Sample records for gmp-dependent calcium-activated chloride

  1. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels

    PubMed Central

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan

    2013-01-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types. PMID:24081981

  2. Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A.

    PubMed

    Cruz-Rangel, Silvia; De Jesús-Pérez, José J; Aréchiga-Figueroa, Iván A; Rodríguez-Menchaca, Aldo A; Pérez-Cornejo, Patricia; Hartzell, H Criss; Arreola, Jorge

    2017-03-01

    The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca 2+ -dependent Cl - channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca 2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H + ] o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H + ] o from 10 -10 to 10 -5.5  m caused a progressive increase in the chloride current (I Cl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca 2+ sensitivity. Noise analysis showed

  3. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    PubMed

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  4. Properties of the calcium-activated chloride current in heart.

    PubMed

    Zygmunt, A C; Gibbons, W R

    1992-03-01

    We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are

  5. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex

    PubMed Central

    Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388

  6. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  7. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  8. Regulation of the Na(+)-K(+)-2Cl(-) cotransporter by cGMP/cGMP-dependent protein kinase I after furosemide administration.

    PubMed

    Limmer, Franziska; Schinner, Elisabeth; Castrop, Hayo; Vitzthum, Helga; Hofmann, Franz; Schlossmann, Jens

    2015-10-01

    Sodium chloride reabsorption in the thick ascending limb of the loop of Henle is mediated by the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). The loop diuretic furosemide is a potent inhibitor of NKCC2. However, less is known about the mechanism regulating the electrolyte transporter. Considering the well-established effects of nitric oxide on NKCC2 activity, cGMP is likely involved in this regulation. cGMP-dependent protein kinase I (cGKI; PKGI) is a cGMP target protein that phosphorylates different substrates after activation through cGMP. We investigated the potential correlation between the cGMP/cGKI pathway and NKCC2 regulation. We treated wild-type (wt) and cGKIα-rescue mice with furosemide. cGKIα-rescue mice expressed cGKIα only under the control of the smooth muscle-specific transgelin (SM22) promoter in a cGKI deficient background. Furosemide treatment increased the urine excretion of sodium and chloride in cGKIα-rescue mice compared to that in wt mice. We analyzed the phosphorylation of NKCC2 by western blotting and immunostaining using the phosphospecific antibody R5. The administration of furosemide significantly increased the phosphorylated NKCC2 signal in wt but not in cGKIα-rescue mice. NKCC2 activation led to its phosphorylation and membrane translocation. To examine whether cGKI was involved in this process, we analyzed vasodilator-stimulated phosphoprotein, which is phosphorylated by cGKI. Furosemide injection resulted in increased vasodilator-stimulated phosphoprotein phosphorylation in wt mice. We hypothesize that furosemide administration activated cGKI, leading to NKCC2 phosphorylation and membrane translocation. This cGKI-mediated pathway could be a mechanism to compensate for the inhibitory effect of furosemide on NKCC2. © 2015 FEBS.

  9. Secreted CLCA1 modulates TMEM16A to activate Ca(2+)-dependent chloride currents in human cells.

    PubMed

    Sala-Rabanal, Monica; Yurtsever, Zeynep; Nichols, Colin G; Brett, Tom J

    2015-03-17

    Calcium-activated chloride channel regulator 1 (CLCA1) activates calcium-dependent chloride currents; neither the target, nor mechanism, is known. We demonstrate that secreted CLCA1 activates calcium-dependent chloride currents in HEK293T cells in a paracrine fashion, and endogenous TMEM16A/Anoctamin1 conducts the currents. Exposure to exogenous CLCA1 increases cell surface levels of TMEM16A and cellular binding experiments indicate CLCA1 engages TMEM16A on the surface of these cells. Altogether, our data suggest that CLCA1 stabilizes TMEM16A on the cell surface, thus increasing surface expression, which results in increased calcium-dependent chloride currents. Our results identify the first Cl(-) channel target of the CLCA family of proteins and establish CLCA1 as the first secreted direct modifier of TMEM16A activity, delineating a unique mechanism to increase currents. These results suggest cooperative roles for CLCA and TMEM16 proteins in influencing the physiology of multiple tissues, and the pathology of multiple diseases, including asthma, COPD, cystic fibrosis, and certain cancers.

  10. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    PubMed Central

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  11. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction

    PubMed Central

    Namkung, Wan; Yao, Zhen; Finkbeiner, Walter E.; Verkman, A. S.

    2011-01-01

    TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca2+. By patch-clamp, N-aroylaminothiazole “activators” (Eact) strongly increased Cl− current at 0 Ca2+, whereas tetrazolylbenzamide “potentiators” (Fact) were not active at 0 Ca2+ but reduced the EC50 for Ca2+-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (Eact) and potentiator (Fact) produced large and more sustained CaCC Cl− currents than general agonists of Ca2+ signaling, with EC50 3–6 μM and Cl− conductance comparable to that induced transiently by Ca2+-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl− conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.—Namkung, W., Yao, Z., Finkbeiner, W. E., Verkman, A. S. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. PMID:21836025

  12. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  13. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    PubMed Central

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  14. Testosterone-induced relaxation of coronary arteries: activation of BKCa channels via the cGMP-dependent protein kinase

    PubMed Central

    Deenadayalu, Viju; Puttabyatappa, Yashoda; Liu, Alexander T.; Stallone, John N.

    2012-01-01

    Androgens are reported to have both beneficial and detrimental effects on human cardiovascular health. The aim of this study was to characterize nongenomic signaling mechanisms in coronary artery smooth muscle (CASM) and define the ionic basis of testosterone (TES) action. TES-induced relaxation of endothelium-denuded porcine coronary arteries was nearly abolished by 20 nM iberiotoxin, a highly specific inhibitor of large-conductance, calcium-activated potassium (BKCa) channels. Molecular patch-clamp studies confirmed that nanomolar concentrations of TES stimulated BKCa channel activity by ∼100-fold and that inhibition of nitric oxide synthase (NOS) activity by NG-monomethyl-l-arginine nearly abolished this effect. Inhibition of nitric oxide (NO) synthesis or guanylyl cyclase activity also attenuated TES-induced coronary artery relaxation but did not alter relaxation due to 8-bromo-cGMP. Furthermore, we detected TES-stimulated NO production in porcine coronary arteries and in human CASM cells via stimulation of the type 1 neuronal NOS isoform. Inhibition of the cGMP-dependent protein kinase (PKG) attenuated TES-stimulated BKCa channel activity, and direct assay determined that TES increased activity of PKG in a concentration-dependent fashion. Last, the stimulatory effect of TES on BKCa channel activity was mimicked by addition of purified PKG to the cytoplasmic surface of a cell-free membrane patch from CASM myocytes (∼100-fold increase). These findings indicate that TES-induced relaxation of endothelium-denuded coronary arteries is mediated, at least in part, by enhanced NO production, leading to cGMP synthesis and PKG activation, which, in turn, opens BKCa channels. These findings provide a molecular mechanism that could help explain why androgens have been reported to relax coronary arteries and relieve angina pectoris. PMID:22081702

  15. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  16. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland

    PubMed Central

    De Jonge, Hugo R.; Tilly, Ben C.; Hogema, Boris M.; Pfau, Daniel J.; Kelley, Catherine A.; Kelley, Megan H.; Melita, August M.; Morris, Montana T.; Viola, Ryan M.

    2013-01-01

    The in vitro perfused rectal gland of the dogfish shark (Squalus acanthias) and filter-grown monolayers of primary cultures of shark rectal gland (SRG) epithelial cells were used to analyze the signal transduction pathway by which C-type natriuretic peptide (CNP) stimulates chloride secretion. CNP binds to natriuretic receptors in the basolateral membrane, elevates cellular cGMP, and opens cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in the apical membrane. CNP-provoked chloride secretion was completely inhibitable by the nonspecific protein kinase inhibitor staurosporine and the PKA inhibitor H89 but insensitive to H8, an inhibitor of type I and II isoforms of cGMP-dependent protein kinase (cGKI and cGKII). CNP-induced secretion could not be mimicked by nonhydrolyzable cGMP analogs added alone or in combination with the protein kinase C activator phorbolester, arguing against a role for cGK or for cGMP-induced PKC signaling. We failed to detect a dogfish ortholog of cGKII by molecular cloning and affinity chromatography. However, inhibitors of the cGMP-inhibitable isoform of phosphodiesterase (PDE3) including milrinone, amrinone, and cilostamide but not inhibitors of other PDE isoenzymes mimicked the effect of CNP on chloride secretion in perfused glands and monolayers. CNP raised cGMP and cAMP levels in the SRG epithelial cells. This rise in cAMP as well as the CNP and amrinone-provoked chloride secretion, but not the rise in cGMP, was almost completely blocked by the Gαi-coupled adenylyl cyclase inhibitor somatostatin, arguing against a role for cGMP cross-activation of PKA in CNP action. These data provide molecular, functional, and pharmacological evidence for a CNP/cGMP/PDE3/cAMP/PKA signaling cascade coupled to CFTR in the SRG. PMID:24259420

  17. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  18. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  19. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially obtained as a byproduct in...

  20. CNG-Modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels

    PubMed Central

    Rebrik, Tatiana I.; Botchkina, Inna; Arshavsky, Vadim Y.; Craft, Cheryl M.; Korenbrot, Juan I.

    2012-01-01

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide gated ion channels (CNG channels). The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 amino acid protein that interacts with the N-terminus of the β-subunit of the cGMP-gated channel, and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxitilis). Immunohistochemistry and single cell PCR demonstrate that CNG-modulin is expressed in cone, but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP-dependence from ~91 μM in the absence of Ca2+ to ~332 μM in the presence of 20 μM Ca2+. At a fixed cGMP concentration, the midpoint of the Ca2+ dependence is ~857 nM Ca2+. These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca2+ with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca2+-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium and the inner ear and may modulate the function of ion channels in those tissues as well. PMID:22378887

  1. CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels.

    PubMed

    Rebrik, Tatiana I; Botchkina, Inna; Arshavsky, Vadim Y; Craft, Cheryl M; Korenbrot, Juan I

    2012-02-29

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide-gated (CNG) ion channels. The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 aa protein that interacts with the N terminus of the β subunit of the cGMP-gated channel and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxatilis). Immunohistochemistry and single-cell PCR demonstrate that CNG-modulin is expressed in cone but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP dependence from ∼91 μM in the absence of Ca(2+) to ∼332 μM in the presence of 20 μM Ca(2+). At a fixed cGMP concentration, the midpoint of the Ca(2+) dependence is ∼857 nM Ca(2+). These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca(2+) with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca(2+)-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium, and the inner ear, and may modulate the function of ion channels in those tissues as well.

  2. Deciphering cGMP signatures and cGMP-dependent pathways in plant defence

    PubMed Central

    Meier, Stuart; Madeo, Laura; Ederli, Luisa; Donaldson, Lara; Gehring, Chris

    2009-01-01

    The second messenger, 3′,5′-cyclic monophosphate (cGMP), is a critical component of many different processes in plants while guanylyl cyclases that catalyse the formation of cGMP from GTP have remained somewhat elusive in higher plants. Consequently, two major aims are the discovery of novel GCs and the identification of cGMP mediated processes. Recently, we have reported temporal signatures of ozone (O3)-induced hydrogen peroxide (H2O2) and nitric oxide (NO) generation, their effect on cGMP generation, and consequent transcriptional changes of genes diagnostic for stress responses in tobacco. We demonstrated that O3 and NO induced early transcriptional activation of the scavenger encoding proteins, alternative oxidase (AOX1a), glutathione peroxidase (GPX) and the induction of ethylene production through aminocyclopropancarboxylic acid synthase (ACS2) are cGMP-independent. By contrast, the early response of the phenylalanine ammonia lyase gene (PALa) and the late response of the gene encoding the pathogenesis-related protein (PR1a) show critical dependence on cGMP. Here we show differential cGMP responses to virulent and avirulent Pseudomonas syringae strains and propose that host-pathogen recognition and/or down-stream processes are transduced by complex cGMP signatures. This is in accordance with the identification of a growing number of multi-domain molecules in Arabidopsis that are reported to contain putative functional GC catalytic centers. PMID:19794847

  3. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  4. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  5. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance...

  11. Prolonged treatment of porcine pulmonary artery with nitric oxide decreases cGMP sensitivity and cGMP-dependent protein kinase specific activity

    PubMed Central

    Perkins, William J.; Warner, David O.; Jones, Keith A.

    2009-01-01

    A cultured porcine pulmonary artery (PA) model was used to examine the effects of prolonged nitric oxide (NO) treatment on the response to acutely applied NO, cGMP analog, or atrial natriuretic peptide (ANP). Twenty-four-hour treatment with the NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) resulted in >10-fold decrease in the response to acutely applied DETA-NO. In parallel with this, the relaxant response to acutely applied cGMP analog, β-phenyl-1,N2-etheno-8-bromoguanosine-3′,5′-cyclic monophosphorothioate, Sp isomer (Sp-8-Br-PET-cGMPS), and ANP decreased. The reduction in ANP responsiveness in PA was not associated with a reduction in cGMP levels evoked by 10−6 M ANP. Twenty-four hours in culture and treatment with DETA-NO decreased total cGMP-dependent protein kinase (cGKI) mRNA level compared with that in freshly prepared PA (1.05 ± 0.12, 0.42 ± 0.08, and 0.11 ± 0.01 amol/μg, respectively). Total cGKI protein levels were decreased to a lesser extent by 24 h in culture and further decreased by 24-h DETA-NO treatment compared with that in freshly prepared PA (361 ± 33, 272 ± 20, and 238 ± 25 ng/mg total protein, respectively). Maximal cGMP-stimulated phosphotransferase activity was reduced in 24-h cultured and DETA-NO-treated PA (986 ± 84, 815 ± 81, and 549 ± 78 pmol Pi·min−1·mg soluble protein−1), but the cGMP concentration resulting in 50% of maximal phosphotransferase activity was not. cGKI specific activity (maximal cGMP-activated phosphotransferase activity/ng cGKI) was significantly reduced in PA treated with DETA-NO for 24 h compared with freshly prepared and 24-h cultured PA (1.95 ± 0.22, 2.64 ± 0.25, and 2.85 ± 0.28 pmol Pi·min−1·ng cGKI−1, respectively). We conclude that prolonged NO treatment induces decreased acute NO responsiveness in PA in part by decreasing cGMP sensitivity. It does so by decreasing both cGKI expression and cGKI specific activity. PMID:18952758

  12. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  13. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  14. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  15. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may be safely used in foods for special...

  16. Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride instead of NaCl...

  17. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation.

    PubMed

    Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T; Reger, Albert S; Sankaran, Banumathi; Casteel, Darren E; Herberg, Friedrich W; Kim, Choel

    2016-05-03

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation

    DOE PAGES

    Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T.; ...

    2016-04-07

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Here, although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-raymore » scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG.« less

  19. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  20. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  1. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  2. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  3. Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: Insights for cGMP-dependent protein kinase agonist design

    DOE PAGES

    Huang, Gilbert Y.; Gerlits, Oksana O.; Blakeley, Matthew P.; ...

    2014-10-01

    High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). Finally, the XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted,more » explaining its low affinity for cAMP.« less

  4. Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation.

    PubMed

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T; Scheaffer, Suzanne M; Roswit, William T; Alevy, Yael G; Patel, Anand C; Heier, Richard F; Romero, Arthur G; Nichols, Colin G; Holtzman, Michael J; Brett, Tom J

    2012-12-07

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.

  5. Extracellular protons enable activation of the calcium‐dependent chloride channel TMEM16A

    PubMed Central

    Cruz‐Rangel, Silvia; De Jesús‐Pérez, José J.; Aréchiga‐Figueroa, Iván A.; Rodríguez‐Menchaca, Aldo A.; Pérez‐Cornejo, Patricia; Hartzell, H. Criss

    2017-01-01

    Key points The calcium‐activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity.TMEM16A is opened by voltage‐dependent calcium binding and regulated by permeant anions and intracellular protons.Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high.In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons.At physiological pH, E623 is un‐protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. Abstract Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore‐forming subunit of a Ca2+‐dependent Cl− channel (CaCC), is activated by direct, voltage‐dependent, binding of intracellular Ca2+. Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H+]o) on mouse TMEM16A expressed in HEK‐293 cells using whole‐cell and inside‐out patch‐clamp recordings. We found that increasing the [H+]o from 10−10 to 10−5.5 m caused a progressive increase in the chloride current (I Cl) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage‐independent manner, regardless of channel state (open or closed), and without altering its apparent Ca2

  6. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage.

    PubMed

    Madani, Babak; Mirshekari, Amin; Yahia, Elhadi

    2016-07-01

    There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects. Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage. Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Self-cleavage of Human CLCA1 Protein by a Novel Internal Metalloprotease Domain Controls Calcium-activated Chloride Channel Activation*♦

    PubMed Central

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T.; Scheaffer, Suzanne M.; Roswit, William T.; Alevy, Yael G.; Patel, Anand C.; Heier, Richard F.; Romero, Arthur G.; Nichols, Colin G.; Holtzman, Michael J.; Brett, Tom J.

    2012-01-01

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface. PMID:23112050

  8. cGMP in ozone and NO dependent responses

    PubMed Central

    Ederli, Luisa; Meier, Stuart; Borgogni, Andrea; Reale, Lara; Ferranti, Francesco; Gehring, Chris

    2008-01-01

    We have recently reported that ozone (O3) can inhibit mitochondrial respiration and induce activation of the alternative oxidase (AOX) pathway and in particular AOX1a in tobacco. While O3 causes mitochondrial H2O2, early leaf nitric oxide (NO) as well as transient ethylene (ET) accumulation, the levels of jasmonic acid and 12-oxo-phytodienoic acid remained unchanged. It was shown that both, NO and ET dependent pathways can induce AOX1a transcription by O3. AOX plays a role in reducing reactive oxygen species (ROS) which in turn are linked to biotic and abiotic plant stresses, much like the second messengers guanosine 3′, 5′-cyclic monophosphate (cGMP). The goal is to unravel specific cGMP signatures and induction pathways downstream from O3 and NO, including transcription of AOX1a. Here we propose that some late (>3 h) responses to NO, e.g., the accumulation of phenylalanine lyase (PAL) transcripts, are critically cGMP dependent, while the early (<2 h) responses, including AOX1a induction are not. PMID:19704720

  9. Role of chloride transport proteins in the vasorelaxant action of nitroprusside in isolated rat aorta.

    PubMed

    Valero, Marta; Pereboom, Désirée; Garay, Ricardo P; Alda, José Octavio

    2006-12-28

    Chloride ions play a key role in smooth muscle contraction, but little is known concerning their role in smooth muscle relaxation. Here we investigated the effect of chloride transport inhibitors on the vasorelaxant responses to nitroprusside in isolated and endothelium-denuded rat aorta, precontracted with phenylephrine 1 muM. Incubation of aortic rings in NO(3)(-) media strongly potentiated the vasorelaxant responses to nitroprusside. Bumetanide, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and acetazolamide strongly potentiated the vasorelaxant responses to nitroprusside (by 70-100%). EC(50) were 2.3+/-0.5 microM for bumetanide, 26+/-15 microM for DIDS and 510+/-118 microM for acetazolamide (n=6 for condition). Niflumic acid, a selective inhibitor of ClCa (calcium-activated chloride channels), potentiated nitroprusside relaxation to a similar extent as chloride transport inhibitors, in a non-additive manner. Zinc and nickel ions, both modestly potentiated nitroprusside vasorelaxation (by 20-30%). Cobaltum had negligible effect on nitroprusside vasorelaxation. CPA (p-chlorophenoxy-acetic acid), an inhibitor of volume-sensitive chloride channels (ClC), slightly potentiated nitroprusside vasorelaxation (by 15%), and the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel inhibitors CFTR(inh)172 (5-[(4-Carboxyphenyl)methylene]-2-thioxo-3-[(3-trifluoromethyl)phenyl-4-thiazolidinone), DPC (diphenylamine-2,2'-dicarboxylic acid) and glibenclamide were without significant effect. In conclusion, inhibition of chloride transport proteins strongly potentiates the vasorelaxant responses to nitroprusside in isolated rat aorta. This effect seems mediated by chloride depletion and inhibition of a chloride channel activated by both, calcium and cyclic GMP (cGMP).

  10. Light adaption of the cyclic GMP phosphodiesterase of frog photoreceptor membranes mediated by ATP and calcium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, S.; Bownds, M.D.

    1981-05-01

    The light-activated guanosine 3',5'-cyclic monophosphate (cyclic GMP) phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed by measuring the evolution of protons that accompanies cyclic GMP hydrolysis. The validity of this assay has been confirmed by comparison with an isotope assay used in previous studies (Robinson et al. 1980. J. Gen. Physiol. 76: 631-645). The PDE activity elicited by either flash or continuous dim illumination is reduced if ATP is added to outer segment suspensions. This desensitization is most pronounced at low calcium levels. In 10(-9) M Ca/sup + +/, with 0.5 mM ATP and 0.5 mM GTP present, PDEmore » activity remains almost constant as dim illumination and rhodopsin bleaching continue. At intermediate Ca/sup + +/ levels (10-7-10-5M) the activity slowly increases during illumination. Finally, in 10(-4) and PDE activity is more a reflection of the total number of rhodopsin molecules bleached than of the rate of the rhodopsin bleaching. At intermediate or low calcium levels a short-lived inhibitory process is revealed by observing a nonlinear summation of responses of the enzyme to closely spaced flashes of light. Each flash makes PDE activity less responsive to successive flashes, and a steady state is obtained in which activation and inactivation are balanced. It is suggested that calcium and ATP regulation of PDE play a role in the normal light adaption processes of frog photoreceptor membranes.« less

  11. Cyclic GMP-dependent but G-kinase-independent inhibition of Ca2+-dependent Cl− currents by NO donors in cat tracheal smooth muscle

    PubMed Central

    Waniishi, Yoshiki; Inoue, Ryuji; Morita, Hiromitsu; Teramoto, Noriyoshi; Abe, Kihachiro; Ito, Yushi

    1998-01-01

    The effects of NO donors on Ca2+-dependent Cl− currents (ICl(Ca)) were investigated in freshly isolated cat tracheal myocytes using the whole-cell patch clamp technique. With nystatin-perforated whole-cell recording, carbachol (CCh, ≥ 1 μm) induced a transient inward current (ICCh) with a reversal potential of about -20 mV. Activation of ICCh probably occurred through the M3 muscarinic receptor, since nanomolar concentrations of 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP) greatly inhibited this current, while 11-(2-(diethylamino)methyl)-1-piperidinylacetyl)-5,11-dihydro-6H-pyrido (2,3β) (1,4)benzodiazepine-6-one (AF-DX 116) or pirenzepine at concentrations of up to 1 μm were almost ineffective. Chloride channel/transporter blockers such as DIDS (100 μm), anthracene-9-carboxylic acid (9-AC, 100 μm) and niflumic acid (100 μm) greatly inhibited ICCh, but cation channel blockers, such as nifedipine (10 μm), Zn2+ (500 μm) or Gd3+ (500 μm), were without effect. Activation of ICCh was strongly attenuated by pretreatment with ryanodine (4 μm) plus caffeine (10 mM). Addition of neomycin (1 mM) into the bath or inclusion of heparin (3 mg ml−1) in the pipette abolished a substantial part of ICCh. These results suggest that ICCh is ICl(Ca), which is activated by inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release. The nitric oxide donor S-nitroso-N-acetyl penicillamine (SNAP) reduced the amplitude of ICCh dose dependently (IC50, ≈10 μm). Similar inhibition was also exerted by other types of NO donor such as glyceryl trinitrate (GTN) and (±)-E-methyl-2-(E-hydroxyimitol)-5-nitro-6-methoxy-3-hexeneamide (NO-R). SNAP-induced ICCh inhibition was effectively antagonized by Methylene Blue (1-100 nM), and mimicked by dibutyryl cGMP (db-cGMP) (0.5-1 mM), whereas two structurally distinct types of cGMP-dependent (G)-kinase inhibitor, N-(2-aminoethyl)-5-isoquinilinesulphonamide (H-8, 2.5 μm) and KT5823 (1 μm), failed to counteract the inhibitory

  12. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line.

    PubMed Central

    Cartwright, C A; McRoberts, J A; Mandel, K G; Dharmsathaphorn, K

    1985-01-01

    Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A23187 was tested in combination with VIP, net chloride secretion was significantly greater than predicted from the calculated sum of their individual responses indicating a synergistic effect. VIP increased cellular cyclic AMP (cAMP) production in a dose-dependent manner, whereas A23187 had no effect on cellular cAMP. We then determined whether VIP and A23187 activated different transport pathways. Earlier studies suggest that VIP activates a basolaterally localized, barium-sensitive potassium channel as well as an apically localized chloride conductance pathway. In this study, stimulation of basolateral membrane potassium efflux by A23187 was documented by preloading the monolayers with 86Rb+. Stimulation of potassium efflux by A23187 was additive to the VIP-stimulated potassium efflux. By itself, 0.3 microM A23187 did not alter transepithelial chloride permeability, and its stimulation of basolateral membrane potassium efflux caused only a relatively small amount of chloride secretion. However, in the presence of an increased transepithelial chloride permeability induced by VIP, the effectiveness of A23187 on chloride secretion was greatly augmented. Our studies suggest that cAMP and calcium each activate basolateral potassium channels, but cAMP also activates an apically localized chloride channel. Synergism results from cooperative interaction of potassium channels and the chloride channel. PMID:2997291

  13. Nitric oxide affects IL-6 expression in human peripheral blood mononuclear cells involving cGMP-dependent modulation of NF-κB activity.

    PubMed

    Siednienko, Jakub; Nowak, Joanna; Moynagh, Paul N; Gorczyca, Wojciech A

    2011-06-01

    Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels.

    PubMed

    Kamaleddin, Mohammad Amin

    2018-02-01

    Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl - and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl - flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca 2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca 2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain. © 2017 Wiley Periodicals, Inc.

  15. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium bindingmore » triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.« less

  16. Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria monocytogenes

    PubMed Central

    Chen, Li-Hong; Köseoğlu, Volkan K.; Güvener, Zehra T.; Myers-Morales, Tanya; Reed, Joseph M.; D'Orazio, Sarah E. F.; Miller, Kurt W.; Gomelsky, Mark

    2014-01-01

    We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence. PMID:25101646

  17. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation.

    PubMed

    Oriowo, Mabayoje A; Oommen, Elsie; Khan, Islam

    2011-11-01

    Experimentally-induced hyperthyroidism in rodents is associated with signs and symptoms of pulmonary hypertension. The main objective of the present study was to investigate the effect of thyroxine-induced pulmonary hypertension on the contractile response of the pulmonary artery to 5-HT and the possible underlying signaling pathway. 5-HT concentration-dependently contracted artery segments from control and thyroxine-treated rats with pD(2) values of 5.04 ± 0.19 and 5.34 ± 0.14, respectively. The maximum response was significantly greater in artery segments from thyroxine-treated rats. Neither BW 723C86 (5-HT(2B)-receptor agonist) nor CP 93129 (5-HT(1B)-receptor agonist) contracted ring segments of the pulmonary artery from control and thyroxine-treated rats at concentrations up to 10(-4)M. There was no significant difference in the level of expression of 5-HT(2A)-receptor protein between the two groups. Ketanserin (3 × 10(-8)M) produced a rightward shift of the concentration-response curve to 5-HT in both groups with equal potency (-logK(B) values were 8.1 ± 0.2 and 7.9 ± 0.1 in control and thyroxine-treated rats, respectively). Nifedipine (10(-6)M) inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. The calcium-activated chloride channel blocker, niflumic acid (10(-4)M) also inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. It was concluded that hyperthyroidism enhanced 5-HT-induced contractions of the rat pulmonary artery by a mechanism involving increased activity of calcium-activated chloride channels. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. 40 CFR 415.40 - Applicability; description of the calcium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calcium chloride production subcategory. 415.40 Section 415.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Chloride Production Subcategory § 415.40 Applicability; description of the calcium chloride production subcategory. The provisions of this subpart are applicable to discharges...

  19. 40 CFR 415.40 - Applicability; description of the calcium chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calcium chloride production subcategory. 415.40 Section 415.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Chloride Production Subcategory § 415.40 Applicability; description of the calcium chloride production subcategory. The provisions of this subpart are applicable to discharges...

  20. 40 CFR 415.40 - Applicability; description of the calcium chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calcium chloride production subcategory. 415.40 Section 415.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Chloride Production Subcategory § 415.40 Applicability; description of the calcium chloride production subcategory. The provisions of this subpart are applicable to discharges...

  1. 40 CFR 415.40 - Applicability; description of the calcium chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calcium chloride production subcategory. 415.40 Section 415.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Chloride Production Subcategory § 415.40 Applicability; description of the calcium chloride production subcategory. The provisions of this subpart are applicable to discharges...

  2. 40 CFR 415.40 - Applicability; description of the calcium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium chloride production subcategory. 415.40 Section 415.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Chloride Production Subcategory § 415.40 Applicability; description of the calcium chloride production subcategory. The provisions of this subpart are applicable to discharges...

  3. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Generation of waste water containing sodium chloride from cucumber fermentation tank yards could be eliminated if cucumbers were fermented in brines that did not contain this salt. To determine if this is feasible, cucumbers were fermented in brines that contained only calcium chloride to maintain f...

  4. Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II

    DOE PAGES

    Campbell, James C.; Kim, Jeong Joo; Li, Kevin Y.; ...

    2016-01-14

    Membrane-bound cGMP-dependent protein kinase (PKG) II is an important regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKGII binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415more » of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.« less

  5. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.

  6. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.

    PubMed

    Mizunami, Makoto; Nemoto, Yuko; Terao, Kanta; Hamanaka, Yoshitaka; Matsumoto, Yukihisa

    2014-01-01

    Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca(2+)/CaM and cAMP signaling participates in long-term memory (LTM) formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM). Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca(2+) influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC) activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca(2+) signaling and cAMP signaling for LTM formation, a new role of CaMKII in

  7. High glucose inhibits the aspirin-induced activation of the nitric oxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets.

    PubMed

    Russo, Isabella; Viretto, Michela; Barale, Cristina; Mattiello, Luigi; Doronzo, Gabriella; Pagliarino, Andrea; Cavalot, Franco; Trovati, Mariella; Anfossi, Giovanni

    2012-11-01

    Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1-300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA-induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA-induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.

  8. An N-terminally truncated form of cyclic GMP-dependent protein kinase Iα (PKG Iα) is monomeric and autoinhibited and provides a model for activation.

    PubMed

    Moon, Thomas M; Sheehe, Jessica L; Nukareddy, Praveena; Nausch, Lydia W; Wohlfahrt, Jessica; Matthews, Dwight E; Blumenthal, Donald K; Dostmann, Wolfgang R

    2018-05-25

    The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less

  10. Quality of cucumbers commercially fermented in calcium chloride brine without sodium salts

    USDA-ARS?s Scientific Manuscript database

    Commercial cucumber fermentation produces large volumes of salty wastewater. This study evaluated the quality of fermented cucumbers produced commercially using an alternative calcium chloride brining process. Fermentation conducted in calcium brines (0.1M calcium chloride, 6mM potassium sorbate, eq...

  11. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development

    PubMed Central

    Moon, Robert W.; Whalley, David; Bowyer, Paul W.; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K.; Howell, Steven A.; Grainger, Munira; Jones, Hayley M.; Ansell, Keith H.; Chapman, Timothy M.; Taylor, Debra L.; Osborne, Simon A.; Baker, David A.; Tatu, Utpal

    2015-01-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  12. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  13. Physical Compatibility of Calcium Chloride and Sodium Glycerophosphate in Pediatric Parenteral Nutrition Solutions.

    PubMed

    Anderson, Collin; MacKay, Mark

    2016-11-01

    Calcium and phosphate precipitation is an ongoing concern when compounding pediatric parenteral nutrition (PN) solutions. Considerable effort has been expended in producing graphs, tables, and equations to guide the practitioner in prescribing PN that will remain stable. Calcium gluconate is preferred over calcium chloride when compounding PN because of its superior compatibility with inorganic phosphates. PN solutions containing calcium gluconate carry a higher aluminum load than equivalent solutions compounded with calcium chloride, leading to increased potential for aluminum toxicity. This study tested the solubility of calcium chloride in PN solutions compounded with an organic phosphate component, sodium glycerophosphate (NaGP), in place of sodium phosphate. Five PN solutions were compounded by adding calcium chloride at 10, 20, 30, 40, and 50 mEq/L and corresponding concentrations of NaGP at 10, 20, 30, 40, and 50 mmol/L. Each of the 5 solutions was compounded using 1.5% and 4% amino acids, cysteine, and lipids. The physical stability was evaluated by visual inspection (precipitation, haze, and color change). Solutions were evaluated microscopically for any microcrystals using U.S. Pharmacopeia <788> standards. Compatibility testing showed no changes in the PN solution in any of the concentrations tested. Calcium chloride was found to be physically compatible with NaGP in PN at the tested concentrations. Utilization of NaGP in PN solutions would eliminate the need for precipitation curves and allow for the use of calcium chloride. Compounding with NaGP and calcium chloride allows the practitioner a mechanism for reducing the aluminum load in PN. © 2015 American Society for Parenteral and Enteral Nutrition.

  14. Importance of NO/cGMP signalling via cGMP-dependent protein kinase II for controlling emotionality and neurobehavioural effects of alcohol.

    PubMed

    Werner, Claudia; Raivich, Gennadij; Cowen, Michael; Strekalova, Tatyana; Sillaber, Inge; Buters, Jeroen T; Spanagel, Rainer; Hofmann, Franz

    2004-12-01

    Cyclic GMP is a second messenger for nitric oxide (NO) that acts as a mediator for many different physiological functions. The cGMP-dependent protein kinases (cGKs) mediate cellular signalling induced by NO and cGMP. Here, we explored the localization of cGMP-dependent protein kinase type II (cGKII) in the mouse brain. In situ hybridization revealed high levels of cGKII mRNA in cerebral cortex, thalamic nuclei, hypothalamic nuclei, and in several basal forebrain regions including medial septum, striatum and amygdala. The close link to NO and the distribution pattern of cGKII suggested that this enzyme might be involved in emotional reactions and responses to drugs of abuse. Therefore, cGKII knockout animals (cGKII-/-) were compared with littermate controls in behavioural tests (i) for emotion-linked and (ii) for acute and chronic ethanol responses. Deletion of cGKII did not influence aggressive behaviour but led to enhanced anxiety-like behaviour. In terms of acute responses to ethanol, cGKII-/- mice were hyposensitive to hypnotic doses of ethanol as measured by the loss of righting reflex, without an alteration in their blood alcohol elimination. In a two-bottle free choice test, cGKII-/- mice showed elevated alcohol consumption. No taste differences to sweet solutions were observed compared to control animals. In summary, our data show that cGKII activity modulates anxiety-like behaviour and neurobehavioural effects of alcohol.

