened. Finally, their use as agents of bio-remediation of three heavy metals (cadmium, chromium and lead) was analysed semi-quantitatively. The results showed that all isolates belonging to Pichia species effectively inhibited all moulds assayed. Moreover, P. kudriavzevii is a good candidate for both bio-control and bio-remediation because it inhibited moulds and accumulated the major proportion of the three tested metals. PMID:24370629

  17. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.

    PubMed

    Ziani, Khalid; Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2011-06-01

    Thyme oil-in-water nanoemulsions stabilized by a nonionic surfactant (Tween 80, T80) were prepared as potential antimicrobial delivery systems (pH 4). The nanoemulsions were highly unstable to droplet growth and phase separation, which was attributed to Ostwald ripening due to the relatively high water solubility of thyme oil. Ostwald ripening could be inhibited by incorporating ≥75% of corn oil (a hydrophobic material with a low water solubility) into the nanoemulsion droplets. The electrical characteristics of the droplets in the nanoemulsions were varied by incorporating ionic surfactants with different charges after homogenization: a cationic surfactant (lauric arginate, LAE) or an anionic surfactant (sodium dodecyl sulfate, SDS). The antifungal activity of nanoemulsions containing positive, negative, or neutral thymol droplets was then conducted against four strains of acid-resistant spoilage yeasts: Zygosaccharomyces bailli, Saccharomyces cerevisiae, Brettanomyces bruxellensis, and Brettanomyces naardenensis. The antifungal properties of the three surfactants (T80, LAE, SDS) were also tested in the absence of thymol droplets. Both ionic surfactants showed strong antifungal activity in the absence of thymol droplets, but no antimicrobial activity in their presence. This effect was attributed to partitioning of the antimicrobial surfactant molecules between the oil droplet and microbial surfaces, thereby reducing the effective concentration of active surfactants available to act as antimicrobials. This study shows oil droplets may decrease the efficacy of surfactant-based antimicrobials, which has important consequences for formulating effective antimicrobial agents for utilization in emulsion-based food and beverage products. PMID:21520914

  18. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    PubMed

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+) and Ig-Hepta(-/-) mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space. PMID:23922714

  19. Functionalized lipids and surfactants for specific applications.

    PubMed

    Kepczynski, Mariusz; Róg, Tomasz

    2016-10-01

    Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26946243

  20. Fluorescence studies of polymer surfactant association

    NASA Astrophysics Data System (ADS)

    Miguel, M. da G.; Burrows, H. D.; Formosinho, S. J.; Lindman, B.

    2001-05-01

    Fluorescence spectroscopy has been successfully used for the study of central issues of solutions of surfactants and associating polymers. Different fluorescence techniques and methods are uniquely adapted to investigate problems in this field and can, by using extrinsic or intrinsic probes, provide information on molecular association, microstructure and molecular dynamics. This constitutes an important contribution to the understanding and control of macroscopic properties, as well as to their biological functions and technical applications. Important aspects of these mixed systems, related to their self-assembly, are: formation of micelles and hydrophobic microdomains in general; size and shape of surfactant molecular aggregates; formation and stability of vesicles; intra- vs. intermolecular association in polymers; conformational changes in polymers as affected by polymer-surfactant association; surfactant organization in adsorbed layers; kinetic aspects of the formation and disintegration of self-assembly structures; residence times of molecules in microdomains and migration of active molecules. Some of these issues will be addressed in this paper.

  1. Solar energy storage using surfactant micelles

    NASA Astrophysics Data System (ADS)

    Srivastava, R. C.; Marwadi, P. R.; Latha, P. K.; Bhise, S. B.

    1982-09-01

    The results of experiments designed to test the soluble reduced form of thionine dye as a suitable solar energy storage agent inside the hydrophobic core of surfactant micelles are discussed. Aqueous solutions of thionine, methylene blue, cetyl pyridinium bromide, sodium lauryl sulphate, iron salts, and iron were employed as samples of anionic, cationic, and nonionic surfactants. The solutions were exposed to light until the dye disappeared, and then added drop-by-drop to surfactant solutions. The resultant solutions were placed in one cell compartment while an aqueous solution with Fe(2+) and Fe(3+) ions were placed in another, with the compartments being furnished with platinum electrodes connected using a saturated KCl-agar bridge. Data was gathered on the short circuit current, maximum power, and internal resistance encountered. Results indicate that dye-surfactant systems are viable candidates for solar energy storage for later conversion to electrical power.

  2. Aggregation of sulfosuccinate surfactants in water

    SciTech Connect

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.

    1983-12-22

    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  3. Surfactant improves irrigant penetration into unoperated sinuses

    PubMed Central

    Rohrer, Joseph W.; Dion, Greg R.; Brenner, Pryor S.; Abadie, Wesley M.; McMains, Kevin C.; Thomas, Roy F.

    2012-01-01

    Background: Saline irrigations are proving to be a valuable intervention in the treatment of chronic sinusitis. The use of surfactants is a well established additive to topical treatments known to reduce surface tension and may prove to be a simple, nonoperative intervention to improve intrasinus douching penetration. Methods: Six 30-mL, flat-bottomed medicine cups with circular holes cut through the bottom center and varying in diameter from 1 to 6 mm were created with punch biopsies. Water, saline, saline/dye, and saline/dye/surfactant were compared for maximum holding pressure via these modeled ostia. Holding pressures also were determined for cups with septal mucosa fused to the bottom with holes ranging from 1 to 6 mm. In addition, analysis was carried out with blood and blood/surfactant. Finally, five thawed, fresh-frozen cadaver heads were evaluated before any sinus surgery with water/dye and water/dye/surfactant for intrasinus penetration. Results: Surfactant significantly improved the ability of all solutions to penetrate ostia in both the plastic cup and fused septal mucosa model. All nonsurfactant-containing solutions were not statistically different from one another, nor did surfactant change the ostial penetration of blood. Surfactant significantly improved the ability of sinus irrigant to penetrate unoperated sinus cavities (3.12 vs 3.5, p = .021). Conclusions: The addition of surfactant to saline irrigation improves ostial penetration in undissected and undiseased cadavers. This has practical implications for unoperated patients seeking care for sinus-related symptoms in that we have now described a method for improving topical treatment of target sinus mucosa prior to surgical intervention. PMID:22643945

  4. Hydrophobic surfactant proteins and their analogues.

    PubMed

    Walther, Frans J; Waring, Alan J; Sherman, Mark A; Zasadzinski, Joseph A; Gordon, Larry M

    2007-01-01

    Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine lung surfactant extracts, which contain only polar lipids and native SP-B and SP-C, has dramatically improved the therapeutic outcomes of preterm infants with respiratory distress syndrome (RDS). One important goal of surfactant researchers is to replace animal-derived therapies with fully synthetic preparations based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. Here, we review recent research developments with peptide analogues of SP-B and SP-C, designed using either the known primary sequence and three-dimensional (3D) structure of the native proteins or, alternatively, the known 3D structures of closely homologous proteins. Such SP-B and SP-C mimics offer the possibility of studying the mechanisms of action of the respective native proteins, and may allow the design of optimized surfactant formulations for specific pulmonary diseases (e.g., acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)). These synthetic surfactant preparations may also be a cost-saving therapeutic approach, with better quality control than may be obtained with animal-based treatments. PMID:17575474

  5. Spatial and Temporal Control of Surfactant Systems

    PubMed Central

    Liu, Xiaoyang; Abbott, Nicholas L.

    2011-01-01

    This paper reviews some recent progress on approaches leading to spatial and temporal control of surfactant systems. The approaches revolve around the use of redox-active and light-sensitive surfactants. Perspectives are presented on experiments that have realized approaches for active control of interfacial properties of aqueous surfactant systems, reversible control of microstructures and nanostructures formed within bulk solutions, and in situ manipulation of the interactions of surfactants with polymers, DNA and proteins. A particular focus of this review is devoted to studies of amphiphiles that contain the redox-active group ferrocene – reversible control of the oxidation state of ferrocene leads to changes in the charge/hydrophobicity of these amphiphiles, resulting in substantial changes in their self-assembly. Light-sensitive surfactants containing azobenzene, which undergo changes in shape/polarity upon illumination with light, are a second focus of this review. Examples of both redox-active and light-sensitive surfactants that lead to large (> 20mN/m) and spatially localized (~mm) changes in surface tensions on a time scale of seconds are presented. Systems that permit reversible transformations of bulk solution nanostructures – such as micelle-to-vesicle transitions or monomer-to-micelle transitions – are also described. The broad potential utility of these emerging classes of amphiphiles are illustrated by the ability to drive changes in functional properties of surfactant systems, such as rheological properties and reversible solubilization of oils, as well as the ability to control interactions of surfactants with biomolecules to modulate their transport into cells. PMID:19665723

  6. Navigating the Bio-Politics of Childhood

    ERIC Educational Resources Information Center

    Lee, Nick; Motzkau, Johanna

    2011-01-01

    Childhood research has long shared a bio-political terrain with state agencies in which children figure primarily as "human futures". In the 20th century bio-social dualism helped to make that terrain navigable by researchers, but, as life processes increasingly become key sites of bio-political action, bio-social dualism is becoming less useful…

  7. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (SS-6656, Alfoterra 35, 38, 63,65,68) have been identified which can change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil in the presence of Na{sub 2}CO{sub 3}. All the carbonate surfaces (Lithographic Limestone, Marble, Dolomite and Calcite) show similar behavior with respect to wettability alteration with surfactant 4-22. Anionic surfactants (5-166, Alfoterra-33 and Alfoterra-38 and Alfoterra-68), which lower the interfacial tension with a West Texas crude oil to very low values (<10{sup -2} nM/m), have also been identified. Plans for the next quarter include conducting wettability, mobilization, and imbibition studies.

  8. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate wettability. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  9. Surfactant mediated polyelectrolyte self-assembly

    SciTech Connect

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.

  10. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGESBeta

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  11. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2005-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Imbibition in an originally oil-wet 2D capillary is the fastest in the case of Alf-38 and slowest in the case of DTAB (among the surfactants studied). Force of adhesion studies and contact angle measurements show that greater wettability alteration is possible with these anionic surfactants than the cationic surfactant studied. The water imbibition rate does not increase monotonically with an increase in the surfactant concentration. A numerical model has been developed that fits the rate of imbibition. Plans for the next quarter include conducting simulation and imbibition studies.

  12. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  13. Turbulent drag reduction in nonionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Tamano, Shinji; Itoh, Motoyuki; Kato, Katsuo; Yokota, Kazuhiko

    2010-05-01

    There are only a few studies on the drag-reducing effect of nonionic surfactant solutions which are nontoxic and biodegradable, while many investigations of cationic surfactant solutions have been performed so far. First, the drag-reducing effects of a nonionic surfactant (AROMOX), which mainly consisted of oleyldimethylamineoxide, was investigated by measuring the pressure drop in the pipe flow at solvent Reynolds numbers Re between 1000 and 60 000. Second, we investigated the drag-reducing effect of a nonionic surfactant on the turbulent boundary layer at momentum-thickness Reynolds numbers Reθ from 443 to 814 using two-component laser-Doppler velocimetry and particle image velocimetry systems. At the temperature of nonionic surfactant solutions, T =25 °C, the maximum drag reduction ratio for AROMOX 500 ppm was about 50%, in the boundary layer flow, although the drag reduction ratio was larger than 60% in pipe flow. Turbulence statistics and structures for AROMOX 500 ppm showed the behavior of typical drag-reducing flow such as suppression of turbulence and modification of near-wall vortices, but they were different from those of drag-reducing cationic surfactant solutions, in which bilayered structures of the fluctuating velocity vectors were observed in high activity.

  14. Influence of Surfactant Bilayers and Substrate Immobilization on the Refractive Index Sensitivity of Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahjamali, Mohammad; Large, Nicolas; Martinsson, Erik; Zaraee, Negin; Schatz, George; Aili, Daniel; Mirkin, Chad

    2015-03-01

    Shape-controlled synthesis of gold nanoparticles (AuNPs) generally involves the use of surfactants to regulate the nucleation growth process and to obtain colloidally stable AuNPs. The surfactants adsorb on the NP surface making further functionalization difficult and therefore limit their practical use in many applications such as bio- and molecular sensing, surface-enhanced spectrosopies, and NP assembly. Herein, we report on how cetyltrimethylammonium (CTAX, X =Cl-, Br-) , a common surfactant used in anisotropic AuNPs synthesis, affectsthe nanoparticle sensitivity to local dielectric environment changes and limitsrefractometric plasmonic sensing. We experimentally and theoretically show that the CTAX bilayer significantly reduces the refractive index (RI) sensitivity of anisotropic AuNPs such as flat and concave nanocubes, nanorods, and nanoprisms. We show that the RI sensitivity can be improvedby up to 40% by removing the CTAXfrom immobilized AuNPs using oxygen plasma treatment. The substrate effect on the RI sensitivity caused by NP immobilization isalso investigated. The strategy presented herein is a simple andeffective method to improvethe RI sensitivity of CTAX-stabilized AuNPs, thus increasing their potential in nanoplasmonic sensingand in biomedical applications.

  15. DNA interaction with cis- and trans- isomers of photosensitive surfactant

    NASA Astrophysics Data System (ADS)

    Unksov, I. N.; Kasyanenko, N. A.

    2014-12-01

    Interaction between DNA and photosensitive cationic surfactant in a solution is studied. Studies were conducted to examine the impact of the surfactant in its cis- conformation on the size of DNA molecule and also to investigate the phase behavior of the system depending on DNA and surfactant concentration. We conclude that trans- isomer of surfactant requires its smaller concentration to reach the DNA compaction compared with cis- isomer received by UV radiation of solutions. Studies of DNA-surfactant systems were performed by means of spectrophotometry and viscometry. Variation of surfactant concentration enables us to determine the precipitation zone on phase diagram. From the viscosity study it can be indicated that precipitation zone is narrower for UV-radiated surfactant and it shifts to higher surfactant concentration. Also we examine the reversibility of DNA compaction in systems with the surfactant in its trans- form.

  16. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  17. BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies.

    PubMed

    Oliveira, Jorge S; Araújo, Wydemberg; Lopes Sales, Ana Isabela; Brito Guerra, Alaine de; Silva Araújo, Sinara Carla da; de Vasconcelos, Ana Tereza Ribeiro; Agnez-Lima, Lucymara F; Freitas, Ana Teresa

    2015-01-01

    Crude oil extraction, transportation and use provoke the contamination of countless ecosystems. Therefore, bioremediation through surfactants mobilization or biodegradation is an important subject, both economically and environmentally. Bioremediation research had a great boost with the recent advances in Metagenomics, as it enabled the sequencing of uncultured microorganisms providing new insights on surfactant-producing and/or oil-degrading bacteria. Many research studies are making available genomic data from unknown organisms obtained from metagenomics analysis of oil-contaminated environmental samples. These new datasets are presently demanding the development of new tools and data repositories tailored for the biological analysis in a context of bioremediation data analysis. This work presents BioSurfDB, www.biosurfdb.org, a curated relational information system integrating data from: (i) metagenomes; (ii) organisms; (iii) biodegradation relevant genes; proteins and their metabolic pathways; (iv) bioremediation experiments results, with specific pollutants treatment efficiencies by surfactant producing organisms; and (v) a biosurfactant-curated list, grouped by producing organism, surfactant name, class and reference. The main goal of this repository is to gather information on the characterization of biological compounds and mechanisms involved in biosurfactant production and/or biodegradation and make it available in a curated way and associated with a number of computational tools to support studies of genomic and metagenomic data. PMID:25833955

  18. BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies

    PubMed Central

    Oliveira, Jorge S.; Araújo, Wydemberg; Lopes Sales, Ana Isabela; de Brito Guerra, Alaine; da Silva Araújo, Sinara Carla; de Vasconcelos, Ana Tereza Ribeiro; Agnez-Lima, Lucymara F.; Freitas, Ana Teresa

    2015-01-01

    Crude oil extraction, transportation and use provoke the contamination of countless ecosystems. Therefore, bioremediation through surfactants mobilization or biodegradation is an important subject, both economically and environmentally. Bioremediation research had a great boost with the recent advances in Metagenomics, as it enabled the sequencing of uncultured microorganisms providing new insights on surfactant-producing and/or oil-degrading bacteria. Many research studies are making available genomic data from unknown organisms obtained from metagenomics analysis of oil-contaminated environmental samples. These new datasets are presently demanding the development of new tools and data repositories tailored for the biological analysis in a context of bioremediation data analysis. This work presents BioSurfDB, www.biosurfdb.org, a curated relational information system integrating data from: (i) metagenomes; (ii) organisms; (iii) biodegradation relevant genes; proteins and their metabolic pathways; (iv) bioremediation experiments results, with specific pollutants treatment efficiencies by surfactant producing organisms; and (v) a biosurfactant-curated list, grouped by producing organism, surfactant name, class and reference. The main goal of this repository is to gather information on the characterization of biological compounds and mechanisms involved in biosurfactant production and/or biodegradation and make it available in a curated way and associated with a number of computational tools to support studies of genomic and metagenomic data. Database URL: www.biosurfdb.org PMID:25833955

  19. Anionic surfactant - Biogenic amine interactions: The role of surfactant headgroup geometry.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-03-15

    Oligoamines and biogenic amines (naturally occurring oligoamines) are small flexible polycations. They interact strongly with anionic surfactants such as sodium dodecyl sulfate, SDS. This results in enhanced adsorption and the formation of layered structures and the formation of layered structures at the air-water interface which depends on surfactant concentration and solution pH. The effect of changing the surfactant headgroup geometry on that interaction and subsequent adsorption is reported here. Neutron reflectivity, NR, results for the surface adsorption of the anionic surfactant sodium diethylene glycol monododecyl ether sulfate, SLES, with the biogenic amine, spermine, are presented, and contrasted with previous data for SDS/spermine mixtures. The enhancement in the adsorption of the surfactant at the air-water interface where monolayer adsorption occurs is similar for both surfactants. However the regions of surfactant concentration and solution pH where surface multilayer adsorption occurs is less extensive for the SLES/spermine mixtures, and occurs only at low pH. The results show how changing the headgroup geometry by the introduction of the ethylene oxide linker group between the alkyl chain and sulfate headgroup modifies the polyamine - surfactant interaction. The increased steric constraint from the polyethylene oxide group disrupts the conditions for surface multilayer formation at the higher pH values. This has important consequences for applications where the modification or manipulation of the surface properties are required. PMID:26724704

  20. Surfactant Delivery into the Lung

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Filoche, Marcel

    2014-11-01

    We have developed a multiscale, compartmentalized model of surfactant and liquid delivery into the lung. Assuming liquid plug propagation, the airway compartment accounts for the plug's volume deposition (coating) on the airway wall, while the bifurcation compartment accounts for plug splitting from the parent airway to the two daughter airways. Generally the split is unequal due to gravity and geometry effects. Both the deposition ratio RD (deposition volume/airway volume), and the splitting ratio, RS, of the daughters volumes are solved independently from one another. Then they are used in a 3D airway network geometry to achieve the distribution of delivery into the lung. The airway geometry is selected for neonatal as well as adult applications, and can be advanced from symmetric, to stochastically asymmetric, to personalized. RD depends primarily on the capillary number, Ca, while RS depends on Ca, the Reynolds number, Re, the Bond number, Bo, the dose volume, VD, and the branch angles. The model predicts the distribution of coating on the airway walls and the remaining plug volume delivered to the alveolar region at the end of the tree. Using this model, we are able to simulate and test various delivery protocols, in order to optimize delivery and improve the respiratory function.

  1. Branching mechanisms in surfactant micelles

    NASA Astrophysics Data System (ADS)

    Dhakal, Subas; Sureshkumar, Radhakrishna

    The mechanisms of branch formation in surfactant micelles of cetyltrimethylammonium chloride (CTAC) in presence of sodium salicylate (NaSal) counter ions in water are studied using molecular dynamics simulations. The curvature energy associated with the formation of micelle branches and the effect of branching on the solution viscosity are quantified. Highly curved surfaces are energetically stabilized by a higher density of binding counter ions near the branch points. Simulations show that micellar branches result in a significant reduction in the solution viscosity as observed in experiments [Dhakal & Sureshkumar, J. Chem. Phys. 143, 024905 (2015)]. This reduction in viscosity has long been attributed to the sliding motion of micelle branches across the main chain. However, to date, such dynamics of micelle branches have never been visualized in either experiments or simulations. Here, we explicitly illustrate and quantify, for the first time, how branches slide along the micelle contour to facilitate stress relaxation. We acknowledged the computational resources provided by XSEDE which is supported by NSF Grant Number OCI-1053575 and the financial support by National Science Foundation under Grants 1049489 and 1049454.

  2. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  3. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness.

    PubMed

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu

    2014-01-01

    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment. PMID:23900948

  4. DNA- and DNA-CTMA: novel bio-nanomaterials for application in photonics and in electronics

    NASA Astrophysics Data System (ADS)

    Mindroiu, Mihaela; Manea, Ana-Maria; Rau, Ileana; Grote, James G.; Oliveira, Hyrla C.; Pawlicka, Agnieszka; Kajzar, Francois

    2013-06-01

    Functionalization of deoxyribonucleic acid (DNA) with surfactants, photosensitive and conductivity increasing molecules as well as thin film processing is reviewed and discussed. The comparative spectroscopic studies of chemical and photothermal stability of several chromophores show a better stability in DNA-cetyltrimethylammonium (CTMA) surfactant complexes than in polycarbonate (PC) or poly(ethylene glycol) (PEG) matrices. Also the optical damage threshold in nanosecond pulsed laser illumination is higher in thin films of bio-macromolecules such as DNA, DNACTMA, collagen than in PC. The electrical conductivity of doped DNA based systems exhibits a typical ionic character and can be improved by an appropriate doping. Practical applications of DNA based complexes are reviewed and discussed.

