Science.gov

Sample records for gm1 gangliosidosis patients

  1. Filipin recognizes both GM1 and cholesterol in GM1 gangliosidosis mouse brain

    PubMed Central

    Arthur, Julian R.; Heinecke, Karie A.; Seyfried, Thomas N.

    2011-01-01

    Filipin is an antibiotic polyene widely used as a histochemical marker for cholesterol. We previously reported cholesterol/filipin-positive staining in brain of β-galactosidase (β-gal) knockout (−/−) mice (GM1 gangliosidosis). The content and distribution of cholesterol and gangliosides was analyzed in plasma membrane (PM) and microsomal (MS) fractions from whole-brain tissue of 15 week-old control (β-gal+/−) and GM1 gangliosidosis (β-gal−/−) mice. Total ganglioside content (μg sialic acid/mg protein) was 3-fold and 7-fold greater in the PM and MS fractions, respectively, in βgal−/− mice than in βgal+/− mice. GM1 content was 30-fold and 50-fold greater in the PM and MS fractions, respectively. In contrast, unesterified cholesterol content (μg/mg protein) was similar in the PM and the MS fractions of the βgal−/− and βgal+/− mice. Filipin is known to bind to various sterol derivatives and phospholipids on thin-layer chromatograms. Biochemical evidence is presented showing that filipin also binds to GM1 with an affinity similar to that for cholesterol, with a corresponding fluorescent reaction. Our data suggest that the GM1 storage seen in the β-gal−/− mouse contributes to the filipin ultraviolet fluorescence observed in GM1 gangliosidosis brain. The data indicate that in addition to cholesterol, filipin can also be useful for detecting GM1. PMID:21508255

  2. GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings

    PubMed Central

    Caciotti, Anna; Garman, Scott C; Rivera-Colón, Yadilette; Procopio, Elena; Catarzi, Serena; Ferri, Lorenzo; Guido, Carmen; Martelli, Paola; Parini, Rossella; Antuzzi, Daniela; Battini, Roberta; Sibilio, Michela; Simonati, Alessandro; Fontana, Elena; Salviati, Alessandro; Akinci, Gulcin; Cereda, Cristina; Dionisi-Vici, Carlo; Deodato, Francesca; d’Amico, Adele; d’Azzo, Alessandra; Bertini, Enrico; Filocamo, Mirella; Scarpa, Maurizio; di Rocco, Maja; Tifft, Cynthia J; Ciani, Federica; Gasperini, Serena; Pasquini, Elisabetta; Guerrini, Renzo; Donati, Maria Alice; Morrone, Amelia

    2011-01-01

    GM1 gangliosidosis and Morquio B syndrome, both arising from beta-galactosidase (GLB1) deficiency, are very rare lysosomal storage diseases with an incidence of about 1:100,000– 1:200,000 live births worldwide. Here we report the beta-galactosidase gene (GLB1) mutation analysis of 21 unrelated GM1 gangliosidosis patients, and of 4 Morquio B patients, of whom two are brothers. Clinical features of the patients were collected and compared with those in literature. In silico analyses were performed by standard alignments tools and by an improved version of GLB1 three-dimensional models. The analysed cohort includes remarkable cases. One patient with GM1 gangliosidosis had a triple X syndrome. One patient with juvenile GM1 gangliosidosis was homozygous for a mutation previously identified in Morquio type B. A patient with infantile GM1 gangliosidosis carried a complex GLB1 allele harbouring two genetic variants leading to p.R68W and p.R109W amino acid changes, in trans with the known p.R148C mutation. Molecular analysis showed 27 mutations, 9 of which are new: 5 missense, 3 microdeletions and a nonsense mutation. We also identified four new genetic variants with a predicted polymorphic nature that was further investigated by in silico analyses. Three-dimensional structural analysis of GLB1 homology models including the new missense mutations and the p.R68W and p.R109W amino acid changes, showed that all the amino acids replacements affected the resulting protein structures in different ways, from changes in polarity to folding alterations. Genetic and clinical associations led us to undertake a critical review of the classifications of late-onset GM1 gangliosidosis and Morquio B disease. PMID:21497194

  3. MRI/MRS as a surrogate marker for clinical progression in GM1 gangliosidosis.

    PubMed

    Regier, Debra S; Kwon, Hyuk Joon; Johnston, Jean; Golas, Gretchen; Yang, Sandra; Wiggs, Edythe; Latour, Yvonne; Thomas, Sarah; Portner, Cindy; Adams, David; Vezina, Gilbert; Baker, Eva H; Tifft, Cynthia J

    2016-03-01

    Background GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in GLB1, encoding β-galactosidase. The range of severity is from type I infantile disease, lethal in early childhood, to type III adult onset, resulting in gradually progressive neurological symtpoms in adulthood. The intermediate group of patients has been recently classified as having type II late infantile subtype with onset of symptoms at one to three years of age or type II juvenile subtype with symptom onset at 2-10 years. To characterize disease severity and progression, six Late infantile and nine juvenile patients were evaluated using magnetic resonance imaging (MRI), and MR spectroscopy (MRS). Since difficulties with ambulation (gross motor function) and speech (expressive language) are often the first reported symptoms in type II GM1, patients were also scored in these domains. Deterioration of expressive language and ambulation was more rapid in the late infantile patients. Fourteen MRI scans in six Late infantile patients identified progressive atrophy in the cerebrum and cerebellum. Twenty-six MRI scans in nine juvenile patients revealed greater variability in extent and progression of atrophy. Quantitative MRS demonstrated a deficit of N-acetylaspartate in both the late infantile and juvenile patients with greater in the late infantile patients. This correlates with clinical measures of ambulation and expressive language. The two subtypes of type II GM1 gangliosidosis have different clinical trajectories. MRI scoring, quantitative MRS and brain volume correlate with clinical disease progression and may serve as important minimally-invasive outcome measures for clinical trials. © 2015 Wiley Periodicals, Inc. PMID:26646981

  4. Tuning glycosidase inhibition through aglycone interactions: pharmacological chaperones for Fabry disease and GM1 gangliosidosis.

    PubMed

    Aguilar-Moncayo, M; Takai, T; Higaki, K; Mena-Barragán, T; Hirano, Y; Yura, K; Li, L; Yu, Y; Ninomiya, H; García-Moreno, M I; Ishii, S; Sakakibara, Y; Ohno, K; Nanba, E; Ortiz Mellet, C; García Fernández, J M; Suzuki, Y

    2012-07-01

    Competitive inhibitors of either α-galactosidase (α-Gal) or β-galactosidase (β-Gal) with high affinity and selectivity have been accessed by exploiting aglycone interactions with conformationally locked sp(2)-iminosugars. Selected compounds were profiled as potent pharmacological chaperones for mutant lysosomal α- and β-Gal associated with Fabry disease and GM(1) gangliosidosis. PMID:22618082

  5. GM1-gangliosidosis in American black bears: clinical, pathological, biochemical and molecular genetic characterization.

    PubMed

    Muthupalani, Sureshkumar; Torres, Paola A; Wang, Betty C; Zeng, Bai Jin; Eaton, Samuel; Erdelyi, Ildiko; Ducore, Rebecca; Maganti, Rajanikarath; Keating, John; Perry, Bain J; Tseng, Florina S; Waliszewski, Nicole; Pokras, Mark; Causey, Robert; Seger, Rita; March, Philip; Tidwell, Amy; Pfannl, Rolf; Seyfried, Thomas; Kolodny, Edwin H; Alroy, Joseph

    2014-04-01

    G(M1)-gangliosidosis is a rare progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of lysosomal β-galactosidase. We have identified seven American black bears (Ursus americanus) found in the Northeast United States suffering from G(M1)-gangliosidosis. This report describes the clinical features, brain MRI, and morphologic, biochemical and molecular genetic findings in the affected bears. Brain lipids were compared with those in the brain of a G(M1)-mouse. The bears presented at ages 10-14 months in poor clinical condition, lethargic, tremulous and ataxic. They continued to decline and were humanely euthanized. The T(2)-weighted MR images of the brain of one bear disclosed white matter hyperintensity. Morphological studies of the brain from five of the bears revealed enlarged neurons with foamy cytoplasm containing granules. Axonal spheroids were present in white matter. Electron microscopic examination revealed lamellated membrane structures within neurons. Cytoplasmic vacuoles were found in the liver, kidneys and chondrocytes and foamy macrophages within the lungs. Acid β-galactosidase activity in cultured skin fibroblasts was only 1-2% of control values. In the brain, ganglioside-bound sialic acid was increased more than 2-fold with G(M1)-ganglioside predominating. G(A1) content was also increased whereas cerebrosides and sulfatides were markedly decreased. The distribution of gangliosides was similar to that in the G(M1)-mouse brain, but the loss of myelin lipids was greater in the brain of the affected bear than in the brain of the G(M1) mouse. Isolated full-length cDNA of the black bear GLB1 gene revealed 86% homology to its human counterpart in nucleotide sequence and 82% in amino acid sequence. GLB1 cDNA from liver tissue of an affected bear contained a homozygous recessive T(1042) to C transition inducing a Tyr348 to His mutation (Y348H) within a highly conserved region of the GLB1 gene. The coincidence of several

  6. Canine GM1-gangliosidosis. A clinical, morphologic, histochemical, and biochemical comparison of two different models.

    PubMed Central

    Alroy, J.; Orgad, U.; DeGasperi, R.; Richard, R.; Warren, C. D.; Knowles, K.; Thalhammer, J. G.; Raghavan, S. S.

    1992-01-01

    The clinical, morphologic, histochemical, and biochemical features of GM1-gangliosidosis in two canine models, English Springer Spaniel (ESS) and Portuguese Water Dog (PWD), have been compared. The disease onset, its clinical course, and survival period of the affected dogs were similar in both models. Skeletal dysplasia was noted radiographically at 2 months of age, whereas at 4 1/2 months of age there was progressive neurologic impairment. However, dwarfism and coarse facial features were seen only in ESS. Both models had similar deficiency in activity of lysosomal beta-galactosidase, but possessed a normal protein activator for GM1-beta-galactosidase. Both models stored GM1-ganglioside, asialo-GM1, and oligosaccharides in brain. Furthermore, only the PWD stored glycoproteins containing polylactosaminoglycans in visceral organs, and neither model stored them in the brain. Morphologically, both models demonstrated similar storage material in multiple tissues and cell types. The ultrastructure of the storage material was cell-type specific and identical in both models. However, some differences in the lectin staining pattern were noted. Our clinical, biochemical, and histochemical findings indicate that PWD and ESS may represent two different mutations of the beta-galactosidase gene. Moreover, the authors conclude that it is difficult, and inappropriate, to apply the human classification of GM1-gangliosidosis (i.e. infantile, juvenile, and adult forms) to these canine models. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:1546746

  7. Myelin Abnormalities in the Optic and Sciatic Nerves in Mice With GM1-Gangliosidosis

    PubMed Central

    Heinecke, Karie A.; Luoma, Adrienne; d’Azzo, Alessandra; Kirschner, Daniel A.

    2015-01-01

    GM1-gangliosidosis is a glycosphingolipid lysosomal storage disease involving accumulation of GM1 and its asialo form (GA1) primarily in the brain. Thin-layer chromatography and X-ray diffraction were used to analyze the lipid content/composition and the myelin structure of the optic and sciatic nerves from 7- and 10-month old β-galactosidase (β-gal) +/? and β-gal −/− mice, a model of GM1gangliosidosis. Optic nerve weight was lower in the β-gal −/− mice than in unaffected β-gal +/? mice, but no difference was seen in sciatic nerve weight. The levels of GM1 and GA1 were significantly increased in both the optic nerve and sciatic nerve of the β-gal −/− mice. The content of myelin-enriched cerebrosides, sulfatides, and plasmalogen ethanolamines was significantly lower in optic nerve of β-gal −/− mice than in β-gal +/? mice; however, cholesteryl esters were enriched in the β-gal −/− mice. No major abnormalities in these lipids were detected in the sciatic nerve of the β-gal −/− mice. The abnormalities in GM1 and myelin lipids in optic nerve of β-gal −/− mice correlated with a reduction in the relative amount of myelin and periodicity in fresh nerve. By contrast, the relative amount of myelin and periodicity in the sciatic nerves from control and β-gal −/− mice were indistinguishable, suggesting minimal pathological involvement in sciatic nerve. Our results indicate that the greater neurochemical pathology observed in the optic nerve than in the sciatic nerve of β-gal −/− mice is likely due to the greater glycolipid storage in optic nerve. PMID:25694553

  8. A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis.

    PubMed

    Takai, Tomoko; Higaki, Katsumi; Aguilar-Moncayo, Matilde; Mena-Barragán, Teresa; Hirano, Yuki; Yura, Kei; Yu, Liang; Ninomiya, Haruaki; García-Moreno, M Isabel; Sakakibara, Yasubumi; Ohno, Kousaku; Nanba, Eiji; Ortiz Mellet, Carmen; García Fernández, José M; Suzuki, Yoshiyuki

    2013-03-01

    Lysosomal β-galactosidase (β-Gal) deficiency causes a group of disorders that include neuronopathic GM1 gangliosidosis and non-neuronopathic Morquio B disease. We have previously proposed the use of small molecule ligands of β-Gal as pharmacological chaperones (PCs) for the treatment of GM1 gangliosidosis brain pathology. Although it is still under development, PC therapy has yielded promising preclinical results in several lysosomal diseases. In this study, we evaluated the effect of bicyclic 1-deoxygalactonojirimycin (DGJ) derivative of the sp(2)-iminosugar type, namely 5N,6S-(N'-butyliminomethylidene)-6-thio-1- deoxygalactonojirimycin (6S-NBI-DGJ), as a novel PC for human mutant β-Gal. In vitro, 6S-NBI-DGJ had the ability to inhibit the activity of human β-Gal in a competitive manner and was able to protect this enzyme from heat-induced degradation. Computational analysis supported that the rigid glycone bicyclic core of 6S-NBI-DGJ binds to the active site of the enzyme, with the aglycone N'-butyl substituent, in a precise E-orientation, located at a hydrophobic region nearby. Chaperone potential profiling indicated significant increases of enzyme activity in 24 of 88 β-Gal mutants, including four common mutations. Finally, oral administration of 6S-NBI-DGJ ameliorated the brain pathology of GM1 gangliosidosis model mice. These results suggest that 6S-NBI-DGJ is a novel PC that may be effective on a broad range of β-Gal mutants. PMID:23337983

  9. Founder mutation causing infantile GM1-gangliosidosis in the Gypsy population.

    PubMed

    Sinigerska, Ivanka; Chandler, David; Vaghjiani, Vijesh; Hassanova, Irfet; Gooding, Rebecca; Morrone, Amelia; Kremensky, Ivo; Kalaydjieva, Luba

    2006-05-01

    The Gypsies are a trans-national founder population of Asian descent, whose genetic heritage is still incompletely characterized. Here, we describe the first founder mutation leading to a lysosomal storage disorder in this population: R59H in GLB1, which causes infantile GM1-gangliosidosis. The R59H carrier rate is approximately 2% in the general Gypsy population and approximately 10% in the Rudari sub-isolate. Haplotype analysis suggests that the Gypsy diaspora may have contributed to the spread of this mutation to South America. PMID:16466959

  10. Serial MRI features of canine GM1 gangliosidosis: a possible imaging biomarker for diagnosis and progression of the disease.

    PubMed

    Hasegawa, Daisuke; Yamato, Osamu; Nakamoto, Yuya; Ozawa, Tsuyoshi; Yabuki, Akira; Itamoto, Kazuhito; Kuwabara, Takayuki; Fujita, Michio; Takahashi, Kimimasa; Mizoguchi, Shunta; Orima, Hiromitsu

    2012-01-01

    GM1 gangliosidosis is a fatal neurodegenerative lysosomal storage disease caused by an autosomal recessively inherited deficiency of β-galactosidase activity. Effective therapies need to be developed to treat the disease. In Shiba Inu dogs, one of the canine GM1 gangliosidosis models, neurological signs of the disease, including ataxia, start at approximately 5 months of age and progress until the terminal stage at 12 to 15 months of age. In the present study, serial MR images were taken of an affected dog from a model colony of GM1 gangliosidosis and 4 sporadic clinical cases demonstrating the same mutation in order to characterize the MRI features of this canine GM1 gangliosidosis. By 2 months of age at the latest and persisting until the terminal stage of the disease, the MR findings consistently displayed diffuse hyperintensity in the white matter of the entire cerebrum on T2-weighted images. In addition, brain atrophy manifested at 9 months of age and progressed thereafter. Although a definitive diagnosis depends on biochemical and genetic analyses, these MR characteristics could serve as a diagnostic marker in suspect animals with or without neurological signs. Furthermore, serial changes in MR images could be used as a biomarker to noninvasively monitor the efficacy of newly developed therapeutic strategies. PMID:22536126

  11. Serial MRI Features of Canine GM1 Gangliosidosis: A Possible Imaging Biomarker for Diagnosis and Progression of the Disease

    PubMed Central

    Hasegawa, Daisuke; Yamato, Osamu; Nakamoto, Yuya; Ozawa, Tsuyoshi; Yabuki, Akira; Itamoto, Kazuhito; Kuwabara, Takayuki; Fujita, Michio; Takahashi, Kimimasa; Mizoguchi, Shunta; Orima, Hiromitsu

    2012-01-01

    GM1 gangliosidosis is a fatal neurodegenerative lysosomal storage disease caused by an autosomal recessively inherited deficiency of β-galactosidase activity. Effective therapies need to be developed to treat the disease. In Shiba Inu dogs, one of the canine GM1 gangliosidosis models, neurological signs of the disease, including ataxia, start at approximately 5 months of age and progress until the terminal stage at 12 to 15 months of age. In the present study, serial MR images were taken of an affected dog from a model colony of GM1 gangliosidosis and 4 sporadic clinical cases demonstrating the same mutation in order to characterize the MRI features of this canine GM1 gangliosidosis. By 2 months of age at the latest and persisting until the terminal stage of the disease, the MR findings consistently displayed diffuse hyperintensity in the white matter of the entire cerebrum on T2-weighted images. In addition, brain atrophy manifested at 9 months of age and progressed thereafter. Although a definitive diagnosis depends on biochemical and genetic analyses, these MR characteristics could serve as a diagnostic marker in suspect animals with or without neurological signs. Furthermore, serial changes in MR images could be used as a biomarker to noninvasively monitor the efficacy of newly developed therapeutic strategies. PMID:22536126

  12. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

    PubMed Central

    Weismann, Cara M.; Ferreira, Jennifer; Keeler, Allison M.; Su, Qin; Qui, Linghua; Shaffer, Scott A.; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-01-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal−/−) at 1 × 1011 or 3 × 1011 vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36–76% reduction in GM1-ganglioside content in the brain and 75–86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 1011 vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 1011 vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316–576 days) was significantly increased over controls (250–264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  13. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  14. Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy

    PubMed Central

    Rigat, Brigitte A.; Tropak, Michael B.; Buttner, Justin; Crushell, Ellen; Benedict, Daphne; Callahan, John W.; Martin, Douglas R.; Mahuran, Don J.

    2012-01-01

    Deficiencies of lysosomal β-D-galactosidase can result in GM1 gangliosidosis, a severe neurodegenerative disease characterized by massive neuronal storage of GM1 ganglioside in the brain. Currently there are no available therapies that can even slow the progression of this disease. Enzyme enhancement therapy utilizes small molecules that can often cross the blood brain barrier, but are also often competitive inhibitors of their target enzyme. It is a promising new approach for treating diseases, often caused by missense mutations, associated with dramatically reduced levels of functionally folded enzyme. Despite a number of positive reports based on assays performed with patient cells, skepticism persists that an inhibitor-based treatment can increase mutant enzyme activity in vivo. To date no appropriate animal model, i.e., one that recapitulates a responsive human genotype and clinical phenotype, has been reported that could be used to validate enzyme enhancement therapy. In this report, we identify a novel enzyme enhancement-agent, N-nonyl-deoxygalactonojirimycin, that enhances the mutant β-galactosidase activity in the lysosomes of a number of patient cell lines containing a variety of missense mutations. We then demonstrate that treatment of cells from a previously described, naturally occurring feline model (that biochemically, clinically and molecularly closely mimics GM1 gangliosidosis in humans) with this molecule, results in a robust enhancement of their mutant lysosomal β-galactosidase activity. These data indicate that the feline model could be used to validate this therapeutic approach and determine the relationship between the disease stage at which this therapy is initiated and the maximum clinical benefits obtainable. PMID:22784478

  15. GM1 gangliosidosis and Morquio B disease: expression analysis of missense mutations affecting the catalytic site of acid beta-galactosidase.

    PubMed

    Hofer, Doris; Paul, Karl; Fantur, Katrin; Beck, Michael; Bürger, Friederike; Caillaud, Catherine; Fumic, Ksenija; Ledvinova, Jana; Lugowska, Agnieszka; Michelakakis, Helen; Radeva, Briguita; Ramaswami, Uma; Plecko, Barbara; Paschke, Eduard

    2009-08-01

    Alterations in GLB1, the gene coding for acid beta-D-galactosidase (beta-Gal), can result in GM1 gangliosidosis (GM1), a neurodegenerative disorder, or in Morquio B disease (MBD), a phenotype with dysostosis multiplex and normal central nervous system (CNS) function. While most MBD patients carry a common allele, c.817TG>CT (p.W273L), only few of the >100 mutations known in GM1 can be related to a certain phenotype. In 25 multiethnic patients with GM1 or MBD, 11 missense mutations were found as well as one novel insertion and a transversion causing aberrant gene products. Except c.602G>A (p.R201H) and two novel alleles, c.592G>T (p.D198Y) and c.1189C>G (p.P397A), all mutants resulted in significantly reduced beta-Gal activities (<10% of normal) upon expression in COS-1 cells. Although c.997T>C (p.Y333H) expressed 3% of normal activity, the mutant protein was localized in the lysosomal-endosomal compartment. A homozygous case presented with late infantile GM1, while a heterozygous, juvenile case carried p.Y333H together with p.R201H. This allele, recently found in homozygous MBD, gives rise to rough endoplasmic reticulum (RER)-located beta-Gal precursors. Thus, unlike classical MBD, the phenotype of heterozygotes carrying p.R201H may rather be determined by poorly active, properly transported products of the counter allele than by the mislocalized p.R201H precursors. PMID:19472408

  16. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis.

    PubMed

    Jeyakumar, M; Thomas, R; Elliot-Smith, E; Smith, D A; van der Spoel, A C; d'Azzo, A; Perry, V Hugh; Butters, T D; Dwek, R A; Platt, F M

    2003-04-01

    Mouse models of the GM2 gangliosidoses [Tay-Sachs, late onset Tay-Sachs (LOTS), Sandhoff] and GM1 gangliosidosis have been studied to determine whether there is a common neuro-inflammatory component to these disorders. During the disease course, we have: (i) examined the expression of a number of inflammatory markers in the CNS, including MHC class II, CD68, CD11b (CR3), 7/4, F4/80, nitrotyrosine, CD4 and CD8; (ii) profiled cytokine production [tumour necrosis factor alpha (TNF alpha), transforming growth factor (TGF beta 1) and interleukin 1 beta (IL1 beta)]; and (iii) studied blood-brain barrier (BBB) integrity. The kinetics of apoptosis and the expression of Fas and TNF-R1 were also assessed. In all symptomatic mouse models, a progressive increase in local microglial activation/expansion and infiltration of inflammatory cells was noted. Altered BBB permeability was evident in Sandhoff and GM1 mice, but absent in LOTS mice. Progressive CNS inflammation coincided with the onset of clinical signs in these mouse models. Substrate reduction therapy in the Sandhoff mouse model slowed the rate of accumulation of glycosphingolipids in the CNS, thus delaying the onset of the inflammatory process and disease pathogenesis. These data suggest that inflammation may play an important role in the pathogenesis of the gangliosidoses. PMID:12615653

  17. A Duplication in the Canine β-Galactosidase Gene GLB1 Causes Exon Skipping and GM1-Gangliosidosis in Alaskan Huskies

    PubMed Central

    Kreutzer, Robert; Leeb, Tosso; Müller, Gundi; Moritz, Andreas; Baumgärtner, Wolfgang

    2005-01-01

    GM1-gangliosidosis is a lysosomal storage disease that is inherited as an autosomal recessive disorder, predominantly caused by structural defects in the β-galactosidase gene (GLB1). The molecular cause of GM1-gangliosidosis in Alaskan huskies was investigated and a novel 19-bp duplication in exon 15 of the GLB1 gene was identified. The duplication comprised positions +1688–+1706 of the GLB1 cDNA. It partially disrupted a potential exon splicing enhancer (ESE), leading to exon skipping in a fraction of the transcripts. Thus, the mutation caused the expression of two different mRNAs from the mutant allele. One transcript contained the complete exon 15 with the 19-bp duplication, while the other transcript lacked exon 15. In the transcript containing exon 15 with the 19-bp duplication a premature termination codon (PTC) appeared, but due to its localization in the last exon of canine GLB1, nonsense-mediated RNA decay (NMD) did not occur. As a consequence of these molecular events two different truncated GLB1 proteins are predicted to be expressed from the mutant GLB1 allele. In heterozygous carrier animals the wild-type allele produces sufficient amounts of the active enzyme to prevent clinical signs of disease. In affected homozygous dogs no functional GLB1 is synthesized and GM1-gangliosidosis occurs. PMID:15944348

  18. Characterization of beta-galactosidase mutations Asp332-->Asn and Arg148-->Ser, and a polymorphism, Ser532-->Gly, in a case of GM1 gangliosidosis.

    PubMed Central

    Zhang, S; Bagshaw, R; Hilson, W; Oho, Y; Hinek, A; Clarke, J T; Callahan, J W

    2000-01-01

    We have identified and characterized three missense mutations in a patient with type 1 G(M1) gangliosidosis, namely a substitution of G for A at nucleotide position 1044 (G1044-->A; in exon 10) on one allele, which converts Asp(332) into asparagine, and both a mutation (C492-->A in exon 4, leading to the amino acid change of Arg(148)-->Ser) and a polymorphism (A1644-->G in exon 15, leading to a change of Ser(532)-->Gly) on the other allele. This patient had less than 1% residual beta-galactosidase activity and minimally detectable levels of immunoreactive beta-galactosidase protein in fibroblasts. To account for the above findings, a series of expression and immunolocalization studies were undertaken to assess the impact of each mutation. Transient overexpression in COS-1 cells of cDNAs encoding Asp(332)Asn, Arg(148)Ser and Ser(532)Gly mutant beta-galactosidases produced abundant amounts of precursor beta-galactosidase, with activities of 0, 84 and 81% compared with the cDNA clone for wild-type beta-galactosidase (GP8). Since the level of vector-driven expression is much less in Chinese hamster ovary (CHO) cells than in COS-1 cells, and we knew that exogenous beta-galactosidase undergoes lysosomal processing when expressed in these cells, transient expression studies were performed of Arg(148)Ser and Ser(532)Gly, which yielded active forms of the enzyme. In this case, the Arg(148)Ser and Ser(532)Gly products gave rise to 11% and 86% of the control activity respectively. These results were not unexpected, since the Arg(148)Ser mutation introduced a major conformational change into the protein, and we anticipated that it would be degraded in the endoplasmic reticulum (ER), whereas the polymorphism was expected to produce near-normal activity. To examine the effect of the Asp(332)Asn mutation on the catalytic activity, we isolated CHO clones permanently transfected with the Asp(332)Asn and Asp(332)Glu constructs, purified the enzymes by substrate

  19. Molecular epidemiology of canine GM1 gangliosidosis in the Shiba Inu breed in Japan: relationship between regional prevalence and carrier frequency

    PubMed Central

    2013-01-01

    Background Canine GM1 gangliosidosis is a fatal disease in the Shiba Inu breed, which is one of the most popular traditional breeds in Japan and is maintained as a standard breed in many countries. Therefore, it is important to control and reduce the prevalence of GM1 gangliosidosis for maintaining the quality of this breed and to ensure supply of healthy dogs to prospective breeders and owners. This molecular epidemiological survey was performed to formulate an effective strategy for the control and prevention of this disease. Results The survey was carried out among 590 clinically unaffected Shiba Inu dogs from the 8 districts of Japan, and a genotyping test was used to determine nation-wide and regional carrier frequencies. The number and native district of affected dogs identified in 16 years from 1997 to June 2013 were also surveyed retrospectively. Of the 590 dogs examined, 6 dogs (1.02%, 6/590) were carriers: 3 dogs (2.27%, 3/132) from the Kinki district and the other 3 dogs from the Hokkaido, Kanto, and Shikoku districts. The retrospective survey revealed 23 affected dogs, among which, 19 dogs (82.6%) were born within the last 7 years. Of the 23 affected dogs, 12 dogs (52.2%) were from the Kinki district. Pedigree analysis demonstrated that all the affected dogs and carriers with the pedigree information have a close blood relationship. Conclusions Our results showed that the current carrier frequency for GM1 gangliosidosis is on the average 1.02% in Japan and rather high in the Kinki district, which may be related to the high prevalence observed over the past 16 years in this region. This observation suggests that carrier dogs are distributed all over Japan; however, kennels in the Kinki district may face an increased risk of GM1 gangliosidosis. Therefore, for effective control and prevention of this disease, it is necessary to examine as many breeding dogs as possible from all regions of Japan, especially from kennels located in areas with high prevalence

  20. Synthesis of C-5a-chain extended derivatives of 4-epi-isofagomine: Powerful β-galactosidase inhibitors and low concentration activators of GM1-gangliosidosis-related human lysosomal β-galactosidase.

    PubMed

    Thonhofer, Martin; Weber, Patrick; Santana, Andres Gonzalez; Fischer, Roland; Pabst, Bettina M; Paschke, Eduard; Schalli, Michael; Stütz, Arnold E; Tschernutter, Marion; Windischhofer, Werner; Withers, Stephen G

    2016-03-01

    From an easily available partially protected formal derivative of 1-deoxymannojirimycin, by hydroxymethyl chain-branching and further elaboration, lipophilic analogs of the powerful β-d-galactosidase inhibitor 4-epi-isofagomine have become available. New compounds exhibit improved inhibitory activities comparable to benchmark compound NOEV (N-octyl-epi-valienamine) and may serve as leads towards improved and more selective pharmacological chaperones for GM1-gangliosidosis. PMID:26838810

  1. Synthesis of C-5a-substituted derivatives of 4-epi-isofagomine: notable β-galactosidase inhibitors and activity promotors of GM1-gangliosidosis related human lysosomal β-galactosidase mutant R201C.

    PubMed

    Thonhofer, Martin; Weber, Patrick; Gonzalez Santana, Andres; Tysoe, Christina; Fischer, Roland; Pabst, Bettina M; Paschke, Eduard; Schalli, Michael; Stütz, Arnold E; Tschernutter, Marion; Windischhofer, Werner; Withers, Stephen G

    2016-06-24

    From an easily available partially protected analog of 1-deoxy-L-gulo-nojirimycin, by chain-branching at C-4 and suitable modification, lipophilic analogs of the powerful β-D-galactosidase inhibitor 4-epi-isofagomine have been prepared. New compounds exhibit considerably improved inhibitory activities when compared with the unsubstituted parent compound and may serve as leads toward new pharmacological chaperones for GM1-gangliosidosis and Morquio B disease. PMID:27063389

  2. pH-dependent formation of membranous cytoplasmic body-like structure of ganglioside G(M1)/bis(monoacylglycero)phosphate mixed membranes.

    PubMed

    Hayakawa, Tomohiro; Makino, Asami; Murate, Motohide; Sugimoto, Ichiro; Hashimoto, Yasuhiro; Takahashi, Hiroshi; Ito, Kazuki; Fujisawa, Tetsuro; Matsuo, Hirotami; Kobayashi, Toshihide

    2007-01-01

    Membrane structures of the mixtures of ganglioside G(M1) and endosome specific lipid, bis (monoacylglycero) phosphate (BMP, also known as lysobisphosphatidic acid) were examined at various pH conditions by freeze-fracture electron microscopy and small-angle x-ray scattering. At pH 8.5-6.5, a G(M1)/BMP (1:1 mol/mol) mixture formed small vesicular aggregates, whereas the mixture formed closely packed lamellar structures under acidic conditions (pH 5.5, 4.6) with the lamellar repeat distance of 8.06 nm. Since BMP alone exhibits a diffuse lamellar structure at a broad range of pH values and G(M1) forms a micelle, the results indicate that both G(M1) and BMP are required to produce closely stacked multilamellar vesicles. These vesicles resemble membranous cytoplasmic bodies in cells derived from patients suffering from G(M1) gangliosidosis. Similar to G(M1) gangliosidosis, cholesterol was trapped in BMP vesicles in G(M1)- and in a low pH-dependent manner. Studies employing different gangliosides and a G(M1) analog suggest the importance of sugar chains and a sialic acid of G(M1) in the pH-dependent structural change of G(M1)/BMP membranes. PMID:17056735

  3. Genetics Home Reference: GM1 gangliosidosis

    MedlinePlus

    ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA HONCode ...

  4. Alterations in cholesterol and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease.

    PubMed

    Liu, Li; Zhang, Ke; Tan, Liang; Chen, Yu-Hua; Cao, Yun-Peng

    2015-01-01

    The aim of this study was to investigate the changes in the protein, cholesterol, and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease (AD), and identify potential blood biomarkers of the disease. A total of 31 Chinese patients with AD and 31 aged-matched control subjects were selected. Lipid rafts were isolated from platelets using Optiprep gradient centrifugation. The protein content of lipid rafts was evaluated using Micro BCA assay, the cholesterol content using molecular probes, ganglioside GM1 content using colorimetry and dot-blotting analysis. The results showed that the cholesterol and ganglioside GM1 content of lipid rafts from platelets was significantly higher in patients with AD than aged-matched control subjects, whereas the protein content of lipid rafts did not show any differences between the 2 groups. These results indicate that the increases in the cholesterol and ganglioside GM1 content of lipid rafts from the platelets of patients with AD might serve as a biochemical adjunct to the clinical diagnosis of AD. PMID:24759545

  5. Electroconvulsive therapy treatment of depression in a patient with adult GM2 gangliosidosis.

    PubMed

    Renshaw, P F; Stern, T A; Welch, C; Schouten, R; Kolodny, E H

    1992-03-01

    Adult GM2 gangliosidosis is a rare disorder that often presents with both neurological and psychiatric syndromes. Effective treatment of the psychotic and affective symptoms associated with this disorder has been complicated by poor treatment response and the concern that many psychotropic agents may worsen the underlying gangliosidosis. We report the successful use of electroconvulsive therapy for treatment of severe depression in a young man with adult GM2 gangliosidosis. PMID:1386210

  6. Human monoclonal IgM with autoantibody activity against two gangliosides (GM1 and GD1b) in a patient with motor neuron syndrome.

    PubMed Central

    Jauberteau, M O; Gualde, N; Preud'Homme, J L; Rigaud, M; Gil, R; Vallat, J M; Baumann, N

    1990-01-01

    Small amounts of oligoclonal immunoglobulins were detected by Western blotting in the serum from a patient with motor neuron syndrome. The prominent one, a monoclonal IgM lambda, reacted strongly with the gangliosides GM1 and GD1b and more weakly with asialo GM1, as shown by immunoenzymatic staining of thin-layer chromatograms of gangliosides, ELISA on purified glycolipid coats and immunoadsorption with purified GM1. Affinity-chromatography with purified GM1 resulted in the purification of monoclonal IgM lambda. This purified IgM and its Fab fragments showed the same pattern of reactivity with gangliosides as that observed with whole serum. Such monoclonal IgM could be responsible for motor neuron diseases in some patients with overt or barely detectable monoclonal gammopathies. Images Fig. 2 Fig. 3 PMID:2357844

  7. The GM1 and GM2 Gangliosidoses: Natural History and Progress toward Therapy.

    PubMed

    Regier, Debra S; Proia, Richard L; D'Azzo, Alessandra; Tifft, Cynthia J

    2016-06-01

    The gangliosidoses are lysosomal storage disorders caused by accumulation of GM1 or GM2 gangliosides. GM1 gangliosidosis has both central nervous system and systemic findings; while, GM2 gangliosidosis is restricted primarily to the central nervous system. Both disorders have autosomal recessive modes of inheritance and a continuum of clinical presentations from a severe infantile form to a milder, chronic adult form. Both are devastating diseases without cure or specific treatment however, with the use of supportive aggressive medical management, the lifespan and quality of life has been extended for both diseases. Naturally occurring and engineered animal models that mimic the human diseases have enhanced our understanding of the pathogenesis of disease progression. Some models have shown significant improvement in symptoms and lifespan with enzyme replacement, substrate reduction, and anti-inflammatory treatments alone or in combination. More recently gene therapy has shown impressive results in large and small animal models. Treatment with FDA-approved glucose analogs to reduce the amount of ganglioside substrate is used as off-label treatments for some patients. Therapies also under clinical development include small molecule chaperones and gene therapy. PMID:27491214

  8. The AB-variant of GM2-gangliosidosis. Clinical, biochemical, and pathological studies of two patients.

    PubMed

    Goldman, J E; Yamanaka, T; Rapin, I; Adachi, M; Suzuki, K; Suzuki, K

    1980-01-01

    Clinical, neuropathological, and biochemical studies are reported in two children with the AB-variant of GM2-gangliosidosis. One patient had become symptomatic by 1--1.5 years, initially showing cerebellar signs, and then progressive psychomotor retardation, with hypotonia, spasticity, dementia, and macular cherry red spots, until death at the age of 4.5 years. The second patient showed an earlier onset of retardation and a more rapidly progressive course. At postmortem, the brains were of normal or near normal weights and displayed grossly only mild cerebral cortical and cerebellar atrophy, and mild pallor or attenuation of the white matter. Neuronal storage was widespread throughout the CNS, and both neurons and glia contained a variety of abnormal, membranous inclusions. Visceral organs were not involved. Ganglioside sialic acid was increased several fold in gray matter, with GM2 the predominant ganglioside species. N-acetyl-beta-glucosaminidase activities in serum, leukocytes, fibroblasts, and postmortem gray matter, assayed with an artificial, fluorogenic substrate, were normal, as were activities of other lysosomal hydrolases. PMID:6255724

  9. Pharmacokinetics, safety and tolerability of miglustat in the treatment of pediatric patients with GM2 gangliosidosis.