  15. Cyclic GMP-dependent protein kinase-I in the guinea pig cochlea.

    PubMed

    Tian, F; Fessenden, J D; Schacht, J

    1999-05-01

    Recent studies have begun to characterize the nitric oxide/cyclic GMP/protein kinase G pathway in the mammalian cochlea by demonstrating the presence of both the enzyme that produces nitric oxide (NO), nitric oxide synthase, and the NO receptor, soluble guanylate cyclase. The present study investigated protein kinase G (cyclic GMP-dependent protein kinase-I, cGK-I), the downstream enzyme of this pathway that frequently mediates its physiological effects. A commercial antibody to a human cGK-I sequence recognized a protein of appropriate molecular weight in Western blots of guinea pig aorta. Immunostaining of guinea pig aorta was consistent with the expected distribution of cGK-I. In lateral wall tissues of the cochlea, pericytes lining the blood vessels of the spiral ligament were strongly immunoreactive. In the organ of Corti, cGK-I was detected in Hensen's, Deiters', and pillar cells, but not in inner and outer hair cells. This distribution coincides with the localization of soluble guanylate cyclase activity and suggests that cGK-I mediates the effects of the NO/cyclic GMP pathway in the cochlea. It reinforces the hypothesis that the NO/cyclic GMP/cGK-I pathway is involved in regulation of cochlear blood flow and supporting cell physiology.

  16. Cross regulation between cGMP-dependent protein kinase and Akt in vasodilatation of porcine pulmonary artery.

    PubMed

    Liu, Juan; Liu, Huixia; Li, Yanjing; Xu, Xiaojian; Chen, Zhengju; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng; Dou, Dou

    2014-11-01

    cGMP-dependent protein kinase (PKG) plays a crucial role in vasodilatation induced by cGMP-elevating agents. Akt has been demonstrated to be involved in modulating vasoreactivity. The present study was to determine the interaction between PKG and Akt and their influences on nitric oxide (NO)-induced vasodilatation. Isolated fourth-generation porcine pulmonary arteries were dissected from the lung and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The relaxant responses of vessels were determined by organ chamber technique, cGMP was assayed by using enzyme-linked immunosorbent assay kit, the protein levels of phosphorylated Akt were examined by Western blotting, and the activity of phosphodiesterase type 5 (PDE5) was assayed by measuring the rate of cGMP degradation. Incubation with DETA NONOate (a stable NO donor) and 8-Br-cGMP (a cell membrane permeable analog of cGMP) attenuated Akt phosphorylation at Ser-473, which was prevented by Rp-8-Br-PET-cGMPS (a specific inhibitor of PKG) and calyculin A (an inhibitor of protein phosphatase 1 and 2A) but not by okadaic acid (a selective inhibitor of protein phosphatase 2A). Inhibition of Akt enhanced the relaxation and cGMP elevation of porcine pulmonary arteries induced by DETA NONOate or sodium nitroprusside, which was prevented by zaprinast, a specific inhibitor of PDE5. Incubation with LY294002 or Akt inhibitor reduced PDE5 activity in porcine pulmonary arteries. The present study indicates that PKG may attenuate Akt phosphorylation through protein phosphatase 1, which leads to an augmented cGMP elevation by inhibition of PDE5. The increased cGMP in turn activates PKG. Such a positive feedback may play an important role in NO-induced pulmonary vasodilatation.

  17. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development.

    PubMed

    Green, Judith L; Moon, Robert W; Whalley, David; Bowyer, Paul W; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K; Howell, Steven A; Grainger, Munira; Jones, Hayley M; Ansell, Keith H; Chapman, Timothy M; Taylor, Debra L; Osborne, Simon A; Baker, David A; Tatu, Utpal; Holder, Anthony A

    2015-12-28

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. Copyright © 2016 Green et al.

  18. Calcium phosphate stabilization of fly ash with chloride extraction.

    PubMed

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  19. cGMP-Dependent Protein Kinase Inhibition Extends the Upper Temperature Limit of Stimulus-Evoked Calcium Responses in Motoneuronal Boutons of Drosophila melanogaster Larvae.

    PubMed

    Krill, Jennifer L; Dawson-Scully, Ken

    2016-01-01

    While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.

  20. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.

    PubMed

    Vaisey, George; Miller, Alexandria N; Long, Stephen B

    2016-11-22

    Cytoplasmic calcium (Ca 2+ ) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca 2+ -independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca 2+ activation and ion selectivity. A "Ca 2+ clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca 2+ . Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca 2+ . We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca 2+ -dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca 2+ dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

  1. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense.

    PubMed

    O'Neal, Lindsey; Ryu, Min-Hyung; Gomelsky, Mark; Alexandre, Gladys

    2017-09-15

    Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger cyclic di-GMP (c-di-GMP) as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense , c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared-light-regulated diguanylate cyclase and a blue-light-regulated c-di-GMP phosphodiesterase. It allows the generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the time scale of chemotaxis signaling. We provide experimental evidence that binding of c-di-GMP to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense change with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state. IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and

  2. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense

    PubMed Central

    O'Neal, Lindsey; Ryu, Min-Hyung; Gomelsky, Mark

    2017-01-01

    ABSTRACT Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger cyclic di-GMP (c-di-GMP) as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared-light-regulated diguanylate cyclase and a blue-light-regulated c-di-GMP phosphodiesterase. It allows the generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the time scale of chemotaxis signaling. We provide experimental evidence that binding of c-di-GMP to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense change with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state. IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and

  3. Solution Structure of the cGMP Binding GAF Domain from Phosphodiesterase 5: Insights into Nucleotide Specificity, Dimerization, and cGMP-Dependent Conformational Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heikaus, Clemens C.; Stout, Joseph R.; Sekharan, Monica R.

    2008-08-15

    Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular NOEs.

  4. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    PubMed

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  5. Antimicrobial Effect of Calcium Chloride Alone and Combined with Lactic Acid Injected into Chicken Breast Meat

    PubMed Central

    Alahakoon, Amali U.; Jayasena, Dinesh D.; Jung, Samooel; Kim, Sun Hyo

    2014-01-01

    Chicken breast meat was injected with calcium chloride alone and in combination with lactic acid (0.01% and 0.002%, respectively). The inhibitory effects of the treatments on microbial growth were determined in the injected chicken breast meat stored at 4°C under aerobic packaging condition for 0, 3, and 7 d. Calcium chloride combined with 0.002% and 0.01% lactic acid reduced microbial counts by 0.14 and 1.08 Log CFU/g, respectively, however, calcium chloride alone was unable to inhibit microbial growth. Calcium chloride combined with 0.01% lactic acid was the most effective antimicrobial treatment and resulted in the highest initial redness value. Calcium chloride alone and combined with lactic acid suppressed changes in pH and the Hunter color values during storage. However, injection of calcium chloride and lactic acid had adverse effects on lipid oxidation and sensory characteristics. The higher TBARS values were observed in samples treated with calcium chloride and lactic acid when compared to control over the storage period. Addition of calcium chloride and lactic acid resulted in lower sensory scores for parameters tested, except odor and color, compared to control samples. Therefore, the formulation should be improved in order to overcome such defects prior to industrial application. PMID:26760942

  6. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of...

  7. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium chloride. 184.1193 Section 184.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of...

  8. Circadian phase-dependent effect of nitric oxide on L-type voltage-gated calcium channels in avian cone photoreceptors

    PubMed Central

    Ko, Michael L.; Shi, Liheng; Huang, Cathy Chia-Yu; Grushin, Kirill; Park, So-Young; Ko, Gladys Y.-P.

    2014-01-01

    Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In the present study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-MAPK (mitogen-activated protein kinase)-Erk (extracellular-signal-regulated kinase) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. PMID:23895452

  9. Effect of calcium chloride addition on ice cream structure and quality.

    PubMed

    Costa, F F; Resende, J V; Abreu, L R; Goff, H D

    2008-06-01

    The influence of calcium fortification by the addition of calcium chloride on quality parameters of ice cream based on physical properties was investigated, as was the effect of kappa-carrageenan at modifying the effects of this calcium fortification. Four ice cream mixes of conventional composition, with added kappa-carrageenan (0 or 0.025%) and added calcium chloride (0 or 4.4 g L(-1) = 40 mM of added Ca(2+)), were prepared. Modulated temperature-differential scanning calorimetry was used to investigate the effect of calcium chloride on the nucleation temperature, enthalpy of melting, and freezing point depression. The protein composition of 15.4% (wt/wt) reconstituted skim milk powder solutions with or without 4.4 g L(-1) added CaCl(2) and in the supernatant after ultracentrifugation was determined. Fat particle size distributions in ice cream were characterized by light scattering. Ice crystal sizes before and after temperature cycling were determined by cold-stage light microscopy. The results demonstrated that the addition of calcium chloride led to a substantial increase in ice crystal sizes and in fat partial coalescence, which were exacerbated by the addition of kappa-carrageenan. These results can be explained by the interaction between Ca(2+) ions and casein micelles, rather than any effects on freezing point depression. The calcium ions led to a more compact micelle, less serum beta-casein, and high fat destabilization, all of which would be expected to reduce macromolecular structure and volume occupancy in the unfrozen phase, which led to increased rates of ice recrystallization.

  10. Distinct phosphodiesterase 5A-containing compartments allow selective regulation of cGMP-dependent signalling in human arterial smooth muscle cells.

    PubMed

    Wilson, Lindsay S; Guo, Manhong; Umana, M Bibiana; Maurice, Donald H

    2017-08-01

    Cyclic GMP (cGMP) translates and integrates much of the information encoded by nitric oxide (NO · ) and several natriuretic peptides, including the atrial natriuretic peptide (ANP). Previously, we reported that integration of a cGMP-specific cyclic nucleotide phosphodiesterase, namely phosphodiesterase 5A (PDE5A), into a protein kinase G (PKG)- and inositol-1,4,5-trisphosphate receptor (IP 3 R)-containing endoplasmic reticulum (ER) signalosome allows localized control of PDE5A activity and of PKG-dependent inhibition of IP 3 -mediated release of ER Ca 2+ in human platelets. Herein, we report that PDE5A integrates into an analogous signalosome in human arterial smooth muscle cells (HASMC), wherein it regulates muscarinic agonist-dependent Ca 2+ release and is activated selectively by PKG-dependent phosphorylation. In addition, we report that PDE5A also regulates HASMC functions via events independent of PKG, but rather through actions coordinated by competitive cGMP-mediated inhibition of cAMP hydrolysis by the so-called cGMP-inhibited cAMP PDE, namely phosphodiesterase 3A (PDE3A). Indeed, we show that ANP increases both cGMP and cAMP levels in HASMC and promotes phosphorylation of vasodilator-stimulated phospho-protein (VASP) at each the PKG and PKA phospho-acceptor sites. Since selective inhibition of PDE5 decreased DNA synthesis and chemotaxis of HASMC, and that PDE3A knockdown obviated these effects, our findings are consistent with a role for a PDE5A-PDE3A-PKA axis in their regulation. Our findings provide insight into the existence of distinct "pools" of PDE5A in HASMC and support the idea that these discrete compartments regulate distinct cGMP-dependent events. As a corollary, we suggest that it may be possible to target these distinct PDE5A-regulated pools and in so-doing differentially impact selected cGMP-regulated functions in these cells. Copyright © 2017. Published by Elsevier Inc.

  11. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecay, T.W.; Valentich, J.D.

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases inmore » inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.« less

  12. Ethanol extract of seeds of Oenothera odorata induces vasorelaxation via endothelium-dependent NO-cGMP signaling through activation of Akt-eNOS-sGC pathway.

    PubMed

    Kim, Hye Yoom; Oh, Hyuncheol; Li, Xiang; Cho, Kyung Woo; Kang, Dae Gill; Lee, Ho Sub

    2011-01-27

    The vasorelaxant effect of ethanol extract of seeds of Oenothera odorata (Onagraceae) (one species of evening primroses) (ESOO) and its mechanisms involved were defined. Changes in vascular tension, guanosine 3',5'-cyclic monophosphate (cGMP) levels, and Akt expression were measured in carotid arterial rings from rats. Seeds of Oenothera odorata were extracted with ethanol (94%) and the extract was filtered, concentrated and stored at -70°C. ESOO relaxed endothelium-intact, but not endothelium-denuded, carotid arterial rings in a concentration-dependent manner. Similarly, ESOO increased cGMP levels of the carotid arterial rings. Pretreatment of endothelium-intact arterial rings with L-NAME, an inhibitor of nitric oxide synthase (NOS), or ODQ, an inhibitor of soluble guanylyl cyclase (sGC), blocked the ESOO-induced vasorelaxation and increase in cGMP levels. Nominally Ca(2+)-free but not L-typed Ca(2+) channel inhibition attenuated the ESOO-induced vasorelaxation. Thapsigargin, Gd(3+), and 2-aminoethyl diphenylborinate, modulators of store-operated Ca(2+) entry (SOCE), significantly attenuated the ESOO-induced vasorelaxation and increase in cGMP levels. Further, wortmannin, an inhibitor of Akt, attenuated the ESOO-induced vasorelaxation and increases in cGMP levels and phosphorylated Akt2 expression. K(+) channel blockade with TEA, 4-aminopyridine, and glibenclamide attenuated the ESOO-induced vascular relaxation. Taken together, the present study demonstrates that ESOO relaxes vascular smooth muscle via endothelium-dependent NO-cGMP signaling through activation of the Akt-eNOS-sGC pathway. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Molecular mechanisms of gravity-dependent signaling in human melanocytic cells involve cyclic GMP

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Lambers, Britta; Block, Ingrid; Bromeis, Birgit; Das, Pranab K.; Gerzer, Rupert

    2005-08-01

    Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) is an important messenger in melanocyte signaling we have compared the regulation of cGMP levels in human melanocytes and melanoma cells with different metastatic potential under hypergravity conditions. We were able to demonstrate that long-term exposure to hypergravity stimulates cGMP efflux in cultured human melanocytes and non- metastatic melanoma cells, whereas highly metastatic melanoma cells appear to be insensitive to hypergravity, most probably, due to an up-regulated cGMP efflux at 1g. Here we report that these effects are associated with the expression of the multidrug resistance proteins 4 and 5 known to act as selective export pumps for amphiphilic anions like cGMP. Thus, an altered gravity vector may induce cGMP-dependent signaling events in melanocytic cells that could be important for malignant transformation.

  14. ANO1 contributes to angiotensin-II-activated Ca2+-dependent Cl- current in human atrial fibroblasts.

    PubMed

    El Chemaly, Antoun; Norez, Caroline; Magaud, Christophe; Bescond, Jocelyn; Chatelier, Aurelien; Fares, Nassim; Findlay, Ian; Jayle, Christophe; Becq, Frederic; Faivre, Jean-François; Bois, Patrick

    2014-03-01

    Cardiac fibroblasts are an integral part of the myocardial tissue and contribute to its remodelling. This study characterises for the first time the calcium-dependent chloride channels (CaCC) in the plasma membrane of primary human atrial cardiac fibroblasts by means of the iodide efflux and the patch clamp methods. The calcium ionophore A23187 and Angiotensin II (Ang II) activate a chloride conductance in cardiac fibroblasts that shares pharmacological similarities with calcium-dependent chloride channels. This chloride conductance is depressed by RNAi-mediated selective Anoctamine 1 (ANO1) but not by Anoctamine 2 (ANO2) which has been revealed as CaCC and is inhibited by the selective ANO1 inhibitor, T16inh-A01. The effect of Ang II on anion efflux is mediated through AT1 receptors (with an EC50 = 13.8 ± 1.3 nM). The decrease of anion efflux by calphostin C and bisindolylmaleimide I (BIM I) suggests that chloride conductance activation is dependent on PKC. We conclude that ANO1 contributes to CaCC current in human cardiac fibroblasts and that this is regulated by Ang II acting via the AT1 receptor pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride

    NASA Astrophysics Data System (ADS)

    Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.

    2016-08-01

    There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.

  16. New uses for calcium chloride solution as a mounting medium.

    PubMed

    Herr, J M

    1992-01-01

    Fresh cross sections of stems (Psilotum nudum, Coleus blumei, and Pelargonium peltatum) and roots (Setcreasea purpurea) 120 microns thick were fixed in FPA50 (formalin: propionic acid: 50% ethanol, 5:5:90, v/v) for 24 hr and stored in 70% ethanol. The sections were transferred to water and then to 1% phloroglucin in 20% calcium chloride solution plus either hydrochloric, nitric, or lactic acid in the following ratios of phloroglucin-CaCl2 solution:acid: 25:4, 20:2, or 15:5. The sections were mounted on slides either in one of the three mixtures or in fresh 20% calcium chloride solution. A rapid reaction of the acid-phloroglucin with lignin produced a deep red color in tracheary elements and an orange-red color in sclerenchyma. Fixed and stored leaf pieces from Nymphaea odorata were autoclaved in lactic acid, washed in two changes of 95% ethanol, transferred to water, and treated with the three acid-phloroglucin-calcium chloride mixtures. The abundant astrosclereids stained an orange-red color similar to that of sclerenchyma in the sections. In addition, a new method is reported for specifically staining lignified tissues. When sections or leaf pieces are stained in aqueous 0.05% toluidine blue O, then placed in 20% calcium chloride solution, all tissues destain except those with lignified or partially lignified cell walls. Thus, toluidine blue O applied as described becomes a reliable specific test for lignin comparable to the acid-phloroglucin test.

  17. Regulation of Chloride Channels by Protein Kinase C in Normal and Cystic Fibrosis Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Li, Ming; McCann, John D.; Anderson, Matthew P.; Clancy, John P.; Liedtke, Carole M.; Nairn, Angus C.; Greengard, Paul; Welsh, Michael J.

    1989-06-01

    Apical membrane chloride channels control chloride secretion by airway epithelial cells. Defective regulation of these channels is a prominent characteristic of cystic fibrosis. In normal intact cells, activation of protein kinase C (PKC) by phorbol ester either stimulated or inhibited chloride secretion, depending on the physiological status of the cell. In cell-free membrane patches, PKC also had a dual effect: at a high calcium concentration, PKC inactivated chloride channels; at a low calcium concentration, PKC activated chloride channels. In cystic fibrosis cells, PKC-dependent channel inactivation was normal, but activation was defective. Thus it appears that PKC phosphorylates and regulates two different sites on the channel or on an associated membrane protein, one of which is defective in cystic fibrosis.

  18. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  19. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels.

    PubMed

    Hill, J; Harris, A W; Manning, M; Chambers, A; Swanton, S W

    2006-01-01

    The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 degrees C compared to those prepared at 25 degrees C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium.

  20. Altered Regulation of Airway Epithelial Cell Chloride Channels in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Frizzell, Raymond A.; Rechkemmer, Gerhard; Shoemaker, Richard L.

    1986-08-01

    In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that β -adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.

  1. Activation of cGMP/Protein Kinase G Pathway in Postconditioned Myocardium Depends on Reduced Oxidative Stress and Preserved Endothelial Nitric Oxide Synthase Coupling

    PubMed Central

    Inserte, Javier; Hernando, Victor; Vilardosa, Úrsula; Abad, Elena; Poncelas‐Nozal, Marcos; Garcia‐Dorado, David

    2013-01-01

    Background The cGMP/protein kinase G (PKG) pathway is involved in the cardioprotective effects of postconditioning (PoCo). Although PKG signaling in PoCo has been proposed to depend on the activation of the phosphatidylinositol 3‐kinase (PI3K)/Akt cascade, recent data bring into question a causal role of reperfusion injury signaling kinase (RISK) in PoCo protection. We hypothesized that PoCo increases PKG activity by reducing oxidative stress–induced endothelial nitric oxide synthase (NOS) uncoupling at the onset of reperfusion. Methods and Results Isolated rat hearts were submitted to 40 minutes of ischemia and reperfusion with and without a PoCo protocol. PoCo reduced infarct size by 48% and cGMP depletion. Blockade of cGMP synthesis (1H‐[1,2,4]oxadiazolo[4,3‐a]quinoxalin‐1‐one) and inhibition of PKG (KT5823) or NOS (l‐NAME) abolished protection, but inhibition of PI3K/Akt cascade (LY294002) did not (n=5 to 7 per group). Phosphorylation of the RISK pathway was higher in PoCo hearts. However, this difference is due to increased cell death in control hearts because in hearts reperfused with the contractile inhibitor blebbistatin, a drug effective in preventing cell death at the onset of reperfusion, RISK phosphorylation increased during reperfusion without differences between control and PoCo groups. In these hearts, PoCo reduced the production of superoxide (O2−) and protein nitrotyrosylation and increased nitrate/nitrite levels in parallel with a significant decrease in the oxidation of tetrahydrobiopterin (BH4) and in the monomeric form of endothelial NOS. Conclusions These results demonstrate that PoCo activates the cGMP/PKG pathway via a mechanism independent of the PI3K/Akt cascade and dependent on the reduction of O2− production at the onset of reperfusion, resulting in attenuated oxidation of BH4 and reduced NOS uncoupling. PMID:23525447

  2. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system

    PubMed Central

    Prysyazhna, Oleksandra; Eaton, Philip

    2015-01-01

    Elevated levels of oxidants in biological systems have been historically referred to as “oxidative stress,” a choice of words that perhaps conveys an imbalanced view of reactive oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a contemporary view is that oxidants are also crucial for the maintenance of homeostasis or adaptive signaling that can actually limit injury. This regulatory role for oxidants is achieved in part by them inducing oxidative post-translational modifications of proteins which may alter their function or interactions. Such mechanisms allow changes in cell oxidant levels to be coupled to regulated alterations in enzymatic function (i.e., signal transduction), which enables “redox signaling.” In this review we focus on the role of cGMP-dependent protein kinase (PKG) Ia disulfide dimerisation, an oxidative modification that is induced by oxidants that directly activates the enzyme, discussing how this impacts on the cardiovascular system. Additionally, how this oxidative activation of PKG may coordinate with or differ from classical activation of this kinase by cGMP is also considered. PMID:26236235

  3. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein–protein interaction

    PubMed Central

    Steiner, Samuel; Lori, Christian; Boehm, Alex; Jenal, Urs

    2013-01-01

    In many bacterial pathogens, the second messenger c-di-GMP stimulates the production of an exopolysaccharide (EPS) matrix to shield bacteria from assaults of the immune system. How c-di-GMP induces EPS biogenesis is largely unknown. Here, we show that c-di-GMP allosterically activates the synthesis of poly-β-1,6-N-acetylglucosamine (poly-GlcNAc), a major extracellular matrix component of Escherichia coli biofilms. C-di-GMP binds directly to both PgaC and PgaD, the two inner membrane components of the poly-GlcNAc synthesis machinery to stimulate their glycosyltransferase activity. We demonstrate that the PgaCD machinery is a novel type c-di-GMP receptor, where ligand binding to two proteins stabilizes their interaction and promotes enzyme activity. This is the first example of a c-di-GMP-mediated process that relies on protein–protein interaction. At low c-di-GMP concentrations, PgaD fails to interact with PgaC and is rapidly degraded. Thus, when cells experience a c-di-GMP trough, PgaD turnover facilitates the irreversible inactivation of the Pga machinery, thereby temporarily uncoupling it from c-di-GMP signalling. These data uncover a mechanism of c-di-GMP-mediated EPS control and provide a frame for c-di-GMP signalling specificity in pathogenic bacteria. PMID:23202856

  4. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.

    PubMed

    Berk, B C; Corson, M A; Peterson, T E; Tseng, H

    1995-12-01

    Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.

  5. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation.

    PubMed

    Yu, Li-Ming; Di, Wen-Cheng; Dong, Xue; Li, Zhi; Zhang, Yong; Xue, Xiao-Dong; Xu, Yin-Li; Zhang, Jian; Xiao, Xiong; Han, Jin-Song; Liu, Yu; Yang, Yang; Wang, Hui-Shan

    2018-02-01

    It has been demonstrated that the anti-oxidative and cardioprotective effects of melatonin are, at least in part, mediated by its membrane receptors. However, the direct downstream signaling remains unknown. We previously found that melatonin ameliorated myocardial ischemia-reperfusion (MI/R) injury in diabetic animals, although the underlying mechanisms are also incompletely understood. This study was designed to determine the role of melatonin membrane receptors in melatonin's cardioprotective actions against diabetic MI/R injury with a focus on cGMP and its downstream effector PKG. Streptozotocin-induced diabetic Sprague-Dawley rats and high-glucose medium-incubated H9c2 cardiomyoblasts were utilized to determine the effects of melatonin against MI/R injury. Melatonin treatment preserved cardiac function and reduced oxidative damage and apoptosis. Additionally, melatonin increased intracellular cGMP level, PKGIα expression, p-VASP/VASP ratio and further modulated myocardial Nrf-2-HO-1 and MAPK signaling. However, these effects were blunted by KT5823 (a selective inhibitor of PKG) or PKGIα siRNA except that intracellular cGMP level did not changed significantly. Additionally, our in vitro study showed that luzindole (a nonselective melatonin membrane receptor antagonist) or 4P-PDOT (a selective MT 2 receptor antagonist) not only blocked the cytoprotective effect of melatonin, but also attenuated the stimulatory effect of melatonin on cGMP-PKGIα signaling and its modulatory effect on Nrf-2-HO-1 and MAPK signaling. This study showed that melatonin ameliorated diabetic MI/R injury by modulating Nrf-2-HO-1 and MAPK signaling, thus reducing myocardial apoptosis and oxidative stress and preserving cardiac function. Importantly, melatonin membrane receptors (especially MT 2 receptor)-dependent cGMP-PKGIα signaling played a critical role in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels.

    PubMed

    Gomes Castro, Allisson Jhonatan; Cazarolli, Luisa Helena; Bretanha, Lizandra C; Sulis, Paola Miranda; Rey Padilla, Diana Patricia; Aragón Novoa, Diana Marcela; Dambrós, Betina Fernanda; Pizzolatti, Moacir G; Mena Barreto Silva, Fátima Regina

    2018-06-15

    Betulinic acid (BA) has been described as an insulin secretagogue which may explain its potent antihyperglycemic effect; however, the exact role of BA as an insulinogenic agent is not clear. The aim of this study was to investigate the mechanism of BA on calcium influx and static insulin secretion in pancreatic islets isolated from euglycemic rats. We found that BA triggers calcium influx by a mechanism dependent on ATP-dependent potassium channels and L-type voltage-dependent calcium channels. Additionally, the voltage-dependent and calcium-dependent chloride channels are also involved in the mechanism of BA, probably due to an indirect stimulation of calcium entry and increased intracellular calcium. Additionally, the downstream activation of PKC, which is necessary for the effect of BA on calcium influx, is involved in the full stimulatory response of the triterpene. BA stimulated the static secretion of insulin in pancreatic islets, indicating that the abrupt calcium influx may be a key step in its secretagogue effect. As such, BA stimulates insulin secretion through the activation of electrophysiological mechanisms, such as the closure of potassium channels and opening of calcium and chloride channels, inducing cellular depolarization associated with metabolic-biochemical effects, in turn activating PKC and ensuring the secretion of insulin. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon

    PubMed Central

    McNamara, Brian; Winter, Desmond C; Cuffe, John E; O'Sullivan, Gerald C; Harvey, Brian J

    1999-01-01

    In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin ΔISC = 63.8 ± 6.2 μA cm−2, n = 6; for PGE2 ΔISC = 34.3 ± 5.2 μA cm−2, n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 μM) and tetraethylammonium (10 mM). The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  8. 43 CFR 3511.11 - If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false If I am mining calcium chloride, may I... Lease Terms and Conditions § 3511.11 If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the commingled sodium chloride? Yes. If you are producing calcium chloride in...

  9. 43 CFR 3511.11 - If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false If I am mining calcium chloride, may I... Lease Terms and Conditions § 3511.11 If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the commingled sodium chloride? Yes. If you are producing calcium chloride in...

  10. 43 CFR 3511.11 - If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false If I am mining calcium chloride, may I... Lease Terms and Conditions § 3511.11 If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the commingled sodium chloride? Yes. If you are producing calcium chloride in...

  11. 43 CFR 3511.11 - If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false If I am mining calcium chloride, may I... Lease Terms and Conditions § 3511.11 If I am mining calcium chloride, may I obtain a noncompetitive mineral lease to produce the commingled sodium chloride? Yes. If you are producing calcium chloride in...

  12. Chemical and physical compatibility of an intravenous solution of epinephrine with calcium chloride.

    PubMed

    Weeks, Phillip A; Teng, Yang; Wu, Lei; Sun, Mary; Yang, Zhen; Chow, Diana S-L

    2014-01-01

    An infusion of epinephrine combined with calcium chloride has been used historically as an intravenous inotropic solution to support critically ill heart failure patients with severe cardiogenic shock. There is no reliable data on the stability of this solution beyond three hours. This study was conducted to evaluate the chemical and physical compatibility of epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in a solution for intravenous administration up to 26 hours at room temperature. The chemical stability of epinephrine was monitored by measuring epinephrine concentrations using high-performance liquid chromatography. The physical compatibility of the mixture was determined by measuring spectrophotometric absorbance between 400 to 700 nm. Absorbance greater than 0.010 AU was considered an indicator of the presence of precipitation. The results showed epinephrine with calcium chloride was stable together in normal saline up to 26 hours at room temperature, irrespective of exposure to light. The absorbance of epinephrine throughout the study was less than 0.010 AU, indicating no significant precipitation. Conclusions indicate that epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in normal saline at room temperature is acceptably stable up to 26 hours for intravenous administration.

  13. Convergence of Ca2+-desensitizing mechanisms activated by forskolin and phenylephrine pretreatment, but not 8-bromo-cGMP.

    PubMed

    Porter, Melissa; Evans, Melissa C; Miner, Amy S; Berg, Krystina M; Ward, Kevin R; Ratz, Paul H

    2006-06-01

    Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in beta-escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment.

  14. Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhenguo; Geiker, Mette Rica; De Weerdt, Klaartje

    Chloride binding is investigated for Portland cement–metakaolin–limestone pastes exposed to CaCl{sub 2} and NaCl solutions. The phase assemblages and the amount of Friedel's salt are evaluated using TGA, XRD and thermodynamic modeling. A larger amount of Friedel's salt is observed in the metakaolin blends compared to the pure Portland cement. A higher total chloride binding is observed for the pastes exposed to the CaCl{sub 2} solution relative to those in the NaCl solution. This is reflected by the fact that calcium increases the quantity of Friedel's salt in the metakaolin blends by promoting the transformation of strätlingite and/or monocarbonate tomore » Friedel's salt. Calcium increases also the amount of chloride in the diffuse layer of the C-S-H for the pure cement. A linear correlation between the total bound chloride and the uptake of calcium from the CaCl{sub 2} solution is obtained and found to be independent on the type of cement blend.« less

  15. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development.

    PubMed

    Nan, Wenbin; Wang, Xiaomin; Yang, Lei; Hu, Yanfeng; Wei, Yuantao; Liang, Xiaolei; Mao, Lina; Bi, Yurong

    2014-04-01

    The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation.

  16. Chloride equilibrium potential in salamander cones

    PubMed Central

    Thoreson, Wallace B; Bryson, Eric J

    2004-01-01

    Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl) was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca)) and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca). PMID:15579212

  17. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning

    PubMed Central

    Marks, Michał; Glinicki, Michał A.; Gibas, Karolina

    2015-01-01

    The aim of the study was to generate rules for the prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning methods. The rapid chloride permeability test, according to the Nordtest Method Build 492, was used for determining the chloride ions’ penetration in concrete containing high calcium fly ash (HCFA) for partial replacement of Portland cement. The results of the performed tests were used as the training set to generate rules describing the relation between material composition and the chloride resistance. Multiple methods for rule generation were applied and compared. The rules generated by algorithm J48 from the Weka workbench provided the means for adequate classification of plain concretes and concretes modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to chloride penetration. PMID:28793740

  18. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  19. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    USGS Publications Warehouse

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  20. Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus.

    PubMed

    Peinado, Gabriel; Osorno, Tomás; Gomez, María del Pilar; Nasi, Enrico

    2015-06-23

    Melanopsin, the photopigment of the "circadian" receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca(2+) fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates.

  1. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade.

    PubMed

    Dumoulin, Alexandre; Ter-Avetisyan, Gohar; Schmidt, Hannes; Rathjen, Fritz G

    2018-04-24

    Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.

  2. Bilirubin induces a calcium-dependent inhibition of multifunctional Ca2+/calmodulin-dependent kinase II activity in vitro.

    PubMed

    Churn, S B; DeLorenzo, R J; Shapiro, S M

    1995-12-01

    Excessive bilirubin levels in newborn infants result in long-term neurologic deficits that remain after bilirubin levels return to normal. Much of the observed neurologic deficits can be attributed to bilirubin-induced, delayed neuronal cell death. Inhibition of calcium/calmodulin-dependent kinase II (CaM kinase II) activity that precedes cell death is observed in conditions such as seizure activity, stroke, and glutamate excitotoxicity. Because neonatal bilirubin exposure results in neuronal loss in developing brain systems, we tested whether bilirubin exposure would induce an immediate inhibition of CaM activity, in vitro. P-81 filtration assay of basal and calcium-stimulated kinase activity was performed under standard kinase assay conditions. Bilirubin and/or albumin was added to the reaction vessels to determine the effect of these agents on kinase activity. Bilirubin exposure resulted in a concentration-dependent inhibition of CaM kinase II activity (IC50 = 16.78 microM). At concentrations above 50 microM, bilirubin exposure resulted in a 71 +/- 8% (mean +/- SD) inhibition of kinase activity (p < 0.001, t test, n = 10). Bilirubin exposure did not result in kinase inhibition if excessive bilirubin was removed by albumin binding before stimulation of kinase activity (106.9 +/- 9.6% control activity, n = 5). However, removal of bilirubin by binding with albumin after calcium addition did not restore kinase activity. (36.1 +/- 3.8% control activity, n = 5). Thus, once inhibition was observed, the activity could not be restored by addition of albumin. The data suggest that bilirubin exposure resulted in a calcium-dependent inhibition of CaM kinase II activity that, once induced, was not reversible by removing bilirubin by the addition of albumin. Because inhibition of CaM kinase II activity has been correlated with delayed neuronal cell death in many neuropathologic conditions, bilirubin-induced inhibition of this enzyme may be a cellular mechanism by which

  3. Increased cavernosal relaxation by Phoneutria nigriventer toxin, PnTx2-6, via activation at NO/cGMP signaling.

    PubMed

    Nunes, K P; Wynne, B M; Cordeiro, M N; Borges, M H; Richardson, M; Leite, R; DeLima, M E; Webb, R C

    2012-01-01

    Erectile dysfunction (ED) mechanisms in diabetic patients are multifactorial and often lead to resistance to current therapy. Animal toxins have been used as pharmacological tools to study penile erection. Human accidents involving the venom of Phoneutria nigriventer spider are characterized by priapism. We hypothesize that PnTx2-6 potentiates cavernosal relaxation in diabetic mice by increasing cyclic guanosine monophosphate (cGMP). This effect is neuronal nitric oxide synthase (nNOS) dependent. Cavernosal strips were contracted with phenylephrine (10(-5) M) and relaxed by electrical field stimulation (20 V, 1-32 Hz) in the presence or absence of PnTx2-6 (10(-8) M). Cavernosal strips from nNOS- and endothelial nitric oxide synthase (eNOS)-knockout (KO) mice, besides nNOS inhibitor (10(-5) M), were used to evaluate the role of this enzyme in the potentiation effect evoked by PnTx2-6. Tissue cGMP levels were determined after stimulation with PnTx2-6 in presence or absence of N-nitro-L-arginine methyl ester (L-NAME) (10(-4) M) and ω-conotoxin GVIA (10(-6) M), an N-type calcium channel inhibitor. Results showed that PnTx2-6 enhanced cavernosal relaxation in diabetic mice (65%) and eNOS KO mice, but not in nNOS KO mice. The toxin effect in the cavernosal relaxation was abolished by nNOS inhibitor. cGMP levels are increased by PnTx2-6, however, L-NAME abolished this enhancement as well as ω-conotoxin GVIA. We conclude that PnTx2-6 facilitates penile relaxation in diabetic mice through a mechanism dependent on nNOS, probably via increasing nitric oxide/cGMP production.