  5. Surfactant-enhanced low-pH alkaline flooding

    SciTech Connect

    Peru, D.A. and Co., Columbia, MD . Research Div.); Lorenz, P.B. )

    1990-08-01

    This paper reports sodium bicarbonate investigated as a potential alkaline agent in surfactant-enhanced alkaline flooding because it has very little tendency to dissolve silicate minerals. In experiments performed with Wilmington, CA, crude oil and three types of surfactants, the bicarbonate/surfactant combination caused a marked lowering of interfacial tension (IFT). Bicarbonate protected the surfactant against divalent cations and reduced adsorption of surfactant and polymer on various minerals. Coreflood test confirm that sodium bicarbonate plus surfactant can be an effective alternative to the high-pH flooding process.

  6. Growing Characteristics of Fine Ice Particles in Surfactant Solution

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nakayama, Kosuke; Komoda, Yoshiyuki; Usui, Hiromoto; Okada, Kazuto; Fujisawa, Ryo

    Time variation characteristics of ice particles in a surfactant solution have been investigated. The effect of surfactants on corrosion characteristics was also studied. The results were compared with those treated with poly(vinyl alcohol). From the results, the present surfactant, cetyl dimethyl betaine was not found to be effective on preventing Ostward ripening of ice particles as poly(vinyl alcohol) showed. Then, it was concluded some effective technology has to be installed with surfactants when this surfactant treatment is realized. On the corrosion characteristics, it was found that the present surfactant shows the same level as tap water.

  7. Isolation of Surfactant-Resistant Bacteria from Natural, Surfactant-Rich Marine Habitats▿

    PubMed Central

    Plante, Craig J.; Coe, Kieran M.; Plante, Rebecca G.

    2008-01-01

    Environmental remediation efforts often utilize either biodegradative microbes or surfactants, but not in combination. Coupling both strategies holds the potential to dramatically increase the rate and extent of remediation because surfactants can enhance the bioavailability of contaminants to microbes. However, many surfactants permeabilize bacterial cell membranes and are effective disinfectants. An important goal then is to find or genetically modify microorganisms that possess both desirable degradative capabilities and the ability to thrive in the presence of surfactants. The guts of some marine invertebrates, particularly deposit feeders, have previously been shown to contain high levels of biosurfactants. Our primary aim was to mine these natural, surfactant-rich habitats for surfactant-resistant bacteria. Relative to sediment porewaters, the gut contents of two polychaete deposit feeders, Nereis succinea and Amphitrite ornata, exhibited a significantly higher ratio of bacteria resistant to both cationic and anionic surfactants. In contrast, bacteria in the gut fluids of a holothuroid, Leptosynapta tenuis, showed surfactant susceptibility similar to that of bacteria from sediments. Analyses of 16S rRNA gene sequences revealed that the majority of surfactant-resistant isolates were previously undescribed species of the genus Vibrio or were of a group most closely related to Spongiobacter spp. We also tested a subset of resistant bacteria for the production of biosurfactants. The majority did produce biosurfactants, as demonstrated via the oil-spreading method, but in all cases, production was relatively weak under the culture conditions employed. Novel surfactant-resistant, biosurfactant-producing bacteria, and the habitats from which they were isolated, provide a new source pool for potential microorganisms to be exploited in the in situ bioremediation of marine sediments. PMID:18586977

  8. Dynamics of glycolipid domains in the plasma membrane of living cultured neurons, following protein kinase C activation: a study performed by excimer-formation imaging.

    PubMed Central

    Pitto, M; Palestini, P; Ferraretto, A; Flati, S; Pavan, A; Ravasi, D; Masserini, M; Bottiroli, G

    1999-01-01

    Dynamic changes of glycolipid domains within the plasma membranes of cultured rat cerebellar granule cells have been investigated. For this purpose, a pyrene-labelled derivative of G(M1) ganglioside has been incorporated in the cell plasma membrane, and the rate of excimer formation, directly related to the formation of domains, has been studied by a fluorescence imaging technique (excimer-formation imaging). Fluorescence imaging showed that upon addition of 100 microM glutamate, indirectly inducing the activation of protein kinase C (PKC), glycolipid concentration within domains increases in cell bodies. Comparable effects were exerted by the addition of PMA, directly inducing the activation of PKC. On the contrary, the phorbol ester was not effective in the presence of the specific PKC inhibitor, bisindolylmaleimide. These results suggest that glycolipid-enriched domains are dynamic supramolecular structures affected by membrane-associated events, such as PKC activation. Dynamic changes of domains could be important in modulating their postulated participation in a series of functions, including signal transduction and lipid/protein sorting. PMID:10548548

  9. INTRODUCTION: Wetting and dewetting in bio-related systems

    NASA Astrophysics Data System (ADS)

    Herminghaus, S.

    2005-03-01

    Research on such genuinely soft-matter related phenomena as wetting and dewetting would not be complete without reminiscence to biological systems. The recent stir around what has been known as the lotus effect, the amazing ultra-hydrophobic properties of many plants, has highlighted the interconnections of wetting with bio-systems. In the first paper of this section (Mock et al), a `biomimetic' system is conceived which imitates the properties of plant leaves with elastic hairs. The synthesis of such a system turns out to be tricky, but the progress is encouraging. The next three papers deal with surfactant layers, as they occur in many biological systems, such as the plasma membrane. Various experimental techniques, such as fluorescence microscopy (Tanaka et al), neutron reflectivity (Steitz et al), and x-ray scattering (Ahrens et al), are demonstrated as powerful tools for their investigation. The last paper (Heim et al) takes us back to where we started: the morphologies emerging upon dewetting of a liquid. This time, the full diversity of patterns is shown which appears in the deposited solute, once the liquid has evaporated. The motivation of this work is the morphology of deposition of DNA on bio-chips, which may affect the readout results of such devices. It is shown that although much can already be understood, a lot of work has still to be done, and many beautiful mechanisms may still be discovered.

  10. Counterion specificity of surfactants based on dicarboxylic amino acids.

    PubMed

    Bordes, Romain; Tropsch, Jürgen; Holmberg, Krister

    2009-10-15

    The behavior in solution of a series of amino acid-based surfactants having two carboxyl groups separated by a spacer of one, two, or three carbon atoms has been investigated. All three surfactants precipitated on addition of acid, but the aspartate surfactant (with a two-carbon spacer) was considerably more resistant to precipitation than the aminomalonate surfactant (one-carbon spacer) and the glutamate surfactant (three-carbon spacer). The interactions with the monovalent counterions lithium, sodium, and potassium were investigated by conductivity. It was found that lithium ions bound the strongest and potassium ions the weakest to the surfactant micelles. These results were interpreted using the hard and soft acid-base theory. Comparing the three surfactants with respect to binding of one specific counterion, sodium, showed that the aminomalonate surfactant, which has the shortest spacer, bound sodium ions the strongest and the glutamate surfactant, which has the longest spacer, had the lowest affinity for the counterion. Also that could be explained by the hard and soft acid-base concept. The glutamate surfactant was found to be considerably more resistant to calcium ions than the two other surfactants. This was attributed to this surfactant forming an intermolecular complex with the calcium ion at the air-water interface while the aminomalonate and the aspartate surfactants, with shorter distance between the carboxylate groups could form six- and seven-membered intramolecular calcium complexes. PMID:19608191

  11. Bio-inspired vision

    NASA Astrophysics Data System (ADS)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  12. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  13. Self-Assembly of Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Yethiraj, Arun; Mondal, Jagannath; Mahanthappa, Mahesh

    2013-03-01

    The self-assembly behavior of Gemini (dimeric or twin-tail) dicarboxylate disodium surfactants is studied using molecular dynamics simulations. This gemini architecture, in which two single tailed surfactants are joined through a flexible hydrophobic linker, has been shown to exhibit concentration-dependent aqueous self-assembly into lyotropic phases including hexagonal, gyroid, and lamellar morphologies. Our simulations reproduce the experimentally observed phases at similar amphiphile concentrations in water, including the unusual ability of these surfactants to form gyroid phases over unprecedentedly large amphiphile concentration windows. We demonstrate quanitative agreement between the predicted and experimentally observed domain spacings of these nanostructured materials. Through careful conformation analyses of the surfactant molecules, we show that the gyroid phase is electrostatically stabilized related to the lamellar phase. By starting with a lamellar phase, we show that decreasing the charge on the surfactant headgroups by carboxylate protonation or use of a bulkier tetramethyl ammonium counterion in place of sodium drives the formation of a gyroid phase.

  14. 2-DE using hemi-fluorinated surfactants.

    PubMed

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step. PMID:17577887

  15. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2004-03-31

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (Alfoterra 35, 38) recover more than 40% of the oil in about 50 days by imbibition driven by wettability alteration in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 28% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Residual oil saturation showed little capillary number dependence between 10{sup -5} and 10{sup -2}. Wettability alteration increases as the number of ethoxy groups increases in ethoxy sulfate surfactants. Plans for the next quarter include conducting mobilization, and imbibition studies.

  16. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Simulation studies indicate that both wettability alteration and gravity-driven flow play significant role in oil recovery from fractured carbonates. Anionic surfactants (Alfoterra 35, 38) recover about 55% of the oil in about 150 days by imbibition driven by wettability alteration and low tension in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 40% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Cationic surfactant, DTAB recovers about 35% of the oil. Plans for the next quarter include conducting simulation and imbibition studies.

  17. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1997-09-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation, high adsorption and viscous/heterogeneity fingering. This report contains data concerning selection of appropriate fluids for use in laboratory experiments and numerical simulations. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer is proposed. The properties of this system has been determined. The experimental set-up has been conditioned for use and experiments involving the aforementioned system have already started. A commercial simulator has been acquired for use in reproducing the experiments. A graduate student has been trained in its use. Linear stability analysis equations have been developed and phase maps for one and two-dimensions are currently computed.

  18. Surface shear inviscidity of soluble surfactants

    PubMed Central

    Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.

    2014-01-01

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

  19. Rheology of Natural Lung Surfactant Films

    NASA Astrophysics Data System (ADS)

    Alonso, Coralie; Waring, Alan; Zsadzinski, Joseph

    2004-03-01

    The lung surfactant (LS) is a lipoprotein mixture lining the inside of the pulmonary alveoli which has the ability to lower the surface tension of the air-liquid hypophase interface to value near zero thus reducing the work of breathing and which also prevents the alveolar collapse. A lack or malfunction of lung surfactant, as it is often the case for premature infants, leads to respiratory distress syndrome. RDS can be treated by supplying replacement LS to the infants and several medications derived from natural sources, are now widely used. The lung surfactant is adsorbed at the air-liquid interface and is subjected to incessant compression expansion cycles therefore Langmuir monolayers provide a suitable model to investigate the physical properties of lung surfactant films. Using a magnetic needle rheometer, we measured the shear viscosity of natural lung surfactant spread at the air-liquid interface upon compression and expansion cycles for three different formulations. The shear viscosity of Survanta changes by orders of magnitude along one cycle while for Curosurf samples it changes only slightly and for Infasurf films it remains constant. These different behaviors can be explained by differences in composition between the three formulations leading to different organizations on the molecular scale.

  20. Analysis of supercooling activities of surfactants.

    PubMed

    Kuwabara, Chikako; Terauchi, Ryuji; Tochigi, Hiroshi; Takaoka, Hisao; Arakawa, Keita; Fujikawa, Seizo

    2014-08-01

    Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v). PMID:24792543

  1. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    SciTech Connect

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by the independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report was performed by Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures, the work done on recovery experiments on core rocks, and computer simulations. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results

  2. A new bio-inspired route to metal-nanoparticle-based heterogeneous catalysts.

    PubMed

    Debecker, Damien P; Faure, Chrystel; Meyre, Marie-Edith; Derré, Alain; Gaigneaux, Eric M

    2008-10-01

    Onion-type multilamellar vesicles are made of concentric bilayers of organic surfactant and are mainly known for their potential applications in biotechnology. They can be used as microreactors for the spontaneous and controlled production of metal nanoparticles. This process does not require any thermal treatment and, hence, it is also attractive for material sciences such as heterogeneous catalysis. In this paper, silver-nanoparticle-based catalysts are prepared by transferring onion-grown silver nanoparticles onto inorganic supports. The resulting materials are active in the total oxidation of benzene, attesting that this novel bio-inspired concept is promising in inorganic catalysis. PMID:18844300

  3. Bio-Engineering High Performance Microbial Strains for MEOR

    SciTech Connect

    Xiangdong Fang; Qinghong Wang; Patrick Shuler

    2007-12-30

    The main objectives of this three-year research project are: (1) to employ the latest advances in genetics and bioengineering, especially Directed Protein Evolution technology, to improve the effectiveness of the microbial enhanced oil recovery (MEOR) process. (2) to improve the surfactant activity and the thermal stability of bio-surfactant systems for MEOR; and (3) to develop improved laboratory methods and tools that screen quickly candidate bio-systems for EOR. Biosurfactants have been receiving increasing attention as Enhanced Oil Recovery (EOR) agents because of their unique properties (i.e., mild production conditions, lower toxicity, and higher biodegradability) compared to their synthetic chemical counterparts. Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including EOR and bioremediation. During the three-year of the project period, we have successfully cloned the genes involved in the rhamnolipid bio-synthesis. And by using the Transposon containing Rhamnosyltransferase gene rhlAB, we engineered the new mutant strains P. aeruginosa PEER02 and E. coli TnERAB so they can produce rhamnolipid biosurfactans. We were able to produce rhamnolipds in both P. aeroginosa PAO1-RhlA- strain and P. fluorescens ATCC15453 strain, with the increase of 55 to 175 fold in rhamnolipid production comparing with wild type bacteria strain. We have also completed the first round direct evolution studies using Error-prone PCR technique and have constructed the library of RhlAB-containing Transposon to express mutant gene in heterologous hosts. Several methods, such as colorimetric agar plate assay, colorimetric spectrophotometer assay, bioactive assay and oil spreading assay have been established to detect and screen rhamnolipid production. Our engineered P. aeruginosa PEER02 strain can produce rhamnolipids with different carbon sources as substrate. Interfacial tension analysis (IFT) showed that different rhamnolipids from different

  4. Colocalization of a CD1d-Binding Glycolipid with a Radiation-Attenuated Sporozoite Vaccine in Lymph Node-Resident Dendritic Cells for a Robust Adjuvant Effect.

    PubMed

    Li, Xiangming; Kawamura, Akira; Andrews, Chasity D; Miller, Jessica L; Wu, Douglass; Tsao, Tiffany; Zhang, Min; Oren, Deena; Padte, Neal N; Porcelli, Steven A; Wong, Chi-Huey; Kappe, Stefan H I; Ho, David D; Tsuji, Moriya

    2015-09-15

    A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant NK T cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the current study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites of a rodent malaria parasite, Plasmodium yoelii, also referred to as irradiated P. yoelii sporozoites (IrPySpz). 7DW8-5 had a superb adjuvant effect only when the glycolipid and IrPySpz were conjointly administered i.m. Therefore, we evaluated the effect of distinctly different biodistribution patterns of αGalCer and 7DW8-5 on their respective adjuvant activities. Although both glycolipids induce a similar cytokine response in sera of mice injected i.v., after i.m. injection, αGalCer induces a systemic cytokine response, whereas 7DW8-5 is locally trapped by CD1d expressed by dendritic cells (DCs) in draining lymph nodes (dLNs). Moreover, the i.m. coadministration of 7DW8-5 with IrPySpz results in the recruitment of DCs to dLNs and the activation and maturation of DCs. These events cause the potent adjuvant effect of 7DW8-5, resulting in the enhancement of the CD8(+) T cell response induced by IrPySpz and, ultimately, improved protection against malaria. Our study is the first to show that the colocalization of a CD1d-binding invariant NK T cell-stimulatory glycolipid and a vaccine, like radiation-attenuated sporozoites, in dLN-resident DCs upon i.m. conjoint administration governs the potency of the adjuvant effect of the glycolipid. PMID:26254338

  5. Glycolipid Metabolism Disorder in the Liver of Obese Mice Is Improved by TUDCA via the Restoration of Defective Hepatic Autophagy

    PubMed Central

    Guo, Qinyue; Shi, Qindong; Li, Huixia; Liu, Jiali; Wu, Shufang; Sun, Hongzhi; Zhou, Bo

    2015-01-01

    Objective. Tauroursodeoxycholic acid (TUDCA) has been considered an important regulator of energy metabolism in obesity. However, the mechanism underlying how TUDCA is involved in insulin resistance is not fully understood. We tested the effects of TUDCA on autophagic dysfunction in obese mice. Material and Methods. 500 mg/kg of TUDCA was injected into obese mice, and metabolic parameters, autophagy markers, and insulin signaling molecular were assessed by Western blotting and real-time PCR. Results. The TUDCA injections in the obese mice resulted in a reduced body weight gain, lower blood glucose, and improved insulin sensitivity compared with obese mice that were injected with vehicle. Meanwhile, TUDCA treatment not only reversed autophagic dysfunction and endoplasmic reticulum stress, but also improved the impaired insulin signaling in the liver of obese mice. Additionally, the same results obtained with TUDCA were evident in obese mice treated with the adenoviral Atg7. Conclusions. We found that TUDCA reversed abnormal autophagy, reduced ER stress, and restored insulin sensitivity in the liver of obese mice and that glycolipid metabolism disorder was also improved via the restoration of defective hepatic autophagy. PMID:26681941

  6. Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B.

    PubMed

    Morita, Tomotake; Takashima, Masako; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2010-10-01

    The producers of glycolipid biosurfactant, mannosylerythritol lipid-B (MEL-B), were isolated from leaves of Perilla frutescens on Ibaraki in Japan. Four isolates, 1D9, 1D10, 1D11, and 1E5, were identified as basidiomycetous yeast Pseudozyma tsukubaensis by rDNA sequence and biochemical properties. The structure of MEL-B produced by these strains was analyzed by (1)H nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as the diastereomer MEL-B produced by P. tsukubaensis NBRC 1940. Of these isolates, P. tsukubaensis 1E5 (JCM 16987) is capable of producing the largest amount of the diastereomer MEL-B from vegetable oils. In order to progress the diastereomer MEL-B production by strain 1E5, factors affecting the production, such as carbon and organic nutrient sources, were further examined. Olive oil and yeast extract were the best carbon and nutrient sources, respectively. Under the optimal conditions, a maximum yield, productivity, and yield coefficient of 73.1 g/L, 10.4 g L(-1) day(-1), and 43.5 g/g were achieved by feeding of olive oil in a 5-L jar-fermenter culture using strain 1E5. PMID:20652239

  7. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system.

    PubMed

    Konishi, Masaaki; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Kitamoto, Dai

    2007-03-01

    Mannosylerythritol lipids (MEL), which are glycolipid biosurfactants secreted by the Pseudozyma yeasts, show not only excellent surface-active properties but also versatile biochemical actions including antitumor and cell-differentiation activities. In order to address the biochemical actions, interactions between MEL-A, the major component of MEL, and different lectins were investigated using the surface plasmon resonance spectroscopy. The monolayer of MEL-A showed high binding affinity to concanavalin A (ConA) and Maackia amurensis lectin-I (MAL-I). The observed affinity constants for ConA and MAL-I were estimated to be 9.48 +/- 1.31 x 10(6) and 3.13 +/- 0.274 x 10(6) M(-1), respectively; the value was comparable to that of Manalpha1-6(Manalpha1-3)Man, which is one of the most specific probe to ConA. Significantly, alpha-methyl-D-mannopyranoside (1 mM) exhibited no binding inhibition between MEL-A and ConA. MEL-A is thus likely to self-assemble to give a high affinity surface, where ConA binds to the hydrophilic headgroup in a different manner from that generally observed in lectin-saccharide interactions. The binding manner should be related with the biochemical actions of MEL toward mammalian cells via protein-carbohydrate interactions. PMID:17205206

  8. Spatially-Resolved Analysis of Glycolipids and Metabolites in Living Synechococcus sp. PCC7002 Using Nanospray Desorption Electrospray Ionization

    SciTech Connect

    Lanekoff, Ingela T.; Geydebrekht, Oleg V.; Pinchuk, Grigoriy E.; Konopka, Allan; Laskin, Julia

    2013-04-07

    Microorganisms release a diversity of organic compounds that couple interspecies metabolism, enable communication, or provide benefits to other microbes. Increased knowledge of microbial metabolite production will contribute to understanding of the dynamic microbial world and can potentially lead to new developments in drug discovery, biofuel production, and clinical research. Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization technique that enables detailed chemical characterization of molecules from a specific location on a surface without special sample pretreatment. Due to its ambient nature, living bacterial colonies growing on agar plates can be rapidly and non-destructively analyzed. We performed spatially resolved nano-DESI analysis of living Synechococcus sp. PCC 7002 colonies on agar plates. We use high resolution mass spectrometry and MS/MS analysis of the living Synechococcus sp. PCC 7002 colonies to detect metabolites and lipids, and confirm their identities. We found that despite the high salt content of the agar (osmolarity ca. 700 mM), nano-DESI analysis enables detailed characterization of metabolites produced by the colony. Using this technique, we identified several glycolipids found on the living colonies and examined the effect of the age of the colony on the chemical gradient of glucosylglycerol secreted onto agar.

  9. Ieodoglucomide C and Ieodoglycolipid, New Glycolipids from a Marine-Derived Bacterium Bacillus licheniformis 09IDYM23.