    PubMed

    Maegawa, Gustavo H B; van Giersbergen, Paul L M; Yang, Sandra; Banwell, Brenda; Morgan, Christopher P; Dingemanse, Jasper; Tifft, Cynthia J; Clarke, Joe T R

    2009-08-01

    GM2 gangliosidosis (GM2g) is an inherited neurodegenerative disorder caused by deficiency of lysosomal beta-hexosaminidase A, resulting in accumulation of GM2 ganglioside, principally in the brain. Substrate reduction therapy is currently under investigation as a treatment. The study investigated the pharmacokinetics and safety of miglustat given as single and multiple doses in infantile and juvenile GM2g patients for 6- and 24-months, respectively. Eleven patients with infantile (n = 6) and juvenile (n = 5) GM2g received oral miglustat at 30-200 mg t.i.d. adjusted to the body surface area. Patients underwent pharmacokinetic assessments on day 1 and at month 3. The pharmacokinetics of miglustat were described by a 2-compartmental model with a lag time, median time to maximum concentration of 2.5 h, and terminal half-life of about 10 h. The pharmacokinetics were time-independent, and did not differ between infantile and juvenile cohorts. The accumulation index was 1.7. Among infantile GM2g patients, the major drug-related adverse events (DRAEs) were abdominal discomfort and flatulence. In the juvenile group, however, the major DRAEs observed were diarrhea and weight loss. One juvenile patient developed peripheral neuropathy, and others showed progression of already established neuropathy, which was judged to be part of the natural progression of the disease. Some mild laboratory abnormalities observed were either transient or attributable to concomitant medications. Miglustat showed similar pharmacokinetic parameters in all patients, with no specific difference between infantile and juvenile forms. Miglustat was shown to be a safe drug, with mild to moderate diarrhea, as an age-dependent DRAE, which was controlled by dietary modification. PMID:19447653

  10. High-throughput imaging method for direct assessment of GM1 ganglioside levels in mammalian cells

    PubMed Central

    Acosta, Walter; Martin, Reid; Radin, David N.; Cramer, Carole L.

    2016-01-01

    GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal). The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1) in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1−/− cells [1]. This assay allows fluorescent quantification in a multi-well system which generates unbiased and statistically significant data. Fluorescently labeled Cholera Toxin B subunit (CTXB), which specifically binds to GM1 gangliosides, was used to detect in situ GM1 levels in a fixed monolayer of fibroblasts. This sensitive, rapid, and inexpensive method facilitates in vitro drug screening in a format that allows a high number of replicates using low working volumes. PMID:26958633

  11. High-throughput imaging method for direct assessment of GM1 ganglioside levels in mammalian cells.

    PubMed

    Acosta, Walter; Martin, Reid; Radin, David N; Cramer, Carole L

    2016-03-01

    GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal). The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1) in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1(-/-) cells [1]. This assay allows fluorescent quantification in a multi-well system which generates unbiased and statistically significant data. Fluorescently labeled Cholera Toxin B subunit (CTXB), which specifically binds to GM1 gangliosides, was used to detect in situ GM1 levels in a fixed monolayer of fibroblasts. This sensitive, rapid, and inexpensive method facilitates in vitro drug screening in a format that allows a high number of replicates using low working volumes. PMID:26958633

  12. CSF N-glycan profile reveals sialylation deficiency in a patient with GM2 gangliosidosis presenting as childhood disintegrative disorder.

    PubMed

    Barone, Rita; Sturiale, Luisella; Fiumara, Agata; Palmigiano, Angelo; Bua, Rosaria O; Rizzo, Renata; Zappia, Mario; Garozzo, Domenico

    2016-04-01

    Protein N-glycosylation consists in the synthesis and processing of the oligosaccharide moiety (N-glycan) linked to a protein and it serves several functions for the proper central nervous system (CNS) development and function. Previous experimental and clinical studies have shown the importance of proper glycoprotein sialylation for the synaptic function and the occurrence of autism spectrum disorders (ASD) in the presence of sialylation deficiency in the CNS. Late-onset Tay Sachs disease (LOTSD) is a lysosomal disorder caused by mutations in the HEXA gene resulting in GM2-ganglioside storage in the CNS. It is characterized by progressive neurological impairment and high co-occurrence of psychiatric disturbances. We studied the N-glycome profile of the cerebrospinal fluid (CSF) in a 14 year-old patient with GM2-gangliosidosis (LOTSD). At the age of 4, the patient presented regressive autism fulfilling criteria for childhood disintegrative disorder (CDD). A CSF sample was obtained in the course of diagnostic work-up for the suspicion of an underlying neurodegenerative disorder. We found definite changes of CSF N-glycans due to a dramatic decrease of sialylated biantennary and triantennary structures and an increase of asialo-core fucosylated bisected N-glycans. No changes of total plasma N-glycans were found. Herein findings highlight possible relationships between the early onset psychiatric disturbance featuring CDD in the patient and defective protein sialylation in the CNS. In conclusion, the study first shows aberrant N-glycan structures of CSF proteins in LOTSD; unveils possible pathomechanisms of GM2-gangliosidosis; supports existing relationships between neuropsychiatric disorders and unproper protein glycosylation in the CNS. PMID:26286102

  13. Natural History of Infantile GM2 Gangliosidosis

    PubMed Central

    Bley, Annette E.; Giannikopoulos, Ourania A.; Hayden, Doug; Kubilus, Kim; Tifft, Cynthia J.

    2011-01-01

    OBJECTIVE: GM2 gangliosidoses are caused by an inherited deficiency of lysosomal β-hexosaminidase and result in ganglioside accumulation in the brain. Onset during infancy leads to rapid neurodegeneration and death before 4 years of age. We set out to quantify the rate of functional decline in infantile GM2 gangliosidosis on the basis of patient surveys and a comprehensive review of existing literature. METHODS: Patients with infantile GM2 gangliosidosis (N = 237) were surveyed via questionnaire by the National Tay Sachs & Allied Diseases Association (NTSAD). These data were supplemented by survival data from the NTSAD database and a literature survey. Detailed retrospective surveys from 97 patients were available. Five patients who had received hematopoietic stem cell transplantation were evaluated separately. The mortality rate of the remaining 92 patients was comparable to that of the 103 patients from the NTSAD database and 121 patients reported in the literature. RESULTS: Common symptoms at onset were developmental arrest (83%), startling (65%), and hypotonia (60%). All 55 patients who had learned to sit without support lost that ability within 1 year. Individual functional measures correlated with each other but not with survival. Gastric tube placement was associated with prolonged survival. Tay Sachs and Sandhoff variants did not differ. Hematopoietic stem cell transplantation was not associated with prolonged survival. CONCLUSIONS: We studied the timing of regression in 97 cases of infantile GM2 gangliosidosis and conclude that clinical disease progression does not correlate with survival, likely because of the impact of improved supportive care over time. However, functional measures are quantifiable and can inform power calculations and study design of future interventions. PMID:22025593

  14. Deficiency of ganglioside GM1 correlates with Parkinson's disease in mice and humans.

    PubMed

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Ledeen, Robert W

    2012-10-01

    Several studies have successfully employed GM1 ganglioside to treat animal models of Parkinson's disease (PD), suggesting involvement of this ganglioside in PD etiology. We recently demonstrated that genetically engineered mice (B4galnt1(-/-) ) devoid of GM1 acquire characteristic symptoms of this disorder, including motor impairment, depletion of striatal dopamine, selective loss of tyrosine hydroxylase-expressing neurons, and aggregation of α-synuclein. The present study demonstrates similar symptoms in heterozygous mice (HTs) that express only partial GM1 deficiency. Symptoms were alleviated by administration of L-dopa or LIGA-20, a membrane-permeable analog of GM1 that penetrates the blood-brain barrier and accesses intracellular compartments. Immunohistochemical analysis of paraffin sections from PD patients revealed significant GM1 deficiency in nigral dopaminergic neurons compared with age-matched controls. This was comparable to the GM1 deficiency of HT mice and suggests that GM1 deficiency may be a contributing factor to idiopathic PD. We propose that HT mice with partial GM1 deficiency constitute an especially useful model for PD, reflecting the actual pathophysiology of this disorder. The results point to membrane-permeable analogs of GM1 as holding promise as a form of GM1 replacement therapy. PMID:22714832

  15. [Generalized GM1 gangliosidosis. Report of a case and review of the literature].

    PubMed

    Pérez, R; Cuesta, J M; Haro de los Monteros, N; Hernando Mayor y Montes, J C

    1984-05-01

    Authors present the case of a child, daughter of non related parents with neurologic progressive affectation, retina and visceral implication with certain pseudogargolic clinical aspect without near familiar antecedents suggestive of this disease. Biochemistry and histologic studies revealed a B-galactosidase enzyme deficiency and lipidic intracellular increase in different viscera. Biochemistry, hystological and clinical aspects exposed are fundamentally differential of another causes of pseudo-Hurler syndrome. PMID:6433763

  16. Binding of immunoglobulin G antibodies in Guillain-Barré syndrome sera to a mixture of GM1 and a phospholipid: possible clinical implications.

    PubMed

    Kusunoki, Susumu; Morita, Daiji; Ohminami, Shinya; Hitoshi, Seiji; Kanazawa, Ichiro

    2003-03-01

    Anti-GM1 immunoglobulin G (IgG) antibodies are frequently present in sera from patients with Guillain-Barré syndrome (GBS). A previous report on a patient who had a neuropathy with immunoglobulin M (IgM) M-protein binding to a conformational epitope formed by phosphatidic acid (PA) and gangliosides prompted us to investigate the binding of IgG antibodies in GBS sera to a mixture of GM1 and PA (GM1/PA). Of 121 GBS patients, 32 had anti-GM1 IgG antibodies. All 32 also had antibody activity against GM1/PA. Twenty-five (78%) of 32 patients had greater activity against GM1/PA than against GM1 alone. Twelve patients who had no anti-GM1 IgG antibodies had IgG antibody activity against GM1/PA. No GBS patient had IgG antibody against PA alone. In contrast, two rabbit anti-GM1 antisera had greater activity against GM1 alone than against GM1/PA. IgG antibody with greater binding activity against a mixture of GM1 and a phospholipid than against GM1 alone may have an important role in the pathogenesis of GBS and has implications for diagnosis. PMID:12635116

  17. An open-label Phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay-Sachs or Sandhoff variants).

    PubMed

    Clarke, Joe T R; Mahuran, Don J; Sathe, Swati; Kolodny, Edwin H; Rigat, Brigitte A; Raiman, Julian A; Tropak, Michael B

    2011-01-01

    Late-onset GM2 gangliosidosis is an autosomal recessive, neurodegenerative, lysosomal storage disease, caused by deficiency of ß-hexosaminidase A (Hex A), resulting from mutations in the HEXA (Tay-Sachs variant) or the HEXB (Sandhoff variant) genes. The enzyme deficiency in many patients with juvenile or adult onset forms of the disease results from the production of an unstable protein, which becomes targeted for premature degradation by the quality control system of the smooth endoplasmic reticulum and is not transported to lysosomes. In vitro studies have shown that many mutations in either the α or β subunit of Hex A can be partially rescued, i.e. enhanced levels of both enzyme protein and activity in lysosomes, following the growth of patient cells in the presence of the drug, pyrimethamine. The objectives of the present clinical trial were to establish the tolerability and efficacy of the treatment of late-onset GM2 gangliosidosis patients with escalating doses of pyrimethamine, to a maximum of 100 mg per day, administered orally in a single daily dose, over a 16-week period . The primary objective, tolerability, was assessed by regular clinical examinations, along with a panel of hematologic and biochemical studies. Although clinical efficacy could not be assessed in this short trial, treatment efficacy was evaluated by repeated measurements of leukocyte Hex A activity, expressed relative to the activity of lysosomal ß-glucuronidase. A total of 11 patients were enrolled, 8 males and 3 females, aged 23 to 50 years. One subject failed the initial screen, another was omitted from analysis because of the large number of protocol violations, and a third was withdrawn very early as a result of adverse events which were not drug-related. For the remaining 8 subjects, up to a 4-fold enhancement of Hex A activity at doses of 50 mg per day or less was observed. Additionally marked individual variations in the pharmacokinetics of the drug among the patients were

  18. Passive transfer of IgG anti-GM1 antibodies impairs peripheral nerve repair

    PubMed Central

    Lopez, Pablo H.; Zhang, Gang; Zhang, Jiangyang; Lehmann, Helmar C.; Griffin, John W.; Schnaar, Ronald L.; Sheikh, Kazim A.

    2010-01-01

    Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin β subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS. PMID:20631181

  19. GM1 ganglioside and Alzheimer's disease.

    PubMed

    Yanagisawa, Katsuhiko

    2015-05-01

    Assembly and deposition of amyloid ß-protein (Aß) is an invariable and fundamental event in the pathological process of Alzheimer's disease (AD). To decipher the AD pathogenesis and also to develop disease-modifying drugs for AD, clarification of the molecular mechanism underlying the Aß assembly into amyloid fibrils in the brain has been a crucial issue. GM1-ganglioside-bound Aß (GAß), with unique molecular characteristics such as having an altered conformation and the capability to accelerate Aß assembly, was discovered in an autopsied brain showing early pathological changes of AD in 1995. On the basis of these findings, it was hypothesized that GAß is an endogenous seed for amyloid fibril formation in the AD brain. A body of evidence that supports this GAß hypothesis has been growing over this past 20 years. In this article, seminal GAß studies that have been carried out to date, including recent ones using unique animal models, are reviewed. PMID:25903682

  20. Juvenile-onset G(M2)-gangliosidosis in an African-American child with nystagmus.

    PubMed

    Paciorkowski, Alex R; Sathe, Swati; Zeng, Bei-Jin; Torres, Paola; Rosengren, Sally S; Kolodny, Edwin

    2008-04-01

    G(M2)-gangliosidosis is a neurodegenerative lysosomal disease with several clinical variants. We describe a 2-year-old black child with juvenile-onset disease, who presented with abnormal eye movements and cherry-red spots of the maculae. Mutation analysis of the HEXA gene revealed the patient to be a compound heterozygote (M1V/Y37N). The M1V mutation was previously described in an African-American child with acute infantile G(M2)-gangliosidosis. The Y37N mutation is novel. This combination of mutations is consistent with juvenile-onset disease, and provides further evidence for the association of the M1V mutation with individuals of black ancestry. The presence of oculomotor abnormalities is an unusual finding in this form of G(M2)-gangliosidosis, and adds to the phenotypic spectrum. PMID:18358410

  1. Optimization of GM(1,1) power model

    NASA Astrophysics Data System (ADS)

    Luo, Dang; Sun, Yu-ling; Song, Bo

    2013-10-01

    GM (1,1) power model is the expansion of traditional GM (1,1) model and Grey Verhulst model. Compared with the traditional models, GM (1,1) power model has the following advantage: The power exponent in the model which best matches the actual data values can be found by certain technology. So, GM (1,1) power model can reflect nonlinear features of the data, simulate and forecast with high accuracy. It's very important to determine the best power exponent during the modeling process. In this paper, according to the GM(1,1) power model of albino equation is Bernoulli equation, through variable substitution, turning it into the GM(1,1) model of the linear albino equation form, and then through the grey differential equation properly built, established GM(1,1) power model, and parameters with pattern search method solution. Finally, we illustrate the effectiveness of the new methods with the example of simulating and forecasting the promotion rates from senior secondary schools to higher education in China.

  2. GM1 and GM2 gangliosides: recent developments.

    PubMed

    Bisel, Blaine; Pavone, Francesco S; Calamai, Martino

    2014-03-01

    GM1 and GM2 gangliosides are important components of the cell membrane and play an integral role in cell signaling and metabolism. In this conceptual overview, we discuss recent developments in our understanding of the basic biological functions of GM1 and GM2 and their involvement in several diseases. In addition to a well-established spectrum of disorders known as gangliosidoses, such as Tay-Sachs disease, more and more evidence points at an involvement of GM1 in Alzheimer's and Parkinson's diseases. New emerging methodologies spanning from single-molecule imaging in vivo to simulations in silico have complemented standard studies based on ganglioside extraction. PMID:25372744

  3. GM1 Ganglioside: Past Studies and Future Potential.

    PubMed

    Aureli, Massimo; Mauri, Laura; Ciampa, Maria Grazia; Prinetti, Alessandro; Toffano, Gino; Secchieri, Cynthia; Sonnino, Sandro

    2016-04-01

    Gangliosides (sialic acid-containing glycosphingolipids) are abundant in neurons of all animal species and play important roles in many cell physiological processes, including differentiation, memory control, cell signaling, neuronal protection, neuronal recovery, and apoptosis. Gangliosides also function as anchors or entry points for various toxins, bacteria, viruses, and autoantibodies. GM1, a ganglioside component of mammalian brains, is present mainly in neurons. GM1 is one of the best studied gangliosides, and our understanding of its properties is extensive. Simple and rapid procedures are available for preparation of GM1 as a natural compound on a large scale, or as a derivative containing an isotopic radionuclide or a specific probe. Great research interest in the properties of GM1 arose from the discovery in the early 1970s of its role as receptor for the bacterial toxin responsible for cholera pathogenesis. PMID:25762012

  4. Biochemical characterization of GM1 micelles-Amphotericin B interaction.

    PubMed

    Leonhard, Victoria; Alasino, Roxana V; Bianco, Ismael D; Garro, Ariel G; Heredia, Valeria; Beltramo, Dante M

    2015-01-01

    In this work a thorough characterization of the GM1 micelle-Amphotericin B (AmB) interaction was performed. The micelle formation as well as the drug loading occurs spontaneously, although influenced by the physicochemical conditions, pH and temperature. The chromatographic profile of GM1-AmB complexes at different molar ratios shows the existence of two populations. The differential absorbance of GM1, monomeric and aggregate AmB, allowed us to discriminate the presence of all of them in both fractions. Thus, we noted that at higher proportion of AmB in the complex, increases the larger population which is composed mainly of aggregated AmB. The physical behavior of these micelles shows that both GM1- AmB complexes were stable in solution for at least 30 days. However upon freeze-thawing or lyophilization-solubilization cycles, only the smallest population, enriched in monomeric AmB, showed a complete solubilization. In vitro, GM1-AmB micelles were significantly less toxic on cultured cells than other commercial micellar formulations as Fungizone, but had a similar behavior to liposomal formulations as Ambisome. Regarding the antifungal activity of the new formulation, it was very similar to that of other formulations. The characterization of these GM1-AmB complexes is discussed as a potential new formulation able to improve the antifungal therapeutic efficiency of AmB. PMID:25772153

  5. Properties of ganglioside GM1 in phosphatidylcholine bilayer membranes.

    PubMed

    Reed, R A; Shipley, G G

    1996-03-01

    Gangliosides have been shown to function as cell surface receptors, as well as participating in cell growth, differentiation, and transformation. In spite of their multiple biological functions, relatively little is known about their structure and physical properties in membrane systems. The thermotropic and structural properties of ganglioside GM1 alone and in a binary system with 1,2-dipalmitoyl phosphatidylcholine (DPPC) have been investigated by differential scanning calorimetry (DSC) and x-ray diffraction. By DSC hydrated GM1 undergoes a broad endothermic transition TM = 26 degrees C (delta H = 1.7 kcal/mol GM1). X-ray diffraction below (-2 degrees C) and above (51 degrees C) this transition indicates a micellar structure with changes occurring only in the wide angle region of the diffraction pattern (relatively sharp reflection at 1/4.12 A-1 at -2 degrees C; more diffuse reflection at 1/4.41 A-1 at 51 degrees C). In hydrated binary mixtures with DPPC, incorporation of GM1 (0-30 mol%; zone 1) decreases the enthalpy of the DPPC pretransition at low molar compositions while increasing the TM of both the pre- and main transitions (limiting values, 39 and 44 degrees C, respectively). X-ray diffraction studies indicate the presence of a single bilayer gel phase in zone 1 that can undergo chain melting to an L alpha bilayer phase. A detailed hydration study of GM1 (5.7 mol %)/DPPC indicated a conversion of the DPPC bilayer gel phase to an infinite swelling system in zone 1 due to the presence of the negatively charged sialic acid moiety of GM1. At 30-61 mol % GM1 (zone 2), two calorimetric transitions are observed at 44 and 47 degrees C, suggesting the presence of two phases. The lower transition reflects the bilayer gel --> L alpha transition (zone 1), whereas the upper transition appears to be a consequence of the formation of a nonbilayer, micellar or hexagonal phase, although the structure of this phase has not been defined by x-ray diffraction. At > 61 mol % GM

  6. [Serum IgG antibodies to GD1a and GM1 gangliosides in elderly people].

    PubMed

    Kolyovska, V

    2016-01-01

    Nowadays, the percentage of elderly people in society grows. Good nutrition and medical care help older people to have a normal life over 80 to 90 years. In the last ten years it is of critical importance to establish the clinical significance of serum IgG anti-GD1a and anti-GM1 ganglioside antibodies as potential biomarkers for neuronal damage in neurodegenerative diseases and immune-mediated neuropathies and demyelination. In the current study, the diagnostic values of IgG anti-GD1a and anti-GM1 antibodies were determined by the ELISA method in serum samples of 18 elderly patients (71-91 years). Significantly elevated serum IgG anti-GD1a and anti-GM1 antibodies titers were detected only in patients over 80 years. These data suggest that the immune-mediated neuropathies, neurodegeneration and demyelination in healthy elderly occur after 80 years old. Therefore, IgG anti-GD1a and anti-GM1 antibodies can serve as biomarkers, showing the nervous system dysfunction. PMID:26973195

  7. THE EFFECT OF MONOSIALOGANGLYOSIDE (GM-1) ADMINISTRATION IN SPINAL CORD INJURY

    PubMed Central

    BARROS, TARCÍSIO ELOY PESSOA; ARAUJO, FERNANDO FLORES DE; HIGINO, LUCAS DA PAZ; MARCON, RAPHAEL MARTUS; CRISTANTE, ALEXANDRE FOGAÇA

    2016-01-01

    ABSTRACT Objective: To evaluate the effect of monosialoganglioside (GM-1) in spinal cord trauma patients seen in our service who have not been treated with methylprednisolone. Methods: Thirty patients with acute spinal cord trauma were randomly divided into two groups. In Group 1, patients received 200 mg GM-1 in the initial assessment and thereafter received 100 mg intravenous per day for 30 days and Group 2 (control) received saline. Patients were evaluated periodically (at 6 weeks, 6 months, one year and two years), using a standardized neurological assessment of the American Spinal Injury Association / International Spinal Cord Society. Results: The comparative statistical analysis of motor indices, sensitive indices for pain and touch according to the standardization of ASIA / ISCOS showed that the assessments at 6 weeks, 6 months and 2 years, GM-Group 1 patients had higher rates than the control group regarding sensitivity to pain and touch, with no statistically significant difference from the motor index. Conclusion: The functional assessment showed improvement in the sensitive indices of patients treated with GM1 after post-traumatic spinal cord injury compared to patients who received placebo. Level of Evidence IV, Prospective Case Studies Series. PMID:27217811

  8. Late-onset GM2 gangliosidosis presenting as burning dysesthesias.

    PubMed

    Chow, G C; Clarke, J T; Banwell, B L

    2001-07-01

    Two brothers with a painful neuropathy as a component of late-onset GM2 gangliosidosis of the Sandhoff type are presented. A dramatic response of the severe dysesthesias to amitriptyline and gabapentin is described. Symptomatic sensory neuropathy may be a component of late-onset GM2 gangliosidosis. PMID:11483398

  9. Individual Restriction Of Fine Specificity Variability In Anti-GM1 IgG Antibodies Associated With Guillain-Barré Syndrome

    PubMed Central

    Lardone, Ricardo D.; Yuki, Nobuhiro; Irazoqui, Fernando J.; Nores, Gustavo A.

    2016-01-01

    Elevated titers of serum antibodies against GM1 ganglioside are associated with a variety of autoimmune neuropathies. Much evidence indicates these autoantibodies play a primary role in the disease processes, but the mechanism for their appearance is unclear. We studied the fine specificity of anti-GM1 antibodies of the IgG isotype present in sera from patients with Guillain-Barré syndrome (GBS), using thin-layer chromatogram-immunostaining of GM1, asialo-GM1 (GA1), GD1b and GM1-derivatives with small modifications on the oligosaccharide moiety. We were able to distinguish populations of antibodies with different fine specificity. Remarkably, individual patients presented only one or two of them, and different patients had different populations. This restriction in the variability of antibody populations suggests that the appearance of the anti-GM1 antibodies is a random process involving restricted populations of lymphocytes. With the origin of disease-associated anti-GM1 antibodies as a context, this finding could provide explanation for the “host susceptibility factor” observed in GBS following enteritis with GM1 oligosaccharide-carrying strains of Campylobacter jejuni. PMID:26818965

  10. Lo/Ld phase coexistence modulation induced by GM1.

    PubMed

    Puff, Nicolas; Watanabe, Chiho; Seigneuret, Michel; Angelova, Miglena I; Staneva, Galya

    2014-08-01

    Lipid rafts are assumed to undergo biologically important size-modulations from nanorafts to microrafts. Due to the complexity of cellular membranes, model systems become important tools, especially for the investigation of the factors affecting "raft-like" Lo domain size and the search for Lo nanodomains as precursors in Lo microdomain formation. Because lipid compositional change is the primary mechanism by which a cell can alter membrane phase behavior, we studied the effect of the ganglioside GM1 concentration on the Lo/Ld lateral phase separation in PC/SM/Chol/GM1 bilayers. GM1 above 1mol % abolishes the formation of the micrometer-scale Lo domains observed in GUVs. However, the apparently homogeneous phase observed in optical microscopy corresponds in fact, within a certain temperature range, to a Lo/Ld lateral phase separation taking place below the optical resolution. This nanoscale phase separation is revealed by fluorescence spectroscopy, including C12NBD-PC self-quenching and Laurdan GP measurements, and is supported by Gaussian spectral decomposition analysis. The temperature of formation of nanoscale Lo phase domains over an Ld phase is determined, and is shifted to higher values when the GM1 content increases. A "morphological" phase diagram could be made, and it displays three regions corresponding respectively to Lo/Ld micrometric phase separation, Lo/Ld nanometric phase separation, and a homogeneous Ld phase. We therefore show that a lipid only-based mechanism is able to control the existence and the sizes of phase-separated membrane domains. GM1 could act on the line tension, "arresting" domain growth and thereby stabilizing Lo nanodomains. PMID:24835016

  11. [Brown-Vialetto-Van Laere syndrome: a case with anti-ganglioside GM1 antibodies and literature review].

    PubMed

    Sztajzel, R; Kohler, A; Reichart, M; Djientcheu, V P; Chofflon, M; Magistris, M R

    1998-01-01

    We report the case of a woman suffering from progressive bulbopontine paralysis in whose the first symptom, bilateral hypoacousia, began in childhood. This clinical picture is that of the Brown-Vialetto-Van Laere (BVVL) syndrome. Anti-ganglioside GM1 antibodies were moderately elevated in this patient. Intravenous immunoglobulins produced little benefit. The main clinical characteristics of 29 BVVL patients reported in literature are reviewed, and the pathological significance of anti-GM1 antibodies is discussed in the context of this disorder. PMID:9773026

  12. Normally Occurring Human Anti-GM1 Immunoglobulin M Antibodies and the Immune Response to Bacteria

    PubMed Central

    Alaniz, María E.; Lardone, Ricardo D.; Yudowski, Silvia L.; Farace, María I.; Nores, Gustavo A.

    2004-01-01

    Anti-GM1 antibodies of the immunoglobulin M (IgM) isotype are normal components of the antibody repertoire of adult human serum. Using a sensitive high-performance thin-layer chromatography (HPTLC) immunostaining assay, we found that these antibodies were absent in the umbilical vein and children <1 month of age but could be detected after 1 month of age. Although most of the children older than 6 months of age were positive, there were still a few negative children. The appearance of anti-GM1 IgM antibodies showed a perfect concordance with two well-characterized antibacterial antibodies, anti-Forssman and anti-blood group A, which indicates a similar origin. We also studied IgM reactivity with lipopolysaccharides (LPSs) from gram-negative bacteria isolated from stool samples from healthy babies and from Escherichia coli HB101 in serum from individuals of different ages. We found a positive reaction with both LPSs in all the children more than 1 month of age analyzed, even in those that were negative for anti-GM1 antibodies. Anti-GM1 IgM antibodies were purified from adult serum by affinity chromatography and tested for the ability to bind LPSs from different bacteria. This highly specific preparation showed reactivity only with LPS from a strain of Campylobacter jejuni isolated from a patient with diarrhea. We conclude that normally occurring IgM antibodies are generated after birth, probably during the immune defense against specific bacterial strains. PMID:15039337

  13. The physiological effect of anti-GM1 antibodies on saltatory conduction and transmembrane currents in single motor axons.

    PubMed

    Hirota, N; Kaji, R; Bostock, H; Shindo, K; Kawasaki, T; Mizutani, K; Oka, N; Kohara, N; Saida, T; Kimura, J

    1997-12-01

    Anti-ganglioside (anti-GM1) antibodies have been implicated in the pathogenesis of Guillain-Barré syndrome, multifocal motor neuropathy and motor neuron diseases. It has been held that they may interfere with saltatory conduction by blocking sodium channels. We tested this hypothesis by analysing action potentials from 140 single nerve fibres in 22 rat ventral roots using external longitudinal current measurement. High-titre anti-GM1 sera from Guillain-Barré syndrome or multifocal motor neuropathy patients, or anti-GM1 rabbit sera were applied to the rat ventral root, where saltatory conduction in single motor fibres was serially observed for 4-12 h (mean 8.2 h). For control experiments, we also tested anti-galactocerebroside (anti-GalC) sera, which causes acute demyelinative conduction block, and tetrodotoxin (TTX), a sodium channel blocker. Conduction block was found in 82% of the fibres treated with anti-GalC sera and 100% treated with TTX, but only in 2% (one out of 44) treated with the patients' sera and 5% (two out of 38) treated with rabbit anti-GM1 sera. All the nodes blocked by anti-GM1 sera revealed intense passive outward membrane current, in the internode just beyond the last active node. This pattern of current flow was similar to that in fibres blocked by demyelination with anti-GalC sera, and quite different from that seen in fibres blocked by reducing sodium currents with TTX. Our findings suggest that anti-GM1 sera neither mediate conduction block nor block sodium channels on their own. We conclude that physiological action of the antibody alone is insufficient to explain clinically observed conduction block in human diseases. PMID:9448571

  14. GM2 gangliosidosis in British Jacob sheep.

    PubMed

    Wessels, M E; Holmes, J P; Jeffrey, M; Jackson, M; Mackintosh, A; Kolodny, E H; Zeng, B J; Wang, C B; Scholes, S F E

    2014-01-01

    GM2 gangliosidosis (Tay-Sachs disease) was diagnosed in 6- to 8-month-old pedigree Jacob lambs from two unrelated flocks presenting clinically with progressive neurological dysfunction of 10 day's to 8 week's duration. Clinical signs included hindlimb ataxia and weakness, recumbency and proprioceptive defects. Histopathological examination of the nervous system identified extensive neuronal cytoplasmic accumulation of material that stained with periodic acid--Schiff and Luxol fast blue. Electron microscopy identified membranous cytoplasmic bodies within the nervous system. Serum biochemistry detected a marked decrease in hexosaminidase A activity in the one lamb tested, when compared with the concentration in age matched controls and genetic analysis identified a mutation in the sheep hexa allele G444R consistent with Tay-Sachs disease in Jacob sheep in North America. The identification of Tay-Sachs disease in British Jacob sheep supports previous evidence that the mutation in North American Jacob sheep originated from imported UK stock. PMID:24309906

  15. [On the determination of Gm(1) in hard dental tissue (author's transl)].

    PubMed

    Heuschkel, H J; Lieske, W

    1979-01-01

    Tests for the presence of Gm(1) substance were made on a total of 104 human teeth. In about 90 percent of the cases examined, it was possible to observe agreement between the serum and the Gm(1) substance. Lack of eluted dental material and a high degree of affection with caries were found to have adverse effects upon Gm(1) typification. Detection of the Gm(1) substance is another important characteristic in forensic identification. PMID:158914

  16. Clustering effects of GM1 and formation mechanisms of interdigitated liquid disordered domains in GM1/SM/CHOL-supported planar bilayers on mica surfaces

    NASA Astrophysics Data System (ADS)

    Shang, Zhiguo; Mao, Yanli; Tero, Ryugo; Liu, Xinli; Hoshino, Tyuji; Tanaka, Motohiko; Urisu, Tsuneo

    2010-09-01

    We have observed by atomic force microscopy that an interdigitated liquid disordered domain (ILDD) is formed in the ganglioside (GM1)/sphingomyelin (SM)/cholesterol (CHOL) bilayers on a mica surface and accelerates the formation of fibriller Aβ agglomerates. By studies of the mechanisms using molecular dynamics simulations, we conclude that the ILDD structure is formed as a result of the phase separation to SM- and GM1-rich domains on the mica surface induced by the effects of GM1 clustering and the interaction between the GM1 head group and the water layer adsorbed in the ditrigonal cavity on the mica surface.

  17. Substrate reduction therapy in juvenile GM2 gangliosidosis.

    PubMed

    Maegawa, Gustavo H B; Banwell, Brenda L; Blaser, Susan; Sorge, Geoffrey; Toplak, Maggie; Ackerley, Cameron; Hawkins, Cynthia; Hayes, Jason; Clarke, Joe T R

    2009-01-01

    Substrate reduction therapy (SRT) is considered to be a potential therapeutic option for juvenile GM2 gangliosidosis (jGM2g). We evaluated the efficacy of SRT in jGM2g, assessing neurological, neuropsychological and brain magnetic resonance imaging (MRI) outcomes over a 24-month period of treatment. In an open-label and single-center study, five jGM2g patients (mean age 14.6+/-4.5 years) received oral miglustat at doses of 100-200mg t.i.d. adjusted to body surface area. Patients underwent general and neurological examinations, neuropsychological, electrophysiological, and brain MRI studies. All patients showed neurological deterioration over the period of the study, with particularly notable worsening of gait, speech and coordination. One patient experienced acute psychosis, and another showed worsening of pre-existing epilepsy. Some neuropsychological tests showed no evidence of deterioration in the three patients with high enough cognitive functioning for reliable assessment. Profound cognitive impairment in two children precluded neuropsychological evaluation. In four patients, evaluation of brain MRI showed no changes in white matter signal abnormalities and cerebellar atrophy noted at baseline, while one patient showed progression of cerebellar and supratentorial brain atrophy. Transmission electron microscopy analysis of peripheral mononuclear cells showed reduction of intracytoplasmatic inclusions with treatment. SRT with miglustat of patients with jGM2g failed to ameliorate progressive neurological deterioration, but apparently no worsening of some areas of cognitive function tested and brain MRI lesions was noted over 24 months of treatment. The results must be interpreted with care owing to the small sample of patients and the lack of a control-arm. PMID:19595619

  18. Substrate reduction therapy with miglustat in chronic GM2 gangliosidosis type Sandhoff: results of a 3-year follow-up.

    PubMed

    Masciullo, Marcella; Santoro, Massimo; Modoni, Anna; Ricci, Enzo; Guitton, Jerome; Tonali, Pietro; Silvestri, Gabriella

    2010-12-01

    GM2 gangliosidosis type Sandhoff is caused by a defect of beta-hexosaminidase, an enzyme involved in the catabolism of gangliosides. It has been proposed that substrate reduction therapy using N-butyl-deoxynojirimycin (miglustat) may delay neurological progression, at least in late-onset forms of GM2 gangliosidosis. We report the results of a 3-year treatment with miglustat (100 mg t.i.d) in a patient with chronic Sandhoff disease manifesting with an atypical, spinal muscular atrophy phenotype. The follow-up included serial neurological examinations, blood tests, abdominal ultrasound, and neurophysiologic, cognitive, brain, and muscle MRI studies. We document some minor effects on neurological progression in chronic Sandhoff disease by miglustat treatment, confirming the necessity of phase II therapeutic trials including early-stage patients in order to assess its putative efficacy in chronic Sandhoff disease. PMID:20821051

  19. Ganglioside GM1 mimicry in Campylobacter strains from sporadic infections in the United States.

    PubMed

    Nachamkin, I; Ung, H; Moran, A P; Yoo, D; Prendergast, M M; Nicholson, M A; Sheikh, K; Ho, T; Asbury, A K; McKhann, G M; Griffin, J W

    1999-05-01

    To determine whether GM1-like epitopes in Campylobacter species are specific to O serotypes associated with Guillain-Barré syndrome (GBS) or whether they are frequent among random Campylobacter isolates causing enteritis, 275 random enteritis-associated isolates of Campylobacter jejuni were analyzed. To determine whether GM1-like epitopes in Campylobacter species are specific to O serotypes associated with Guillan-Barre syndrome (GBS) or whether they are frequent among random Campylobacter isolates causing enteritis, 275 enteritis-associated isolates, randomly collected in the United States, were analyzed using a cholera-toxin binding assay [corrected]. Overall, 26.2% of the isolates were positive for the GM1-like epitope. Of the 36 different O serotypes in the sample, 21 (58.3%) contained no strains positive for GM1, whereas in 6 serotypes (16.7%), >50% of isolates were positive for GM1. GBS-associated serotypes were more likely to contain strains positive for GM1 than were non-GBS-associated serotypes (37.8% vs. 15.1%, P=.0116). The results suggest that humans are frequently exposed to strains exhibiting GM1-like mimicry and, while certain serotypes may be more likely to possess GM1-like epitopes, the presence of GM1-like epitopes on Campylobacter strains does not itself trigger GBS. PMID:10191221

  20. Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 gangliosidosis.