  4. Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms.

    PubMed

    Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M

    2017-06-10

    Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.

  5. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells.

    PubMed Central

    Marengo, J J; Hidalgo, C; Bull, R

    1998-01-01

    The calcium dependence of ryanodine-sensitive single calcium channels was studied after fusing with planar lipid bilayers sarcoendoplasmic reticulum vesicles isolated from excitable tissues. Native channels from mammalian or amphibian skeletal muscle displayed three different calcium dependencies, cardiac (C), mammalian skeletal (MS), and low fractional open times (low Po), as reported for channels from brain cortex. Native channels from cardiac muscle presented only the MS and C dependencies. Channels with the MS or low Po behaviors showed bell-shaped calcium dependencies, but the latter had fractional open times of <0.1 at all [Ca2+]. Channels with C calcium dependence were activated by [Ca2+] < 10 microM and were not inhibited by increasing cis [Ca2+] up to 0.5 mM. After oxidation with 2,2'-dithiodipyridine or thimerosal, channels with low Po or MS dependencies increased their activity. These channels modified their calcium dependencies sequentially, from low Po to MS and C, or from MS to C. Reduction with glutathione of channels with C dependence (native or oxidized) decreased their fractional open times in 0.5 mM cis [Ca2+], from near unity to 0.1-0.3. These results show that all native channels displayed at least two calcium dependencies regardless of their origin, and that these changed after treatment with redox reagents. PMID:9512024

  6. Involvement of the cGMP pathway in the osthole-facilitated glutamate release in rat hippocampal nerve endings.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Huang, Wei-Jan; Wang, Su-Jane

    2012-03-01

    Osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has previously been shown to have the capacity to increase depolarization-evoked glutamate release in rat hippocampal nerve terminals. As cGMP-dependent signaling cascade has been found to modulate glutamate release at the presynaptic level, the aim of this study was to further examine the role of cGMP signaling pathway in the regulation of osthole on glutamate release in hippocampal synaptosomes. Results showed that osthole dose-dependently increased intrasynaptosomal cGMP levels. The elevation of cGMP levels by osthole was prevented by the phosphodiesterase 5 inhibitor sildenafil but was insensitive to the guanylyl cyclase inhibitor ODQ. In addition, osthole-induced facilitation of 4-aminopyridine (4-AP)-evoked glutamate release was completely prevented by the cGMP-dependent protein kinase (PKG) inhibitors, KT5823, and Rp-8-Br-PET-cGMPS. Direct activation of PKG with 8-Br-cGMP or 8-pCPT-cGMP also occluded the osthole-mediated facilitation of 4-AP-evoked glutamate release. Furthermore, sildenafil exhibited a dose-dependent facilitation of 4-AP-evoked release of glutamate and occluded the effect of osthole on the 4-AP-evoked glutamate release. Collectively, our findings suggest that osthole-mediated facilitation of glutamate release involves the activation of cGMP/PKG-dependent pathway. Copyright © 2011 Wiley Periodicals, Inc.

  7. Allosteric activation of apicomplexan calcium-dependent protein kinases

    DOE PAGES

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; ...

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca 2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca 2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, throughmore » molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca 2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca 2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.« less

  8. Atrial natriuretic peptide provokes a dramatic increase in cyclic GMP formation and markedly inhibits muscarinic-stimulated Ca2+ mobilisation in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells.

    PubMed

    Ding, K H; Ali, N; Abdel-Latif, A A

    1999-02-01

    We investigated the effects of cGMP-elevating agents, including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and sodium nitroprusside (SNP), on cGMP accumulation and on carbachol (CCh)-stimulated intracellular calcium ([Ca2+]i) mobilisation in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells and in primary cultured cat iris sphincter smooth muscle (CISM) cells. The stimulatory effects of the natriuretic peptides on cGMP production correlated well with their inhibitory effects on CCh-induced [Ca+1]i mobilisation, and these effects were significantly more pronounced in the SV-CISM-2 cells than in the CISM cells. Thus, ANP (1 microM) increased cGMP production in the SV-CISM-2 cells and CISM cells by 487- and 1.7-fold, respectively, and inhibited CCh-induced [Ca2+]i mobilisation by 95 and 3%, respectively. In the SV-CISM-2 cells, ANP and CNP dose dependently inhibited CCh-induced [Ca2+]i mobilisation with IC50 values of 156 and 412 nM, respectively, and dose dependently stimulated cGMP formation with EC50 values of 24 and 88 nM, respectively, suggesting that the inhibitory actions of the peptides are mediated through cGMP. Both ANP and CNP stimulated cGMP accumulation in a time-dependent manner. The potency of the cGMP-elevating agents were in the following order: ANP>CNP>SNP; these agents had no effect on cAMP accumulation. The inhibitory effects of the natriuretic peptides were mimicked by 8-Br-cGMP, a selective activator of cGMP-dependent protein kinase. LY83583, a soluble guanylyl cyclase inhibitor, significantly inhibited SNP-induced cGMP formation but had no effect on those of ANP and CNP. The basal activities of the guanylyl cyclase and the dissociation constant (Kd) and total receptor density (Bmax) values of the natriuretic peptide receptor for [125I]ANP binding were not significantly different between the two cell types. The cGMP system, as with the cAMP system, has a major inhibitory influence on the muscarinic

  9. An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis.

    PubMed

    Bönigk, Wolfgang; Loogen, Astrid; Seifert, Reinhard; Kashikar, Nachiket; Klemm, Clementine; Krause, Eberhard; Hagen, Volker; Kremmer, Elisabeth; Strünker, Timo; Kaupp, U Benjamin

    2009-10-27

    Sperm of the sea urchin Arbacia punctulata can respond to a single molecule of chemoattractant released by an egg. The mechanism underlying this extreme sensitivity is unknown. Crucial signaling events in the response of A. punctulata sperm to chemoattractant include the rapid synthesis of the intracellular messenger guanosine 3',5'-monophosphate (cGMP) and the ensuing membrane hyperpolarization that results from the opening of potassium-selective cyclic nucleotide-gated (CNGK) channels. Here, we use calibrated photolysis of caged cGMP to show that approximately 45 cGMP molecules are generated during the response to a single molecule of chemoattractant. The CNGK channel can respond to such small cGMP changes because it is exquisitely sensitive to cGMP and activated in a noncooperative fashion. Like voltage-activated Ca(v) and Na(v) channels, the CNGK polypeptide consists of four homologous repeat sequences. Disabling each of the four cyclic nucleotide-binding sites through mutagenesis revealed that binding of a single cGMP molecule to repeat 3 is necessary and sufficient to activate the CNGK channel. Thus, CNGK has developed a mechanism of activation that is different from the activation of other CNG channels, which requires the cooperative binding of several ligands and operates in the micromolar rather than the nanomolar range.

  10. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation

    PubMed Central

    Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M

    2000-01-01

    The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669

  11. Cloning and functional expression of a plant voltage-dependent chloride channel.

    PubMed Central

    Lurin, C; Geelen, D; Barbier-Brygoo, H; Guern, J; Maurel, C

    1996-01-01

    Plant cell membrane anion channels participate in basic physiological functions, such as cell volume regulation and signal transduction. However, nothing is known about their molecular structure. Using a polymerase chain reaction strategy, we have cloned a tobacco cDNA (CIC-Nt1) encoding a 780-amino acid protein with several putative transmembrane domains. CIC-Nt1 displays 24 to 32% amino acid identity with members of the animal voltage-dependent chloride channel (CIC) family, whose archetype is CIC-0 from the Torpedo marmorata electric organ. Injection of CIC-Nt1 complementary RNA into Xenopus oocytes elicited slowly activating inward currents upon membrane hyperpolarization more negative than -120 mV. These currents were carried mainly by anions, modulated by extracellular anions, and totally blocked by 10 mM extracellular calcium. The identification of CIC-Nt1 extends the CIC family to higher plants and provides a molecular probe for the study of voltage-dependent anion channels in plants. PMID:8624442

  12. Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway.

    PubMed

    Kalra, D; Baumgarten, G; Dibbs, Z; Seta, Y; Sivasubramanian, N; Mann, D L

    2000-09-12

    The mechanism(s) responsible for the persistent coexpression of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in the failing heart is unknown. To determine whether NO was sufficient to provoke TNF-alpha biosynthesis, we examined the effects of an NO donor, S-nitroso-N-acetyl penicillamine (SNAP), in buffer-perfused Langendorff hearts. SNAP (1 micromol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF-alpha mRNA and protein biosynthesis in adult cat hearts. The effects of SNAP were completely abrogated by a NO quenching agent, 2-(4-carboxyphenyl)-4, 4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO), and mimicked by sodium nitroprusside. Electrophoretic mobility shift assays demonstrated that SNAP treatment led to the rapid induction of nuclear factor kappa-beta (NF-kappaB) but not AP-1. The importance of the cGMP pathway in terms of mediating NO-induced TNF-alpha biosynthesis was shown by studies that demonstrated that 8-bromo-cGMP mimicked the effects of SNAP and that the effects of SNAP could be completely abrogated using a cGMP antagonist, 1H-(1,2, 4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or protein kinase G antagonist (Rp-8-Br-cGMPS). SNAP and 8-Br-cGMP were both sufficient to lead to the site-specific phosphorylation (serine 32) and degradation of IkappaBalpha in isolated cardiac myocytes. Finally, protein kinase G was sufficient to directly phosphorylate IkappaBalpha on serine 32, a critical step in the activation of NF-kappaB. These studies show that NO provokes TNF-alpha biosynthesis through a cGMP-dependent pathway, which suggests that the coincident expression of TNF-alpha and NO may foster self-sustaining positive autocrine/paracrine feedback inflammatory circuits within the failing heart.

  13. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation.

    PubMed

    Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin

    2017-08-04

    The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.

  14. Regulation of the Proteasome by Neuronal Activity and Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Djakovic, Stevan N.; Schwarz, Lindsay A.; Barylko, Barbara; DeMartino, George N.; Patrick, Gentry N.

    2009-01-01

    Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation. PMID:19638347

  15. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.

    PubMed

    Djakovic, Stevan N; Schwarz, Lindsay A; Barylko, Barbara; DeMartino, George N; Patrick, Gentry N

    2009-09-25

    Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-D-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.

  16. Luteinizing hormone signaling phosphorylates and activates the cyclic GMP phosphodiesterase PDE5 in mouse ovarian follicles, contributing an additional component to the hormonally induced decrease in cyclic GMP that reinitiates meiosis.

    PubMed

    Egbert, Jeremy R; Yee, Siu-Pok; Jaffe, Laurinda A

    2018-03-01

    Prior to birth, oocytes within mammalian ovarian follicles initiate meiosis, but then arrest in prophase until puberty, when with each reproductive cycle, one or more follicles are stimulated by luteinizing hormone (LH) to resume meiosis in preparation for fertilization. Within preovulatory follicles, granulosa cells produce high levels of cGMP, which diffuses into the oocyte to maintain meiotic arrest. LH signaling restarts meiosis by rapidly lowering the levels of cGMP in the follicle and oocyte. Part of this decrease is mediated by the dephosphorylation and inactivation the NPR2 guanylyl cyclase in response to LH, but the mechanism for the remainder of the cGMP decrease is unknown. At least one cGMP phosphodiesterase, PDE5, is activated by LH signaling, which would contribute to lowering cGMP. PDE5 exhibits increased cGMP-hydrolytic activity when phosphorylated on serine 92, and we recently demonstrated that LH signaling phosphorylates PDE5 on this serine and increases its activity in rat follicles. To test the extent to which this mechanism contributes to the cGMP decrease that restarts meiosis, we generated a mouse line in which serine 92 was mutated to alanine (Pde5-S92A), such that it cannot be phosphorylated. Here we show that PDE5 phosphorylation is required for the LH-induced increase in cGMP-hydrolytic activity, but that this increase has only a modest effect on the LH-induced cGMP decrease in mouse follicles, and does not affect the timing of meiotic resumption. Though we show that the activation of PDE5 is among the mechanisms contributing to the cGMP decrease, these results suggest that another cGMP phosphodiesterase is also activated by LH signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    PubMed

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  18. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle

    PubMed Central

    Remy, Kenneth E.; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W.

    2013-01-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma. PMID:23997176

  19. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle.

    PubMed

    Gallos, George; Remy, Kenneth E; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W

    2013-11-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma.

  20. The Golgi apparatus regulates cGMP-dependent protein kinase I compartmentation and proteolysis.

    PubMed

    Kato, Shin; Chen, Jingsi; Cornog, Katherine H; Zhang, Huili; Roberts, Jesse D

    2015-06-01

    cGMP-dependent protein kinase I (PKGI) is an important effector of cGMP signaling that regulates vascular smooth muscle cell (SMC) phenotype and proliferation. PKGI has been detected in the perinuclear region of cells, and recent data indicate that proprotein convertases (PCs) typically resident in the Golgi apparatus (GA) can stimulate PKGI proteolysis and generate a kinase fragment that localizes to the nucleus and regulates gene expression. However, the role of the endomembrane system in PKGI compartmentation and processing is unknown. Here, we demonstrate that PKGI colocalizes with endoplasmic reticulum (ER), ER-Golgi intermediate compartment, GA cisterna, and trans-Golgi network proteins in pulmonary artery SMC and cell lines. Moreover, PKGI localizes with furin, a trans-Golgi network-resident PC known to cleave PKGI. ER protein transport influences PKGI localization because overexpression of a constitutively inactive Sar1 transgene caused PKGI retention in the ER. Additionally, PKGI appears to reside within the GA because PKGI immunoreactivity was determined to be resistant to cytosolic proteinase K treatment in live cells. The GA appears to play a role in PKGI proteolysis because overexpression of inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate, not only tethered heterologous PKGI-β to the ER and decreased its localization to the GA, but also diminished PKGI proteolysis and nuclear translocation. Also, inhibiting intra-GA protein transport with monensin was observed to decrease PKGI cleavage. These studies detail a role for the endomembrane system in regulating PKGI compartmentation and proteolysis. Moreover, they support the investigation of mechanisms regulating PKGI-dependent nuclear cGMP signaling in the pulmonary vasculature with Golgi dysfunction. Copyright © 2015 the American Physiological Society.

  1. Induction of calcium-dependent nitric oxide synthases by sex hormones.

    PubMed

    Weiner, C P; Lizasoain, I; Baylis, S A; Knowles, R G; Charles, I G; Moncada, S

    1994-05-24

    We have examined the effects of pregnancy and sex hormones on calcium-dependent and calcium-independent nitric oxide synthases (NOSs) in the guinea pig. Pregnancy (near term) caused a > 4-fold increase in the activity of calcium-dependent NOS in the uterine artery and at least a doubling in the heart, kidney, skeletal muscle, esophagus, and cerebellum. The increase in NOS activity in the cerebellum during pregnancy was inhibited by the estrogen-receptor antagonist tamoxifen. Treatment with estradiol (but not progesterone) also increased calcium-dependent NOS activity in the tissues examined from both females and males. Testosterone increased calcium-dependent NOS only in the cerebellum. No significant change in calcium-independent NOS activity was observed either during pregnancy or after the administration of any sex hormone. Both pregnancy and estradiol treatment increased the amount of mRNAs for NOS isozymes eNOS and nNOS in skeletal muscle, suggesting that the increases in NOS activity result from enzyme induction. Thus both eNOS and nNOS are subject to regulation by estrogen, an action that could explain some of the changes that occur during pregnancy and some gender differences in physiology and pathophysiology.

  2. Partial reconstitution of photoreceptor cGMP phosphodiesterase characteristics in cGMP phosphodiesterase-5.

    PubMed

    Granovsky, A E; Artemyev, N O

    2001-06-15

    Photoreceptor cGMP phosphodiesterases (PDE6) are uniquely qualified to serve as effector enzymes in the vertebrate visual transduction cascade. In the dark-adapted photoreceptors, the activity of PDE6 is blocked via tight association with the inhibitory gamma-subunits (Pgamma). The Pgamma block is removed in the light-activated PDE6 by the visual G protein, transducin. Transducin-activated PDE6 exhibits an exceptionally high catalytic rate of cGMP hydrolysis ensuring high signal amplification. To identify the structural determinants for the inhibitory interaction with Pgamma and the remarkable cGMP hydrolytic ability, we sought to reproduce the PDE6 characteristics by mutagenesis of PDE5, a related cyclic GMP-specific, cGMP-binding PDE. PDE5 is insensitive to Pgamma and has a more than 100-fold lower k(cat) for cGMP hydrolysis. Our mutational analysis of chimeric PDE5/PDE6alpha' enzymes revealed that the inhibitory interaction of cone PDE6 catalytic subunits (PDE6alpha') with Pgamma is mediated primarily by three hydrophobic residues at the entry to the catalytic pocket, Met(758), Phe(777), and Phe(781). The maximal catalytic rate of PDE5 was enhanced by at least 10-fold with substitutions of PDE6alpha'-specific glycine residues for the corresponding PDE5 alanine residues, Ala(608) and Ala(612). The Gly residues are adjacent to the highly conserved metal binding motif His-Asn-X-X-His, which is essential for cGMP hydrolysis. Our results suggest that the unique Gly residues allow the PDE6 metal binding site to adopt a more favorable conformation for cGMP hydrolysis.

  3. An evaluation of the use of liquid calcium chloride to improve deicing and snow removal.

    DOT National Transportation Integrated Search

    1978-01-01

    The Iowa method of spraying liquid calcium chloride onto sodium chloride applied in snow and ice removal operations was evaluated On four sections of highway in the Staunton District. From the relatively sparse data accumulated over three winters, it...

  4. Gating by Cyclic Gmp and Voltage in the α Subunit of the Cyclic Gmp–Gated Channel from Rod Photoreceptors

    PubMed Central

    Benndorf, Klaus; Koopmann, Rolf; Eismann, Elisabeth; Kaupp, U. Benjamin

    1999-01-01

    Gating by cGMP and voltage of the α subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 μM), the current displayed strong outward rectification. At low and high (700 μM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P o. Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P o at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from −100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 μM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose–response relation at −100 mV was shifted to the right and saturated at significantly lower P o values with respect to that at +100 mV (0.77 vs. 0.96). P o was determined as function of the [cGMP] (at +100 and −100 mV) and voltage (at 20, 70, and 700 μM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels

  5. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals.

    PubMed

    Zhu, Yanna; Xia, Min; Yang, Yan; Liu, Fengqiong; Li, Zhongxia; Hao, Yuantao; Mi, Mantian; Jin, Tianru; Ling, Wenhua

    2011-11-01

    Anthocyanins have been shown to improve endothelial function in animal models. However, whether these compounds have similar beneficial effects in humans is largely unknown. In a short-term crossover study, 12 hypercholesterolemic individuals were given oral anthocyanins (320 mg) isolated from berries or placebo. Brachial artery flow-mediated dilation (FMD) was assessed before and after the intervention. In a long-term intervention trial (12 weeks), 150 hypercholesterolemic individuals were given anthocyanins (320 mg/day, n = 75) or placebo (n = 75), after which we measured FMD, plasma cGMP, and other serum biomarkers. Another short-term intervention was conducted in the presence of NO-cGMP inhibitors in 6 people and in a rat aortic ring model (n = 8). Significant increases of FMD from 8.3% (0.6%) at baseline to 11.0% (0.8%) at 1 h and 10.1% (0.9%) at 2 h were observed after short-term anthocyanin consumption, concomitantly with increases of plasma anthocyanin concentrations (P < 0.05). In the study participants who received long-term anthocyanin intervention, compared with the control group, we observed significant increases in the FMD (28.4% vs 2.2%), cGMP (12.6% vs -1.2%), and HDL-cholesterol concentrations, but decreases in the serum soluble vascular adhesion molecule-1 and LDL cholesterol concentrations (P < 0.05). The changes in the cGMP and HDL cholesterol concentrations positively correlated with FMD in the anthocyanin group (P < 0.05). In the presence of NO-cGMP inhibitors, the effects of anthocyanin on endothelial function were abolished in human participants and in a rat aortic ring model. Anthocyanin supplementation improves endothelium-dependent vasodilation in hypercholesterolemic individuals. This effect involves activation of the NO-cGMP signaling pathway, improvements in the serum lipid profile, and decreased inflammation.

  6. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase.

    PubMed Central

    Zohn, I E; Yu, H; Li, X; Cox, A D; Earp, H S

    1995-01-01

    In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK

  7. Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites

    PubMed Central

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-01-01

    Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810

  8. Activity-dependent gating of calcium spikes by A-type K+ channels controls climbing fiber signaling in Purkinje cell dendrites.

    PubMed

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-10-01

    In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. High chloride content calcium silicate glasses.

    PubMed

    Chen, Xiaojing; Karpukhina, Natalia; Brauer, Delia S; Hill, Robert G

    2017-03-08

    Chloride is known to volatilize from silicate glass melts and until now, only a limited number of studies on oxychloride silicate glasses have been reported. In this paper we have synthesized silicate glasses that retain large amounts of CaCl 2 . The CaCl 2 has been added to the calcium metasilicate composition (CaO·SiO 2 ). Glasses were produced via a melt quench route and an average of 70% of the chloride was retained after melting. Up to 31.6 mol% CaCl 2 has been successfully incorporated into these silicate glasses without the occurrence of crystallization. 29 Si MAS-NMR spectra showed the silicon being present mainly as a Q 2 silicate species. This suggests that chloride formed Cl-Ca(n) species, rather than Si-Cl bonds. Upon increasing the CaCl 2 content, the T g reduced markedly from 782 °C to 370 °C. Glass density and glass crystallization temperature decreased linearly with an increase in the CaCl 2 content. However, both linear regressions revealed a breakpoint at a CaCl 2 content just below 20 mol%. This might be attributed to a significant change in the structure and is also correlated with the nature of the crystallizing phases formed upon heat treatment. The glasses with less than 19.2 mol% CaCl 2 crystallized to wollastonite, whilst the compositions with CaCl 2 content equal to or greater than 19.2 mol% are thought to crystallize to CaCl 2 . In practice, the crystallization of CaCl 2 could not occur until the crystallization temperature fell below the melting point of CaCl 2 . The implications of the results along with the high chloride retention are discussed.

  10. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: evidence of cGMP cytotoxicity independently of enhanced CNG channel function.

    PubMed

    Xu, Jianhua; Morris, Lynsie; Thapa, Arjun; Ma, Hongwei; Michalakis, Stylianos; Biel, Martin; Baehr, Wolfgang; Peshenko, Igor V; Dizhoor, Alexander M; Ding, Xi-Qin

    2013-09-11

    Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca(2+) influx in rod and cone photoreceptors. cGMP, the native ligand of the photoreceptor CNG channels, has been associated with cytotoxicity when its levels rise above normal due to defects in photoreceptor phosphodiesterase (PDE6) or regulation of retinal guanylyl cyclase (retGC). We found a massive accumulation of cGMP in CNGA3-deficient retina and investigated whether cGMP accumulation plays a role in cone degeneration in CNG channel deficiency. The time course study showed that the retinal cGMP level in Cnga3(-/-);Nrl(-/-) mice with CNGA3 deficiency on a cone-dominant background was sharply increased at postnatal day 8 (P8), peaked around P10-P15, remained high through P30-P60, and returned to near control level at P90. This elevation pattern correlated with photoreceptor apoptotic death, which peaked around P15-P20. In Cnga3(-/-);Gucy2e(-/-) mice lacking retGC1, cone density and expression levels of cone-specific proteins were significantly increased compared with Cnga3(-/-), consistent with a role of cGMP accumulation as the major contributor to cone death caused by CNG channel deficiency. The activity and expression levels of cGMP-dependent protein kinase G (PKG) were significantly increased in Cnga3(-/-);Nrl(-/-) retina compared with Nrl(-/-), suggesting an involvement of PKG regulation in cell death. Our results indicate that cGMP accumulation in photoreceptors can itself exert cytotoxic effect in cones, independently of CNG channel activity and Ca(2+) influx.

  11. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction.

    PubMed

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J; Woodruff, Prescott G; Solberg, Owen D; Donne, Matthew L; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V; Wolters, Paul J; Hogan, Brigid L M; Finkbeiner, Walter E; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R

    2012-10-02

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.

  12. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  13. Desensitization of atriopeptin stimulated accumulation and extrusion of cyclic GMP from a kidney epithelial cell line (MDCK).

    PubMed

    Woods, M; Houslay, M D

    1991-02-01

    Atriopeptin caused dose- (EC50 ca. 2 x 10(-8) M) and time-dependent increases in the intracellular concentration of cyclic GMP in the MDCK kidney epithelial cell line; an effect potentiated by the phosphodiesterase inhibitor, IBMX. The atriopeptin-catalysed increase in cyclic GMP was transient and reached a maximum some 10-20 min after challenge of cells with atriopeptin. The basis for the transience of this increase was shown to be due to the desensitization of guanylate cyclase coupled with extrusion of cyclic GMP from the cells and the degradation of cyclic GMP by phosphodiesterase activity. Atriopeptin-catalysed extrusion of cyclic GMP was time- and dose-(EC50 ca. 1.5 x 10(-8) M) dependent and was inhibited by probenecid but not by high external cyclic GMP concentrations. The extrusion process underwent apparent desensitization as did guanylate cyclase with similar half lives (T1/2 of ca. 20 min). Desensitization was dose-dependent upon atriopeptin and did not appear to be mediated by elevated cyclic GMP concentrations as pre-incubation with 8-bromo cyclic GMP did not cause desensitization and the half-times for desensitization were similar whether or not IBMX was present. The majority of the cyclic nucleotide phosphodiesterase activity was found in the cytosol fraction of the cells and could be separated into two cyclic AMP specific forms and two cyclic GMP preferring forms.

  14. Relationship of calcium and membrane guanylate cyclase in adrenocorticotropin-induced steroidogenesis.

    PubMed

    Nambi, P; Aiyar, N V; Roberts, A N; Sharma, R K

    1982-07-01

    Chlorpromazine, when incubated with isolated adrenal cells, inhibited the ACTH-stimulated formation of cGMP and corticosterone production. It also inhibited the ACTH-stimulated membrane guanylate cyclase, but did not affect the binding of ACTH to the membrane receptors. cGMP-induced steroidogenesis was not affected by the drug. These data indicate that chlorpromazine interferes with adrenal steroid metabolism at a site between the hormone receptor and guanylate cyclase and also show that guanylate cyclase is composed of separate receptor and catalytic components. Furthermore, based on the premise that chlorpromazine exerts its inhibitory action by blocking the binding of a calcium receptor protein, such as calmodulin, to the receptor-coupled guanylate cyclase, it is proposed that the interaction of calcium, presumably through a calcium-binding protein, is essential for ACTH-dependent guanylate cyclase.

  15. An enzyme kinetics study of the pH dependence of chloride activation of oxygen evolution in photosystem II.

    PubMed

    Baranov, Sergei; Haddy, Alice

    2017-03-01

    Oxygen evolution by photosystem II (PSII) involves activation by Cl - ion, which is regulated by extrinsic subunits PsbQ and PsbP. In this study, the kinetics of chloride activation of oxygen evolution was studied in preparations of PSII depleted of the PsbQ and PsbP subunits (NaCl-washed and Na 2 SO 4 /pH 7.5-treated) over a pH range from 5.3 to 8.0. At low pH, activation by chloride was followed by inhibition at chloride concentrations >100 mM, whereas at high pH activation continued as the chloride concentration increased above 100 mM. Both activation and inhibition were more pronounced at lower pH, indicating that Cl - binding depended on protonation events in each case. The simplest kinetic model that could account for the complete data set included binding of Cl - at two sites, one for activation and one for inhibition, and four protonation steps. The intrinsic (pH-independent) dissociation constant for Cl - activation, K S , was found to be 0.9 ± 0.2 mM for both preparations, and three of the four pK a s were determined, with the fourth falling below the pH range studied. The intrinsic inhibition constant, K I , was found to be 64 ± 2 and 103 ± 7 mM for the NaCl-washed and Na 2 SO 4 /pH7.5-treated preparations, respectively, and is considered in terms of the conditions likely to be present in the thylakoid lumen. This enzyme kinetics analysis provides a more complete characterization of chloride and pH dependence of O 2 evolution activity than has been previously presented.

  16. P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals.

    PubMed

    Protti, D A; Uchitel, O D

    1997-08-01

    The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.

  17. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    PubMed

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice. Copyright © 2016. Published by Elsevier B.V.

  18. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae

    PubMed Central

    Chatterjee, Tanaya; Sheikh, Irshad Ali; Chakravarty, Devlina; Chakrabarti, Pinak; Sarkar, Paramita; Saha, Tultul; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul

    2015-01-01

    Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders. PMID:26540279

  19. Investigation of calcium-dependent activity and conformational dynamics of zebra fish 12-lipoxygenase.

    PubMed

    Mittal, Monica; Hasan, Mahmudul; Balagunaseelan, Navisraj; Fauland, Alexander; Wheelock, Craig; Rådmark, Olof; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2017-08-01

    A 12-lipoxygenase in zebra fish (zf12-LOX) was found to be required for normal embryonic development and LOXs are of great interest for targeted drug designing. In this study, we investigate the structural-functional aspects of zf12-LOX in response to calcium. A soluble version of zf12-LOX was created by mutagenesis. Based on multiple sequence alignment, we mutated the putative calcium-responsive amino acids in N-PLAT domain of soluble zf12-LOX. Using a series of biophysical methods, we ascertained the oligomeric state, stability, structural integrity and conformational changes of zf12-LOX in response to calcium. We also compared the biophysical properties of soluble zf12-LOX with the mutant in the absence and presence of calcium. Here we provide a detailed characterization of soluble zf12-LOX and the mutant. Both proteins exist as compact monomers in solution, however the enzyme activity of soluble zf12-LOX is significantly increased in presence of calcium. We find that the stimulatory effect of calcium on zf12-LOX is related to a change in protein structure as observed by SAXS, adopting an open-state. In contrast, enzyme with a mutated calcium regulatory site has reduced activity-response to calcium and restricted large re-modeling, suggesting that it retains a closed-state in response to calcium. Taken together, our study suggests that Ca 2+ -dependent regulation is associated with different domain conformation(s) that might change the accessibility to substrate-binding site in response to calcium. The study can be broadly implicated in better understanding the mode(s) of action of LOXs, and the enzymes regulated by calcium in general. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation

    DOE PAGES

    Campbell, James C.; VanSchouwen, Bryan; Lorenz, Robin; ...

    2016-12-23

    The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. We determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a ‘gatekeeper’ for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalyticmore » subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. Our results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B.« less

  1. The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions.

    PubMed

    Xu, Chengbin; Li, Xuemei; Zhang, Lihong

    2013-01-01

    Few attempts have been made to study the alleviating effects of signal molecules on zoysiagrass (Zoysiajaponica) under drought stress. Calcium chloride has been shown to ameliorate the adverse effects of drought stress on many plants. It is necessary to investigate how to enhance drought tolerance of zoysiagrass using calcium chloride. The study elucidated the effects of calcium chloride on zoysiagrass under drought conditions by investigating the following parameters: biomass, chlorophyll (Chl) content, net photosynthetic rate (Pn), chlorophyll fluorescence, antioxidant enzymes, proline content, and malondialdehyde (MDA) content. Experimental conditions consisted of an aqueous CaCl2 solution at 5, 10, and 20 mM sprayed on zoysiagrass leaves for 3 d, following by an inducement of drought conditions by withholding water for 16 d. Under drought conditions, all CaCl2 pretreatments were found to increase the above-ground fresh biomass, as well as below-ground fresh and dry biomass. The resulting Chl (a, b, a+b) contents of the 5 and 10 mM CaCl2 pretreatment groups were higher than those of the control. In the later stages of drought conditions, the chlorophyll fluorescence parameter Fv/Fm was higher in leaves treated with 10 mM CaCl2 than in the leaves of the other two treatment groups. Zoysiagrass pretreated with 10 mM CaCl2 possessed both the maximum observed Pn and antioxidant enzyme activities. Meanwhile, lower MDA and proline contents were recorded in the plants pretreated with 5 and 10 mM CaCl2 under drought conditions. As a whole, the drought tolerance of zoysiagrass was improved to some extent by the application of a moderate calcium concentration.

  2. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis.

    PubMed

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-05-07

    Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMvarphi), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMvarphi. Resultant MDMvarphi were treated for 24 h with DETA/NO (100 - 1000 muM) or GEA-3162 (10 - 300 muM) in the presence or absence of BAY 41-2272 (1 muM), isobutylmethylxanthine (IBMX; 1 muM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 muM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMvarphi was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMvarphi. Preconditioning of MDMvarphi with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41-2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner. These results

  3. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    PubMed Central

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-01-01

    Background Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM) or GEA-3162 (10 – 300 μM) in the presence or absence of BAY 41–2272 (1 μM), isobutylmethylxanthine (IBMX; 1 μM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  4. Evaluation of chemical castration with calcium chloride versus surgical castration in donkeys: testosterone as an endpoint marker.

    PubMed

    Ibrahim, Ahmed; Ali, Magda M; Abou-Khalil, Nasser S; Ali, Marwa F

    2016-03-08

    For the last few years, researchers have been interested in developing a method for chemical sterilization which may be a better alternative to surgical castration. An ideal chemical sterilant would be one that effectively arrests spermatogenesis and androgenesis as well as libido with absence of toxic or other side effects. Calcium chloride in various solutions and concentrations has been tested in many animal species, but few studies have been evaluated it in equines as a chemical sterilant. So, the objective of this study was to evaluate the clinical efficacy of chemical castration with 20% calcium chloride dissolved in absolute ethanol in comparison with surgical castration in donkeys based on the changes in the serum testosterone level and the histopathological changes in treated testes. Twelve clinically healthy adult male donkeys were used in this study. Donkeys were divided randomly and equally into two groups: a surgical (S) group (n = 6) and a chemical (C) group (n = 6). Animals in the (S) group were subjected to surgical castration while those in the (C) group received a single bilateral intratesticular injection of 20% calcium chloride dissolved in absolute ethanol (20 ml/testis). Animals were kept under clinical observation for 60 days. Changes in animals' behavior and gross changes in external genitalia were monitored daily. Serum concentrations of testosterone were measured prior to treatment and at 15, 30, 45 and 60 days post-treatment. Testicles in the (C) group were examined histopathologically at the end of the experiment. Chemical castration with intratesticular calcium chloride vs. surgical castration failed to reduce serum concentrations of testosterone throughout the whole duration of the study; however it induced orchitis that was evident by focal necrotic areas in seminiferous tubules, cellular infiltration of neutrophils, proliferative intertubular fibrosis with a compensatory proliferation of Leydig cells. Donkeys tolerated the

  5. Cryo-EM structures of the TMEM16A calcium-activated chloride channel.

    PubMed

    Dang, Shangyu; Feng, Shengjie; Tien, Jason; Peters, Christian J; Bulkley, David; Lolicato, Marco; Zhao, Jianhua; Zuberbühler, Kathrin; Ye, Wenlei; Qi, Lijun; Chen, Tingxu; Craik, Charles S; Jan, Yuh Nung; Minor, Daniel L; Cheng, Yifan; Jan, Lily Yeh

    2017-12-21

    Calcium-activated chloride channels (CaCCs) encoded by TMEM16A control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system. To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores. Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase, as well as subnanometre-resolution electron cryo-microscopy. Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca 2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca 2+ occupancy requires membrane depolarization in order to open (C.J.P. et al., manuscript submitted). The structure in nanodiscs has two Ca 2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca 2+ . Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.