    PubMed

    Tareq, Fakir Shahidullah; Lee, Hyi-Seung; Lee, Yeon-Ju; Lee, Jong Seok; Shin, Hee Jae

    2015-05-01

    Chemical examination of the ethyl acetate extract from the fermentation broth of the marine-derived bacterium Bacillus licheniformis resulted in the isolation of two new glycolipids, ieodoglucomide C (1) and ieodoglycolipid (2). The structural characterization of 1 and 2 was achieved by extensive spectroscopic evidence, including 2D NMR experiments. A combination of chemical derivatization techniques followed by NMR studies, LC-MS data analysis and a literature review was deployed for the establishment of the stereo-configurations of 1 and 2. Compounds 1 and 2 exhibited good antibiotic properties against Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa with MICs ranging from 0.01 to 0.05 μM. Furthermore, the antifungal activity of 1 and 2 was evaluated against plant pathogenic fungi Aspergillus niger, Rhizoctonia solani, Botrytis cinerea and Colletotrichum acutatum as well as the human pathogen Candida albicans. Compounds 1 and 2 inhibited the mycelial growth of these pathogens with MIC values of 0.03-0.05 μM, revealing that these compounds are good candidates for the development of new fungicides. PMID:25893812

  10. Probing nanoparticle effect in protein-surfactant complexes

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, V. K.; Kohlbrecher, J.

    2015-06-01

    SANS experiments have been carried to probe the role of anionic silica nanoparticles in the anionic BSA protein-cationic DTAB surfactant complexes. In protein-surfactant complex, surfactant molecules aggregate to form micelle-like clusters along the unfolded polypeptide chains of the protein. The nanoparticle aggregation mediated by oppositely charged protein-surfactant complex coexists with the free protein-surfactant complexes in the nanoparticle-protein-surfactant system. There is rearrangement of micelles in adsorbed protein-surfactant complex on nanoparticles in leading to their (nanoparticle) aggregation. On the other hand, the unfolding of protein in free protein-surfactant complex is found to be significantly enhanced in presence of nanoparticles.

  11. Fullerene surfactants and their use in polymer solar cells

    SciTech Connect

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  12. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  13. Surfactant mediated liquid phase exfoliation of graphene

    NASA Astrophysics Data System (ADS)

    Narayan, Rekha; Kim, Sang Ouk

    2015-10-01

    Commercialization of graphene based applications inevitably requires cost effective mass production. From the early days of research on graphene, direct liquid phase exfoliation (LPE) of graphite has been considered as the most promising strategy to produce high-quality mono or few-layer graphene sheets in solvent dispersion forms. Substantial success has been achieved thus far in the LPE of graphene employing numerous solvent systems and suitable surfactants. This invited review article principally showcase the recent research progress as well as shortcomings of surfactant assisted LPE of graphene. In particular, a comprehensive assessment of the quality and yield of the graphene sheets produced by different categories of the surfactants are summarized. Future direction of LPE methods is also proposed for the eventual success of commercial applications.

  14. Nanotube Dispersions Made With Charged Surfactant

    NASA Technical Reports Server (NTRS)

    Kuper, Cynthia; Kuzma, Mike

    2006-01-01

    Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.

  15. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  16. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  17. A study of the thermodynamic properties of surfactant mixtures: Mixed micelle formation and mixed surfactant adsorption

    SciTech Connect

    Lopata, J.J.

    1992-12-31

    The volumetric mixing in anionic/nonionic, cationic/nonionic, and anionic/cationic mixed micelles was determined by examining the total surfactant apparent molar volumes at total surfactant concentrations much greater than the mixture critical micelle concentration. The mixed surfactant systems investigated were: sodium dodecyl sulfate and a polyethoxylated nonylphenol, at 0.15 M NaCl and with no added NaCl; cetyl pyridinium chloride and polyethoxylated nonylphenol, at 0.03 M NaCl; and sodium dodecyl sulfate and dodecyl pyridinium chloride, at 0.15 M NaCl. The results of this study suggest that the electrostatic interactions in the mixed micelles do no significantly effect the molar volume of the mixed micelle. Therefore, the micelle hydrophobic core dominates the volumetric mixing in mixed micelles. The adsorption of sodium dodecyl sulfate and a polyethoxylated nonylphenol and well defined mixtures thereof was measured on gamma alumina. A pseudo-phase separation model to describe mixed anionic/nonionic admicelle (adsorbed surfactant aggregate) formation was developed. In this model, regular solution theory was used to describe the anionic/nonionic surfactant interactions in the mixed admicelle and a patch-wise adsorption model was used to describe surfactant adsorption on a heterogeneous surface. Regular solution theory was tested on specific homogeneous surface patches by examining constant total surfactant adsorption levels. For the adsorption of binary surfactant mixtures adsorbing at total equilibrium concentrations above the mixture critical micelle concentration, simultaneous solution of the pseudo-phase separation models for mixed admicelle and mixed micelle formation predicts that the surfactant compositions in the monomer, micelle, and admicelle pseudo-phases are constant at a constant total adsorption level.

  18. When do water-insoluble polyion-surfactant ion complex salts "redissolve" by added excess surfactant?

    PubMed

    dos Santos, Salomé; Gustavsson, Charlotte; Gudmundsson, Christian; Linse, Per; Piculell, Lennart

    2011-01-18

    The redissolution of water-insoluble polyion-surfactant ion complexes by added excess of surfactant has systematically been investigated in experimental and theoretical phase equilibrium studies. A number of stoichiometric polyion-surfactant ion "complex salts" were synthesized and they consisted of akyltrimethylammonium surfactant ions of two different alkyl chain lengths (C(12)TA(+) and C(16)TA(+)) combined with homopolyions of polyacrylate of two different lengths (PA(-)(25) and PA(-)(6000)) or copolyions of acrylate and the slightly hydrophobic nonionic comonomers N-isopropylacrylamide (PA(-)-co-NIPAM) or N,N-dimethylacrylamide (PA(-)-co-DAM). The complex salts were mixed with water and excess alkyltrimethylammonium surfactant with either bromide or acetate counterions (C(n)TABr or C(n)TAAc). Factors promoting efficient redissolution were (i) very short polyions, (ii) a large fraction of NIPAM or DAM comonomers, and (iii) acetate, rather than bromide, as the surfactant counterion. Added C(12)TAAc gave an efficient redissolution of C(12)TAPA(25) but virtually no redissolution of C(12)TAPA(6000). A very efficient redissolution by added C(12)TAAc was obtained for PA(-)-co-NIPAM with 82 mol % of NIPAM. The C(12)TAPA-co-NIPAM/C(12)TAAc/H(2)O ternary phase diagram closely resembled the corresponding diagram for the much-studied pair cationic hydroxyethyl cellulose-(sodium) dodecyl sulfate. The simple Flory-Huggins theory adopted for polyelectrolyte systems successfully reproduced the main features of the experimental phase diagrams for the homopolyion systems, including the effect of the surfactant counterion. The efficient redissolution found for certain copolyion systems was explained by the formation of soluble polyion-surfactant ion complexes carrying an excess of surfactant ions through an additional hydrophobic attraction. PMID:21166446

  19. Surfactant-Polymer Interaction for Improved Oil Recovery

    SciTech Connect

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  20. Adhesion of latex films. Influence of surfactants

    SciTech Connect

    Charmeau, J.Y.; Kientz, E.; Holl, Y.

    1996-12-31

    In the applications of film forming latexes in paint, paper, coating, adhesive, textile industries, one of the most important property of latex films is adhesion onto a support. From the point of view of adhesion, latex films have two specificities. The first one arises from the particular structure of the film which is usually not homogeneous but retains to a certain extent the memory of the particles it was made from. These structure effects are clearly apparent when one compares mechanical or adhesion properties of pure latex films and of films of the same polymers but prepared from a solution. Latex films show higher Young`s moduli and lower adhesion properties than solution films. The second specificity of latex films comes from the presence of the surfactant which was used in the synthesis and as stabilizer for the latex. Most industrial latexes contain low amounts of surfactant, typically in the range 0.1 to 2-3 wt%. However, being usually incompatible with the polymer, the surfactant is not homogeneously distributed in the film. It tends to segregate towards the film-air or film-support interfaces or to form domains in the bulk of the film. Distribution of surfactants in latex films has been studied by several authors. The influence of the surfactant on adhesion, as well as on other properties, is thus potentially very important. This article presents the results of the authors investigation of surfactant effects on adhesion properties of latex films. To the authors knowledge, there is no other example, in the open literature, of this kind of study.

  1. Bio-nanopatterning of Surfaces

    NASA Astrophysics Data System (ADS)

    Mendes, Paula M.; Yeung, Chun L.; Preece, Jon A.

    2007-08-01

    Bio-nanopatterning of surfaces is a very active interdisciplinary field of research at the interface between biotechnology and nanotechnology. Precise patterning of biomolecules on surfaces with nanometre resolution has great potential in many medical and biological applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell biology. Bio-nanopatterning technology has advanced at a rapid pace in the last few years with a variety of patterning methodologies being developed for immobilising biomolecules such as DNA, peptides, proteins and viruses at the nanoscale on a broad range of substrates. In this review, the status of research and development are described, with particular focus on the recent advances on the use of nanolithographic techniques as tools for biomolecule immobilisation at the nanoscale. Present strengths and weaknesses, as well future challenges on the different nanolithographic bio-nanopatterning approaches are discussed.

  2. Surfactant effects on bio-based emulsions used as lubrication fluids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The successful formulation of a lubricating emulsion requires carefully balancing the mixture of base oil, water and a plethora of additives. The factors that affect the performance of lubrication emulsions range from the macroscopic stability to the microscopic surface properties of the base oil. ...

  3. Effects of selected surfactants on soil microbial activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants (surface-active agents) facilitate and accentuate the emulsifying, dispersing, spreading, and wetting properties of liquids. Surfactants are used in industry to reduce the surface tension of liquid and to solubilize compounds. For agricultural pest management, surfactants are an import...

  4. Bio-Inspired Antifouling Strategies

    NASA Astrophysics Data System (ADS)

    Kirschner, Chelsea M.; Brennan, Anthony B.

    2012-08-01

    Biofouling is a complex, dynamic problem that globally impacts both the economy and environment. Interdisciplinary research in marine biology, polymer science, and engineering has led to the implementation of bio-inspired strategies for the development of the next generation of antifouling marine coatings. Natural fouling defense mechanisms have been mimicked through chemical, physical, and/or stimuli-responsive strategies. This review outlines the detrimental effects associated with biofouling, describes the theoretical basis for antifouling coating design, and highlights prominent advances in bio-inspired antifouling technologies.

  5. Surfactant Dynamics: Spreading and Wave Induced Dynamics of a Monolayer

    NASA Astrophysics Data System (ADS)

    Strickland, Stephen Lee

    Material adsorbed to the surface of a fluid - for instance crude oil in the ocean, biological surfactant on ocular or pulmonary mucous, or emulsions - can form a 2-dimensional mono-molecular layer. These materials, called surfactants, can behave like a compressible viscous 2-dimensional fluid, and can generate surface stresses that influence the sub-fluid's bulk flow. Additionally, the sub-fluid's flow can advect the surfactant and generate gradients in the surfactant distribution and thereby generate gradients in the interfacial properties. Due to the difficulty of non-invasive measurements of the spatial distribution of a molecular monolayer at the surface, little is known about the dynamics that couple the surface motion and the evolving density field. In this dissertation, I will present a novel method for measuring the spatiotemporal dynamics of the surfactant surface density through the fluorescence emission of NBD-tagged phosphatidylcholine, a lipid, and we will compare the surfactant dynamics to the dynamics of the surface morphology.With this method, we will consider the inward and outward spreading of a surfactant on a thin fluid film as well as the advection of a surfactant by linear and non-linear gravity-capillary waves. These two types of surfactant coupled fluid flows will allow us to probe well-accepted assumptions about the coupled fluid-surfactant dynamics. In chapter 1, we review the models used for understanding the spreading of a surfactant on a thin fluid film and the motion of surfactant on a linear gravity-capillary wave. In chapter 2, we will present the experimental methods used in this dissertation. In chapter 3, we will study the outward spreading of a localized region of surfactant and show that the spreading of a monolayer is considerably different from the spreading of thicker-layered surfactant. In chapter 4, we will investigate the inward spreading of a surfactant into a circular surfactant-free region and show that hole closure and

  6. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  7. Surfactant replacement therapy for adult respiratory distress syndrome in children.

    PubMed

    Evans, D A; Wilmott, R W; Whitsett, J A

    1996-05-01

    Surfactant replacement therapy may have a role in the treatment of ARDS in children. The current studies suggest that rapid instillation of exogenous surfactant is more effective than slow tracheal instillation or aerosolized delivery. Studies suggest that exogenous surfactant given early in the development of ARDS is more effective than therapy provided late in the course of the disease. Natural surfactants appear to be more effective than artificial surfactants due to the presence of SP-B and SP-C, which prevent inhibition of the exogenous surfactant by the protein leakage into the alveolus that is characteristic of ARDS. Exogenous surfactant replacement therapy appears to be safe and well tolerated. A surfactant that can be delivered by aerosol would be useful since this is more easily tolerated by the patients, requires less surfactant, and would be more cost effective when compared with tracheal instillation. Aerosolized surfactant could be given to patients who have not yet required mechanical ventilation, thus potentially preventing the progression of the acute lung injury to respiratory failure. The recent failure of a large multi-center trial of aerosolized Exosurf for the treatment of sepsis-related ARDS72 may have been due to the failure of the delivery system as opposed to the surfactant used in the trial; therefore, further research into aerosol delivery systems is needed. There may be different responses to exogenous surfactant therapy by patients with ARDS of different etiologies, such as aspiration pneumonia, sepsis, or trauma. Well-planned placebo-controlled trials will be required to determine these differences. The data supporting the role of surfactant replacement for the treatment of ARDS in children is growing. However, before widespread use of surfactant is considered, a multi-center, placebo-controlled trial will be required to establish the safety and efficacy of surfactant replacement in such patients. PMID:8726159

  8. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers.

    PubMed

    Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas

    2016-05-13

    Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds. PMID:27086283

  9. Pulmonary surfactant proteins and polymer combinations reduce surfactant inhibition by serum.

    PubMed

    Lu, Karen W; Pérez-Gil, Jesús; Echaide, Mercedes; Taeusch, H William

    2011-10-01

    Acute respiratory distress syndrome (ARDS) is an inflammatory condition that can be associated with capillary leak of serum into alveoli causing inactivation of surfactant. Resistance to inactivation is affected by types and concentrations of surfactant proteins, lipids, and polymers. Our aim was to investigate the effects of different combinations of these three components. A simple lipid mixture (DPPC/POPG) or a more complex lipid mixture (DPPC/POPC/POPG/cholesterol) was used. Native surfactant proteins SP-B and SP-C obtained from pig lung lavage were added either singly or combined at two concentrations. Also, non-ionic polymers polyethylene glycol and dextran and the anionic polymer hyaluronan were added either singly or in pairs with hyaluronan included. Non-ionic polymers work by different mechanisms than anionic polymers, thus the purpose of placing them together in the same surfactant mixture was to evaluate if the combination would show enhanced beneficial effects. The resulting surfactant mixtures were studied in the presence or absence of serum. A modified bubble surfactometer was used to evaluate surface activities. Mixtures that included both SP-B and SP-C plus hyaluronan and either dextran or polyethylene glycol were found to be the most resistant to inhibition by serum. These mixtures, as well as some with either SP-B or SP-C with combined polymers were as or more resistant to inactivation than native surfactant. These results suggest that improved formulations of lung surfactants are possible and may be useful in reducing some types of surfactant inactivation in treating lung injuries. PMID:21741354

  10. Determination of surfactants by capillary electrophoresis.

    PubMed

    Heinig, K; Vogt, C

    1999-10-01

    Capillary electrophoresis has been increasingly used during the past few years for the separation and determination of surfactants. These substances are applied in many household and industrial products such as laundry detergents, cosmetics and pharmaceuticals, often as homologous and isomeric mixtures. Product development and control as well as toxicological and environmental analyses require selective and sensitive analytical methods. This review presents capillary electrophoretic techniques to determine important representatives of cationic, anionic, and neutral surfactants. The application of different buffer additives such as organic solvents, cyclodextrins or micelles to enhance the resolution of complex mixtures is discussed. Besides direct and indirect UV and fluorescence detection, examples for conductivity and mass spectrometric detection are also given. Derivatization procedures to improve the detectability and implement charge in neutral analytes are described. The successful use of capillary electrophoresis for surfactant determinations has proven that it can serve as a routine technique in many real-world applications. Robust, validated methods for the quantitation of single compounds, such as alkylbenzene sulfonates, sodium dodecyl sulfate and benzalkonium salts, are now available. Characteristic peak patterns (fingerprint analysis) can be used for the identification of surfactants in multicomponent formulations (e.g. ethoxylates and phosphonates). PMID:10596832

  11. Biodegradation potential of photocatalyzed surfactant washwater.

    PubMed

    Maillacheruvu, K; Buck, L; Lee, E

    2001-01-01

    Enhanced release of hydrophobic compounds from a soil matrix can be achieved by use of soil-washing or soil-flushing using various surfactants. However, the surfactants used in achieving the desorption of organic contaminants may also cause a problem in subsequent removal/disposal of these contaminants. UV radiation in the presence of TiO2 as a pre-treatment step to achieve initial (or partial) breakdown of naphthalene and Sodium Dodecyl Sulfate (SDS) using batch experiments indicated that 56% to 88% naphthalene degradation occurred within 30 minutes to one hour. Preliminary results on the estimate of the batch aerobic biodegradation potential of photocatalyzed washwater containing naphthalene and SDS suggested that SDS was the major carbon and energy source for an activated sludge enrichment culture and an enrichment culture obtained from microorganisms at a contaminated site. Continuous-flow stirred tank reactors (CSTRs) with with a solids retention time (SRT) of 4 days were not effective, but an SRT of 8 days was successful in biodegrading the naphthalene and surfactant. These results indicated that photocatalytic treatment as a pre-treatment step followed by a biodegradation step may offer potential in cleaning up surfactant washwaters containing organic contaminants. PMID:11501312

  12. Surfactants treatment of crude oil contaminated soils.

    PubMed

    Urum, Kingsley; Pekdemir, Turgay; Copur, Mehmet

    2004-08-15

    This study reports experimental measurements investigating the ability of a biological (rhamnolipid) and a synthetic (sodium dodecyl sulfate, SDS) surfactant to remove the North Sea Ekofisk crude oil from various soils with different particle size fractions under varying washing conditions. The washing parameters and ranges tested were as follows: temperature (5 to 50 degrees C), time (5 to 20 min), shaking speed (80 to 200 strokes/min), volume (5 to 20 cm3), and surfactant concentration (0.004 to 5 mass%). The contaminated soils were prepared in the laboratory by mixing crude oil and soils using a rotating cylindrical mixer. Two contamination cases were considered: (1) weathered contamination was simulated by keeping freshly contaminated soils in a fan assisted oven at 50 degrees C for 14 days, mimicking the weathering effect in a natural hot environment, and (2) nonweathered contamination which was not subjected to the oven treatment. The surfactants were found to have considerable potential in removing crude oil from different contaminated soils and the results were comparable with those reported in literature for petroleum hydrocarbons. The removal of crude oil with either rhamnolipid or SDS was within the repeatability range of +/-6%. The most influential parameters on oil removal were surfactant concentration and washing temperature. The soil cation exchange capacity and pH also influenced the removal of crude oil from the individual soils. However, due to the binding of crude oil to soil during weathering, low crude oil removal was achieved with the weathered contaminated soil samples. PMID:15271574

  13. Photosensitive surfactants: Micellization and interaction with DNA

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-01

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  14. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have acquired field oil and core samples and field brine compositions from Marathon. We have conducted preliminary adsorption and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Receding contact angles increase with surfactant adsorption. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  15. SURFACTANT FLUSH: HOW WELL DID IT WORK?

    EPA Science Inventory

    The Oklahoma Corporation Commission through a contract with Surbec-Art, Inc. of Norman Oklahoma has remediated TPH contamination at a gasoline spill at Golden, Oklahoma. Residual gasoline was removed from the subsurface using a flush of surfactant, followed by in situ bioremedia...

  16. SIMULATION OF SURFACTANT-ENHANCED AQUIFER REMEDIATION

    EPA Science Inventory

    Surfactant-enhanced aquifer remediation (SEAR) is currently under active investigation as one of the most promising alternatives to conventional pump-and-treat remediation for aquifers contaminated by dense nonaqueous phase organic liquids. An existing three-dimensional finite-di...

  17. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2005-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the best hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (35-62% OOIP) for initially oil-wet cores through wettability alteration and IFT reduction. Core-scale simulation results match those of the experiments. Initial capillarity-driven imbibition gives way to a final gravity-driven process. As the matrix block height increases, surfactant alters wettability to a lesser degree, or permeability decreases, oil production rate decreases. The scale-up to field scale will be further studied in the next quarter.

  18. Surfactants on cleanup detail in paper mills

    SciTech Connect

    Longhini, D.

    1996-06-01

    From pulp production to paper coating, surfactants are involved in almost every facet of pulp and paper manufacturing. Within the industry, the role of surface-active agents is growing every larger with the demand for recycled paper. In the US, for example, The American Forest and Paper Assn. has established an ambitious goal of recovering 50% of the paper used in the US by 2000. By then, paper producers in North America are expected to have invested more than $10 billion in recycling equipment, and be spending more than $300 million/yr on drinking chemicals, including surfactants. Surfactants will also serve the industry indirectly, as additives in the production and formulation of products sold to the paper industry, including biocides, retention aids and water-treatment polymers. Providing higher-quality paper while reducing dependence on virgin pulp, requires manufacturing technologies and process chemicals that can restore wastepaper to its original state. Achieving those goals will depend on the development of novel surfactants through close collaboration with mill customers, and pioneering research in surface science, polymer engineering and organic chemistry.