    PubMed

    Maegawa, Gustavo H B; Tropak, Michael; Buttner, Justin; Stockley, Tracy; Kok, Fernando; Clarke, Joe T R; Mahuran, Don J

    2007-03-23

    Late-onset GM2 gangliosidosis is composed of two related, autosomal recessive, neurodegenerative diseases, both resulting from deficiency of lysosomal, heterodimeric beta-hexosaminidase A (Hex A, alphabeta). Pharmacological chaperones (PC) are small molecules that can stabilize the conformation of a mutant protein, allowing it to pass the quality control system of the endoplasmic reticulum. To date all successful PCs have also been competitive inhibitors. Screening for Hex A inhibitors in a library of 1040 Food Drug Administration-approved compounds identified pyrimethamine (PYR (2,4-diamino 5-(4-chlorophenyl)-6-ethylpyrimidine)) as the most potent inhibitor. Cell lines from 10 late-onset Tay-Sachs (11 alpha-mutations, 2 novel) and 7 Sandhoff (9 beta-mutations, 4 novel) disease patients, were cultured with PYR at concentrations corresponding to therapeutic doses. Cells carrying the most common late-onset mutation, alphaG269S, showed significant increases in residual Hex A activity, as did all 7 of the beta-mutants tested. Cells responding to PC treatment included those carrying mutants resulting in reduced Hex heat stability and partial splice junction mutations of the inherently less stable alpha-subunit. PYR, which binds to the active site in domain II, was able to function as PC even to domain I beta-mutants. We concluded that PYR functions as a mutation-specific PC, variably enhancing residual lysosomal Hex A levels in late-onset GM2 gangliosidosis patient cells. PMID:17237499

  1. Condensing and Fluidizing Effects of Ganglioside GM1 on Phospholipid Films

    PubMed Central

    Frey, Shelli L.; Chi, Eva Y.; Arratia, Cristóbal; Majewski, Jaroslaw; Kjaer, Kristian; Lee, Ka Yee C.

    2008-01-01

    Mixed monolayers of the ganglioside GM1 and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by GM1 on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for GM1 concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of GM1 (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher GM1 concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that GM1 and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/GM1 binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of GM1 to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the GM1 molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the GM1 molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the GM1 molecule. PMID:18192361

  2. A pilot study with monosialoganglioside GM1 on acute cerebral ischemia.

    PubMed

    Giraldi, C; Masi, M C; Manetti, M; Carabelli, E; Martini, A

    1990-06-01

    Reported here are the results of an open controlled study on the use of GM1 in cases of ischemic strokes in its acute phase. A statistically significant improvement was observed in cases treated with GM1 for neurological deficits (assessed by Mathew's rating scale, modified by Fritz-Werner) at 21, 60 and 120 days and for disability at 120 days. PMID:2206015

  3. GM1 Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin.

    PubMed

    Amaro, Mariana; Šachl, Radek; Aydogan, Gokcan; Mikhalyov, Ilya I; Vácha, Robert; Hof, Martin

    2016-08-01

    β-Amyloid (Aβ) oligomers are neurotoxic and implicated in Alzheimer's disease. Neuronal plasma membranes may mediate formation of Aβ oligomers in vivo. Membrane components sphingomyelin and GM1 have been shown to promote aggregation of Aβ; however, these studies were performed under extreme, non-physiological conditions. We demonstrate that physiological levels of GM1 , organized in nanodomains do not seed oligomerization of Aβ40 monomers. We show that sphingomyelin triggers oligomerization of Aβ40 and that GM1 is counteractive thus preventing oligomerization. We propose a molecular explanation that is supported by all-atom molecular dynamics simulations. The preventive role of GM1 in the oligomerization of Aβ40 suggests that decreasing levels of GM1 in the brain, for example, due to aging, could reduce protection against Aβ oligomerization and contribute to the onset of Alzheimer's disease. PMID:27295499

  4. Condensing and fluidizing effects of ganglioside GM1 on phospholipid films.

    PubMed

    Frey, Shelli L; Chi, Eva Y; Arratia, Cristóbal; Majewski, Jaroslaw; Kjaer, Kristian; Lee, Ka Yee C

    2008-04-15

    Mixed monolayers of the ganglioside G(M1) and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by G(M1) on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for G(M1) concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of G(M1) (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher G(M1) concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that G(M1) and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/G(M1) binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of G(M1) to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the G(M1) molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the G(M1) molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the G(M1) molecule. PMID:18192361

  5. Effects of Methylprednisolone And Ganglioside GM-1 on a Spinal Lesion: A Functional Analysis

    PubMed Central

    Carvalho, Márcio Oliveira Penna; de Barros Filho, Tarcisio Eloy Pessoa; Tebet, Marcos Antonio

    2008-01-01

    OBJECTIVES The pharmacological effects of methylprednisolone (MP) and ganglioside GM-1 on spinal injuries have been thoroughly investigated, but only a few studies have evaluated the interaction between these two drugs. METHODS Twenty-four Wistar rats were subjected to contusive injury of the spinal cord produced by the NYU system. These animals were divided into four groups: group I was injected with MP; group II was injected with GM-1; group III was injected with MP together with GM-1; and group control received physiological serum. The animals were evaluated with regard to their recovery of locomotive function by means of the BBB test on the second, seventh and fourteenth days after receiving the contusive injury to the spinal cord. They were sacrificed on the fourteenth day. RESULTS This study demonstrated that the MP and GM-1 groups presented functional results that were better than those of the control group, although the enhanced recovery of group II (GM-1) relative to the control group was not statistically significant (p>0.05). The most notable recovery of locomotive function was observed in the group that received MP alone (p<0.05). The group that received MP together with GM-1 presented results that were better than those of the control group (p<0.05). CONCLUSION Administration of methylprednisolone alone or with GM-1 was shown to be effective for recovery of locomotive function. Combined administration of these drugs resulted in better outcomes than administration of methylprednisolone alone. PMID:18568249

  6. GM1 erythroimmunoassay for detection and titration of Escherichia coli heat-labile enterotoxin.

    PubMed

    Germani, Y; Bégaud, E; Guesdon, J L; Moreau, J P

    1986-11-01

    A GM1 ganglioside erythroimmunoassay for the detection of heat-labile Escherichia coli enterotoxin (LT) was developed for use in poorly equipped laboratories in developing countries. This assay is based on the immunological similarity between Vibrio cholerae toxin and LT and uses cholera toxin antiserum and sheep anti-rabbit immunoglobulin covalently coupled to sheep erythrocytes as conjugate. This assay has the following advantages over other currently available techniques: the reagents it uses are stable, in particular, tanned and sensitized sheep erythrocytes; GM1 ganglioside is commercially available; erythro-adsorption can be read with the naked eye; the test can be completed in 1 day; and as little as 4 ng of V. cholerae toxin or LT per ml can be detected accurately. The GM1 ganglioside erythroimmunoassay showed good quantitative and qualitative correlation with the Vero cell assay and the conventional GM1 enzyme-linked immunosorbent assay. The GM1 ganglioside erythroimmunoassay was somewhat less sensitive than the GM1 enzyme-linked immunosorbent assay but more sensitive than the Vero cell assay. Results obtained for 12 LT-positive and 138 LT-negative E. coli strains correlated with results obtained with GM1 enzyme-linked immunosorbent and Vero cell assays. PMID:3533985

  7. Influence of GM1 gangliosides on the growth of cultured rat embryonic serotonergic neurons.

    PubMed

    Marlier, L; Poulat, P; König, N; Drian, M J; Privat, A

    1989-01-01

    GM1 gangliosides were added to the medium of cultured raphe neurons enriched in the serotonergic phenotype in order to study their influence on biochemical and morphological growth parameters of serotonergic neurons. After 2 days of culture in the presence of GM1, specific uptake of serotonin measured by scintillation counting exhibited a moderate but significant increase for a GM1 concentration of 5 X 10(-8) M. Morphological parameters of 5-HT neurons were measured after immunocytochemical staining with specific serotonin antiserum, and digitalization of immunoreactive cells. Eight parameters were studied; for concentrations of 5 X 10(-8) and 10(-7) M of GM1, the absolute neuritic field area and the total length of the segments were significantly increased, whereas the number of neuritic segments, and their mean length were not modified. We conclude that GM1 ganglioside has a significant influence on the growth of serotonergic neurons. Moreover, electron microscopy showed, on treated cultures, a dramatic increase of the number of spicules all along the neuron's process, suggesting that GM1 could act by modifying the attachment of cells to their substrate. The possible molecular mechanisms of the action of GM1 are discussed. PMID:2603760

  8. Progressive dystonia symptomatic of juvenile GM2 gangliosidosis.

    PubMed

    Nardocci, N; Bertagnolio, B; Rumi, V; Angelini, L

    1992-01-01

    A 9-year-old boy showed a progressive generalized dystonia, with onset at the age of 4 years, combined with mental deterioration and behavioral disturbances. The values of beta-hexosaminidase activities studied in plasma, leukocytes, and fibroblasts obtained using two different substrates (MUG-NAc and MUG-NAc-6-S) were significantly reduced but higher than in Tay-Sachs disease and similar to those found in the juvenile chronic form of GM2 gangliosidosis. With anticholinergic therapy, for 1.5 years, the dystonic symptoms did not progress and the boy can still care for himself and attend school. The description of another case of the disease, clinically expressed as dystonia, corroborates the existence of a dystonic phenotype of GM2 gangliosidosis. PMID:1532632

  9. In silico phase separation in the presence of GM1 in ternary and quaternary lipid bilayers.

    PubMed

    Basu, Ipsita; Mukhopadhyay, Chaitali

    2015-07-14

    Cell membranes are multi-component mixtures with structural and compositional heterogeneity exhibiting a complex phase behavior. Domains formed in cell membranes often known as "Rafts" are of immense importance. Using coarse grained molecular dynamics simulations, we have studied the spontaneous phase separation of the ternary (POPC [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine]/cholesterol/GM1) and quaternary (POPC/PSM[palmitoyl sphingomyelin]/cholesterol/GM1) lipid bilayers into liquid ordered (Lo) and liquid disordered (Ld) domains due to self-aggregation of GM1 molecules and co-localization of cholesterol with GM1 in accordance with experiments. It is found that GM1 molecules have the ability to associate strongly with each other which leads to the formation of ordered domains in the lipid mixture and the interactions are through the head group and unsaturated tails present in GM1. Preference of cholesterol for association with GM1 over PSM is observed, the domains consisting of GM1 and cholesterol are formed even in the presence of PSM. PSM also forms small domains with cholesterol that are randomly distributed in the Ld phase. Estimation of dynamic quantities like diffusion coefficient also shows that cholesterol has the highest diffusion rate in the Ld phase which is further attributed to its flip flop ability. It is found that in the presence of PSM, cholesterol can undergo flip flop even in the Lo phase. This is accredited to the interaction of cholesterol with PSM from which it can be concluded that in the presence of PSM, the domains formed by GM1 are less tightly packed and less stable than that in the ternary mixture. PMID:26067631

  10. Decoupling Polarization of the Golgi Apparatus and GM1 in the Plasma Membrane

    PubMed Central

    Bisel, Blaine; Calamai, Martino; Vanzi, Francesco; Pavone, Francesco Saverio

    2013-01-01

    Cell polarization is a process of coordinated cellular rearrangements that prepare the cell for migration. GM1 is synthesized in the Golgi apparatus and localized in membrane microdomains that appear at the leading edge of polarized cells, but the mechanism by which GM1 accumulates asymmetrically is unknown. The Golgi apparatus itself becomes oriented toward the leading edge during cell polarization, which is thought to contribute to plasma membrane asymmetry. Using quantitative image analysis techniques, we measure the extent of polarization of the Golgi apparatus and GM1 in the plasma membrane simultaneously in individual cells subject to a wound assay. We find that GM1 polarization starts just 10 min after stimulation with growth factors, while Golgi apparatus polarization takes 30 min. Drugs that block Golgi polarization or function have no effect on GM1 polarization, and, conversely, inhibiting GM1 polarization does not affect Golgi apparatus polarization. Evaluation of Golgi apparatus and GM1 polarization in single cells reveals no correlation between the two events. Our results indicate that Golgi apparatus and GM1 polarization are controlled by distinct intracellular cascades involving the Ras/Raf/MEK/ERK and the PI3K/Akt/mTOR pathways, respectively. Analysis of cell migration and invasion suggest that MEK/ERK activation is crucial for two dimensional migration, while PI3K activation drives three dimensional invasion, and no cumulative effect is observed from blocking both simultaneously. The independent biochemical control of GM1 polarity by PI3K and Golgi apparatus polarity by MEK/ERK may act synergistically to regulate and reinforce directional selection in cell migration. PMID:24312472

  11. Changes in GM1 ganglioside content and localization in cholestatic rat liver.

    PubMed

    Jirkovská, Marie; Majer, Filip; Smídová, Jaroslava; Stríteský, Jan; Shaik, Gouse Mohiddin; Dráber, Petr; Vítek, Libor; Marecek, Zdenek; Smíd, Frantisek

    2007-07-01

    (Glyco)sphingolipids (GSL) are believed to protect the cell against harmful environmental factors by increasing the rigidity of plasma membrane. Marked decrease of membrane fluidity in cholestatic hepatocytes was described but the role of GSL therein has not been investigated so far. In this study, localization in hepatocytes of a representative of GSL, the GM1 ganglioside, was compared between of rats with cholestasis induced by 17alpha-ethinylestradiol (EE) and vehicle propanediol treated or untreated animals. GM1 was monitored by histochemical reaction employing cholera toxin B-subunit. Our findings in normal rat liver tissue showed that GM1 was localized in sinusoidal and canalicular hepatocyte membranes in both peripheral and intermediate zones of the hepatic lobules, and was nearly absent in central zones. On the contrary, in EE-treated animals GM1 was also expressed in central lobular zones. Moreover, detailed densitometry analysis at high magnification showed greater difference of GM1 expression between sinusoidal surface areas and areas of adjacent cytoplasm, caused as well by increased sinusoidal staining in central lobular zone as by decreased staining in cytoplasm in peripheral zone. These differences correlated with serum bile acids as documented by linear regression analyses. Both GM1 content and mRNA corresponding to GM1-synthase remained unchanged in livers; the enhanced expression of GM1 at sinusoidal membrane thus seems to be due to re-distribution of cellular GM1 at limited biosynthesis and could be responsible for protection of hepatocytes against harmful effects of bile acids accumulated during cholestasis. PMID:17333356

  12. Recovery from Experimental Parkinsonism in Primates with GM1 Ganglioside Treatment

    NASA Astrophysics Data System (ADS)

    Schneider, J. S.; Pope, Anne; Simpson, Kimberly; Taggart, James; Smith, M. G.; Distefano, L.

    1992-05-01

    A parkinsonian syndrome can be produced in nonhuman primates by administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Parkinsonian-like symptoms induced acutely by MPTP were ameliorated after treatment with GM1 ganglioside, a substance shown to have neurotrophic effects on the damaged dopamine system in rodents. Treatment with GM1 ganglioside also increased striatal dopamine and metabolite levels and enhanced the dopaminergic innervation of the striatum as demonstrated by tyrosine hydroxylase immunohistochemistry. These results suggest that GM1 ganglioside may hold promise as a therapeutic agent for the treatment of Parkinson's disease.

  13. Animal models of GM2 gangliosidosis: utility and limitations.

    PubMed

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  14. Animal models of GM2 gangliosidosis: utility and limitations

    PubMed Central

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  15. Insights into the behavioral difference of water in the presence of GM1.

    PubMed

    Basu, Ipsita; Manna, Moutusi; Mukhopadhyay, Chaitali

    2015-12-21

    Studies on the structure and dynamics of interfacial water, emphasizing on the properties of water near the surface of biomolecules, are well reported, but there is a lack of evidence on the behavior of water near a comparatively rough surface containing molecules with a bulky head group like GM1. In this report we comparatively analyze the structure and dynamics of water as a function of distance from the lipid head group in GM1 containing lipid bilayers, with the lipid bilayers where GM1 is not present. This approach effectively demonstrates the behavioral difference and hence delayed convergence from bound water to bulk water in the presence of GM1 compared to a relatively smooth surface. PMID:26611347

  16. GM1 monosialoganglioside pretreatment protects against soman-induced seizure-related brain damage.

    PubMed

    Ballough, G P; Cann, F J; Smith, C D; Forster, J S; Kling, C E; Filbert, M G

    1998-05-01

    The effects of GM1 monosialoganglioside pretreatment on brain damage resulting from soman-induced seizure activity were examined in this study. Male Sprague-Dawley rats were infused with GM1 via an osmotic minipump connected through a permanent cannula implanted intracerebroventricularly and challenged with soman (83 micrograms/kg, i.e., 1.25 x LD50) 4 d after initiation of GM1 infusion. Electrocorticographic recordings were monitored via indwelling cortical electrodes. Twenty-seven hours after soman administration, anesthetized rats were euthanized via transcardial perfusion with buffered paraformaldehyde. Brains were processed for hematoxylin and eosin (H&E), cresyl violet (CV), and acetylcholinesterase (AChE) histochemistry, and glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2) immunohistochemistry. All soman-challenged rats not infused with GM1 (n = 14) developed status epilepticus (SE). PMID:9778643

  17. MECHANISMS UNDERLYING THE MICRON-SCALE SEGREGATION OF STEROLS AND GM1 IN LIVE MAMMALIAN SPERM

    PubMed Central

    Selvaraj, Vimal; Asano, Atsushi; Buttke, Danielle E.; Sengupta, Prabuddha; Weiss, Robert S.; Travis, Alexander J.

    2009-01-01

    We demonstrate for the first time that a stable, micron-scale segregation of focal enrichments of sterols exists at physiological temperature in the plasma membrane of live murine and human sperm. These enrichments of sterols represent microheterogeneities within this membrane domain overlying the acrosome. Previously, we showed that cholera toxin subunit B (CTB), which binds the glycosphingolipid, GM1, localizes to this same domain in live sperm. Interestingly, the GM1 undergoes an unexplained redistribution upon cell death. We now demonstrate that GM1 is also enriched in the acrosome, an exocytotic vesicle. Transfer of lipids between this and the plasma membrane occurs at cell death, increasing GM1 in the plasma membrane without apparent release of acrosomal contents. This finding provides corroborative support for an emerging model of regulated exocytosis in which membrane communications might occur without triggering the “acrosome reaction.” Comparison of the dynamics of CTB-bound endogenous GM1 and exogenous BODIPY-GM1 in live murine sperm demonstrate that the sub-acrosomal ring functions as a specialized diffusion barrier segregating specific lipids within the sperm head plasma membrane. Our data show significant differences between endogenous lipids and exogenous lipid probes in terms of lateral diffusion. Based on these studies, we propose a hierarchical model to explain the segregation of this sterol- and GM1-enriched domain in live sperm, which is positioned to regulate sperm fertilization competence and mediate interactions with the oocyte. Moreover, our data suggest potential origins of sub-types of membrane raft microdomains enriched in sterols and/or GM1 that can be separated biochemically. PMID:19012288

  18. Galleria mellonella native and analogue peptides Gm1 and ΔGm1. II) anti-bacterial and anti-endotoxic effects.

    PubMed

    Correa, Wilmar; Manrique-Moreno, Marcela; Behrends, Jochen; Patiño, Edwin; Marella, Chakravarthy; Peláez-Jaramillo, Carlos; Garidel, Patrick; Gutsmann, Thomas; Brandenburg, Klaus; Heinbockel, Lena

    2014-10-01

    Antimicrobial peptides (AMPs) are important components of the innate immune system of animals, plants, fungi and bacteria and are recently under discussion as promising alternatives to conventional antibiotics. We have investigated two cecropin-like synthetic peptides, Gm1, which corresponds to the natural overall uncharged Galleria mellonella native peptide and ΔGm1, a modified overall positively charged Gm1 variant. We have analysed these peptides for their potential to inhibit the endotoxin-induced secretion of tumour necrosis factor-α (TNF-α) from human mononuclear cells. Furthermore, in a conventional microbiological assay, the ability of these peptides to inhibit the growth of the rough mutant bacteria Salmonella enterica Minnesota R60 and the polymyxin B-resistant Proteus mirabilis R45 was investigated and atomic force microscopy (AFM) measurements were performed to characterize the morphology of the bacteria treated by the two peptides. We have also studied their cytotoxic properties in a haemolysis assay to clarify potential toxic effects. Our data revealed for both peptides minor anti-inflammatory (anti-endotoxin) activity, but demonstrated antimicrobial activity with differences depending on the endotoxin composition of the respective bacteria. In accordance with the antimicrobial assay, AFM data revealed a stronger morphology change of the R45 bacteria than for the R60. Furthermore, Gm1 had a stronger effect on the bacteria than ΔGm1, leading to a different morphology regarding indentations and coalescing of bacterial structures. The findings verify the biophysical measurements with the peptides on model systems. Both peptides lack any haemolytic activity up to an amount of 100μg/ml, making them suitable as new anti-infective agents. PMID:25016054

  19. Galleria mellonella native and analogue peptides Gm1 and ΔGm1. I) biophysical characterization of the interaction mechanisms with bacterial model membranes.

    PubMed

    Correa, Wilmar; Manrique-Moreno, Marcela; Patiño, Edwin; Peláez-Jaramillo, Carlos; Kaconis, Yani; Gutsmann, Thomas; Garidel, Patrick; Heinbockel, Lena; Brandenburg, Klaus

    2014-10-01

    Natural occurring antimicrobial peptides (AMPs) are important components of the innate immune system of animals and plants. They are considered to be promising alternatives to conventional antibiotics. Here we present a comparative study of two synthetic peptides: Gm1, corresponding to the natural overall uncharged peptide from Galleria mellonella (Gm) and ΔGm1, a modified overall positively charged Gm1 variant. We have studied the interaction of the peptides with lipid membranes composed of different kinds of lipopolysaccharides (LPS) and dimyristoylphosphatidylglycerol (DMPG), in some cases also dimyristoylphosphatidylethanolamine (DMPE) as representative lipid components of Gram-negative bacterial membranes, by applying Fourier-transform infrared spectroscopy (FTIR), Förster resonance energy transfer spectroscopy (FRET), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). Gm1 generates a destabilizing effect on the gel to liquid crystalline phase transition of the acyl chains of the lipids, as deduced from a decrease in the phase transition temperature and enthalpy, suggesting a fluidization, whereas ΔGm1 led to the opposite behavior. Further, FTIR analysis of the functional groups of the lipids participating in the interaction with the peptides indicated a shift in the band position and intensity of the asymmetric PO2(-) stretching vibration originating from the lipid phosphate groups, a consequence of the sterical changes in the head group region. Interestingly, FRET spectroscopy showed a similar intercalation of both peptides into the DMPG and LPS, but much less into the DMPE membrane systems. These results are discussed in the light of a possible use of the peptides as antimicrobial and anti-endotoxin drugs. PMID:25017800

  20. Complement Factor H and Simian Virus 40 bind the GM1 ganglioside in distinct conformations.

    PubMed

    Blaum, Bärbel S; Frank, Martin; Walker, Ross C; Neu, Ursula; Stehle, Thilo

    2016-05-01

    Mammalian cell surfaces are decorated with a variety of glycan chains that orchestrate development and defense and are exploited by pathogens for cellular attachment and entry. While glycosidic linkages are, in principle, flexible, the conformational space that a given glycan can sample is subject to spatial and electrostatic restrictions imposed by its overall chemical structure. Here, we show how the glycan moiety of the GM1 ganglioside, a branched, monosialylated pentasaccharide that serves as a ligand for various proteins, undergoes differential conformational selection in its interactions with different lectins. Using STD NMR and X-ray crystallography, we found that the innate immune regulator complement Factor H (FH) binds a previously not reported GM1 conformation that is not compatible with the GM1-binding sites of other structurally characterized GM1-binding lectins such as the Simian Virus 40 (SV40) capsid. Molecular dynamics simulations of the free glycan in explicit solvent on the 10 μs timescale reveal that the FH-bound conformation nevertheless corresponds to a minimum in the Gibbs free energy plot. In contrast to the GM1 conformation recognized by SV40, the FH-bound GM1 conformation is associated with poor NOE restraints, explaining how it escaped(1)H-(1)H NOE-restrained modeling in the past and highlighting the necessity for ensemble representations of glycan structures. PMID:26715202

  1. GM1 ganglioside reverses the cognitive deficits induced by MK801 in mice.

    PubMed

    Ni, Yu-Fei; Zhang, Wei; Bao, Xiao-Feng; Wang, Wei; Song, Lu; Jiang, Bo

    2016-08-01

    Cognitive deficits are core symptoms of schizophrenia, but effective treatments are still lacking. Previous studies have reported that the brain-derived neurotrophic factor (BDNF) signaling is closely involved in learning and memory. Monosialotetrahexosylganglioside (GM1) is a ganglioside with wide-ranging pharmacologic effects that enhances the BDNF signaling cascade. This study aimed to assess the effects of GM1 on schizophrenia-related cognitive impairments. A brief disruption of N-methyl-D-aspartate receptors with MK801 was used to generate the animal model for cognitive deficits in schizophrenia. It was found that MK801-treated mice showed significant deficits in memory ability compared with control mice in different behavior tests, and this was accompanied by decreased hippocampal BDNF signaling pathway. Consecutive administration of GM1 fully restored the MK801-induced cognitive deficits and the impaired BDNF signaling in the hippocampus. Furthermore, a BDNF system inhibitor abolished the effects of GM1 in the MK801 model. Taken together, our results show that GM1 could reverse the MK801-induced cognitive deficits, suggesting a potential usefulness of GM1 in treating the schizophrenia-related cognitive impairments. PMID:26960162

  2. Post-partum psychosis in adult GM2 gangliosidosis. A case report.

    PubMed

    Lichtenberg, P; Navon, R; Wertman, E; Dasberg, H; Lerer, B

    1988-09-01

    Adult hexosaminidase A deficiency is a form of GM2 gangliosidosis with autosomal recessive inheritance. Only 35 cases (mostly among Ashkenazic Jews) have been reported worldwide. Symptoms include, in a third of the cases, psychosis. A 27-year-old sufferer with no prior psychiatric history, developed a post-partum psychosis, with affective and hebephrenic components, 3 days following her first delivery. She responded to lithium within 10 days of initiating treatment; the full episode lasted 1 month. We conclude that lithium is the preferred treatment for psychosis in such adult patients, especially in light of possible long-term neurological deterioration caused by phenothiazines. Ashkenazic Jews with atypical neurological syndromes presenting with psychosis should be tested for hexosaminidase A deficiency. PMID:2977954

  3. Neuropathology of chronic GM2 gangliosidosis due to hexosaminidase A deficiency.

    PubMed

    Kornfeld, M

    2008-01-01

    Autopsy studies of late-onset GM2 gangliosidosis are sparse and only one adult case is on record. The case of partial Hex A deficiency presented here started in childhood as spinal muscular atrophy which progressed slowly over 4 decades. Cognitive function remained intact throughout the entire course, but during the last few years of life allodynia supervened. The patient died at 44 years of age. In good correlation with clinical observations the autopsy findings showed the most severe accumulation of lipid and consequent regressive change in the anterior horns of the spinal cord. Extensive but less severe storage was found in other spinal cord neurons, brain stem and selected basal ganglia. Cerebral cortex was virtually spared by storage but was the site of excessive formation of lipofuscin which was also present in many other neurons in the CNS. Marked storage and ganglionic loss was also found in the dorsal root ganglia, and the fasciculus gracilis was severely depleted of myelinated fibers. Electron microscopy showed accumulated gangliosides almost exclusively in the form of single and coalescing zebra bodies. In conclusion, the pathology in this case of chronic GM2 gangliosidosis, though in part conforming with previous observations, differed in several aspects. First, the cerebral cortex was--with only a few exceptions--free of ganglioside storage. Also spared was the cerebellum. In addition, homogeneous accumulation of zebra bodies contrasted with heterogeneity of neuronal inclusions found in other chronic cases. Finally, the involvement of sensory neurons was prominent and potentially related to allodynia. Molecular study of HEXA gene in this patient showed an TATC1278/? genotype. PMID:18808061

  4. Interaction of Treponema denticola TD-4, GM-1, and MS25 with human gingival fibroblasts.

    PubMed Central

    Weinberg, A; Holt, S C

    1990-01-01

    The adherence of Treponema denticola GM-1, TD-4, and MS25 to human gingival fibroblasts (HGFs) was studied to serve as an introduction to investigations into the interactions of these oral bacteria with human host cells. Under both aerobic (5% CO2) and anaerobic (85% N2 plus 10% H2 plus 5% CO2) environments, the interactions with the HGFs were such that strains GM-1 and MS25 were consistently more adherent than strain TD-4. Polyclonal antibodies to GM-1 inhibited GM-1 adherence by 70%, while MS25 and TD-4 showed differing degrees of cross-reactive inhibition, indicative of common but not identical epitopes on the surface of the three T. denticola strains. Pretreatment of the three strains with trypsin did not inhibit adherence; proteinase K did, however, inhibit this interaction by 80%. Trypsin pretreatment of the HGFs resulted in increases in adherence of 50 and 86% for GM-1 and MS25, respectively, while a decrease of 41% was noted for TD-4. Exposure of the T. denticola strains to sugars and lectin pretreatment of the HGFs implicated adherence mediation by mannose and galactose residues on the HGF surface. Periodate treatment of HGFs resulted in a 50% drop in adherence for GM-1 and MS25, but did not decrease that of TD-4. Addition of fetal bovine serum inhibited adherence of the three strains to differing degrees, with TD-4 being the most susceptible. Addition of purified fibronectin (100 micrograms/ml) resulted in greater than 50% inhibition in GM-1 and MS25 adherence, while a 25% increase occurred with TD-4. While strain differences were noted in some of the parameters studied, the results indicate two possibilities for T. denticola-HGF adherence: a lectinlike adhesin(s) on the T. denticola surface with affinity for galactose and mannose on the HGF surface, and a serum host factor(s) bridging T. denticola and HGFs. Images PMID:2160430

  5. GM1 Ganglioside in Parkinson’s Disease: Pilot Study of Effects on Dopamine Transporter Binding

    PubMed Central

    Schneider, Jay S.; Cambi, Franca; Gollomp, Stephen M.; Kuwabara, Hiroto; Brašić, James R.; Leiby, Benjamin; Sendek, Stephanie; Wong, Dean F.

    2015-01-01

    Objective GM1 ganglioside has been suggested as a treatment for Parkinson’s disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. Methods Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD1: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 minutes following injection of [11C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. Results Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. Interpretation Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects. PMID:26099170

  6. Bis(monoacylglycero)phosphate and ganglioside GM1 spontaneously form small homogeneous vesicles at specific concentrations.

    PubMed

    Chebukati, Janetricks N; Goff, Philip C; Frederick, Thomas E; Fanucci, Gail E

    2010-04-01

    The morphology and size of hydrated lipid dispersions of bis(monoacylglycero)phosphate (BMP) mixed with varying mole percentages of the ganglioside GM1 were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Electron paramagnetic resonance (EPR) spectroscopy of these same mixtures, doped at 0.5 mol% with doxyl labeled lipids, was used to investigate acyl-chain packing. Results show that for 20-30% GM1, hydrated BMP:GM1 mixtures spontaneously form small spherical vesicles with diameters approximately 100 nm and a narrow size distribution profile. For other concentrations of GM1, hydrated dispersions with BMP have non-spherical shapes and heterogeneous size profiles, with average vesicle diameters>400 nm. All samples were prepared at pH 5.5 to mimic the lumen acidity of the late endosome where BMP is an essential component of intraendosomal vesicle budding, lipid sorting and trafficking. These findings indicate that GM1 and BMP under a limited concentration range spontaneously form small vesicles of homogeneous size in an energy independent manner without the need of protein templating. Because BMP is essential for intraendosomal vesicle formation, these results imply that lipid-lipid interactions may play a critical role in the endosomal process of lipid sorting and trafficking. PMID:20206128

  7. Bis(monoacylglycero)phosphate and ganglioside GM1 spontaneously form small homogeneous vesicles at specific concentrations

    SciTech Connect

    Chebukati, Janetricks N.; Goff, Philip C.; Frederick, Thomas E.; Fanucci, Gail E.

    2010-04-09

    The morphology and size of hydrated lipid dispersions of bis(monoacylglycero)phosphate (BMP) mixed with varying mole percentages of the ganglioside GM1 were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Electron paramagnetic resonance (EPR) spectroscopy of these same mixtures, doped at 0.5 mol% with doxyl labeled lipids, was used to investigate acyl-chain packing. Results show that for 20-30% GM1, hydrated BMP:GM1 mixtures spontaneously form small spherical vesicles with diameters {approx}100 nm and a narrow size distribution profile. For other concentrations of GM1, hydrated dispersions with BMP have non-spherical shapes and heterogeneous size profiles, with average vesicle diameters >400 nm. All samples were prepared at pH 5.5 to mimic the lumen acidity of the late endosome where BMP is an essential component of intraendosomal vesicle budding, lipid sorting and trafficking. These findings indicate that GM1 and BMP under a limited concentration range spontaneously form small vesicles of homogeneous size in an energy independent manner without the need of protein templating. Because BMP is essential for intraendosomal vesicle formation, these results imply that lipid-lipid interactions may play a critical role in the endosomal process of lipid sorting and trafficking.

  8. Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy

    PubMed Central

    Li, Li; Tian, Jinghua; Long, Mitchell King-Wei; Chen, Yong; Lu, Jianfei; Zhou, Changman; Wang, Tianlong

    2016-01-01

    Ganglioside GM1, which is particularly abundant in the central nervous system (CNS), is closely associated with the protection against several CNS disorders. However, controversial findings have been reported on the role of GM1 following ischemic stroke. In the present study, using a rat middle cerebral artery occlusion (MCAO) model, we investigated whether GM1 can protect against ischemic brain injury and whether it targets the autophagy pathway. GM1 was delivered to Sprague-Dawley male rats at 3 doses (25 mg/kg, 50 mg/kg, 100 mg/kg) by intraperitoneal injection soon after reperfusion and then once daily for 2 days. The same volume of saline was given as a control. Tat–Beclin-1, a specific autophagy inducer, was administered by intraperitoneal injection at 24 and 48 hours post-MCAO. Infarction volume, mortality and neurological function were assessed at 72 hours after ischemic insult. Immunofluorescence and Western blotting were performed to determine the expression of autophagy-related proteins P62, LC3 and Beclin-1 in the penumbra area. No significant changes in mortality and physiological variables (heart rate, blood glucose levels and arterial blood gases) were observed between the different groups. However, MCAO resulted in enhanced conversion of LC3-I into LC3-II, P62 degradation, high levels of Beclin-1, a large area infarction (26.3±3.6%) and serious neurobehavioral deficits. GM1 (50 mg/kg) treatment significantly reduced the autophagy activation, neurobehavioral dysfunctions, and infarction volume (from 26.3% to 19.5%) without causing significant adverse side effects. However, this biological function could be abolished by Tat–Beclin-1. In conclusion: GM1 demonstrated safe and robust neuroprotective effects that are associated with the inhibition of autophagy following experimental stroke. PMID:26751695

  9. Pathology of GM2 gangliosidosis in Jacob sheep.

    PubMed

    Porter, B F; Lewis, B C; Edwards, J F; Alroy, J; Zeng, B J; Torres, P A; Bretzlaff, K N; Kolodny, E H

    2011-07-01

    The G(M2) gangliosidoses are a group of lysosomal storage diseases caused by defects in the genes coding for the enzyme hexosaminidase or the G(M2) activator protein. Four Jacob sheep from the same farm were examined over a 3-year period for a progressive neurologic disease. Two lambs were 6-month-old intact males and 2 were 8-month-old females. Clinical findings included ataxia in all 4 limbs, proprioceptive deficits, and cortical blindness. At necropsy, the nervous system appeared grossly normal. Histologically, most neurons within the brain, spinal cord, and peripheral ganglia were enlarged, and the cytoplasm was distended by foamy to granular material that stained positively with Luxol fast blue and Sudan black B stains. Other neuropathologic findings included widespread astrocytosis, microgliosis, and scattered spheroids. Electron microscopy revealed membranous cytoplasmic bodies within the cytoplasm of neurons. Biochemical and molecular genetic studies confirmed the diagnosis of G(M2) gangliosidosis. This form of G(M2) gangliosidosis in Jacob sheep is very similar to human Tay-Sachs disease and is potentially a useful animal model. PMID:21123862

  10. [Recent advances in molecular genetics of GM2 gangliosidosis].

    PubMed

    Wakamatsu, N

    1995-12-01

    Recent advances in molecular genetics of GM2 gangliosidosis are reviewed. GM2 gangliosidosis is an autosomal recessive, neurodegenerative disease caused by a deficiency of beta-hexosaminidase (Hex, EC 3.2.1.52) A activity, resulting in accumulation of GM2 ganglioside in the lysosomes of neuronal cells. There are two catalytically active forms of this enzyme: Hex A, composed of one alpha and one beta subunits. Three forms of this disease, Tay-Sachs disease, Sandhoff disease, and GM2 activator deficiency, have been recognized according to whether the defect involves the alpha subunit, beta subunit, or GM2 activator protein, respectively. A number of gene abnormalities responsible for the disease have been identified and mutations specific for phenotypes and racial backgrounds are summarized. Recently, the murine models of human Tay-Sachs disease and Sandhoff disease have been produced. With the finding of dramatically clinical phenotypes in these mice, these models could be useful for research on the pathogenesis or therapy of these diseases. PMID:8577047

  11. The Research of Improved Grey GM (1, 1) Model to Predict the Postprandial Glucose in Type 2 Diabetes

    PubMed Central

    Wang, Yannian; Wei, Fenfen; Sun, Changqing; Li, Quanzhong

    2016-01-01

    Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patients. For this purpose, an improved grey GM (1, 1) model is applied to predict blood glucose with a small amount of data, and especially in terms of improved smoothness it can get higher prediction accuracy. The original data of blood glucose of type 2 diabetes is acquired by CGMS. Then the prediction model is established. Finally, 50 cases of blood glucose from the Henan Province People's Hospital are predicted in 5, 10, 15, 20, 25, and 30 minutes, respectively, in advance to verify the prediction model. The prediction result of blood glucose is evaluated by the EGA, MSE, and MAE. Particularly, the prediction results of postprandial blood glucose are presented and analyzed. The result shows that the improved grey GM (1, 1) model has excellent performance in postprandial blood glucose prediction. PMID:27314034

  12. GLTP mediated non-vesicular GM1 transport between native membranes.

    PubMed

    Lauria, Ines; van Üüm, Jan; Mjumjunov-Crncevic, Esmina; Walrafen, David; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2013-01-01

    Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes. PMID:23555818

  13. Interaction of liposomes composed of phospholipids, GM1 ganglioside and cholesterol with human keratinocytes in culture.