  6. Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase 3 in dorsal root ganglion sensory neurons.

    PubMed

    Zhao, Zhen; Wang, Zheng; Gu, Ying; Feil, Robert; Hofmann, Franz; Ma, Le

    2009-02-04

    Cyclic GMP has been proposed to regulate axonal development, but the molecular and cellular mechanisms underlying the formation of axon branches are not well understood. Here, we report the use of rodent embryonic sensory neurons from the dorsal root ganglion (DRG) to demonstrate the role of cGMP signaling in axon branching and to identify the downstream molecular pathway mediating this novel regulation. Pharmacologically, a specific cGMP analog promotes DRG axon branching in culture, and this activity can be achieved by activating the endogenous soluble guanylyl cyclase that produces cGMP. At the molecular level, the cGMP-dependent protein kinase 1 (PrkG1) mediates this activity, as DRG neurons isolated from the kinase-deficient mouse fail to respond to cGMP activation to make branches, whereas overexpression of a PrkG1 mutant with a higher-than-normal basal kinase activity is sufficient to induce branching. In addition, cGMP activation in DRG neurons leads to phosphorylation of glycogen synthase kinase 3 (GSK3), a protein that normally suppresses branching. This interaction is direct, because PrkG1 binds GSK3 in heterologous cells and the purified kinase can phosphorylate GSK3 in vitro. More importantly, overexpression of a dominant active form of GSK3 suppresses cGMP-dependent branching in DRG neurons. Thus, our study establishes an intrinsic signaling cascade that links cGMP activation to GSK3 inhibition in controlling axon branching during sensory axon development.

  7. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores

    PubMed Central

    Sobolewski, Peter; Kandel, Judith; Klinger, Alexandra L.

    2011-01-01

    Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50–150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway. PMID:21633077

  8. Commercial Scale Cucumber Fermentations Brined with Calcium Chloride Instead of Sodium Chloride.

    PubMed

    Pérez-Díaz, I M; McFeeters, R F; Moeller, L; Johanningsmeier, S D; Hayes, J; Fornea, D S; Rosenberg, L; Gilbert, C; Custis, N; Beene, K; Bass, D

    2015-12-01

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride (CaCl2 ) instead of NaCl to commercial scale production. Although CaCl2 brined cucumber fermentations were stable in laboratory experiments, commercial scale trials using 6440 L open-top tanks rapidly underwent secondary cucumber fermentation. It was understood that a limited air purging routine, use of a starter culture and addition of preservatives to the cover brine aids in achieving the desired complete cucumber fermentation. The modified process was used for subsequent commercial trials using 12490 and 28400 L open-top tanks packed with variable size cucumbers and from multiple lots, and cover brines containing CaCl2 and potassium sorbate to equilibrated concentrations of 100 and 6 mM, respectively. Lactobacillus plantarum LA0045 was inoculated to 10(6) CFU/mL, and air purging was applied for two 2-3 h periods per day for the first 10 d of fermentation and one 2-3 h period per day between days 11 and 14. All fermentations were completed, as evidenced by the full conversion of sugars to lactic acid, decrease in pH to 3.0, and presented microbiological stability for a minimum of 21 d. This CaCl2 process may be used to produce fermented cucumbers intended to be stored short term in a manner that reduces pollution and waste removal costs. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in Ulva compressa Exposed to Copper Excess1[C][W][OA

    PubMed Central

    González, Alberto; Cabrera, M. de los Ángeles; Henríquez, M. Josefa; Contreras, Rodrigo A.; Morales, Bernardo; Moenne, Alejandra

    2012-01-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H2O2) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H2O2, ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H2O2 increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H2O2 accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H2O2. In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H2O2, and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases. PMID:22234999

  10. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    PubMed

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Removal of a putative inhibitory element reduces the calcium-dependent calmodulin activation of neuronal nitric-oxide synthase.

    PubMed

    Montgomery, H J; Romanov, V; Guillemette, J G

    2000-02-18

    Neuronal nitric-oxide synthase (NOS) and endothelial NOS are constitutive NOS isoforms that are activated by binding calmodulin in response to elevated intracellular calcium. In contrast, the inducible NOS isoform binds calmodulin at low basal levels of calcium in resting cells. Primary sequence comparisons show that each constitutive NOS isozyme contains a polypeptide segment within its reductase domain, which is absent in the inducible NOS enzyme. To study a possible link between the presence of these additional polypeptide segments in constitutive NOS enzymes and their calcium-dependent calmodulin activation, three deletion mutants were created. The putative inhibitory insert was removed from the FMN binding regions of the neuronal NOS holoenzyme and from two truncated neuronal NOS reductase enzymes in which the calmodulin binding region was either included or deleted. All three mutant enzymes showed reduced incorporation of FMN and required reconstitution with exogenous FMN for activity. The combined removal of both the calmodulin binding domain and the putative inhibitory insert did not result in a calmodulin-independent neuronal NOS reductase. Thus, although the putative inhibitory element has an effect on the calcium-dependent calmodulin activation of neuronal NOS, it does not have the properties of the typical autoinhibitory domain found in calmodulin-activated enzymes.

  12. Effect of calcium chloride concentration on output force in electrical actuator made of sodium alginate gel

    NASA Astrophysics Data System (ADS)

    Wu, Yuda; Zhao, Gang; Wei, Chengye; Liu, Shuang; Fu, Yu; Liu, Xvxiong

    2018-01-01

    As a kind of artificial muscle intelligent material, the biological gel electric driver has the advantages of low driving voltage, large strain, good biological compatibility, good flexibility, low price, etc. The application prospect is broad and it has high academic value. Alginate, as a common substance in sea, has characteristics of low cost, green and pollution-free. Therefore,this paper obtains biological gel electric actuator by sodium alginate and calcium chloride. Effects on output force of the electric actuator is researched by changing the crosslinking of calcium chloride concentration and the output force enhancement mechanism is analyzed in this paper.

  13. Effect of calcium chloride on physical properties of calcium-enriched mixture cement.

    PubMed

    Abbaszadegan, Abbas; Sedigh Shams, Mahdi; Jamshidi, Yasin; Parashos, Peter; Bagheri, Rafat

    2015-12-01

    The aim of this study was to evaluate the effect of adding 10% calcium chloride (CaCl2) on the setting time, solubility and the pH of calcium-enriched mixture (CEM) cement. Setting time was assessed in accordance with American Dental Association specification N°57. Solubility was measured at 24 and 72 h, 7 and 14 days in hydrated and dehydrated conditions by calculating weight change. The pH of MiliQ water in which the CEM cement samples were immersed was measured immediately after each time interval with and without the addition of CaCl2. The data were analysed using the Mann-Whitney U-test and the Student's t-test. The initial setting time was significantly decreased after the addition of 10% CaCl2. The pH of water increased immediately when in contact with the cements in both groups. The weight loss of hydrated and dehydrated specimens was more than 3% and was significantly reduced by the addition of 10% CaCl2. © 2015 Australian Society of Endodontology.

  14. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride.

    PubMed

    Oyekan, A O; Youseff, T; Fulton, D; Quilley, J; McGiff, J C

    1999-10-01

    Renal function is perturbed by inhibition of nitric oxide synthase (NOS). To probe the basis of this effect, we characterized the effects of nitric oxide (NO), a known suppressor of cytochrome P450 (CYP) enzymes, on metabolism of arachidonic acid (AA), the expression of omega-hydroxylase, and the efflux of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated kidney. The capacity to convert [(14)C]AA to HETEs and epoxides (EETs) was greater in cortical microsomes than in medullary microsomes. Sodium nitroprusside (10-100 microM), an NO donor, inhibited renal microsomal conversion of [(14)C]AA to HETEs and EETs in a dose-dependent manner. 8-bromo cGMP (100 microM), the cell-permeable analogue of cGMP, did not affect conversion of [(14)C]AA. Inhibition of NOS with N(omega)-nitro-L-arginine-methyl ester (L-NAME) significantly increased conversion of [(14)C]AA to HETE and greatly increased the expression of omega-hydroxylase protein, but this treatment had only a modest effect on epoxygenase activity. L-NAME induced a 4-fold increase in renal efflux of 20-HETE, as did L-nitroarginine. Oral treatment with 2% sodium chloride (NaCl) for 7 days increased renal epoxygenase activity, both in the cortex and the medulla. In contrast, cortical omega-hydroxylase activity was reduced by treatment with 2% NaCl. Coadministration of L-NAME and 2% NaCl decreased conversion of [(14)C]AA to HETEs without affecting epoxygenase activity. Thus, inhibition of NOS increased omega-hydroxylase activity, CYP4A expression, and renal efflux of 20-HETE, whereas 2% NaCl stimulated epoxygenase activity.

  15. THE INFLUENCE OF CALCIUM CHLORIDE UPON EXPERIMENTAL BOTULISM

    PubMed Central

    Hall, Ivan C.; Davis, Nelson C.

    1923-01-01

    1. Calcium chloride given subcutaneously, intraperitoneally, or intravenously has been found to have no effect upon the production of botulism following the injection of Bacillus botulinus (Strain 80B) into the peritoneal cavity of guinea pigs. 2. Treatment of Bacillus botulinus with alcohol has been found markedly to decrease its toxicity for guinea pigs. This is in conformity with the work of Bronfenbrenner and Schlesinger. 3. Toxin-free spores of Bacillus botulinus have been found pathogenic for guinea pigs. 4. No prejudice as to possible results in rabbits should be based upon the above conclusions. PMID:19868746

  16. NMDA inhibits oxotremorine-induced acid secretion via the NO-dependent cyclic GMP system in rat stomach.

    PubMed

    Tsai, L H; Lee, Y J

    2001-12-31

    The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.

  17. Molecular and thermodynamic mechanisms of the chloride-dependent human angiotensin-I-converting enzyme (ACE).

    PubMed

    Yates, Christopher J; Masuyer, Geoffrey; Schwager, Sylva L U; Akif, Mohd; Sturrock, Edward D; Acharya, K Ravi

    2014-01-17

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg(522). Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu(403)-Lys(118) salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains.

  18. Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE)*

    PubMed Central

    Yates, Christopher J.; Masuyer, Geoffrey; Schwager, Sylva L. U.; Akif, Mohd; Sturrock, Edward D.; Acharya, K. Ravi

    2014-01-01

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg522. Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu403-Lys118 salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains. PMID:24297181

  19. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger

    PubMed Central

    Galperin, Michael Y.; Gomelsky, Mark

    2013-01-01

    SUMMARY Twenty-five years have passed since the discovery of cyclic dimeric (3′→5′) GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger. PMID:23471616

  20. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart

    NASA Astrophysics Data System (ADS)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.

    1996-06-01

    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

  1. Optimisation of entrapped activated carbon conditions to remove coloured compounds from winery wastewaters.

    PubMed

    Devesa-Rey, R; Bustos, G; Cruz, J M; Moldes, A B

    2011-06-01

    The objective of this work was to study the entrapped conditions of activated carbon in calcium-alginate beads for the clarification of winery wastewaters. An incomplete 3(3) factorial design was carried out to study the efficiency of activated carbon (0.5-2%); sodium alginate (1-5%); and calcium chloride (0.050-0.900 M), on the following dependent variables: colour reduction at 280, 465, 530 and 665 nm. The activated carbon and calcium chloride were the most influential variables in the colour reduction. Nearly 100% colour reductions were found for the wavelengths assayed when employing 2% of activated carbon, 5% of sodium alginate and intermediate concentrations of calcium chloride (0.475 M). Instead, other conditions like, 2% of activated carbon, 4% of sodium alginate and 0.580 M of calcium chloride can also give absorbance reductions close to 100%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Isoflurane-Induced Caspase-3 Activation Is Dependent on Cytosolic Calcium and Can Be Attenuated by Memantine

    PubMed Central

    Zhang, Guohua; Dong, Yuanlin; Zhang, Bin; Ichinose, Fumito; Wu, Xu; Culley, Deborah J.; Crosby, Gregory

    2008-01-01

    Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-β protein (Aβ) generation. However, the mechanism by which isoflurane induces apoptosis is primarily unknown. We therefore set out to assess effects of extracellular calcium concentration on isoflurane-induced caspase-3 activation in H4 human neuroglioma cells stably transfected to express human full-length APP (H4-APP cells). In addition, we tested effects of RNA interference (RNAi) silencing of IP3 receptor, NMDA receptor, and endoplasmic reticulum (ER) calcium pump, sacro-/ER calcium ATPase (SERCA1). Finally, we examined the effects of the NMDA receptor partial antagonist, memantine, in H4-APP cells and brain tissue of naive mice. EDTA (10 mm), BAPTA (10 μm), and RNAi silencing of IP3 receptor, NMDA receptor, or SERCA1 attenuated capase-3 activation. Memantine (4 μm) inhibited isoflurane-induced elevations in cytosolic calcium levels and attenuated isoflurane-induced caspase-3 activation, apoptosis, and cell viability. Memantine (20 mg/kg, i.p.) reduced isoflurane-induced caspase-3 activation in brain tissue of naive mice. These results suggest that disruption of calcium homeostasis underlies isoflurane-induced caspase activation and apoptosis. We also show for the first time that the NMDA receptor partial antagonist, memantine, can prevent isoflurane-induced caspase-3 activation and apoptosis in vivo and in vitro. These findings, indicating that isoflurane-induced caspase activation and apoptosis are dependent on cytosolic calcium levels, should facilitate the provision of safer anesthesia care, especially for Alzheimer's disease and elderly patients. PMID:18434534

  3. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  4. L-Histidine sensing by calcium sensing receptor inhibits voltage-dependent calcium channel activity and insulin secretion in β-cells

    PubMed Central

    Parkash, Jai; Asotra, Kamlesh

    2011-01-01

    Aims Our goal was to test the hypothesis that the histidine-induced activation of calcium sensing receptor (CaR) can regulate calcium channel activity of L-type voltage dependent calcium channel (VDCC) due to increased spatial interaction between CaR and VDCC in β-cells and thus modulate glucose-induced insulin secretion. Main methods Rat insulinoma (RINr1046-38) insulin-producing β-cells were cultured in RPMI-1640 medium on 25 mm diameter glass coverslips in six-well culture plates in a 5% CO2 incubator at 37°C. The intracellular calcium concentration, [Ca2+]i, was determined by ratio fluorescence microscopy using Fura-2AM. The spatial interactions between CaR and L-type VDCC in β-cells were measured by immunofluorescence confocal microscopy using a Nikon C1 laser scanning confocal microscope. The insulin release was determined by enzyme-linked immunosorbent assay (ELISA). Key findings The additions of increasing concentrations of L-histidine along with 10 mM glucose resulted in 57% decrease in [Ca2+]i. The confocal fluorescence imaging data showed 5.59 to 8.62-fold increase in colocalization correlation coefficient between CaR and VDCC in β-cells exposed to L-histidine thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. The insulin ELISA data showed 54% decrease in 1st phase of glucose-induced insulin secretion in β-cells exposed to increasing concentrations of L-histidine. Significance L-histidine-induced increased spatial interaction of CaR with VDCC can inhibit calcium channel activity of VDCC and consequently regulate glucose-induced insulin secretion by β-cells. The L-type VDCC could therefore be potential therapeutic target in diabetes. PMID:21219913

  5. Physical properties of NaCl-free cucumber fermentation cover brine containing calcium chloride and glycerin and apparent freezing injury of the brined fruits

    USDA-ARS?s Scientific Manuscript database

    Use of glycerin and calcium chloride to reduce the freezing point and improve quality of bulk stored fermented cucumbers brined without NaCl, was explored. The incidence of pre-freezing injury on the fruits, caused by deposition in tanks containing cushion brine prepared with 2.5% calcium chloride, ...

  6. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lihua; He, Xiaoman; Qu, Jun

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less

  7. A calcium channel blocker, benidipine, improves cell membrane fluidity in human subjects via a nitric oxide-dependent mechanism. An electron paramagnetic resonance investigation.

    PubMed

    Tsuda, Kazushi; Nishio, Ichiro

    2004-12-01

    Recent studies have revealed that benidipine, a long-acting dihydropyridine-type of calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate the effects of benidipine and NO on the membrane function in human subjects. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. Benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(o)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in normotensive volunteers. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of benidipine was significantly potentiated by the NO donor, S-nitroso-n-acetylpenicillamine, and by the cyclic guanosine 3', 5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by benidipine was counteracted by the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester and asymmetric dimethyl-L-arginine. These results demonstrated that benidipine increased the membrane fluidity of erythrocytes, at least in part, via the NO- and cGMP-dependent mechanism. Furthermore, the data strongly suggest that benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in humans.

  8. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.

    PubMed

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-04-30

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂ - in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.

  9. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    PubMed Central

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-01-01

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms. PMID:28788625

  10. Nitric oxide/cGMP pathway signaling actively down-regulates α4β1-integrin affinity: an unexpected mechanism for inducing cell de-adhesion.

    PubMed

    Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A

    2011-05-17

    Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non

  11. Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.

    PubMed

    Haas, Brigitte; Schipke, Carola G; Peters, Oliver; Söhl, Goran; Willecke, Klaus; Kettenmann, Helmut

    2006-02-01

    In the corpus callosum, astrocytic calcium waves propagate via a mechanism involving ATP-release but not gap junctional coupling. In the present study, we report for the neocortex that calcium wave propagation depends on functional astrocytic gap junctions but is still accompanied by ATP-release. In acute slices obtained from the neocortex of mice deficient for astrocytic expression of connexin43, the calcium wave did not propagate. In contrast, in the corpus callosum and hippocampus of these mice, the wave propagated as in control animals. In addition to calcium wave propagation in astrocytes, ATP-release was recorded as a calcium signal from 'sniffer cells', a cell line expressing high-affinity purinergic receptors placed on the surface of the slice. The astrocyte calcium wave in the neocortex was accompanied by calcium signals in the 'sniffer cell' population. In the connexin43-deficient mice we recorded calcium signals from sniffer cells also in the absence of an astrocytic calcium wave. Our findings indicate that astrocytes propagate calcium signals by two separate mechanisms depending on the brain region and that ATP release can propagate within the neocortex independent from calcium waves.

  12. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  13. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    PubMed

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  14. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  15. Mangiferin Prevents Guinea Pig Tracheal Contraction via Activation of the Nitric Oxide-Cyclic GMP Pathway

    PubMed Central

    Vieira, Aline B.; Coelho, Luciana P.; Insuela, Daniella B. R.; Carvalho, Vinicius F.; dos Santos, Marcelo H.; Silva, Patricia MR.; Martins, Marco A.

    2013-01-01

    Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1–10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1], [2], [4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K+ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca2+-induced contractions in K+ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L

  16. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    PubMed

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  17. Physical Evaluation of PVA/Chitosan Film Blends with Glycerine and Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Nugraheni, A. D.; Purnawati, D.; Kusumaatmaja, A.

    2018-04-01

    PVA/chitosan film has been fabricated by using drop casting method. PVA/chitosan film is produced by dissolving 2% (w/v) PVA solution and 2% (w/v) chitosan solution. PVA/chitosan film is produced with weight ratio variation (w/w) 100/0, 75/25, 50/50 and 0/100. The film is fabricated using drop casting method in Petry dish with diameter 11 cm at room temperature and RH 50%–60% during seven days. The mechanical properties were characterized by using Universal Technical Machine (UTM) and UV-Vis to understand the physical properties of weight ratio (w/w) of PVA/Chitosan film by addition of plasticizer and calcium chloride. The film thickness tends to decrease with PVA content. The addition of chitosan will increase film thickness, and it will decrease swelling index, elongation (%), and transmittance of UV rays. The additions of plasticizer to PVA/Chitosan film will increase film thickness and elongation (%), and it will decrease swelling index, tensile strength and transmittance of UV rays. The crosslink of PVA/Chitosan film with calcium chloride will decrease film thickness, swelling index, elongation (%) and transmittance of UV rays, and increase tensile strength.

  18. Ibudilast attenuates astrocyte apoptosis via cyclic GMP signalling pathway in an in vitro reperfusion model

    PubMed Central

    Takuma, K; Lee, E; Enomoto, R; Mori, K; Baba, A; Matsuda, T

    2001-01-01

    We examined the effect of 3-isobutyryl-2-isopropylpyrazolo[1,5-a]pyridine (ibudilast), which has been clinically used for bronchial asthma and cerebrovascular disorders, on cell viability induced in a model of reperfusion injury. Ibudilast at 10 – 100 μM significantly attenuated the H2O2-induced decrease in cell viability. Ibudilast inhibited the H2O2-induced cytochrome c release, caspase-3 activation, DNA ladder formation and nuclear condensation, suggesting its anti-apoptotic effect. Phosphodiesterase inhibitors such as theophylline, pentoxyfylline, vinpocetine, dipyridamole and zaprinast, which increased the guanosine-3′,5′-cyclic monophosphate (cyclic GMP) level, and dibutyryl cyclic GMP attenuated the H2O2-induced injury in astrocytes. Ibudilast increased the cyclic GMP level in astrocytes. The cyclic GMP-dependent protein kinase inhibitor KT5823 blocked the protective effects of ibudilast and dipyridamole on the H2O2-induced decrease in cell viability, while the cyclic AMP-dependent protein kinase inhibitor KT5720, the cyclic AMP antagonist Rp-cyclic AMPS, the mitogen-activated protein/extracellular signal-regulated kinase inhibitor PD98059 and the leukotriene D4 antagonist LY 171883 did not. KT5823 also blocked the effect of ibudilast on the H2O2-induced cytochrome c release and caspase-3-like protease activation. These findings suggest that ibudilast prevents the H2O2-induced delayed apoptosis of astrocytes via a cyclic GMP, but not cyclic AMP, signalling pathway. PMID:11454657

  19. Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes.

    PubMed

    Sharma, Neelima; Kumar, Anoop

    2014-04-01

    Tributyltin-chloride, a well-known organotin compound, is a widespread environmental toxicant. The immunotoxic effects of tributyltin-chloride on mammalian system and its mechanism is still unclear. This study is designed to explore the mode of action of tributyltin-induced apoptosis and other parallel apoptotic pathways in murine thymocytes. The earliest response in oxidative stress followed by mitochondrial membrane depolarization and caspase-3 activation has been observed. Pre-treatment with N-acetyl cysteine and buthionine sulfoximine effectively inhibited the tributyltin-induced apoptotic DNA and elevated the sub G1 population, respectively. Caspase inhibitors pretreatment prevent tributyltin-induced apoptosis. Western blot and flow cytometry indicate no translocation of apoptosis-inducing factor and endonuclease G in the nuclear fraction from mitochondria. Intracellular Ca(2+) levels are significantly raised by tributyltin chloride. These results clearly demonstrate caspase-dependent apoptotic pathway and support the role of oxidative stress, mitochondrial membrane depolarization, caspase-3 activation, and calcium during tributyltin-chloride (TBTC)-induced thymic apoptosis.

  20. Calcium and Egg Activation in Drosophila

    PubMed Central

    Sartain, Caroline V.; Wolfner, Mariana F.

    2012-01-01

    Summary In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects’ eggs activate as they transit through the female’s reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system. PMID:23218670

  1. Adrenomedullin increases the short-circuit current in the rat prostate: Receptors, chloride channels, the effects of cAMP and calcium ions and implications on fluid secretion.

    PubMed

    Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F

    2014-05-01

    In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.

  2. Synergy of cAMP and calcium signaling pathways in CFTR regulation

    PubMed Central

    Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P.; Bear, Christine E.; Forman-Kay, Julie D.

    2017-01-01

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport. PMID:28242698

  3. Urothelium muscarinic activation phosphorylates CBSSer227 via cGMP/PKG pathway causing human bladder relaxation through H2S production

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-01-01

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser227 following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878

  4. Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence.

    PubMed

    Masuyer, Geoffrey; Yates, Christopher J; Sturrock, Edward D; Acharya, K Ravi

    2014-10-01

    Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.

  5. Noradrenaline activates the NO/cGMP/ATP-sensitive K(+) channels pathway to induce peripheral antinociception in rats.

    PubMed

    Romero, Thiago R L; Guzzo, Luciana S; Perez, Andrea C; Klein, André; Duarte, Igor D G

    2012-03-31

    Despite the classical peripheral pronociceptive effect of noradrenaline (NA), recently studies showed the involvement of NA in antinociceptive effect under immune system interaction. In addition, the participation of the NO/cGMP/KATP pathway in the peripheral antinociception has been established by our group as the molecular mechanism of another adrenoceptor agonist xylazine. Thus the aim of this study was to obtain pharmacological evidences for the involvement of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect induced by exogenous noradrenaline. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) (2μg/paw). All drugs were locally administered into the right hind paw of male Wistar rats. NA (5, 20 and 80ng/paw) elicited a local inhibition of hyperalgesia. The non-selective NO synthase inhibitor l-NOarg (12, 18 and 24μg/paw) antagonized the antinociception effect induced by the highest dose of NA. The soluble guanylyl cyclase inhibitor ODQ (25, 50 and 100μg/paw) antagonized the NA-induced effect; and cGMP-phosphodiesterase inhibitor zaprinast (50μg/paw) potentiated the antinociceptive effect of NA low dose (5ng/paw). In addition, the local effect of NA was antagonized by a selective blocker of an ATP-sensitive K(+) channel, glibenclamide (20, 40 and 80μg/paw). On the other hand, the specifically voltage-dependent K(+) channel blocker, tetraethylammonium (30μg/paw), Ca(2+)-activated K(+) channel blockers of small and large conductance types dequalinium (50μg/paw) and paxilline (20μg/paw), respectively, were not able to block local antinociceptive effect of NA. The results provide evidences that NA probably induces peripheral antinociceptive effects by activation of the NO/cGMP/KATP pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. REVEALING THE ACTIVATION PATHWAY FOR TMEM16A CHLORIDE CHANNELS FROM MACROSCOPIC CURRENTS AND KINETIC MODELS

    PubMed Central

    Contreras-Vite, Juan A.; Cruz-Rangel, Silvia; De Jesús-Pérez, José J.; Aréchiga Figueroa, Iván A.; Rodríguez-Menchaca, Aldo A.; Pérez-Cornejo, Patricia; Hartzell, H. Criss; Arreola, Jorge

    2017-01-01

    TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth, and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca2+]i), membrane depolarization, extracellular Cl− or permeant anions, and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. a) TMEM16A is activated by voltage in the absence of intracellular Ca2+. b) The Cl− conductance is decreased after reducing extracellular Cl− concentration ([Cl−]o). c) ICl is regulated by physiological concentrations of [Cl−]o. d) In cells dialyzed with 0.2 µM [Ca2+]i, Cl− has a bimodal effect: at [Cl−]o < 30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM [Cl−]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca2+ and Cl− to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca2+ ions coupled to a Vm-dependent binding of an external Cl− ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl− does not alter the apparent Ca2+ affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl− acts by stabilizing the open configuration induced by Ca2+ and by contributing to the Vm dependence of activation. PMID:27138167

  7. Modulation of cGMP in Heart Failure

    PubMed Central

    Boerrigter, Guido; Lapp, Harald; Burnett, John C.

    2009-01-01

    Heart failure (HF) is a common disease that continues to be associated with high morbidity and mortality warranting novel therapeutic strategies. Cyclic guanosine monophosphate (cGMP) is the second messenger of several important signaling pathways based on distinct guanylate cyclases (GCs) in the cardiovascular system. Both the nitric oxide/soluble GC (NO/sGC) as well as the natriuretic peptide/GC-A (NP/GC-A) systems are disordered in HF, providing a rationale for their therapeutic augmentation. Soluble GC activation with conventional nitrovasodilators has been used for more than a century but is associated with cGMP-independent actions and the development of tolerance, actions which novel NO-independent sGC activators now in clinical development lack. Activation of GC-A by administration of naturally occurring or designer natriuretic peptides is an emerging field, as is the inhibition of enzymes that degrade endogenous NPs. Finally, inhibition of cGMP-degrading phosphodiesterases, particularly phosphodiesterase 5 provides an additional strategy to augment cGMP-signaling. PMID:19089342

  8. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    PubMed Central

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  9. Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: Role of protein kinase G nitration

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Kumar, Sanjiv; Datar, Sanjeev; Oishi, Peter; Kalka, Gokhan; Schreiber, Christian; Fratz, Sohrab; Fineman, Jeffrey R.; Black, Stephen M.

    2012-01-01

    Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO−) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO− donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24h (with exogenous activation of cGMP) revealed increased ONOO− levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO− and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity. PMID:21351102

  10. Inhibition of Cyclic GMP Export by Multidrug Resistance Protein 4: A New Strategy to Treat Erectile Dysfunction?

    PubMed

    Boydens, Charlotte; Pauwels, Bart; Vanden Daele, Laura; Van de Voorde, Johan

    2017-04-01

    Intracellular cyclic guanosine monophosphate (cGMP) concentrations are regulated by degradation enzymes (phosphodiesterases) and by active transport across the plasma membrane by multidrug resistance proteins (MRPs) 4 and 5. To evaluate the functional effect of MRP-4 inhibition and the role of MRP-4-mediated cGMP export in mouse corpora cavernosa. Isometric tension of mouse corpora cavernosa was measured after cumulative addition of MK-571, an inhibitor of MRP-4, or sildenafil, a phosphodiesterase type 5 inhibitor. In addition, the effect of MRP-4 inhibition on cGMP-independent and cGMP-dependent relaxations was studied. In vivo intracavernosal pressure and mean arterial pressure measurements were performed after intracavernosal injection of MK-571. The effect of MRP-4 inhibition on cGMP content was determined using an enzyme immunoassay kit. Measurement of the effect of MK-571 on cGMP content, relaxant responses of mouse corpora cavernosa to cGMP-independent and cGMP-dependent vasodilating substances, and determination of the ratio of intracavernosal pressure to mean arterial pressure after intracavernosal injection of MK-571. MK-571 and sildenafil relaxed the corpora cavernosa concentration dependently, with sildenafil being the more potent relaxing compound. Furthermore, MK-571 enhanced relaxing responses to cGMP-dependent substances, such as sodium nitroprusside, sildenafil, acetylcholine, and electrical field stimulation, with the latter even under in vitro diabetic conditions. In contrast, cGMP-independent relaxations were not altered by MRP-4 inhibition. Intracavernosal administration of MK-571 significantly increased intracavernosal pressure, with minimal effect on mean arterial pressure. The cGMP analysis showed that MRP-4 inhibition was accompanied by increased cGMP levels. MRP-4, at least when targeted locally in the penis or when combined with a phosphodiesterase type 5 inhibitor, might be a valuable alternative strategy for the treatment of

  11. An ant-plant mutualism through the lens of cGMP-dependent kinase genes.

    PubMed

    Malé, Pierre-Jean G; Turner, Kyle M; Doha, Manjima; Anreiter, Ina; Allen, Aaron M; Sokolowski, Marla B; Frederickson, Megan E

    2017-09-13

    In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism. © 2017 The Author(s).

  12. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase

    PubMed Central

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria

    2014-01-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers. PMID:25080489

  13. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase.

    PubMed

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria; De Luca, Annamaria

    2014-10-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers. Copyright © 2014 the American Physiological Society.

  14. Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-08-11

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.

  15. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    PubMed Central

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  16. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    PubMed

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  17. Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*

    PubMed Central

    Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren

    2014-01-01

    Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773

  18. A new adjuvant delivery system 'cyclic di-GMP/YSK05 liposome' for cancer immunotherapy.

    PubMed

    Miyabe, Hiroko; Hyodo, Mamoru; Nakamura, Takashi; Sato, Yusuke; Hayakawa, Yoshihiro; Harashima, Hideyoshi

    2014-06-28

    Cyclic dinucleotides are of importance in the field of microbiology and immunology. They function as second messengers and are thought to participate in the signal transduction of cytosolic DNA immune responses. One such dinucleotide, cyclic di-GMP (c-di-GMP), stimulates the immune system. It is thought that c-di-GMP is recognized by ATP dependent RNA helicase (DDX41) in the cytosol, forms a complex with the Stimulator of interferon genes protein (STING), triggers a signal via the tank binding kinase 1-interferon regulatory factor 3 (TBK1-IRF3) pathway and induces the production of type I interferons. Therefore c-di-GMP can be thought of as a new class of adjuvant. However, because c-di-GMP contains two phosphate groups, this prevents its use as an adjuvant because it cannot pass through the cell membrane, even though the target molecule of c-di-GMP is located in the cytoplasm. Our group has been developing a series of liposomal drug delivery systems and recently investigated YSK05 which is a synthetic, pH sensitive lipid that has a high fusogenicity. We utilized this lipid as a carrier to transport c-di-GMP into the cytosol to then use c-di-GMP as an adjuvant. Based on screening experiments, YSK05/POPE/cholesterol=40/25/35 was found to induce IFN-β in Raw264.7 cells. The induction of IFN-β from c-di-GMP liposomes was inhibited by adding BX795, a TBK1 inhibitor, indicating that the production of IFN-β caused the activation of the STING-TBK1 pathway. C-di-GMP liposomes also showed significantly higher levels of expression of CD80, CD86 and MHC class I. The c-di-GMP/YSK05 liposome facilitated antigen specific cytotoxic T cell activity and the inhibition of tumor growth in a mouse model. These findings indicate that c-di-GMP/YSK05 liposomes could be used, not only to transfer c-di-GMP to the cytosol and induce an innate immune system but also as a platform for investigating the mechanism of immune sensing with cyclic dinucleotides in vitro and in vivo. Copyright

  19. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    PubMed Central

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  20. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain.

    PubMed

    Kosakai, Kumiko; Tsujiuchi, Yuuki; Yoshino, Masami

    2015-07-01

    Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca(2+) channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca(2+) channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca(2+) channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca(2+) channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca(2+) influx through these Ca(2+) channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide

    PubMed Central

    Klaiber, Michael; Dankworth, Beatrice; Kruse, Martin; Hartmann, Michael; Nikolaev, Viacheslav O.; Yang, Ruey-Bing; Völker, Katharina; Gaßner, Birgit; Oberwinkler, Heike; Feil, Robert; Freichel, Marc; Groschner, Klaus; Skryabin, Boris V.; Frantz, Stefan; Birnbaumer, Lutz; Pongs, Olaf; Kuhn, Michaela

    2011-01-01

    Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca2+]i increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca2+ levels. This pathway involves the activation of Ca2+‐permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca2+ channels and ultimately increases myocyte Ca2+i levels. These observations reveal a dual role of the ANP/GC-A–signaling pathway in the regulation of cardiac myocyte Ca2+i homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca2+i-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca2+]i might increase the propensity to cardiac hypertrophy and arrhythmias. PMID:22027011

  2. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice

    PubMed Central

    MacDonald, Kelvin D.; McKenzie, Karen R.; Henderson, Mark J.; Hawkins, Charles E.; Vij, Neeraj; Zeitlin, Pamela L.