  19. Synthesis of Novel Organosilicon Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Li, L. J.; Wang, E. F.

    A series of organosilicon gemini surfactants was synthesized from γ-(2. 3-epoxypropoxy) propytrimethoxysilane. hexametliyldisiloxane and polyethylene glycol. The target compounds were confirmed by IR. 1H NMR. Surface properties of the target compounds were measured. The critical micelle concentration values of 1-3 were 8mmol, 5mmol, and 3 mmol, respectively.

  20. Thermally stable surfactants and compositions and methods of use thereof

    DOEpatents

    Chaiko, David J.

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  1. Structural study of surfactant-dependent interaction with protein

    SciTech Connect

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  2. Surfactant loss: Effects of temperature, salinity, and wettability

    SciTech Connect

    Noll, L.A.; Gall, B.L.; Crocker, M.E.; Olsen, D.K.

    1989-05-01

    Adsorption of sodium dodecylsulfate, Triton X-100, decyltrimethylammonium bromide surfactants onto silica gel and Berea sandstone mineral surfaces has been studied as a function of temperature, solution salt concentration, and mineral surface wettability. Adsorption studies using a flow calorimeter were conducted using pure surfactants and minerals. The studies were then extended to the adsorption of one type of commercial surfactant onto both consolidated and crushed Berea sandstone using column techniques. This has allowed the comparison of different methods to evaluate surfactant losses from flowing rather than static surfactant solutions. 20 refs., 15 figs., 37 tabs.

  3. Joint BioEnergy Institute

    SciTech Connect

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  4. Effects of sleeve gastrectomy with jejuno-jejunal or jejuno-ileal loop on glycolipid metabolism in diabetic rats

    PubMed Central

    Zhong, Ming-Wei; Liu, Shao-Zhuang; Zhang, Guang-Yong; Zhang, Xiang; Hu, San-Yuan

    2016-01-01

    AIM To explore the effect of sleeve gastrectomy (SG) with jejuno-jejunal or jejuno-ileal loop on glycolipid metabolism in diabetic rats. METHODS Diabetic rats, which were induced by high-fat diet (HFD), nicotinamide and low-dose streptozotocin, underwent sham operations, SG, SG with jejuno-ileal loop (SG-JI) and SG with jejuno-jejunal loop (SG-JJ) followed by postoperative HFD. Then, at the time points of baseline and 2, 12 and 24 wk postoperatively, we determined and compared several variables, including the area under the curve for the results of oral glucose tolerance test (AUCOGTT), serum levels of triglyceride, cholesterol and ghrelin in fasting state, homeostasis model assessment of insulin resistance (HOMA-IR), body weight, calorie intake, glucagon-like peptide (GLP)-1 and insulin secretions after glucose gavage at dose of 1 g/kg. RESULTS At 2 wk postoperatively, rats that underwent SG, SG-JJ and SG-JI, compared with sham-operated (SHAM) rats, demonstrated lower body weight, calorie intake and ghrelin (P < 0.05 vs SHAM), enhanced secretion of insulin and GLP-1 after glucose gavage (P < 0.05 vs SHAM), improved AUCOGTT, HOMA-IR, fasting serum triglyceride and cholesterol (AUCOGTT: 1616.9 ± 83.2, 837.4 ± 83.7, 874.9 ± 97.2 and 812.6 ± 81.9, P < 0.05 vs SHAM; HOMA-IR: 4.31 ± 0.54, 2.94 ± 0.22, 3.17 ± 0.37 and 3.41 ± 0.22, P < 0.05 vs SHAM; Triglyceride: 2.35 ± 0.17, 1.87 ± 0.23, 1.98 ± 0.30 and 2.04 ± 0.21 mmol/L, P < 0.05 vs SHAM; Cholesterol: 1.84 ± 0.21, 1.53 ± 0.20, 1.52 ± 0.20 and 1.46 ± 0.23 mmol/L). At 12 wk postoperatively, rats receiving SG-JJ and SG-JI had lower body weight, reduced levels of triglyceride and cholesterol and elevated level of GLP-1 compared to those receiving SG (P < 0.05 vs SG). At 24 wk after surgery, compared with SG, the advantage of SG-JJ and SG-JI for glucolipid metabolism was still evident (P < 0.05 vs SG). SG-JI had a better performance in lipid metabolism and GLP-1 secretion of rats than did SG-JJ. CONCLUSION

  5. Comparative study of clinical pulmonary surfactants using atomic force microscopy

    PubMed Central

    Zhang, Hong; Fan, Qihui; Wang, Yi E.; Neal, Charles R.; Zuo, Yi Y.

    2016-01-01

    Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations. PMID:21439262

  6. Lung injury and surfactant metabolism after hyperventilation of premature lambs.

    PubMed

    Ikegami, M; Kallapur, S; Michna, J; Jobe, A H

    2000-03-01

    We asked whether lung injury and surfactant metabolism differed in preterm lambs after a 1-h period of hyperventilation to P(CO2) values of 25-30 mm Hg. The lambs then were surfactant treated and conventionally ventilated (CV) or high-frequency oscillatory ventilated (HFOV) for an additional 1 or 8 h. The results were compared with lambs that were not hyperventilated or surfactant treated but were ventilated with CV or HFOV. The 1-h hyperventilation resulted in increased alveolar protein, increased recovery of intravascular [131I]albumin in the lungs, and an increase in tumor necrosis factor-alpha mRNA. There were no differences between CV or HFOV in alveolar or total lung recoveries of saturated phosphatidylcholine (Sat PC), tracer doses of [14C]Sat PC and [125I]surfactant protein-B, or in percent Sat PC in large aggregate surfactant in surfactant-treated lambs. The lambs not hyperventilated or treated with surfactant had lower large aggregate pools and lower recoveries of [14C]Sat PC and [125I]surfactant protein-B in total lungs than for the surfactant-treated lungs, but there were no differences between the CV and HFOV groups. Hyperventilation followed by surfactant treatment resulted in a mild injury, but the subsequent use of CV or HFOV did not result in differences in surfactant metabolism. PMID:10709742

  7. Pulmonary surfactants and their role in pathophysiology of lung disorders.

    PubMed

    Akella, Aparna; Deshpande, Shripad B

    2013-01-01

    Surfactant is an agent that decreases the surface tension between two media. The surface tension between gaseous-aqueous interphase in the lungs is decreased by the presence of a thin layer of fluid known as pulmonary surfactant. The pulmonary surfactant is produced by the alveolar type-II (AT-II) cells of the lungs. It is essential for efficient exchange of gases and for maintaining the structural integrity of alveoli. Surfactant is a secretory product, composed of lipids and proteins. Phosphatidylcholine and phosphatidylglycerol are the major lipid constituents and SP-A, SP-B, SP-C, SP-D are four types of surfactant associated proteins. The lipid and protein components are synthesized separately and are packaged into the lamellar bodies in the AT-II cells. Lamellar bodies are the main organelle for the synthesis and metabolism of surfactants. The synthesis, secretion and recycling of the surfactant lipids and proteins is regulated by complex genetic and metabolic mechanisms. The lipid-protein interaction is very important for the structural organization of surfactant monolayer and its functioning. Alterations in surfactant homeostasis or biophysical properties can result in surfactant insufficiency which may be responsible for diseases like respiratory distress syndrome, lung proteinosis, interstitial lung diseases and chronic lung diseases. The biochemical, physiological, developmental and clinical aspects of pulmonary surfactant are presented in this article to understand the pathophysiological mechanisms of these diseases. PMID:23441475

  8. Lung surfactants and different contributions to thin film stability.

    PubMed

    Hermans, Eline; Bhamla, M Saad; Kao, Peter; Fuller, Gerald G; Vermant, Jan

    2015-11-01

    The surfactant lining the walls of the alveoli in the lungs increases pulmonary compliance and prevents collapse of the lung at the end of expiration. In premature born infants, surfactant deficiency causes problems, and lung surfactant replacements are instilled to facilitate breathing. These pulmonary surfactants, which form complex structured fluid-fluid interfaces, need to spread with great efficiency and once in the alveolus they have to form a thin stable film. In the present work, we investigate the mechanisms affecting the stability of surfactant-laden thin films during spreading, using drainage flows from a hemispherical dome. Three commercial lung surfactant replacements Survanta, Curosurf and Infasurf, along with the phospholipid dipalmitoylphosphatidylcholine (DPPC), are used. The surface of the dome can be covered with human alveolar epithelial cells and experiments are conducted at the physiological temperature. Drainage is slowed down due to the presence of all the different lung surfactant replacements and therefore the thin films show enhanced stability. However, a scaling analysis combined with visualization experiments demonstrates that different mechanisms are involved. For Curosurf and Infasurf, Marangoni stresses are essential to impart stability and interfacial shear rheology does not play a role, in agreement with what is observed for simple surfactants. Survanta, which was historically the first natural surfactant used, is rheologically active. For DPPC the dilatational properties play a role. Understanding these different modes of stabilization for natural surfactants can benefit the design of effective synthetic surfactant replacements for treating infant and adult respiratory disorders. PMID:26307946

  9. Surfactant therapy: the current practice and the future trends

    PubMed Central

    Altirkawi, Khalid

    2013-01-01

    The efficacy of surfactant preparations used in the prevention and treatment of respiratory distress syndrome (RDS) is a well known fact; however, many controversies remain. The debate over which surfactant to be used, when and what is the best mode of delivery is still raging. Currently, animal-derived surfactants are preferred and clearly recommended by various practice guidelines, but new synthetic surfactants containing peptides that mimic the action of surfactant proteins are emerging and they seem to have a comparable efficacy profile to the natural surfactants. It is hoped that with further improvements, they will outperform their natural counterparts in terms of reliability and cost-effectiveness. Early surfactant administration was shown to further reduce the risk of RDS and its complications. However, as nasal continuous positive airway pressure (nCPAP) is becoming increasingly the preferred first-line therapy for RDS, the less invasive approaches of respiratory support along with early selective surfactant administration (e.g. INSURE) appears to provide a better option. Although neonatal RDS is still the main indication of surfactant therapy, other pathological processes received considerable attention and major research has been dedicated to explore the role of surfactant in their management, Meconium aspiration syndrome (MAS) and congenital pneumonia are two worthy examples. The most updated practice guidelines do recommend the use of endotracheal instillation as the preferred mode of surfactant delivery. However, aerosolization and other non-invasive methods are being investigated with some success; nonetheless, further improvements are very much in need. PMID:27493353

  10. Hydrophobic surfactant proteins strongly induce negative curvature.

    PubMed

    Chavarha, Mariya; Loney, Ryan W; Rananavare, Shankar B; Hall, Stephen B

    2015-07-01

    The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706

  11. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  12. Novel glycolipid TLR2 ligands of the type Pam2Cys-α-Gal: synthesis and biological properties.

    PubMed

    Thomann, Jean-Sébastien; Monneaux, Fanny; Creusat, Gaëlle; Spanedda, Maria Vittoria; Heurtault, Béatrice; Habermacher, Chloé; Schuber, Francis; Bourel-Bonnet, Line; Frisch, Benoît

    2012-05-01

    A more complete understanding of the mechanism of action of TLR agonists has fueled the investigation of new synthetic immunoadjuvants. In this context, we designed and synthesized glycolipids of the type Pam(2)Cys-α-Galactose as novel immunoadjuvants. Their synthesis required modifying a hydrophobic tBoc-[2,3-bispalmitoyloxy-(2R)-propyl]-R-cysteinyl moiety, i.e. the minimal structure required for TLR2 agonist activity, by addition of a hydrophilic head, either an α-Galactosylpyranose or an α-Galactosylfuranose to gain respectively Pam(2)CGalp and Pam(2)CGalf. While preparing a carbohydrate building block, an unexpected stereoselectivity was observed during a halide ion-catalytic process on a protected galactofuranose: the alpha anomer was obtained with surprisingly high selectivity (α/β ratio>9) and with good isolated yield (51%). The TLR2 binding properties of Pam(2)CGalp and Pam(2)CGalf were then fully evaluated. Their efficiency in triggering the proliferation of BALB/c mouse splenocytes was also compared to that of Pam(2)CAG and Pam(3)CAG, two well-established ligands of TLRs. Moreover, the maturation state of murine dendritic cells previously incubated with either Pam(2)CGalp or Pam(2)CGalf was monitored by flow cytometry and compared to that induced by lipopolysaccharide. Pam(2)CGalp and Pam(2)CGalf were found to be equivalent TLR2 agonists, and induced splenocyte proliferation and DC maturation. With very similar activity, Pam(2)CGalp and Pam(2)CGalf were also 10-fold to 100-fold better than Pam(2)CAG and Pam(3)CAG at inducing B cell proliferation. This represents the first time a glucidic head has been added to the tBoc-[2,3-bispalmitoyloxy-(2R)-propyl]-R-cysteinyl moiety whilst maintaining the immunomodulating activity. This should greatly enrich the data available on Pam(2)C structure/activity relationships. PMID:22483966

  13. Screening Glycolipids Against Proteins in Vitro Using Picodiscs and Catch-and-Release Electrospray Ionization-Mass Spectrometry.

    PubMed

    Li, Jun; Fan, Xuxin; Kitova, Elena N; Zou, Chunxia; Cairo, Christopher W; Eugenio, Luiz; Ng, Kenneth K S; Xiong, Zi Jian; Privé, Gilbert G; Klassen, John S

    2016-05-01

    This work describes the application of the catch-and-release electrospray ionization-mass spectrometry (CaR-ESI-MS) assay, implemented using picodiscs (complexes comprised of saposin A and lipids, PDs), to screen mixtures of glycolipids (GLs) against water-soluble proteins to detect specific interactions. To demonstrate the reliability of the method, seven gangliosides (GM1, GM2, GM3, GD1a, GD1b, GD2, and GT1b) were incorporated, either individually or as a mixture, into PDs and screened against two lectins: the B subunit homopentamer of cholera toxin (CTB5) and a subfragment of toxin A from Clostridium difficile (TcdA-A2). The CaR-ESI-MS results revealed that CTB5 binds to six of the gangliosides (GM1, GM2, GM3, GD1a, GD1b, and GT1b), while TcdA-A2 binds to five of them (GM1, GM2, GM3, GD1a, and GT1b). These findings are consistent with the measured binding specificities of these proteins for ganglioside oligosaccharides. Screening mixtures of lipids extracted from porcine brain and a human epithelial cell line against CTB5 revealed binding to multiple GM1 isoforms as well as to fucosyl-GM1, which is a known ligand. Finally, a comparison of the present results with data obtained with the CaR-ESI-MS assay implemented using nanodiscs (NDs) revealed that the PDs exhibited similar or superior performance to NDs for protein-GL binding measurements. PMID:27049760

  14. Beta Hydroxylation of Glycolipids from Ustilago maydis and Pseudozyma flocculosa by an NADPH-Dependent β-Hydroxylase▿

    PubMed Central

    Teichmann, Beate; Lefebvre, François; Labbé, Caroline; Bölker, Michael; Linne, Uwe; Bélanger, Richard R.

    2011-01-01

    Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the β position but differ in the long fatty acid, which is hydroxylated at the α position in UA and at the β position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the β-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis Δuhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for β hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis Δahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis Δahd1 phenotype nor resulted in the production of β-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation. PMID:21926207

  15. Packing density of glycolipid biosurfactant monolayers give a significant effect on their binding affinity toward immunoglobulin G.

    PubMed

    Imura, Tomohiro; Masuda, Yuma; Ito, Seya; Worakitkanchanakul, Wannasiri; Morita, Tomotake; Fukuoka, Tokuma; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipid-A (MEL-A) is one of the most promising glycolipid biosurfactants, and abundantly produced by Pseudozyma yeasts. MEL-A gives not only excellent self-assembling properties but also a high binding affinity toward human immunoglobulin G (HIgG). In this study, three kinds of MEL-A were prepared from methyl myristate [MEL-A (m)], olive oil [MEL-A (o)], and soybean oil [MEL-A (s)], and the effect of interfacial properties of each MEL-A monolayer on the binding affinity toward HIgG was investigated using surface plasmon resonance (SPR) and the measurement of surface pressure (pi)-area (A) isotherms. Based on GC-MS analysis, the main fatty acids were C(8) and C(10) acids in all MEL-A, and the content of unsaturated fatty acids was 0% for MEL-A (m), 9.1% for MEL-A (o), 46.3% for MEL-A (s), respectively. Interestingly, the acid content significantly influenced on their binding affinity, and the monolayer of MEL-A (o) gave a higher binding affinity than that of MEL-A (m) and MEL-A (s). Moreover, the mixed MEL-A (o)/ MEL-A (s) monolayer prepared from 1/1 molar ratio, which comprised of 27.8% of unsaturated fatty acids, indicated the highest binding affinity. At the air/water interface, MEL-A (o) monolayer exhibited a phase transition at 13 degrees C from a liquid condensed monolayer to a liquid expanded monolayer, and the area per molecule significantly expanded above 13 degrees C, while the amount of HIgG bound to the liquid expanded monolayer was much higher than that bound to liquid condensed monolayer. The binding affinity of MEL-A toward HIgG is thus likely to closely relate to the monolayer packing density, and may be partly controlled by temperature. PMID:18622124

  16. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation.

    PubMed

    Kim, Hee-Sik; Jeon, Jong-Woon; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Yoon, Byung-Dae

    2006-04-01

    Candida sp. strain SY16 produces a glycolipid-type biosurfactant, mannosylerythritol lipid (MEL-SY16), which can reduce the surface tension of a culture broth from 72 to 30 dyne cm(-1) and highly emulsify hydrocarbons when cultured in soybean-oil-containing media. As such, laboratory-scale fermentation for MEL-SY16 production was performed using optimized conditions. In batch fermentation, MEL-SY16 was mainly produced during the stationary phase of growth, and the concentration of MEL-SY16 reached 37 g l(-1) after 200 h. The effect of pH control on the production of MEL-SY16 was also examined in batch fermentation. The highest production yield of MEL-SY16 was when the pH was controlled at 4.0, and the production was significantly improved compared to batch fermentation without pH control. In fed-batch fermentation, glucose and soybean oil (1:1, w/w) were used in combination as the initial carbon sources for cell growth, and soybean oil was used as the feeding carbon source during the MEL production phase. The feeding of soybean oil resulted in the disappearance of any foam and a sharp increase in the MEL production until 200 h, at which point the concentration of MEL-SY16 was 95 g l(-1). Among the investigated culture systems, the highest MEL-SY16 production and volumetric production rate were achieved with fed-batch fermentation. PMID:16133323

  17. Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance.

    PubMed

    Ito, Seya; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2007-08-01

    Kinetic studies on the interactions between self-assembled monolayers of mannosylerythritol lipids (MELs), which are glycolipid biosurfactants abundantly produced by microorganisms, and various classes of immunoglobulins including human IgG, IgA, and IgM were performed using surface plasmon resonance (SPR). The effect of the MEL structure on the binding behavior of HIgG was examined. Assembled monolayers of MEL-A having two acetyl groups on the headgroup gave a high affinity (K(d)=1.7x10(-6)M) toward HIgG, while those of MEL-B or MEL-C having only one acetyl group at C-6' or C-4' position gave little affinity. Our kinetic analysis revealed that the binding manner of HIgG, HIgA (K(d)=2.4x10(-7)M), and HIgM (K(d)=2.2x10(-7)M) to the assembled monolayers of MEL-A is not the monovalent mode but the bivalent mode, and both the first and second rate association constants (k(a1), k(a2)) increase with an increase in the number of antibody binding sites, while those for dissociation (k(d1), k(d2)) changed little. Moreover, we succeeded in directly observing great amounts of HIgG, HIgA, and HIgM bound to MEL-A monolayers using atomic force microscopy (AFM). Finally, we found that MEL-A assembled monolayer binds toward various IgG derived from mouse, pig, rabbit, horse, goat, rat, and bovine as well as human IgG (HIgG), and the only exception was sheep IgG. These results clearly demonstrate that MEL-A assembled monolayers would be useful as noble affinity ligand system for various immunoglobulins. PMID:17428643

  18. Beta hydroxylation of glycolipids from Ustilago maydis and Pseudozyma flocculosa by an NADPH-dependent β-hydroxylase.

    PubMed

    Teichmann, Beate; Lefebvre, François; Labbé, Caroline; Bölker, Michael; Linne, Uwe; Bélanger, Richard R

    2011-11-01

    Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the β position but differ in the long fatty acid, which is hydroxylated at the α position in UA and at the β position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the β-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis Δuhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for β hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis Δahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis Δahd1 phenotype nor resulted in the production of β-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation. PMID:21926207

  19. Shedding and enrichment of the glycolipid-anchored complement lysis inhibitor protectin (CD59) into milk fat globules.