    PubMed

    Pitto, M; Palestini, P; Ferraretto, A; Marazzi, M; Donati, V; Falcone, L; Masserini, M

    1999-04-01

    We studied the possibility of supplementing human keratinocytes with exogenous lipids (phospholipids, sphingolipids and cholesterol) and evaluated their influence on cell proliferation, using cells cultured in vitro. Experiments carried out with liposomes composed of cholesterol/GM1 ganglioside and different phospholipids (5:1.5:10, M/M/M), showed that liposomes associated with cells more efficiently when they contained soya lecithin. The treatment with liposomes made of the ternary mixture did not modify the rate of cell proliferation, as assessed by the incorporation of [3H]-thymidine. In contrast, the proliferation rate strongly decreased (65% with respect to the control) using the same liposomes without GM1. Experiments carried out with GM1 alone showed a strong stimulation of the proliferation rate (144% with respect to the control). Fluorescence dequenching experiments, carried out with the probe octadecyl rhodamine B chloride, showed that fusion was the main mechanism of liposome-cell interaction. Metabolic studies established that exogenously administered GM1--either embedded in liposomes or as a pure glycolipid dispersion--led to the production of several products, including ceramide. Altogether, these results show that different, opposing effects can be exerted on cell proliferation by the administration of lipids, separately or in mixtures, to human keratinocytes, and indicate the importance of a correct formulation for supplementing human keratinocytes with exogenous lipids. PMID:10335921

  14. GM1 induces p38 and microtubule dependent ramification of rat primary microglia in vitro.

    PubMed

    Park, Ji-Young; Kim, Hee Young; Jou, Ilo; Park, Sang Myun

    2008-12-01

    Microglia are immunologically competent cells in the central nervous system and considered to be a key player in brain inflammation. The morphological change of microglia has been shown to be linked to functional phenotypes both in vivo and in vitro. As an attempt to identify factors that regulate microglial morphology, we investigated the effect of gangliosides on microglial ramification in vitro. Brain gangliosides mixture and GM1 induced typical ramification of cultured rat primary microglia, however, GD1a and GT1b did not. Although GM1 significantly induced the expression of neurotrophin-3 (NT-3), NT-3 did not induce typical morphological changes in cultured rat primary microglia. SB203580 (an inhibitor of p38), and paclitaxel and nocodazole (microtubule-disrupting drugs) inhibited GM1-induced microglial ramification, but Jaki (an inhibitor of JAK), PD98059 (an inhibitor of Erk1/2), SP600125 (an inhibitor of JNK), and cytochalasin B and latrunculin B (actin polymerization inhibitors) did not, suggesting that GM1 induced ramification of microglia in p38- and microtubule-dependent manner. This in vitro system would be helpful in understanding the mechanisms of microglial ramification and physiological roles of gangliosides in microglia. PMID:18930716

  15. GM1 Ganglioside Treatment Facilitates Behavioral Recovery from Bilateral Brain Damage

    NASA Astrophysics Data System (ADS)

    Sabel, Bernhard A.; Slavin, Mary D.; Stein, Donald G.

    1984-07-01

    Adult rats with bilateral lesions of the caudate nucleus were treated with GM1 ganglioside. Although animals injected with a control solution were severely impaired in their ability to learn a complex spatial task, those treated with ganglioside were able to learn spatial reversals.

  16. GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells.

    PubMed

    Tsai, Yi-Tzang; Itokazu, Yutaka; Yu, Robert K

    2016-02-01

    Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells. PMID:26498762

  17. Colocalization of the ganglioside G(M1) and cholesterol detected by secondary ion mass spectrometry.

    PubMed

    Lozano, Mónica M; Liu, Zhao; Sunnick, Eva; Janshoff, Andreas; Kumar, Krishna; Boxer, Steven G

    2013-04-17

    The characterization of the lateral organization of components in biological membranes and the evolution of this arrangement in response to external triggers remain a major challenge. The concept of lipid rafts is widely invoked; however, direct evidence of the existence of these ephemeral entities remains elusive. We report here the use of secondary ion mass spectrometry (SIMS) to image the cholesterol-dependent cohesive phase separation of the ganglioside GM1 into nano- and microscale assemblies in a canonical lipid raft composition of lipids. This assembly of domains was interrogated in a model membrane system composed of palmitoyl sphingomyelin (PSM), cholesterol, and an unsaturated lipid (dioleoylphosphatidylcholine, DOPC). Orthogonal isotopic labeling of every lipid bilayer component and monofluorination of GM1 allowed generation of molecule specific images using a NanoSIMS. Simultaneous detection of six different ion species in SIMS, including secondary electrons, was used to generate ion ratio images whose signal intensity values could be correlated to composition through the use of calibration curves from standard samples. Images of this system provide the first direct, molecule specific, visual evidence for the colocalization of cholesterol and GM1 in supported lipid bilayers and further indicate the presence of three compositionally distinct phases: (1) the interdomain region; (2) micrometer-scale domains (d > 3 μm); (3) nanometer-scale domains (d = 100 nm to 1 μm) localized within the micrometer-scale domains and the interdomain region. PSM-rich, nanometer-scale domains prefer to partition within the more ordered, cholesterol-rich/DOPC-poor/GM1-rich micrometer-scale phase, while GM1-rich, nanometer-scale domains prefer to partition within the surrounding, disordered, cholesterol-poor/PSM-rich/DOPC-rich interdomain phase. PMID:23514537

  18. Characterization of Chromium Waste Form Based on Biocementation by Microbacterium sp. GM-1.

    PubMed

    Lun, Limei; Li, Dongwei; Yin, Yajie; Li, Dou; Xu, Guojing; Zhao, Ziqiang; Li, Shan

    2016-09-01

    This paper demonstrated a biocementation technology for chromium slag by strain GM-1, a calcifying ureolytic bacterium identified as Microbacterium, based on microbially induced calcium carbonate. The characterization of Microbacterium sp. GM-1 was assessed to know the growth curve in different concentrations of Cr(VI). Microbacterium sp. GM-1 was tolerant to a concentration of 120 mg/L Cr(VI). Chromium waste forms were prepared using chromium, sand, soil and bacterial culture. There we had three quality ratios (8:2:1; 8:1:1; 8:2:0.5) of material (chromium, sand and soil, respectively). Bacterial and control chromium waste forms were analyzed by thermal gravimetric analyzer. All bacterial forms (8:2:1; 8:1:1; 8:2:0.5 J) showed sharp weight loss near the decomposition temperature of calcium carbonate between 600 and 700 °C. It indicated that the efficient bacterial strain GM-1 had induced calcium carbonate precipitate during bioremediation process. A five step Cr(VI) sequential extraction was performed to evaluate its distribution pattern in chromium waste forms. The percentage of Cr(VI) was found to significantly be decreased in the exchangeable fraction of chromium waste forms and subsequently, that was markedly increased in carbonated fraction after biocementation by GM-1. Further, compressive strength test and leaching test were carried out. The results showed that chromium waste forms after biocementation had higher compressive strength and lower leaching toxicity. Additionally, the samples made of 8:1:1 (m/m/m) chromium + sand + soil were found to develop the highest compressive strength and stand the lowest concentration of Cr(VI) released into the environment. PMID:27407300

  19. Fucosyl-GM1a, an endoglycoceramidase-resistant ganglioside of porcine brain.

    PubMed

    Xu, Xu; Monjusho, Hatsumi; Inagaki, Masanori; Hama, Yoichiro; Yamaguchi, Kuniko; Sakaguchi, Keishi; Iwamori, Masao; Okino, Nozomu; Ito, Makoto

    2007-01-01

    The use of bovine brain has been prohibited in many countries because of the world-wide prevalence of mad cow disease, and thus porcine brain is expected to be a new source for the preparation of gangliosides. Here, we report the presence of a ganglioside in porcine brain which is strongly resistant to hydrolysis by endoglycoceramidase, an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. Five major gangliosides (designated PBG-1, 2, 3, 4, 5) were extracted from porcine brain by Folch's partition, followed by mild alkaline hydrolysis and PBA column chromatography. We found that PBG-2, but not the others, was strongly resistant to hydrolysis by the enzyme. After the purification of PBG-2 with Q-Sepharose, Silica gel 60 and Prosep-PB chromatographies, the structure of PBG-2 was determined by GC, GC-MS, FAB-MS and NMR spectroscopy as Fucalpha1-2Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-4Glcbeta1-1'Cer (fucosyl-GM1a). The ceramide was mainly composed of C18:0 and C20:0 fatty acids and d18:1 and d20:1 sphingoid bases. The apparent kcat/Km for fucosyl-GM1a was found to be 30 times lower than that for GM1a, indicating that terminal fucosylation makes GM1a resistant to hydrolysis by the enzyme. This report indicates the usefulness of endoglycoceramidase to prepare fucosyl-GM1a from porcine brain. PMID:17167042

  20. GM1-Modified Lipoprotein-like Nanoparticle: Multifunctional Nanoplatform for the Combination Therapy of Alzheimer's Disease.

    PubMed

    Huang, Meng; Hu, Meng; Song, Qingxiang; Song, Huahua; Huang, Jialin; Gu, Xiao; Wang, Xiaolin; Chen, Jun; Kang, Ting; Feng, Xingye; Jiang, Di; Zheng, Gang; Chen, Hongzhuan; Gao, Xiaoling

    2015-11-24

    Alzheimer's disease (AD) exerts a heavy health burden for modern society and has a complicated pathological background. The accumulation of extracellular β-amyloid (Aβ) is crucial in AD pathogenesis, and Aβ-initiated secondary pathological processes could independently lead to neuronal degeneration and pathogenesis in AD. Thus, the development of combination therapeutics that can not only accelerate Aβ clearance but also simultaneously protect neurons or inhibit other subsequent pathological cascade represents a promising strategy for AD intervention. Here, we designed a nanostructure, monosialotetrahexosylganglioside (GM1)-modified reconstituted high density lipoprotein (GM1-rHDL), that possesses antibody-like high binding affinity to Aβ, facilitates Aβ degradation by microglia, and Aβ efflux across the blood-brain barrier (BBB), displays high brain biodistribution efficiency following intranasal administration, and simultaneously allows the efficient loading of a neuroprotective peptide, NAP, as a nanoparticulate drug delivery system for the combination therapy of AD. The resulting multifunctional nanostructure, αNAP-GM1-rHDL, was found to be able to protect neurons from Aβ(1-42) oligomer/glutamic acid-induced cell toxicity better than GM1-rHDL in vitro and reduced Aβ deposition, ameliorated neurologic changes, and rescued memory loss more efficiently than both αNAP solution and GM1-rHDL in AD model mice following intranasal administration with no observable cytotoxicity noted. Taken together, this work presents direct experimental evidence of the rational design of a biomimetic nanostructure to serve as a safe and efficient multifunctional nanoplatform for the combination therapy of AD. PMID:26440073

  1. [Adult GM2 gangliosidosis: improvement of ataxia with GABAergic drugs].

    PubMed

    Gazulla Abío, J; Benavente Aguilar, I

    2002-03-01

    The authors present a case of adult GM2 gangliosidosis, B1 enzymatic type. The main clinical features found were cerebellar ataxia, proximal lower limb weakness and myokymia. The neurological examination, and the biochemical, electrophysiologic and imaging studies are all described. Decreased activity of the enzyme beta-hexosaminidase A in the metabolism of the sulfate substrate 4-MU-NAGS was found in serum. Global cerebellar atrophy was observed in a cranial nuclear magnetic resonance. The electrophysiologic study showed continuous spontaneous activity integrated by myokymia and neuromyotonic discharges in addition to signs of acute and chronic denervation. Disappearance of the myokymia and improvement in the ataxia were attained with the use of the GABAergic drugs gabapentin and tiagabine. The authors try to explain the clinical improvement obtained with the drugs by relating their mechanisms of action to the central nervous system neurotransmitter alterations proposed for this disease. PMID:11927106

  2. Synthesis and aggregative properties of GM1 ganglioside (IV3Neu5AcGgOse4Cer) containing D-(+)-2-hydroxystearic acid.

    PubMed

    Sonnino, S; Acquotti, D; Cantu, L; Chigorno, V; Valsecchi, M; Casellato, R; Masserini, M; Corti, M; Allevi, P; Tettamanti, G

    1994-02-01

    GM1 ganglioside containing a hydroxylated fatty acid moiety, GM1(OH), was synthesized starting from lyso-GM1 and D-(+)-2-hydroxystearic acid. The aggregative, geometrical and distribution properties of GM1(OH) were compared with those of stearic acid containing GM1 ganglioside; laser light scattering measurements, differential scanning calorimetry and fluorescence spectroscopy were used. GM1 and GM1(OH) are present in solution as micelles with a hydrodynamic radius of 58.7 and 60.0 A, and molecular mass of 470 and 570 kDa, respectively. The surface area occupied by the monomer of GM1(OH) at the lipid-water interface of the aggregate was calculated to be 117 A2, which is 3 A2 lower than that determined for GM1. Proton NMR analyses of GM1 and GM1(OH) suggest different three-dimensional structures at the ganglioside lipid-water interface. Both GM1(OH) and GM1 inserted into dipalmitoylphosphatidylcholine (DPPC) vesicles undergo segregation phenomena, with the formation of ganglioside-enriched microdomains, but GM1(OH) shows a higher degree of dispersion in the DPPC matrix and exerts a lower rigidifying effect than does GM1. PMID:8181107

  3. Using a set of GM(1,1) models to predict values of diagnostic symptoms

    NASA Astrophysics Data System (ADS)

    Tabaszewski, Maciej; Cempel, Czeslaw

    2015-02-01

    The main purpose of this study is to develop a methodology of predicting values of vibration symptoms of fan mills in a combined heat and power (CHP) plant. The study was based on grey system theory and GM(1,1) prognostic models with different window sizes for estimating model parameters. Such models have a number of features that are desirable from the point of view of data characteristics collected by the diagnostic system. When using moving window, GM(1,1) models tend to be adaptive. However, selecting an inappropriate window size can result in excessive forecast errors. The present study proposes three possible methods that can be used in automated diagnostic systems to counteract the excessive increase in the forecast error. A comparative analysis of their performance was conducted using data from fan mills in order to select the method which minimises the forecast error.

  4. Interaction between Simian Virus 40 Major Capsid Protein VP1 and Cell Surface Ganglioside GM1 Triggers Vacuole Formation

    PubMed Central

    Luo, Yong; Motamedi, Nasim; Magaldi, Thomas G.; Gee, Gretchen V.; Atwood, Walter J.

    2016-01-01

    ABSTRACT Simian virus 40 (SV40), a polyomavirus that has served as an important model to understand many aspects of biology, induces dramatic cytoplasmic vacuolization late during productive infection of monkey host cells. Although this activity led to the discovery of the virus in 1960, the mechanism of vacuolization is still not known. Pentamers of the major SV40 capsid protein VP1 bind to the ganglioside GM1, which serves as the cellular receptor for the virus. In this report, we show that binding of VP1 to cell surface GM1 plays a key role in SV40 infection-induced vacuolization. We previously showed that SV40 VP1 mutants defective for GM1 binding fail to induce vacuolization, even though they replicate efficiently. Here, we show that interfering with GM1-VP1 binding by knockdown of GM1 after infection is established abrogates vacuolization by wild-type SV40. Vacuole formation during permissive infection requires efficient virus release, and conditioned medium harvested late during SV40 infection rapidly induces vacuoles in a VP1- and GM1-dependent fashion. Furthermore, vacuolization can also be induced by a nonreplicating SV40 pseudovirus in a GM1-dependent manner, and a mutation in BK pseudovirus VP1 that generates GM1 binding confers vacuole-inducing activity. Vacuolization can also be triggered by purified pentamers of wild-type SV40 VP1, but not by GM1 binding-defective pentamers or by intracellular expression of VP1. These results demonstrate that SV40 infection-induced vacuolization is caused by the binding of released progeny viruses to GM1, thereby identifying the molecular trigger for the activity that led to the discovery of SV40. PMID:27006465

  5. Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane.

    PubMed

    Sridhar, Akshay; Kumar, Amit; Dasmahapatra, Ashok Kumar

    2016-07-01

    The AB5 type toxin produced by the Vibrio cholerae bacterium is the causative agent of the cholera disease. The cholera toxin (CT) has been shown to bind specifically to GM1 glycolipids on the membrane surface. This binding of CT to the membrane is the initial step in its endocytosis and has been postulated to cause significant disruption to the membrane structure. In this work, we have carried out a combination of coarse-grain and atomistic simulations to study the binding of CT to a membrane modelled as an asymmetrical GM1-DPPC bilayer. Simulation results indicate that the toxin binds to the membrane through only three of its five B subunits, in effect resulting in a tilted bound configuration. Additionally, the binding of the CT can increase the area per lipid of GM1 leaflet, which in turn can cause the membrane regions interacting with the bound subunits to experience significant bilayer thinning and lipid tail disorder across both the leaflets. PMID:27474868

  6. PYRIMETHAMINE AS A POTENTIAL PHARMACOLOGICAL CHAPERONE FOR LATE-ONSET FORMS OF GM2 GANGLIOSIDOSIS

    PubMed Central

    Maegawa, Gustavo H. B.; Tropak, Michael; Butner, Justin; Stockley, Tracy; Kok, Fernando; Clarke, Joe T. R.; Mahuran, Don J.

    2007-01-01

    Late-onset GM2-gangliosidosis (GM2) is composed of two related, autosomal recessive, neurodegenerative diseases, both resulting from deficiency of lysosomal, heterodimeric β-hexosaminidase A (Hex A, αβ). Pharmacological chaperones (PC) are small molecules that can stabilize the conformation of a mutant protein, allowing it to pass the quality control system of the ER. To date all successful PCs have also been competitive inhibitors. Screening for Hex A inhibitors in a library of 1040 FDA-approved compounds identified pyrimethamine (PYR) as the most potent inhibitor. Cell lines from 10 late-onset Tay-Sachs (11 α-mutations, 2 novel), and 7 Sandhoff (9 β-mutations, 4 novel) disease patients, were cultured with PYR at concentrations corresponding to therapeutic doses. Cells carrying the most common late-onset mutation, αG269S, showed significant increases in residual Hex A activity, as did all 7 of the β-mutants tested. Cells responding to PC-treatment included those carrying mutants resulting in reduced Hex heat stability and partial splice junction mutations of the inherently less stable α-subunit. PYR, which binds to the active site in domain II, was able to function as PC even to domain I β-mutants. We concluded that PYR functions as a mutation-specific PC, variably enhancing residual lysosomal Hex A levels in late-onset GM2 patient cells. PMID:17237499

  7. [A case of multifocal motor neuropathy with IgM lambda anti-GM1 antibody and IgM kappa paraprotein reacting exclusively with GM2].

    PubMed

    Arai, Motomi; Kusunoki, Susumu

    2009-01-01

    A 57-year-old previously healthy woman visited our clinic complaining of frequent muscle cramps and progressive weakness in the hands and fingers for 3 years. On examination, cranial nerves were unremarkable. There were moderate weakness and mild muscle wasting with fasciculation in the left thumb flexor and interossei on both sides. Tendon reflexes were hypoactive. There were no pathologic reflexes or sensory deficit. The cerebrospinal fluid was unremarkable. Nerve conduction studies demonstrated conduction block in the right ulnar nerve. Compound muscle action potential in the left median nerve was low-normal. Distal motor latencies, motor and sensory nerve conduction velocities were normal in all nerves tested. A diagnosis of multifocal motor neuropathy was made. Two courses of intravenous immunoglobulin infusion gave no beneficial effects. The patient had IgM kappa monoclonal gammopathy of undetermined significance. Her serum IgM reacted with GM2, GM1, and GA1 but not with GD1a, GD1b, GD3, GalNAc-GD1a, GT1b, GQ1b, galactocerebroside, or sulfated glucuronyl paragloboside. IgM kappa paraprotein reacted exclusively with GM2. Only IgM lambda bound to GM1 and GA1, suggesting the possibility that another paraprotein, though undetectable by immunoelectrohoresis, had a reactivity with GM1 and GA1. This case showed previously unreported antigenic specificity of paraproteins in cases of MMN. PMID:19348179

  8. Gangliosides GM1 and GM3 in the Living Cell Membrane Form Clusters Susceptible to Cholesterol Depletion and Chilling

    PubMed Central

    Fujita, Akikazu; Cheng, Jinglei; Hirakawa, Minako; Furukawa, Koichi; Kusunoki, Susumu

    2007-01-01

    Presence of microdomains has been postulated in the cell membrane, but two-dimensional distribution of lipid molecules has been difficult to determine in the submicrometer scale. In the present paper, we examined the distribution of gangliosides GM1 and GM3, putative raft molecules in the cell membrane, by immunoelectron microscopy using quick-frozen and freeze-fractured specimens. This method physically immobilized molecules in situ and thus minimized the possibility of artifactual perturbation. By point pattern analysis of immunogold labeling, GM1 was shown to make clusters of <100 nm in diameter in normal mouse fibroblasts. GM1-null fibroblasts were not labeled, but developed a similar clustered pattern when GM1 was administered. On cholesterol depletion or chilling, the clustering of both endogenous and exogenously-loaded GM1 decreased significantly, but the distribution showed marked regional heterogeneity in the cells. GM3 also showed cholesterol-dependent clustering, and although clusters of GM1 and GM3 were found to occasionally coincide, these aggregates were separated in most cases, suggesting the presence of heterogeneous microdomains. The present method enabled to capture the molecular distribution of lipids in the cell membrane, and demonstrated that GM1 and GM3 form clusters that are susceptible to cholesterol depletion and chilling. PMID:17392511

  9. Juvenile GM2 gangliosidosis (AMB variant): inability to activate hexosaminidase A by activator protein.

    PubMed Central

    Inui, K; Grebner, E E; Jackson, L G; Wenger, D A

    1983-01-01

    Two sibling from a consanguineous Puerto Rican marriage were found to have a juvenile-onset type of lipidosis first noted at age 2 1/2 by expressing difficulties with motor function and developmental delay. They continued to deteriorate, showing muscle atrophy, spasticity, and loss of speech, and death occurred at ages 7 and 8. Examination of the brains from these patients revealed that the concentration of GM2 ganglioside was about 56% of the total gangliosides. Hexosaminidase and percent hexosaminidase A (HEX A) and other lysosomal enzymes were normal in cultured skin fibroblasts, liver, and brain. The concentration of the activator protein required for the enzymatic hydrolysis of GM2 ganglioside was in high normal levels in the brain of the patient available. However, the HEX A from the patient's brain and liver as well as from skin fibroblast lysates could not be activated to hydrolyze GM2 ganglioside by the activator protein from a control or himself. The HEX A from a control could be activated by the activator protein from controls or this patient. These patients appear to have a defect in HEX A, which does not affect it heat stability, electrophoretic migration, and activity toward fluorogenic substrates, but may affect the binding of the activator protein required for GM2 ganglioside hydrolysis. We propose to call these patients the AMB variant of GM2 gangliosidosis to denote the mutation in HEX A but with normal levels of HEX A and B with synthetic substrates. This is to distinguish these patients from those missing the activator protein and normal HEX A and B levels. Images Fig. 1 Fig. 2 PMID:6224417

  10. Mutations in the GM1 Binding Site of Simian Virus 40 VP1 Alter Receptor Usage and Cell Tropism

    PubMed Central

    Magaldi, Thomas G.; Buch, Michael H. C.; Murata, Haruhiko; Erickson, Kimberly D.; Neu, Ursula; Garcea, Robert L.; Peden, Keith; Stehle, Thilo

    2012-01-01

    Polyomaviruses are nonenveloped viruses with capsids composed primarily of 72 pentamers of the viral VP1 protein, which forms the outer shell of the capsid and binds to cell surface oligosaccharide receptors. Highly conserved VP1 proteins from closely related polyomaviruses recognize different oligosaccharides. To determine whether amino acid changes restricted to the oligosaccharide binding site are sufficient to determine receptor specificity and how changes in receptor usage affect tropism, we studied the primate polyomavirus simian virus 40 (SV40), which uses the ganglioside GM1 as a receptor that mediates cell binding and entry. Here, we used two sequential genetic screens to isolate and characterize viable SV40 mutants with mutations in the VP1 GM1 binding site. Two of these mutants were completely resistant to GM1 neutralization, were no longer stimulated by incorporation of GM1 into cell membranes, and were unable to bind to GM1 on the cell surface. In addition, these mutant viruses displayed an infection defect in monkey cells with high levels of cell surface GM1. Interestingly, one mutant infected cells with low cell surface GM1 more efficiently than wild-type virus, apparently by utilizing a different ganglioside receptor. Our results indicate that a small number of mutations in the GM1 binding site are sufficient to alter ganglioside usage and change tropism, and they suggest that VP1 divergence is driven primarily by a requirement to accommodate specific receptors. In addition, our results suggest that GM1 binding is required for vacuole formation in permissive monkey CV-1 cells. Further study of these mutants will provide new insight into polyomavirus entry, pathogenesis, and evolution. PMID:22514351

  11. Lipid-sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1

    PubMed Central

    Chinnapen, Daniel J.-F.; Hsieh, Wan-Ting; te Welscher, Yvonne M.; Saslowsky, David E.; Kaoutzani, Lydia; Brandsma, Eelke; D’Auria, Ludovic; Park, Hyejung; Wagner, Jessica S.; Drake, Kimberly R.; Kang, Minchul; Benjamin, Thomas; Ullman, M. David; Costello, Catherine E.; Kenworthy, Anne K.; Baumgart, Tobias; Massol, Ramiro H.; Lencer, Wayne I.

    2012-01-01

    SUMMARY The glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells. Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER. Toxin binding, which effectively crosslinks GM1 lipids, was dispensable, but membrane cholesterol and the lipid raft-associated proteins actin and flotillin were required. The results implicate a protein-dependent mechanism of lipid-sorting by ceramide structure and provide a molecular explanation for the diversity and specificity of retrograde trafficking by CT in host cells. PMID:22975326

  12. Application of Grey Model GM(1, 1) to Ultra Short-Term Predictions of Universal Time

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Guo, Min; Zhao, Danning; Cai, Hongbing; Hu, Dandan

    2016-03-01

    A mathematical model known as one-order one-variable grey differential equation model GM(1, 1) has been herein employed successfully for the ultra short-term (<10days) predictions of universal time (UT1-UTC). The results of predictions are analyzed and compared with those obtained by other methods. It is shown that the accuracy of the predictions is comparable with that obtained by other prediction methods. The proposed method is able to yield an exact prediction even though only a few observations are provided. Hence it is very valuable in the case of a small size dataset since traditional methods, e.g., least-squares (LS) extrapolation, require longer data span to make a good forecast. In addition, these results can be obtained without making any assumption about an original dataset, and thus is of high reliability. Another advantage is that the developed method is easy to use. All these reveal a great potential of the GM(1, 1) model for UT1-UTC predictions.

  13. Improving the detection of IgM antibodies against glycolipids complexes of GM1 and Galactocerebroside in Multifocal Motor Neuropathy using glycoarray and ELISA assays.

    PubMed

    Delmont, Emilien; Halstead, Susan; Galban-Horcajo, Francesc; Yao, Denggao; Desnuelle, Claude; Willison, Hugh

    2015-01-15

    Antibodies against complexes of GM1:GalC are detected in multifocal motor neuropathy. Previous studies used different techniques, explaining disparities in the results. Antibodies against GM1 and GM1:GalC with different proportions of GalC were measured with both glycoarray and ELISA in 20 multifocal motor neuropathies, and 45 controls. The 1:5 ratio and the 1:1 ratio of GM1:GalC (weight ratio) were respectively the most effective for glycoarray and for ELISA. Testing for anti-GM1:GalC antibodies increased the sensitivity from 40% with anti-GM1 antibodies to 65% with array and 60% with ELISA without loss in specificity (above 91%). Anti-GM1:GalC antibodies are effective biological tools to diagnose multifocal motor neuropathy. PMID:25468269

  14. The morphology of GM1 x/SM 0.6-x/Chol 0.4 planar bilayers supported on SiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Mao, Yanli; Tero, Ryugo; Imai, Yosuke; Hoshino, Tyuji; Urisu, Tsuneo

    2008-07-01

    Ganglioside GM1 (GM1), sphingomyelin (SM) and cholesterol (Chol) are dominant lipid components of rafts in plasma membranes. The morphology of GM1 x/SM 0.6-x/Chol 0.4 SPBs on SiO 2 surfaces has been studied by atomic force microscopy and fluorescence microscopy at various ratios of GM1/SM ( x = 0-0.25). The unique changes in morphology depending on the GM1 concentrations are qualitatively explained by hydrogen bonding and the hydrophobic interactions between SM and Chol, and by hydrogen bonding and the steric effects between bulky GM1 headgroups under Ca 2+ existing conditions and the electrostatic repulsion between the negative charges of GM1 headgroups under Ca 2+ nonexisting conditions.

  15. The Natural History of Juvenile or Subacute GM2 Gangliosidosis: 21 New Cases and Literature Review of 134 Previously Reported

    PubMed Central

    Maegawa, Gustavo H. B.; Stockley, Tracy; Tropak, Michael; Banwell, Brenda; Blaser, Susan; Kok, Fernando; Giugliani, Roberto; Mahuran, Don; Clarke, Joe T. R.

    2010-01-01

    OBJECTIVE Juvenile GM2 gangliosidosis is a group of inherited neurodegenerative diseases caused by deficiency of lysosomal β-hexosaminidase resulting in GM2 ganglioside accumulation in brain. The purpose of this study was to delineate the natural history of the condition and identify genotype-phenotype correlations that might be helpful in predicting the course of the disease in individual patients. METHODS A cohort of 21 patients with juvenile GM2 gangliosidosis, 15 with the Tay-Sachs variant and 6 with the Sandhoff variant, was studied prospectively in 2 centers. Our experience was compared with previously published reports on 134 patients. Information about clinical features, β-hexosaminidase enzyme activity, and mutation analysis was collected. RESULTS In our cohort of patients, the mean (±SD) age of onset of symptoms was 5.3 ± 4.1 years, with a mean follow-up time of 8.4 years. The most common symptoms at onset were gait disturbances (66.7%), incoordination (52.4%), speech problems (28.6%), and developmental delay (28.6%). The age of onset of gait disturbances was 7.1 ± 5.6 years. The mean time for progression to becoming wheelchair-bound was 6.2 ± 5.5 years. The mean age of onset of speech problems was 7.0 ± 5.6 years, with a mean time of progression to anarthria of 5.6 ± 5.3 years. Muscle wasting (10.6 ± 7.4 years), proximal weakness (11.1 ± 7.7 years), and incontinence of sphincters (14.6 ± 9.7 years) appeared later in the course of the disease. Psychiatric disturbances and neuropathy were more prevalent in patients with the Sandhoff variant than in those with the Tay-Sachs variant. However, dysphagia, sphincter incontinence, and sleep problems occurred earlier in those with the Tay-Sachs variant. Cerebellar atrophy was the most common finding on brain MRI (52.9%). The median survival time among the studied and reviewed patients was 14.5 years. The genotype-phenotype correlation revealed that in patients with the Tay-Sachs variant, the presence

  16. Synthesis of reference standards to enable single cell metabolomic studies of tetramethylrhodamine-labelled ganglioside GM1

    PubMed Central

    Larsson, E. Andreas; Olsson, Ulf; Whitmore, Colin; Martins, Rita; Tettamanti, Guido; Schnaar, Ronald L.; Dovichi, Norman J.; Palcic, Monica M.; Hindsgaul, Ole

    2007-01-01

    Ganglioside GM1 and its seven potential catabolic products: asialo-GM1, GM2, asialo-GM2, GM3, Lac-Cer, Glc-Cer and Cer, were labelled with tetramethylrhodamine (TMR) to permit ultra-sensitive analysis using laser-induced fluorescence (LIF) detection. The preparation involved acylation of the homogenous C18 lyso-forms of GM1, Lac-Cer, Glc-Cer and Cer with the N-hydroxysuccinimide ester of a β-alanine-tethered 6-TMR derivative, followed by conversion of these labelled products using galactosidase, sialidase and sialyltransferase enzymes. The TMR-glycolipd analogs produced are detectable on TLC down to the 1 ng level by naked eye. All 8 compounds could be separated in under 4 minutes in capillary electrophoresis where they could be detected at the zeptomole (ca 1000 molecule) level using LIF. PMID:17069778

  17. GM1 cluster mediates formation of toxic Aβ fibrils by providing hydrophobic environments.

    PubMed

    Fukunaga, Saori; Ueno, Hiroshi; Yamaguchi, Takahiro; Yano, Yoshiaki; Hoshino, Masaru; Matsuzaki, Katsumi

    2012-10-16

    The conversion of soluble, nontoxic amyloid β-proteins (Aβ) to aggregated, toxic forms rich in β-sheets is considered to be a key step in the development of Alzheimer's disease. Accumulating evidence suggests that lipid-protein interactions play a crucial role in the aggregation of amyloidogenic proteins like Aβ. Our group has previously reported that amyloid fibrils of Aβ formed on membranes containing clusters of GM1 ganglioside (M-fibrils) exhibit greater cytotoxicity than fibrils formed in aqueous solution (W-fibrils) [ Okada ( 2008 ) J. Mol. Biol. 382 , 1066 - 1074 ]. W-fibrils are considered to consist of in-register parallel β-sheets. However, the precise molecular structure of M-fibrils and force driving the formation of toxic fibrils remain unclear. In this study, we hypothesized that low-polarity environments provided by GM1 clusters drive the formation of toxic fibrils and compared the structure and cytotoxicity of W-fibrils, M-fibrils, and aggregates formed in a low-polarity solution mimicking membrane environments. First, we determined solvent conditions which mimic the polarity of raftlike membranes using Aβ-(1-40) labeled with the 7-diethylaminocoumarin-3-carbonyl dye. The polarity of a mixture of 80% 1,4-dioxane and 20% water (v/v) was found to be close to that of raftlike membranes. Aβ-(1-40) formed amyloid fibrils within several hours in 80% dioxane (D-fibrils) or in the presence of raftlike membranes, whereas a much longer incubation time was required for fibril formation in a conventional buffer. D-fibrils were morphologically similar to M-fibrils. Fourier-transform infrared spectroscopy suggested that M-fibrils and D-fibrils contained antiparallel β-sheets. These fibrils had greater surface hydrophobicity and exhibited significant toxicity against human neuroblastoma SH-SY5Y cells, whereas W-fibrils with less surface hydrophobicity were not cytotoxic. We concluded that ganglioside clusters mediate the formation of toxic amyloid fibrils

  18. Effects of ganglioside G(M1) and erythropoietin on spinal cord lesions in rats: functional and histological evaluations

    PubMed Central

    Marcon, Raphael Martus; Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Ferreira, Ricardo; dos Santos, Gustavo Bispo

    2016-01-01

    OBJECTIVE: To evaluate the functional and histological effects of ganglioside G(M1) and erythropoietin after experimental spinal cord contusion injury. METHODS: Fifty male Wistar rats underwent experimental spinal cord lesioning using an NYU-Impactor device and were randomly divided into the following groups, which received treatment intraperitoneally. The G(M1) group received ganglioside G(M1) (30 mg/kg); the erythropoietin group received erythropoietin (1000 IU/kg); the combined group received both drugs; and the saline group received saline (0.9%) as a control. A fifth group was the laminectomy group, in which the animals were subjected to laminectomy alone, without spinal lesioning or treatment. The animals were evaluated according to the Basso, Beattie and Bresnahan (BBB) scale, motor evoked potential recordings and, after euthanasia, histological analysis of spinal cord tissue. RESULTS: The erythropoietin group had higher BBB scores than the G(M1) group. The combined group had the highest BBB scores, and the saline group had the lowest BBB scores. No significant difference in latency was observed between the three groups that underwent spinal cord lesioning and intervention. However, the combined group showed a significantly higher signal amplitude than the other treatment groups or the saline group (p<0.01). Histological tissue analysis showed no significant difference between the groups. Axonal index was significantly enhanced in the combined group than any other intervention (p<0.01). CONCLUSION: G(M1) and erythropoietin exert therapeutic effects on axonal regeneration and electrophysiological and motor functions in rats subjected to experimental spinal cord lesioning and administering these two substances in combination potentiates their effects. PMID:27438570

  19. Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane.

    PubMed

    Takagishi, Teruhisa; Oda, Masataka; Kabura, Michiko; Kurosawa, Mie; Tominaga, Kaori; Urano, Shiori; Ueda, Yoshibumi; Kobayashi, Keiko; Kobayashi, Toshihide; Sakurai, Jun; Terao, Yutaka; Nagahama, Masahiro

    2015-01-01

    Clostridium perfringens alpha-toxin elicits various immune responses such as the release of cytokines, chemokines, and superoxide via the GM1a/TrkA complex. Alpha-toxin possesses phospholipase C (PLC) hydrolytic activity that contributes to signal transduction in the pathogenesis of gas gangrene. Little is known about the relationship between lipid metabolism and TrkA activation by alpha-toxin. Using live-cell fluorescence microscopy, we monitored transbilayer movement of diacylglycerol (DAG) with the yellow fluorescent protein-tagged C1AB domain of protein kinase C-γ (EYFP-C1AB). DAG accumulated at the marginal region of the plasma membrane in alpha toxin-treated A549 cells, which also exhibited GM1a clustering and TrkA phosphorylation. Annexin V binding assays showed that alpha-toxin induced the exposure of phosphatidylserine on the outer leaflet of the plasma membrane. However, H148G, a variant toxin which binds cell membrane and has no enzymatic activity, did not induce DAG translocation, GM1a clustering, or TrkA phosphorylation. Alpha-toxin also specifically activated endogenous phospholipase Cγ-1 (PLCγ-1), a TrkA adaptor protein, via phosphorylation. U73122, an endogenous PLC inhibitor, and siRNA for PLCγ-1 inhibited the formation of DAG and release of IL-8. GM1a accumulation and TrkA phosphorylation in A549 cells treated with alpha-toxin were also inhibited by U73122. These results suggest that the flip-flop motion of hydrophobic lipids such as DAG leads to the accumulation of GM1a and TrkA. We conclude that the formation of DAG by alpha-toxin itself (first step) and activation of endogenous PLCγ-1 (second step) leads to alterations in membrane dynamics, followed by strong phosphorylation of TrkA. PMID:25910247

  20. Increased Expression of GM1 Detected by Electrospray Mass Spectrometry in Rat Primary Embryonic Cortical Neurons Exposed to Glutamate Toxicity.