    2008-01-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl− transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 μM lubiprostone was −5.8 ± 2.1 mV (CF, n = 12), −8.1 ± 2.6 mV (C57Bl/6 wild-type, n = 12), and −5.3 ± 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 μM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia. PMID:18805957

  3. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice.

    PubMed

    MacDonald, Kelvin D; McKenzie, Karen R; Henderson, Mark J; Hawkins, Charles E; Vij, Neeraj; Zeitlin, Pamela L

    2008-11-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.

  4. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.

    PubMed

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-09-15

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in

  5. Dendritic small conductance calcium-activated potassium channels activated by action potentials suppress EPSPs and gate spike-timing dependent synaptic plasticity.

    PubMed

    Jones, Scott L; To, Minh-Son; Stuart, Greg J

    2017-10-23

    Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.

  6. Consumer acceptability of cucumber pickles produced by fermentation in calcium chloride brine for reduced environmental impact

    USDA-ARS?s Scientific Manuscript database

    Fermentation of cucumbers in calcium chloride brine has been proposed as an alternative process to reduce the environmental impact of traditional, high salt fermentations. The objective of this research was to determine whether consumer acceptability of pickle products would be impacted by fermentat...

  7. A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species.

    PubMed

    Claisse, Gaëlle; Feller, Georges; Bonneau, Magalie; Da Lage, Jean-Luc

    2016-08-01

    In animals, most α-amylases are chloride-dependent enzymes. A chloride ion is required for allosteric activation and is coordinated by one asparagine and two arginine side chains. Whereas the asparagine and one arginine are strictly conserved, the main chloride binding arginine is replaced by a glutamine in some rare instances, resulting in the loss of chloride binding and activation. Amyrel is a distant paralogue of α-amylase in Diptera, which was not characterized biochemically to date. Amyrel shows both substitutions depending on the species. In Drosophila melanogaster, an arginine is present in the sequence but in Drosophila virilis, a glutamine occurs at this position. We have investigated basic enzymological parameters and the dependence to chloride of Amyrel of both species, produced in yeast, and in mutants substituting arginine to glutamine or glutamine to arginine. We found that the amylolytic activity of Amyrel is about thirty times weaker than the classical Drosophila α-amylase, and that the substitution of the arginine by a glutamine in D. melanogaster suppressed the chloride-dependence but was detrimental to activity. In contrast, changing the glutamine into an arginine rendered D. virilis Amyrel chloride-dependent, and interestingly, significantly increased its catalytic efficiency. These results show that the chloride ion is not mandatory for Amyrel but stimulates the reaction rate. The possible phylogenetic origin of the arginine/glutamine substitution is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Di-Adenosine Tetraphosphate (Ap4A) Metabolism Impacts Biofilm Formation by Pseudomonas fluorescens via Modulation of c-di-GMP-Dependent Pathways▿

    PubMed Central

    Monds, Russell D.; Newell, Peter D.; Wagner, Jeffrey C.; Schwartzman, Julia A.; Lu, Wenyun; Rabinowitz, Joshua D.; O'Toole, George A.

    2010-01-01

    Dinucleoside tetraphosphates are common constituents of the cell and are thought to play diverse biological roles in organisms ranging from bacteria to humans. In this study we characterized two independent mechanisms by which di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens. Null mutations in apaH, the gene encoding nucleoside tetraphosphate hydrolase, resulted in a marked increase in the cellular level of Ap4A. Concomitant with this increase, Pho regulon activation in low-inorganic-phosphate (Pi) conditions was severely compromised. As a consequence, an apaH mutant was not sensitive to Pho regulon-dependent inhibition of biofilm formation. In addition, we characterized a Pho-independent role for Ap4A metabolism in regulation of biofilm formation. In Pi-replete conditions Ap4A metabolism was found to impact expression and localization of LapA, the major adhesin regulating surface commitment by P. fluorescens. Increases in the level of c-di-GMP in the apaH mutant provided a likely explanation for increased localization of LapA to the outer membrane in response to elevated Ap4A concentrations. Increased levels of c-di-GMP in the apaH mutant were associated with increases in the level of GTP, suggesting that elevated levels of Ap4A may promote de novo purine biosynthesis. In support of this suggestion, supplementation with adenine could partially suppress the biofilm and c-di-GMP phenotypes of the apaH mutant. We hypothesize that changes in the substrate (GTP) concentration mediated by altered flux through nucleotide biosynthetic pathways may be a significant point of regulation for c-di-GMP biosynthesis and regulation of biofilm formation. PMID:20154123

  9. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways.

    PubMed

    Monds, Russell D; Newell, Peter D; Wagner, Jeffrey C; Schwartzman, Julia A; Lu, Wenyun; Rabinowitz, Joshua D; O'Toole, George A

    2010-06-01

    Dinucleoside tetraphosphates are common constituents of the cell and are thought to play diverse biological roles in organisms ranging from bacteria to humans. In this study we characterized two independent mechanisms by which di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens. Null mutations in apaH, the gene encoding nucleoside tetraphosphate hydrolase, resulted in a marked increase in the cellular level of Ap4A. Concomitant with this increase, Pho regulon activation in low-inorganic-phosphate (P(i)) conditions was severely compromised. As a consequence, an apaH mutant was not sensitive to Pho regulon-dependent inhibition of biofilm formation. In addition, we characterized a Pho-independent role for Ap4A metabolism in regulation of biofilm formation. In P(i)-replete conditions Ap4A metabolism was found to impact expression and localization of LapA, the major adhesin regulating surface commitment by P. fluorescens. Increases in the level of c-di-GMP in the apaH mutant provided a likely explanation for increased localization of LapA to the outer membrane in response to elevated Ap4A concentrations. Increased levels of c-di-GMP in the apaH mutant were associated with increases in the level of GTP, suggesting that elevated levels of Ap4A may promote de novo purine biosynthesis. In support of this suggestion, supplementation with adenine could partially suppress the biofilm and c-di-GMP phenotypes of the apaH mutant. We hypothesize that changes in the substrate (GTP) concentration mediated by altered flux through nucleotide biosynthetic pathways may be a significant point of regulation for c-di-GMP biosynthesis and regulation of biofilm formation.

  10. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  11. Regulation of transepithelial ion transport by intracellular calcium ions.

    PubMed

    Cuthbert, A W

    1985-01-01

    A photodynamic effect of erythrosine B on the basolateral surface of rat colon epithelium under short circuit conditions is described. The resulting irreversible increase in short circuit current was the result of electrogenic chloride secretion. The effect was dependent upon oxygen and calcium ions, and is probably due to the generation of singlet oxygen which then permeabilises the membranes to calcium. Half maximal activation of secretion in permeabilised preparations occurred at an external calcium concentration of 1 microM. In tight sodium transporting epithelia increased Cai reduces SCC, possibly by a direct effect on apical sodium permeability. In toad urinary bladder SCC fell in response to conditions outlined above for rat colon.

  12. Coordinated Cyclic-Di-GMP Repression of Salmonella Motility through YcgR and Cellulose

    PubMed Central

    Zorraquino, Violeta; García, Begoña; Latasa, Cristina; Echeverz, Maite; Toledo-Arana, Alejandro; Valle, Jaione

    2013-01-01

    Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition. PMID:23161026

  13. Repair of Nerve Cell Membrance Damage by Calcium-Dependent, Membrane-Binding Proteins

    DTIC Science & Technology

    2013-09-01

    In acute spinal cord injury the plasma membranes of spinal neurons are torn allowing high concentrations of calcium to enter the cytoplasm, activating...repairing the cell membrane as soon as the increase in intracellular calcium is sensed by calcium -binding proteins. If these repair mechanisms can be...testing the hypothesis that the action of copine, a human calcium -dependent-membrane-binding protein, in model systems can promote a stable repair of

  14. LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis

    PubMed Central

    Li, Weihui; He, Zheng-Guo

    2012-01-01

    In a bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP)/transcription factor binding screen, we identified Mycobacterium smegmatis Ms6479 as the first c-di-GMP-responsive transcriptional factor in mycobacteria. Ms6479 could specifically bind with c-di-GMP and recognize the promoters of 37 lipid transport and metabolism genes. c-di-GMP could enhance the ability of Ms6479 to bind to its target DNA. Furthermore, our results establish Ms6479 as a global activator that positively regulates the expression of diverse target genes. Overexpression of Ms6479 in M. smegmatis significantly reduced the permeability of the cell wall to crystal violet and increased mycobacterial resistance to anti-tuberculosis antibiotics. Interestingly, Ms6479 lacks the previously reported c-di-GMP binding motifs. Our findings introduce Ms6479 (here designated LtmA for lipid transport and metabolism activator) as a new c-di-GMP-responsive regulator. PMID:23047950

  15. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice.

    PubMed

    Kim, Taeuk; Folcher, Marc; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-05-01

    Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell

  16. Calcium Channels, Rho-Kinase, Protein Kinase-C, and Phospholipase-C Pathways Mediate Mercury Chloride-Induced Myometrial Contractions in Rats.

    PubMed

    Koli, Swati; Prakash, Atul; Choudhury, Soumen; Mandil, Rajesh; Garg, Satish K

    2018-05-21

    Adverse effects of mercury on female reproduction are reported; however, its effect on myogenic activity of uterus and mechanism thereof is obscure. Present study was undertaken to unravel the mechanistic pathways of mercuric chloride (HgCl 2 )-induced myometrial contraction in rats. Isometric tension in myometrial strips of rats following in vitro exposure to HgCl 2 was recorded using data acquisition system-based physiograph. HgCl 2 produced concentration-dependent (10 nM-100 μM) uterotonic effect which was significantly (p < 0.05) reduced in Ca 2+ -free solution and inhibited in the presence of nifedipine (1 μM), a L-type Ca 2+ channel blocker, thus suggesting the importance of extracellular Ca 2+ and its entry through L-type calcium channels in HgCl 2 -induced myometrial contractions in rats. Cumulative concentration-response curve of HgCl 2 was significantly (p < 0.05) shifted towards right in the presence of Y-27632 (10 μM), a Rho-kinase inhibitor, suggesting the involvement of Ca 2+ -sensitization pathway in mediating HgCl 2 -induced myometrial contraction. HgCl 2 -induced myometrial contraction was also significantly (p < 0.05) inhibited in the presence of methoctramine or para-fluoro-hexahydro-siladifenidol, a selective M 2 and M 3 receptor antagonists, respectively, which evidently suggest that mercury also interacts with M 2 and M 3 muscarinic receptors to produce myometrial contractions. U-73122 and GF-109203X, the respective inhibitors of PLC and PKC-dependent pathways, downstream to the receptor activation, also significantly (p < 0.05) attenuated the uterotonic effect of HgCl 2 on rat uterus. Taken together, present study evidently reveals that HgCl 2 interacts with muscarinic receptors and activates calcium signaling cascades involving calcium channels, Rho-kinase, protein kinase-C, and phospholipase-C pathways to exert uterotonic effect in rats. Graphical Abstract Graphical abstract depicting the mechanism of mercury

  17. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken

    PubMed Central

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-01-01

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and

  18. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  19. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  20. Antimicrobial activity of calcium hydroxide and chlorhexidine on intratubular Candida albicans

    PubMed Central

    Jacques Rezende Delgado, Ronan; Helena Gasparoto, Thaís; Renata Sipert, Carla; Ramos Pinheiro, Claudia; Gomes de Moraes, Ivaldo; Brandão Garcia, Roberto; Antônio Hungaro Duarte, Marco; Monteiro Bramante, Clóvis; Aparecido Torres, Sérgio; Pompermaier Garlet, Gustavo; Paula Campanelli, Ana; Bernardineli, Norberti

    2013-01-01

    This study investigated the efficacy of calcium hydroxide and chlorhexidine gel for the elimination of intratubular Candida albicans (C. albicans). Human single-rooted teeth contaminated with C. albicans were treated with calcium hydroxide, 2% chlorhexidine gel, calcium hydroxide plus 2% chlorhexidine gel, or saline (0.9% sodium chloride) as a positive control. The samples obtained at depths of 0–100 and 100–200 µm from the root canal system were analyzed for C. albicans load by counting the number of colony forming units and for the percentage of viable C. albicans using fluorescence microscopy. First, the antimicrobial activity of calcium hydroxide and the 2% chlorhexidine gel was evaluated by counting the number of colony forming units. After 14 days of intracanal medication, there was a significant decrease in the number of C. albicans colony forming units at a depth of 0–100 µm with chlorhexidine treatment either with or without calcium hydroxide compared with the calcium hydroxide only treatment. However, there were no differences in the number of colony forming units at the 100–200 µm depth for any of the medications investigated. C. albicans viability was also evaluated by vital staining techniques and fluorescence microscopy analysis. Antifungal activity against C. albicans significantly increased at both depths in the chlorhexidine groups with and without calcium hydroxide compared with the groups treated with calcium hydroxide only. Treatments with only chlorhexidine or chlorhexidine in combination with calcium hydroxide were effective for elimination of C. albicans. PMID:23538639

  1. Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Cl− transport of mouse aortic smooth muscle cells

    PubMed Central

    Robert, Renaud; Norez, Caroline; Becq, Frédéric

    2005-01-01

    Chloride (Cl−) channels expressed in vascular smooth muscle cells (VSMC) are important to control membrane potential equilibrium, intracellular pH, cell volume maintenance, contraction, relaxation and proliferation. The present study was designed to compare the expression, regulation and function of CFTR Cl− channels in aortic VSMC from Cftr+/+ and Cftr−/− mice. Using an iodide efflux assay we demonstrated stimulation of CFTR by VIP, isoproterenol, cAMP agonists and other pharmacological activators in cultured VSMC from Cftr+/+. On the contrary, in cultured VSMC from Cftr−/− mice these agonists have no effect, showing that CFTR is the dominant Cl− channel involved in the response to cAMP mediators. Angiotensin II and the calcium ionophore A23187 stimulated Ca2+-dependent Cl− channels in VSMCs from both genotypes. CFTR was activated in myocytes maintained in medium containing either high potassium or 5-hydroxytryptamine (5-HT) and was inhibited by CFTRinh-172, glibenclamide and diphenylamine-2,2′-dicarboxylic acid (DPC). We also examined the mechanical properties of aortas. Arteries with or without endothelium from Cftr−/− mice became significantly more constricted (∼2-fold) than that of Cftr+/+ mice in response to vasoactive agents. Moreover, in precontracted arteries of Cftr+/+ mice, VIP and CFTR activators induced vasorelaxation that was altered in Cftr−/− mice. Our findings suggest a novel mechanism for regulation of the vascular tone by cAMP-dependent CFTR chloride channels in VSMC. To our knowledge this study is the first to report the phenotypic consequences of the loss of a Cl− channel on vascular reactivity. PMID:16081479

  2. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics.

    PubMed

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2':2,3'-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium.

  3. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    PubMed Central

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2′:2,3′-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium. PMID:27186137

  4. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway

    PubMed Central

    Sandoval, Alejandro; Duran, Paz; Gandini, María A.; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2018-01-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. PMID:28807144

  5. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology.

    PubMed

    Hofmann, Franz

    2018-06-22

    The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.

  6. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    ERIC Educational Resources Information Center

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  7. Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion

    PubMed Central

    Dérand, Renaud; Montoni, Alicia; Bulteau-Pignoux, Laurence; Janet, Thierry; Moreau, Bertrand; Muller, Jean-Marc; Becq, Frédéric

    2004-01-01

    In the human airway epithelium, VIP/PACAP receptors are distributed in nerve fibers and in epithelial cells but their role in transepithelial ion transport have not been reported. Here, we show that human bronchial epithelial Calu-3 cells expressed the VPAC1 receptor subtype which shares similar high affinity for VIP and PACAP-27. The stoichiometric binding parameters characterizing the 125I-VIP and 125I-PACAP-27 binding to these receptors were determined. We found that VIP (EC50≈7.6 nM) and PACAP-27 (EC50≈10 nM) stimulated glibenclamide-sensitive and DIDS-insensitive iodide efflux in Calu-3 cells. The protein kinase A (PKA) inhibitor, H-89 and the protein kinase C (PKC) inhibitor, chelerythrine chloride prevented activation by both peptides demonstrating that PKA and PKC are part of the signaling pathway. This profile corresponds to the pharmacological signature of CFTR. In the cystic fibrosis airway epithelial IB3-1 cell lacking functional CFTR but expressing VPAC1 receptors, neither VIP, PACAP-27 nor forskolin stimulated chloride transport. Ussing chamber experiments demonstrated stimulation of CFTR-dependent short-circuit currents by VIP or PACAP-27 applied to the basolateral but not to the apical side of Calu-3 cells monolayers. This study shows the stimulation in human bronchial epithelial cells of CFTR-dependent chloride secretion following activation by VIP and PACAP-27 of basolateral VPAC1 receptors. PMID:14744818

  8. Development of a transgenic Plasmodium berghei line (Pb pfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    PubMed

    Tewari, Rita; Patzewitz, Eva-Maria; Poulin, Benoit; Stewart, Lindsay; Baker, David A

    2014-01-01

    With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  9. Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa.

    PubMed

    Schmidt, Annika; Hammerbacher, Anna Silke; Bastian, Mike; Nieken, Karen Jule; Klockgether, Jens; Merighi, Massimo; Lapouge, Karine; Poschgan, Claudia; Kölle, Julia; Acharya, K Ravi; Ulrich, Martina; Tümmler, Burkhard; Unden, Gottfried; Kaever, Volkhard; Lory, Stephen; Haas, Dieter; Schwarz, Sandra; Döring, Gerd

    2016-10-01

    Pseudomonas aeruginosa produces increased levels of alginate in response to oxygen-deprived conditions. The regulatory pathway(s) that links oxygen limitation to increased synthesis of alginate has remained elusive. In the present study, using immunofluorescence microscopy, we show that anaerobiosis-induced alginate production by planktonic PAO1 requires the diguanylate cyclase (DGC) SadC, previously identified as a regulator of surface-associated lifestyles. Furthermore, we found that the gene products of PA4330 and PA4331, located in a predicted operon with sadC, have a major impact on alginate production: deletion of PA4330 (odaA, for oxygen-dependent alginate synthesis activator) caused an alginate production defect under anaerobic conditions, whereas a PA4331 (odaI, for oxygen-dependent alginate synthesis inhibitor) deletion mutant produced alginate also in the presence of oxygen, which would normally inhibit alginate synthesis. Based on their sequence, OdaA and OdaI have predicted hydratase and dioxygenase reductase activities, respectively. Enzymatic assays using purified protein showed that unlike OdaA, which did not significantly affect DGC activity of SadC, OdaI inhibited c-di-GMP production by SadC. Our data indicate that SadC, OdaA and OdaI are components of a novel response pathway of P. aeruginosa that regulates alginate synthesis in an oxygen-dependent manner. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  11. Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation.

    PubMed

    Enomoto, Gen; Ni-Ni-Win; Narikawa, Rei; Ikeuchi, Masahiko

    2015-06-30

    Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that have diverse spectral properties and domain compositions. Although large numbers of CBCR genes exist in cyanobacterial genomes, no studies have assessed whether multiple CBCRs work together. We recently showed that the diguanylate cyclase (DGC) activity of the CBCR SesA from Thermosynechococcus elongatus is activated by blue-light irradiation and that, when irradiated, SesA, via its product cyclic dimeric GMP (c-di-GMP), induces aggregation of Thermosynechococcus vulcanus cells at a temperature that is suboptimum for single-cell viability. For this report, we first characterize the photobiochemical properties of two additional CBCRs, SesB and SesC. Blue/teal light-responsive SesB has only c-di-GMP phosphodiesterase (PDE) activity, which is up-regulated by teal light and GTP. Blue/green light-responsive SesC has DGC and PDE activities. Its DGC activity is enhanced by blue light, whereas its PDE activity is enhanced by green light. A ΔsesB mutant cannot suppress cell aggregation under teal-green light. A ΔsesC mutant shows a less sensitive cell-aggregation response to ambient light. ΔsesA/ΔsesB/ΔsesC shows partial cell aggregation, which is accompanied by the loss of color dependency, implying that a nonphotoresponsive DGC(s) producing c-di-GMP can also induce the aggregation. The results suggest that SesB enhances the light color dependency of cell aggregation by degrading c-di-GMP, is particularly effective under teal light, and, therefore, seems to counteract the induction of cell aggregation by SesA. In addition, SesC seems to improve signaling specificity as an auxiliary backup to SesA/SesB activities. The coordinated action of these three CBCRs highlights why so many different CBCRs exist.

  12. cGMP-Phosphodiesterase Inhibition Enhances Photic Responses and Synchronization of the Biological Circadian Clock in Rodents

    PubMed Central

    Plano, Santiago A.; Agostino, Patricia V.; de la Iglesia, Horacio O.; Golombek, Diego A.

    2012-01-01

    The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC), cGMP and its related protein kinase (PKG). Pharmacological manipulation of cGMP by phosphodiesterase (PDE) inhibition (e.g., sildenafil) increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux) light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil) also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions. PMID:22590651

  13. Nitric oxide signaling depends on biotin in Jurkat human lymphoma cells.

    PubMed

    Rodriguez-Melendez, Rocio; Zempleni, Janos

    2009-03-01

    Biotin affects gene expression through a diverse array of cell signaling pathways. Previous studies provided evidence that cGMP-dependent signaling also depends on biotin, but the mechanistic sequence of cGMP regulation by biotin is unknown. Here we tested the hypothesis that the effects of biotin in cGMP-dependent cell signaling are mediated by nitric oxide (NO). Human lymphoid (Jurkat) cells were cultured in media containing deficient (0.025 nmol/L), physiological (0.25 nmol/L), and pharmacological (10 nmol/L) concentrations of biotin for 5 wk. Both levels of intracellular biotin and NO exhibited a dose-dependent relationship in regard to biotin concentrations in culture media. Effects of biotin on NO levels were disrupted by the NO synthase (NOS) inhibitor N-monomethyl-arginine. Biotin-dependent production of NO was linked with biotin-dependent expression of endothelial and neuronal NOS, but not inducible NOS. Previous studies revealed that NO is an activator of guanylate cyclase. Consistent with these previous observations, biotin-dependent generation of NO increased the abundance of cGMP in Jurkat cells. Finally, the biotin-dependent generation of cGMP increased protein kinase G activity. Collectively, the results of this study are consistent with the hypothesis that biotin-dependent cGMP signaling in human lymphoid cells is mediated by NO.

  14. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway.

    PubMed

    Sandoval, Alejandro; Duran, Paz; Gandini, María A; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2017-09-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca 2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated Ca V 1.3L-type Ca 2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant Ca V 1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the Ca V α 1 ion-conducting subunit of the Ca V 1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca 2+ macroscopic currents and impair insulin release stimulated with high K + . In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for Ca V 1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the Ca V α 1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate Ca V 1.3 channels and contribute to regulate insulin secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Beef customer satisfaction: factors affecting consumer evaluations of calcium chloride-injected top sirloin steaks when given instructions for preparation.

    PubMed

    Behrends, J M; Goodson, K J; Koohmaraie, M; Shackelford, S D; Wheeler, T L; Morgan, W W; Reagan, J O; Gwartney, B L; Wise, J W; Savell, J W

    2005-12-01

    The objectives of this study were to evaluate whether instructions can help consumers properly prepare top sirloin steaks and to evaluate the use of calcium chloride injection to decrease the sensitivity of top sirloin steaks to degree of doneness, thereby improving customer satisfaction ratings. An in-home study evaluated top sirloin steaks (gluteus medius) as influenced by calcium chloride injection (injected vs. noninjected), consumer segment (beef loyalists = heavy consumers of beef, budget rotators = cost-driven and split meat consumption between beef and chicken, and variety rotators = higher incomes and education and split meat consumption among beef, poultry, and other foods), degree of doneness, cooking method, and instructions (given vs. not given). Consumers evaluated overall like, tenderness, juiciness, flavor like, and flavor amount using 10-point scales. Beef loyalists consistently rated steaks higher for overall like, juiciness, and flavor when instructions were provided (P < 0.05) and rated top sirloin steaks higher for overall like and tenderness when given instructions for grilling (P < 0.05). Budget rotators and variety rotators rated steaks differently among cooking methods (P < 0.05). Correlation and stepwise regression analyses indicated that flavor like was the most highly correlated with overall like, followed by tenderness, flavor amount, and juiciness. Calcium chloride injection had no effect on consumers' likes or dislikes or on tenderness (P < 0.05). For top sirloin steaks, it was likely that preparation played a major role in consumer satisfaction, and beef loyalists benefited the most from providing cooking instructions.

  16. Demonstration of the existence of receptor-dependent calcium channels in the platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avdonin, P.V.; Bugrii, E.M.; Cheglakov, I.B.

    1987-01-01

    Recently, with the new methodology of measuring calcium ion concentration in the cytoplasm with the aid of the fluorescent indicator, it has been shown that calcium is a second messenger, mediating the action of many hormones, neuromediators, and other extracellular factors. Another argument in support of the existence of receptor-dependent calcium channels is provided by data on the activation by agonists of the uptake of /sup 45/Ca by the cells. In all the studies cited, the conditions were such that the passage of Ca/sup 2 +/ through the potential-dependent channels was excluded. In this paper, evidence is presented for themore » existence of receptor-dependent calcium channels in the plasma membrane using human platelets as the objects. Two approaches were used. First, the authors determined the binding of /sup 45/Ca by the platelets. In this case, to determine whether /sup 45/Ca passes into the cytoplasm or is adsorbed on the membrane, the authors compared its uptake by simply washed platelets and by platelets in whose cytoplasm buffer capacity for calcium was artificially created with quin 2. The second approach was based on the data of Hallam and Rink, who showed that agonists that increase the calcium level in the platelets induce an intake of Mn/sup 2 +/ ions into the cell in a calcium-free medium.« less

  17. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    PubMed

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  18. Bis-(3'-5')-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus.

    PubMed

    Trimble, Michael J; McCarter, Linda L

    2011-11-01

    Movement over and colonization of surfaces are important survival strategies for bacteria, and many find it advantageous to perform these activities as a group, using quorum sensing to sample population size and synchronize behavior. It is puzzling however, that swarming-proficient and virulent strains of Vibrio parahaemolyticus are silenced for the vibrio archetypal pathway of quorum sensing. Here we describe the S-signal, a pheromone that can be communicated between cells in coculture to regulate surface colonization. This signal was harvested in cell-free supernatants and demonstrated to stimulate swarming gene expression at low cell density. The S-signal was generated by the pyridoxal phosphate-dependent aminotransferase ScrA; signal reception required the periplasmic binding protein ScrB and the membrane-bound GGDEF-EAL domain-containing protein ScrC. ScrC is a bifunctional enzyme that has the ability to form and degrade the second messenger bis-(3'-5') cyclic dimeric GMP (c-di-GMP). ScrA in neighboring cells was able to alter the activity of ScrC in a ScrB-dependent manner, transforming ScrC's repressing ability to inducing activity with respect to swarming. Conversely, cell-cell signaling repressed capsule gene expression. In summary, we report that quorum sensing can stimulate swarming in V. parahaemolyticus; it does so via an alternative pathway capable of generating an autoinducing signal that influences c-di-GMP, thereby expanding the lexicon and language of cell-cell communication.

  19. Role of calcium activated kinases and phosphatases in heat shock factor-1 activation.

    PubMed

    Soncin, F; Asea, A; Zhang, X; Stevenson, M A; Calderwood, S K

    2000-12-01

    HSF-1 is regulated at multiple molecular levels through intra- and intermolecular protein-protein interactions as well as by post-translational modification through phosphorylation. We have found that elevating intracellular calcium ion levels by exposure to the ionophore A23187 or thapsigargin inhibits the conversion of HSF-1 from a latent cytoplasmic form to its nuclear/DNA binding form. To examine a role for calcium/calmodulin regulated enzymes in this process, we examined the ability of specific inhibitors to abrogate the effects of calcium elevation. While the inhibitor of calmodulin dependent kinase II, KCN62 enhanced activation of HSF-1 during heat shock, it failed to block the inhibitory effects of calcium increase. By contrast, the immunosuppresant drugs cyclosporin A and FK506 abolished the effects of calcium elevation on HSF-1 activation. As the biological effects of the drugs are effected through inhibition of the calcium/calmodulin regulated phosphatase calcineurin, this suggests a role for calcineurin in antagonizing HSF-1 activity. The experiments suggest the existence of phosphorylated residue(s) in HSF-1 important in one or more of the processes that lead to activation (trimerization, nuclear localization, DNA binding) and which becomes dephosphorylated due to the activation of a calcium/calmodulin/calcineurin complex.

  20. Cyclic Di-GMP modulates the disease progression of Erwinia amylovora.

    PubMed

    Edmunds, Adam C; Castiblanco, Luisa F; Sundin, George W; Waters, Christopher M

    2013-05-01

    The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis.

  1. Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora

    PubMed Central

    Edmunds, Adam C.; Castiblanco, Luisa F.; Sundin, George W.

    2013-01-01

    The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis. PMID:23475975

  2. Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current.

    PubMed

    Nafzger, Sabine; Rougier, Jean-Sebastien

    2017-01-01

    The L-type voltage-gated calcium channel Ca v 1.2 mediates the calcium influx into cells upon membrane depolarization. The list of cardiopathies associated to Ca v 1.2 dysfunctions highlights the importance of this channel in cardiac physiology. Calcium/calmodulin-dependent serine protein kinase (CASK), expressed in cardiac cells, has been identified as a regulator of Ca v 2.2 channels in neurons, but no experiments have been performed to investigate its role in Ca v 1.2 regulation. Full length or the distal C-terminal truncated of the pore-forming Ca v 1.2 channel (Ca v 1.2α1c), both present in cardiac cells, were expressed in TsA-201 cells. In addition, a shRNA silencer, or scramble as negative control, of CASK was co-transfected in order to silence CASK endogenously expressed. Three days post-transfection, the barium current was increased only for the truncated form without alteration of the steady state activation and inactivation biophysical properties. The calcium current, however, was increased after CASK silencing with both types of Ca v 1.2α1c subunits suggesting that, in absence of calcium, the distal C-terminal counteracts the CASK effect. Biochemistry experiments did not reveals neither an alteration of Ca v 1.2 channel protein expression after CASK silencing nor an interaction between Ca v 1.2α1c subunits and CASK. Nevertheless, after CASK silencing, single calcium channel recordings have shown an increase of the voltage-gated calcium channel Ca v 1.2 open probability explaining the increase of the whole-cell current. This study suggests CASK as a novel regulator of Ca v 1.2 via a modulation of the voltage-gated calcium channel Ca v 1.2 open probability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains.

    PubMed

    He, Daniel; Lorenz, Robin; Kim, Choel; Herberg, Friedrich W; Lim, Chinten James

    2017-12-15

    The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.

  4. Activation of oral trigeminal neurons by fatty acids is dependent upon intracellular calcium.

    PubMed

    Yu, Tian; Shah, Bhavik P; Hansen, Dane R; Park-York, MieJung; Gilbertson, Timothy A

    2012-08-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons.

  5. Activation of Oral Trigeminal Neurons by Fatty Acids is Dependent upon Intracellular Calcium

    PubMed Central

    Yu, Tian; Shah, Bhavik P.; Hansen, Dane R.; Park-York, MieJung; Gilbertson, Timothy A.

    2012-01-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential (TRP) channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons. PMID:22644615

  6. [Effects of nitric oxide on peritoneal lymphatic stomata and lymph drainage via NO-cGMP-Ca2+ pathway].

    PubMed

    Li, Yan-Yuan; Li, Ji-Cheng

    2005-02-25

    To study the cell signal transduction mechanism of nitric oxide (NO) on the peritoneal lymphatic stomata and lymph drainage in the rat, cGMP content were measured by a commercially available radioimmunoassay kit, and the [Ca(2+)](i) were observed by a confocal laser scanning microscope in the cultured peritoneal mesothelial cell. Animal experiment was practiced to study the effect of NO-cGMP-Ca(2+) pathway on the lymphatic stomata and lymph absorption. The results showed that: (1) Sper/NO increased cGMP of the rat peritoneal mesothelial cell (RPMC) in a dose-dependent manner (P<0.01) compared to the control group. This effect was blocked by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) (P<0.05), a specific inhibitor of soluble guanylyl cyclase (sGC). The level of [Ca(2+)](i) in single RPMC decreased by adding Sper/NO (P<0.05). Pretreatment with ODQ for 10 min blocked the Sper/NO-induced decrease in [Ca(2+)](i). L-typed calcium channel blocker nifedipine induced an immediate and marked decrease in [Ca(2+)](i) (P<0.05).. After [Ca(2+)](i) reached a balance again, adding Sper/NO could not change [Ca(2+)](i) (P>0.05). (2) Sper/NO increased the area of the stomata (P<0.01) and the quantity of the tracer in a dose-dependent manner (P<0.05) compared to the control group. Pretreatment with ODQ significantly inhibited Sper/NO-induced change of lymphatic stomata and lymph drainage (P<0.01). Nifedipine increased the opening area of the lymphatic stomata (P< 0.01) and the concentration of absorbed trypan blue of the diaphragm (P<0.05). Sper/NO could not make a further change in the samples pretreated by nifedipine (P> 0.05). The results indicate that NO can decrease [Ca(2+)](i) in the RPMC through the NO-cGMP pathway. This procession is related with the L- type voltage-gated Ca(2+) channel. NO enlarges the opening area of the lymphatic stomata and enhances the lymph drainage of tracer by NO-cGMP-[Ca(2+)](i) pathway.

  7. Rapid frequency‐dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes

    PubMed Central

    Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda

    2017-01-01

    Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an

  8. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells

    PubMed Central

    Dalmark, Mads; Wieth, Jens Otto

    1972-01-01

    1. The temperature dependence of the steady-state self-exchange of chloride between human red cells and a plasma-like electrolyte medium has been studied by measuring the rate of 36Cl- efflux from radioactively labelled cells. Between 0 and 10° C the rate increased by a factor of eight corresponding to an Arrhenius activation energy of 33 kcal/mole. 2. The rate of chloride exchange decreased significantly in experiments where 95% of the chloride ions in cells and medium were replaced by other monovalent anions of a lyotropic series. The rate of chloride self-exchange was increasingly reduced by bromide, bicarbonate, nitrate, iodide, thiocyanate, and salicylate. The latter aromatic anion was by far the most potent inhibitor, reducing the rate of chloride self-exchange to 0·2% of the value found in a chloride medium. 3. The temperature sensitivity of the chloride self-exchange was not affected significantly by the anionic inhibitors. The Arrhenius activation energies of chloride exchange were between 30 and 40 kcal/mole in the presence of the six inhibitory anions mentioned above. 4. The rate of self-exchange of bromide, thiocyanate, and iodide between human red cells and media was determined after washing and labelling cells in media containing 120 mM bromide, thiocyanate, or iodide respectively. The rate of self-exchange of the three anions were 12, 3, and 0·4% of the rate of chloride self-exchange found in the chloride medium. 5. The Arrhenius activation energies of the self-exchange of bromide, iodide, and thiocyanate were all between 29 and 37 kcal/mole, the same magnitude as found for the self-exchange of chloride. 6. Although approximately 40% of the intracellular iodide and salicylate ions appeared to be adsorbed to intracellular proteins, the rate of tracer anion efflux followed first order kinetics until at least 98% of the intracellular anions had been exchanged. 7. The self-exchange of salicylate across the human red cell membrane occurred by a

  9. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  10. Periodic GMP Matrices

    NASA Astrophysics Data System (ADS)

    Eichinger, Benjamin

    2016-07-01

    We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic finite gap Jacobi matrices by periodic GMP matrices. Moreover, due to their structural similarity we can carry over numerous results from the direct and inverse spectral theory of periodic Jacobi matrices to the class of periodic GMP matrices. In particular, we prove an analogue of the remarkable ''magic formula'' for this new class.