    PubMed

    Hakulinen, J; Meri, S

    1995-07-01

    Protectin (CD59) is a glycolipid-anchored inhibitor of the membrane attack complex (MAC) of human complement (C) that protects blood cells, endothelial cells and various epithelial cells from C-mediated lysis. Because of its activities protectin is a candidate molecule for use in the treatment of paroxysmal nocturnal haemoglobinuria or conditions where MAC causes tissue damage. Soluble, phospholipid-free forms of protectin have been isolated from human urine and produced in recombinant form, but they have only a relatively weak C lysis-inhibiting activity. In the present study we have looked for functionally active protectin in human breast milk. Milk is rich in fat droplets, milk fat globules (MFG), that are enveloped in a plasma membrane derived from secretory cells of the mammary gland. The membranes of MFG contain a variety of glycoproteins expressed by the mammary epithelial cells. Both immunofluorescence and immunoblotting analysis demonstrated that protectin was strongly expressed on human MFG. In sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, MFG protectin (CD59M) appeared as distinct bands with apparent molecular weights of 19,000-23,000 MW, similar to protectin extracted from MCF7 breast carcinoma cells. CD59M in breast milk was functionally active and had a glycophospholipid anchor, as judged by its ability to incorporate into guinea-pig erythrocytes and inhibit their lysis by human complement. These results indicate that functionally active protectin becomes enriched in MFG and imply that secretion of glycophospholipid-anchored molecules, e.g. into cow milk and colostrum, could be exploited as a means of producing bioactive molecules that need to be targeted into cell membranes. PMID:7558140

  20. BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID

    PubMed Central

    Kim, Sun; Islamaj Doğan, Rezarta; Chatr-Aryamontri, Andrew; Chang, Christie S.; Oughtred, Rose; Rust, Jennifer; Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia; Matos, Sérgio; Santos, André; Campos, David; Oliveira, José Luís; Singh, Onkar; Jonnagaddala, Jitendra; Dai, Hong-Jie; Su, Emily Chia-Yu; Chang, Yung-Chun; Su, Yu-Chen; Chu, Chun-Han; Chen, Chien Chin; Hsu, Wen-Lian; Peng, Yifan; Arighi, Cecilia; Wu, Cathy H.; Vijay-Shanker, K.; Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan; Shin, Soo-Yong; Kwon, Dongseop; Dolinski, Kara; Tyers, Mike; Wilbur, W. John; Comeau, Donald C.

    2016-01-01

    BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein–protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators’ feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining. Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/ PMID:27589962

  1. BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID.

    PubMed

    Kim, Sun; Islamaj Doğan, Rezarta; Chatr-Aryamontri, Andrew; Chang, Christie S; Oughtred, Rose; Rust, Jennifer; Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia; Matos, Sérgio; Santos, André; Campos, David; Oliveira, José Luís; Singh, Onkar; Jonnagaddala, Jitendra; Dai, Hong-Jie; Su, Emily Chia-Yu; Chang, Yung-Chun; Su, Yu-Chen; Chu, Chun-Han; Chen, Chien Chin; Hsu, Wen-Lian; Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K; Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan; Shin, Soo-Yong; Kwon, Dongseop; Dolinski, Kara; Tyers, Mike; Wilbur, W John; Comeau, Donald C

    2016-01-01

    BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/. PMID:27589962

  2. Atomic force microscopy analysis of rat pulmonary surfactant films.

    PubMed

    Jiao, Xiujun; Keating, Eleonora; Tadayyon, Seyed; Possmayer, Fred; Zuo, Yi Y; Veldhuizen, Ruud A W

    2011-10-01

    Pulmonary surfactant facilitates breathing by forming a surface tension reducing film at the air-liquid interface of the alveoli. The objective was to characterize the structure of surfactant films using endogenous rat surfactant. Solid-support surfactant films, at different surface pressures, were obtained using a Langmuir balance and were analyzed using atomic force microscopy. The results showed a lipid film structure with three distinct phases: liquid expanded, liquid ordered and liquid condensed. The area covered by the liquid condensed domains increased as surface pressure increased. The presence of liquid ordered phase within these structures correlated with the cholesterol content. At a surface pressure of 50 mN/m, stacks of bilayers appeared. Several structural details of these films differ from previous observations made with goat and exogenous surfactants. Overall, the data indicate that surfactant films demonstrate phase separation at low surface pressures and multilayer formation at higher pressure, features likely important for normal surfactant function. PMID:21704443

  3. Status of surfactants as penetration enhancers in transdermal drug delivery

    PubMed Central

    Som, Iti; Bhatia, Kashish; Yasir, Mohd.

    2012-01-01

    Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs. PMID:22368393

  4. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  5. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  6. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2006-11-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MEL) was undertaken based on the analysis of ribosomal DNA sequences on the yeast strains of the genus Pseudozyma. Pseudozyma rugulosa NBRC 10877 was found to produce a large amount of glycolipids from soybean oil. Fluorescence microscopic observation also demonstrated that the strain significantly accumulates polar lipids in the cells. The structure of the glycolipids produced by the strain was analyzed by (1)H and (13)C nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as MEL produced by Pseudozyma antarctica, a well-known MEL producer. The major fatty acids of the present MEL consisted of C8 and C10 acids. Based on high performance liquid chromatography, the composition of the produced MEL was as follows: MEL-A (68%), MEL-B (12%), and MEL-C (20%). To enhance the production of MEL by the novel strain, factors affecting the production, such as carbon and nitrogen sources, were further examined. Soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. The supplementation of a MEL precursor, such as erythritol, drastically enhanced the production yield from soybean oil at a rate of 70 to 90%. Under the optimal conditions in a shake culture, a maximum yield, productivity, and yield coefficient (on a weight basis to soybean oil supplied) of 142 g l(-1), 5.0 g l(-1) day(-1), and 0.5 g g(-1) were achieved by intermittent feeding of soybean oil and erythritol using the yeast. PMID:16733733

  7. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease.

    PubMed

    Nkadi, Paul O; Merritt, T Allen; Pillers, De-Ann M

    2009-06-01

    Pulmonary surfactant is a complex mixture of phospholipids (PL) and proteins (SP) that reduce surface tension at the air-liquid interface of the alveolus. It is made up of about 70-80% PL, mainly dipalmitoylphosphatidylcholine (DPPC), 10% SP-A, B, C and D, and 10% neutral lipids, mainly cholesterol. Surfactant is synthesized, assembled, transported and secreted into the alveolus where it is degraded and then recycled. Metabolism of surfactant is slower in newborns, especially preterm, than in adults. Defective pulmonary surfactant metabolism results in respiratory distress with attendant morbidity and mortality. This occurs due to accelerated breakdown by oxidation, proteolytic degradation, inhibition or inherited defects of surfactant metabolism. Prenatal corticosteroids, surfactant replacement, whole lung lavage and lung transplantation have yielded results in managing some of these defects. Gene therapy could prove valuable in treating inherited defects of surfactant metabolism. PMID:19299177

  8. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    PubMed Central

    Pietralik, Zuzanna; Krzysztoń, Rafał; Kida, Wojciech; Andrzejewska, Weronika; Kozak, Maciej

    2013-01-01

    Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3- decyloxymethyl) pentane chloride (gemini surfactant) on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR) and circular dichroism (CD) spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase. PMID:23571492

  9. Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2.

    PubMed

    Vance, Steven J; Desai, Vibhuti; Smith, Brian O; Kennedy, Malcolm W; Cooper, Alan

    2016-01-01

    C60 fullerene is not soluble in water and dispersion usually requires organic solvents, sonication or vigorous mechanical mixing. However, we show here that mixing of pristine C60 in water with natural surfactant proteins latherin and ranaspumin-2 (Rsn-2) at low concentrations yields stable aqueous dispersions with spectroscopic properties similar to those previously obtained by more vigorous methods. Particle sizes are significantly smaller than those achieved by mechanical dispersion alone, and concentrations are compatible with clusters approximating 1:1 protein:C60 stoichiometry. These proteins can also be adsorbed onto more intractable carbon nanotubes. This promises to be a convenient way to interface a range of hydrophobic nanoparticles and related materials with biological macromolecules, with potential to exploit the versatility of recombinant protein engineering in the development of nano-bio interface devices. It also has potential consequences for toxicological aspects of these and similar nanoparticles. PMID:27214760

  10. Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production.

    PubMed Central

    Saupe, S; Descamps, C; Turcq, B; Bégueret, J

    1994-01-01

    The het-c locus contains different alleles that elicit nonallelic vegetative incompatibility through specific interactions with alleles of the unlinked loci het-e and het-d. The het-c2 allele has been cloned. It encodes a 208-amino acid polypeptide that is similar to a glycolipid transfer protein purified from pig brain. Disruption of this gene drastically impairs ascospore production in homozygous crosses, and some mutants exhibit abnormal branching of apical hyphae. The protein encoded by het-c2 is essential in the biology of the fungus and may be involved in cell-wall biosynthesis. Images PMID:8016091

  11. Direct observations of transition dynamics from macro- to micro-phase separation in asymmetric lipid bilayers induced by externally added glycolipids

    NASA Astrophysics Data System (ADS)

    Shimobayashi, Shunsuke F.; Ichikawa, Masatoshi; Taniguchi, Takashi

    2016-03-01

    We present the first direct observations of morphological transitions from macro- to micro-phase separation using micrometer-sized asymmetric lipid vesicles exposed to externally added glycolipids (GM1:monosialotetrahexosylganglioside). The transition occurs via an intermediate stripe morphology state. During the transition, monodisperse micro-domains emerge through repeated scission events of the stripe domains. Moreover, we numerically confirmed such transitions using a time-dependent Ginzburg-Landau model, which describes both the intramembrane phase separation and the bending elastic membrane. The experimental and simulation results are in quantitative agreement.

  12. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  13. LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration

    SciTech Connect

    Zhong, Lirong; Oostrom, Martinus

    2012-11-19

    A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the first surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.

  14. Pulmonary surfactant adsorption is increased by hyaluronan or polyethylene glycol.

    PubMed

    Taeusch, H William; Dybbro, Eric; Lu, Karen W

    2008-04-01

    In acute lung injuries, inactivating agents may interfere with transfer (adsorption) of pulmonary surfactants to the interface between air and the aqueous layer that coats the interior of alveoli. Some ionic and nonionic polymers reduce surfactant inactivation in vitro and in vivo. In this study, we tested directly whether an ionic polymer, hyaluronan, or a nonionic polymer, polyethylene glycol, enhanced adsorption of a surfactant used clinically. We used three different methods of measuring adsorption in vitro: a modified pulsating bubble surfactometer; a King/Clements device; and a spreading trough. In addition we measured the effects of both polymers on surfactant turbidity, using this assay as a nonspecific index of aggregation. We found that both hyaluronan and polyethylene glycol significantly increased the rate and degree of surfactant material adsorbed to the surface in all three assays. Hyaluronan was effective in lower concentrations (20-fold) than polyethylene glycol and, unlike polyethylene glycol, hyaluronan did not increase apparent aggregation of surfactant. Surfactant adsorption in the presence of serum was also enhanced by both polymers regardless of whether hyaluronan or polyethylene glycol was included with serum in the subphase or added to the surfactant applied to the surface. Therefore, endogenous polymers in the alveolar subphase, or exogenous polymers added to surfactant used as therapy, may both be important for reducing inactivation of surfactant that occurs with various lung injuries. PMID:18065212

  15. Cycle-Induced Flow and Surfactant Transport in an Alveolus

    NASA Astrophysics Data System (ADS)

    Wei, H. H.

    2002-11-01

    The flow and transport in an alveolus are of fundamental importance to partial liquid ventilation, surfactant transport, pulmonary drug administration, cell-cell signaling pathways and gene therapy. We model the system in which an alveolus is partially filled with liquid in the presence of surfactants. Assuming a circular interface due to sufficiently strong surface tension, we can apply two-dimensional bipolar coordinates to describe the system. We then combine analytical and numerical techniques to solve the Stokes flow and the surfactant concentration. In the absence of surfactants, there is no steady streaming because of reversibility of the Stokes flow. The presence of surfactants however induces a non-trivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns (e.g., number of vortices) depend on the parameters, especially on the ratio of inspiration to expiration periods (I:E ratio). Either smaller or larger I:E ratio exhibits two primary vortices but the direction of primary vortices for small I:E is opposite to large I:E. Extension to soluble surfactants is also discussed. For sufficiently high surfactant bulk concentration, the surfactant transport is sorption-controlled and soluble surfactants diminish the size of steady vortices near the alveolar opening. For the estimated steady velocity u 10-5 cm/s, the corresponding Peclet number is 10-7/ D_m. Therefore, for Dm <= 10-7 cm^2/s, the convective transport dominates.

  16. Role of Silicone Surfactant in Flexible Polyurethane Foam.

    PubMed

    Zhang; Macosko; Davis; Nikolov; Wasan

    1999-07-15

    Grafted copolymers which consist of a polydimethylsiloxane backbone and polyethylene oxide-co-propylene oxide pendant groups are used as surfactants to stabilize the foam cells in the flexible polyurethane foaming process. The mechanical properties of the cured polyurethane foam such as air permeability and foam cell size are affected significantly by the structure of the silicone surfactant used in the formulation. It is shown that silicone surfactant has an important impact on both the bubble generation and the cell window stabilization stage. A series of silicone surfactants with different structures was tested. Surfactants with higher silicone content will provide lower surface tension and thus help increase the number of air bubbles introduced during mixing. These air bubbles serve as the starting point for foam cell growth. As a result, the cured polyurethane foam made with higher silicone content surfactant has a smaller bubble size. It is also shown that silicone surfactant can reduce the cell window drainage rate due to the surface tension gradient along the cell window. The Gibbs film elasticity, the dynamic film elasticity, and the film drainage rate were measured for the first time versus surfactant composition. Surfactants with longer siloxane backbones are shown to give higher film elasticity. Using the vertical film drainage and foam column tests, it is shown that surfactants with higher film elasticity will yield slower drainage rate and better foam cell stability. Copyright 1999 Academic Press. PMID:10419661

  17. Surfactant-enhanced spreading: Experimental achievements and possible mechanisms.

    PubMed

    Kovalchuk, N M; Trybala, A; Arjmandi-Tash, O; Starov, V

    2016-07-01

    Surfactants are broadly used to improve wetting properties of aqueous formulations. The improvement is achieved by essential reduction of liquid/air and solid/liquid interfacial tensions resulting in the decrease of contact angle. For moderately hydrophobic substrates, there is a range of surfactants providing complete wetting of substrate. With the decrease of substrate surface energy, this range of surfactants reduces very quickly and only trisiloxane surfactant solutions are capable to wet completely such highly hydrophobic substrates as polypropylene and parafilm. That is why these surfactants are referred to as superspreaders. The most intriguing feature of wetting surfactant solutions is their ability to spread much faster than pure liquids with spread area, S, being proportional to time, t, S~t, as compared to S~t(0.2) for pure liquids, which wet completely the solid substrate. Trisiloxane surfactant solutions spread faster than other aqueous surfactant solutions, which also provide complete wetting, being superspreaders in the sense of spreading rate as well. The mechanism of fast spreading of surfactant solutions on hydrophobic substrates and much higher spreading rates for trisiloxane solutions are to be explained. Below the available experimental data on superspreading and surfactant-enhanced spreading are analysed/summarised, and possible mechanisms governing the fast spreading are discussed. PMID:26282600

  18. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  19. Effects of adding different surfactants on antibiotic resistance genes and intI1 during chicken manure composting.

    PubMed

    Zhang, Yajun; Li, Haichao; Gu, Jie; Qian, Xun; Yin, Yanan; Li, Yang; Zhang, Ranran; Wang, Xiaojuan

    2016-11-01

    Aerobic composting is usually employed to treat livestock manure. In this study, a bio-surfactant (rhamnolipid, RL) and chemical surfactant (Tween 80, Tw) were added to chicken manure during composting and their effects were determined on the variations in ARGs and intI1. After composting, the reductions in the RAs of ARGs and intI1 with the addition of Tw (1-4.7logs) were generally greater than that with the addition of RL (0.8-3.7logs) and the control (CK) (0.3-2.6logs), and the enrichment of ARGs was higher with CK (0.9-1.8logs). The ARG profiles were affected significantly by temperature and the water-soluble carbon contents. RL and Tw effectively reduced the concentrations of bio-available Cu and Zn, thereby hindering the co-selection of ARGs by heavy metals. The effects of RL and Tw on ARGs and intI1 indicate that the addition of Tw was slightly more effective than RL after composting. PMID:27526207

  20. The surfactant system protects both fetus and newborn.

    PubMed

    Hallman, Mikko

    2013-01-01

    Surfactant complex and its individual components decrease surface tension, silence inflammatory responses, bind and destroy air-borne microbes, facilitate phagocytosis by alveolar macrophages and bind endogenous and exogenous molecules. Surfactant components generally decrease harmful inflammatory responses. New exogenous surfactants and new indications for surfactant therapy remain to be studied. At term the pool of human surfactant from developing airways extends to the amniotic cavity and to the gastrointestinal tract. Preterm labor-inducing inflammatory ligands (interleukin-1 or lipopolysaccharide) cause a robust induction of surfactant complex and lower the risk of respiratory distress syndrome (RDS). The effect of antenatal glucocorticoid therapy is complementary. According to transgenic experiments or genetic evidence in humans, surfactant proteins A, D or C (SP-A, SP-D, SP-C), expressed in fetal tissue, influence the onset of term or preterm labor. After birth, the surface tension-reducing and the inflammation-silencing effects of exogenous and endogenous surfactant are complementary. Surfactant proteins influence the genetic predisposition of RDS, bronchopulmonary dysplasia (BPD) and airway infections in early infancy. Moderate to severe BPD has a strong genetic predisposition. Deleterious mutations of SP-B, ABCA3 or SP-C cause congenital interstitial lung disease that mimics the phenotype of established severe BPD. I propose that lung surfactant protects both the fetus and the newborn. Surfactant ameliorates inflammatory responses that are harmful to the mother, fetus and infant. In chorioamnionitis, inflammatory ligands are carried from the fetal membranes to the alveolar space via amniotic fluid and developing airways. They induce surfactant synthesis and secretion. Surfactant ameliorates severe inflammatory responses in fetal compartments and promotes spontaneous preterm birth. PMID:23736009

  1. Evaluation of mixed surfactants for improved chemical flooding

    SciTech Connect

    Llave, F.M.; French, T.R.; Lorenz, P.B.

    1993-02-01

    Phase behavior studies were conducted using combinations of a primary surfactant component and several ethoxylated surfactants. The objective of the study is to evaluate combinations of surfactants, anionic-nonionic and anionic-anionic mixtures, that would yield favorable phase behavior and solubilization capacity. The dependence of the solution behavior on the additive surfactant structure, surfactant type, oil, surfactant proportion, salinity, HLB, and temperature was observed. The results showed that the ethoxylated surfactants can improve the solution behavior of the overall system. The increase in optimum salinity range of these solutions corresponded to an increase in the degree of ethoxylation of additive surfactant, up to a certain limit. The nonionic surfactant additives yielded much higher salinities compared to the results from the ethoxylated anionics tested. The proportion of surfactant component in solution was critical in achieving a balance between the solubilization capacity and the enhancement in the system's salinity tolerance. Some combinations of these types of surfactants showed improved solution behavior with favorable solubilization capacity. The phase inversion temperature (PIT) method has been shown to be a relatively fast method for screening candidate surfactant systems. Comparisons were made using both the conventional salinity scan and the PIT method on selected chemical systems. The results showed good agreement between the salinity regions determined using both methods. A difference in the dependence of optimal salinity on HLB was observed for the different nonionics tested. The linear alkyl alcohol ethoxylates exhibited a behavior distinct from the dialkyl phenols at similar HLB levels with and without the primary sulfonate component in the solution. Other experiments performed at NIPER have shown that surfactant-enhanced alkaline flooding has good potential for the recovery of oil from Naval Petroleum Reserve Number 3 (NPR No. 3).

  2. Evaluation of mixed surfactants for improved chemical flooding

    SciTech Connect

    Llave, F.M.; French, T.R.; Lorenz, P.B.

    1993-02-01

    Phase behavior studies were conducted using combinations of a primary surfactant component and several ethoxylated surfactants. The objective of the study is to evaluate combinations of surfactants, anionic-nonionic and anionic-anionic mixtures, that would yield favorable phase behavior and solubilization capacity. The dependence of the solution behavior on the additive surfactant structure, surfactant type, oil, surfactant proportion, salinity, HLB, and temperature was observed. The results showed that the ethoxylated surfactants can improve the solution behavior of the overall system. The increase in optimum salinity range of these solutions corresponded to an increase in the degree of ethoxylation of additive surfactant, up to a certain limit. The nonionic surfactant additives yielded much higher salinities compared to the results from the ethoxylated anionics tested. The proportion of surfactant component in solution was critical in achieving a balance between the solubilization capacity and the enhancement in the system`s salinity tolerance. Some combinations of these types of surfactants showed improved solution behavior with favorable solubilization capacity. The phase inversion temperature (PIT) method has been shown to be a relatively fast method for screening candidate surfactant systems. Comparisons were made using both the conventional salinity scan and the PIT method on selected chemical systems. The results showed good agreement between the salinity regions determined using both methods. A difference in the dependence of optimal salinity on HLB was observed for the different nonionics tested. The linear alkyl alcohol ethoxylates exhibited a behavior distinct from the dialkyl phenols at similar HLB levels with and without the primary sulfonate component in the solution. Other experiments performed at NIPER have shown that surfactant-enhanced alkaline flooding has good potential for the recovery of oil from Naval Petroleum Reserve Number 3 (NPR No. 3).

  3. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  4. Metal adsorption and desorption characteristics of surfactant-modified clay complexes

    SciTech Connect

    Malakul, P.; Srinivasan, K.R.; Wang, H.Y.