    PubMed

    Park, Dae Hee; Wang, Lynn; Pittock, Paula; Lajoie, Gilles; Whitehead, Shawn Narain

    2016-08-01

    Neurons within different brain regions have varying levels of vulnerability to external stress and respond differently to injury. A potential reason to explain this may lie within a key lipid class of the cell's plasma membrane called gangliosides. These glycosphingolipid species have been shown to play various roles in the maintenance of neuronal viability. The purpose of this study is to use electrospray ionization mass spectrometry (ESI-MS) and immunohistochemistry to evaluate the temporal expression profiles of gangliosides during the course of neurodegeneration in rat primary cortical neurons exposed to glutamate toxicity. Primary embryonic (E18) rat cortical neurons were cultured to DIV (days in vitro) 14. Glutamate toxicity was induced for 1, 3, 6, and 24 h to injure and kill neurons. Immunofluorescence was used to stain for GM1 and GM3 species, and ESI-MS was used to quantify the ganglioside species expressed within these injured neurons. ESI-MS data revealed that GM1, GM2, and GM3 were up-regulated in neurons exposed to glutamate. Interestingly, using immunofluorescence, we demonstrated that the GM1 increase following glutamate exposure occurred in viable neurons, possibly indicating a potential intrinsic neuroprotective response. To test this potential neuroprotective property, neurons were pretreated with GM1 for 24 h prior to glutamate exposure. Pretreatment with GM1 conferred significant neuroprotection against glutamate-induced cell death. Overall, work from this study validates the use of ESI-MS for cell-derived gangliosides and supports the further development of lipid based strategies to protect against neuron cell death. PMID:27376483

  1. Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane

    PubMed Central

    Takagishi, Teruhisa; Oda, Masataka; Kabura, Michiko; Kurosawa, Mie; Tominaga, Kaori; Urano, Shiori; Ueda, Yoshibumi; Kobayashi, Keiko; Kobayashi, Toshihide; Sakurai, Jun; Terao, Yutaka; Nagahama, Masahiro

    2015-01-01

    Clostridium perfringens alpha-toxin elicits various immune responses such as the release of cytokines, chemokines, and superoxide via the GM1a/TrkA complex. Alpha-toxin possesses phospholipase C (PLC) hydrolytic activity that contributes to signal transduction in the pathogenesis of gas gangrene. Little is known about the relationship between lipid metabolism and TrkA activation by alpha-toxin. Using live-cell fluorescence microscopy, we monitored transbilayer movement of diacylglycerol (DAG) with the yellow fluorescent protein-tagged C1AB domain of protein kinase C-γ (EYFP-C1AB). DAG accumulated at the marginal region of the plasma membrane in alpha toxin-treated A549 cells, which also exhibited GM1a clustering and TrkA phosphorylation. Annexin V binding assays showed that alpha-toxin induced the exposure of phosphatidylserine on the outer leaflet of the plasma membrane. However, H148G, a variant toxin which binds cell membrane and has no enzymatic activity, did not induce DAG translocation, GM1a clustering, or TrkA phosphorylation. Alpha-toxin also specifically activated endogenous phospholipase Cγ-1 (PLCγ-1), a TrkA adaptor protein, via phosphorylation. U73122, an endogenous PLC inhibitor, and siRNA for PLCγ-1 inhibited the formation of DAG and release of IL-8. GM1a accumulation and TrkA phosphorylation in A549 cells treated with alpha-toxin were also inhibited by U73122. These results suggest that the flip-flop motion of hydrophobic lipids such as DAG leads to the accumulation of GM1a and TrkA. We conclude that the formation of DAG by alpha-toxin itself (first step) and activation of endogenous PLCγ-1 (second step) leads to alterations in membrane dynamics, followed by strong phosphorylation of TrkA. PMID:25910247

  2. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    PubMed

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  3. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    PubMed Central

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  4. GM1 ganglioside reduces the motor incoordination and loss of righting reflex caused by acute ethanol in C57BL/6J mice

    SciTech Connect

    Wallis, C.; Rezazadeh, S.M.; Forster, M.J.; Lal, H. )

    1992-02-26

    Ethanol produces its intoxicating effects by modifying neuronal membranes. Gangliosides stabilize neuronal membranes and promote their recovery from a variety of insults. In this experiment, the efficacy of GM1(i.p.) to reverse ethanol intoxication was evaluated in male mice trained to run on a constantly accelerating rotorod. When mice were tested 15-min following saline or ethanol GM1 pre-treatment reduced rotorod performance by 15% but was ineffective in modifying the ethanol-impaired performance. However, when mice were tested at 15, 35, 55, 75, and 95 min intervals following ethanol, GM1 pre-treatments dose-dependently reduced the efficacy and duration of ethanol in producing motor incoordination. Further, GM1 given prior to ethanol significantly prolonged the time to onset of the loss of righting reflex from 1.4 to 1.9 min, and reduced the duration of the righting-reflex loss from 94 to 77 min. This GM1 effect was seen at 24 h, but not at 48 or 72 h after its administration. The blood ethanol concentration at awakening was significantly higher in 24h GM1-treated animals than in controls suggesting that the GM1 effect was not due to an alteration in ethanol clearance. These findings support the hypothesis that GM1 promotes recovery from ethanol intoxication via a neuroprotective mechanism.

  5. Induction of antibody to asialo GM1 by spermatozoa and its occurrence in the sera of homosexual men with the acquired immune deficiency syndrome (AIDS).

    PubMed Central

    Witkin, S S; Sonnabend, J; Richards, J M; Purtilo, D T

    1983-01-01

    Compared to healthy homosexual and heterosexual men, homosexual men with acquired immune deficiency syndrome (AIDS) possessed significantly higher levels of IgG antibody to the neutral glycolipid asialo GM1 (ganglio-N-tetraosylceramide) (P less than 0.01). Of 31 homosexuals with AIDS, 36% possessed levels of this antibody that were at least two standard deviations above the mean of the healthy men. Furthermore, asialo GM1 antibody could be removed from serum by adsorption with spermatozoa. Weekly rectal insemination of male rabbits with rabbit semen also led to the appearance of antibody to asialo GM1 by 15 weeks. These results suggest that asialo GM1 is a component of ejaculated spermatozoa and demonstrate that rectal insemination by itself can lead to the production of antibodies to this glycolipid in the rabbit. In addition, asialo GM1 antibodies may be of value as a serological marker for the early detection of individuals with AIDS. PMID:6652964

  6. Biochemical characterization of the interactions between doxorubicin and lipidic GM1 micelles with or without paclitaxel loading.

    PubMed

    Leonhard, Victoria; Alasino, Roxana V; Bianco, Ismael D; Garro, Ariel G; Heredia, Valeria; Beltramo, Dante M

    2015-01-01

    Doxorubicin (Dox) is an anthracycline anticancer drug with high water solubility, whose use is limited primarily due to significant side effects. In this study it is shown that Dox interacts with monosialoglycosphingolipid (GM1) ganglioside micelles primarily through hydrophobic interactions independent of pH and ionic strength. In addition, Dox can be incorporated even into GM1 micelles already containing highly hydrophobic paclitaxel (Ptx). However, it was not possible to incorporate Ptx into Dox-containing GM1 micelles, suggesting that Dox could be occupying a more external position in the micelles. This result is in agreement with a higher hydrolysis of Dox than of Ptx when micelles were incubated at alkaline pH. The loading of Dox into GM1 micelles was observed over a broad range of temperature (4°C-55°C). Furthermore, Dox-loaded micelles were stable in aqueous solutions exhibiting no aggregation or precipitation for up to 2 months when kept at 4°C-25°C and even after freeze-thawing cycles. Upon exposure to blood components, Dox-containing micelles were observed to interact with human serum albumin. However, the amount of human serum albumin that ended up being associated to the micelles was inversely related to the amount of Dox, suggesting that both could share their binding sites. In vitro studies on Hep2 cells showed that the cellular uptake and cytotoxic activity of Dox and Ptx from the micellar complexes were similar to those of the free form of these drugs, even when the micelle was covered with albumin. These results support the idea of the existence of different nano-domains in a single micelle and the fact that this micellar model could be used as a platform for loading and delivering hydrophobic and hydrophilic active pharmaceutical ingredients. PMID:26005348

  7. Biochemical characterization of the interactions between doxorubicin and lipidic GM1 micelles with or without paclitaxel loading

    PubMed Central

    Leonhard, Victoria; Alasino, Roxana V; Bianco, Ismael D; Garro, Ariel G; Heredia, Valeria; Beltramo, Dante M

    2015-01-01

    Doxorubicin (Dox) is an anthracycline anticancer drug with high water solubility, whose use is limited primarily due to significant side effects. In this study it is shown that Dox interacts with monosialoglycosphingolipid (GM1) ganglioside micelles primarily through hydrophobic interactions independent of pH and ionic strength. In addition, Dox can be incorporated even into GM1 micelles already containing highly hydrophobic paclitaxel (Ptx). However, it was not possible to incorporate Ptx into Dox-containing GM1 micelles, suggesting that Dox could be occupying a more external position in the micelles. This result is in agreement with a higher hydrolysis of Dox than of Ptx when micelles were incubated at alkaline pH. The loading of Dox into GM1 micelles was observed over a broad range of temperature (4°C–55°C). Furthermore, Dox-loaded micelles were stable in aqueous solutions exhibiting no aggregation or precipitation for up to 2 months when kept at 4°C–25°C and even after freeze–thawing cycles. Upon exposure to blood components, Dox-containing micelles were observed to interact with human serum albumin. However, the amount of human serum albumin that ended up being associated to the micelles was inversely related to the amount of Dox, suggesting that both could share their binding sites. In vitro studies on Hep2 cells showed that the cellular uptake and cytotoxic activity of Dox and Ptx from the micellar complexes were similar to those of the free form of these drugs, even when the micelle was covered with albumin. These results support the idea of the existence of different nano-domains in a single micelle and the fact that this micellar model could be used as a platform for loading and delivering hydrophobic and hydrophilic active pharmaceutical ingredients. PMID:26005348

  8. Binding Cooperativity Matters: A GM1-Like Ganglioside-Cholera Toxin B Subunit Binding Study Using a Nanocube-Based Lipid Bilayer Array

    PubMed Central

    Weatherston, Joshua D.

    2016-01-01

    Protein-glycan recognition is often mediated by multivalent binding. These multivalent bindings can be further complicated by cooperative interactions between glycans and individual glycan binding subunits. Here we have demonstrated a nanocube-based lipid bilayer array capable of quantitatively elucidating binding dissociation constants, maximum binding capacity, and binding cooperativity in a high-throughput format. Taking cholera toxin B subunit (CTB) as a model cooperativity system, we studied both GM1 and GM1-like gangliosides binding to CTB. We confirmed the previously observed CTB-GM1 positive cooperativity. Surprisingly, we demonstrated fucosyl-GM1 has approximately 7 times higher CTB binding capacity than GM1. In order to explain this phenomenon, we hypothesized that the reduced binding cooperativity of fucosyl-GM1 caused the increased binding capacity. This was unintuitive, as GM1 exhibited higher binding avidity (16 times lower dissociation constant). We confirmed the hypothesis using a theoretical stepwise binding model of CTB. Moreover, by taking a mixture of fucosyl-GM1 and GM2, we observed the mild binding avidity fucosyl-GM1 activated GM2 receptors enhancing the binding capacity of the lipid bilayer surface. This was unexpected as GM2 receptors have negligible binding avidity in pure GM2 bilayers. These unexpected discoveries demonstrate the importance of binding cooperativity in multivalent binding mechanisms. Thus, quantitative analysis of multivalent protein-glycan interactions in heterogeneous glycan systems is of critical importance. Our user-friendly, robust, and high-throughput nanocube-based lipid bilayer array offers an attractive method for dissecting these complex mechanisms. PMID:27070150

  9. Binding Cooperativity Matters: A GM1-Like Ganglioside-Cholera Toxin B Subunit Binding Study Using a Nanocube-Based Lipid Bilayer Array.

    PubMed

    Worstell, Nolan C; Krishnan, Pratik; Weatherston, Joshua D; Wu, Hung-Jen

    2016-01-01

    Protein-glycan recognition is often mediated by multivalent binding. These multivalent bindings can be further complicated by cooperative interactions between glycans and individual glycan binding subunits. Here we have demonstrated a nanocube-based lipid bilayer array capable of quantitatively elucidating binding dissociation constants, maximum binding capacity, and binding cooperativity in a high-throughput format. Taking cholera toxin B subunit (CTB) as a model cooperativity system, we studied both GM1 and GM1-like gangliosides binding to CTB. We confirmed the previously observed CTB-GM1 positive cooperativity. Surprisingly, we demonstrated fucosyl-GM1 has approximately 7 times higher CTB binding capacity than GM1. In order to explain this phenomenon, we hypothesized that the reduced binding cooperativity of fucosyl-GM1 caused the increased binding capacity. This was unintuitive, as GM1 exhibited higher binding avidity (16 times lower dissociation constant). We confirmed the hypothesis using a theoretical stepwise binding model of CTB. Moreover, by taking a mixture of fucosyl-GM1 and GM2, we observed the mild binding avidity fucosyl-GM1 activated GM2 receptors enhancing the binding capacity of the lipid bilayer surface. This was unexpected as GM2 receptors have negligible binding avidity in pure GM2 bilayers. These unexpected discoveries demonstrate the importance of binding cooperativity in multivalent binding mechanisms. Thus, quantitative analysis of multivalent protein-glycan interactions in heterogeneous glycan systems is of critical importance. Our user-friendly, robust, and high-throughput nanocube-based lipid bilayer array offers an attractive method for dissecting these complex mechanisms. PMID:27070150

  10. Comparison of two GM1-erythrocyte assays to detect heat-labile Escherichia coli enterotoxin in stool specimens.

    PubMed

    Germani, Y; Guesdon, J L; Phalente, L; Begaud, E; Moreau, J P

    1988-05-01

    Two erythrocyte immunoassay techniques to detect the presence of Escherichia coli heat-labile enterotoxin (LTh) in stool supernatants and cell-free culture supernatants were compared. In the competitive assay, GM1 ganglioside was coated onto V-shaped-well microdilution plates and enterotoxin was coupled to sheep erythrocytes. As little as 0.8 ng of LTh per ml was detected by this method, which was based on the competition between the LTh of the test sample and the sensitized erythrocytes. The second assay made use of chimera antibody prepared by coupling polyclonal anti-LTh antibody to a monoclonal antibody specific for sheep erythrocytes. In this case, LTh, which was specifically bound to a GM1 ganglioside-coated plate, was detected by successively adding the chimera antibody and sheep erythrocytes. The limit of detection of the chimera antibody erythrocyte immunoassay was 0.2 ng/ml. Stool samples were collected from 167 infants hospitalized for diarrhea in the hospital of Noumea, New Caledonia. False-negative reactions due to proteases present in the stool samples were avoided by the addition of phenylmethylsulfonyl fluoride. PMID:3290242

  11. Differential Anatomical Expression of Ganglioside GM1 Species Containing d18:1 or d20:1 Sphingosine Detected by MALDI Imaging Mass Spectrometry in Mature Rat Brain

    PubMed Central

    Weishaupt, Nina; Caughlin, Sarah; Yeung, Ken K.-C.; Whitehead, Shawn N.

    2015-01-01

    GM1 ganglioside plays a role in essential neuronal processes, including differentiation, survival, and signaling. Yet, little is known about GM1 species with different sphingosine bases, such as the most abundant species containing 18 carbon atoms in the sphingosine chain (GM1d18:1), and the less abundant containing 20 carbon atoms (GM1d20:1). While absent in the early fetal brain, GM1d20:1 continues to increase throughout pre- and postnatal development and into old age, raising questions about the functional relevance of the GM1d18:1 to GM1d20:1 ratio. Matrix-assisted laser desorption/ionization imaging mass spectrometry is a novel technology that allows differentiation between these two GM1 species and quantification of their expression within an anatomical context. Using this technology, we find GM1d18:1/d20:1 expression ratios are highly specific to defined anatomical brain regions in adult rats. Thus, the ratio was significantly different among different thalamic nuclei and between the corpus callosum and internal capsule. Differential GM1d18:1/GM1d20:1 ratios measured in hippocampal subregions in rat brain complement previous studies conducted in mice. Across layers of the sensory cortex, opposing expression gradients were found for GM1d18:1 and GM1d20:1. Superficial layers demonstrated lower GM1d18:1 and higher GM1d20:1 signal than other layers, while in deep layers GM1d18:1 expression was relatively high and GM1d20:1 expression low. By far the highest GM1d18:1/d20:1 ratio was found in the amygdala. Differential expression of GM1 with d18:1- or d20:1-sphingosine bases in the adult rat brain suggests tight regulation of expression and points toward a distinct functional relevance for each of these GM1 species in neuronal processes. PMID:26648849

  12. Binding, Conformational Transition and Dimerization of Amyloid-β Peptide on GM1-Containing Ternary Membrane: Insights from Molecular Dynamics Simulation

    PubMed Central

    Manna, Moutusi; Mukhopadhyay, Chaitali

    2013-01-01

    Interactions of amyloid-β (Aβ) with neuronal membrane are associated with the progression of Alzheimer’s disease (AD). Ganglioside GM1 has been shown to promote the structural conversion of Aβ and increase the rate of peptide aggregation; but the exact nature of interaction driving theses processes remains to be explored. In this work, we have carried out atomistic-scale computer simulations (totaling 2.65 µs) to investigate the behavior of Aβ monomer and dimers in GM1-containing raft-like membrane. The oligosaccharide head-group of GM1 was observed to act as scaffold for Aβ-binding through sugar-specific interactions. Starting from the initial helical peptide conformation, a β-hairpin motif was formed at the C-terminus of the GM1-bound Aβ-monomer; that didn’t appear in absence of GM1 (both in fluid POPC and liquid-ordered cholesterol/POPC bilayers and also in aqueous medium) within the simulation time span. For Aβ-dimers, the β-structure was further enhanced by peptide-peptide interactions, which might influence the propensity of Aβ to aggregate into higher-ordered structures. The salt-bridges and inter-peptide hydrogen bonds were found to account for dimer stability. We observed spontaneous formation of intra-peptide D23-K28 salt-bridge and a turn at V24GSN27 region - long been accepted as characteristic structural-motifs for amyloid self-assembly. Altogether, our results provide atomistic details of Aβ-GM1 and Aβ-Aβ interactions and demonstrate their importance in the early-stages of GM1-mediated Aβ-oligomerisation on membrane surface. PMID:23951128

  13. Late onset GM2 gangliosidosis mimicking spinal muscular atrophy.

    PubMed

    Jamrozik, Z; Lugowska, A; Gołębiowski, M; Królicki, L; Mączewska, J; Kuźma-Kozakiewicz, M

    2013-09-25

    A case of late onset GM2 gangliosidodis with spinal muscular atrophy phenotype followed by cerebellar and extrapyramidal symptoms is presented. Genetic analysis revealed compound heterozygous mutation in exon 10 of the HEXA gene. Patient has normal intelligence and emotional reactivity. Neuroimaging tests of the brain showed only cerebellar atrophy consistent with MR spectroscopy (MRS) abnormalities. (18)F-fluorodeoxyglucose positron emission tomography (18)F-FDG PET/CT of the brain revealed glucose hypometabolism in cerebellum and in temporal and occipital lobes bilaterally. PMID:23820084

  14. GM2 gangliosidosis in Saudi Arabia: multiple mutations and considerations for future carrier screening.

    PubMed

    Kaya, Namik; Al-Owain, Mohammad; Abudheim, Nada; Al-Zahrani, Jawaher; Colak, Dilek; Al-Sayed, Moeen; Milanlioglu, Aysel; Ozand, Pinar T; Alkuraya, Fowzan S

    2011-06-01

    The GM2 gangliosidose, Tay-Sachs and Sandhoff diseases, are a class of lysosomal storage diseases in which relentless neurodegeneration results in devastating neurological disability and premature death. Primary prevention is the most effective intervention since no effective therapy is currently available. An extremely successful model for the prevention of GM2 gangliosidosis in the Ashkenazi Jewish community is largely attributable to the very limited number of founder mutations in that population. Consistent with our previous observation of allelic heterogeneity in consanguineous populations, we show here that these diseases are largely caused by private mutations which present a major obstacle in replicating the Ashkenazi success story. Alternative solutions are proposed which can also be implemented for other autosomal recessive diseases in our population. PMID:21567908

  15. Binding of CFA/I Pili of Enterotoxigenic Escherichia coli to Asialo-GM1 Is Mediated by the Minor Pilin CfaE.

    PubMed

    Madhavan, T P Vipin; Riches, James D; Scanlon, Martin J; Ulett, Glen C; Sakellaris, Harry

    2016-05-01

    CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenic Escherichia coli to intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms. PMID:26975993

  16. [Molecular pathogenesis and therapeutic approach of GM2 gangliosidosis].

    PubMed

    Tsuji, Daisuke

    2013-01-01

    Tay-Sachs and Sandhoff diseases (GM2 gangliosidoses) are autosomal recessive lysosomal storage diseases caused by gene mutations in HEXA and HEXB, each encoding human lysosomal β-hexosaminidase α-subunits and β-subunits, respectively. In Tay-Sachs disease, excessive accumulation of GM2 ganglioside (GM2), mainly in the central nervous system, is caused by a deficiency of the HexA isozyme (αβ heterodimer), resulting in progressive neurologic disorders. In Sandhoff disease, combined deficiencies of HexA and HexB (ββ homodimer) cause not only the accumulation of GM2 but also of oligosaccharides carrying terminal N-acetylhexosamine residues (GlcNAc-oligosaccharides), resulting in systemic manifestations including hepatosplenomegaly as well as neurologic symptoms. Hence there is little clinically effective treatment for these GM2 gangliosidoses. Recent studies on the molecular pathogenesis in Sandhoff disease patients and disease model mice have shown the involvement of microglial activation and chemokine induction in neuroinflammation and neurodegeneration in this disease. Experimental and therapeutic approaches, including recombinant enzyme replacement, have been performed using Sandhoff disease model mice, suggesting the future application of novel techniques to treat GM2 gangliosidoses (Hex deficiencies), including Sandhoff disease as well as Tay-Sachs disease. In this study, we isolated astrocytes and microglia from the neonatal brain of Sandhoff disease model mice and demonstrated abnormalities of glial cells. Moreover, we demonstrated the therapeutic effect of an intracerebroventricular administration of novel recombinant human HexA carrying a high content of M6P residue in Sandhoff disease model mice. PMID:23370522

  17. A Trp474Cys mutation in the alpha-subunit of beta-hexosaminidase causes a subacute encephalopathic form of G{sub M2} gangliosidosis, type 1

    SciTech Connect

    Petroulakis, E.; Cao, Z.; Salo, T.

    1994-09-01

    Mutations in the HEXA gene that encodes the {alpha}-subunit of the heterodimeric lysosomal enzyme {beta}-hexosaminidase A, or Hex A ({alpha}{beta}), cause G{sub M2} gangliosidosis, type 1. The infantile form (Tay-Sachs disease) results when there is no residual Hex A activity, while less severe and more variable clinical phenotypes result when residual Hex A activity is present. A non-Jewish male who presented with an acute psychotic episode at age 16 was diagnosed with a subacute encephalopathic form of G{sub M2} gangliosidosis. At age 19, chronic psychosis with intermittent acute exacerbations remains the most disabling symptom in this patient and his affected brother although both exhibit some ataxia and moderately severe dysarthria. We have found a 4 bp insertion (+TATC 1278) associated with infantile Tay-Sachs disease on one allele; no previously identified mutation was found on the second allele. SSCP analysis detected a shift in exon 13 and sequencing revealed a G1422C mutation in the second allele that results in a Trp474Cys substitution. The presence of the mutation was confirmed by the loss of HaeIII and ScrFI sites in exon 13 PCR products from the subjects and their father. The mutation was introduced into the {alpha}-subunit cDNA and Hex S ({alpha}{alpha}) and Hex A ({alpha}{beta}) were transiently expressed in monkey COS-7 cells. The Trp474Cys mutant protein had approximately 5% and 12% of wild-type Hex S and Hex A activity, respectively. Western blot analysis revealed a small amount of residual mature {alpha}-subunit and a normal level of precursor protein. We conclude that the Trp474Cys mutation is the cause of the Hex A deficiency associated with a subacute (juvenile-onset) phenotype in this patient. Like other mutations in exon 13 of HEXA, it appears to affect intracellular processing. Studies of the defect in intracellular processing are in progress.

  18. GM2 gangliosidosis associated with a HEXA missense mutation in Japanese Chin dogs: a potential model for Tay Sachs disease.

    PubMed

    Sanders, Douglas N; Zeng, Rong; Wenger, David A; Johnson, Gary S; Johnson, Gayle C; Decker, Jared E; Katz, Martin L; Platt, Simon R; O'Brien, Dennis P

    2013-01-01

    GM2 gangliosidosis is a fatal lysosomal storage disease caused by a deficiency of β-hexosaminidase (EC 3.2.1.52). There are two major isoforms of the enzyme: hexosaminidase A composed of an α and a β subunit (encoded by HEXA and HEXB genes, respectively); and, hexosaminidase B composed of two β subunits. Hexosaminidase A requires an activator protein encoded by GM2A to catabolize GM2 ganglioside, but even in the absence of the activator protein, it can hydrolyze the synthetic substrates commonly used to assess enzyme activity. GM2 gangliosidosis has been reported in Japanese Chin dogs, and we identified the disease in two related Japanese Chin dogs based on clinical signs, histopathology and elevated brain GM2 gangliosides. As in previous reports, we found normal or elevated hexosaminidase activity when measured with the synthetic substrates. This suggested that the canine disease is analogous to human AB variant of G(M2) gangliosidosis, which results from mutations in GM2A. However, only common neutral single nucleotide polymorphisms were found upon sequence analysis of the canine ortholog of GM2A from the affected Japanese Chins. When the same DNA samples were used to sequence HEXA, we identified a homozygous HEXA:c967G>A transition which predicts a p.E323K substitution. The glutamyl moiety at 323 is known to make an essential contribution to the active site of hexosaminidase A, and none of the 128 normal Japanese Chins and 92 normal dogs of other breeds that we tested was homozygous for HEXA:c967A. Thus it appears that the HEXA:c967G>A transition is responsible for the GM2 gangliosidosis in Japanese Chins. PMID:23266199

  19. Segregative clustering of Lo and Ld membrane microdomains induced by local pH gradients in GM1-containing giant vesicles: a lipid model for cellular polarization.

    PubMed

    Staneva, Galya; Puff, Nicolas; Seigneuret, Michel; Conjeaud, Hélène; Angelova, Miglena I

    2012-11-27

    Several cell polarization processes are coupled to local pH gradients at the membrane surface. We have investigated the involvement of a lipid-mediated effect in such coupling. The influence of lateral pH gradients along the membrane surface on lipid microdomain dynamics in giant unilamellar vesicles containing phosphatidylcholine, sphingomyelin, cholesterol, and the ganglioside GM1 was studied. Lo/Ld phase separation was generated by photosensitization. A lateral pH gradient was established along the external membrane surface by acid local microinjection. The gradient promotes the segregation of microdomains: Lo domains within an Ld phase move toward the higher pH side, whereas Ld domains within an Lo phase move toward the lower pH side. This results in a polarization of the vesicle membrane into Lo and Ld phases poles in the axis of the proton source. A secondary effect is inward tubulation in the Ld phase. None of these processes occurs without GM1 or with the analog asialo-GM1. These are therefore related to the acidic character of the GM1 headgroup. LAURDAN fluorescence experiments on large unilamellar vesicles indicated that, with GM1, an increase in lipid packing occurs with decreasing pH, attributed to the lowering of repulsion between GM1 molecules. Packing increase is much higher for Ld phase vesicles than for Lo phase vesicles. It is proposed that the driving forces for domain vectorial segregative clustering and vesicle polarization are related to such differences in packing variations with pH decrease between the Lo and Ld phases. Such pH-driven domain clustering might play a role in cellular membrane polarization processes in which local lateral pH gradients are known to be important, such as migrating cells and epithelial cells. PMID:23121205

  20. Novel GM1 ganglioside-like peptide mimics prevent the association of cholera toxin to human intestinal epithelial cells in vitro.

    PubMed

    Yu, Robert K; Usuki, Seigo; Itokazu, Yutaka; Wu, Han-Chung

    2016-01-01

    Cholera is an acute diarrheal disease caused by infection in the gastrointestinal tract by the gram-negative bacterium, Vibrio cholerae, and is a serious public health threat worldwide. There has not been any effective treatment for this infectious disease. Cholera toxin (CT), which is secreted by V. cholerae, can enter host cells by binding to GM1, a monosialoganglioside widely distributed on the plasma membrane surface of various animal epithelial cells. The present study was undertaken to generate peptides that are conformationally similar to the carbohydrate epitope of GM1 for use in the treatment of cholera and related bacterial infection. For this purpose, we used cholera toxin B (CTB) subunit to select CTB-binding peptides that structurally mimic GM1 from a dodecamer phage-display library. Six GM1-replica peptides were selected by biopanning based on CTB recognition. Five of the six peptides showed inhibitory activity for GM1 binding to CTB. To test the potential of employing the peptide mimics for intervening with the bacterial infection, those peptides were examined for their binding capacity, functional inhibitory activity and in vitro effects using a human intestinal epithelial cell line, Caco-2 cells. One of the peptides, P3 (IPQVWRDWFKLP), was most effective in inhibiting cellular uptake of CTB and suppressing CT-stimulated cyclic adenosine monophosphate production in the cells. Our results thus provide convincing evidence that GM1-replica peptides could serve as novel agents to block CTB binding on epithelial cells and prevent the ensuing physiological effects of CT. PMID:26405107

  1. Chicken egg yolk anti-asialoGM1 immunoglobulin (IgY): an inexpensive glycohistochemical probe for localization of T-antigen in human colorectal adenocarcinomas.

    PubMed

    Sriram, V; Jebaraj, C E; Yogeeswaran, G

    1999-07-01

    A egg yolk polyclonal IgY has been prepared by immunization of white leghorn chickens with small unilamellar liposomal asialoGM1. The newly prepared anti-asialoGM1 IgY has been characterized to be specific toward the terminal carbohydrate moiety of asialoGM1, and has no cross reactivity to its sialylated counterpart (ganglioside, GM1) as evidenced by immunochromatographic studies. General glycohistochemical methods along with antigen specific lectin and immunohistochemical staining using anti-asialoGM1 IgY were used to study the expression of Thomsen-Friedenreich (T-) disaccharide antigen in human colorectal adenocarcinoma tissues. The expression of T-antigen in colon cancer tissue was detected by two T-disaccharide specific probes, chicken anti-T-yolk antibody (IgY) and Artocarpus integrifolia lectin (AIL) and was found to be more pronounced in both the secreted mucin as well as the cytoplasmic mucin deposits. These immunochemical detection methods for T-antigen showed a weaker correlation with other glycostaining methods using, alcian-blue/periodic acid-Schiff (AB-PAS) and high iron diamine (HID). However, a general enzymatic staining for galactose and galactosamine containing glycoconjugates, by galactose oxidase-Schiff method, showed a good correlation with T-antigen detection. While the T-beta specific anti-asialoGM1 could localize T-antigen in 11 of 13 (84%) human colorectal adenocarcinoma tissue sections tested, the T-alpha specific AIL could localize the T-antigen in only 6 of the tissues (46%). These observations confirm previously reported findings, of the prevalence of T-beta conformation in colon cancer, that binds significantly more with the anti-asialoGM1 IgY than with the T-alpha specific AIL. Hence, both anti-T IgY and the AIL immunohistochemical probes may have useful diagnostic value because of the ease of preparation and cost effectiveness, but the T-beta specific anti-asialoGM1 probe (IgY) would have a better prognostic value in colon

  2. Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model.

    PubMed

    Kitakaze, Keisuke; Mizutani, Yasumichi; Sugiyama, Eiji; Tasaki, Chikako; Tsuji, Daisuke; Maita, Nobuo; Hirokawa, Takatsugu; Asanuma, Daisuke; Kamiya, Mako; Sato, Kohei; Setou, Mitsutoshi; Urano, Yasuteru; Togawa, Tadayasu; Otaka, Akira; Sakuraba, Hitoshi; Itoh, Kohji

    2016-05-01

    GM2 gangliosidoses, including Tay-Sachs and Sandhoff diseases, are neurodegenerative lysosomal storage diseases that are caused by deficiency of β-hexosaminidase A, which comprises an αβ heterodimer. There are no effective treatments for these diseases; however, various strategies aimed at restoring β-hexosaminidase A have been explored. Here, we produced a modified human hexosaminidase subunit β (HexB), which we have termed mod2B, composed of homodimeric β subunits that contain amino acid sequences from the α subunit that confer GM2 ganglioside-degrading activity and protease resistance. We also developed fluorescent probes that allow visualization of endocytosis of mod2B via mannose 6-phosphate receptors and delivery of mod2B to lysosomes in GM2 gangliosidosis models. In addition, we applied imaging mass spectrometry to monitor efficacy of this approach in Sandhoff disease model mice. Following i.c.v. administration, mod2B was widely distributed and reduced accumulation of GM2, asialo-GM2, and bis(monoacylglycero)phosphate in brain regions including the hypothalamus, hippocampus, and cerebellum. Moreover, mod2B administration markedly improved motor dysfunction and a prolonged lifespan in Sandhoff disease mice. Together, the results of our study indicate that mod2B has potential for intracerebrospinal fluid enzyme replacement therapy and should be further explored as a gene therapy for GM2 gangliosidoses. PMID:27018595

  3. Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model

    PubMed Central

    Mizutani, Yasumichi; Sugiyama, Eiji; Tasaki, Chikako; Tsuji, Daisuke; Maita, Nobuo; Hirokawa, Takatsugu; Asanuma, Daisuke; Kamiya, Mako; Sato, Kohei; Setou, Mitsutoshi; Urano, Yasuteru; Togawa, Tadayasu; Otaka, Akira; Sakuraba, Hitoshi

    2016-01-01

    GM2 gangliosidoses, including Tay-Sachs and Sandhoff diseases, are neurodegenerative lysosomal storage diseases that are caused by deficiency of β-hexosaminidase A, which comprises an αβ heterodimer. There are no effective treatments for these diseases; however, various strategies aimed at restoring β-hexosaminidase A have been explored. Here, we produced a modified human hexosaminidase subunit β (HexB), which we have termed mod2B, composed of homodimeric β subunits that contain amino acid sequences from the α subunit that confer GM2 ganglioside–degrading activity and protease resistance. We also developed fluorescent probes that allow visualization of endocytosis of mod2B via mannose 6-phosphate receptors and delivery of mod2B to lysosomes in GM2 gangliosidosis models. In addition, we applied imaging mass spectrometry to monitor efficacy of this approach in Sandhoff disease model mice. Following i.c.v. administration, mod2B was widely distributed and reduced accumulation of GM2, asialo-GM2, and bis(monoacylglycero)phosphate in brain regions including the hypothalamus, hippocampus, and cerebellum. Moreover, mod2B administration markedly improved motor dysfunction and a prolonged lifespan in Sandhoff disease mice. Together, the results of our study indicate that mod2B has potential for intracerebrospinal fluid enzyme replacement therapy and should be further explored as a gene therapy for GM2 gangliosidoses. PMID:27018595

  4. Polycystic kidneys and GM2 gangliosidosis-like disease in neonatal springboks (Antidorcas marsupialis).

    PubMed

    Herder, V; Kummrow, M; Leeb, T; Sewell, A C; Hansmann, F; Lehmbecker, A; Wohlsein, P; Baumgärtner, W

    2015-05-01

    Clinical, gross, histopathologic, electron microscopic findings and enzymatic analysis of 4 captive, juvenile springboks (Antidorcas marsupialis) showing both polycystic kidneys and a storage disease are described. Springbok offspring (4 of 34; 12%) were affected by either one or both disorders in a German zoo within a period of 5 years (2008-2013). Macroscopic findings included bilaterally severely enlarged kidneys displaying numerous cysts in 4 animals and superior brachygnathism in 2 animals. Histopathologically, kidneys of 4 animals displayed cystic dilation of the renal tubules. In addition, abundant cytoplasmic vacuoles with a diameter ranging from 2 to 10 μm in neurons of the central and peripheral nervous system, hepatocytes, thyroid follicular epithelial cells, pancreatic islets of Langerhans and renal tubular cells were found in 2 springbok neonates indicative of an additional storage disease. Ultrastructurally, round electron-lucent vacuoles, up to 4 μm in diameter, were present in neurons. Enzymatic analysis of liver and kidney tissue of 1 affected springbok revealed a reduced activity of total hexosaminidase (Hex) with relatively increased HexA activity at the same level of total Hex, suggesting a hexosaminidase defect. Pedigree analysis suggested a monogenic autosomal recessive inheritance for both diseases. In summary, related springboks showed 2 different changes resembling both polycystic kidney and a GM2 gangliosidosis similar to the human Sandhoff disease. Whether the simultaneous occurrence of these 2 entities represents an incidental finding or has a genetic link needs to be investigated in future studies. PMID:25232033

  5. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair

    PubMed Central

    Itokazu, Yutaka; Pagano, Richard E.; Schroeder, Andreas S.; O'Grady, Scott M.; Limper, Andrew H.

    2014-01-01

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ∼60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (∼40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury. PMID:24500283

  6. LIGA20, a lyso derivative of ganglioside GM1, given orally after cortical thrombosis reduces infarct size and associated cognition deficit.

    PubMed Central

    Kharlamov, A; Zivkovic, I; Polo, A; Armstrong, D M; Costa, E; Guidotti, A

    1994-01-01

    A bilateral photochemically induced thrombotic lesion of rat sensorimotor cortex (approximately 3 mm in diameter and 25 mm3 in volume) is associated with a persistent cognition (learning and memory) deficit, which was evaluated with water maze tasks. The N-dichloroacetylsphingosine derivative of lysoGM1 (LIGA20) administered after the lesion either i.v. or per or reduces the infarct size by 30-40% and attenuates the associated cognition deficits, presumably by limiting the extent of damage of neurons at risk located in the surroundings of the infarcted core (i.e., area penumbra). The LIGA20 protection is dose and time dependent. Maximal protection is afforded by a single dose of LIGA20 of 34 mumol/kg i.v. 1 hr after lesion or by a dose of 270 mumol/kg per os when administered 1 hr and 24 hr after the lesion. The protective effect of LIGA20 can be observed when the drug is administered i.v. up to 6 hr after the lesion. The protective efficacy of the oral administration of LIGA20 is related to its physiochemical properties, which, unlike those of GM1, allow absorption from the gastrointestinal tract. LIGA20 given orally reaches the brain promptly and rapidly inserts into the neuronal membranes. Here, by an unknown molecular mechanism, LIGA20 selectively reduces the pathological amplification of Ca2+ signaling elicited by persistent stimulation of ionotropic glutamate receptors in the area penumbra. PMID:8022776

  7. Meningoencephalitis-like onset of post-infectious AQP4-IgG-positive optic neuritis complicated by GM1-IgG-positive acute polyneuropathy.