  11. Modulation of GABAergic receptor binding by activation of calcium and calmodulin-dependent kinase II membrane phosphorylation.

    PubMed

    Churn, S B; DeLorenzo, R J

    1998-10-26

    gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.

  12. Multigene Family Encoding 3′,5′-Cyclic-GMP-Dependent Protein Kinases in Paramecium tetraurelia Cells

    PubMed Central

    Kissmehl, Roland; Krüger, Tim P.; Treptau, Tilman; Froissard, Marine; Plattner, Helmut

    2006-01-01

    In the ciliate Paramecium tetraurelia, 3′,5′-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation. PMID:16400170

  13. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs.

    PubMed

    Grandellis, Carolina; Giammaria, Verónica; Bialer, Magalí; Santin, Franco; Lin, Tian; Hannapel, David J; Ulloa, Rita M

    2012-12-01

    Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.

  14. β-Microseminoprotein Endows Post Coital Seminal Plasma with Potent Candidacidal Activity by a Calcium- and pH-Dependent Mechanism

    PubMed Central

    Edström Hägerwall, Anneli M. L.; Rydengård, Victoria; Fernlund, Per; Mörgelin, Matthias; Baumgarten, Maria; Cole, Alexander M.; Malmsten, Martin; Kragelund, Birthe B.; Sørensen, Ole E.

    2012-01-01

    The innate immune factors controlling Candida albicans are mostly unknown. Vulvovaginal candidiasis is common in women and affects approximately 70–75% of all women at least once. Despite the propensity of Candida to colonize the vagina, transmission of Candida albicans following sexual intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained factors active against C. albicans. By CFU assays, we found prominent candidacidal activity of post coital seminal plasma at both neutral and the acid vaginal pH. In contrast, normal seminal plasma did not display candidacidal activity prior to acidification. By antifungal gel overlay assay, one clearing zone corresponding to a protein band was found in both post coital and normal seminal plasma, which was subsequently identified as β-microseminoprotein. At neutral pH, the fungicidal activity of β-microseminoprotein and seminal plasma was inhibited by calcium. By NMR spectroscopy, amino acid residue E71 was shown to be critical for the calcium coordination. The acidic vaginal milieu unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The candidacidal activity of β-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. A homologous fragment from porcine β-microseminoprotein demonstrated calcium-dependent fungicidal activity in a CFU assay, suggesting this may be a common feature for members of the β-microseminoprotein family. By electron microscopy, β-microseminoprotein was found to cause lysis of Candida. Liposome experiments demonstrated that β-microseminoprotein was active towards ergosterol-containing liposomes that mimic fungal membranes, offering an explanation for the selectivity against fungi. These data identify β-microseminoprotein as an important innate immune factor active against C. albicans and may help explain the low sexual transmission rate of Candida

  15. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri.

    PubMed

    Bassis, Christine M; Visick, Karen L

    2010-03-01

    Bacteria produce different types of biofilms under distinct environmental conditions. Vibrio fischeri has the capacity to produce at least two distinct types of biofilms, one that relies on the symbiosis polysaccharide Syp and another that depends upon cellulose. A key regulator of biofilm formation in bacteria is the intracellular signaling molecule cyclic diguanylate (c-di-GMP). In this study, we focused on a predicted c-di-GMP phosphodiesterase encoded by the gene binA, located directly downstream of syp, a cluster of 18 genes critical for biofilm formation and the initiation of symbiotic colonization of the squid Euprymna scolopes. Disruption or deletion of binA increased biofilm formation in culture and led to increased binding of Congo red and calcofluor, which are indicators of cellulose production. Using random transposon mutagenesis, we determined that the phenotypes of the DeltabinA mutant strain could be disrupted by insertions in genes in the bacterial cellulose biosynthesis cluster (bcs), suggesting that cellulose production is negatively regulated by BinA. Replacement of critical amino acids within the conserved EAL residues of the EAL domain disrupted BinA activity, and deletion of binA increased c-di-GMP levels in the cell. Together, these data support the hypotheses that BinA functions as a phosphodiesterase and that c-di-GMP activates cellulose biosynthesis. Finally, overexpression of the syp regulator sypG induced binA expression. Thus, this work reveals a mechanism by which V. fischeri inhibits cellulose-dependent biofilm formation and suggests that the production of two different polysaccharides may be coordinated through the action of the cellulose inhibitor BinA.

  16. Voltage Dependence of a Neuromodulator-Activated Ionic Current.

    PubMed

    Gray, Michael; Golowasch, Jorge

    2016-01-01

    The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca(2+), but that, in conditions of low Ca(2+), calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca(2+)/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR.

  17. Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory.

    PubMed

    Palmeri, Agostino; Ricciarelli, Roberta; Gulisano, Walter; Rivera, Daniela; Rebosio, Claudia; Calcagno, Elisa; Tropea, Maria Rosaria; Conti, Silvia; Das, Utpal; Roy, Subhojit; Pronzato, Maria Adelaide; Arancio, Ottavio; Fedele, Ernesto; Puzzo, Daniela

    2017-07-19

    High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory. SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ. Copyright © 2017 the authors 0270-6474/17/376926-12$15.00/0.

  18. Functional EF-Hands in Neuronal Calcium Sensor GCAP2 Determine Its Phosphorylation State and Subcellular Distribution In Vivo, and Are Essential for Photoreceptor Cell Integrity

    PubMed Central

    Rosa, Jose Luis; Chen, Jeannie; Méndez, Ana

    2014-01-01

    The neuronal calcium sensor proteins GCAPs (guanylate cyclase activating proteins) switch between Ca2+-free and Ca2+-bound conformational states and confer calcium sensitivity to guanylate cyclase at retinal photoreceptor cells. They play a fundamental role in light adaptation by coupling the rate of cGMP synthesis to the intracellular concentration of calcium. Mutations in GCAPs lead to blindness. The importance of functional EF-hands in GCAP1 for photoreceptor cell integrity has been well established. Mutations in GCAP1 that diminish its Ca2+ binding affinity lead to cell damage by causing unabated cGMP synthesis and accumulation of toxic levels of free cGMP and Ca2+. We here investigate the relevance of GCAP2 functional EF-hands for photoreceptor cell integrity. By characterizing transgenic mice expressing a mutant form of GCAP2 with all EF-hands inactivated (EF−GCAP2), we show that GCAP2 locked in its Ca2+-free conformation leads to a rapid retinal degeneration that is not due to unabated cGMP synthesis. We unveil that when locked in its Ca2+-free conformation in vivo, GCAP2 is phosphorylated at Ser201 and results in phospho-dependent binding to the chaperone 14-3-3 and retention at the inner segment and proximal cell compartments. Accumulation of phosphorylated EF−GCAP2 at the inner segment results in severe toxicity. We show that in wildtype mice under physiological conditions, 50% of GCAP2 is phosphorylated correlating with the 50% of the protein being retained at the inner segment. Raising mice under constant light exposure, however, drastically increases the retention of GCAP2 in its Ca2+-free form at the inner segment. This study identifies a new mechanism governing GCAP2 subcellular distribution in vivo, closely related to disease. It also identifies a pathway by which a sustained reduction in intracellular free Ca2+ could result in photoreceptor damage, relevant for light damage and for those genetic disorders resulting in

  19. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    PubMed

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  1. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Poovaiah, B. W.

    2002-01-01

    Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.

  2. Analgesic activity of ZC88, a novel N-type voltage-dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and dependence.

    PubMed

    Meng, Ge; Wu, Ning; Zhang, Cheng; Su, Rui-Bin; Lu, Xin-Qiang; Liu, Yin; Yun, Liu-Hong; Zheng, Jian-Quan; Li, Jin

    2008-05-31

    ZC88 is a novel non-peptide N-type voltage-sensitive calcium channel blocker synthesized by our institute. In the present study, the oral analgesic activity of ZC88 in animal models of acute and neuropathic pain, and functional interactions between ZC88 and morphine in terms of analgesia, tolerance and dependence were investigated. In mice acetic acid writhing tests, ZC88 (10-80 mg/kg) administered by oral route showed significant antinociceptive effects in a dose-dependent manner. The ED50 values of ZC88 were 14.5 and 14.3 mg/kg in male and female mice, respectively. In sciatic nerve chronic constriction injury rats, mechanical allodynia was ameliorated by oral administration of ZC88 at doses of 14, 28 and 56 mg/kg, suggesting ZC88 relieved allodynic response of neuropathic pain. When concurrently administered with morphine, ZC88 (20-80 mg/kg) dose-dependently potentiated morphine analgesia and attenuated morphine analgesic tolerance in hot-plate tests. ZC88 also prevented chronic exposure to morphine-induced physical dependence and withdrawal, but not morphine-induced psychological dependence in conditioned place preference model. These results suggested that ZC88, a new non-peptide N-type calcium channel blocker, had notable oral analgesia and anti-allodynia for acute and neuropathic pain. ZC88 might be used in pain relief by either application alone or in combination with opioids because it enhanced morphine analgesia while prevented morphine-induced tolerance and physical dependence.

  3. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  4. Chloride removal from recycled cooling water using ultra-high lime with aluminum process.

    PubMed

    Abdel-Wahab, Ahmed; Batchelor, Bill

    2002-01-01

    Chloride is a deleterious ionic species in cooling water systems because it promotes corrosion, and most of the scale and corrosion inhibitors are sensitive to chloride concentration in the water. Chloride can be removed from cooling water by precipitation as calcium chloroaluminate [Ca4Al2Cl2(OH)12]. A set of equilibrium experiments and one kinetic experiment were conducted to evaluate chloride removal using the ultra-high lime with aluminum (UHLA) process and to characterize the equilibrium conditions of calcium chloroaluminate precipitation. A total of 48 batch-equilibrium experiments were conducted on a 30 mM NaCl solution over a range of values for lime dose (0 to 200 mM) and sodium aluminate dose (0 to 100 mM). Experimental results showed that the UHLA process can remove chloride and that the formation of a calcium chloroaluminate solid phase is a reasonable mechanism that is able to adequately describe experimental results. An average value of the ion activity product of 10(-94.75) was obtained and can be used as an estimate of the solubility product for Ca4Al2Cl2(OH)12.

  5. Biophysical characterization of the calmodulin-like domain of Plasmodium falciparum calcium dependent protein kinase 3

    PubMed Central

    Andresen, Cecilia; Niklasson, Markus; Cassman Eklöf, Sofie; Wallner, Björn

    2017-01-01

    Calcium dependent protein kinases are unique to plants and certain parasites and comprise an N-terminal segment and a kinase domain that is regulated by a C-terminal calcium binding domain. Since the proteins are not found in man they are potential drug targets. We have characterized the calcium binding lobes of the regulatory domain of calcium dependent protein kinase 3 from the malaria parasite Plasmodium falciparum. Despite being structurally similar, the two lobes differ in several other regards. While the monomeric N-terminal lobe changes its structure in response to calcium binding and shows global dynamics on the sub-millisecond time-scale both in its apo and calcium bound states, the C-terminal lobe could not be prepared calcium-free and forms dimers in solution. If our results can be generalized to the full-length protein, they suggest that the C-terminal lobe is calcium bound even at basal levels and that activation is caused by the structural reorganization associated with binding of a single calcium ion to the N-terminal lobe. PMID:28746405

  6. Effect of calcium chloride solution immersion on surface hardness of restorative glass ionomer cements.

    PubMed

    Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Uo, Motohiro

    2013-01-01

    The objective of this study was to evaluate the effect of the concentration of calcium chloride (CaCl2) solution on the surface hardness of restorative glass ionomer cements (GICs). Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were immersed in several concentrations of CaCl2 solution for 1 day and 1 week. The immersed specimen surfaces were evaluated using microhardness testing, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Immersion in a higher concentration of CaCl2 solution produced a greater increase in the surface hardness. No crystalline substance was observed on the immersed surface. Calcium ions were selectively absorbed in the matrix of the GIC surface after immersion. They reacted with the non-reacted carboxylic acid groups remaining in the cement matrix. These reactions were considered to cause an increase in the surface hardness of the GICs.

  7. Forced-flow chromatographic determination of calcium and magnesium with continuous spectrophotometric detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, M.D.

    1977-12-01

    Modifications to the forced-flow chromatograph include a flow-through pH monitor to continuously monitor the pH of the final effluent and an active low-pass filter to eliminate noise in the spectrophotometric detector. All separations are performed using partially sulfonated XAD-2 as the ion exchanger. Elution of calcium and magnesium is accomplished using ammonium chloride and ethylenediammonium chloride solutions. Calcium and magnesium are detected by means of Arsenazo I and PAR-ZnEDTA color-forming reagents. Other metal ions are detected by means of PAR and Chromazurol S color-forming reagents. Calcium and magnesium distribution coefficients on partially sulfonated XAD-2 as functions of ammonium chloride andmore » ethylenediammonium chloride concentration are given together with distribution coefficients of other metal ions. Methods for the selective elution of interfering metal ions prior to the elution of calcium and magnesium are described. Beryllium and aluminum are selectively eluted with sulfosalicylic acid. Those elements forming anionic chloride complexes are selectively eluted with HCl-acetone. Nickel is selectively eluted with HCl-acetone-dimethylglyoxime. Synthetic samples containing calcium and magnesium, both alone and in combination with alkali metals, strontium, barium, beryllium, aluminum, transition metals, and rare earths, are analyzed. Hard water samples are analyzed for calcium and magnesium and the results compared to those obtained by EDTA titration, atomic absorption spectroscopy, and plasma emission spectroscopy. Several clinical serum samples are analyzed for calcium and magnesium and the results compared to those obtained by atomic absorption spectroscopy.« less

  8. Dependency of Calcium Alternans on Ryanodine Receptor Refractoriness

    PubMed Central

    Alvarez-Lacalle, Enric; Cantalapiedra, Inma R.; Peñaranda, Angelina; Cinca, Juan; Hove-Madsen, Leif; Echebarria, Blas

    2013-01-01

    Background Rapid pacing rates induce alternations in the cytosolic calcium concentration caused by fluctuations in calcium released from the sarcoplasmic reticulum (SR). However, the relationship between calcium alternans and refractoriness of the SR calcium release channel (RyR2) remains elusive. Methodology/Principal Findings To investigate how ryanodine receptor (RyR2) refractoriness modulates calcium handling on a beat-to-beat basis using a numerical rabbit cardiomyocyte model. We used a mathematical rabbit cardiomyocyte model to study the beat-to-beat calcium response as a function of RyR2 activation and inactivation. Bi-dimensional maps were constructed depicting the beat-to-beat response. When alternans was observed, a novel numerical clamping protocol was used to determine whether alternans was caused by oscillations in SR calcium loading or by RyR2 refractoriness. Using this protocol, we identified regions of RyR2 gating parameters where SR calcium loading or RyR2 refractoriness underlie the induction of calcium alternans, and we found that at the onset of alternans both mechanisms contribute. At low inactivation rates of the RyR2, calcium alternans was caused by alternation in SR calcium loading, while at low activation rates it was caused by alternation in the level of available RyR2s. Conclusions/Significance We have mapped cardiomyocyte beat-to-beat responses as a function of RyR2 activation and inactivation, identifying domains where SR calcium load or RyR2 refractoriness underlie the induction of calcium alternans. A corollary of this work is that RyR2 refractoriness due to slow recovery from inactivation can be the cause of calcium alternans even when alternation in SR calcium load is present. PMID:23390511

  9. Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia

    PubMed Central

    Raju, Sammeta V.; Wang, Guoshun

    2012-01-01

    Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662

  10. Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A).

    PubMed

    Truong, Eric C; Phuan, Puay W; Reggi, Amanda L; Ferrera, Loretta; Galietta, Luis J V; Levy, Sarah E; Moises, Alannah C; Cil, Onur; Diez-Cecilia, Elena; Lee, Sujin; Verkman, Alan S; Anderson, Marc O

    2017-06-08

    Transmembrane protein 16A (TMEM16A), also called anoctamin 1 (ANO1), is a calcium-activated chloride channel expressed widely mammalian cells, including epithelia, vascular smooth muscle tissue, electrically excitable cells, and some tumors. TMEM16A inhibitors have been proposed for treatment of disorders of epithelial fluid and mucus secretion, hypertension, asthma, and possibly cancer. Herein we report, by screening, the discovery of 2-acylaminocycloalkylthiophene-3-carboxylic acid arylamides (AACTs) as inhibitors of TMEM16A and analysis of 48 synthesized analogs (10ab-10bw) of the original AACT compound (10aa). Structure-activity studies indicated the importance of benzene substituted as 2- or 4-methyl, or 4-fluoro, and defined the significance of thiophene substituents and size of the cycloalkylthiophene core. The most potent compound (10bm), which contains an unusual bromodifluoroacetamide at the thiophene 2-position, had IC 50 of ∼30 nM, ∼3.6-fold more potent than the most potent previously reported TMEM16A inhibitor 4 (Ani9), and >10-fold improved metabolic stability. Direct and reversible inhibition of TMEM16A by 10bm was demonstrated by patch-clamp analysis. AACTs may be useful as pharmacological tools to study TMEM16A function and as potential drug development candidates.

  11. Oxidized LDL activates blood platelets through CD36/NOX2–mediated inhibition of the cGMP/protein kinase G signaling cascade

    PubMed Central

    Magwenzi, Simbarashe; Woodward, Casey; Wraith, Katie S.; Aburima, Ahmed; Raslan, Zaher; Jones, Huw; McNeil, Catriona; Wheatcroft, Stephen; Yuldasheva, Nadira; Febbriao, Maria; Kearney, Mark

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36−/− murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2−/− mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3′,5′-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling. PMID:25710879

  12. Posttranscriptional regulation of human iNOS by the NO/cGMP pathway.

    PubMed

    Pérez-Sala, D; Cernuda-Morollón, E; Díaz-Cazorla, M; Rodríguez-Pascual, F; Lamas, S

    2001-03-01

    Nitric oxide (NO) and cGMP may exert positive or negative effects on inducible NO synthase (iNOS) expression. We have explored the influence of the NO/cGMP pathway on iNOS levels in human mesangial cells. Inhibition of NOS activity during an 8-h stimulation with IL-1beta plus tumor necrosis factor (TNF)-alpha reduced iNOS levels, while NO donors amplified iNOS induction threefold. However, time-course studies revealed a subsequent inhibitory effect of NO donors on iNOS protein and mRNA levels. This suggests that NO may contribute both to iNOS induction and downregulation. Soluble guanylyl cyclase (sGC) activation may be involved in these effects. Inhibition of sGC attenuated IL-1beta/TNF-alpha-elicited iNOS induction and reduced NO-driven amplification. Interestingly, cGMP analogs also modulated iNOS protein and mRNA levels in a biphasic manner. Inhibition of transcription unveiled a negative posttranscriptional modulation of the iNOS transcript by NO and cGMP at late times of induction. Supplementation with 8-bromo-cGMP (8-BrcGMP) reduced iNOS mRNA stability by 50%. These observations evidence a complex feedback regulation of iNOS expression, in which posttranscriptional mechanisms may play an important role.

  13. Preservation of nitric oxide-induced relaxation of porcine coronary artery: roles of the dimers of soluble guanylyl cyclase, phosphodiesterase type 5, and cGMP-dependent protein kinase.

    PubMed

    Liu, Juan; Chen, Zhengju; Ye, Liping; Liu, Huixia; Dou, Dou; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng

    2014-10-01

    Soluble guanylyl cyclase (sGC), phosphodiesterase type 5 (PDE5), and guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (PKG) are all dimeric. The present study was to determine the role of their dimeric status in nitric oxide-induced vasodilatation. In isolated porcine coronary arteries, after 20 h incubation with serum-free medium, serum-containing medium, or phosphate-buffered saline solution, the protein levels of the dimers of sGC, PDE5, and PKG were diminished while the monomer levels remained unchanged, associated with reduced cGMP elevation in response to DETA NONOate and decreased PDE5 activity; the activity of PKG was not significantly altered. DETA NONOate caused a greater relaxation in arteries incubated for 20 vs. 2 h. The relaxant response was largely abolished by 1H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one, an sGC inhibitor. Zaprinast, a PDE5 inhibitor, had no effect on relaxation caused by DETA NONOate of arteries incubated for 20 h but augmented the response incubated for 2 h. A greater relaxation to 8-bromo-guanosine 3'5'-cyclic monophosphate occurred in arteries incubated for 20 than for 2 h. The protein level of the dimers but not monomers of PDE5 was reduced by dithiothreitol and unaffected by hydrogen peroxide, accompanied with decreased PDE5 activity and reduced response to DETA NONOate. These results demonstrate that the dimeric but not monomeric status of sGC and PDE5 of coronary arteries are closely related to their activities. The preserved vasodilator response after 20 h incubation may result in part from a synchronous reduction of the dimer levels of sGC and PDE5 as well as an augmented response to cGMP.

  14. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis.

    PubMed

    Ren, Gai-Xian; Fan, Sai; Guo, Xiao-Peng; Chen, Shiyun; Sun, Yi-Cheng

    2016-01-01

    Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  15. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  16. (−)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo

    2011-01-01

    The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (−)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca2+ depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca2+-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca2+-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca2+ depletion. Thus, under Ca2+-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca2+-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-l-arginine methyl ester, suggesting a functional relevance for this phenomenon. PMID:21209365

  17. AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2

    PubMed Central

    Cho, Kwang-jin; Casteel, Darren E.; Prakash, Priyanka; Tan, Lingxiao; van der Hoeven, Dharini; Salim, Angela A.; Kim, Choel; Capon, Robert J.; Lacey, Ernest; Cunha, Shane R.; Gorfe, Alemayehu A.

    2016-01-01

    K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function. PMID:27697864

  18. ASEAN GMP and pharmaceutical industries in Indonesia.

    PubMed

    Soesilo, S; Sitorus, U

    1995-01-01

    Indonesia was appointed by the ASEAN Technical Cooperation in Pharmaceutical as a focal point and to coordinate the development of practical guidelines for the implementation of GMP. The ASEAN GMP Guidelines were endorsed by the ASEAN Technical Cooperation in Pharmaceutical in 1988, which among others required separation of Beta-Lactam dedicated facilities and three degrees of cleanliness for production areas. As it was realised that drug manufacturers in developing countries need more detailed guidelines to be able to implement the GMP, an Operational Manual for GMP was also prepared for providing examples of SOPs lay-outs, documentation etc. It was agreed by the technical cooperation group to leave the implementation of GMP to each member country. However, the ASEAN Manual for Inspection of GMP was drafted and endorsed by the group and training of ASEAN Drug Inspectors was organized to support the implementation. The ASEAN GMP is being implemented in Indonesia through a five-year, stepwise implementation plan, starting in 1989.

  19. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice

    PubMed Central

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  20. Forecasting Corrosion of Steel in Concrete Introducing Chloride Threshold Dependence on Steel Potential

    NASA Astrophysics Data System (ADS)

    Sanchez, Andrea Nathalie

    Corrosion initiates in reinforced concrete structures exposed to marine environments when the chloride ion concentration at the surface of an embedded steel reinforcing bar exceeds the chloride corrosion threshold (CT) value. The value of CT is generally assumed to have a conservative fixed value ranging from 0.2% to - 0.5 % of chloride ions by weight of cement. However, extensive experimental investigations confirmed that C T is not a fixed value and that the value of CT depends on many variables. Among those, the potential of passive steel embedded in concrete is a key influential factor on the value of CT and has received little attention in the literature. The phenomenon of a potential-dependent threshold (PDT) permits accounting for corrosion macrocell coupling between active and passive steel assembly components in corrosion forecast models, avoiding overly conservative long-term damage projections and leading to more efficient design. The objectives of this investigation was to 1) expand by a systematic experimental assessment the knowledge and data base on how dependent the chloride threshold is on the potential of the steel embedded in concrete and 2) introduce the chloride threshold dependence on steel potential as an integral part of corrosion-related service life prediction of reinforced concrete structures. Experimental assessments on PDT were found in the literature but for a limited set of conditions. Therefore, experiments were conducted with mortar and concrete specimens and exposed to conditions more representative of the field than those previously available. The experimental results confirmed the presence of the PDT effect and provided supporting information to use a value of -550 mV per decade of Cl- for the cathodic prevention slope betaCT, a critical quantitative input for implementation in a practical model. A refinement of a previous corrosion initiation-propagation model that incorporated PDT in a partially submerged reinforced concrete

  1. Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I

    PubMed Central

    Frantz, Stefan; Klaiber, Michael; Baba, Hideo A.; Oberwinkler, Heike; Völker, Katharina; Gaβner, Birgit; Bayer, Barbara; Abeβer, Marco; Schuh, Kai; Feil, Robert; Hofmann, Franz; Kuhn, Michaela

    2013-01-01

    Aims Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca2+]i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte Ca2+i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca2+i-handling, and contractility via cGKI. Conclusion These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca2+i handling and contractility. PMID:22199120

  2. Amino Acid Medical Foods Provide a High Dietary Acid Load and Increase Urinary Excretion of Renal Net Acid, Calcium, and Magnesium Compared with Glycomacropeptide Medical Foods in Phenylketonuria

    PubMed Central

    Stroup, Bridget M.; Sawin, Emily A.; Murali, Sangita G.; Binkley, Neil; Hansen, Karen E.

    2017-01-01

    Background. Skeletal fragility is a complication of phenylketonuria (PKU). A diet containing amino acids compared with glycomacropeptide reduces bone size and strength in mice. Objective. We tested the hypothesis that amino acid medical foods (AA-MF) provide a high dietary acid load, subsequently increasing urinary excretion of renal net acid, calcium, and magnesium, compared to glycomacropeptide medical foods (GMP-MF). Design. In a crossover design, 8 participants with PKU (16–35 y) provided food records and 24-hr urine samples after consuming a low-Phe diet in combination with AA-MF and GMP-MF for 1–3 wks. We calculated potential renal acid load (PRAL) of AA-MF and GMP-MF and determined bone mineral density (BMD) measurements using dual X-ray absorptiometry. Results. AA-MF provided 1.5–2.5-fold higher PRAL and resulted in 3-fold greater renal net acid excretion compared to GMP-MF (p = 0.002). Dietary protein, calcium, and magnesium intake were similar. GMP-MF significantly reduced urinary excretion of calcium by 40% (p = 0.012) and magnesium by 30% (p = 0.029). Two participants had low BMD-for-age and trabecular bone scores, indicating microarchitectural degradation. Urinary calcium with AA-MF negatively correlated with L1–L4 BMD. Conclusion. Compared to GMP-MF, AA-MF increase dietary acid load, subsequently increasing urinary calcium and magnesium excretion, and likely contributing to skeletal fragility in PKU. The trial was registered at clinicaltrials.gov as NCT01428258. PMID:28546877

  3. Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities.

    PubMed

    Hicks, Michael B; Regalado, Erik L; Tan, Feng; Gong, Xiaoyi; Welch, Christopher J

    2016-01-05

    Supercritical fluid chromatography (SFC) has long been a preferred method for enantiopurity analysis in support of pharmaceutical discovery and development, but implementation of the technique in regulated GMP laboratories has been somewhat slow, owing to limitations in instrument sensitivity, reproducibility, accuracy and robustness. In recent years, commercialization of next generation analytical SFC instrumentation has addressed previous shortcomings, making the technique better suited for GMP analysis. In this study we investigate the use of modern SFC for enantiopurity analysis of several pharmaceutical intermediates and compare the results with the conventional HPLC approaches historically used for analysis in a GMP setting. The findings clearly illustrate that modern SFC now exhibits improved precision, reproducibility, accuracy and robustness; also providing superior resolution and peak capacity compared to HPLC. Based on these findings, the use of modern chiral SFC is recommended for GMP studies of stereochemistry in pharmaceutical development and manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  5. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity.

    PubMed Central

    Cook-Mills, Joan M; Johnson, Jacob D; Deem, Tracy L; Ochi, Atsuo; Wang, Lei; Zheng, Yi

    2004-01-01

    VCAM-1 (vascular cell adhesion molecule-1) plays an important role in the regulation of inflammation in atherosclerosis, asthma, inflammatory bowel disease and transplantation. VCAM-1 activates endothelial cell NADPH oxidase, and this oxidase activity is required for VCAM-1-dependent lymphocyte migration. We reported previously that a mouse microvascular endothelial cell line promotes lymphocyte migration that is dependent on VCAM-1, but not on other known adhesion molecules. Here we have investigated the signalling mechanisms underlying VCAM-1 function. Lymphocyte binding to VCAM-1 on the endothelial cell surface activated an endothelial cell calcium flux that could be inhibited with anti-alpha4-integrin and mimicked by anti-VCAM-1-coated beads. VCAM-1 stimulation of calcium responses could be blocked by an inhibitor of intracellular calcium mobilization, a calcium channel inhibitor or a calcium chelator, resulting in the inhibition of NADPH oxidase activity. Addition of ionomycin overcame the calcium channel blocker suppression of VCAM-1-stimulated NADPH oxidase activity, but could not reverse the inhibitory effect imposed by intracellular calcium blockage, indicating that both intracellular and extracellular calcium mobilization are required for VCAM-1-mediated activation of NADPH oxidase. Furthermore, VCAM-1 specifically activated the Rho-family GTPase Rac1, and VCAM-1 activation of NADPH oxidase was blocked by a dominant negative Rac1. Thus VCAM-1 stimulates the mobilization of intracellular and extracellular calcium and Rac1 activity that are required for the activation of NADPH oxidase. PMID:14594451

  6. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    PubMed

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Magnolol and honokiol regulate the calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli-induced diarrhea mice.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe

    2015-05-15

    To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Voltage Dependence of a Neuromodulator-Activated Ionic Current123

    PubMed Central

    2016-01-01

    Abstract The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca2+, but that, in conditions of low Ca2+, calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca2+/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR. PMID:27257619

  9. Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines

    PubMed Central

    Keller, Daniel X.; Franks, Kevin M.; Bartol, Thomas M.; Sejnowski, Terrence J.

    2008-01-01

    The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways. PMID:18446197

  10. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

    PubMed Central

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas

    2012-01-01

    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589

  11. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    PubMed

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella

    PubMed Central

    Solano, Cristina; García, Begoña; Latasa, Cristina; Toledo-Arana, Alejandro; Zorraquino, Violeta; Valle, Jaione; Casals, Joan; Pedroso, Enrique; Lasa, Iñigo

    2009-01-01

    Bacteria have developed an exclusive signal transduction system involving multiple diguanylate cyclase and phosphodiesterase domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) that modulate the levels of the same diffusible molecule, 3′-5′-cyclic diguanylic acid (c-di-GMP), to transmit signals and obtain specific cellular responses. Current knowledge about c-di-GMP signaling has been inferred mainly from the analysis of recombinant bacteria that either lack or overproduce individual members of the pathway, without addressing potential compensatory effects or interferences between them. Here, we dissected c-di-GMP signaling by constructing a Salmonella strain lacking all GGDEF-domain proteins and then producing derivatives, each restoring 1 protein. Our analysis showed that most GGDEF proteins are constitutively expressed and that their expression levels are not interdependent. Complete deletion of genes encoding GGDEF-domain proteins abrogated virulence, motility, long-term survival, and cellulose and fimbriae synthesis. Separate restoration revealed that 4 proteins from Salmonella and 1 from Yersinia pestis exclusively restored cellulose synthesis in a c-di-GMP–dependent manner, indicating that c-di-GMP produced by different GGDEF proteins can activate the same target. However, the restored strain containing the STM4551-encoding gene recovered all other phenotypes by means of gene expression modulation independently of c-di-GMP. Specifically, fimbriae synthesis and virulence were recovered through regulation of csgD and the plasmid-encoded spvAB mRNA levels, respectively. This study provides evidence that the regulation of the GGDEF-domain proteins network occurs at 2 levels: a level that strictly requires c-di-GMP to control enzymatic activities directly, restricted to cellulose synthesis in our experimental conditions, and another that involves gene regulation for which c-di-GMP synthesis can be dispensable. PMID:19416883

  13. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    PubMed

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  14. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    PubMed

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  15. Analysis of the Effects of Calcium or Magnesium on Voltage-Clamp Currents in Perfused Squid Axons Bathed in Solutions of High Potassium

    PubMed Central

    Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco

    1969-01-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216

  16. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    PubMed

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.

  17. Ca2+ -dependent regulation of phototransduction.

    PubMed

    Stephen, Ricardo; Filipek, Sławomir; Palczewski, Krzysztof; Sousa, Marcelo Carlos

    2008-01-01

    Photon absorption by rhodopsin triggers the phototransduction signaling pathway that culminates in degradation of cGMP, closure of cGMP-gated ion channels and hyperpolarization of the photoreceptor membrane. This process is accompanied by a decrease in free Ca(2+) concentration in the photoreceptor cytosol sensed by Ca(2+)-binding proteins that modulate phototransduction and activate the recovery phase to reestablish the photoreceptor dark potential. Guanylate cyclase-activating proteins (GCAPs) belong to the neuronal calcium sensor (NCS) family and are responsible for activating retinal guanylate cyclases (retGCs) at low Ca(2+) concentrations triggering synthesis of cGMP and recovery of the dark potential. Here we review recent structural insight into the role of the N-terminal myristoylation in GCAPs and compare it to other NCS family members. We discuss previous studies identifying regions of GCAPs important for retGC1 regulation in the context of the new structural data available for myristoylated GCAP1. In addition, we present a hypothetical model for the Ca(2+)-triggered conformational change in GCAPs and retGC1 regulation. Finally, we briefly discuss the involvement of mutant GCAP1 proteins in the etiology of retinal degeneration as well as the importance of other Ca(2+) sensors in the modulation of phototransduction.

  18. Calcium dips enhance volatile emission of cold-stored 'Fuji Kiku-8' apples.

    PubMed

    Ortiz, Abel; Echeverría, Gemma; Graell, Jordi; Lara, Isabel

    2009-06-10

    Despite the relevance of volatile production for overall quality of apple (Malus x domestica Borkh.) fruit, only a few studies have focused on the effects of calcium treatments on this quality attribute. In this work, 'Fuji Kiku-8' apples were harvested at commercial maturity, dipped in calcium chloride (2%, w/v), stored at 1 degrees C and 92% relative humidity for 4 or 7 months under either air or ultralow oxygen (ULO; 1 kPa of O(2)/2 kPa of CO(2)), and placed subsequently at 20 degrees C. Ethylene production, standard quality parameters, emission of volatile compounds, and the activities of some related enzymes were assessed 7 days thereafter. Calcium concentration was higher in CaCl(2)-treated than in untreated fruit, suggesting that the treatment was effective in introducing calcium into the tissues. Higher calcium contents were concomitant with higher flesh firmness and titratable acidity after storage. Furthermore, calcium treatment led to increased production of volatiles in middle-term stored apples, probably arising from enhanced supply of precursors for ester production as a consequence of increased pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities. After long-term storage, higher volatile emission might have arisen also from the enhancement of alcohol o-acyltransferase (AAT) activity, which was increased as a result of calcium treatment. In addition to storage period, the effects of calcium treatment were also partially dependent on storage atmosphere and more noticeable for fruit stored in air.