    1998-11-01

    Several modified clays have been designed and created for selective removal and recovery of heavy metals such as Cd, Cu, Cr, etc. These surfactant-clay complexes were prepared using hectorite or montmorillonite as the base clay. A simple two-step approach has been developed to synthesize these modified-clay complexes through ion exchange and hydrophobic anchoring of several surfactants such as long-chain alkyldiamines, long-chain dialkylamines, and long-chain carboxylic acids onto the clay matrices. The adsorption capacities and affinity constants of the modified clays can be found to approach those of commercial chelating resin (Chelex 100, Bio-Rad). Using cadmium as a model metal and montmorillonite-cetylbenzyldimethylammonium-palmitic acid (M-CBDA-PA) as a model modified-clay complex, the maximum adsorption capacity of the modified clay is found to be 42 {+-} 0.8 mg/g of clay and the affinity constant is 3.0 {+-} 0.1 mg/L. The metal adsorption has been shown to be mainly through chemical complexation rather than ion exchange. The immobilization of the metal ions is pH dependent, and thus, pH can act as a molecular switch to regenerate the modified-clay complexes.

  5. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. PMID:26617046

  6. The effects of alkylammonium counterions on the aggregation of fluorinated surfactants and surfactant ionic liquids.

    PubMed

    Pottage, Matthew J; Greaves, Tamar L; Garvey, Christopher J; Tabor, Rico F

    2016-08-01

    The effects of organic counterions with varying carbon number on surfactant aggregation have been analysed by coupling perfluorooctanoate surfactant anions with various alkylammonium counterions. Both the degree of substitution (primary to tertiary) and alkyl chain length (0-3 carbons) of the counterions were varied to provide a comprehensive matrix of geometries and lipophilicities. Surface activity was measured using pendant drop tensiometry, while temperature-controlled small-angle neutron scattering was used to probe changes in aggregation morphology. It was found that the use of such alkylammonium counterions resulted in a strong preference for bilayer formation even at low surfactant concentration (<2wt%), when compared to simple inorganic counterions such as sodium which favour near-spherical micelles. At increased temperatures, some counterions led to unique phase behaviour wherein a transition between two structurally different lamellar phases is seen, rationalised as a transition into a microscopic phase separation wherein a surfactant-rich lamellar phase coexists with a dilute micellar phase. The results indicate that aggregation is controlled by a delicate balance of counterion size, hydrophilicity and diffuseness of charge, providing new methods for the subtle control of surfactant solutions. PMID:27156087

  7. Bioavailability enhancement by addition of surfactant and surfactant-like compounds

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1995-12-31

    The bioavailability and microbial degradation of contaminant compounds (e.g., toluene and naphthalene) were enhanced by adding synthetic surfactants, biosurfactants, and nutrients with surfactant like properties. In addition to enhanced contaminant degradation, these surfactant compounds have the potential to change the availability of natural organic matter (NOM), and thus may affect overall site bioremediation. Two bacterial bioreporter strains that are induced by toluene or naphthalene were used to directly measure contaminant bioavailability. A cell-free biosurfactant product, Tween-80, and an oleophilic fertilizer were added to aqueous suspensions and soil slurries containing toluene or naphthalene. The addition of these surfactant compounds at or below the critical micelle concentration (CMC) enhanced bioavailability as measured by increased levels of bioluminescence. Bioluminescence data were coupled with gas chromatographic analyses. The addition of Tween-80 increased not only the bioavailability of the contaminants but also, in a separate assay, the bioavailability of recalcitrant NOM. The enhanced NOM bioavailability was inferred from measurements of biomass by optical density increases and plate counts. Thus, adding surfactant compounds for enhanced contaminant degradation has the potential to introduce additional competition for nutrients and microbial metabolism, a significant area of concern for in situ site remediation.

  8. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen.

    PubMed

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2015-11-20

    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant. PMID:26344266

  9. Amphipols: Polymeric surfactants for membrane biology research.

    SciTech Connect

    Popot, J.-L.; Berry, E.A.; Charvolin, D.; Creuzenet, C.; Ebel, C.; Engelman, D.M.; Flotenmeyer, M.; Giusti, F.; Gohon, Y.; Hong, Q.; Lakey, J.H.; Leonard, K.; Shuman, H.A.; Timmins, P.; Warschawski, D.E.; Zito, F.; Zoonens, M.; Pucci, B.; Tribet, C.

    2003-06-20

    Membrane proteins classically are handled in aqueous solutions as complexes with detergents. The dissociating character of detergents, combined with the need to maintain an excess of them, frequently results in more or less rapid inactivation of the protein under study. Over the past few years, we have endeavored to develop a novel family of surfactants, dubbed amphipols (APs). APs are amphiphilic polymers that bind to the transmembrane surface of the protein in a noncovalent but, in the absence of a competing surfactant, quasi-irreversible manner. Membrane proteins complexed by APs are in their native state, stable, and they remain water soluble in the absence of detergent or free APs. An update is presented of the current knowledge about these compounds and their demonstrated or putative uses in membrane biology.

  10. Surfactant controlled synthesis of crystalline phosphovanadate nanorods

    SciTech Connect

    Asnani, Minakshi; Thomas, Jency; Sen, Prasenjit; Ramanan, Arunachalam . E-mail: aramanan@chemistry.iitd.ac.in

    2007-04-12

    Phosphovanadate nanorods were obtained in a reaction of vanadium (V) oxide as a precursor and a cationic surfactant, dodecylpyridinium chloride, as structure directing template at pH {approx}3 at room temperature. The composition and morphology of the nanorods was established by powder X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The obtained nanorods have diameters of 40-60 nm with lengths up to 1 {mu}m. The effect of reaction parameters such as concentration of surfactant and pH of the solution on the growth of nanorods has been investigated. A plausible mechanism involving the coalescence of nanoparticle 'seeds' leading to one-dimensional nanorods is also discussed. The same reaction when performed under hydrothermal condition, keeping other reaction parameters unchanged, resulted in the formation of phosphovanadate nanospheres of diameter 10-15 nm.

  11. Surfactant chemical technology works for environmental jobs

    SciTech Connect

    Foley, J.T. )

    1991-11-01

    This paper reports on surface active agents that have been employed in mining and mineral processing operations for many years. They are beginning to find increasing use as tools to deal with pressing environmental problems in the industry. Surface active agents are attracting particular attention from mining operators as environmental regulations as well as safety and health standards continue to tighten. These surfactants comprise a variety of products that have different end uses. They promote foaming, wetting, emulsification and crystal growth modification, among other functions. And they are generally environmentally friendly and non-toxic. Among the major environmental issues facing mine operators are effluent control, dust and fume suppression, acid drainage control and soil reclamation and remediation. Surfactants have already been put to work in each of these areas.

  12. Polymer enrichment decelerates surfactant membranes near interfaces

    NASA Astrophysics Data System (ADS)

    Lipfert, F.; Frielinghaus, H.; Holderer, O.; Mattauch, S.; Monkenbusch, M.; Arend, N.; Richter, D.

    2014-04-01

    Close to a planar surface, lamellar structures are imposed upon otherwise bulk bicontinuous microemulsions. Thermally induced membrane undulations are modified by the presence of the rigid interface. While it has been shown that a pure membrane's dynamics are accelerated close to the interface, we observed nearly unchanged relaxation rates for membranes spiked with large amphiphilic diblock copolymers. An increase of the polymer concentration by a factor of 2-3 for the first and second surfactant membrane layers was observed. We interpret the reduced relaxation times as the result of an interplay between the bending rigidity and the characteristic distance of the first surfactant membrane to the rigid interface, which causes the hydrodynamic and steric interface effects described in Seifert's theory. The influence of these effects on decorated membranes yields a reduction of the frequencies and an amplification of the amplitudes of long-wavelength undulations, which are in accordance to our experimental findings.

  13. Surfactants and interfacial phenomena, 2nd Ed

    SciTech Connect

    Rosen

    1989-01-01

    The second edition of this monograph on surfactants has been updated to reflect recent advances in our knowledge of theory and practices. New applications run the gamut from microelectronics and magnetic recording, to biotechnology and nonconventional energy conversion. There is a new chapter on the interactions between surfactants. New sections have been added, and original sections expanded, on such topics as ultralow liquid-liquid interfacial tension; microemulsions, miniemulsions, and multiple emulsions; liquid crystal formation; hydrotropy; and steric forces in the stabilization of dispersions. There is also new material on lime soap dispersing agents; fabric softeners, adsorption and wetting of solid surfaces, both equilibrium and none-equilibrium; the relationship between adsorption and micellation in aqueous solutions and its effect on surface tension reduction; and factors determining micellar structure and shape.

  14. Surfactant protein D in human lung diseases.

    PubMed

    Hartl, D; Griese, M

    2006-06-01

    The lung is continuously exposed to inhaled pollutants, microbes and allergens. Therefore, the pulmonary immune system has to defend against harmful pathogens, while an inappropriate inflammatory response to harmless particles must be avoided. In the bronchoalveolar space this critical balance is maintained by innate immune proteins, termed surfactant proteins. Among these, surfactant protein D (SP-D) plays a central role in the pulmonary host defence and the modulation of allergic responses. Several human lung diseases are characterized by decreased levels of bronchoalveolar SP-D. Thus, recombinant SP-D has been proposed as a therapeutical option for cystic fibrosis, neonatal lung disease and smoking-induced emphysema. Furthermore, SP-D serum levels can be used as disease activity markers for interstitial lung diseases. This review illustrates the emerging role of SP-D translated from in vitro studies to human lung diseases. PMID:16684127

  15. The Equilibrium Spreading Tension of Pulmonary Surfactant.

    PubMed

    Dagan, Maayan P; Hall, Stephen B

    2015-12-01

    Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γ(e)) with the bulk phase from which they form. For individual phospholipids, γ(e) is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γ(e) therefore represents a range rather than a single value of surface tension. Between the upper and lower ends of this range, rates of collapse for spread and adsorbed films decrease substantially. Changes during adsorption across this narrow region of coexistence between the two- and three-dimensional structures at least partially explain how alveolar films of pulmonary surfactant become resistant to collapse. PMID:26583569

  16. Liquid and surfactant delivery into pulmonary airways

    PubMed Central

    Halpern, David; Fujioka, Hideki; Takayama, Shuichi; Grotberg, James B.

    2008-01-01

    We describe the mechanisms by which liquids and surfactants can be delivered into the pulmonary airways. These are instilled and transported throughout the lung in clinical therapies such as surfactant replacement therapy, partial liquid ventilation and drug delivery. The success of these treatments is contingent on the liquid distribution and the delivery to targeted regions of the lung. The targeting of a liquid plug can be influenced by a variety of factors such as the physical properties of the liquid, the interfacial activity, the gravitational orientation, instillation method and propagation speed. We provide a review of experimental and theoretical studies that examine these effects in single tubes or channels, in tubes with single bifurcations and in the whole lung. PMID:18585985

  17. Use of micellar-enhanced ultrafiltration at low surfactant concentrations and with anionic-nonionic surfactant mixtures

    SciTech Connect

    Fillipi, B.R.; Brant, L.W.; Scamehorn, J.F.; Christian, S.D.

    1999-05-01

    Micellar-enhanced ultrafiltration is a separation technique which can be used to remove metal ions or dissolved organics from water. Metal ions bind to the surface of negatively charged micelles of an anionic surfactant while organic solutes tend to dissolve or solubilized within the micelles. The mixture is then forced through an ultrafiltration membrane with pore sizes small enough to block passage of the micelles and associated metal ions and/or dissolved organics. Monomeric or unassociated surfactant passes through the membrane and does not contribute to the separation. This paper considers advantages of addition of small concentrations of nonionic surfactant to an anionic surfactant; the resulting anionic-nonionic mixed micelles exhibit negative deviation from ideality of mixing which leads to a smaller fraction of the surfactant being present as monomer and a subsequently larger fraction present in the micellar form. The addition of nonionic surfactant improved the separation of divalent zinc substantially at total concentrations above the critical micelle concentration (cmc) of the anionic surfactant. Both zinc and tert-butylphenol (a nonionic organic solute) show unexpected rejection at surfactant concentrations moderately below the cmc, where micelles are absent. This is considered as due to a higher surfactant concentration in the gel layer adjacent to the membrane where micelles are present. Reduction of this rejection at lower transmembrane pressure drops supports this mechanism. Some rejection of zinc was observed in the absence of surfactant but not of tert-butylphenol, indicating an additional effect of membrane charge for ionic solutes.

  18. Partitioning of phenanthrene into surfactant hemi-micelles on the bacterial cell surface and implications for surfactant-enhanced biodegradation.

    PubMed

    Lanzon, Jacquelyn B; Brown, Derick G

    2013-09-01

    Recent studies have suggested that the ability of a surfactant to enhance the bioavailability of hydrophobic organic compounds (HOC) requires the formation of surfactant hemi-micelles on the bacterial cell surface and subsequent partitioning of HOC into the hemi-micelles. However, the studies did not provide direct evidence of HOC partitioning into surfactant hemi-micelles on the bacterial cell surface. In this study, direct evidence is provided to demonstrate that the nonionic surfactant Brij 30 forms hemi-micelles on the bacterial cell surface and that phenanthrene sorption at the bacterial surface is enhanced by the surfactant. These results are in agreement with the current theory describing surfactant-enhanced HOC bioavailability. This enhanced bioavailability is put into context with microbial kinetics and system partitioning processes, and it is demonstrated that the addition of surfactant can enhance, have no effect, or inhibit HOC biodegradation depending upon surfactant concentration and microbial growth rate. Understanding these non-linear relationships between surfactant-enhanced HOC bioavailability, biodegradation kinetics, and system partitioning will assist in the design and implementation of surfactant-enhanced bioremediation programs. PMID:23764610

  19. Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties.

    PubMed

    Suri, Lakshmi N M; Cruz, Antonio; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Orgeig, Sandra; Perez-Gil, Jesus

    2013-08-01

    Pulmonary surfactant lines the entire alveolar surface, serving primarily to reduce the surface tension at the air-liquid interface. Surfactant films adsorb as a monolayer interspersed with multilayers with surfactant lipids segregating into different phases or domains. Temperature variation, which influences lipid physical properties, affects both the lipid phase segregation and the surface activity of surfactants. In hibernating animals, such as 13-lined ground squirrels, which vary their body temperature, surfactant must be functional over a wide range of temperatures. We hypothesised that surfactant from the 13-lined ground squirrel, Ictidomys tridecemlineatus, would undergo appropriate lipid structural re-arrangements at air-water interfaces to generate phase separation, sufficient to attain the low surface tensions required to remain stable at both low and high body temperatures. Here, we examined pressure-area isotherms at 10, 25 and 37°C and found that surfactant films from both hibernating and summer-active squirrels reached their highest surface pressure on the Wilhelmy-Langmuir balance at 10°C. Epifluorescence microscopy demonstrated that films of hibernating squirrel surfactant display different lipid micro-domain organisation characteristics than surfactant from summer-active squirrels. These differences were also reflected at the nanoscale as determined by atomic force microscopy. Such re-arrangement of lipid domains in the relatively more fluid surfactant films of hibernating squirrels may contribute to overcoming collapse pressures and support low surface tension during the normal breathing cycle at low body temperatures. PMID:23506681

  20. How surfactants influence evaporation-driven flows

    NASA Astrophysics Data System (ADS)

    Liepelt, Robert; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    Capillary flows appear spontaneously in sessile evaporating drops and give rise to particle accumulation around the contact lines, commonly known as coffee-stain effect (Deegan et al., Nature, 1997). On the other hand, out-of-equilibrium thermal effects may induce Marangoni flows in the droplet's surface that play an important role in the flow patterns and in the deposits left on the substrate. Some authors have argued that contamination or the presence of surfactants might reduce or eventually totally annul the Marangoni flow (Hu & Larson, J. Phys. Chem. B, 2006). On the contrary, others have shown an enhancement of the reverse surface flow (Sempels et al., Nat. Commun., 2012). In this work, we employ Astigmatic Particle Tracking Velocimetry (APTV) to obtain the 3D3C evaporation-driven flow in both bulk and droplet's surface, using surfactants of different ionic characters and solubility. Our conclusions lead to a complex scenario in which different surfactants and concentrations yield very different surface-flow patterns, which eventually might influence the colloidal deposition patterns.

  1. Surfactants for separation processes: Enhanced ultrafiltration

    SciTech Connect

    Sadaoui, Z.; Azoug, C.; Charbit, G.; Charbit, F.

    1998-08-01

    Pollution by toxic metal compounds is a deep concern in all industrial countries. A process based on enhanced ultrafiltration is proposed in order to separate cadmium and chromate ions from wastewater. Inorganic membranes (zirconium oxide coated on carbon) are used in the separation cell, and ionic surfactants (NaDS or CTABr) are added in the effluent. The surfactants, which entrap metal ions present in the feed, are retained by the membrane barrier and thus the permeate is clear of metal compounds. This paper is devoted to precise experimental fields in which the permeate is lower than 0.2 g{center_dot}m{sup {minus}3} for cadmium and 0.1 g{center_dot}m{sup {minus}3} for chromate, these concentrations being the standards for European countries. The paper presents only experimental results describing the influence of operating conditions on the efficiency of the separation; a theory of rejection of pure surfactant by the same membranes has recently been published. As long as the feed concentration is less than or equal to 150 g{center_dot}m{sup {minus}3} for cadmium or 20 g{center_dot}m{sup {minus}3} for hexavalent chromium (respectively, 750 or 200 times the norm), a satisfactory permeate is obtained in a single stage process at 25 and 30 C; more than 99% of metallic ions is retained.

  2. Probing Nanoscale Thermal Transport in Surfactant Solutions

    PubMed Central

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  3. Probing Nanoscale Thermal Transport in Surfactant Solutions

    NASA Astrophysics Data System (ADS)

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-11-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient.

  4. Probing Nanoscale Thermal Transport in Surfactant Solutions.

    PubMed

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  5. Therapeutic surfactant-stripped frozen micelles

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  6. Therapeutic surfactant-stripped frozen micelles

    PubMed Central

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-01-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like ‘top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and ‘bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2–3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated. PMID:27193558

  7. Therapeutic surfactant-stripped frozen micelles.

    PubMed

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K; Alexandridis, Paschalis; Lovell, Jonathan F

    2016-01-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like 'top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and 'bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated. PMID:27193558

  8. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Alfoterra-38 (0.05 wt%), Alfoterra-35 (0.05 wt%), SS-6656 (0.05 wt%), and DTAB (1 wt%) altered the wettability of the initially oil-wet calcite plate to an intermediate/water-wet state. Low IFT ({approx}10{sup -3} dynes/cm) is obtained with surfactants 5-166, Alfoterra-33 and Alfoterra-38. Plans for the next quarter include conducting wettability and mobilization studies.

  9. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2005-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory imbibition tests show that imbibition rate is not very sensitive to the surfactant concentration (in the range of 0.05-0.2 wt%) and small amounts of trapped gas saturation. It is however very sensitive to oil permeability and water-oil-ratio. Less than 0.5 M Na2CO3 is needed for in situ soap generation and low adsorption; NaCl can be added to reach the necessary total salinity. The simulation result matches the laboratory imbibition experimental data. Small fracture spacing and high permeability would be needed for high rate of recovery.

  10. Interactions of anionic surfactants with methemoglobin.

    PubMed

    Gebicka, Lidia; Banasiak, Ewa

    2011-03-01

    Interactions of two anionic surfactants, sodium dodecyl sulphate (SDS) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at concentrations below and above critical micelle concentration with methemoglobin (metHb) have been investigated by conventional as well as by stopped-flow absorption and fluorescence spectroscopy. The absorption spectra of metHb in AOT reverse micelles have been also analyzed. Both surfactants in their monomeric form convert metHb to reversible hemichrome. This is connected with a diminution of peroxidase-like activity of metHb and with an increase of the susceptibility of heme for a damage by H(2)O(2). In micellar solutions of AOT and SDS as well as in AOT reverse micelles pentacoordinated ferric species seems to be the predominant form of this protein. It has been concluded, basing on a kinetic analysis, that conformational changes in the heme environment of metHb as induced by both surfactants occur independently of the alterations in the tertiary structure of this protein. PMID:21131182

  11. Evaulation of irritation potential of surfactant mixtures.

    PubMed

    Turkoglu, M; Sakr, A

    1999-12-01

    Irritation potential of sodium laureth sulfate (SLES) alone, and in combination with lauryl glucoside (LG), polysorbate 20 (PS) and cocoamidopropyl betaine (CAPB) was tested in 13 human subjects. Four main and six sub-formulations were prepared and evaluated. Formulations were applied to the forearm as a 24 h close patch study. Irritation was scored by two different methods using an in vivo clinical protocol based on visual scoring and on the stratum corneum capacitance measurement. Irritation was found to be dose dependent. At 2 mg/patch level ten subjects did not show any skin reaction. At 20 mg/patch level eleven subjects showed a broad range of skin irritation. The highest irritation was observed with the formula that contained SLES, LG, and cocamide DEA together. Among the sub-formulations, cocamide DEA showed the highest irritation grade. A statistically significant correlation was observed between visual, clinical and corneometer scores. It was concluded that the irritation potential of surfactants was related to the total surfactant concentration, application mode, and the thermodynamic activity of molecules in the solution as well as the chemical structure of the surfactant molecules. PMID:18503452

  12. The Drosophila melanogaster homologue of the human histo-blood group Pk gene encodes a glycolipid-modifying α1,4-N-acetylgalactosaminyltransferase

    PubMed Central

    2004-01-01

    Insects express arthro-series glycosphingolipids, which contain an α1,4-linked GalNAc residue. To determine the genetic basis for this linkage, we cloned a cDNA (CG17223) from Drosophila melanogaster encoding a protein with homology to mammalian α1,4-glycosyltransferases and expressed it in the yeast Pichia pastoris. Culture supernatants from the transformed yeast were found to display a novel UDP-GalNAc:GalNAcβ1,4GlcNAcβ1-R α-N-acetylgalactosaminyltransferase activity when using either a glycolipid, p-nitrophenylglycoside or an N-glycan carrying one or two terminal β-N-acetylgalactosamine residues. NMR and MS in combination with glycosidase digestion and methylation analysis indicate that the cloned cDNA encodes an α1,4-N-acetylgalactosaminyltransferase. We hypothesize that this enzyme and its orthologues in other insects are required for the biosynthesis of the N5a and subsequent members of the arthro-series of glycolipids as well as of N-glycan receptors for Bacillus thuringiensis crystal toxin Cry1Ac. PMID:15130086

  13. A monoclonal antibody to a carbohydrate epitope expressed on glycolipid and on alpha3beta1 integrin on human esophageal carcinoma.