    PubMed

    Benedetti, Luana; Franciotta, Diego; Beronio, Alessandro; Delucchi, Stefano; Capellini, Cesare; Del Sette, Massimo

    2015-02-01

    Fifteen days after a respiratory infection, a 45-year-old woman presented with paresthesias in the hands and feet, bilateral loss of vision, fever, headache, and impairment of consciousness. Magnetic resonance imaging (MRI) showed predominant lesions in the optic tracts, optic chiasm, and hypothalamus. Cerebrospinal fluid analysis revealed elevated protein level, and lymphocytic pleocytosis. Neurophysiological studies disclosed a demyelinating sensorimotor polyneuropathy. Serum anti-Mycoplasma pneumoniae immunoglobulin (Ig)M, anti-GM1 IgG, and anti-AQP4 IgG were positive. This case, which is remarkable for post-infectious meningoencephalitis-like onset, MRI picture, and dysimmunity to central and peripheral nervous system autoantigens, underpins the pivotal diagnostic role of anti-AQP4-IgG, and expands the list of clinico-pathological findings that can associate with neuromyelitis optica spectrum disorders. PMID:24557856

  8. Stem Cell Transplant for Inborn Errors of Metabolism

    ClinicalTrials.gov

    2012-11-06

    Adrenoleukodystrophy; Metachromatic Leukodystrophy; Globoid Cell Leukodystrophy; Gaucher's Disease; Fucosidosis; Wolman Disease; Niemann-Pick Disease; Batten Disease; GM1 Gangliosidosis; Tay Sachs Disease; Sandhoff Disease

  9. Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease).

    PubMed

    Muldoon, L L; Neuwelt, E A; Pagel, M A; Weiss, D L

    1994-05-01

    The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy. PMID:8178934

  10. Electrokinetic and electrostatic properties of bilayers containing gangliosides GM1, GD1a, or GT1. Comparison with a nonlinear theory.

    PubMed Central

    McDaniel, R V; Sharp, K; Brooks, D; McLaughlin, A C; Winiski, A P; Cafiso, D; McLaughlin, S

    1986-01-01

    We formed vesicles from mixtures of egg phosphatidylcholine (PC) and the gangliosides GM1, GD1a, or GT1 to model the electrokinetic properties of biological membranes. The electrophoretic mobilities of the vesicles are similar in NaCl, CsCl, and TMACl solutions, suggesting that monovalent cations do not bind significantly to these gangliosides. If we assume the sialic acid groups on the gangliosides are located some distance from the surface of the vesicle and the sugar moieties exert hydrodynamic drag, we can describe the mobility data in 1, 10, and 100 mM monovalent salt solutions with a combination of the Navier-Stokes and nonlinear Poisson-Boltzmann equations. The values we assume for the thickness of the ganglioside head group and the location of the charge affect the theoretical predictions markedly, but the Stokes radius of each sugar and the location of the hydrodynamic shear plane do not. We obtain a reasonable fit to the mobility data by assuming that all ganglioside head groups project 2.5 nm from the bilayer and all fixed charges are in a plane 1 nm from the bilayer surface. We tested the latter assumption by estimating the surface potentials of PC/ganglioside bilayers using four techniques: we made 31P nuclear magnetic resonance, fluorescence, electron spin resonance, and conductance measurements. The results are qualitatively consistent with our assumption. PMID:3697476

  11. Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride.

    PubMed

    Williams, Thomas L; Jenkins, A Toby A

    2008-05-21

    In this paper the immobilization of small unilamellar DMPC/GM1 lipid vesicles containing a water-soluble bodipy dye is described. The binding of the complete alphabeta toxin expressed by Vibrio cholerae to the attached vesicles was measured using Surface Plasmon Resonance (SPR) and a value of the dissociation constant K d obtained. Further measurements showed that the interaction of both the alphabeta-toxin and the beta-subunit alone resulted in the permeation of the lipid membrane, with release of a fluorophore contained within the vesicle being measured by combined SPR and Surface Plasmon enhanced Fluorescence Spectroscopy (SPFS). The leakage of dye through the membrane, measured by following the change in fluorescence, was fitted to a simple diffusion model. Finally, SPFS measurements of the effect of europium(III) chloride (EuCl 3) showed that cholera toxin binding and subsequent membrane permeation could be blocked by 1 micromol dm (-3) europium chloride. In view of the low oral toxicity of europium chloride, we speculate on the potential pharmaceutical applications of this molecule in the treatment of cholera infection. PMID:18412339

  12. Carbohydrate-to-carbohydrate interactions between α2,3-linked sialic acids on α2 integrin subunits and asialo-GM1 underlie the bone metastatic behaviour of LNCAP-derivative C4-2B prostate cancer cells

    PubMed Central

    Van Slambrouck, Séverine; Groux-Degroote, Sophie; Krzewinski-Recchi, Marie-Ange; Cazet, Aurélie; Delannoy, Philippe; Steelant, Wim F. A.

    2014-01-01

    Complex interplays among proteins, lipids and carbohydrates can alter the phenotype and are suggested to have a crucial role in tumour metastasis. Our previous studies indicated that a complex of the GSLs (glycosphingolipids), AsGM1 (asialo-GM1), which lacks α2,3-linked sialic acid, and α2β1 integrin receptors is responsible for the metastatic behaviour of C4-2B prostate cancer cells. Herein, we identified and addressed the functional significance of changes in sialylation during prostate cancer progression. We observed an increase in α2,3-linked sialic acid residues on α2 subunits of α2β1 integrin receptors, correlating with increased gene expression of α2,3-STs (sialyltransferases), particularly ST3GAL3. Cell surface α2,3-sialylation of α2 subunits was required for the integrin α2β1-dependent cell adhesion to collagen type I and the same α2,3-linked sialic acid residues on the integrin receptor were responsible for the interaction with the carbohydrate moiety of AsGM1, explaining the complex formation between AsGM1 and α2β1 integrin receptors. These results provide novel insights into the role of sialic acids in the organization and function of important membrane components in invasion and metastatic processes. PMID:25137483

  13. EXPERIENTIAL FACTORS IN THE EXPRESSION OF HYPERMOTILITY PRODUCED BY INTRADENTATE COLCHICINE: LACK OF EFFECT OF GM1 GANGLIOSIDE ON COLCHICINE-INDUCED LOSS OF GRANULE CELLS AND MOSSY FIBERS (JOURNAL VERSION)

    EPA Science Inventory

    Adult, male Fischer-344 rats were given bilateral injections of 2.5 microgram colchicine or artificial cerebrospinal fluid into caudal and rostral sites of the dentate gyrus of the hippocampus. One group of rats received 21 consecutive daily injections of 20 mg/kg GM1 ganglioside...

  14. Anti-glycoprotein D monoclonal antibody protects against herpes simplex virus type 1-induced diseases in mice functionally depleted of selected T-cell subsets or asialo GM1+ cells.

    PubMed Central

    Staats, H F; Oakes, J E; Lausch, R N

    1991-01-01

    Passive transfer of a monoclonal antibody (MAb) specific for glycoprotein D (gD) is highly effective in preventing the development of herpes simplex virus type 1-induced stromal keratitis. In the present study, we investigated whether animals which had been functionally depleted of T-cell subsets or asialo GM1+ cells would continue to be responsive to MAb therapy. BALB/c mice were depleted of CD4+, CD8+, or asialo GM1+ cells by treatment with anti-L3T4, anti-Lyt 2.2, or anti-asialo GM1 antibodies, respectively. Functional depletion of CD4+ cells was documented by the loss of delayed-type hypersensitivity responsiveness, while CD8+ cell depletion was accompanied by abrogation of cytotoxic lymphocyte activity. Anti-asialo GM1 treatment led to the loss of natural killer cell lytic activity. Mice depleted of the desired cell population and infected on the scarified cornea with herpes simplex virus type 1 uniformly developed necrotizing stromal keratitis by 3 weeks postinfection. A single inoculation of anti-gD MAb (55 micrograms) given intraperitoneally 24 h postinfection strongly protected hosts depleted of CD4+ cells against stromal keratitis. Likewise, antibody treatment in CD8+ or asialo GM1+ cell-depleted hosts was as therapeutically effective as that seen in non-cell-depleted mice. We also observed that in cell-depleted mice, the virus spread into the central nervous system and caused encephalitis. The CD4+ cell-depleted mice were the most severely affected, as 100% developed fatal disease. Anti-gD MAb treatment successfully protected all (32 of 32) CD4+-, CD8+-, or asialo GM1(+)-depleted hosts against encephalitis. We therefore conclude that antibody-mediated prevention of stromal keratitis and encephalitis does not require the obligatory participation of CD4+, CD8+, or asialo GM1+ cells. However, when mice were simultaneously depleted of both CD4+ and CD8+ T-cell subsets, antibody treatment could not prevent fatal encephalitis. Thus, antibody can compensate for

  15. X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface.

    PubMed

    Majewski, J; André, S; Jones, E; Chi, E; Gabius, H-J

    2015-07-01

    The specific interaction of ganglioside GM1 with the homodimeric (prototype) endogenous lectin galectin-1 triggers growth regulation in tumor and activated effector T cells. This proven biorelevance directed interest to studying association of the lectin to a model surface, i.e. a 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine/ganglioside GM1 (80 : 20 mol%) monolayer, at a bioeffective concentration. Surface expansion by the lectin insertion was detected at a surface pressure of 20 mN/m. On combining the methods of grazing incidence X-ray diffraction and X-ray reflectivity, a transient decrease in lipid-ordered phase of the monolayer was observed. The measured electron density distribution indicated that galectin-1 is oriented with its long axis in the surface plane, ideal for cis-crosslinking. The data reveal a conspicuous difference to the way the pentameric lectin part of the cholera toxin, another GM1-specific lectin, is bound to the monolayer. They also encourage further efforts to monitor effects of structurally different members of the galectin family such as the functionally antagonistic chimera-type galectin-3. PMID:26542007

  16. Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase B for GM2 gangliosidosis.

    PubMed

    Matsuoka, Kazuhiko; Tamura, Tomomi; Tsuji, Daisuke; Dohzono, Yukie; Kitakaze, Keisuke; Ohno, Kazuki; Saito, Seiji; Sakuraba, Hitoshi; Itoh, Kohji

    2011-06-01

    To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB. PMID:21487393

  17. Therapeutic Potential of Intracerebroventricular Replacement of Modified Human β-Hexosaminidase B for GM2 Gangliosidosis

    PubMed Central

    Matsuoka, Kazuhiko; Tamura, Tomomi; Tsuji, Daisuke; Dohzono, Yukie; Kitakaze, Keisuke; Ohno, Kazuki; Saito, Seiji; Sakuraba, Hitoshi; Itoh, Kohji

    2011-01-01

    To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB. PMID:21487393

  18. GM2 gangliosidosis B1 variant: biochemical and molecular characterization of hexosaminidase A.

    PubMed

    Peleg, L; Meltzer, F; Karpati, M; Goldman, B

    1995-04-01

    The biochemical properties of hexosaminidase A (HexA) and the coding sequence of the alpha-subunit were examined in a patient of Syrian ancestry with the B1 form of Tay-Sachs disease (TSD). The biochemical characteristics of the variant HexA suggest that both active sites are affected by the mutation(s). Kinetic studies with the beta-subunit specific substrate, 4-methylumbelliferyl-beta-D-N-acetylglucosamine (MUG), revealed a significant difference between the Km values. of normal and variant HexA, while no difference was found when the sulfated substrate MUG-6-sulfate (MUGS), which is specific for the alpha-subunit active site, was used. The Vmax values for both substrates were significantly lower in extracts from B1 variant cells than in control extracts, implying a reduced enzyme level in the variant cells. A noncompetitive inhibitor of the reaction with MUGS, N-acetylglucosamine (NAG), induced a significant inhibition (30%) in the mutant cells only. When MUG was used as substrate, variant HexA was found to be more heat stable (T50 = 170 min) than normal HexA (T50 = 65 min). Furthermore, the mutant cell preparation differed from control in the relation between Hex thermosensitivity and protein concentration in the reaction. Two new mutations were identified in exon 5 of the HexA gene: a C496 to G transversion, which produced an Arg166 -->Gly alteration and a deletion of C498 which generated a shift in the reading frame. The patient was a heterozygote for both mutations even though her parents are first cousins. There is no evidence as yet which of these mutations accounts for the B1 phenotype. PMID:8581357

  19. Real-Time PCR Genotyping Assay for GM2 Gangliosidosis Variant 0 in Toy Poodles and the Mutant Allele Frequency in Japan

    PubMed Central

    RAHMAN, Mohammad Mahbubur; YABUKI, Akira; KOHYAMA, Moeko; MITANI, Sawane; MIZUKAMI, Keijiro; UDDIN, Mohammad Mejbah; CHANG, Hye-Sook; KUSHIDA, Kazuya; KISHIMOTO, Miori; YAMABE, Remi; YAMATO, Osamu

    2013-01-01

    ABSTRACT GM2 gangliosidosis variant 0 (Sandhoff disease, SD) is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations of the HEXB gene. In canine SD, a pathogenic mutation (c.283delG) of the canine HEXB gene has been identified in toy poodles. In the present study, a TaqMan probe-based real-time PCR genotyping assay was developed and evaluated for rapid and large-scale genotyping and screening for this mutation. Furthermore, a genotyping survey was carried out in a population of toy poodles in Japan to determine the current mutant allele frequency. The real-time PCR assay clearly showed all genotypes of canine SD. The assay was suitable for large-scale survey as well as diagnosis, because of its high throughput and rapidity. The genotyping survey demonstrated a carrier frequency of 0.2%, suggesting that the current mutant allele frequency is low in Japan. However, there may be population stratification in different places, because of the founder effect by some carriers. Therefore, this new assay will be useful for the prevention and control of SD in toy poodles. PMID:24161966

  20. Biomarkers of Central Nervous System Inflammation in Infantile and Juvenile Gangliosidoses

    PubMed Central

    Utz, Jeanine R.; Crutcher, Thomas; Schneider, Joseph; Sorgen, Patrick; Whitley, Chester B.

    2015-01-01

    Background The gangliosidoses (Tay-Sachs disease, Sandhoff disease and GM1-gangliosidosis) are progressive neurodegenerative diseases caused by lysosomal enzyme activity deficiencies and consequent accumulation of gangliosides in the central nervous system (CNS). The infantile forms are distinguished from the juvenile forms by age of onset, rate of disease progression and age of death. There are no approved treatments for the gangliosidoses. In search of potential biomarkers of disease, we quantified 188 analytes in CSF and serum from living human patients with longitudinal (serial) measurements. Notably, several associated with inflammation were elevated in the CSF of infantile gangliosidosis patients, and less so in more slowly progressing forms of juvenile gangliosidosis, but not in MPS disease. Thirteen CSF and two serum biomarker candidates were identified. Five candidate biomarkers were distinguished by persistent elevation in the CSF of patients with the severe infantile phenotype: ENA-78, MCP-1, MIP-1α, MIP-1β, TNFR2. Correspondence of abnormal elevation with other variables of disease --- i.e., severity of clinical phenotype, differentiation from changes in serum, and lack of abnormality in other neurodegenerative lysosomal diseases ---identifies these analytes as biomarkers of neuropathology specific to the gangliosidosis diseases. PMID:25557439

  1. Profiling oligosaccharidurias by electrospray tandem mass spectrometry: quantifying reducing oligosaccharides.

    PubMed

    Ramsay, Steven L; Meikle, Peter J; Hopwood, John J; Clements, Peter R

    2005-10-01

    A method to semiquantify urinary oligosaccharides from patients suffering from oligosaccharidurias is presented. 1-Phenyl-3-methyl-5-pyrazolone has been used to derivatize urinary oligosaccharides prior to analysis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Disease-specific oligosaccharides were identified for several oligosaccharidurias, including GM1 gangliosidosis, GM2 gangliosidosis, sialic acid storage disease, sialidase/neuraminidase deficiency, galactosialidosis, I-cell disease, fucosidosis, Pompe and Gaucher diseases, and alpha-mannosidosis. The oligosaccharides were referenced against the internal standard, methyl lactose, to produce ratios for comparison with control samples. Elevations in specific urinary oligosaccharides were indicative of lysosomal disease and the defective catabolic enzyme. This method has been adapted to enable assay of large sample numbers and could readily be extended to other oligosaccharidurias and to monitor oligosaccharide levels in patients receiving treatment. It also has immediate potential for incorporation into a newborn screening program. PMID:16111643

  2. Systemic Gene Transfer of a Hexosaminidase Variant Using an scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice.

    PubMed

    Osmon, Karlaina J L; Woodley, Evan; Thompson, Patrick; Ong, Katalina; Karumuthil-Melethil, Subha; Keimel, John G; Mark, Brian L; Mahuran, Don; Gray, Steven J; Walia, Jagdeep S

    2016-07-01

    GM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (β-subunit knockout) mouse model. The study utilized a modified human β-hexosaminidase α-subunit (μ-subunit) that contains critical sequences from the β-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD

  3. Chaperone therapy for GM2 gangliosidosis: effects of pyrimethamine on β-hexosaminidase activity in Sandhoff fibroblasts.

    PubMed

    Chiricozzi, Elena; Niemir, Natalia; Aureli, Massimo; Magini, Alessandro; Loberto, Nicoletta; Prinetti, Alessandro; Bassi, Rosaria; Polchi, Alice; Emiliani, Carla; Caillaud, Catherine; Sonnino, Sandro

    2014-08-01

    Sphingolipidoses are inherited genetic diseases due to mutations in genes encoding proteins involved in the lysosomal catabolism of sphingolipids. Despite a low incidence of each individual disease, altogether, the number of patients involved is relatively high and resolutive approaches for treatment are still lacking. The chaperone therapy is one of the latest pharmacological approaches to these storage diseases. This therapy allows the mutated protein to escape its natural removal and to increase its quantity in lysosomes, thus partially restoring the metabolic functions. Sandhoff disease is an autosomal recessive inherited disorder resulting from β-hexosaminidase deficiency and characterized by large accumulation of GM2 ganglioside in brain. No enzymatic replacement therapy is currently available, and the use of inhibitors of glycosphingolipid biosynthesis for substrate reduction therapy, although very promising, is associated with serious side effects. The chaperone pyrimethamine has been proposed as a very promising drug in those cases characterized by a residual enzyme activity. In this review, we report the effect of pyrimethamine on the recovery of β-hexosaminidase activity in cultured fibroblasts from Sandhoff patients. PMID:24356898

  4. Recurrent and novel GLB1 mutations in India.

    PubMed

    Bidchol, Abdul Mueed; Dalal, Ashwin; Trivedi, Rakesh; Shukla, Anju; Nampoothiri, Sheela; Sankar, V H; Danda, Sumita; Gupta, Neerja; Kabra, Madhulika; Hebbar, Shrikiran A; Bhat, Ramesh Y; Matta, Divya; Ekbote, Alka V; Puri, Ratna Dua; Phadke, Shubha R; Gowrishankar, Kalpana; Aggarwal, Shagun; Ranganath, Prajnya; Sharda, Sheetal; Kamate, Mahesh; Datar, Chaitanya A; Bhat, Kamalakshi; Kamath, Nutan; Shah, Hitesh; Krishna, Shuba; Gopinath, Puthiya Mundyat; Verma, Ishwar C; Nagarajaram, H A; Satyamoorthy, Kapaettu; Girisha, Katta Mohan

    2015-08-10

    GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in the GLB1 gene, leading to the deficiency of the enzyme β-d-galactosidase. In this study, we report molecular findings in 50 Asian Indian families with GM1 gangliosidosis. We sequenced all the exons and flanking intronic sequences of GLB1 gene. We identified 33 different mutations (20 novel and 13 previously reported). The novel mutations include 12 missense (p.M1?, p.E129Q, p.G134R, p.L236P, p.G262E, p.L297F, p.Y331C, p.G414V, p.K493N, p.L514P, p.P597L, p.T600I), four splicing (c.246-2A>G, c.397-2A>G, c.552+1G>T, c.956-2A>G), three indels (p.R22Qfs*8, p.L24Cfs*47, p.I489Qfs*4) and one nonsense mutation (p.Q452*). Most common mutations identified in this study were c.75+2InsT (14%) and p.L337P (10%). Known mutations accounted for 67% of allele frequency in our cohort of patients, suggesting that these mutations in GLB1 are recurrent across different populations. Twenty three mutations were localized in the TIM barrel domain, β-domain 1 and β-domain 2. In silico sequence and structure analysis of GLB1 reveal that all the novel mutations affect the function and structure of the protein. We hereby report on the largest series of patients with GM1 gangliosidosis and the first from India. PMID:25936995

  5. I-cell disease. A case report and review of the literature.

    PubMed

    Güngör, N; Coşkun, T; Akçören, Z; Cağlar, M

    1994-01-01

    A four-month-old female infant having developmental delay, coarse facial features and dysostosis multiplex is reported with a special emphasis on the differential diagnosis among I-cell disease (ICD). Hurler syndrome and GM1 gangliosidosis. The lysosomal enzyme studies in cultured skin fibroblasts and serum sample of the patient certified the diagnosis of ICD. Foamy cell infiltration of some organs, including the lungs, and microgyria formation were also noted. Genetic counselling was provided and prenatal diagnosis was offered to the couple to detect ICD in the next pregnancy. PMID:8016916

  6. Sphingolipidoses in Turkey.

    PubMed

    Ozkara, Hatice Asuman; Topçu, Meral

    2004-09-01

    During the last 5 years 2057 children under the age of 5 with various neurologic symptoms with the suspected diagnosis of lysosomal storage diseases were referred to our hospital from different universities and state hospitals. We were able to separate sphingolipidoses by lysosomal enzyme screening. A total of 300 patients (15%) with sphingolipidoses were diagnosed; there were deficiencies of arylsulfatase A [metachromatic leukodystrophy (MLD)] in 93 (31%), hexosaminidase [Sandhoff disease (SHD)] in 62 (20.7%), hexosaminidase A [Tay-Sachs disease (TSD)] in 15 (5%), beta-galactosidase (GM1 gangliosidosis) in 35 (11.7%), alpha-galactosidase (Fabry disease) in one (0.3%) cerebroside beta-galactosidase (Krabbe disease) in 65 (21.7%) and glucosylceramidase (Gaucher disease) in 29 (9.6%). SHD (20.7%), MLD (31%) and Krabbe disease (21.7%) were common. Prenatal enzymatic diagnosis was made in 70 at risk pregnancies, 64 for TSD and SHD, three for MLD and three for GM1 gangliosidosis by using chorionic villus biopsy in 54, cord blood samples in 12 and cultured amniotic fluid cells in four. Seventeen fetuses were found to be affected. We have calculated the relative frequency and minimum incidence of sphingolipidoses in Turkey. The combined incidence of sphingolipidoses is 4.615 per 100,000 live births. The calculated incidences are 1.43, 0.95, 1, 0.23, 0.54, 0.45, 0.015 per 100,000 live births for MLD, SHD, Krabbe, Gaucher, TSD, GM1 gangliosidosis and Fabry diseases, respectively. The real incidence, which covers all subtypes of this group of diseases, should be greater than this number. The results suggested that, as a group, sphingolipidoses are relatively common and represent an important health problem in Turkey and some rare autosomal recessive diseases of Turkey are due to 'founder effect' created by consanguineous marriages. PMID:15275696

  7. Liquid chromatography/electrospray ionisation-tandem mass spectrometry quantification of GM2 gangliosides in human peripheral cells and plasma.

    PubMed

    Fuller, Maria; Duplock, Stephen; Hein, Leanne K; Rigat, Brigitte A; Mahuran, Don J

    2014-08-01

    GM2 gangliosidosis is a group of inherited neurodegenerative disorders resulting primarily from the excessive accumulation of GM2 gangliosides (GM2) in neuronal cells. As biomarkers for categorising patients and monitoring the effectiveness of developing therapies are lacking for this group of disorders, we sought to develop methodology to quantify GM2 levels in more readily attainable patient samples such as plasma, leukocytes, and cultured skin fibroblasts. Following organic extraction, gangliosides were partitioned into the aqueous phase and isolated using C18 solid-phase extraction columns. Relative quantification of three species of GM2 was achieved using LC/ESI-MS/MS with d35GM1 18:1/18:0 as an internal standard. The assay was linear over the biological range, and all GM2 gangliosidosis patients were demarcated from controls by elevated GM2 in cultured skin fibroblast extracts. However, in leukocytes only some molecular species could be used for differentiation and in plasma only one was informative. A reduction in GM2 was easily detected in patient skin fibroblasts after a short treatment with media from normal cells enriched in secreted β-hexosaminidase. This method may show promise for measuring the effectiveness of experimental therapies for GM2 gangliosidosis by allowing quantification of a reduction in the primary storage burden. PMID:24769373

  8. Population analysis of the GLB1 gene in South Brazil

    PubMed Central

    Baiotto, Cléia; Sperb, Fernanda; Matte, Ursula; da Silva, Cláudia Dornelles; Sano, Renata; Coelho, Janice Carneiro; Giugliani, Roberto

    2011-01-01

    Infantile GM1 gangliosidosis is caused by the absence or reduction of lysosomal beta-galactosidase activity. Studies conducted in Brazil have indicated that it is one of the most frequent lysosomal storage disorders in the southern part of the country. To assess the incidence of this disorder, 390 blood donors were tested for the presence of two common mutations (1622–1627insG and R59H) in the GLB1 gene. Another group, consisting of 26 GM1 patients, and the blood donors were tested for the presence of two polymorphisms (R521C and S532G), in an attempt to elucidate whether there is a founder effect. The frequencies of the R59H and 1622–1627insG mutations among the GM1 patients studied were 19.2% and 38.5%, respectively. The frequency of polymorphism S532G was 16.7%, whereas R521C was not found in the patients. The overall frequency of either R59H or 1622–1627insG was 57.7% of the disease-causing alleles. This epidemiological study suggested a carrier frequency of 1:58. Seven different haplotypes were found. The 1622–1627insG mutation was not found to be linked to any polymorphism, whereas linkage disequilibrium was found for haplotype 2 (R59H, S532G) (p < 0.001). These data confirm the high incidence of GM1 gangliosidosis and the high frequency of two common mutations in southern Brazil. PMID:21637542

  9. Measurement of isomeric yield ratios of 197m,gPt and 190m2,g+m1Ir from the 198Pt(γ,n) and natPt(γ,xn1p) reactions induced by 55-, 60-, and 65-MeV bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Kye, Yong-Uk; Shin, Sung-Gyun; Cho, Moo-Hyun; Kim, Kyung Sook; Namkung, Won; Kim, Guinyun; Kim, Kwangsoo; Kang, Yeong-Rok; Lee, Man-Woo; Yang, Sung-Chul; Nguyen, Van Do; Pham, Duc Khue; Kim, Tien Thanh; Naik, Haladhara

    2015-05-01

    We have measured the isomeric yield ratios of 197m,gPt from the 198Pt(γ,n) reaction and 190m2,g+m1Ir from the natPt(γ,xn1p) reaction, induced with the bremsstrahlung end-point energies of 55-, 60-, and 65-MeV. The measurements were carried out by the activation method in combination with the direct γ-spectrometry. The experiments were performed at the 100 MeV electron linac of the Pohang Accelerator Laboratory (PAL). The obtained results at 55-, 60- and 65-MeV for the 197m,gPt from the 198Pt(γ,n) reaction are 0.166 ± 0.012, 0.174 ± 0.011, and 0.175 ± 0.011, whereas for the 190m2,g+m1Ir from the natPt(γ,xn1p) reaction are 0.072 ± 0.006, 0.084 ± 0.006 and 0.087 ± 0.006, respectively. The present results are measured for the first time over the investigated energy range. The present data are compared with the similar literature data at lower energy to examine the role of excitation energy.

  10. Diagnostic Approach to Childhood-onset Cerebellar Atrophy: A 10-Year Retrospective Study of 300 Patients

    PubMed Central

    Al-Maawali, Almundher; Blaser, Susan; Yoon, Grace

    2013-01-01

    Hereditary ataxias associated with cerebellar atrophy are a heterogeneous group of disorders. Selection of appropriate clinical and genetic tests for patients with cerebellar atrophy poses a diagnostic challenge. Neuroimaging is a crucial initial investigation in the diagnostic evaluation of ataxia in childhood, and the presence of cerebellar atrophy helps guide further investigations. We performed a detailed review of 300 patients with confirmed cerebellar atrophy on magnetic resonance imaging over a 10-year period. A diagnosis was established in 47% of patients: Mitochondrial disorders were most common, followed by the neuronal ceroid lipofuscinoses, ataxia telangectasia, and late GM2-gangliosidosis. We review the common causes of cerebellar atrophy in childhood and propose a diagnostic approach based on correlating specific neuroimaging patterns with clinical and genetic diagnoses. PMID:22764178

  11. Prenatal and postnatal studies of a late infantile GM2 gangliosidosis in a family of Syrian origin: a possible B1 variant.

    PubMed

    Shukry, A; Goldman, B; Shihab, S; Peleg, L

    1993-10-01

    We describe late infantile Tay-Sachs disease with high residual hexosaminidase A activity in two siblings of a Syrian Druze family. The patients' leukocytes had 26% of normal hexosaminidase A activity when tested with the conventional fluorogenic substrate 4-methyl-umbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside (4-MUG) and only about 10% when assayed with the sulfated substrate, 4-methyl-umbelliferal- beta-N-acetyl-glucosamine-6-sulfate (4-MUGS). According to the standard procedure of the heterozygote screening program (employing 4-MUG and heat inactivation), the parents were not diagnosed as an at-risk couple since the father was classified as a noncarrier. However, both parents' levels were clearly within the carrier range on the basis of 4-MUGS. The unique catalytic characteristics of the patients' enzyme forward the assumption that the affected sibs are B1 variants. The parents' enzymatic levels, together with their known consanguinity, might indicate that these patients are homozygotes for the rare mutation and not genetic compounds as has been documented for most of the infantile B1 variants. To the best of our knowledge this is the first reported case of B1 variant in a child of that extraction. PMID:8244659

  12. Lending a helping hand, screening chemical libraries for compounds that enhance beta-hexosaminidase A activity in GM2 gangliosidosis cells.

    PubMed

    Tropak, Michael B; Mahuran, Don

    2007-10-01

    Enzyme enhancement therapy is an emerging therapeutic approach that has the potential to treat many genetic diseases. Candidate diseases are those associated with a mutant protein that has difficulty folding and/or assembling into active oligomers in the endoplasmic reticulum. Many lysosomal storage diseases are candidates for enzyme enhancement therapy and have the additional advantage of requiring only 5-10% of normal enzyme levels to reduce and/or prevent substrate accumulation. Our long experience in working with the beta-hexosaminidase (EC 3.2.1.52) isozymes system and its associated deficiencies (Tay-Sachs and Sandhoff disease) lead us to search for possible enzyme enhancement therapy-agents that could treat the chronic forms of these diseases which express 2-5% residual activity. Pharmacological chaperones are enzyme enhancement therapy-agents that are competitive inhibitors of the target enzyme. Each of the known beta-hexosaminidase inhibitors (low microm IC50) increased mutant enzyme levels to >or= 10% in chronic Tay-Sachs fibroblasts and also attenuated the thermo-denaturation of beta-hexosaminidase. To expand the repertoire of pharmacological chaperones to more 'drug-like' compounds, we screened the Maybridge library of 50,000 compounds using a real-time assay for noncarbohydrate-based beta-hexosaminidase inhibitors and identified several that functioned as pharmacological chaperones in patient cells. Two of these inhibitors had derivatives that had been tested in humans for other purposes. These observations lead us to screen the NINDS library of 1040 Food and Drug Administration approved compounds for pharmacological chaperones. Pyrimethamine, an antimalarial drug with well documented pharmacokinetics, was confirmed as a beta-hexosaminidase pharmacological chaperone and compared favorably with our best carbohydrate-based pharmacological chaperone in patient cells with various mutant genotypes. PMID:17894780

  13. Vacuolated lymphocytes signifying a metabolic disorder in an infant with developmental delay.

    PubMed

    Salama, Rasha; Zhou, Jiehao

    2016-01-01

    Metabolic disorders sometimes cause accumulation of metabolic byproducts which are manifested as cytoplasmic vacuoles in lymphocytes. We report the case of an infant with final diagnosis of GM1 gangliosidosis who initially presented with developmental delay and peripheral blood vacuolated lymphocytes. Blood film review is recommended in children suspicious for metabolic disorders. PMID:26783448

  14. Mitochondrial respiratory chain function in skeletal muscle of ALS patients.

    PubMed

    Echaniz-Laguna, Andoni; Zoll, Joffrey; Ribera, Florence; Tranchant, Christine; Warter, Jean-Marie; Lonsdorfer, Jean; Lampert, Eliane

    2002-11-01

    Evidence implicating mitochondrial dysfunction in the central nervous system of patients with sporadic amyotrophic lateral sclerosis (SALS) has recently been accumulating. In contrast, data on mitochondrial function in skeletal muscle in SALS are scarce and controversial. We investigated the in situ properties of muscle mitochondria in patients with early-stage SALS and sedentary (SED) controls using the skinned fiber technique to determine whether respiration of muscle tissue is altered in early-stage SALS in comparison with SED. Musculus vastus lateralis biopsies were obtained from 7 SED group members and 14 patients with early-stage SALS (mean disease duration, 9 months). Muscle fibers were permeabilized with saponine and then skinned and placed in an oxygraphic chamber to measure basal (V(0)) and maximal (V(max)) adenosine diphosphate-stimulated respiration rates and to assess mitochondrial regulation by adenosine diphosphate. Muscle oxidative capacity, evaluated with V(max), was identical in patients in the SALS and SED groups (V(0): SALS, 1.1 +/- 0.1; SED, 0.8 +/- 0.1, micromol 0(2). min(-1). gm(-1)dw and V(max): SALS, 3.1 +/- 0.3; SED, 2.5 +/- 0.3, micromol 0(2). min(-1). gm(-1)dw). This study shows an absence of large mitochondrial damage in skeletal muscle of patients with early-stage SALS, suggesting that mitochondrial dysfunction in the earlier stages of SALS is almost certainly not systemic. PMID:12402260

  15. Chaperone therapy for Krabbe disease: potential for late-onset GALC mutations.

    PubMed

    Hossain, Mohammad Arif; Higaki, Katsumi; Saito, Seiji; Ohno, Kazuki; Sakuraba, Hitoshi; Nanba, Eiji; Suzuki, Yoshiyuki; Ozono, Keiichi; Sakai, Norio

    2015-09-01

    Krabbe disease is an autosomal recessive leukodystrophy caused by a deficiency of the galactocerebrosidase (GALC) enzyme. Hematopoietic stem cells transplantation is the only available treatment option for pre-symptomatic patients. We have previously reported the chaperone effect of N-octyl-4-epi-β-valienamine (NOEV) on mutant GM1 β-galactosidase proteins, and in a murine GM1-gangliosidosis model. In this study, we examined its chaperone effect on mutant GALC proteins. We found that NOEV strongly inhibited GALC activity in cell lysates of GALC-transfected COS1 cells. In vitro NOEV treatment stabilized GALC activity under heat denaturation conditions. We also examined the effect of NOEV on cultured COS1 cells expressing mutant GALC activity and human skin fibroblasts from Krabbe disease patients: NOEV significantly increased the enzyme activity of mutants of late-onset forms. Moreover, we confirmed that NOEV could enhance the maturation of GALC precursor to its mature active form. Model structural analysis showed NOEV binds to the active site of human GALC protein. These results, for the first time, provide clear evidence that NOEV is a chaperone with promising potential for patients with Krabbe disease resulting from the late-onset mutations. PMID:26108143

  16. Multifocal motor neuropathy with conduction block: a study of 24 patients.

    PubMed Central

    Bouche, P; Moulonguet, A; Younes-Chennoufi, A B; Adams, D; Baumann, N; Meininger, V; Léger, J M; Said, G

    1995-01-01

    Twenty four patients with pure motor neuropathy are reported. The chronic motor involvement associated with fasciculations and cramps, mainly in the arms, led, in most patients, to an initial diagnosis of motor neuron disease. In some patients (nine of 24), there was no appreciable muscle atrophy. Tendon reflexes were often absent or weak. The finding of persistent multifocal conduction block confined to motor nerve fibres raises questions about the nature and the importance of this syndrome. Segmental reduction of motor conduction velocity occurred at the site of the block, but significant slowing of motor nerve conduction was not found outside this site. The response to intravenous IVIg treatment seems to be correlated with the absence of amyotrophy. Patients with little or no amyotrophy had an initial and sustained response to IVIg, and did not develop amyotrophy during the follow up study. They could be considered to have a variant of chronic inflammatory demyelinating polyneuropathy. Patients with pronounced amyotrophy independent of the disease duration did not respond as well to IVIg treatment, suggesting the existence of a distinct entity. Among the patients treated about two thirds who had an initial good response to IVIg had high or significant antiganglioside GM1 (anti-GM1) antibody titres, but there was no correlation between the high titres before treatment and long lasting response to IVIg treatment. Images PMID:7608707

  17. Sustained normalization of neurological disease after intracranial gene therapy in a feline model**

    PubMed Central

    McCurdy, Victoria J.; Johnson, Aime K.; Gray-Edwards, Heather; Randle, Ashley N.; Brunson, Brandon L.; Morrison, Nancy E.; Salibi, Nouha; Johnson, Jacob A.; Hwang, Misako; Beyers, Ronald J.; Leroy, Stanley G.; Maitland, Stacy; Denney, Thomas S.; Cox, Nancy R.; Baker, Henry J.; Sena-Esteves, Miguel; Martin, Douglas R.