  19. Effects of Hypomagnetic Conditions and Reversed Geomagnetic Field on Calcium-Dependent Proteases of Invertebrates and Fish

    NASA Astrophysics Data System (ADS)

    Kantserova, N. P.; Krylov, V. V.; Lysenko, L. A.; Ushakova, N. V.; Nemova, N. N.

    2017-12-01

    The effects of hypomagnetic conditions and the reversal of the geomagnetic field (GMF) on intracellular Ca2+-dependent proteases (calpains) of fish and invertebrates have been studied in vivo and in vitro. It is found that the intravital exposure of examined animals to hypomagnetic conditions leads to a significant decrease in its calpain activity. The activity of preparations of calcium-dependent proteases was tested in separate experiments. It is shown that preparations of Ca2+-dependent proteases from invertebrates and fish are also inactivated substantially under effect of hypomagnetic conditions. The ambiguous results obtained in the experiments with a reversed GMF do not make it possible to discuss the biological response of calcium-dependent proteases to the reversal of the GMF.

  20. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    PubMed

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  1. Lack of voltage-dependent calcium channel opening during the calcium influx induced by progesterone in human sperm. Effect of calcium channel deactivation and inactivation.

    PubMed

    Guzmán-Grenfell, Alberto Martín; González-Martínez, Marco T

    2004-01-01

    Progesterone induces calcium influx and acrosomal exocytosis in human sperm. Pharmacologic evidence suggests that voltage-dependent calcium channels (VDCCs) are involved. In this study, membrane potential (Vm) and intracellular calcium concentration ([Ca(2+)](i)) were monitored simultaneously to assess the effect of VDCC gating on the calcium influx triggered by progesterone. Holding the Vm to values that maintained VDCCs in a deactivated (-71 mV) closed state inhibited the calcium influx induced by progesterone by approximately 40%. At this Vm, the acrosomal reaction induced by progesterone, but not by A23187, was inhibited. However, when the Vm was held at -15 mV (which maintains VDCCs in an inactivated closed state), the progesterone-induced calcium influx was stimulated. Furthermore, the progesterone and voltage-dependent calcium influxes were additive. These findings indicate that progesterone does not produce VDCC gating in human sperm.

  2. Nitric Oxide Mediates Glutamate-Linked Enhancement of cGMP Levels in the Cerebellum

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Snyder, Solomon H.

    1989-11-01

    Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. We show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine-citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. Nω-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of Nω-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

  3. Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates

    PubMed Central

    Evans, R. C.; Maniar, Y. M.

    2013-01-01

    The striatum of the basal ganglia demonstrates distinctive upstate and downstate membrane potential oscillations during slow-wave sleep and under anesthetic. The upstates generate calcium transients in the dendrites, and the amplitude of these calcium transients depends strongly on the timing of the action potential (AP) within the upstate. Calcium is essential for synaptic plasticity in the striatum, and these large calcium transients during the upstates may control which synapses undergo plastic changes. To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). We have implemented sophisticated calcium dynamics including calcium diffusion, buffering, and pump extrusion, which accurately replicate published data. Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. These findings have implications for synaptic plasticity in vivo during sleep when the upstate-downstate pattern is prominent in the striatum. PMID:23843436

  4. Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi.

    PubMed

    Tamuli, Ranjan; Kumar, Ravi; Deka, Rekha

    2011-04-01

    The neuronal calcium sensor-1 (NCS-1) possesses a consensus signal for N-terminal myristoylation and four EF-hand Ca(2+)-binding sites, and mediates the effects of cytosolic Ca(2+). Minute changes in free intracellular Ca(2+) are quickly transformed into changes in the activity of several kinases including calcium/calmodulin-dependent protein kinases (Ca(2+)/CaMKs) that are involved in regulating many eukaryotic cell functions. However, our current knowledge of NCS-1 and Ca(2+)/CaMKs comes mostly from studies of the mammalian enzymes. Thus far very few fungal homologues of NCS-1 and Ca(2+)/CaMKs have been characterized and little is known about their cellular roles. In this minireview, we describe the known sequences, interactions with target proteins and cellular roles of NCS-1 and Ca(2+)/CaMKs in fungi. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: Purification of a distinct cGMP-stimulated isoenzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murashima, Seiko; Tanaka, Takayuki; Hockman, S.

    1990-06-05

    In the absence of detergent, {approx}80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; {approx}85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity {approx}100% and calmodulin-stimulated {approx}400-500%. Although 1% Lubrol readily solubilized these PDE activities, {approx}75% of the cAMP PDE activity (0.5 {mu}M ({sup 3}H)cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide.more » Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. The brain enzyme exhibited a slightly greater subunit M{sub r} than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V{sub 8} protease produced several peptides of similar size, as well as at least two distinct fragments of {approx}27 kDa from the brain and {approx}23 kDa from the liver enzyme. After photolabeling in the presence of ({sup 32}P)cGMP and digestion with V{sub 8} protease, ({sup 32}P)cGMP in each PDE was predominantly recovered with a peptide of {approx}14 kDa. All of these observations are consistent with the existence of at least two discrete forms (isoenzymes) of cGMP-stimulated PDE.« less

  6. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets.

    PubMed

    Makhoul, Stephanie; Walter, Elena; Pagel, Oliver; Walter, Ulrich; Sickmann, Albert; Gambaryan, Stepan; Smolenski, Albert; Zahedi, René P; Jurk, Kerstin

    2018-06-01

    Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca 2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. AMP-activated Protein Kinase Phosphorylates Cardiac Troponin I at Ser-150 to Increase Myofilament Calcium Sensitivity and Blunt PKA-dependent Function*

    PubMed Central

    Nixon, Benjamin R.; Thawornkaiwong, Ariyoporn; Jin, Janel; Brundage, Elizabeth A.; Little, Sean C.; Davis, Jonathan P.; Solaro, R. John; Biesiadecki, Brandon J.

    2012-01-01

    AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism. PMID:22493448

  8. A C-di-GMP-proflavine-hemin supramolecular complex has peroxidase activity--implication for a simple colorimetric detection.

    PubMed

    Nakayama, Shizuka; Roelofs, Kevin; Lee, Vincent T; Sintim, Herman O

    2012-03-01

    Herein, we demonstrate that the bacterial signaling molecule, c-di-GMP, can enhance the peroxidation of hemin when proflavine is present. The c-di-GMP-proflavine-hemin nucleotidezyme can oxidize the colorless compound 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS, to the colored radical cation ABTS˙(+) and hence provides simple colorimetric detection of c-di-GMP at low micromolar concentrations.

  9. The effects of crustacean cardioactive peptide on locust oviducts are calcium-dependent.

    PubMed

    Donini, Andrew; Lange, Angela B

    2002-04-01

    The role of calcium as a second messenger in the crustacean cardioactive peptide (CCAP)-induced contractions of the locust oviducts was investigated. Incubation of the oviducts in a calcium-free saline containing, a preferential calcium cation chelator, or an extracellular calcium channel blocker, abolished CCAP-induced contractions, indicating that the effects of CCAP on the oviducts are calcium-dependent. In contrast, sodium free saline did not affect CCAP-induced contractions. Co-application of CCAP to the oviducts with preferential L-type voltage-dependent calcium channel blockers reduced CCAP-induced contractions by 32-54%. Two preferential T-type voltage-dependent calcium channel blockers both inhibited CCAP-induced oviduct contractions although affecting different components of the contractions. Amiloride decreased the tonic component of CCAP-induced contractions by 40-55% and flunarizine dihydrochloride decreased the frequency of CCAP-induced phasic contractions by as much as 65%, without affecting tonus. Flunarizine dihydrochloride did not alter the proctolin-induced contractions of the oviducts. Results suggest that the actions of CCAP are partially mediated by voltage-dependent calcium channels similar to vertebrate L-type and T-type channels. High-potassium saline does not abolish CCAP-induced contractions indicating the presence of receptor-operated calcium channels that mediate the actions of CCAP on the oviducts. The involvement of calcium from intracellular stores in CCAP-induced contractions of the oviducts is likely since, an intracellular calcium antagonist decreased CCAP-induced contractions by 30-35%.

  10. Genetic Ablation of cGMP-Dependent Protein Kinase Type I Causes Liver Inflammation and Fasting Hyperglycemia

    PubMed Central

    Lutz, Stefan Z.; Hennige, Anita M.; Feil, Susanne; Peter, Andreas; Gerling, Andrea; Machann, Jürgen; Kröber, Stefan M.; Rath, Michaela; Schürmann, Annette; Weigert, Cora; Häring, Hans-Ulrich; Feil, Robert

    2011-01-01

    OBJECTIVE The nitric oxide/cGMP/cGMP-dependent protein kinase type I (cGKI) signaling pathway regulates cell functions that play a pivotal role in the pathogenesis of type 2 diabetes. However, the impact of a dysfunction of this pathway for glucose metabolism in vivo is unknown. RESEARCH DESIGN AND METHODS The expression of cGKI in tissues relevant to insulin action was analyzed by immunohistochemistry. The metabolic consequences of a genetic deletion of cGKI were studied in mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice). RESULTS In wild-type mice, cGKI protein was detected in hepatic stellate cells, but not in hepatocytes, skeletal muscle, fat cells, or pancreatic β-cells. Compared with control animals, cGKI-SM mice had higher energy expenditure in the light phase associated with lower body weight and fat mass and increased insulin sensitivity. Mutant mice also showed higher fasting glucose levels, whereas insulin levels and intraperitoneal glucose tolerance test results were similar to those in control animals. Interleukin (IL)-6 signaling was strongly activated in the liver of cGKI-SM mice as demonstrated by increased levels of IL-6, phospho-signal transducer and activator of transcription 3 (Tyr 705), suppressor of cytokine signaling-3, and serum amyloid A2. Insulin-stimulated tyrosine phosphorylation of the insulin receptor in the liver was impaired in cGKI-SM mice. The fraction of Mac-2–positive macrophages in the liver was significantly higher in cGKI-SM mice than in control mice. In contrast with cGKI-SM mice, conditional knockout mice lacking cGKI only in the nervous system were normal with respect to body weight, energy expenditure, fasting glucose, IL-6, and insulin action in the liver. CONCLUSIONS Genetic deletion of cGKI in non-neuronal cells results in a complex metabolic phenotype, including liver inflammation and fasting hyperglycemia. Loss of cGKI in hepatic stellate cells may affect liver

  11. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penza, M.; Jeremic, M.; Marrazzo, E.

    2011-08-15

    Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimatedmore » human intake (0.5 {mu}g/kg). At higher doses (50-500 {mu}g/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ER{alpha} or ER{beta}, TBT (in a dose range of 1-100 nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ER{alpha} in undifferentiated preadipocytic cells and by ER{beta} in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed. - Research Highlights: > The environmental organotin tributyltin chloride shows dose-dependent estrogenic and adipogenic activities in mice. > The duration and extent of these effects depend on the sex and the dose of the compound. > The estrogenic and adipogenic effects of TBT occur at doses

  12. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa.

    PubMed

    Paquet-Durand, François; Beck, Susanne; Michalakis, Stylianos; Goldmann, Tobias; Huber, Gesine; Mühlfriedel, Regine; Trifunović, Dragana; Fischer, M Dominik; Fahl, Edda; Duetsch, Gabriele; Becirovic, Elvir; Wolfrum, Uwe; van Veen, Theo; Biel, Martin; Tanimoto, Naoyuki; Seeliger, Mathias W

    2011-03-01

    The rd1 natural mutant is one of the first and probably the most commonly studied mouse model for retinitis pigmentosa (RP), a severe and frequently blinding human retinal degeneration. In several decades of research, the link between the increase in photoreceptor cGMP levels and the extremely rapid cell death gave rise to a number of hypotheses. Here, we provide clear evidence that the presence of cyclic nucleotide gated (CNG) channels in the outer segment membrane is the key to rod photoreceptor loss. In Cngb1(-/-) × rd1 double mutants devoid of regular CNG channels, cGMP levels are still pathologically high, but rod photoreceptor viability and outer segment morphology are greatly improved. Importantly, cone photoreceptors, the basis for high-resolution daylight and colour vision, survived and remained functional for extended periods of time. These findings strongly support the hypothesis of deleterious calcium (Ca(2+))-influx as the cause of rapid rod cell death and highlight the importance of CNG channels in this process. Furthermore, our findings suggest that targeting rod CNG channels, rather than general Ca(2+)-channel blockade, is a most promising symptomatic approach to treat otherwise incurable forms of cGMP-related RP.

  13. Role of nitric oxide and cyclic GMP signaling in melanocyte response to hypergravity

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Lambers, Britta; Tsiockas, Wasiliki; Block, Ingrid; Gerzer, Rupert

    Nitric oxide (NO) has a prominent role in many (patho)physiological processes in the skin including erythema, inflammation, and cancerogenesis. The soluble guanylyl cyclase (sGC), a key transducer in NO signaling, catalyzes the formation of the second messenger guanosine 3´,5´-cyclic monophosphate (cyclic cGMP or cGMP). For human melanocytes, which are responsible for skin pigmentation by synthesizing the pigment melanin, it has been reported that the NO/sGC/cGMP pathway is involved in UVB-induced melanogenesis. Melanin acts as a scavenger for free radicals that may arise during metabolic stress. It may also act as a photosensitizer that generates active oxygen species upon UV irradiation, which may initiate hypopigmentary disorders (e.g., vitiligo) as well as UV-induced oncogene cell transformation. In addition, melanoma, a deadly skin cancer, which arises from transformed melanocytes, is characterized by a resistance to chemotherapy. In our studies we have shown that NO can induce perturbation of melanocyte-extracellular matrix component interactions, which may contribute to loss of melanocytes or melanoma metastasis. Such NO effects appear to be modulated partly via cGMP. Moreover, we found that different guanylyl cyclase isoforms are responsible for cGMP synthesis in melanocytic cells. Normal human melanocytes and nonmetastatic melanoma cells predominantly express sGC, which appears to be associated with melanogenesis, whereas absence of NO-sensitive GC, but up-regulated activities of the natriuretic peptide-sensitive membrane guanylyl cyclase isoforms were found in highly metastatic phenotypes. Due to the growing interest in the regulation of signaling activities in normal and transformed cells under altered gravity conditions, we have further investigated whether the NO/cGMP signaling is involved in melanocyte response to gravitational stress. We found that normal human melanocytes and non-metastatic melanoma cell lines, but not highly metastatic cells

  14. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    PubMed

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  15. Calcium mobilization and phosphoinositide turnover in fluoride-activated human neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strnad, C.F.; Wong, K.

    1986-05-01

    Fluoride ion, at concentrations above 10 mM, has been found to activate a superoxide production response in human neutrophils which is strongly dependent on the presence of extracellular calcium. In an attempt to further explore the calcium requirement of fluoride-induced neutrophil activation, intracellular calcium concentrations were monitored through use of the fluorescent calcium probe, Quin 2. Fluoride ion, at concentrations between 10 and 20 mM, was found to elicit a rise in intracellular calcium levels which was characterized by a lag period of 4 to 10 min and a prolonged duration of action (greater than 20 min). In contrast, themore » chemotactic peptide, formylmethionyl-leucyl-phenylalanine (FMLP), induced a rise in intracellular calcium concentration which peaked within 1 min. Preincubation of cells with 1 ..mu..g/ml pertussis toxin resulted in inhibition of the FMLP-induced response, but not that elicited by fluoride. Furthermore, anion exchange chromatography indicated that inositol phosphate accumulation occurred in fluoride-treated cells in association with calcium mobilization. Recent evidence suggests that the FMLP receptor is coupled to phospholipase C and phosphoinositide turnover through a guanine nucleotide binding protein susceptible to inhibition by pertussis toxin. Present results suggest that fluoride ion may serve to activate this protein in a manner resistant to inhibition by pertussis toxin.« less

  16. Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1983-01-01

    The application of calcium chelating agents (EDTA or EGTA) to the tips of maize roots caused a loss of gravitropic sensitivity. When the chelator was replaced with calcium chloride, gravitropic sensitivity was restored. Asymmetric application of calcium chloride near the tip of a vertical root caused curvature toward the calcium source. When the calcium was applied to the upper surface of the tip of a root oriented horizontally, the root curved upward even though control roots exhibited strong downward curvature. Application of calcium chloride to the tips of decapped roots, which are known to be gravitropically insensitive, did not restore gravitropic sensitivity. However, asymmetric application of calcium chloride near the tips of decapped roots caused curvature toward the calcium source. Calcium may play a key role in linking gravity detection to gravitropic curvature in roots.

  17. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation.

    PubMed

    Rozmaritsa, Nadiia; Christ, Torsten; Van Wagoner, David R; Haase, Hannelore; Stasch, Johannes-Peter; Matschke, Klaus; Ravens, Ursula

    2014-03-01

    Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.

  18. Calcium-dependent transferrin receptor recycling in bovine chromaffin cells.

    PubMed

    Knight, Derek E

    2002-04-01

    The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 mm for 125I-transferrin and 1.0 mm for catecholamine, and the intracellular concentrations were 0.1 microm and 1 microm, respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 nm, and peaked at 1 microm when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.

  19. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange.

    PubMed Central

    Star, R A; Burg, M B; Knepper, M A

    1985-01-01

    Cortical collecting ducts (CCD) from rabbits treated with deoxycorticosterone (DOC) actively secrete bicarbonate at high rates. To investigate the mechanism of bicarbonate secretion, we measured bicarbonate and chloride transport in CCD from rabbits treated with DOC for 9-24 d. Removal of chloride (replaced with gluconate) from both perfusate and bath inhibited bicarbonate secretion without changing transepithelial voltage. Removal of chloride only from the bath increased bicarbonate secretion, while removal of chloride only from the perfusate inhibited secretion. In contrast to the effect of removing chloride, removal of sodium from both the perfusate and bath (replacement with N-methyl-D-glucamine) did not change the rate of bicarbonate secretion. The rate of bicarbonate secretion equaled the rate of chloride absorption in tubules bathed with 0.1 mM ouabain to inhibit any cation-dependent chloride transport. Under these conditions, chloride absorption occurred against an electrochemical gradient. Removal of bicarbonate from both the perfusate and bath inhibited chloride absorption. Removal of bicarbonate only from the bath inhibited chloride absorption, while removal of bicarbonate from the lumen stimulated chloride absorption. We conclude that CCD from DOC-treated rabbits actively secrete bicarbonate and actively absorb chloride by an electroneutral mechanism involving 1:1 chloride/bicarbonate exchange. The process is independent of sodium. PMID:3930570

  20. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma.

    PubMed

    Nakamura, Takashi; Miyabe, Hiroko; Hyodo, Mamoru; Sato, Yusuke; Hayakawa, Yoshihiro; Harashima, Hideyoshi

    2015-10-28

    Malignant melanomas escape immunosurveillance via the loss/down-regulation of MHC-I expression. Natural killer (NK) cells have the potential to function as essential effector cells for eliminating melanomas. Cyclic di-GMP (c-di-GMP), a ligand of the stimulator of interferon genes (STING) signal pathway, can be thought of as a new class of adjuvant against cancer. However, it is yet to be tested, because technologies for delivering c-di-GMP to the cytosol are required. Herein, we report that c-di-GMP efficiently activates NK cells and induces antitumor effects against malignant melanomas when loaded in YSK05 lipid containing liposomes, by assisting in the efficient delivery of c-di-GMP to the cytosol. The intravenous administration of c-di-GMP encapsulated within YSK05-liposomes (c-di-GMP/YSK05-Lip) into mice efficiently induced the production of type I interferon (IFN) as well as the activation of NK cells, resulting in a significant antitumor effect in a lung metastasis mouse model using B16-F10. This antitumor effect was dominated by NK cells. The infiltration of NK cells was observed in the lungs with B16-F10 melanomas. These findings indicate that the c-di-GMP/YSK05-Lip induces MHC-I non-restricted antitumor immunity mediated by NK cells. Consequently, c-di-GMP/YSK05-Lip represents a potentially new adjuvant system for use in immunotherapy against malignant melanomas. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    PubMed Central

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  2. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.

    PubMed

    Guerra, Lorenzo; D'Oria, Susanna; Favia, Maria; Castellani, Stefano; Santostasi, Teresa; Polizzi, Angela M; Mariggiò, Maria A; Gallo, Crescenzio; Casavola, Valeria; Montemurro, Pasqualina; Leonetti, Giuseppina; Manca, Antonio; Conese, Massimo

    2017-07-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) potentiator ivacaftor (Kalydeco®) improves clinical outcome in G551D cystic fibrosis (CF) patients. Here, we have investigated whether ivacaftor has a clinical impact on non-G551D gating mutations and function of circulating leukocytes as well. Seven patients were treated with ivacaftor and evaluated at baseline, and at 1-3 and 6 months. Besides clinical and systemic inflammatory parameters, circulating mononuclear cells (MNC) were evaluated for CFTR-dependent chloride efflux by spectrofluorimetry, neutrophils for oxidative burst by cytofluorimetry and HVCN1 mRNA expression by real time PCR. Ivacaftor determined a significant decrease in sweat chloride concentrations at all time points during treatment. Body mass index (BMI), FEV 1 , and FVC showed an increasing trend. While C-reactive protein decreased significantly at 2 months, the opposite behavior was noticed for circulating monocytes. CFTR activity in MNC was found to increase significantly at 3 and 6 months. Neutrophil oxidative burst peaked at 2 months and then decreased to baseline. HVCN1 mRNA expression was significantly higher than baseline at 1-3 months and decreased after 6 months of treatment. The chloride efflux in MNC correlated positively with both FEV 1 and FVC. On the other hand, sweat chloride correlated positively with CRP and WBC, and negatively with both respiratory function tests. A cluster analysis confirmed that sweat chloride, FEV 1 , FVC, BMI, and MNC chloride efflux behaved as a single entity over time. In patients with non-G551D mutations, ivacaftor improved both chloride transport in sweat ducts and chloride efflux in MNC, that is, functions directly imputed to CFTR. © 2017 Wiley Periodicals, Inc.

  3. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.

    PubMed

    Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi

    2016-11-01

    Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.

  4. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis.

    PubMed

    Kalia, Dimpy; Merey, Gökçe; Nakayama, Shizuka; Zheng, Yue; Zhou, Jie; Luo, Yiling; Guo, Min; Roembke, Benjamin T; Sintim, Herman O

    2013-01-07

    For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.

  5. The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials.

    PubMed

    Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason

    2015-11-01

    The conventional CaCl 2 -H 2 O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl 2 -H 2 O phase diagram. This study shows that the Ca(OH) 2 present in a hydrated portland cement can interact with CaCl 2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH) 2 -CaCl 2 -H 2 O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl 2 solution as the temperature changes. Specifically, the Ca(OH) 2 can react with CaCl 2 and H 2 O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl 2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).

  6. The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials

    PubMed Central

    Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason

    2015-01-01

    The conventional CaCl2-H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2-H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2-CaCl2-H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C). PMID:26692655

  7. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms.

    PubMed

    Li, Longfei; Ohtsu, Yoshiaki; Nakagawa, Yuko; Masuda, Katsuyoshi; Kojima, Itaru

    2016-08-31

    Sucralose is an artificial sweetener and activates the glucose-sensing receptor expressed in pancreatic β-cells. Although sucralose does not enter β-cells nor acts as a substrate for glucokinase, it induces a marked elevation of intracellular ATP ([ATP]c). The present study was conducted to identify the signaling pathway responsible for the elevation of [ATP]c induced by sucralose. Previous studies have shown that sucralose elevates cyclic AMP (cAMP), activates phospholipase C (PLC) and stimulates Ca(2+) entry by a Na(+)-dependent mechanism in MIN6 cells. The addition of forskolin induced a marked elevation of cAMP, whereas it did not affect [ATP]c. Carbachol, an activator of PLC, did not increase [ATP]c. In addition, activation of protein kinase C by dioctanoylglycerol did not affect [ATP]c. In contrast, nifedipine, an inhibitor of the voltage-dependent Ca(2+) channel, significantly reduced [ATP]c response to sucralose. Removal of extracellular Na(+) nearly completely blocked sucralose-induced elevation of [ATP]c. Stimulation of Na(+) entry by adding a Na(+) ionophore monensin elevated [ATP]c. The monensin-induced elevation of [ATP]c was only partially inhibited by nifedipine and loading of BAPTA, both of which completely abolished elevation of [Ca(2+)]c. These results suggest that Na(+) entry is critical for the sucralose-induced elevation of [ATP]c. Both calcium-dependent and -independent mechanisms are involved in the action of sucralose.

  8. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189.

    PubMed

    Castiblanco, Luisa F; Sundin, George W

    2018-01-01

    Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c-di-GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three-dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c-di-GMP-dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c-di-GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. Avoidance of Overt Precipitation and Patient Harm Following Errant Y-Site Administration of Calcium Chloride and Parenteral Nutrition Compounded With Sodium Glycerophosphate.

    PubMed

    Anderson, Collin; Stidham, Chanelle; Boehme, Sabrina; Cash, Jared

    2017-12-14

    Calcium phosphate precipitates present 1 of many challenges associated with parenteral nutrition (PN) compounding. Extensive research has led to the establishment of solubility curves to guide practitioners in the prescription and preparation of stable PN. Concurrent dosing of intravenous products via y-site administration with PN can alter the chemical balance of the solution and modify solubility. Medications containing calcium or phosphate should not be administered in the same line as PN, due to the high potential for precipitation. Herein a case is reported from a pediatric cardiac intensive care unit where a physician ordered the administration of calcium chloride. The bedside nurse added the calcium chloride intermittent infusion as a y-site administration with the patient's PN. The patient's PN had been compounded with sodium glycerophosphate, temporarily available in the United States during a sodium phosphate shortage. The patient did not experience any observable adverse effects from the y-site administration with PN. Following this event, the scenario was replicated to investigate any precipitation risk associated with the y-site administration. Additionally, a separate PN solution containing sodium phosphate rather than glycerophosphate was compounded and used in a laboratory setting to demonstrate the potential for harm had the patient's PN been compounded with an inorganic phosphate source. This replication of the error demonstrates the additional safety gained in relation to precipitation risk when PN solutions are compounded with sodium glycerophosphate in place of sodium phosphate. © 2017 American Society for Parenteral and Enteral Nutrition.

  10. A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons

    PubMed Central

    Martinez-Pinna, Juan; Soriano, Sergi; Tudurí, Eva; Nadal, Angel; de Castro, Fernando

    2018-01-01

    Ca2+-activated ion channels shape membrane excitability in response to elevations in intracellular Ca2+. The most extensively studied Ca2+-sensitive ion channels are Ca2+-activated K+ channels, whereas the physiological importance of Ca2+-activated Cl- channels has been poorly studied. Here we show that a Ca2+-activated Cl- currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca2+-dependent currents: the K+ [IK(Ca)] and CaCC. When the IK(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca2+-activated Cl- channels with anthracene-9′-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the CaCC responsible for ADPs

  11. A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons.

    PubMed

    Martinez-Pinna, Juan; Soriano, Sergi; Tudurí, Eva; Nadal, Angel; de Castro, Fernando

    2018-01-01

    Ca 2+ -activated ion channels shape membrane excitability in response to elevations in intracellular Ca 2+ . The most extensively studied Ca 2+ -sensitive ion channels are Ca 2+ -activated K + channels, whereas the physiological importance of Ca 2+ -activated Cl - channels has been poorly studied. Here we show that a Ca 2+ -activated Cl - currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca 2+ -dependent currents: the K + [I K(Ca) ] and CaCC. When the I K(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca 2+ -activated Cl - channels with anthracene-9'-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the Ca

  12. Critical Role of Nitric Oxide-cGMP Cascade in the Formation of cAMP-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Aonuma, Hitoshi; Mizunami, Makoto; Matsumoto, Yukihisa; Unoki, Sae

    2006-01-01

    Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have…

  13. Removal of chloride from MSWI fly ash.

    PubMed

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Analysis of proton wires in the enzyme active site suggests a mechanism of c-di-GMP hydrolysis by the EAL domain phosphodiesterases.

    PubMed

    Grigorenko, Bella L; Knyazeva, Marina A; Nemukhin, Alexander V

    2016-11-01

    We report for the first time a hydrolysis mechanism of the cyclic dimeric guanosine monophosphate (c-di-GMP) by the EAL domain phosphodiesterases as revealed by molecular simulations. A model system for the enzyme-substrate complex was prepared on the base of the crystal structure of the EAL domain from the BlrP1 protein complexed with c-di-GMP. The nucleophilic hydroxide generated from the bridging water molecule appeared in a favorable position for attack on the phosphorus atom of c-di-GMP. The most difficult task was to find a pathway for a proton transfer to the O3' atom of c-di-GMP to promote the O3'P bond cleavage. We show that the hydrogen bond network extended over the chain of water molecules in the enzyme active site and the Glu359 and Asp303 side chains provides the relevant proton wires. The suggested mechanism is consistent with the structural, mutagenesis, and kinetic experimental studies on the EAL domain phosphodiesterases. Proteins 2016; 84:1670-1680. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Calcium-dependent molecular fMRI using a magnetic nanosensor.

    PubMed

    Okada, Satoshi; Bartelle, Benjamin B; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca 2+ ] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  16. Calcium-dependent molecular fMRI using a magnetic nanosensor

    NASA Astrophysics Data System (ADS)

    Okada, Satoshi; Bartelle, Benjamin B.; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J.; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  17. Effects of dietary ammonium chloride and variations in calcium to phosphorus ratio on silica urolithiasis in sheep.

    PubMed

    Stewart, S R; Emerick, R J; Pritchard, R H

    1991-05-01

    Ammonium chloride was added to diets varying in Ca content to evaluate its potential in preventing silica urolith formation in sheep. A 2 x 2 factorial experiment involved wether lambs with ad libitum access to a diet of 50% grass hay and 50% ground oats plus supplement. The basal diet contained on a DM basis 3.3% SiO2, .31% Ca, .22% P, 11.6% CP, and 26% ADF. Treatments (38 to 39 lambs/treatment) consisted of a control (C), limestone to increase dietary calcium to .6% (L), 1% ammonium chloride (A), and L + A (LA). After a 118-d experimental period, siliceous kidney deposits were found only in C and L, with silica making up 93% to 95% of the urolithic ash. Urolith incidences were 13% (C) and 18% (L), respectively. The lack of urolith development in lambs fed A and LA (ammonium chloride effect, P less than .01) and a trend toward a lower urolith incidence in C vs L (P less than .02) support the hypothesis that acid-forming effects of the diet and a reduction in the dietary Ca to P ratio reduce silica urolith formation.

  18. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    PubMed

    Buccigrossi, Vittoria; Laudiero, Gabriella; Russo, Carla; Miele, Erasmo; Sofia, Morena; Monini, Marina; Ruggeri, Franco Maria; Guarino, Alfredo

    2014-01-01

    Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  19. Chloride Secretion Induced by Rotavirus Is Oxidative Stress-Dependent and Inhibited by Saccharomyces boulardii in Human Enterocytes

    PubMed Central

    Buccigrossi, Vittoria; Laudiero, Gabriella; Russo, Carla; Miele, Erasmo; Sofia, Morena; Monini, Marina; Ruggeri, Franco Maria; Guarino, Alfredo

    2014-01-01

    Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics. PMID:24918938

  20. Effect of calcium on the hemolytic activity of Stichodactyla helianthus toxin sticholysin II on human erythrocytes.

    PubMed

    Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Martinez, Diana; Soto, Carmen; Pupo, Mario; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos

    2009-11-01

    Sticholysin II (St II) is a toxin from the sea anemona Stichodactyla helianthus that produces erythrocytes lysis at low concentration and its activity depends on the presence of calcium. Calcium may act modifying toxin interaction with erythrocyte membranes or activating cellular processes which may result in a modified St II lytic action. In this study we are reporting that, in the presence of external K(+), extracellular calcium decreased St II activity on erythrocytes. On the other hand an increase of intracellular calcium promotes Sty II lytic activity. The effect of intracellular calcium was specifically studied in relation to membrane lipid translocation elicited by scramblases and how this action influence St II lytic activity on erythrocytes. We used 0.5 mmol/L calcium and 10 mmol/L A23187, as calcium ionophore, for scramblases activation and found increased St II activity associated to increase of intracellular calcium. N-ethyl maleimide (activator) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (inhibitor) were used as scramblases modulators in the assays which produced an increase and a decrease of the calcium effect, respectively. Results reported suggest an improved St II membrane pore-forming capacity promoted by intracellular calcium associated to membrane phospholipids translocation.

  1. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression☆

    PubMed Central

    Gómez-Sánchez, Rubén; Gegg, Matthew E.; Bravo-San Pedro, José M.; Niso-Santano, Mireia; Alvarez-Erviti, Lydia; Pizarro-Estrella, Elisa; Gutiérrez-Martín, Yolanda; Alvarez-Barrientos, Alberto; Fuentes, José M.; González-Polo, Rosa Ana; Schapira, Anthony H.V.

    2014-01-01

    Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24 h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3 h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection. PMID:24184327

  2. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants.

    PubMed

    Dow, J Maxwell; Fouhy, Yvonne; Lucey, Jean F; Ryan, Robert P

    2006-12-01

    Cyclic di-GMP is an almost ubiquitous second messenger in bacteria that was first described as an allosteric activator of cellulose synthase but is now known to regulate a range of functions, including virulence in human and animal pathogens. Two protein domains, GGDEF and EAL, are implicated in the synthesis and degradation, respectively, of cyclic di-GMP. These domains are widely distributed in bacteria, including plant pathogens. The majority of proteins with GGDEF and EAL domains contain additional signal input domains, suggesting that their activities are responsive to environmental cues. Recent studies have demonstrated that a third domain, HD-GYP, is also active in cyclic di-GMP degradation. In the plant pathogen Xanthomonas campestris pv. campestris, a two-component signal transduction system comprising the HD-GYP domain regulatory protein RpfG and cognate sensor RpfC positively controls virulence. The signals recognized by RpfC may include the cell-cell signal DSF, which also acts to regulate virulence in X. campestris pv. campestris. Here, we review these recent advances in our understanding of cyclic di-GMP signaling with particular reference to one or more roles in the bacterial pathogenesis of plants.

  3. From bedside to bench--meeting report of the 7th International Conference on cGMP "cGMP: generators, effectors and therapeutic implications" in Trier, Germany, from June 19th to 21st 2015.

    PubMed

    Friebe, Andreas; Sandner, Peter; Seifert, Roland

    2015-12-01

    During the past decade, our knowledge on the physiology, pathophysiology, basic pharmacology, and clinical pharmacology of the second messenger (cGMP) has increased tremendously. It is now well-established that cGMP, generated by soluble and particulate guanylate cyclases, is highly compartmentalized in cells and regulates numerous body functions. New cGMP-regulated physiological functions include meiosis and temperature perception. cGMP is involved in the genesis of numerous pathologies including cardiovascular, pulmonary, endocrine, metabolic, neuropsychiatric, eye, and tumor diseases. Several new clinical uses of stimulators and activators of soluble guanylate cyclase and of phosphodiesterase inhibitors such as heart failure, kidney failure, cognitive disorders, obesity bronchial asthma, and osteoporosis are emerging. The combination of neprilysin inhibitors-enhancing stimulation of the particulate guanylate cyclase pathway by preventing natriuretic peptide degradation-with angiotensin AT1 receptor antagonists constitutes a novel promising strategy for heart failure treatment. The role of oxidative stress in cGMP signaling, application of cGMP sensors, and gene therapy for degenerative eye diseases are emerging topics. It is anticipated that cGMP research will further prosper over the next years and reach out into more and more basic and clinical disciplines.