    PubMed

    Jamasbi, Roudabeh J; Stoner, Gary D; Foote, Linda J; Lankford, Trish K; Davern, Sandra; Kennel, Stephen J

    2003-12-01

    A mouse monoclonal antibody (MAb-9) produced by immunization with a human esophageal carcinoma cell line, TE-2 (derived from undifferentiated squamous cell carcinoma) reacted specifically with about 30% of esophageal carcinoma cell lines and tissue sections from clinical samples. MAb-9 showed minimal reactivity with normal esophageal tissue. (125)I, fluorescent or gold particle labeled MAb-9 bound to TE-2 cell surfaces. (125)I-radiolabeled MAb-9 was used to detect reactive material from cell extracts in Western blot. Treatment of TE-2 membrane proteins with neuraminidase, N-glycanase or O-glycanase reduced antigen detection. Treatment of cells with periodic acid destroyed antibody binding in ELISA. Lipid extracts from cell membranes, containing glycolipids, also reacted with MAb-9. MAb-9 was used to purify target antigen from detergent solubilized membrane proteins and the prominent bands from subsequent gel electrophoresis were trypsin digested and analyzed by mass spectrometry. Peptides from alpha(3) and beta(1) integrin chains were identified. These data indicate that alpha3beta1integrin is prominently expressed on certain esophageal carcinomas and that a specific carbohydrate unit is selectively displayed on the alpha(3) integrin subunit as well as on glycolipid on the cell surface. The alpha3beta1 integrin expressed on A-431 carcinoma cells does not display this carbohydrate epitope and is not detected by MAb-9. Thus, expression of the carbohydrate epitope is the basis for the tumor selective reaction of MAb-9 with a subset of esophageal carcinomas. PMID:14683596

  14. Integrating ReSET with Glycosyl Iodide Glycosylation in Step-Economy Syntheses of Tumor-Associated Carbohydrate Antigens and Immunogenic Glycolipids

    PubMed Central

    2015-01-01

    Carbohydrates mediate a wide range of biological processes, and understanding these events and how they might be influenced is a complex undertaking that requires access to pure glycoconjugates. The isolation of sufficient quantities of carbohydrates and glycolipids from biological samples remains a significant challenge that has redirected efforts toward chemical synthesis. However, progress toward complex glycoconjugate total synthesis has been slowed by the need for multiple protection and deprotection steps owing to the large number of similarly reactive hydroxyls in carbohydrates. Two methodologies, regioselective silyl exchange technology (ReSET) and glycosyl iodide glycosylation have now been integrated to streamline the synthesis of the globo series trisaccharides (globotriaose and isoglobotriaose) and α-lactosylceramide (α-LacCer). These glycoconjugates include tumor-associated carbohydrate antigens (TACAs) and immunostimulatory glycolipids that hold promise as immunotherapeutics. Beyond the utility of the step-economy syntheses afforded by this synthetic platform, the studies also reveal a unique electronic interplay between acetate and silyl ether protecting groups. Incorporation of acetates proximal to silyl ethers attenuates their reactivity while reducing undesirable side reactions. This phenomenon can be used to fine-tune the reactivity of silylated/acetylated sugar building blocks. PMID:24490844

  15. Rapid phosphorylation and dephosphorylation of 47KD protein accompanies serotonin secretion in human platelets challenged with endotoxic glycolipid-bearing Salmonella minnesota Re595

    SciTech Connect

    Grabarek, J.; Timmons, S.; Hawiger, J.

    1986-03-01

    The authors studied the mechanism through which human platelets interact with gram-negative bacteria possessing a well-defined structure of endotoxic lipopolysaccharide. Mutant Re595 of S. minnesota, with endotoxic glycolipid composed of Lipid A and 2-keto-3-deoxyoctonate but lacking other constituents of lipopolysaccharide, induced secretion of /sup 3/H-serotonin. Secretion was preceded by phosphorylation of a platelet protein of Mr 47,000 (47kD) that is associated with protein kinase C activation and that has been shown to accompany secretory response of platelets to thrombin and phorbol ester. Myosin light chain (20kD) was phosphorylated to a lesser degree. Phosphorylation of both proteins rapidly peaked at 1 min. and was promptly followed by dephosphorylation. During this period, secretion of /sup 3/H-serotonin was gradually increasing to reach maximal value at 20 min. These changes in phosphorylation of phosphoproteins, 47kD and 20kD, were not observed when platelets were challenged with parent strain S218 of S. minnesota. Thus, activation of protein kinase C and calcium/calmodulin-dependent myosin light chain kinase and subsequent activation of phosphatase(s) represent early steps in the response of human platelets to endotoxic glycolipid associated with mutant Re595 of S. minnesota.

  16. Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering.

    PubMed

    Yamamoto, Akihisa; Abuillan, Wasim; Burk, Alexandra S; Körner, Alexander; Ries, Annika; Werz, Daniel B; Demé, Bruno; Tanaka, Motomu

    2015-04-21

    The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration. The bulkier "bent" Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter "bent" disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3. PMID:25903910

  17. Binding of fluorescently labeled cholera toxin subunit B to glycolipids in the human submandibular gland and inhibition of binding by periodate oxidation and by galactose.

    PubMed

    Kirkeby, S

    2016-01-01

    FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini remained unaffected even after increased oxidation. Staining with the subunit was also reduced significantly by adding galactose to the incubation medium. Binding of CTB to cell surfaces apparently requires intact sialic groups on most, but not all, cell surfaces. Oxidation of the sialic acid residues may influence the structure of the sialylated GM1 molecules on the cell surface in different ways. It is possible that both the sialic acid residue and the terminal galactose are oxidized. Alternatively, the sialic acid may be resistant to acid hydrolysis in gangliosides in which the sialic acid is attached to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human milk contains high levels of sialic acid glycoconjugates that may provide defense mechanisms. PMID:26472148

  18. Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering

    SciTech Connect

    Yamamoto, Akihisa E-mail: tanaka@uni-heidelberg.de; Tanaka, Motomu E-mail: tanaka@uni-heidelberg.de; Abuillan, Wasim; Körner, Alexander; Burk, Alexandra S.; Ries, Annika; Werz, Daniel B.; Demé, Bruno

    2015-04-21

    The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration. The bulkier “bent” Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter “bent” disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3.

  19. Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akihisa; Abuillan, Wasim; Burk, Alexandra S.; Körner, Alexander; Ries, Annika; Werz, Daniel B.; Demé, Bruno; Tanaka, Motomu

    2015-04-01

    The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration. The bulkier "bent" Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter "bent" disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3.

  20. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity.

    SciTech Connect

    Liu, Y.; Wang, C.; Wei, Y.; Zhu, L.; Li, D.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S.

    2011-02-01

    Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials.

  1. Rheological properties of ovalbumin hydrogels as affected by surfactants addition.

    PubMed

    Hassan, Natalia; Messina, Paula V; Dodero, Veronica I; Ruso, Juan M

    2011-04-01

    The gel properties of ovalbumin mixtures with three different surfactants (sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate) have been studied by rheological techniques. The gel elasticities were determined as a function of surfactant concentration and surfactant type. The fractal dimension of the formed structures was evaluated from plots of storage modulus against surfactant concentration. The role of electrostatic, hydrophobic and disulfide SS interactions in these systems has been demonstrated to be the predominant. The viscosity of these structures tends to increase with surfactant concentration, except for the fluorinated one. Unfolded ovalbumin molecules tend to form fibrillar structures that tend to increase with surfactant concentration, except for the fluorinated one. This fact has been related to the particular nature of this molecule. PMID:21262258

  2. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases].

    PubMed

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan

    2016-08-10

    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases. PMID:27455022

  3. Estimation hydrophilic-lipophilic balance number of surfactants

    NASA Astrophysics Data System (ADS)

    Pawignya, Harsa; Prasetyaningrum, Aji; Dyartanti, Endah R.; Kusworo, Tutuk D.; Pramudono, Bambang

    2016-02-01

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  4. Infrared imaging of a solid phase surfactant monolayer.

    PubMed

    Conover, T A; Saylor, J R

    2006-08-01

    A new method for visualizing solid phase surfactant monolayers is presented. This method utilizes infrared (IR) imaging of the surface of a warm subphase covered by the monolayer. When the subphase is deep, natural convection occurs, resulting in a complex surface temperature field that is easily visualized using an IR camera. The presence of a surfactant monolayer changes the hydrodynamic boundary condition at the interface, dramatically altering the surface temperature field, and permitting the differentiation of surfactant-covered and surfactant-free regions. In this work, solid phase monolayers are imaged using this IR method. Fractures in the monolayer are dramatically visualized because of the sudden elimination of surfactant in the region opened up by the crack. The method is demonstrated in a wind/water tunnel, where a stearic acid monolayer is deposited and a crack is created through shear on the surfactant surface, created by suddenly increasing the velocity of the air over the water. PMID:16863234

  5. Enhancement of enzymatic hydrolysis of cellulose by surfactant

    SciTech Connect

    Ooshima, H.; Sakata, M.; Harano, Y.

    1986-01-01

    Effects of surfactants on enzymatic saccharification of cellulose have been studied. Nonionic, amphoteric, and cationic surfactants enhanced the saccharification, while anionic surfactant did not. Cationic and anionic surfactants denatured cellulase in their relatively low concentrations, namely, more than 0.008 and 0.001%, respectively. Using nonionic surfactant Tween 20, which is most effective to the enhancement (e.g., the fractional conversion attained by 72 h saccharification of 5 wt % Avicel in the presence of 0.05 wt % Tween 20 is increased by 35%), actions of surfactant have been examined. As the results, it was suggested that Tween 20 plays an important role in the hydrolysis of crystalline cellulose and that Tween 20 disturbs the adsorption of endoglucanase on cellulose, i.e., varies the adsorption balance of endo- and exoglucanase, resulting in enhancing the reaction. The influence of Tween 20 to the saccharification was found to remain in simultaneous saccharification and fermentation of Avicel.

  6. Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion.

    PubMed

    Gumaste, Suhas G; Gupta, Simerdeep Singh; Serajuddin, Abu T M

    2016-09-01

    In a solid dispersion (SD), the drug is generally dispersed either molecularly or in the amorphous state in polymeric carriers, and the addition of a surfactant is often important to ensure drug release from such a system. The objective of this investigation was to screen systematically polymer-surfactant and polymer-drug-surfactant miscibility by using the film casting method. Miscibility of the crystalline solid surfactant, poloxamer 188, with two commonly used amorphous polymeric carriers, Soluplus® and HPMCAS, was first studied. Then, polymer-drug-surfactant miscibility was determined using itraconazole as the model drug, and ternary phase diagrams were constructed. The casted films were examined by DSC, PXRD and polarized light microscopy for any crystallization or phase separation of surfactant, drug or both in freshly prepared films and after exposure to 40°C/75% RH for 7, 14, and 30 days. The miscibility of poloxamer 188 with Soluplus® was <10% w/w, while its miscibility with HPMCAS was at least 30% w/w. Although itraconazole by itself was miscible with Soluplus® up to 40% w/w, the presence of poloxamer drastically reduced its miscibility to <10%. In contrast, poloxamer 188 had minimal impact on HPMCAS-itraconazole miscibility. For example, the phase diagram showed amorphous miscibility of HPMCAS, itraconazole, and poloxamer 188 at 54, 23, and 23% w/w, respectively, even after exposure to 40°C/75% RH for 1 month. Thus, a relatively simple and practical method of screening miscibility of different components and ultimately physical stability of SD is provided. The results also identify the HPMCAS-poloxamer 188 mixture as an optimal surface-active carrier system for SD. PMID:27301752

  7. Surfactant effects on environmental behavior of pesticides.

    PubMed

    Katagi, Toshiyuki

    2008-01-01

    The potential effects of adjuvants, including surfactants used in pesticide formulation, have been extensively studied for many small organic chemicals, but similar investigation on pesticides is limited in most cases. Solubilizing effects leading to the apparently increased water solubility of a pesticide are commonly known through the preparation of formulations, but fundamental profiles, especially for a specific monodisperse surfactant, are not fully studied. Reduced volatilization of a pesticide from the formulation can be explained by analogy of a very simple organic chemical, but the actual mechanism for the pesticide is still obscure. In contrast, from the point of view of avoiding groundwater contamination with a pesticide, adsorption/desorption profiles in the presence of surfactants and adjuvants have been examined extensively as well as pesticide mobility in the soil column. The basic mechanism in micelle-catalyzed hydrolysis is well known, and theoretical approaches including the PPIE model have succeeded in explaining the observed effects of surfactants, but its application to pesticides is also limited. Photolysis, especially in an aqueous phase, is in the same situation. The dilution effect in the real environment would show these effects on hydrolysis and photolysis to be much less than expected from the laboratory basic studies, but more information is necessary to examine the practical extent of the effects in an early stage of applying a pesticide formulation to crops and soil. Many adjuvants, including surfactants, are biodegradable in the soil environment, and thus their effects on the biodegradation of a pesticide in soil and sediment may be limited, as demonstrated by field trials. Not only from the theoretical but also the practical aspect, the foliar uptake of pesticide in the presence of adjuvants has been investigated extensively and some prediction on the ease of foliar uptake can be realized in relation to the formulation technology

  8. Surfactant/polymer chemical flooding. Volumes 1-2

    SciTech Connect

    Not Available

    1988-01-01

    The two reprint volumes on surfactant/polymer flooding of necessity contain papers on the subject of chemical flooding. The subject was narrowed to include only surfactant/polymer flooding. An overview of chemical flooding is given. Some of the titles are: Surfactant/Oil/Brine phase behavior; Miscellar Flooding-compositional effects on oil displacement; relationships of trapped oil saturation to petrophysical properties of porous media; mobilization of waterflood residual oil; and microemulsion phase behavior.

  9. Surfactant and its role in the pathobiology of pulmonary infection.

    PubMed

    Glasser, Jennifer R; Mallampalli, Rama K

    2012-01-01

    Pulmonary surfactant is a complex surface-active substance comprised of key phospholipids and proteins that has many essential functions. Surfactant's unique composition is integrally related to its surface-active properties, its critical role in host defense, and emerging immunomodulatory activities ascribed to surfactant lipids. Together these effector functions provide for lung stability and protection from a barrage of potentially virulent infectious pathogens. PMID:21945366

  10. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  11. Theory of Energy Level Tuning in Quantum Dots by Surfactants

    NASA Astrophysics Data System (ADS)

    Zherebetskyy, Danylo; Wang, Lin-Wang; Materials Sciences Division, Lawrence Berkeley National Laboratory Team

    2015-03-01

    Besides quantum confinement that provides control of the quantum dot (QD) band gap, surface ligands allow control of the absolute energy levels. We theoretically investigate energy level tuning in PbS QD by surfactant exchange. We perform direct calculations of real-size QD with various surfactants within the frame of the density functional theory and explicitly analyze the influence of the surfactants on the electronic properties of the QD. This work provides a hint for predictable control of the absolute energy levels and their fine tuning within 3 eV range by modification of big and small surfactants that simultaneously passivate the QD surface.

  12. The interactions between surfactants and vesicles: Dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Kuei-Chun; Lin, Chun-Min; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2009-06-01

    The interactions between surfactants and vesicles formed by double-tail amphiphiles are investigated by the dissipative particle dynamics. As the surfactant concentration is increased, vesicle solubilization can be generally described by the three-stage hypothesis including vesicular region, vesicle-micelle coexistence, and mixed micellar region. We study the partition of surfactants between the bilayer phase and the aqueous phase where a higher value of K indicates that more surfactant molecules are incorporated in the bilayer. It is found that ln(K-1) is proportional to the hydrophile-lipophile balance (HLB), which depicts the degree of hydrophilicity associated with a surfactant. As the overall hydrophilicity of surfactants increases, i.e., higher HLB, K declines and vice versa. When the amounts of surfactants reach a critical point, the solubilization begins and the coexistence of vesicles and mixed micelles is observed. Further increase in the surfactant concentration results in total collapse of the vesicle. Consistent with experimental observations, the three stages are identified through the vesicle size-surfactant concentration relation. Our simulations clearly demonstrate the process of the vesicle solubilization and confirm the validity of the three-stage hypothesis.

  13. Pulmonary surfactant: no mere paint on the alveolar wall.

    PubMed

    Nicholas, T E

    1996-12-01

    The gas-liquid interface within the alveolus is completely lined with a complex mixture of lipids and unique proteins termed pulmonary surfactant, which both reduces surface tension and permits it to vary directly with the radius of curvature. In this way it minimizes the work of breathing and permits alveoli of different sizes to exist in equilibrium. However, surfactant does far more in that it also controls fluid balance in the lung and appears to play a key role in host defence. Either a deficiency in surfactant or an aberrant surfactant results in atelectasis and oedema. The surfactant system is very dynamic: alveolar surfactant phosphatidylcholine, the principal component, having a half life of only a few hours, with as much as 85% being recycled. Although distortion of the alveolar type II cell is now accepted as the principal stimulus for release, much remains to be discovered of modulating factors and intracellular signalling in the control of surfactant homeostasis. Likewise, many questions remain concerning the control of synthesis of the surfactant phospholipids, neutral lipids and proteins and their assembly into the tubular myelin form of alveolar surfactant, the refining of the monolayer with breathing, the control of re-uptake of different components into the type II cells and the roles of the proteins. PMID:9441113

  14. Flexible polyelectrolyte conformation in the presence of oppositely charged surfactants.

    PubMed

    Kuhn, P S; Diehl, A

    2007-10-01

    Conformational behavior of flexible polyelectrolytes in the presence of monovalent cationic surfactants is examined. A simple model is presented for the formation of polyelectrolyte-surfactant complexes in salt-free solutions in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, including explicitly the hydrophobic interactions between the associated surfactant molecules on the polyelectrolyte. The distribution of complexes is calculated as a function of the surfactant concentration and a discrete conformational transition between an elongated coil and a compact globule was found, in agreement with experimental observations. PMID:17995019

  15. Pulmonary surfactant surface tension influences alveolar capillary shape and oxygenation.

    PubMed

    Ikegami, Machiko; Weaver, Timothy E; Grant, Shawn N; Whitsett, Jeffrey A

    2009-10-01

    Alveolar capillaries are located in close proximity to the alveolar epithelium and beneath the surfactant film. We hypothesized that the shape of alveolar capillaries and accompanying oxygenation are influenced by surfactant surface tension in the alveolus. To prove our hypothesis, surfactant surface tension was regulated by conditional expression of surfactant protein (SP)-B in Sftpb(-/-) mice, thereby inhibiting surface tension-lowering properties of surfactant in vivo within 24 hours after depletion of Sftpb. Minimum surface tension of isolated surfactant was increased and oxygen saturation was significantly reduced after 2 days of SP-B deficiency in association with deformation of alveolar capillaries. Intravascularly injected 3.2-mum-diameter microbeads through jugular vein were retained within narrowed pulmonary capillaries after reduction of SP-B. Ultrastructure studies demonstrated that the capillary protrusion typical of the normal alveolar-capillary unit was reduced in size, consistent with altered pulmonary blood flow. Pulmonary hypertension and intrapulmonary shunting are commonly associated with surfactant deficiency and dysfunction in neonates and adults with respiratory distress syndromes. Increased surfactant surface tension caused by reduction in SP-B induced narrowing of alveolar capillaries and oxygen desaturation, demonstrating an important role of surface tension-lowering properties of surfactant in the regulation of pulmonary vascular perfusion. PMID:19202005

  16. Partitioning of naphthalene to gemini surfactant-treated alumina.

    PubMed

    Neupane, D; Park, J W

    2000-09-01

    Partitioning of naphthalene to anionic surfactants adsorbed on alumina in the aqueous phase was studied for immobilization of the contaminant in the subsurface. Three anionic surfactants with different molecular structures were used: a conventional (sodium dodecylbenzene sulfonate, SDDBS), a gemini (dialkylated disulfonated diphenyl oxide with alkyl chain length of 12, DADS-C12), and a dianionic (monoalkylated disulfonated diphenyl oxide with alkyl chain length of 12, MADS-C12). Sorption of the surfactants onto alumina was studied in a series of batch experiments and the effectiveness of the adsorbed surfactants onto aluminum oxide as a sorptive phase for naphthalene was compared. PMID:10834382

  17. Infasurf and Curosurf: Theoretical and Practical Considerations with New Surfactants

    PubMed Central

    Nguyen, Thuy N.; Cunsolo, Stephanie M.; Gal, Peter; Ransom, J. Laurence

    2003-01-01

    Type II pneumocytes, normally responsible for surfactant production and release, are insufficiently formed and differentiated in the premature infant born before 34 weeks' gestation. Without an adequate amount of pulmonary surfactant, alveolar surface tension increases, leading to collapse and decreased lung compliance. Pulmonary surfactants are naturally occurring substances made of lipids and proteins. They lower surface tension at the interface between the air in the lungs, specifically at the alveoli, and the blood in the capillaries. This review examines the relative benefits of the two most recently marketed surfactants, calfactan (Infasurf) and poractant alfa (Curosurf). PMID:23300398

  18. Solution properties and electrospinning of phosphonium gemini surfactants.

    PubMed

    Hemp, Sean T; Hudson, Amanda G; Allen, Michael H; Pole, Sandeep S; Moore, Robert B; Long, Timothy E

    2014-06-14

    Bis(diphenylphosphino)alkanes quantitatively react with excess 1-bromododecane to prepare novel phosphonium gemini surfactants with spacer lengths ranging from 2 to 4 methylenes (12-2/3/4-12P). Dodecyltriphenylphosphonium bromide (DTPP), a monomeric surfactant analog, was readily water soluble, however, in sharp contrast, phosphonium gemini surfactants were poorly soluble in water due to two hydrophobic tails and relatively hydrophobic cationic head groups containing phenyl substituents. Isothermal titration calorimetry did not reveal a measurable critical micelle concentration for the 12-2-12P phosphonium gemini surfactant in water at 25 °C. Subsequent studies in 50/50 v/v water-methanol at 25 °C showed a CMC of 1.0 mM for 12-2-12P. All phosphonium gemini surfactants effectively complexed nucleic acids, but failed to deliver nucleic acids in vitro to HeLa cells. The solution behavior of phosphonium gemini surfactants was investigated in chloroform, which is an organic solvent where reverse micellar structures are favored. Solution rheology in chloroform explored the solution behavior of the phosphonium gemini surfactants compared to DTPP. The 12-2-12P and 12-3-12P gemini surfactants were successfully electrospun from chloroform to generate uniform fibers while 12-4-12P gemini surfactant and DTPP only electrosprayed to form droplets. PMID:24733359

  19. Washing of soils spiked with various pollutants by surfactant solutions

    SciTech Connect

    Yang, G.C.C.; Chang, J.H.