    2015-01-01

    Progressive debilitating neurological defects characterize feline GM1 gangliosidosis, a lysosomal storage disease caused by deficiency of lysosomal β-galactosidase. No effective therapy exists for affected children, who often die before age 5. In the current study, an adeno-associated viral vector carrying the therapeutic gene was injected bilaterally into two brain targets (thalamus and deep cerebellar nuclei) of a feline model of GM1 gangliosidosis. Gene therapy normalized β-galactosidase activity and storage throughout the brain and spinal cord. The mean survival of 12 treated GM1 animals was >38 months compared to 8 months for untreated animals. Seven of the 8 treated animals remaining alive demonstrated normalization of disease, with abrogation of many symptoms including gait deficits and postural imbalance. Sustained correction of the GM1 gangliosidosis disease phenotype after limited intracranial targeting by gene therapy in a large animal model suggests that this approach may be useful for treating the human version of this lysosomal storage disorder. PMID:24718858

  18. Three Novel Mutations in Iranian Patients with Tay-Sachs Disease

    PubMed Central

    Jamali, Solmaz; Eskandari, Nasim; Aryani, Omid; Salehpour, Shadab; Zaman, Talieh; Kamalidehghan, Behnam; Houshmand, Massoud

    2014-01-01

    Background: Tay-Sachs disease (TSD), or GM2 gangliosidosis, is a lethal autosomal recessive neurodegenerative disorder, which is caused by a deficiency of beta-hexosaminidase A (HEXA), resulting in lysosomal accumulation of GM2 ganglioside. The aim of this study was to identify the TSD-causing mutations in an Iranian population. Methods: In this study, we examined 31 patients for TSD-causing mutations using PCR, followed by restriction enzyme digestion. Results: Molecular genetics analysis of DNA from 23 patients of TSD revealed mutations that has been previously reported, including four-base duplications c.1274_1277dupTATC in exon 11 and IVS2+1G>A, deletion TTAGGCAAGGGC in exon 10 as well as a few novel mutations, including C331G, which altered Gln>Glu in HEXB, A>G, T>C, and p.R510X in exon 14, which predicted a termination codon or nonsense mutation. Conclusion: In conclusion, with the discovery of these novel mutations, the genotypic spectrum of Iranian patients with TSD disease has been extended and could facilitate definition of disease-related mutations. PMID:24518553

  19. Magnetic resonance findings of the corpus callosum in canine and feline lysosomal storage diseases.

    PubMed

    Hasegawa, Daisuke; Tamura, Shinji; Nakamoto, Yuya; Matsuki, Naoaki; Takahashi, Kimimasa; Fujita, Michio; Uchida, Kazuyuki; Yamato, Osamu

    2013-01-01

    Several reports have described magnetic resonance (MR) findings in canine and feline lysosomal storage diseases such as gangliosidoses and neuronal ceroid lipofuscinosis. Although most of those studies described the signal intensities of white matter in the cerebrum, findings of the corpus callosum were not described in detail. A retrospective study was conducted on MR findings of the corpus callosum as well as the rostral commissure and the fornix in 18 cases of canine and feline lysosomal storage diseases. This included 6 Shiba Inu dogs and 2 domestic shorthair cats with GM1 gangliosidosis; 2 domestic shorthair cats, 2 familial toy poodles, and a golden retriever with GM2 gangliosidosis; and 2 border collies and 3 chihuahuas with neuronal ceroid lipofuscinoses, to determine whether changes of the corpus callosum is an imaging indicator of those diseases. The corpus callosum and the rostral commissure were difficult to recognize in all cases of juvenile-onset gangliosidoses (GM1 gangliosidosis in Shiba Inu dogs and domestic shorthair cats and GM2 gangliosidosis in domestic shorthair cats) and GM2 gangliosidosis in toy poodles with late juvenile-onset. In contrast, the corpus callosum and the rostral commissure were confirmed in cases of GM2 gangliosidosis in a golden retriever and canine neuronal ceroid lipofuscinoses with late juvenile- to early adult-onset, but were extremely thin. Abnormal findings of the corpus callosum on midline sagittal images may be a useful imaging indicator for suspecting lysosomal storage diseases, especially hypoplasia (underdevelopment) of the corpus callosum in juvenile-onset gangliosidoses. PMID:24386203

  20. Magnetic Resonance Findings of the Corpus Callosum in Canine and Feline Lysosomal Storage Diseases

    PubMed Central

    Hasegawa, Daisuke; Tamura, Shinji; Nakamoto, Yuya; Matsuki, Naoaki; Takahashi, Kimimasa; Fujita, Michio; Uchida, Kazuyuki; Yamato, Osamu

    2013-01-01

    Several reports have described magnetic resonance (MR) findings in canine and feline lysosomal storage diseases such as gangliosidoses and neuronal ceroid lipofuscinosis. Although most of those studies described the signal intensities of white matter in the cerebrum, findings of the corpus callosum were not described in detail. A retrospective study was conducted on MR findings of the corpus callosum as well as the rostral commissure and the fornix in 18 cases of canine and feline lysosomal storage diseases. This included 6 Shiba Inu dogs and 2 domestic shorthair cats with GM1 gangliosidosis; 2 domestic shorthair cats, 2 familial toy poodles, and a golden retriever with GM2 gangliosidosis; and 2 border collies and 3 chihuahuas with neuronal ceroid lipofuscinoses, to determine whether changes of the corpus callosum is an imaging indicator of those diseases. The corpus callosum and the rostral commissure were difficult to recognize in all cases of juvenile-onset gangliosidoses (GM1 gangliosidosis in Shiba Inu dogs and domestic shorthair cats and GM2 gangliosidosis in domestic shorthair cats) and GM2 gangliosidosis in toy poodles with late juvenile-onset. In contrast, the corpus callosum and the rostral commissure were confirmed in cases of GM2 gangliosidosis in a golden retriever and canine neuronal ceroid lipofuscinoses with late juvenile- to early adult-onset, but were extremely thin. Abnormal findings of the corpus callosum on midline sagittal images may be a useful imaging indicator for suspecting lysosomal storage diseases, especially hypoplasia (underdevelopment) of the corpus callosum in juvenile-onset gangliosidoses. PMID:24386203

  1. Synthesis of lipophilic 1-deoxygalactonojirimycin derivatives as D-galactosidase inhibitors.

    PubMed

    Schitter, Georg; Scheucher, Elisabeth; Steiner, Andreas J; Stütz, Arnold E; Thonhofer, Martin; Tarling, Chris A; Withers, Stephen G; Wicki, Jacqueline; Fantur, Katrin; Paschke, Eduard; Mahuran, Don J; Rigat, Brigitte A; Tropak, Michael; Wrodnigg, Tanja M

    2010-01-01

    N-Alkylation at the ring nitrogen of the D-galactosidase inhibitor 1-deoxygalactonojirimycin with a functionalised C ₆alkyl chain followed by modification with different aromatic substituents provided lipophilic 1-deoxygalactonojirimycin derivatives which exhibit inhibitory properties against β-glycosidases from E. coli and Agrobacterium sp. as well as green coffee bean α-galactosidase. In preliminary studies, these compounds also showed potential as chemical chaperones for GM1-gangliosidosis related β-galactosidase mutants. PMID:20502610

  2. A capillary electrophoresis procedure for the screening of oligosaccharidoses and related diseases.

    PubMed

    Casado, Mercedes; Altimira, Laura; Montero, Raquel; Castejón, Esperanza; Nascimento, Andrés; Pérez-Dueñas, Belén; Ormazabal, Aida; Artuch, Rafael

    2014-07-01

    The most widely used method for the biochemical screening of oligosaccharidoses is the analysis of the urinary oligosaccharide pattern by thin-layer chromatography on silica gel plates. However, this method is not always sensitive enough, and it is extremely time-consuming and laborious. In this work, the analysis of the urine oligosaccharide pattern was standardized for the first time by using capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection (Beckman P/ACE MDQ) with a 488-nm argon ion laser module. All of the analyses were conducted using the Carbohydrate Labeling and Analysis Kit (Beckman-Coulter), which derivatizes samples with 8-aminopyrene-1,3,6-trisulfonate. Urine samples from 40 control subjects (age range, 1 week to 16 years) and from ten patients diagnosed with eight different lysosomal diseases (six of them included in the Educational Oligosaccharide Kit from ERNDIM EQA schemes) were analyzed. Two oligosaccharide excretion patterns were established in our control population according to age (younger or older than 1 year of age). Abnormal peaks with slower migration times than the tetrasaccharide position were observed for fucosidosis, α-mannosidosis, GM1 gangliosidosis, GM2 gangliosidosis variant 0, Pompe disease, and glycogen storage disease type 3. In conclusion, the first CE-LIF method to screen for oligosaccharidoses and related diseases, which also present oligosacchariduria, has been standardized. In all of the cases, the urine oligosaccharide analysis was strongly informative and showed abnormal patterns that were not present in any of the urine samples from the control subjects. Only urine from patients with aspartylglucosaminuria and Schindler disease displayed normal results. PMID:24788891

  3. Distribution of saposin proteins (sphingolipid activator proteins) in lysosomal storage and other diseases.

    PubMed Central

    Morimoto, S; Yamamoto, Y; O'Brien, J S; Kishimoto, Y

    1990-01-01

    Saposins (A, B, C, and D) are small glycoproteins required for the hydrolysis of sphingolipids by specific lysosomal hydrolases. Concentrations of these saposins in brain, liver, and spleen from normal humans as well as patients with lysosomal storage disease were determined. A quantitative HPLC method was used for saposin A, C, and D and a stimulation assay was used for saposin B. In normal tissues, saposin D was the most abundant of the four saposins. Massive accumulations of saposins, especially saposin A (about 80-fold increase over normal), were found in brain of patients with Tay-Sachs disease or infantile Sandhoff disease. In spleen of adult patients with Gaucher disease, saposin A and D accumulations (60- and 17-fold, respectively, over normal) were higher than that of saposin C (about 16-fold over normal). Similar massive accumulations of saposins A and D were found in liver of patients with fucosidosis (about 70- and 20-fold, respectively, over normal). Saposin D was the primary saposin stored in the liver of a patient with Niemann-Pick disease (about 30-fold over normal). Moderate increases of saposins B and D were found in a patient with GM1 gangliosidosis. Normal or near normal levels of all saposins were found in patients with Krabbe disease, metachromatic leukodystrophy, Fabry disease, adrenoleukodystrophy, I-cell disease, mucopolysaccharidosis types 2 and 3B, or Jansky-Bielschowsky disease. The implications of the storage of saposins in these diseases are discussed. PMID:2110365

  4. The role of pharmacotherapy in modifying the neurological status of patients with spinal and spinal cord injuries.

    PubMed

    do Vale Ramos, Renato Carlos; Alegrete, Nuno

    2015-01-01

    The aim here was to conduct a review of the literature on pharmacological therapies for modifying the neurological status of patients with spinal cord injuries. The PubMed database was searched for articles with the terms "spinal cord injury AND methylprednisolone/GM1/apoptosis inhibitor/calpain inhibitor/naloxone/tempol/tirilazad", in Portuguese or in English, published over the last five years. Older studies were included because of their historical importance. The pharmacological groups were divided according to their capacity to interfere with the physiopathological mechanisms of secondary injuries. Use of methylprednisolone needs to be carefully weighed up: other anti-inflammatory agents have shown benefits in humans or in animals. GM1 does not seem to have greater efficacy than methylprednisolone, but longer-term studies are needed. Many inhibitors of apoptosis have shown benefits in in vitro studies or in animals. Naloxone has not shown benefits. Tempol inhibits the main consequences of oxidation at the level of the spinal cord and other antioxidant drugs seem to have an effect superior to that of methylprednisolone. There is an urgent need to find new treatments that improve the neurological status of patients with spinal cord injuries. The benefits from treatment with methylprednisolone have been questioned, with concerns regarding its safety. Other drugs have been studied, and some of these may provide promising alternatives. Additional studies are needed in order to reach conclusions regarding the benefits of these agents in clinical practice. PMID:27218071

  5. The role of pharmacotherapy in modifying the neurological status of patients with spinal and spinal cord injuries☆

    PubMed Central

    do Vale Ramos, Renato Carlos; Alegrete, Nuno

    2015-01-01

    The aim here was to conduct a review of the literature on pharmacological therapies for modifying the neurological status of patients with spinal cord injuries. The PubMed database was searched for articles with the terms “spinal cord injury AND methylprednisolone/GM1/apoptosis inhibitor/calpain inhibitor/naloxone/tempol/tirilazad”, in Portuguese or in English, published over the last five years. Older studies were included because of their historical importance. The pharmacological groups were divided according to their capacity to interfere with the physiopathological mechanisms of secondary injuries. Use of methylprednisolone needs to be carefully weighed up: other anti-inflammatory agents have shown benefits in humans or in animals. GM1 does not seem to have greater efficacy than methylprednisolone, but longer-term studies are needed. Many inhibitors of apoptosis have shown benefits in in vitro studies or in animals. Naloxone has not shown benefits. Tempol inhibits the main consequences of oxidation at the level of the spinal cord and other antioxidant drugs seem to have an effect superior to that of methylprednisolone. There is an urgent need to find new treatments that improve the neurological status of patients with spinal cord injuries. The benefits from treatment with methylprednisolone have been questioned, with concerns regarding its safety. Other drugs have been studied, and some of these may provide promising alternatives. Additional studies are needed in order to reach conclusions regarding the benefits of these agents in clinical practice. PMID:27218071

  6. Lectin histochemistry and ultrastructure of feline kidneys from six different storage diseases.

    PubMed

    Castagnaro, M; Alroy, J; Ucci, A A; Glew, R H

    1987-01-01

    We have compared the pattern of lectin staining with the ultrastructural features of kidneys from normal cats and 19 cats with 6 different lysosomal storage diseases. The diseases studied include GM1 and GM2 gangliosidosis, mucopolysaccharidosis (MPS)-I and MPS-VI, sphingomyelin-lipidosis (i.e., Niemann-Pick disease) and mannosidosis. Ten different biotinylated lectins were used as histochemical probes for carbohydrate residues and avidin-biotin-peroxidase complex as visualant. Concanavalia ensiformis agglutinin (Con A) stained mesangial cells in all storage diseases but GM1, epithelial cells in sphingomyelin-lipidosis and mannosidosis, endothelial cells in GM1 and mannosidosis and Bowman's capsule cells in all but GM2. Griffonia simplicifolia agglutinin I (GS-I) stained the glomerular endothelium in all six diseases, but not in control kidneys. Ricinus communis agglutinin-I (RCA-I) stained the glomerular epithelium only in GM1 and MPS-I. Succinylated wheat germ agglutinin (SWGA) stained the glomerular endothelium and epithelium in mannosidosis, and the glomerular epithelium and Bowman's capsule in MPS-I. Ultrastructure studies demonstrated an accumulation of oligosaccharides in cases of mannosidosis and GM1 gangliosidosis, a mixture of oligosaccharides and lipids in MPS-I, MPS-VI and GM2 gangliosidosis and only lipid storage in sphingomyelin lipidosis. These studies show that morphologic and histochemical changes are manifested in some kidney cell types in lysosomal storage diseases, even though the enzyme deficiency occurs in all cell types. Furthermore, we show that the nature of the undegraded stored material is complex and that other factors, such as rate of membrane turn over, membrane composition, and cell function may influence the amount and nature of the "stored" material. PMID:2892300

  7. Genetics Home Reference: GM2-gangliosidosis, AB variant

    MedlinePlus

    ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA HONCode ...

  8. Molecular basis of adult-onset and chronic G sub M2 gangliosidoses in patients of Ashkenazi Jewish origin: Substitution of serine for glycine at position 269 of the. alpha. -subunit of. beta. -hexosaminidase

    SciTech Connect

    Paw, B.H.; Kaback, M.M.; Neufeld, E.F. )

    1989-04-01

    Chronic and adult-onset G{sub M2} gangliosidoses are neurological disorders caused by marked deficiency of the A isoenzyme of {beta}-hexosaminidase; they occur in the Ashkenazi Jewish population, though less frequently than classic (infantile) Tay-Sachs disease. Earlier biosynthetic studies had identified a defective {alpha}-subunit that failed to associate with the {beta}-subunit. The authors have now found a guanosine to adenosine transition at the 3{prime} end of exon 7, which causes substitution of serine for glycine at position 269 of the {alpha}-subunit. An RNase protection assay was used to localize the mutation to a segment of mRNA from fibroblasts of a patient with the adult-onset disorder. That segment of mRNA (after reverse transcription) and a corresponding segment of genomic DNA were amplified by the polymerase chain reaction and sequenced by the dideoxy method. The sequence analysis, together with an assay based on the loss of a ScrFI restriction site, showed that the patient was a compound heterozygote who had inherited the 269 (Gly {yields} Ser) mutation from his father and an allelic null mutation from his mother. The 269 (Gly {yields} Ser) mutation, in compound heterozygosity with a presumed null allele, was also found in fetal fibroblasts with an association-defective phenotype and in cells from five patients with chronic G{sub M2} gangliosidosis.

  9. Gangliosidoses.

    PubMed

    Patterson, Marc C

    2013-01-01

    The gangliosidoses comprise a family of lysosomal storage diseases characterized by the accumulation of complex glycosphingolipids in the nervous system and other tissues, secondary to the deficient activity of lysosomal hydrolases or their associated activator proteins. GM1 and GM2 gangliosidosis are associated with deficiency of β-galactosidase and β-hexosaminidase respectively. All gangliosidoses are characterized by progressive neurodegeneration, the severity of which is proportional to the residual enzyme activity. The GM1 gangliosidoses are characterized by dysostosis, organomegaly and coarsening in their most severe forms, whereas children with classic infantile GM2 gangliosidosis (Tay-Sachs disease) are usually spared systemic involvement, except in the case of the Sandhoff variant, in which organomegaly may occur. Cherry-red macular spots occur in the early onset forms of the gangliosidoses, but are less frequently seen in the less severe, later onset phenotypes. Macrocephaly, an exaggerated startle response, cognitive decline, seizures, ataxia, and progressive muscular atrophy may occur in different forms of gangliosidosis. The diagnosis is made by assay of enzyme activity, and can be confirmed by mutation analysis. Carrier screening for Tay-Sachs disease has been remarkably successful in reducing the incidence of this disease in the at-risk Ashkenazi population. There are no proven disease-modifying therapies for the gangliosidoses. PMID:23622392

  10. Congenital ocular motor apraxia associated with idiopathic generalized epilepsy in monozygotic twins.

    PubMed

    Gonzalez-Martin, J A; Kaye, L C; Brown, M; Ellis, I; Appelton, R; Kaye, S B

    2004-06-01

    Identical female twins (age 11 years) with congenital ocular motor apraxia and generalized idiopathic epilepsy are reported. Their presenting symptoms were a long history of abnormal head and eye movements. One twin developed partial sensory seizures. The patients underwent 16-channel EEG, electro-oculographic recordings, MRI of the brain, and genetic and metabolic investigations. EEG findings were consistent with idiopathic generalized epilepsy. Electrooculographic recordings of the saccades confirmed an inability to elicit horizontal saccades without preceding head movement; saccades to the left were better than saccades to the right. MR scans for one twin showed normal findings, however, for the twin who had meningitis they revealed asymmetry between the right and left temporal lobes but no specific abnormality. DNA analysis using a series of autosomal polymorphic markers confirmed the monozygocity of the twins. White blood cell enzyme analysis excluded Sandhoff disease, Tay-Sachs disease, GM1 gangliosidosis, metacromatic leucodystrophy, Gaucher disease, Niemann-Pick disease (A and B), and Krabbe leucodystrophy. Albumin and immunoglobulin (IgA, IgG, and IgM) levels were normal. It is concluded that autosomal recessive inheritance seems the most likely explanation here, as recent studies have found insertion and missense mutations of the aprataxin gene which have been related to an early onset form of ataxia with ocular motor apraxia and hypoalbuminaemia. PMID:15174536

  11. Glycosidases: inborn errors of glycosphingolipid catabolism.

    PubMed

    Ashida, Hisashi; Li, Yu-Teh

    2014-01-01

    Glycosphingolipids (GSLs) are information-rich glycoconjugates that occur in nature mainly as constituents of biomembranes. Each GSL contains a complex carbohydrate chain linked to a ceramide moiety that anchors the molecule to biomembranes. In higher animals, catabolism of GSLs takes place in lysosomes where sugar chains in GSLs are hydrolyzed by exo-glycosidases to cleave a sugar residue from the non-reducing end of a sugar chain. Inborn errors of GSL-catabolism, collectively called sphingolipidoses or GSL-storage diseases, are caused by the deficiency of exo-glycosidases responsible for the degradation of the specific sugar residues at the non-reducing termini in GSLs. This chapter briefly discusses glycone, anomeric, linkage, and aglycone specificities of exo-glycosidases and some of the historical landmarks on their associations with the chemical pathology of the five best known sphingolipidoses: GM1 gangliosidosis, GM2 gangliosidosis (Tay-Sachs disease), Fabry disease, Gaucher disease, and Krabbe disease. PMID:25151392

  12. Selective screening for lysosomal storage diseases with dried blood spots collected on filter paper in 4,700 high-risk colombian subjects.

    PubMed

    Uribe, Alfredo; Giugliani, Roberto

    2013-01-01

    Lysosomal storage disorders (LSDs) are a very heterogeneous group of hereditary disorders. The diagnostic process usually involves complex sampling, processing, testing, and validation procedures, performed by specialized laboratories only, which causes great limitations in reaching a diagnosis for patients affected by these diseases.There are few studies about LSDs in Colombia. The diagnostic limitations often make medical practitioners disregard the possibility of these disorders while diagnosing their patients. The current study documents the results of a 7-year screening in high-risk patients, aimed to detect LSDs using dried blood spots (DBS) collected on filter paper, with a micromethodology that facilitates diagnosis even with a large number of samples.The activities of α-galactosidase A, α glucosidase, α-L-iduronidase, arylsulfatase B, β-galactosidase, β-glucosidase, total hexosaminidase, iduronate sulfatase, and chitotriosidase were analyzed in high-risk patients for lysosomal disease. The catalytic activity was evaluated with fluorometric micromethods using artificial substrates marked with 4-methylumbelliferone.The reference values for a control population were established for the enzymes listed above, and 242 patients were found to have an enzyme deficiency, guiding to the following diagnoses: Fabry disease (n = 31), Pompe disease (n = 16), Hurler Syndrome (n = 15), Maroteaux-Lamy Syndrome (n = 34), GM1 Gangliosidosis (n = 10), Morquio B (n = 1), Gaucher disease (n = 101), Sandhoff disease (n = 1), Mucolipidosis (n = 2), and Hunter Syndrome (n = 31). In conclusion, this protocol provides a comprehensive diagnostic approach which could be carried out in Colombia and made it available to medical services spread around the country, enabling the identification of a large number of patients affected by LSDs, which could potentially benefit from the therapeutic tools already available for many of these diseases. PMID:23609959

  13. A pilot study of gene testing of genetic bone dysplasia using targeted next-generation sequencing.

    PubMed

    Zhang, Huiwen; Yang, Rui; Wang, Yu; Ye, Jun; Han, Lianshu; Qiu, Wenjuan; Gu, Xuefan

    2015-12-01

    Molecular diagnosis of genetic bone dysplasia is challenging for non-expert. A targeted next-generation sequencing technology was applied to identify the underlying molecular mechanism of bone dysplasia and evaluate the contribution of these genes to patients with bone dysplasia encountered in pediatric endocrinology. A group of unrelated patients (n=82), characterized by short stature, dysmorphology and X-ray abnormalities, of which mucopolysacharidoses, GM1 gangliosidosis, mucolipidosis type II/III and achondroplasia owing to FGFR3 G380R mutation had been excluded, were recruited in this study. Probes were designed to 61 genes selected according to the nosology and classification of genetic skeletal disorders of 2010 by Illumina's online DesignStudio software. DNA was hybridized with probes and then a library was established following the standard Illumina protocols. Amplicon library was sequenced on a MiSeq sequencing system and the data were analyzed by MiSeq Reporter. Mutations of 13 different genes were found in 44 of the 82 patients (54%). Mutations of COL2A1 gene and PHEX gene were found in nine patients, respectively (9/44=20%), followed by COMP gene in 8 (18%), TRPV4 gene in 4 (9%), FBN1 gene in 4 (9%), COL1A1 gene in 3 (6%) and COL11A1, TRAPPC2, MATN3, ARSE, TRPS1, SMARCAL1, ENPP1 gene mutations in one patient each (2% each). In conclusion, mutations of COL2A1, PHEX and COMP gene are common for short stature due to bone dysplasia in outpatient clinics in pediatric endocrinology. Targeted next-generation sequencing is an efficient way to identify the underlying molecular mechanism of genetic bone dysplasia. PMID:26377240

  14. A study of the strategic alliance for EMS industry: the application of a hybrid DEA and GM (1, 1) approach.

    PubMed

    Wang, Chia Nan; Nguyen, Nhu Ty; Tran, Thanh Tuyen; Huong, Bui Bich

    2015-01-01

    Choosing a partner is a critical factor for success in international strategic alliances, although criteria for partner selection vary between developed and transitional markets. This study aims to develop effective methods to assist enterprise to measure the firms' operation efficiency, find out the candidate priority under several different inputs and outputs, and forecast the values of those variables in the future. The methodologies are constructed by the concepts of Data Envelopment Analysis (DEA) and grey model (GM). Realistic data in four consecutive years (2009-2012) a total of 20 companies of the Electronic Manufacturing Service (EMS) industry that went public are completely collected. This paper tries to help target company-DMU1-to find the right alliance partners. By our proposed approach, the results show the priority in the recent years. The research study is hopefully of interest to managers who are in manufacturing industry in general and EMS enterprises in particular. PMID:25821859

  15. Bis(monoacylglycero)phosphate: a secondary storage lipid in the gangliosidoses.

    PubMed

    Akgoc, Zeynep; Sena-Esteves, Miguel; Martin, Douglas R; Han, Xianlin; d'Azzo, Alessandra; Seyfried, Thomas N

    2015-05-01

    Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1' structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in β-galactosidase or β-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses. PMID:25795792

  16. Bis(monoacylglycero)phosphate: a secondary storage lipid in the gangliosidoses

    PubMed Central

    Akgoc, Zeynep; Sena-Esteves, Miguel; Martin, Douglas R.; Han, Xianlin; d’Azzo, Alessandra; Seyfried, Thomas N.

    2015-01-01

    Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1′ structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in β-galactosidase or β-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses. PMID:25795792

  17. Glucosylceramide modulates endolysosomal pH in Gaucher disease.

    PubMed

    Sillence, Dan J

    2013-06-01

    GlcCer accumulation causes Gaucher disease where GlcCer breakdown is inhibited due to a hereditary deficiency in glucocerebrosidase. Glycolipids are endocytosed and targeted to the Golgi apparatus in normal cells but in Gaucher disease they are mistargeted to lysosomes. To better understand the role of GlcCer in endocytic sorting RAW macrophages were treated with Conduritol B-epoxide to inhibit GlcCer breakdown. Lipid analysis found increases in GlcCer led to accumulation of both triacylglycerol and cholesterol consistent with increased lysosomal pH. Ratio imaging of macrophages using both acridine orange and lysosensor yellow/blue to measure endolysosomal pH revealed increases in Conduritol B-epoxide treated RAW macrophages and Gaucher patient lymphoblasts. Increased endolysosomal pH was restricted to Gaucher lymphoblasts as no significant increases in pH were seen in Fabry, Krabbe, Tay-Sachs and GM1-gangliosidosis lymphoblasts. Substrate reduction therapy utilises inhibitors of GlcCer synthase to reduce storage in Gaucher disease. The addition of inhibitors of GlcCer synthesis to RAW macrophages also led to increases in cholesterol and triacylglycerol and an endolysosomal pH increase of up to 1 pH unit. GlcCer modulation appears specific since glucosylsphingosine but not galactosylsphingosine reversed the effects of GlcCer depletion. Although no acute effects on glycolipid trafficking were observed using bafilomycin A the results are consistent with a multistep model whereby increases in pH lead to altered trafficking via cholesterol accumulation. GlcCer modulates endolysosomal pH in lymphocytes suggesting an important role in normal lysosomes which may be disrupted in Gaucher disease. PMID:23628459

  18. Patient satisfaction.

    PubMed

    Prakash, Bhanu

    2010-09-01

    Patient satisfaction is an important and commonly used indicator for measuring the quality in health care. Patient satisfaction affects clinical outcomes, patient retention, and medical malpractice claims. It affects the timely, efficient, and patient-centered delivery of quality health care. Patient satisfaction is thus a proxy but a very effective indicator to measure the success of doctors and hospitals. This article discusses as to how to ensure patient satisfaction in dermatological practice. PMID:21430827

  19. Neuropsychiatric aspects of the adult variant of Tay-Sachs disease.

    PubMed

    MacQueen, G M; Rosebush, P I; Mazurek, M F

    1998-01-01

    Tay-Sachs disease (a GM2 gangliosidosis) is an inherited neuronal storage disease that can affect individuals across the age spectrum. Psychosis is reported in 30% to 50% of adult-onset patients, and many are misdiagnosed with schizophrenia. Mood disorders are present in more than 25% and cognitive impairment in more than 20%. Treatment of psychosis with neuroleptics may not have a favorable risk/benefit ratio, but treatment with benzodiazepines or electroconvulsive therapy may be efficacious. Metabolic diseases such as gangliosidosis are probably under-recognized as causes of neuropsychiatric illness. Increased awareness of these disorders will lead to accurate diagnosis, appropriate treatment selection, and genetic counseling. PMID:9547461

  20. Gene transfer corrects acute GM2 gangliosidosis--potential therapeutic contribution of perivascular enzyme flow.

    PubMed

    Cachón-González, M Begoña; Wang, Susan Z; McNair, Rosamund; Bradley, Josephine; Lunn, David; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2012-08-01

    The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity-as opposed to tremor-ataxia-were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue-long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system. PMID:22453766

  1. Beta-hexosaminidase isozymes and replacement therapy in Gm2 gangliosidosis.

    PubMed

    Rattazzi, M C

    1983-01-01

    The problem of cell targeting of lysosomal enzymes is a critical one in the development of strategies for therapeutic enzyme replacement in lysosomal storage diseases. In principle, posttranscriptional isozymes with different carbohydrate-chain composition may be helpful in exploiting existing glycosyl-specific receptors on target cells, if the receptor specificities are known and match the glycosyl composition of available isozymes. In practice, however, the choice is limited to isozymes that can be obtained from tissues available in abundance, such as placenta or blood plasma. Our early experiments show that one can interfere with the interaction between hepatic (RES) receptor and enzyme glycosyl chain, to obtain extrahepatic targeting of beta-hexosaminidase, with catabolic effects. This approach, of course, does not have an immediate therapeutic application, as it involves injection of large amounts of foreign material in order to inhibit hepatic uptake. Modification of the glycosyl chain may be the method of choice in selected instances [Furbish et al. 1981], but is applicability again depends on the knowledge of receptor specificity on target cells and on composition of the glycosyl chain of the enzyme in question. Our recent experiments are a first step toward obtaining enzyme forms that can be endocytosed efficiently by mechanisms that are independent of glycosyl-specific receptors. Charge-mediated, absorptive endocytosis can be obtained by covalent coupling of cationic PLL to beta-hexosaminidase. Given the abundance of negative surface charges on most cell types [Weiss, 1969], this approach may be applicable to different target cells and organs, and possibly also to lysosomal enzymes other than beta-hexosaminidase. The existence of glycosyl recognition signals on beta-hexosaminidase can be obviated by simple chemical manipulations, such as Na-metaperiodate oxidation, which effectively prevents hepatic RES uptake [Rattazzi et al, 1982]. In combination with PLL conjugation, this may ultimately result in an enzyme form that escapes the undesired, preferential RES uptake and is efficiently endocytosed by most cells. It will remain to be seen if this artificially created isozyme (for which we propose the name "ersatzyme") is catabolically effective. This can easily be verified in our animal model, along the lines followed to demonstrate the catabolic effects of native Hex A. Finally, the recent developments in molecular genetics, which allows production of human proteins in bacterial systems by recombinant DNA techniques, make it very likely that abundant beta-hexosaminidase may be similarly obtained for therapeutic applications.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6227586

  2. Modified beta-D-N-acetylhexosaminidase isozymes for enzyme replacement in GM2 gangliosidosis.

    PubMed

    Rattazzi, M C; Dobrenis, K; Joseph, A; Schwartz, P

    1987-01-01

    The therapeutic potential of enzyme replacement in lysosomal storage disorders has remained largely unfulfilled, perhaps because of negative reactions to the initial disappointing results. Despite the existence of several animal models that can be utilized to explore solutions to the problems of exogenous enzyme targeting, the interest in ERT prevalent during the 1970's seems to have subsided to be replaced by active interest in bone marrow transplantation (BMT, Krivit and Paul [1986]). This is a logical approach to enzyme replacement in storage disorders of the RE system, and indeed some encouraging results have been obtained. However, in addition to having high morbidity and mortality, in the ultimate analysis BMT presents the same targeting problems as conventional ERT. In our opinion, these problems can be solved more easily in the case of ERT by exploiting the existing cellular uptake mechanisms and infusing enzymes whose structure has been suitably modified by simple biochemical manipulations. Accordingly, we have explored a methodology that takes advantage of negative charges on the cell surface to obtain nonspecific but effective membrane binding of beta-hex coupled to the highly positively charged PLL, followed by internalization and routing to the lysosomes. This system increases uptake of exogenous enzyme by some neurons in vitro and possibly in vivo, but its efficiency depends on the cells' endocytic activity that, in the case of neuronal soma, apparently is low. Thus, we have chosen as recognition marker for specific neuronal uptake a nontoxic fragment of TTx that is efficiently taken up by these cells. The initial results are encouraging; they support our contention that effective enzyme replacement methodologies can be devised, and encourage us to continue our work in this direction. Finally, recombinant DNA techniques are now being applied to a number of LSD, and the genes for several of the pertinent enzymes have been or are being isolated. In addition to representing a first step towards gene replacement therapy, the results of this work will permit the generation of large amounts of human enzymes from bacteria by recombinant DNA methods, thus obviating the problem of enzyme supply for ERT. Since human lysosomal enzymes obtained from bacteria will be nonglycosylated, to obtain cell uptake it will be necessary to resort to the type of modifications that we are trying to develop at this time, i.e., covalent linkage to moieties that allow non-glycosyl-mediated cellular uptake. Thus, our work on beta-hex may provide a model for biochemical manipulations of bacterially produced enzymes applicable to several LSD. PMID:2956216

  3. Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis.

    PubMed

    Kawashima, Nagako; Tsuji, Daisuke; Okuda, Tetsuya; Itoh, Kohji; Nakayama, Ken-ichi

    2009-11-01

    Sandhoff disease is a progressive neurodegenerative disorder caused by mutations in the HEXB gene which encodes the beta-subunit of N-acetyl-beta-hexosaminidase A and B, resulting in the accumulation of the ganglioside GM2. We isolated astrocytes from the neonatal brain of Sandhoff disease model mice in which the N-acetyl-beta-hexosaminidase beta-subunit gene is genetically disrupted (ASD). Glycolipid profiles revealed that GM2/GA2 accumulated in the lysosomes and not on the cell surface of ASD astrocytes. In addition, GM3 was increased on the cell surface. We found remarkable differences in the cell proliferation of ASD astrocytes when compared with cells isolated from wild-type mice, with a faster growth rate of ASD cells. In addition, we observed increased extracellular, signal-regulated kinase (ERK) phosphorylation in ASD cells, but Akt phosphorylation was decreased. Furthermore, the phosphorylation of ERK in ASD cells was not dependent upon extracellular growth factors. Treatment of ASD astrocytes with recombinant N-acetyl-beta-hexosaminidase A resulted in a decrease of their growth rate and ERK phosphorylation. These results indicated that the up-regulation of ERK phosphorylation and the increase in proliferation of ASD astrocytes were dependent upon GM2/GA2 accumulation. These findings may represent a mechanism in linking the nerve cell death and reactive gliosis observed in Sandhoff disease. PMID:19765188

  4. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection?

    PubMed

    Chmiel, James F; Davis, Pamela B

    2003-01-01

    Cystic Fibrosis (CF) lung disease, which is characterized by airway obstruction, chronic bacterial infection, and an excessive inflammatory response, is responsible for most of the morbidity and mortality. Early in life, CF patients become infected with a limited spectrum of bacteria, especially P. aeruginosa. New data now indicate that decreased depth of periciliary fluid and abnormal hydration of mucus, which impede mucociliary clearance, contribute to initial infection. Diminished production of the antibacterial molecule nitric oxide, increased bacterial binding sites (e.g., asialo GM-1) on CF airway epithelial cells, and adaptations made by the bacteria to the airway microenvironment, including the production of virulence factors and the ability to organize into a biofilm, contribute to susceptibility to initial bacterial infection. Once the patient is infected, an overzealous inflammatory response in the CF lung likely contributes to the host's inability to eradicate infection. In response to increased IL-8 and leukotriene B4 production, neutrophils infiltrate the lung where they release mediators, such as elastase, that further inhibit host defenses, cripple opsonophagocytosis, impair mucociliary clearance, and damage airway wall architecture. The combination of these events favors the persistence of bacteria in the airway. Until a cure is discovered, further investigations into therapies that relieve obstruction, control infection, and attenuate inflammation offer the best hope of limiting damage to host tissues and prolonging survival. PMID:14511398

  5. Carrier rates of four single-gene disorders in Croatian Bayash Roma.

    PubMed

    Barešić, Ana; Peričić Salihović, Marijana

    2014-02-01

    To assess how specific population history, different migration routes, isolation, and endogamy practices contributed to the distribution of several rare diseases found in specific Roma groups, we conducted a population-based research study of rare disease mutations in Croatian Vlax Roma. We tested a total of 427 subjects from Baranja and Međimurje for the presence of four mutations causing hereditary motor and sensory neuropathy type Lom (HMSNL), GM1 gangliosidosis (GM1), congenital cataracts, facial dysmorphism and neuropathy (CCFDN), and limb girdle muscle dystrophy type 2C (LGMD2C), using the RFLP-PCR method to estimate carrier frequencies. We identified a total of four individuals heterozygous for the mutation causing HMSNL in the Baranja population, with a carrier rate amounting to 1.5%. Carriers for other three mutations causing GM1, CCFDN, and LGMD2C were not found in our sample. The carrier rate for the HMSNL mutation in Baranja is lower than in other Vlax Roma groups. In addition, distinct differences in carrier rates between the Croatian Vlax groups point to different genetic history, despite their belonging to the same Roma migration category and subgroup. The difference in carrier rates is either the result of admixture or the reflection of a greater extent of genetic drift since recent founding, maintained by a high degree of endogamy. PMID:24180318

  6. Carrier Rates of Four Single-Gene Disorders in Croatian Bayash Roma

    PubMed Central

    Barešić, Ana

    2014-01-01

    To assess how specific population history, different migration routes, isolation, and endogamy practices contributed to the distribution of several rare diseases found in specific Roma groups, we conducted a population-based research study of rare disease mutations in Croatian Vlax Roma. We tested a total of 427 subjects from Baranja and Međimurje for the presence of four mutations causing hereditary motor and sensory neuropathy type Lom (HMSNL), GM1 gangliosidosis (GM1), congenital cataracts, facial dysmorphism and neuropathy (CCFDN), and limb girdle muscle dystrophy type 2C (LGMD2C), using the RFLP-PCR method to estimate carrier frequencies. We identified a total of four individuals heterozygous for the mutation causing HMSNL in the Baranja population, with a carrier rate amounting to 1.5%. Carriers for other three mutations causing GM1, CCFDN, and LGMD2C were not found in our sample. The carrier rate for the HMSNL mutation in Baranja is lower than in other Vlax Roma groups. In addition, distinct differences in carrier rates between the Croatian Vlax groups point to different genetic history, despite their belonging to the same Roma migration category and subgroup. The difference in carrier rates is either the result of admixture or the reflection of a greater extent of genetic drift since recent founding, maintained by a high degree of endogamy. PMID:24180318

  7. Discharging patients.

    PubMed

    Causey, Amy

    2016-06-22

    What was the nature of the CPD activity and/or practice-related feedback and/or event or experience in your practice? The CPD article discussed the importance of effective planning when discharging patients from acute care hospitals. It emphasised the benefit of early assessment and planning, and outlined the essential principles that should be followed when discharging a patient. PMID:27332612

  8. Patient Roadmap

    MedlinePlus

    ... Follow ATA’s Patient Roadmap for the step-by-step process of how to achieve the best results. Find ... Patient Roadmap,” that identifies the optimal step-by-step process for finding medical support. Please note: this “Roadmap” ...

  9. Patient education.

    PubMed

    Lindeman, C A

    1988-01-01

    The 120 studies included in this review were grouped in relation to five categories of variables basic to a theory of instruction in patient education. Findings in the studies related to the characteristics of the patient as learner support the following variables as significant for a theory of instruction: demographic characteristics including age, race, duration and type of illness, educational level, and family preparedness. Selected psychological variables are significant as they interact with teaching approaches. Given only two studies in which the characteristics of the nurse as teacher were the main variables, no inferences for a theory of instruction could be drawn. However, the findings from those studies combined with results from studies in which characteristics of the nurse were secondary variables support the importance of this category of variables. The educational preparation, motivation, values, and job description of the nurse implementing patient teaching appear to be significant variables for a theory of instruction. Investigators explored a wide range of teaching strategies in the studies of patient teaching. The setting for teaching, group and individual teaching, and a variety of instructional strategies all prove promising at the operational level. The instructional strategies were too diverse to allow analysis at a level of abstraction beyond the operational. Findings in this review also support characteristics of the health care setting as an important category of variables for a theory of instruction. The organizational structure, a quality assurance framework, and valuing patient teaching appear to be significant variables. Patient education research provides a rich data source for future developments in theory, practice, and research. The effectiveness of patient education as a nursing intervention is clearly established. Furthermore, positive learning outcomes are associated with a broad range of teaching strategies, content areas, and

  10. Patient Empowerment

    MedlinePlus

    ... cancer patient organization. Ask for this help. Your Responsibilities Keep Good Records Get in the habit of ... responsible for your follow-up. You should take responsibility for getting a follow-up scheduled and for ...

  11. Extensive Mongolian spots: a clinical sign merits special attention.

    PubMed

    Ashrafi, Mahmood Reza; Shabanian, Reza; Mohammadi, Mahmood; Kavusi, Susan

    2006-02-01

    Although typical and limited Mongolian spots are benign skin markings at birth which fade and disappear as the child grows, extensive Mongolian spots deserve special attention as possible indications of associated inborn error of metabolism. A few cases of extensive Mongolian spots in association with inheritable storage diseases have been reported. Some hypotheses have been put forward, but further investigation is necessary to elucidate the causative factors. This report describes three infants with generalized Mongolian spots, two infants with GM1 gangliosidosis type 1, and one in association with Hurler syndrome. Findings of generalized Mongolian spots in newborns may lead to an early detection and early treatment before irreversible organ damage occurs. PMID:16458829

  12. 4-Trifluoromethylumbelliferyl glycosides as new substrates for revealing diseases connected with hereditary deficiency of lysosome glycosidases.

    PubMed

    Karpova, E A; Voznyi YaV; Dudukina, T V; Tsvetkova, I V

    1991-08-01

    The following glycosides of 4-trifluoromethylumbelliferone: alpha-D-mannopyranoside, alpha-L-fucopyranoside, alpha-D-glucopyranoside, beta-D-glucopyranoside, alpha-D-galactopyranoside, beta-D-galactopyranoside, alpha-L-iduronide and beta-D-glucuronide were studied. 4-Trifluoromethylumbelliferyl glycosides were shown to be substrates for glycosidases. Some of them were cleaved even better than the corresponding methylumbelliferyl glycosides. 4-Trifluoromethylumbelliferyl glycosides were applied for revealing the corresponding enzyme deficiencies upon diagnosis of Gaucher and Hurler diseases as well as GM1 gangliosidosis and alpha-mannosidosis. 4-Trifluoromethylumbelliferone released after enzymatic hydrolysis of 4-trifluoromethylumbelliferyl glycosides exhibits more contrast yellow fluorescence in UV-light than the blue one of methylumbelliferone upon exposure of enzyme activity on solid supports. Therefore 4-trifluoromethylumbelliferyl glycosides are convenient substrates for revealing glycosidase activity directly in tissue samples, e.g. in placenta, and thus for fast prenatal diagnosis of lysosomal diseases. PMID:1781792

  13. A Langmuir monolayer study of the action of phospholipase A2 on model phospholipid and mixed phospholipid-GM1 ganglioside membranes.

    PubMed

    Schulte, Wiebke; Orlof, Monika; Brand, Izabella; Korchowiec, Beata; Rogalska, Ewa

    2014-04-01

    Polarization-modulation infrared reflection-absorption spectroscopy, surface pressure measurements and thermodynamic analysis were used to study enzymatic hydrolysis of lipid monolayers at the air/water interface. The Ca(2+)-requiring pork pancreatic phospholipase A2 was used as a catalyst. The substrates were pure 1,2-dilauroyl-sn-glycero-3-phosphocholine or mixed 1,2-dilauroyl-sn-glycero-3-phosphocholine - monosialotetrahexosylganglioside Langmuir films. The physicochemical properties of the monolayers were established with the aim of a correlation with enzyme activity. The infrared spectra were acquired upon the advancement of the catalysis; the latter was studied at a controlled surface pressure and area of the film. Changes of the intensity and frequency of different infrared signals characteristic for the two lipids were correlated with modification of the properties of the monolayer due to hydrolysis. The amide I signal characteristic for peptides permitted detecting the enzyme adsorbed at the interface. The thermodynamic and infrared results indicate that monosialotetrahexosylganglioside increases H-bonding of the lipid polar heads in the films. This effect, which may be responsible for the low activity of phospholipase A2 in the mixed films, could be used for developing enzyme-resistant lipid systems. PMID:24524938

  14. A Study of the Strategic Alliance for EMS Industry: The Application of a Hybrid DEA and GM (1, 1) Approach

    PubMed Central

    Wang, Chia Nan; Tran, Thanh Tuyen; Huong, Bui Bich

    2015-01-01

    Choosing a partner is a critical factor for success in international strategic alliances, although criteria for partner selection vary between developed and transitional markets. This study aims to develop effective methods to assist enterprise to measure the firms' operation efficiency, find out the candidate priority under several different inputs and outputs, and forecast the values of those variables in the future. The methodologies are constructed by the concepts of Data Envelopment Analysis (DEA) and grey model (GM). Realistic data in four consecutive years (2009–2012) a total of 20 companies of the Electronic Manufacturing Service (EMS) industry that went public are completely collected. This paper tries to help target company—DMU1—to find the right alliance partners. By our proposed approach, the results show the priority in the recent years. The research study is hopefully of interest to managers who are in manufacturing industry in general and EMS enterprises in particular. PMID:25821859

  15. Patient monitoring.

    PubMed

    Morton, A

    1976-11-01

    Optimum results are obtained in the care of the critically ill patient if efforts are directed to maintaining the internal environment in a state as near normal as possible. This cannot be done without the use of basic monitoring procedures. Complex investigations may have a legitmate and necessary role as research tools. There is, however, a real risk of complex procedures becoming an end in themselves in general intensive therapy units, where they are apt to distract overworked nurses and medical attendants from the care of their patients. It is important, therfore, for clearcut indications for various monitoring procedures to be defined, and in this paper an attempt has been made to outline alogical approach to the monitoring of critically ill genral surgical patients admitted intensive therapy units. PMID:1071552

  16. Patient Monitoring

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In photo above, the electrocardiogram of a hospitalized patient is being transmitted by telemetry. Widely employed in space operations, telemetry is a process wherein instrument data is converted to electrical signals and sent to a receiver where the signals are reconverted to usable information. In this instance, heart readings are picked up by the electrode attached to the patient's body and delivered by wire to the small box shown, which is a telemetry transmitter. The signals are relayed wirelessly to the console in the background, which converts them to EKG data. The data is displayed visually and recorded on a printout; at the same time, it is transmitted to a central control station (upper photo) where a nurse can monitor the condition of several patients simultaneously. The Patient Monitoring System was developed by SCI Systems, Inc., Huntsville, Alabama, in conjunction with Abbott Medical Electronics, Houston, Texas. In developing the system, SCI drew upon its extensive experience as a NASA contractor. The company applied telemetry technology developed for the Saturn launch vehicle and the Apollo spacecraft; instrumentation technology developed for heart, blood pressure and sleep monitoring of astronauts aboard NASA's Skylab long duration space station; and communications technology developed for the Space Shuttle.

  17. Refugee patients.

    PubMed

    Valeras, Aimee Burke

    2016-06-01

    This short story focuses on refugee patients. Family members talk about the horrific struggles of civil war, refugee camps, and promises of US resettlement. Their harsh reception into a brutal world includes unemployment, food scarcity, and isolation. (PsycINFO Database Record PMID:27270253

  18. Patient Rights

    MedlinePlus

    ... your health care provider must give you the information you need to make a decision. Many hospitals have patient advocates who can help you if you have problems. Many states have an ombudsman office for problems with long term care. Your state's department of health may also be able to help.

  19. Patient Advocate Foundation

    MedlinePlus

    ... The Process is Simple. Patient Advocate Foundation's Patient Services provides patients with arbitration, mediation and negotiation to settle issues ... the following to learn more about how PAF Patient Services may assist you: Specialized Patient Programs Co-Pay ...

  20. Increased catabolism and decreased unsaturation of ganglioside in patients with inflammatory bowel disease

    PubMed Central

    Miklavcic, John J; Hart, Tasha DL; Lees, Gordon M; Shoemaker, Glen K; Schnabl, Kareena L; Larsen, Bodil MK; Bathe, Oliver F; Thomson, Alan BR; Mazurak, Vera C; Clandinin, M Tom

    2015-01-01

    AIM: To investigate whether accelerated catabolism of ganglioside and decreased ganglioside content contribute to the etiology of pro-inflammatory intestinal disease. METHODS: Intestinal mucosa from terminal ileum or colon was obtained from patients with ulcerative colitis or inflammatory Crohn’s disease (n = 11) undergoing bowel resection and compared to control samples of normal intestine from patients with benign colon polyps (n = 6) and colorectal cancer (n = 12) in this observational case-control study. Gangliosides and phospholipids of intestinal mucosa were characterized by class and ceramide or fatty acid composition using liquid chromatography triple-quad mass spectrometry. Content and composition of ganglioside classes GM1, GM3, GD3, GD1a, GT1 and GT3 were compared among subject groups. Content and composition of phospholipid classes phosphatidylcholine (PC) and phosphatidylethanolamine were compared among subject groups. Unsaturation index of individual ganglioside and phospholipid classes was computed and compared among subject groups. Ganglioside catabolism enzymes beta-hexosaminidase A (HEXA) and sialidase-3 (NEU3) were measured in intestinal mucosa using western blot and compared among subject groups. RESULTS: Relative GM3 ganglioside content was 2-fold higher (P < 0.05) in intestine from patients with inflammatory bowel disease (IBD) compared to control intestine. The quantity of GM3 and ratio of GM3/GD3 was also higher in IBD intestine than control tissue (P < 0.05). Control intestine exhibited 3-fold higher (P < 0.01) relative GD1a ganglioside content than IBD intestine. GD3 and GD1a species of ganglioside containing three unsaturated bonds were present in control intestine, but were not detected in IBD intestine. The relative content of PC containing more than two unsaturated bonds was 30% lower in IBD intestine than control intestine (P < 0.05). The relative content of HEXA in IBD intestine was increased 1.7-fold (P < 0.05) and NEU3 was

  1. Communicating with patients

    MedlinePlus

    ... patient. Be careful not to make assumptions. Patient teaching based on incorrect assumptions may not be very ... information you receive can help guide your patient teaching. Ask the right questions. Ask if the patient ...

  2. Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology.

    PubMed

    Martino, Sabata; di Girolamo, Ilaria; Cavazzin, Chiara; Tiribuzi, Roberto; Galli, Rossella; Rivaroli, Anna; Valsecchi, Manuela; Sandhoff, Konrad; Sonnino, Sandro; Vescovi, Angelo; Gritti, Angela; Orlacchio, Aldo

    2009-04-01

    In this work we showed that genotype-related patterns of hexosaminidase activity, isoenzyme composition, gene expression and ganglioside metabolism observed during embryonic and postnatal brain development are recapitulated during the progressive stages of neural precursor cell (NPC) differentiation to mature glia and neurons in vitro. Further, by comparing NPCs and their differentiated progeny established from Tay-Sachs (TS) and Sandhoff (SD) animal models with the wild-type counterparts, we studied the events linking the accumulation of undegraded substrates to hexosaminidase activity. We showed that similarly to what observed in brain tissues in TS NPCs and progeny, the stored GM2 was partially converted by sialidase to GA2, which can be then degraded in the lysosomes to its components. The latter can be used in a salvage pathway for the formation of GM3. Interestingly, results obtained from ganglioside feeding assays and from measurement of lysosomal sialidase activity suggest that a similar pathway might work also in the SD model. PMID:19166507

  3. The prevalence of nine genetic disorders in a dog population from Belgium, the Netherlands and Germany.

    PubMed

    Broeckx, Bart J G; Coopman, Frank; Verhoeven, Geert E C; Van Haeringen, Wim; van de Goor, Leanne; Bosmans, Tim; Gielen, Ingrid; Saunders, Jimmy H; Soetaert, Sandra S A; Van Bree, Henri; Van Neste, Christophe; Van Nieuwerburgh, Filip; Van Ryssen, Bernadette; Verelst, Elien; Van Steendam, Katleen; Deforce, Dieter

    2013-01-01

    The objective of this study was to screen a dog population from Belgium, the Netherlands and Germany for the presence of mutant alleles associated with hip dysplasia (HD), degenerative myelopathy (DM), exercise-induced collapse (EIC), neuronal ceroid lipofuscinosis 4A (NCL), centronuclear myopathy (HMLR), mucopolysaccharidosis VII (MPS VII), myotonia congenita (MG), gangliosidosis (GM1) and muscular dystrophy (Duchenne type) (GRMD). Blood samples (K3EDTA) were collected for genotyping with Kompetitive Allele Specific PCR (n = 476). Allele and genotype frequencies were calculated in those breeds with at least 12 samples (n = 8). Hardy-Weinberg equilibrium was tested. Genetic variation was identified for 4 out of 9 disorders: mutant alleles were found in 49, 15, 3 and 2 breeds for HD, DM, EIC and NCL respectively. Additionally, mutant alleles were identified in crossbreeds for both HD and EIC. For HD, DM, EIC and NCL mutant alleles were newly discovered in 43, 13, 2 and 1 breed(s), respectively. In 9, 2 and 1 breed(s) for DM, EIC and NCL respectively, the mutant allele was detected, but the respective disorder has not been reported in those breeds. For 5 disorders (HMLR, MPS VII, MG, GM1, GRMD), the mutant allele could not be identified in our population. For the other 4 disorders (HD, DM, EIC, NCL), prevalence of associated mutant alleles seems strongly breed dependent. Surprisingly, mutant alleles were found in many breeds where the disorder has not been reported to date. PMID:24069350

  4. The Prevalence of Nine Genetic Disorders in a Dog Population from Belgium, the Netherlands and Germany

    PubMed Central

    Broeckx, Bart J. G.; Coopman, Frank; Verhoeven, Geert E. C.; Van Haeringen, Wim; van de Goor, Leanne; Bosmans, Tim; Gielen, Ingrid; Saunders, Jimmy H.; Soetaert, Sandra S. A.; Van Bree, Henri; Van Neste, Christophe; Van Nieuwerburgh, Filip; Van Ryssen, Bernadette; Verelst, Elien; Van Steendam, Katleen; Deforce, Dieter

    2013-01-01

    The objective of this study was to screen a dog population from Belgium, the Netherlands and Germany for the presence of mutant alleles associated with hip dysplasia (HD), degenerative myelopathy (DM), exercise-induced collapse (EIC), neuronal ceroid lipofuscinosis 4A (NCL), centronuclear myopathy (HMLR), mucopolysaccharidosis VII (MPS VII), myotonia congenita (MG), gangliosidosis (GM1) and muscular dystrophy (Duchenne type) (GRMD). Blood samples (K3EDTA) were collected for genotyping with Kompetitive Allele Specific PCR (n = 476). Allele and genotype frequencies were calculated in those breeds with at least 12 samples (n = 8). Hardy-Weinberg equilibrium was tested. Genetic variation was identified for 4 out of 9 disorders: mutant alleles were found in 49, 15, 3 and 2 breeds for HD, DM, EIC and NCL respectively. Additionally, mutant alleles were identified in crossbreeds for both HD and EIC. For HD, DM, EIC and NCL mutant alleles were newly discovered in 43, 13, 2 and 1 breed(s), respectively. In 9, 2 and 1 breed(s) for DM, EIC and NCL respectively, the mutant allele was detected, but the respective disorder has not been reported in those breeds. For 5 disorders (HMLR, MPS VII, MG, GM1, GRMD), the mutant allele could not be identified in our population. For the other 4 disorders (HD, DM, EIC, NCL), prevalence of associated mutant alleles seems strongly breed dependent. Surprisingly, mutant alleles were found in many breeds where the disorder has not been reported to date. PMID:24069350

  5. [Structural basis for β-galactosidase associated with lysosomal disease].

    PubMed

    Shimizu, Toshiyuki

    2013-01-01

    G(M1)-gangliosidosis and Morquio B are rare lysosomal storage diseases associated with a neurodegenerative disorder or dwarfism and skeletal abnormalities, respectively. These diseases are caused by deficiencies in the lysosomal enzyme human β-D-galactosidase (h-β-GAL), which lead to accumulations of the h-β-GAL substrates, G(M1) ganglioside and keratan sulfate due to mutations in the h-β-GAL gene. H-β-GAL is an exoglycosidase that catalyzes the hydrolysis of terminal β-linked galactose residues. Here, we present the crystal structures of h-β-GAL in complex with its catalytic product galactose or with its inhibitor 1-deoxygalactonojirimycin. H-β-GAL showed a novel homodimer structure; each monomer was comprised of a catalytic TIM barrel domain followed by β-domain 1 and β-domain 2. The long loop region connecting the TIM barrel domain with β-domain 1 was responsible for the dimerization. To gain structural insight into the molecular defects of h-β-GAL in the above diseases, the disease-causing mutations were mapped onto the three-dimensional structure. Finally, the possible causes of the diseases are discussed. PMID:23649392

  6. Patient-centered Radiology.

    PubMed

    Itri, Jason N

    2015-10-01

    Patient-centered care (ie, care organized around the patient) is a model in which health care providers partner with patients and families to identify and satisfy patients' needs and preferences. In this model, providers respect patients' values and preferences, address their emotional and social needs, and involve them and their families in decision making. Radiologists have traditionally been characterized as "doctor-to-doctor" consultants who are distanced from patients and work within a culture that does not value patient centeredness. As medicine becomes more patient driven and the trajectory of health care is toward increasing patient self-reliance, radiologists must change the perception that they are merely consultants and become more active participants in patient care by embracing greater patient interaction. The traditional business model for radiology practices, which devalues interaction between patients and radiologists, must be transformed into a patient-centered model in which radiologists are reintegrated into direct patient care and imaging processes are reorganized around patients' needs and preferences. Expanding radiology's core assets to include direct patient care may be the most effective deterrent to the threat of commoditization. As the assault on the growth of Medicare spending continues, with medical imaging as a highly visible target, radiologists must adapt to the changing landscape by focusing on their most important consumer: the patient. This may yield substantial benefits in the form of improved quality and patient safety, reduced costs, higher-value care, improved patient outcomes, and greater patient and provider satisfaction. PMID:26466190

  7. Counseling the Coronary Patient

    ERIC Educational Resources Information Center

    Semmler, Caryl; Semmler, Maynard

    1974-01-01

    The article discusses counseling sessions designed to a) help the coronary patient adjust to cardiovascular disease, b) diminish patient anxieties and fears, and c) educate the patient and family members on controlling risk factors to deter another coronary attack. (JS)

  8. Identification of Sandhoff disease in a Thai family: clinical and biochemical characterization.

    PubMed

    Sakpichaisakul, Kullasate; Taeranawich, Pairat; Nitiapinyasakul, Achara; Sirisopikun, Todsaporn

    2010-09-01

    Sandhoff disease is a GM2 gangliosidosis that is rare in Thailand. The authors report a Thai family with two children known to have infantile form of Sandhoff disease. The index case exhibited mitral valve prolapse with mitral regurgitation as an early sign, which is a rare presentation in Sandhoff disease. Thereafter the patient had developmental regression, startle reaction, and cherry red spots. The diagnosis was confirmed by biochemical analysis. PMID:20873083

  9. [Symptomatic calcification in the newborn. Phenocopies of chondrodysplasia punctata].

    PubMed

    Leicher-Düber, A; Schumacher, R; Spranger, J

    1990-04-01

    Stippled epiphyses occur in the new-born and young infant in the different hereditary forms of chondrodysplasia punctata. Symptomatic stippling has been described also in association with chromosomal anomalies, gangliosidosis and drug induced embryopathies. We present patients with Cumarin-embryopathy (2), fetal alcohol syndrome (1), Zellweger-syndrome (2) and chromosomal anomaly 16 (1) and discuss the typical roentgenographic features, distribution and differential diagnosis of epiphyseal stippling. PMID:2160110

  10. [Ambulatory surgery. Patients and patient education].

    PubMed

    Bredland, T; Duesund, R

    1996-02-20

    This article reviews the concept of day surgery and shows how the treatment can be organized pre-, per- and post-operatively. It can be established in a hospital-integrated unit, a unit separate from the hospital, but connected with it, or a satellite ambulatory facility. Because the patient spends only a short time in hospital it is necessary to have structured preparations before admission, for the benefit of both patient and staff. It should be easy to identify patients suitable for day surgery from the waiting lists, and preparations should be directed at treatment by day surgery right from the start. Rules must be worked out for selecting patients, as well as guidelines for information to patients. It is also necessary to plan the operation programme, and to agree how nurses and doctors should take care of the patient during the different steps of treatment. PMID:8658453

  11. Immunoglobulin G heavy chain (Gm) allotypes in multiple sclerosis.

    PubMed Central

    Pandey, J P; Goust, J M; Salier, J P; Fudenberg, H H

    1981-01-01

    Serum samples from 70 Caucasian patients with multiple sclerosis were typed for nine Gm markers. Significant association was found with the Gm 1,17;21 phenotype, and the relative risk for individuals with this phenotype was calculated at 3.6. The data indicate that Caucasians positive for Gm 1,17;21 are almost four times more likely to develop multiple sclerosis than those without this phenotype. PMID:6787085

  12. Immunoglobulin G heavy chain (Gm) allotypes in multiple sclerosis.

    PubMed

    Pandey, J P; Goust, J M; Salier, J P; Fudenberg, H H

    1981-06-01

    Serum samples from 70 Caucasian patients with multiple sclerosis were typed for nine Gm markers. Significant association was found with the Gm 1,17;21 phenotype, and the relative risk for individuals with this phenotype was calculated at 3.6. The data indicate that Caucasians positive for Gm 1,17;21 are almost four times more likely to develop multiple sclerosis than those without this phenotype. PMID:6787085

  13. Periprocedural Patient Care.

    PubMed

    Kohi, Maureen P; Fidelman, Nicholas; Behr, Spencer; Taylor, Andrew G; Kolli, Kanti; Conrad, Miles; Hwang, Gloria; Weinstein, Stefanie

    2015-10-01

    Periprocedural care of patients who undergo image-guided interventions is a task of monumental importance. As physicians who perform procedures, radiologists rely on their noninterpretive skills to optimize patient care. At the center of periprocedural care is proper patient identification. It is imperative to perform the indicated procedure for the correct patient. It is also of great importance to discuss with the patient the nature of the procedure. This conversation should include the indications, risks, benefits, alternatives, and potential complications of the procedure. Once the patient agrees to the procedure and grants informed consent, it is imperative to stop and confirm that the correct procedure is being performed on the correct patient. This universal time-out policy helps decrease errors and improves patient care. To optimize our interpretative and procedural skills, it may be necessary to provide the patient with sedation or anesthesia. However, it is important to understand the continuum of sedation and be able to appropriately monitor the patient and manage the sedation in these patients. To minimize the risks of infection, periprocedural care of patients relies on aseptic or, at times, sterile techniques. Before the procedure, it is important to evaluate the patient's coagulation parameters and bleeding risks and correct the coagulopathy, if needed. During the procedure, the patient's blood pressure and at times the patient's glucose levels will also require monitoring and management. After the procedure, patients must be observed in a recovery unit and deemed safe for discharge. The fundamental components of periprocedural care necessary to enhance patient safety, satisfaction, and care are reviewed to familiarize the reader with the important noninterpretive skills necessary to optimize periprocedural care. PMID:26466184

  14. Burns in diabetic patients

    PubMed Central

    Maghsoudi, Hemmat; Aghamohammadzadeh, Naser; Khalili, Nasim

    2008-01-01

    CONTEXT AND AIMS: Diabetic burn patients comprise a significant population in burn centers. The purpose of this study was to determine the demographic characteristics of diabetic burn patients. MATERIALS AND METHODS: Prospective data were collected on 94 diabetic burn patients between March 20, 2000 and March 20, 2006. Of 3062 burns patients, 94 (3.1%) had diabetes; these patients were compared with 2968 nondiabetic patients with burns. Statistical analysis was performed using the statistical analysis software SPSS 10.05. Differences between the two groups were evaluated using Student's t-test and the chi square test. P < 0.05 was considered as significant. RESULTS: The major mechanism of injury for the diabetic patients was scalding and flame burns, as was also the case in the nondiabetic burn patients. The diabetic burn patients were significantly older, with a lower percentage of total burn surface area (TBSA) than the nondiabetic burn population. There was significant difference between the diabetic and nondiabetic patients in terms of frequency of infection. No difference in mortality rate between diabetic and nondiabetic burn patients was observed. The most common organism in diabetic and nondiabetic burn patients was methicillin-resistant staphylococcus. Increasing %TBSA burn and the presence of inhalation injury are significantly associated with increased mortality following burn injury. CONCLUSIONS: Diabetics have a higher propensity for infection. Education for diabetic patients must include caution about potential burn mishaps and the complications that may ensue from burns. PMID:19902035

  15. Individualizing patient education for greater patient satisfaction.

    PubMed

    Alagheband, Sharzad J; Miller, Jeffrey J; Clarke, Jennie T

    2015-05-01

    The benefits of educational intervention on health outcomes has been widely discussed, but the most educational methods have not been addressed. We sought to assess preferred modes of education during an outpatient dermatology visit (ie, verbal instruction [VI], written instruction [WI], demonstration [DM], Internet resources [IR]). We secondarily looked at patient satisfaction with the educational methods used. The results indicate the most preferred method of education among 157 patients who completed a 12-question survey and areas where physicians may need to improve patient education. PMID:26057507

  16. Patient Eye Examinations - Adults

    MedlinePlus

    ... Examinations, Adults Patient Eye Examinations, Children Refractive Errors Scientists in the Laboratory Visual Acuity Testing Patient Eye Examinations, Adults × Warning message Automatic fallback to the cURL connection method kicked in to handle the request. Result code ...

  17. Repositioning the Patient:

    PubMed Central

    Mold, Alex

    2013-01-01

    Summary This article explores how and why the patient came to be repositioned as a political actor within British health care during the 1960s and 1970s. Focusing on the role played by patient organizations, it is suggested that the repositioning of the patient needs to be seen in the light of growing demands for greater patient autonomy and the application of consumerist principles to health. Examining the activities of two patient groups—the National Association for the Welfare of Children in Hospital (NAWCH) and the Patients Association (PA)—indicates that while such groups undoubtedly placed more emphasis on individual autonomy, collective concerns did not entirely fall away. The voices of patients, as well as the patient, continued to matter within British health care. PMID:23811711

  18. [Patient education of hepatitis].

    PubMed

    Boyer, Dominique; Faillebin, Françoise; de la Brière, Aice

    2013-11-01

    The therapeutic education of patients with hepatitis C helps to improve their health and quality of life. The aim is to encourage compliance with the treatment and the fight against side effects, through to the patient's recovery. PMID:24409616

  19. Evolution of patient navigation.

    PubMed

    Shockney, Lillie D

    2010-08-01

    The role of nurses in patient navigation has evolved over more than four decades. Navigators in cancer care can guide patients through the physical, emotional, and financial challenges that come with a diagnosis of cancer and facilitate communication among healthcare providers. Navigation has the potential to improve patient outcomes and system efficiency. Oncology nurses are well suited to help patients with cancer navigate the healthcare system from diagnosis and treatment through survivorship and palliative care. PMID:20682496

  20. Patients Provide Recommendations for Improving Patient Satisfaction.

    PubMed

    Moore, Angelo D; Hamilton, Jill B; Krusel, Jessica L; Moore, LeeAntoinette G; Pierre-Louis, Bosny J

    2016-04-01

    National Committee for Quality Assurance recommends patient-centered medical homes incorporate input from patient populations; however, many health care organizations do not. This qualitative study used two open-ended questions from 148 active duty Army Soldiers and their family members to illicit recommendations for primary care providers and clinic leadership that would improve their health care experiences. Content analysis and descriptive statistics were used to analyze responses. Participant responses were related to four major themes: Access to Care, Interpersonal Interaction, Satisfaction of Care, and Quality of Care. Participants were overall satisfied with their care; however, spending less time waiting for appointments and to see the provider or specialist were the most frequently requested improvements related to Access to Care. For Interpersonal Interaction, 82% of the responses recommended that providers be more attentive listeners, courteous, patient, caring, and respectful. Decreasing wait times and improving interpersonal skills would improve health care experiences and patient satisfaction. PMID:27046182

  1. Surveying young patients.

    PubMed

    Foster, Theresa; Maillardet, Victoria

    2010-03-01

    The East of England Ambulance Service NHS Trust (the Trust) was keen to engage young patients and to encourage them to give feedback about the service they had received. The standard Trust satisfaction survey was modified for use with young patients, and this had the effect of increasing the response rate from this patient group by 8%, and increasing the percentage of young patients aged 5-10 years completing the survey themselves by 29%. The vast majority of parents/guardians were happy for the Trust to survey their child, but the age of the child affected to whom they would like the survey sent. The Trust subsequently altered patient survey practice to write to parents/guardians of patients aged <12 years and directly to all patients aged > or = 12 years. PMID:20304894

  2. Patient-centered Care.

    PubMed

    Reynolds, April

    2009-01-01

    Patient-centered care focuses on the patient and the individual's particular health care needs. The goal of patient-centered health care is to empower patients to become active participants in their care. This requires that physicians, radiologic technologists and other health care providers develop good communication skills and address patient needs effectively. Patient-centered care also requires that the health care provider become a patient advocate and strive to provide care that not only is effective but also safe. For radiologic technologists, patient-centered care encompasses principles such as the as low as reasonably achievable (ALARA) concept and contrast media safety. Patient-centered care is associated with a higher rate of patient satisfaction, adherence to suggested lifestyle changes and prescribed treatment, better outcomes and more cost-effective care. This article is a Directed Reading. Your access to Directed Reading quizzes for continuing education credit is determined by your area of interest. For access to other quizzes, go to www.asrt.org/store. According to one theory, most patients judge the quality of their healthcare much like they rate an airplane flight. They assume that the airplane is technically viable and is being piloted by competent people. Criteria for judging a particular airline are personal and include aspects like comfort, friendly service and on-time schedules. Similarly, patients judge the standard of their healthcare on nontechnical aspects, such as a healthcare practitioner's communication and "soft skills." Most are unable to evaluate a practitioner's level of technical skill or training, so the qualities they can assess become of the utmost importance in satisfying patients and providing patient-centered care.(1). PMID:19901351

  3. Melanoma in Immunosuppressed Patients

    PubMed Central

    Kubica, Agnieszka W.; Brewer, Jerry D.

    2012-01-01

    The immunogenic characteristics of malignant melanoma are intriguing. To date, multiple studies exist regarding the immunogenicity of melanoma. In this article, we summarize data in the literature on the role of immunosuppression in melanoma and discuss several immunocompromised patient populations in detail. A comprehensive PubMed search was conducted with no date limitation. The following search terms were used: melanoma in combination with immunosuppression, immunocompromised, genetics, antigen processing, UV radiation, organ transplantation, organ transplant recipients, lymphoproliferative disease, lymphoma, CLL, NHL, radiation, and HIV/AIDS. Although no formal criteria were used for inclusion of studies, most pertinent studies on the topic were reviewed, with the exception of smaller case reports and case series. The included studies were generally large (≥1000 patients in organ transplant recipient studies; ≥500 patients in lymphoma studies), with a focus on institutional experiences, or population-based national or international epidemiologic studies. Melanoma-induced immunosuppression, the role of UV radiation in melanoma development, and the epidemiology, clinical course, and prognosis of melanoma in immunocompromised patients are highlighted. Organ transplant recipients, patients with lymphoproliferative disorders, patients with iatrogenic immunosuppression, and patients with human immunodeficiency virus infection/AIDS are also highlighted. Recommendations are proposed for the care and monitoring of immunosuppressed patients with melanoma. With better understanding of the molecular microenvironment and clinical course of melanoma in immunosuppressed patients, novel therapies could be developed and outcomes potentially affected in these patients. PMID:23036673

  4. [Two patients with mumps].

    PubMed

    van Brummelen, S E; de Vries, E; Schneeberger, P M; van Binnendijk, R S; Lestrade, P; Wever, P C

    2006-08-01

    Two patients, men aged 17 and 19 years respectively, were admitted with parotitis epidemica and orchitis caused by mumps. The second patient also had meningitis. PCR analysis revealed that, in both cases, the causative agentwas a mumps virus that was genetically related to a wild-type virus responsible for an outbreak in Singapore. This viral strain was also responsible for a mumps outbreak at Hotel School The Hague in September 2004. Both patients were not fully vaccinated. Both patients were from regions in which clustering of patients with clinical signs of mumps has been seen. Interestingly, a number of patients with confirmed mumps had been fully vaccinated. Possible explanations for the increase in mumps cases include low vaccination and immunity levels, primary and secondary vaccine failure and the emergence of genetically disparate mumps viruses. PMID:16924947

  5. Patient-doctor communication.

    PubMed

    Teutsch, Carol

    2003-09-01

    Communication is an important component of patient care. Traditionally, communication in medical school curricula was incorporated informally as part of rounds and faculty feedback, but without a specific or intense focus on skills of communicating per se. The reliability and consistency of this teaching method left gaps, which are currently getting increased attention from medical schools and accreditation organizations. There is also increased interest in researching patient-doctor communication and recognizing the need to teach and measure this specific clinical skill. In 1999, the Accreditation of Council for Graduate Medical Education implemented a requirement for accreditation for residency programs that focuses on "interpersonal and communications skills that result in effective information exchange and teaming with patients, their families, and other health professionals." The National Board of Medical Examiners, Federation of State Medical Boards. and the Educational Commission for Foreign Medical Graduates have proposed an examination between the. third and fourth year of medical school that "requires students to demonstrate they can gather information from patients, perform a physical examination, and communicate their findings to patients and colleagues" using standardized patients. One's efficiency and effectiveness in communication can be improved through training, but it is unlikely that any future advances will negate the need and value of compassionate and empathetic two-way communication between clinician and patient. The published literature also expresses belief in the essential role of communication. "It has long been recognized that difficulties in the effective delivery of health care can arise from problems in communication between patient and provider rather than from any failing in the technical aspects of medical care. Improvements in provider-patient communication can have beneficial effects on health outcomes". A systematic review of

  6. Patient Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Simmons, Jeannette

    Topics included in this annotated bibliography on patient education are (1) background on development of patient education programs, (2) patient education interventions, (3) references for health professionals, and (4) research and evaluation in patient education. (TA)

  7. Physicians as Patient Teachers

    PubMed Central

    Brunton, Stephen A.

    1984-01-01

    Physicians have a central role in educating patients and the public in the elements of personal health maintenance. To be an effective teacher, one must recognize the learning needs of each patient and use methods of information transfer that will result in comprehension and compliance. To bring about a change in life-style, one must also have an understanding of a patient's health beliefs and the determinants of human behavior. Using this information together with behavior modification strategies, physicians can forge an effective partnership with patients working toward the goal of optimum health. PMID:6395500

  8. The critically ill immunosuppressed patient

    SciTech Connect

    Parrillo, J.E.; Masur, H. )

    1987-01-01

    This book discusses the papers on the diagnosis and management of immunosuppressed patient. Some of the topics are: life-threatening organ failure in immunosuppressed patients; diagnosis and therapy of respiratory disease in the immunosuppressed patient; CNS complication of immunosuppression; infections; antineoplastic therapy of immunosuppressed patient; radiation therapy-issues in critically ill patient; AIDS; and management of bone marrow transplant patients.

  9. Caring for transgender patients.

    PubMed

    Abebe, Alyssa

    2016-06-01

    Clinicians need a better understanding of transgender populations and a systematic approach to treating transgender patients medically and psychologically while managing any potential judgment or bias. This article explains key concepts, describes transgender patient health concerns, and discusses how to perform a comprehensive history. PMID:27228044

  10. National Patient Safety Foundation

    MedlinePlus

    ... 9/27/2016 NPSF Professional Learning Series Webcast: Health Literacy: Improving Patient Understanding 9/29/2016 Certified Professional in Patient Safety Review Course Webinar 10/4/2016 NPSF Webcast: Implementing RCA2: Lessons from the Trenches: Aurora Health ... In Remember Me Forgot your password? ...