    1995-12-31

    In this study, the batch-type of washing with surfactant solutions was employed for the treatment of soils artificially contaminated with various volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals. 15 industrial grade surfactants were tested. Washing was conducing by adding surfactant solution to the soils and mixing for one hour, then centrifuging it and analyzing the supernatant. Deionized water was used for soil washing for comparison. Results indicated that deionized water performed as well as Surfactant No. 1 in washing VOC-contaminated soils. Therefore, it is concluded that the VOCs tested can be easily washed from soils by rain water. In washing PAH-contaminated soils, nonionic surfactants performed better than anionic surfactants in terms of removal efficiency. The amphoteric surfactant performed worst in washing PAH-contaminated soils. Generally, surfactants are useful in removing cadmium from soils, but are not useful for the removal of lead and copper. Amphoteric, anionic, and low pH cationic surfactants were the most effective of those tested. For PAH/heavy metals-contaminated soils, removal efficiencies were lower than that of soils containing a single contaminant.

  20. TOXICITY COMPARISON OF BIOSURFACTANTS AND SYNTHETIC SURFACTANTS USED IN OIL SPILL REMEDIATION TO TWO ESTUARINE SPECIES

    EPA Science Inventory

    The relative environmental toxicities of synthetic and biogenic surfactants used in oil spill remediation efforts are not well understood. Acute and chronic toxicities of three synthetic surfactants and three microbially produced surfactants were determined and compared in this s...

  1. PROPERTIES OF FOOD GRADE (EDIBLE) SURFACTANTS AFFECTING SUBSURFACE REMEDIATION OF CHLORINATED SOLVENTS

    EPA Science Inventory

    In this research, several food grade (edible) surfactants are systematically evaluated for various loss mechanisms: precipitation, adsorption, and coacervation (for nonionic surfactants). Cloud points for the polyethoxylate sorbitan (T-MAZ) surfactants are much higher than aquife...

  2. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    EPA Science Inventory

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  3. In situ synthesis of lead sulfide nanoclusters on eggshell membrane fibers by an ambient bio-inspired technique

    NASA Astrophysics Data System (ADS)

    Su, Huilan; Han, Jie; Wang, Na; Dong, Qun; Zhang, Di; Zhang, Chunfu

    2008-02-01

    An ambient aqueous soakage technique is successfully developed to prepare PbS nanoclusters on eggshell membrane (ESM) fibers containing some active functional groups (hydroxyl, amine, imine, etc). Based on the biomaterial ESM serving as the reactive substrate and some ESM biomacromolecules acting as the surfactant, PbS nanocrystallites are in situ formed and further assembled into well-distributed nanoparticle aggregations. This moderate bio-inspired strategy would be of great value in preparing novel functional nanomaterials. The as-prepared hybrid PbS/ESM nanocomposites could have great potential for applications in semiconductor industries, optoelectronic fields, and nanostructured devices.

  4. Effect of ionic surfactants on the iridescent color in lamellar liquid crystalline phase of a nonionic surfactant.

    PubMed

    Chen, Xinjiang; Mayama, Hiroyuki; Matsuo, Goh; Torimoto, Tsukasa; Ohtani, Bunsho; Tsujii, Kaoru

    2007-01-15

    A nonionic surfactant, n-dodecyl glyceryl itaconate (DGI), self-assembles into bilayer membranes in water having a spacing distance of sub-micrometer in the presence of small amounts of ionic surfactants, and shows beautiful iridescent color. Ionic surfactants have strong effects on this iridescent system. We have interestingly found that the iridescent color changes with time after mixing DGI and ionic surfactants and the color in equilibrium state changes greatly with concentration of the ionic surfactants. The time-dependent color change results from the transformation of DGI aggregate structure after being mixed with ionic surfactant. It is first found that the iridescent color of this nonionic system can be changed from red to deep blue by altering the concentration of ionic surfactants added even though the total concentration of surfactant is almost constant. Such large blue shift of the iridescent color in equilibrium state cannot be fully explained by the ordinary undulation theory applied so far for this phenomenon. The flat lamellar sheets tend to curve by increasing the concentration of ionic surfactants to form separated onion-like and/or myelin-like structures. These separated structures of lamellar system result in the decrease of spacing distance between bilayer membranes because some vacant spaces necessarily appear among these structures. PMID:17046012

  5. Adsorption of polyoxyethylenic surfactants on quartz, kaolin, and dolomite: A correlation between surfactant structure and solid surface nature

    SciTech Connect

    Nevskaia, D.M.; Guerrero-Ruiz, A.; Lopez-Gonzalez, J.deD.

    1996-08-10

    Adsorption of a surfactant at a liquid-solid interface makes up the basis of many technological processes such as detergency, flotation, water treatment, and enhanced oil recovery. The influence of variables such as adsorption temperature, polar chain length, and nature of functional groups on the adsorption, from aqueous solutions, of various surfactants (TX-114, TX-100, TX-165, TX-305, NP1P4E, NP4P1E, NP4S, NP10S, and NP25S) has been investigated. Several nonporous solids, including various samples of quartz, kaolin, and dolomite, were studied. Conformational changes of adsorbed surfactant molecules on one quartz, when the oxyethylenic length of Tritons increases, have been detected. For all the other solid samples the surface is not completely covered by Tritons. On quartz, the surfactants are adsorbed by hydrogen bonds between the surfactant`s ether groups and the silanol groups of the solid surface. These hydroxyl groups must be free and sufficiently separated from other hydroxyls of the solid surface. When the number of propoxy groups increases (from NP1P4E to NP4P1E) the adsorbed amount of surfactant on the solid studied decreases. Anionic surfactants are adsorbed on quartz in lower amounts than the corresponding nonionic surfactants. However, the adsorbed amounts of Tritons and sulfated Tritons on kaolin are similar, probably due to the positive charges on the edges of this material.

  6. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  7. Nucleate pool boiling heat transfer in aqueous surfactant solutions

    NASA Astrophysics Data System (ADS)

    Wasekar, Vivek Mahadeorao

    Saturated, nucleate pool boiling in aqueous surfactant solutions is investigated experimentally. Also, the role of Marangoni convection, driven both by temperature and surfactant concentration gradients at the vapor-liquid interface of a nucleating bubble is computationally explored. Experimental measurements of dynamic and equilibrium sigma using the maximum bubble pressure method indicate dynamic sigma to be higher than the corresponding equilibrium value, both at room and elevated temperatures. Also, nonionic surfactants (Triton X-100, Triton X-305) show larger sigma depression than anionic surfactants (SDS, SLES), and a normalized representation of their dynamic adsorption isotherms is shown to be helpful in generalizing the surfactant effectiveness to reduce surface tension. The dynamic sigma has a primary role in the modification of bubble dynamics and associated heat transfer, and is dictated by the adsorption kinetics of the surfactant molecules at boiling temperatures. In general, an enhancement in heat transfer is observed, which is characterized by an early incipience and an optimum boiling performance at or around the critical micelle concentration of the surfactant. The optimum performances, typically in the fully developed boiling regime ( q''w > 100 kW/m2), show a reverse trend with respect to surfactant molecular weights M, i.e., higher molecular weight additives promote lower enhancement. Normalized boiling performance using the respective solution's dynamic sigma correlates heat transfer coefficient by M-0.5 for anionics and M 0 for nonionics. This has been shown to be brought about by the surfactant concentration and its interfacial activity in a concentration sublayer around the growing vapor bubble, which governs the bubble growth behavior through the mechanism of dynamic sigma. The ionic nature of the surfactant influences the thickness and molecular makeup of the enveloping sublayer, thereby affecting the bubble dynamics and boiling heat

  8. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactants

    SciTech Connect

    Lebone T. Moeti; Ramanathan Sampath

    1998-05-01

    This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to April 01, 1998 which covers the first six months of the project. During this reporting period, laboratory space to set up the surfactant characterization measurement system in the Research Science Center was made available. A Ph.D. student in Chemistry was identified and is supported as a Graduate Research Assistant in this project. Her contribution towards this project will form her Ph.D. thesis. The test matrix to perform salinity and temperature scans was established. Supply requests to obtain refined hydrocarbon, surfactant, and crude were processed and supplies obtained. A temperature bath with a control unit to perform temperature scans was obtained on loan from Federal Energy Technology Center, Morgantown, WV. The setting up of the temperature control unit, and associated chiller with water circulation lines is in progress. Tests were conducted on several hybrid surfactants to identify the best surfactants for future experimental work that yield almost equal volumes of top, middle, and bottom phases when mixed with oil and water. The student reviewed the current literature in the subject area, and modeling efforts that were established in previous studies to predict electrical conductivities and inversion phenomena. These activities resulted in one published conference paper, and one student poster paper during this reporting period.

  9. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  10. Effect of salt and surfactant concentration on the structure of polyacrylate gel/surfactant complexes.

    PubMed

    Nilsson, Peter; Unga, Johan; Hansson, Per

    2007-09-20

    Small-angle X-ray scattering was used to elucidate the structure of crosslinked polyacrylate gel/dodecyltrimethylammonium bromide complexes equilibrated in solutions of varying concentrations of surfactant and sodium bromide (NaBr). Samples were swollen with no ordering (micelle free), or they were collapsed with either several distinct peaks (cubic Pm3n) or one broad correlation peak (disordered micellar). The main factor determining the structure of the collapsed complexes was found to be the NaBr concentration, with the cubic structure existing up to approximately 150 mM NaBr and above which only the disordered micellar structure was found. Increasing the salt concentration decreases the polyion mediated attractive forces holding the micelles together causing swelling of the gel. At sufficiently high salt concentration the micelle-micelle distance in the gel becomes too large for the cubic structure to be retained, and it melts into a disordered micellar structure. As most samples were above the critical micelle concentration, the bulk of the surfactant was in the form of micelles in the solution and the surfactant concentration thereby had only a minor influence on the structure. However, in the region around 150 mM NaBr, increasing the surfactant concentration, at constant NaBr concentration, was found to change the structure from disordered micellar to ordered cubic and back to disordered again. PMID:17715959

  11. Foam stabilisation using surfactant exfoliated graphene.

    PubMed

    Sham, Alison Y W; Notley, Shannon M

    2016-05-01

    Liquid-air foams have been stabilised using a suspension of graphene particles at very low particle loadings. The suspension was prepared through the liquid phase exfoliation of graphite in the presence of the non-ionic tri-block surfactant, Pluronic® F108. The graphene particles possess an extremely high aspect ratio, with lateral dimensions of between 0.1 and 1.3 μm as evidenced by TEM imaging. The particles were shown to exhibit a number of other properties known to favour stabilisation of foam structures. Particle surface activity was confirmed through surface tension measurements, suggesting the particles favour adsorption at the air-water interface. The evolution of bubble size distributions over time indicated the presence of particles yielded improvements to foam stability due to a reduction in disproportionation. Foam stability measurements showed a non-linear relationship between foam half-life and graphene concentration, indicative of the rate at which particles adsorb at bubble surfaces. The wettability of the graphene particles was altered upon addition of alkali metal chlorides, with the stability of the foams being enhanced according to the series Na(+)>Li(+)>K(+)>Cs(+). This effect is indicative of the relative hydration capacity of each salt with respect to the surfactant, which is adsorbed along the graphene plane as a result of the exfoliation process. Thus, surfactant exfoliated graphene particles exhibit a number of different features that demonstrate efficient application of high-aspect ratio particles in the customisation and enhancement of foams. PMID:26890385

  12. Interaction between DNA and cationic surfactants: effect of DNA conformation and surfactant headgroup.

    PubMed

    Dias, Rita S; Magno, Luís M; Valente, Artur J M; Das, Dibyendu; Das, Prasanta K; Maiti, Souvik; Miguel, Maria G; Lindman, Björn

    2008-11-20

    The interactions between DNA and a number of different cationic surfactants, differing in headgroup polarity, were investigated by electric conductivity measurements and fluorescence microscopy. It was observed that, the critical association concentration (cac), characterizing the onset of surfactant binding to DNA, does not vary significantly with the architecture of the headgroup. However, comparing with the critical micelle concentration (cmc) in the absence of DNA, it can be inferred that the micelles of a surfactant with a simple quaternary ammonium headgroup are much more stabilized by the presence of DNA than those of surfactants with hydroxylated head-groups. In line with previous studies of polymer-surfactant association, the cac does not vary significantly with either the DNA concentration or its chain length. On the other hand, a novel observation is that the cac is much lower when DNA is denaturated and in the single-stranded conformation, than for the double-helix DNA. This is contrary to expectation for a simple electrostatically driven association. Thus previous studies of polyelectrolyte-surfactant systems have shown that the cac decreases strongly with increasing linear charge density of the polyion. Since double-stranded DNA (dsDNA) has twice as large linear charge density as single-stranded DNA (ssDNA), the stronger binding in the latter case indicates an important role of nonelectrostatic effects. Both a higher flexibility of ssDNA and a higher hydrophobicity due to the exposed bases are found to play a role, with the hydrophobic interaction argued to be more important. The significance of hydrophobic DNA-surfactant interaction is in line with other observations. The significance of nonelectrostatic effects is also indicated in significant differences in cac between different surfactants for ssDNA but not for dsDNA. For lower concentrations of DNA, the conductivity measurements presented an "anomalous" feature, i.e., a second inflection point

  13. Size separation of analytes using monomeric surfactants

    DOEpatents

    Yeung, Edward S.; Wei, Wei

    2005-04-12

    A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.

  14. A terracotta bio-battery.

    PubMed

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. PMID:22609660

  15. Israel Marine Bio-geographic Database (ISRAMAR-BIO)

    NASA Astrophysics Data System (ADS)

    Greengrass, Eyal; Krivenko, Yevgeniya; Ozer, Tal; Ben Yosef, Dafna; Tom, Moshe; Gertman, Isaac

    2015-04-01

    The knowledge of the space/time variations of species is the basis for any ecological investigations. While historical observations containing integral concentrations of biological parameters (chlorophyll, abundance, biomass…) are organized partly in ISRAMAR Cast Database, the taxon-specific data collected in Israel has not been sufficiently organized. This has been hindered by the lack of standards, variability of methods and complexity of biological data formalization. The ISRAMAR-BIO DB was developed to store various types of historical and future available information related to marine species observations and related metadata. Currently the DB allows to store biological data acquired by the following sampling devices such as: van veer grab, box corer, sampling bottles, nets (plankton, trawls and fish), quadrates, and cameras. The DB's logical unit is information regarding a specimen (taxa name, barcode, image), related attributes (abundance, size, age, contaminants…), habitat description, sampling device and method, time and space of sampling, responsible organization and scientist, source of information (cruise, project and publication). The following standardization of specimen and attributes naming were implemented: Taxonomy according to World Register of Marine Species (WoRMS: http://www.marinespecies.org). Habitat description according to Coastal and Marine Ecological Classification Standards (CMECS: http://www.cmecscatalog.org) Parameter name; Unit; Device name; Developmental stage; Institution name; Country name; Marine region according to SeaDataNet Vocabularies (http://www.seadatanet.org/Standards-Software/Common-Vocabularies). This system supports two types of data submission procedures, which support the above stated data structure. The first is a downloadable excel file with drop-down fields based on the ISRAMAR-BIO vocabularies. The file is filled and uploaded online by the data contributor. Alternatively, the same dataset can be assembled by

  16. Surfactant roles in modern sample preparation techniques: a review.

    PubMed

    Moradi, Morteza; Yamini, Yadollah

    2012-09-01

    The pressure to decrease organic solvent usage in laboratories is increasing. Thus miniaturization and improvement of sample handling using alternatives is a challenge that has been discussed by several researchers. From this perspective, surfactant-based sample preparations were an educated choice. Since the introduction of cloud point extraction by Watanabe, considerable studies have been focused on the chemical properties of surfactants in the extraction methods. The unique properties of surfactants make them flexible agents for different miniaturized sample preparation techniques based on solid- or liquid-phase extraction. As a result, the use of surfactants with different roles in sample-preparation methodologies (such as surfactant as an emulsifier, surfactant rich phase as an extraction medium, ion pair-based extraction, hemimicelle/admicelle extraction, surfactant-coated magnetic nanoparticle, solid-phase microextraction with micellar desorption) is an important contribution to minimizing the problems arising from preliminary operations, which are the weakest step in analytical measurement. This paper reviews the literature dealing with the application of surfactant-based sample preparations to the separation and the preconcentration of organic and inorganic species. PMID:22887709

  17. The Influence of Surfactants on the Zeta Potential of Coals

    SciTech Connect

    Marsalek, R.

    2009-07-01

    The surface of three different kinds of coal was modified by three surfactants (cationic, anionic, and non-ionic). Changes on coal surface were examined by the zeta potential technique. The influence of the dispersion of pH, concentration of surfactants, and contact time were investigated. The most significant change in zeta potential resulting from adding surfactants was observed in activated coal (hydrophobic surface, largest BET surface area). Adding the cationic surfactant led to an increase of the zeta potential, contrary to measuring done in water. The anionic surfactant decreased the value of the zeta potential; however, this change was not too remarkable. The results proved that even a very low concentration of the cationic surfactant (0.01 mmol/L) causes a remarkable change of the zeta potential. On the other hand, a similar effect was observed until the concentration of the anionic surfactant reached about 10 mmol/L. The mechanism of binding surfactants is not simple, but preferential hydrophobic interactions were discovered.

  18. Synthetic pulmonary surfactant preparations: new developments and future trends.

    PubMed

    Mingarro, Ismael; Lukovic, Dunja; Vilar, Marçal; Pérez-Gil, Jesús

    2008-01-01

    Pulmonary surfactant is a lipid-protein complex that coats the interior of the alveoli and enables the lungs to function properly. Upon its synthesis, lung surfactant adsorbs at the interface between the air and the hypophase, a capillary aqueous layer covering the alveoli. By lowering and modulating surface tension during breathing, lung surfactant reduces respiratory work of expansion, and stabilises alveoli against collapse during expiration. Pulmonary surfactant deficiency, or dysfunction, contributes to several respiratory pathologies, such as infant respiratory distress syndrome (IRDS) in premature neonates, and acute respiratory distress syndrome (ARDS) in children and adults. The main clinical exogenous surfactants currently in use to treat some of these pathologies are essentially organic extracts obtained from animal lungs. Although very efficient, natural surfactants bear serious defects: i) they could vary in composition from batch to batch; ii) their production involves relatively high costs, and sources are limited; and iii) they carry a potential risk of transmission of animal infectious agents and the possibility of immunological reaction. All these caveats justify the necessity for a highly controlled synthetic material. In the present review the efforts aimed at new surfactant development, including the modification of existing exogenous surfactants by adding molecules that can enhance their activity, and the progress achieved in the production of completely new preparations, are discussed. PMID:18288994

  19. PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS

    EPA Science Inventory

    Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

  20. Effect of polymer-surfactant association on colloidal force

    NASA Astrophysics Data System (ADS)

    Philip, John; Jaykumar, T.; Kalyanasundaram, P.; Raj, Baldev; Mondain-Monval, O.

    2002-07-01

    We investigate the forces between emulsion droplets in the presence of neutral polymer-surfactant complexes. The polymer used in our experiment was statistical copolymer of polyvinyl alcohol. The anionic surfactant used is sodiumdodecyl sulphate, the cationic surfactants are cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide, and the nonionic surfactant is nonylphenol ethoxylate (NP10). It has been found that the force profiles in the presence of surfactant-polymer complexes follow an exponential scaling with a characteristic decay length, close to the radius of gyration of the polymer alone. A continuous increase in the onset of repulsion is observed in the case of all three ionic surfactants, whereas no such variation was noticed in the case of nonionic surfactant, NP10. The experimental observations suggest that in the presence of charged surfactant molecules or micelles, the neutral polymer chain at the interface is converted into partial polyelectrolytes, where the charges on the chain repel each other and the electrostatic repulsion collectively leads to chain stretching. These results suggest that the associative polymers can be potential candidates for making the emulsions stable for a sufficiently long period.