  4. Freezing and calcium chloride marination effects on beef tenderness and calpastatin activity.

    PubMed

    Whipple, G; Koohmaraie, M

    1992-10-01

    Because freezing samples decreases calpastatin activity and the application of exogenous calcium activates the calpain proteolytic system, thereby improving tenderness, the objective of this study was to determine whether freezing would enhance the effects of CaCl2 marination on the tenderness of beef steaks. Longissimus steaks were obtained from 10 beef steers 6 d postmortem. One-half of the steaks were frozen at -30 degrees C for 6 wk. The remaining steaks were treated fresh; one-half were subjected to a 150 mM CaCl2 marinade for 48 h. Frozen steaks were thawed and subjected to the same treatment. Treatments consisted of 1) fresh control, 2) fresh marinated, 3) frozen control, and 4) frozen marinated. Samples were taken before and after treatment (6 and 8 d) for calpastatin activity determination and d 8 for SDS-PAGE. Warner-Bratzler shear force values were measured 8 d postmortem. Data were analyzed using a paired comparison t-test procedure. Results showed that freezing and marination significantly decreased calpastatin activity. A .35-kg improvement (P = .07) in Warner-Bratzler shear force was observed with freezing, whereas a .78-kg improvement (P less than .01) in tenderness was observed with marination. However, prior freezing enhanced the effects of marination. Therefore, the decrease in calpastatin activity seemed to allow greater proteolysis by the calpains with the application of Ca2+. The SDS-PAGE of myofibril preparations indicated that more small polypeptide fragments (28 to 32 kDa) appeared and a 95-kDa fragment was more intense in the marinated samples than in control samples, indicating that proteolysis was enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Robinson, H.; Ke, H.

    2010-12-03

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  6. Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    PubMed Central

    Nebl, Thomas; Prieto, Judith Helena; Kapp, Eugene; Smith, Brian J.; Williams, Melanie J.; Yates, John R.; Cowman, Alan F.; Tonkin, Christopher J.

    2011-01-01

    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. PMID:21980283

  7. Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitman, D.C.

    1988-01-01

    The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line,more » indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.« less

  8. Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn

    PubMed Central

    Lakshminrusimha, Satyan; Wedgwood, Stephen; Czech, Lyubov; Gugino, Sylvia F.; Russell, James A.; Farrow, Kathryn N.; Steinhorn, Robin H.

    2012-01-01

    In the pulmonary vasculature, cGMP levels are regulated by soluble guanylate cyclase (sGC) and phosphodiesterase 5 (PDE5). We previously reported that lambs with persistent pulmonary hypertension of the newborn (PPHN) demonstrate increased reactive oxygen species (ROS) and altered sGC and PDE5 activity, with resultant decreased cGMP. The objective of this study was to evaluate the effects of hydrocortisone on pulmonary vascular function, ROS, and cGMP in the ovine ductal ligation model of PPHN. PPHN lambs were ventilated with 100% O2 for 24 h. Six lambs received 5 mg/kg hydrocortisone every 8 h times three doses (PPHN-hiHC), five lambs received 3 mg/kg hydrocortisone followed by 1 mg·kg−1·dose−1 times two doses (PPHN-loHC), and six lambs were ventilated with O2 alone (PPHN). All groups were compared with healthy 1-day spontaneously breathing lambs (1DSB). O2 ventilation of PPHN lambs decreased sGC activity, increased PDE5 activity, and increased ROS vs. 1DSB lambs. Both hydrocortisone doses significantly improved arterial-to-alveolar ratios relative to PPHN lambs, decreased PDE5 activity, and increased cGMP relative to PPHN lambs. High-dose hydrocortisone also increased sGC activity, decreased PDE5 expression, decreased ROS, and increased total vascular SOD activity vs. PPHN lambs. These data suggest that hydrocortisone treatment in clinically relevant doses improves oxygenation and decreases hyperoxia-induced changes in sGC and PDE5 activity, increasing cGMP levels. Hydrocortisone reduces ROS levels in part by increasing SOD activity in PPHN lambs ventilated with 100% O2. We speculate that hydrocortisone increases cGMP by direct effects on sGC and PDE5 expression and by attenuating abnormalities induced by oxidant stress. PMID:22198909

  9. Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1

    PubMed Central

    Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar

    2012-01-01

    Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948

  10. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1.

    PubMed

    Heidarsson, Pétur O; Naqvi, Mohsin M; Otazo, Mariela R; Mossa, Alessandro; Kragelund, Birthe B; Cecconi, Ciro

    2014-09-09

    Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.

  11. Lubiprostone: a chloride channel activator.

    PubMed

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  12. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.

    PubMed

    Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R

    2009-01-01

    The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.

  13. Enzymatic Production of c-di-GMP Using a Thermophilic Diguanylate Cyclase.

    PubMed

    Venkataramani, Prabhadevi; Liang, Zhao-Xun

    2017-01-01

    C-di-GMP has emerged as a prevalent bacterial messenger that controls a multitude of bacterial behaviors. Having access to milligram or gram quantities of c-di-GMP is essential for the biochemical and structural characterization of enzymes and effectors involved in c-di-GMP signaling. Although c-di-GMP can be synthesized using chemical methods, diguanylate cyclases (DGC)-based enzymatic synthesis is the most efficient method of preparing c-di-GMP today. Many DGCs are not suitable for c-di-GMP production because of poor protein stability and the presence of a c-di-GMP-binding inhibitory site (I-site) in most DGCs. We have identified and engineered a thermophilic DGC for efficient production of c-di-GMP for characterizing c-di-GMP signaling proteins and riboswitches. Importantly, residue replacement in the inhibitory I-site of the thermophilic DGC drastically relieved product inhibition to enable the production of hundreds of milligrams of c-di-GMP using 5-10 mg of this robust biocatalyst.

  14. Raman spectroscopic studies of chemical speciation in calcium chloride melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, Charles F.; Lavender, Curt A.

    2005-02-01

    Raman spectroscopy was applied to CaCl2 melts at 900 degrees C under both non-electrolyzed and electrolyzed conditions. The later used titania cathodes supplied by TIMET, Inc. and graphite anodes. Use of pulse-gating to collect the Raman spectra successfully eliminated any interference from black-body radiation and other stray light. The spectrum of molten CaCl2 exhibited no distinct, resolvable bands that could be correlated with a calcium chloride complex similar to MgCl42- in MgCl2 melts. Rather, the low frequency region of the spectrum was dominated by a broad “tail” arising from collective oscillations of both charge and mass in the molten saltmore » “network.” Additions of both CaO and Ca at concentrations of a percent or two resulted in no new features in the spectra. Addition of CO2, both chemically and via electrolysis at concentrations dictated by stability and solubility at 900 degrees C and 1 bar pressure, also produced no new bands that could be correlated with either dissolved CO2 or the carbonate ion. These results indicated that Raman spectroscopy, at least under the conditions evaluated in the research, was not well suited for following the reactions and coordination chemistry of calcium ions, nor species such as dissolved metallic Ca and CO2 that are suspected to impact current efficiency in titanium electrolysis cells using molten CaCl2. Raman spectra of TIMET titania electrodes were successfully obtained as a function of temperature up to 900 degrees C, both in air and in-situ in CaCl2 melts. However, spectra of these electrodes could only be obtained when the material was in the unreduced state. When reduced, either with hydrogen or within an electrolysis cell, the resulting electrodes exhibited no measurable Raman bands under the conditions used in this work.« less

  15. Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide.

    PubMed

    Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno

    2008-01-01

    Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.

  16. Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers

    PubMed Central

    Gründling, Angelika; Jenal, Urs; Ryan, Robert; Yildiz, Fitnat

    2015-01-01

    The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany) brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i) c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology, with major impacts in research fields ranging from human health to microbial ecology. PMID:26055111

  17. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles.

    PubMed

    Shuhaibar, Leia C; Egbert, Jeremy R; Norris, Rachael P; Lampe, Paul D; Nikolaev, Viacheslav O; Thunemann, Martin; Wen, Lai; Feil, Robert; Jaffe, Laurinda A

    2015-04-28

    Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2-4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.

  18. Xenopus laevis oocyte maturation is affected by metal chlorides.

    PubMed

    Marin, Matthieu; Slaby, Sylvain; Marchand, Guillaume; Demuynck, Sylvain; Friscourt, Noémie; Gelaude, Armance; Lemière, Sébastien; Bodart, Jean-François

    2015-08-01

    Few studies have been conducted using Xenopus laevis germ cells as oocytes, though these cells offer many advantages allowing both electrophysiological studies and morphological examination. Our aim was to investigate the effects of metal (cadmium, lead, cobalt and zinc) exposures using cell biology approaches. First, cell survival was evaluated with both phenotypical and electrophysiological approaches. Secondly, the effect of metals on oocyte maturation was assessed with morphological observations and electrophysiological recordings. From survival experiments, our results showed that metal chlorides did not affect cell morphology but strongly depolarized X. laevis oocyte resting potential. In addition, cadmium chloride was able to inhibit progesterone-induced oocyte maturation. By contrast, zinc, but also to a lesser extent cadmium, cobalt and lead, were able to enhance spontaneous oocyte maturation in the absence of progesterone stimulation. Finally, electrophysiological recordings revealed that some metal chlorides (lead, cadmium) exposures could disturb calcium signaling in X. laevis oocyte by modifying calcium-activated chloride currents. Our results demonstrated the high sensitivity of X. laevis oocytes toward exogenous metals such as lead and cadmium. In addition, the cellular events recorded might have a predictive value of effects occurring later on the ability of oocytes to be fertilized. Together, these results suggest a potential use of this cellular lab model as a tool for ecotoxicological assessment of contaminated fresh waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Conformation Changes, N-terminal Involvement, and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain*

    PubMed Central

    Wang, Huanchen; Robinson, Howard; Ke, Hengming

    2010-01-01

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98–147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes. PMID:20861010

  20. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  1. Immunocytology on microwave-fixed cells reveals rapid and agonist-specific changes in subcellular accumulation patterns for cAMP or cGMP.

    PubMed Central

    Barsony, J; Marx, S J

    1990-01-01

    We developed a method for cAMP and cGMP immunocytology based upon fixation by microwave irradiation. Fixation by microwave irradiation prevented three problems found with other fixation methods: nucleotide loss from cells, nucleotide diffusion within cells, and chemical modification of immunologic epitopes. Six agonists (four that stimulate adenylate cyclase and two that stimulate guanylate cyclase) produced cAMP or cGMP accumulation patterns that were agonist-specific, dose-dependent, detectable at physiologic concentrations of hormone, and time-dependent within 15 sec to 30 min. cAMP accumulation after 1 mM forskolin was greatest in the nucleus. Isoproterenol, prostaglandin E2, or calcitonin caused initial accumulation of cAMP along the plasma membrane, but later accumulation was greater in the cytoplasm. With calcitonin the later accumulation of cAMP was selectively perinuclear and along the nuclear membrane. Sodium nitroprusside stimulated cGMP accumulation diffusely throughout the cytoplasm. Atrial natriuretic peptide initiated cGMP accumulation near the plasma membrane, and cGMP accumulation moved from there into the cytoplasm. In conclusion, microwave irradiation preserved cell structure and allowed visualization of expected as well as unsuspected changes in intracellular accumulation patterns of cAMP and cGMP. Images PMID:2153973

  2. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans.

    PubMed

    Hahm, Jeong-Hoon; Kim, Sunhee; Paik, Young-Ki

    2009-08-01

    G-proteins, including GPA-3, play an important role in regulating physiological responses in Caenorhabditis elegans. When confronted with an environmental stimulus such as dauer pheromone, or poor nutrients, C. elegans receives and integrates external signals through its nervous system (i.e. amphid neurons), which interprets and translates them into biological action. Here it is shown that a suppressed neuronal cGMP level caused by GPA-3 activation leads to a significant increase (47.3%) in the mean lifespan of adult C. elegans through forkhead transcription factor family O (FOXO)-mediated signal. A reduced neuronal cGMP level was found to be caused by an increased cGMP-specific phosphodiesterase activity at the transcriptional level. Our results using C. elegans mutants with specific deficits in TGF-beta and FOXO RNAi system suggest a mechanism in that cGMP, TGF-beta, and FOXO signaling interact to differentially produce the insulin-like molecules, ins-7 and daf-28, causing suppression of the insulin/IGF-1 pathway and promoting lifespan extension. Our findings provide not only a new mechanism of cGMP-mediated induction of longevity in adult C. elegans but also a possible therapeutic strategy for neuronal disease, which has been likened to brain diabetes.

  3. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons

    PubMed Central

    Wang, W.; Wildes, C. P.; Pattarabanjird, T.; Sanchez, M. I.; Glober, G.F.; Matthews, G. A.; Tye, K. M.; Ting, A. Y

    2017-01-01

    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically-encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally-applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high-to-low calcium signal ratio of 10 after 10 minutes of stimulation. Channelrhodopsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium. PMID:28650461

  4. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.

    PubMed

    Wang, Wenjing; Wildes, Craig P; Pattarabanjird, Tanyaporn; Sanchez, Mateo I; Glober, Gordon F; Matthews, Gillian A; Tye, Kay M; Ting, Alice Y

    2017-09-01

    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.

  5. Investigation of factors influencing chloride extraction efficiency during electrochemical chloride extraction from reinforcing concrete

    NASA Astrophysics Data System (ADS)

    Sharp, Stephen R.

    2005-11-01

    residue revealed that it contains calcium carbonate, calcium chloride, and other yet unidentified minor components when calcium hydroxide was used as the electrolyte. The surface film can be completely removed mechanically or to some extent inhibited chemically, with both of these processes resulting in an increase in the efficiency of the electrochemical chloride extraction process. In addition, an obvious relationship between the cover depth, water-to-cement ratio, and chloride extraction efficiency does not exist, however, cover depth does influence the current density. The final phase of this study will be presented in a VTRC/FHWA final report. This report will include the results that are presented in this dissertation, in addition to the results from the ongoing research. It will also include an estimation of the additional service life that can be expected following treatment.

  6. The crucial role of cyclic GMP in the eclosion hormone mediated signal transduction in the silkworm metamorphoses.

    PubMed

    Shibanaka, Y; Hayashi, H; Okada, N; Fujita, N

    1991-10-31

    The signal transduction of the peptide, eclosion hormone, in the silkworm Bombyx mori appears to be mediated via the second messenger cyclic GMP throughout their life cycle. Injection of 8-bromo-cGMP induced the ecdysis behavior in pharate adults with similar latency to eclosion hormone-induced ecdysis; the moulting occurred 50-70 min after the injection. The potency of 8Br-cGMP was 10(2) fold higher than that of cGMP and the efficacy was increased by the co-injection of the phosphodiesterase inhibitor IBMX. On the other hand, in the silkworm pupal ecdysis the eclosion hormone and also 8Br-cGMP induced the moulting behavior in a dose-dependent manner. The adult development of the ability to respond to 8Br-cGMP took place concomitantly with the response to the eclosion hormone. Both the developmental time courses were shifted by a shift of light and dark cycles. Accordingly, the sensitivities to the peptide and cyclic nucleotide developed correspondently under the light and dark circadian rhythm. Thus throughout the silkworm life cycle, eclosion hormone is effective to trigger the ecdysis behavior and cGMP plays a crucial role as the second messenger in the eclosion hormone-mediated signal transduction.

  7. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE PAGES

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; ...

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  8. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  9. Dimeric c-di-GMP Is Required for Post-translational Regulation of Alginate Production in Pseudomonas aeruginosa*

    PubMed Central

    Whitney, John C.; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Robinson, Howard; Ohman, Dennis E.; Howell, P. Lynne

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa. PMID:25817996

  10. 8-pCPT-cGMP prevents mitochondrial depolarization and improves the outcome of steatotic partial liver transplantation

    PubMed Central

    Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Lemasters, John J; Zhong, Zhi

    2017-01-01

    Permeant cGMP analogs prevent the mitochondria permeability transition (MPT) in vitro. In this study, we explored whether 8-pCPT-cGMP prevents the MPT and decreases post-transplant damage to fatty partial liver grafts (FPG) in vivo. Rats were fed a control or high-fat, high-fructose diet for 2-week. Lean and fatty liver explants were reduced in size ex vivo to ~35% and stored in the University of Wisconsin solution with and without 8-pCPT-cGMP (300 µM) for 2 h. After transplantation, alanine aminotransferase release (indicator of hepatocellular injury), hyperbilirubinemia (indicator of poor liver function), and cell death were all higher in FPG than in lean partial grafts (LPG). Liver regeneration increased in LPG but was suppressed in FPG. 8-pCPT-cGMP blunted graft injury, improved liver regeneration and function, and increased survival of FPG. Hepatic mitochondrial depolarization detected by intravital multiphoton microscopy of rhodamine 123 in living rats was ~3.5-fold higher in FPG than in LPG. 8-pCPT-cGMP decreased mitochondrial depolarization in FPG almost to the level of LPG. Activation of mammalian target of rapamycin (mTOR), an energy sensitive kinase that stimulates cell proliferation and growth, and p70S6 kinase, a downstream signaling molecule of mTOR, was increased in LPG but suppressed in FPG. 8-pCPT-cGMP restored the activity of mTOR and p70S6 kinase in FPG. 8-pCPT-cGMP also increased activation of cAMP response element-binding protein (CREB) and expression of cyclins D1 and E in FPG. Non-alcoholic steatosis increases injury and suppresses regeneration after partial liver transplantation, at least in part, due to more severe mitochondrial dysfunction. Protection of mitochondria with a cGMP analog effectively improves outcomes of FPG transplantation. PMID:28694919

  11. A9C sensitive Cl− - accumulation in A. thaliana root cells during salt stress is controlled by internal and external calcium

    PubMed Central

    Saleh, Livia; Plieth, Christoph

    2013-01-01

    The involvement of chloride in salt stress symptoms and salt tolerance mechanisms in plants has been less investigated in the past. Therefore, we studied the salt-induced chloride influx in Arabidopsis expressing the GFP-based anion indicator Clomeleon. High salt concentrations induce two phases of chloride influx. The fast kinetic phase is likely caused by membrane depolarization, and is assumed to be mediated by channels. This is followed by a slower "saturation" phase, where chloride is accumulated in the cytoplasm. Both phases of chloride uptake are dependent on the presence of external calcium. In general: with high [Ca2+] less chloride is accumulated in the cytoplasm. Surprisingly, also the internal calcium availability has an impact on chloride transport. A complete block of the second phase of chloride influx is achieved by the anion channel blocker A9C and trivalent cations (La3+, Gd3+, and Al3+). Other channel blockers and diuretics were found to inhibit the process partially. The results suggest that several transporter species are involved here, including electroneutral cation-chloride-cotransporters, and a part of chloride possibly enters the cells through cation channels after salt application. PMID:23603974

  12. Chloride concentration affects Kv channel voltage-gating kinetics: Importance of experimental anion concentrations.

    PubMed

    Bekar, L K; Loewen, M E; Forsyth, G W; Walz, W

    2005-09-30

    Chloride concentration has been shown to have a dramatic impact on protein folding and subsequent tertiary conformation [K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300-311; I. Jelesarov, E. Durr, R.M. Thomas, H.R. Bosshard, Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper), Biochemistry 37 (1998) 7539-7550]. As it is known that Kv channel gating is linked to the stability of the cytoplasmic T1 multimerization domain conformation [D.L. Minor, Y.F. Lin, B.C. Mobley, A. Avelar, Y.N. Jan, L.Y. Jan, J.M. Berger, The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel, Cell 102 (2000) 657-670; B.A. Yi, D.L. Minor Jr., Y.F. Lin, Y.N. Jan, L.Y. Jan, Controlling potassium channel activities: interplay between the membrane and intracellular factors, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 11016-11023] and that intracellular chloride concentration has been linked to Kv channel kinetics [L.K. Bekar, W. Walz, Intracellular chloride modulates A-type potassium currents in astrocytes, Glia 39 (2002) 207-216; W.B. Thoreson, S.L. Stella, Anion modulation of calcium current voltage dependence and amplitude in salamander rods, Biochim. Biophys. Acta 1464 (2000) 142-150], the objective of the present study was to address how chloride concentration changes affect Kv channel kinetics more closely in an isolated expression system. Initially, no significant chloride concentration-dependent effects on channel steady-state gating kinetics were observed. Only after disruption of the cytoskeleton with cytochalasin-D did we see significant chloride concentration-dependent shifts in gating kinetics. This suggests that the shift in gating kinetics is mediated through effects of intracellular chloride concentration on cytoplasmic domain tertiary

  13. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channelmore » expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.« less

  14. The role of cGMP signalling in regulating life cycle progression of Plasmodium.

    PubMed

    Hopp, Christine S; Bowyer, Paul W; Baker, David A

    2012-08-01

    The 3'-5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is the main mediator of cGMP signalling in the malaria parasite. This article reviews the role of PKG in Plasmodium falciparum during gametogenesis and blood stage schizont rupture, as well as the role of the Plasmodium berghei orthologue in ookinete differentiation and motility, and liver stage schizont development. The current views on potential effector proteins downstream of PKG and the mechanisms that may regulate cyclic nucleotide levels are presented. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes.

    PubMed

    Ueoka-Nakanishi, Hanayo; Sazuka, Takashi; Nakanishi, Yoichi; Maeshima, Masayoshi; Mori, Hitoshi; Hisabori, Toru

    2013-07-01

    Thioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained. These included two calcium-sensing proteins: a phosphoinositide-specific phospholipase 2 (AtPLC2) and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% of that of untreated AtCPK21, but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond (Cys97-Cys108) that is responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signaling pathways is discussed. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  16. An open source tool for automatic spatiotemporal assessment of calcium transients and local ‘signal-close-to-noise’ activity in calcium imaging data

    PubMed Central

    Martin, Corinna; Jablonka, Sibylle

    2018-01-01

    Local and spontaneous calcium signals play important roles in neurons and neuronal networks. Spontaneous or cell-autonomous calcium signals may be difficult to assess because they appear in an unpredictable spatiotemporal pattern and in very small neuronal loci of axons or dendrites. We developed an open source bioinformatics tool for an unbiased assessment of calcium signals in x,y-t imaging series. The tool bases its algorithm on a continuous wavelet transform-guided peak detection to identify calcium signal candidates. The highly sensitive calcium event definition is based on identification of peaks in 1D data through analysis of a 2D wavelet transform surface. For spatial analysis, the tool uses a grid to separate the x,y-image field in independently analyzed grid windows. A document containing a graphical summary of the data is automatically created and displays the loci of activity for a wide range of signal intensities. Furthermore, the number of activity events is summed up to create an estimated total activity value, which can be used to compare different experimental situations, such as calcium activity before or after an experimental treatment. All traces and data of active loci become documented. The tool can also compute the signal variance in a sliding window to visualize activity-dependent signal fluctuations. We applied the calcium signal detector to monitor activity states of cultured mouse neurons. Our data show that both the total activity value and the variance area created by a sliding window can distinguish experimental manipulations of neuronal activity states. Notably, the tool is powerful enough to compute local calcium events and ‘signal-close-to-noise’ activity in small loci of distal neurites of neurons, which remain during pharmacological blockade of neuronal activity with inhibitors such as tetrodotoxin, to block action potential firing, or inhibitors of ionotropic glutamate receptors. The tool can also offer information about

  17. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis

    PubMed Central

    De Angeli, Alexis; Zhang, Jingbo; Meyer, Stefan; Martinoia, Enrico

    2013-01-01

    Water deficit strongly affects crop productivity. Plants control water loss and CO2 uptake by regulating the aperture of the stomatal pores within the leaf epidermis. Stomata aperture is regulated by the two guard cells forming the pore and changing their size in response to ion uptake and release. While our knowledge about potassium and chloride fluxes across the plasma membrane of guard cells is advanced, little is known about fluxes across the vacuolar membrane. Here we present the molecular identification of the long-sought-after vacuolar chloride channel. AtALMT9 is a chloride channel activated by physiological concentrations of cytosolic malate. Single-channel measurements demonstrate that this activation is due to a malate-dependent increase in the channel open probability. Arabidopsis thaliana atalmt9 knockout mutants exhibited impaired stomatal opening and wilt more slowly than the wild type. Our findings show that AtALMT9 is a vacuolar chloride channel having a major role in controlling stomata aperture. PMID:23653216

  18. Calcium dependent current recordings in Xenopus laevis oocytes in microgravity

    NASA Astrophysics Data System (ADS)

    Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel

    2017-12-01

    Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.

  19. Development of a thresholding algorithm for calcium classification at multiple CT energies

    NASA Astrophysics Data System (ADS)

    Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.

    2017-05-01

    The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.

  20. Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP

    PubMed Central

    Okegbe, Chinweike; Fields, Blanche L.; Cole, Stephanie J.; Beierschmitt, Christopher; Morgan, Chase J.; Price-Whelan, Alexa; Stewart, Richard C.; Lee, Vincent T.; Dietrich, Lars E. P.

    2017-01-01

    Diverse organisms secrete redox-active antibiotics, which can be used as extracellular electron shuttles by resistant microbes. Shuttle-mediated metabolism can support survival when substrates are available not locally but rather at a distance. Such conditions arise in multicellular communities, where the formation of chemical gradients leads to resource limitation for cells at depth. In the pathogenic bacterium Pseudomonas aeruginosa PA14, antibiotics called phenazines act as oxidants to balance the intracellular redox state of cells in anoxic biofilm subzones. PA14 colony biofilms show a profound morphogenic response to phenazines resulting from electron acceptor-dependent inhibition of ECM production. This effect is reminiscent of the developmental responses of some eukaryotic systems to redox control, but for bacterial systems its mechanistic basis has not been well defined. Here, we identify the regulatory protein RmcA and show that it links redox conditions to PA14 colony morphogenesis by modulating levels of bis-(3′,5′)-cyclic-dimeric-guanosine (c-di-GMP), a second messenger that stimulates matrix production, in response to phenazine availability. RmcA contains four Per-Arnt-Sim (PAS) domains and domains with the potential to catalyze the synthesis and degradation of c-di-GMP. Our results suggest that phenazine production modulates RmcA activity such that the protein degrades c-di-GMP and thereby inhibits matrix production during oxidizing conditions. RmcA thus forms a mechanistic link between cellular redox sensing and community morphogenesis analogous to the functions performed by PAS-domain–containing regulatory proteins found in complex eukaryotes. PMID:28607054

  1. Microfluidics platform for single-shot dose-response analysis of chloride channel-modulating compounds.

    PubMed

    Jin, Byung-Ju; Ko, Eun-A; Namkung, Wan; Verkman, A S

    2013-10-07

    We previously developed cell-based kinetics assays of chloride channel modulators utilizing genetically encoded yellow fluorescent proteins. Fluorescence platereader-based high-throughput screens yielded small-molecule activators and inhibitors of the cAMP-activated chloride channel CFTR and calcium-activated chloride channels, including TMEM16A. Here, we report a microfluidics platform for single-shot determination of concentration-activity relations in which a 1.5 × 1.5 mm square area of adherent cultured cells is exposed for 5-10 min to a pseudo-logarithmic gradient of test compound generated by iterative, two-component channel mixing. Cell fluorescence is imaged following perfusion with an iodide-containing solution to give iodide influx rate at each location in the image field, thus quantifying modulator effects over a wide range of concentrations in a single measurement. IC50 determined for CFTR and TMEM16A activators and inhibitors by single-shot microfluidics were in agreement with conventional plate reader measurements. The microfluidics approach developed here may accelerate the discovery and characterization of chloride channel-targeted drugs.

  2. Effect of extracellular ATP on contraction, cytosolic calcium activity, membrane voltage and ion currents of rat mesangial cells in primary culture.

    PubMed Central

    Pavenstädt, H.; Gloy, J.; Leipziger, J.; Klär, B.; Pfeilschifter, J.; Schollmeyer, P.; Greger, R.

    1993-01-01

    1. The effects of extracellular ATP on contraction, membrane voltage (Vm), ion currents and intracellular calcium activity [Ca2+]i were studied in rat mesangial cells (MC) in primary culture. 2. Addition of extracellular ATP (10(-5) and 10(-4) M) to MC led to a cell contraction which was independent of extracellular calcium. 3. Membrane voltage (Vm) and ion currents were measured with the nystatin patch clamp technique. ATP induced a concentration-dependent transient depolarization of Vm (ED50: 2 x 10(-6) M). During the transient depolarization ion currents were monitored simultaneously and showed an increase of the inward- and outward current. 4. In a buffer with a reduced extracellular chloride concentration (from 145 to 30 mM) ATP induced a depolarization augmented to -4 +/- 4 mV. 5. ATP-gamma-S and 2-methylthio-ATP depolarized Vm to the same extent as ATP, whereas alpha,beta-methylene-ATP (all 10(-5) M) had no effect on Vm. 6. The Ca2+ ionophore, A23187, depolarized Vm transiently from -51 +/- 2 to -28 +/- 4 mV and caused an increase of the inward current. 7. The intracellular calcium activity [Ca2+]i was measured with the fura-2 technique. ATP stimulated a concentration-dependent increase of [Ca2+]i (ED50: 5 x 10(-6) M). The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. 8. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free buffer, whereas the plateau was abolished. Verapamil (10(-4) M) did not inhibit the [Ca2+]i increase induced by ATP.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:7691366

  3. Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation

    PubMed Central

    Kovac, S; Domijan, A-M; Walker, M C; Abramov, A Y

    2014-01-01

    Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na+] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets. PMID:25275601

  4. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  5. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells.

    PubMed

    Trexler, Adam J; Taraska, Justin W

    2017-11-01

    The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease. Published by Elsevier Ltd.

  6. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conducemore » to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free

  7. High sodium chloride intake is associated with low bone density in calcium stone-forming patients.

    PubMed

    Martini, L A; Cuppari, L; Colugnati, F A; Sigulem, D M; Szejnfeld, V L; Schor, N; Heilberg, I P

    2000-08-01

    Although renal stone disease has been associated with reduced bone mass, the impact of nutrient intake on bone loss is unknown. The present study was undertaken to investigate the influence of nutrient intake on bone density of 85 calcium stone-forming (CSF) patients (47 male and 38 premenopausal females) aged 41+/-11 years (X+/-SD). Bone mineral density (BMD) was measured using dual energy X-ray absorptiometry at the lumbar spine (L2-L4) and femoral neck sites, and low BMD was defined as a T score < -1 (WHO criteria). A 4-day dietary record and a 24-hour urine sample were obtained from each patient for the assessment of nutrient intake and urinary calcium (U(Ca)), sodium (U(Na)), phosphate and creatinine excretion. Forty-eight patients (56%) presented normal BMD and 37 (44%) low BMD. There were no statistical differences regarding age, weight, height, body mass index, protein, calcium and phosphorus intakes between both groups. The mean U(Ca), phosphorus and nitrogen appearance also did not differ between groups. However, there was a higher percentage of hypercalciuria among low vs normal BMD patients (62 vs 33%, p < 0.05). Low BMD patients presented a higher mean sodium chloride (NaCl) intake and excretion (UNa) than normal BMD (14+/-5 vs 12+/-4 g/day and 246+/-85 vs 204+/-68 mEq/day, respectively p < 0.05). The percentage of patients presenting NaCl intake > or = 16 g/day was also higher among low vs normal BMD patients (35 vs 12%, p < 0.05). After adjustment for calcium and protein intakes, age, weight, body mass index, urinary calcium, citrate and uric acid excretion, and duration of stone disease, multiple-regression analysis showed that a high NaCl intake (> or = 16 g/day) was the single variable that was predictive of risk of low bone density in CSF patients (odds ratio = 3.8). These data suggest that reducing salt intake should be recommended for CSF patients presenting hypercalciuria and osteopenia.

  8. The role of cGMP as a mediator of lipolysis in bovine oocytes and its effects on embryo development and cryopreservation.

    PubMed

    Schwarz, Kátia R L; de Castro, Fernanda C; Schefer, Letícia; Botigelli, Ramon C; Paschoal, Daniela M; Fernandes, Hugo; Leal, Cláudia L V

    2018-01-01

    This study aimed to determine the influence of cyclic guanosine 3'5'-monophosphate (cGMP) and cGMP-dependent kinase (PKG) during in vitro maturation (IVM) on lipolysis-related parameters in bovine cumulus-oocyte complexes (COCs), and on embryo development and cryosurvival. COCs were matured with cGMP/PKG modulators and assessed for metaphase II rates (MII), cGMP levels, lipid content in oocytes (OO), transcript abundance for genes involved in lipolysis (ATGL) and lipid droplets (PLIN2) in cumulus cells (CC) and OO, and presence of phosphorylated (active) hormone sensitive lipase (HSLser563) in OO. Embryo development, lipid contents and survival to vitrification were also assessed. Phosphodiesterase 5 inhibition (PDE5; cGMP-hydrolyzing enzyme) with 10-5M sildenafil (SDF) during 24 h IVM increased cGMP in COCs (56.9 vs 9.5 fMol/COC in untreated controls, p<0.05) and did not affect on maturation rate (84.3±6.4% MII). Fetal calf serum (FCS) in IVM medium decreased cGMP in COCs compared to bovine serum albumin (BSA) + SDF (19.6 vs 66.5 fMol/COC, respectively, p<0.05). FCS increased lipid content in OO (40.1 FI, p<0.05) compared to BSA (34.6 FI), while SDF decreased (29.8 and 29.6 FI, with BSA or FCS, respectively p<0.05). PKG inhibitor (KT5823) reversed this effect (38.9 FI, p<0.05). ATGL and PLIN2 transcripts were detected in CC and OO, but were affected by cGMP and PKG only in CC. HSLser563 was detected in OO matured with or without modulators. Reduced lipid content in embryos were observed only when SDF was added during IVM and IVC (27.6 FI) compared to its use in either or none of the culture periods (34.2 FI, p<0.05). Survival to vitrification was unaffected by SDF. In conclusion, cGMP and PKG are involved in lipolysis in OO and possibly in CC and embryos; serum negatively affects this pathway, contributing to lipid accumulation, and cGMP modulation may reduce lipid contents in oocytes and embryos, but without improving embryo cryotolerance.

  9. [Calcium carbonate for the treatment of hyperphosphatemia in chronic hemodialysis patients].

    PubMed

    Kiss, D; Battegay, M; Meier, C; Lyrer, A

    1990-03-03

    Hyperphosphatemia in chronic hemodialysis patients is usually treated with aluminium containing phosphate binders. In recent years there has been increasing evidence of serious complications due to aluminium accumulation. We have investigated a new calcium carbonate preparation with an HCl-resistant capsule designed to prevent gastrointestinal side effects. Its phosphate binding capacity in comparison to aluminium chloride hydroxide was investigated in 17 chronic hemodialysis patients. The dose of the phosphate binder was adjusted regularly so that the serum phosphorus levels were below 1.8 mmol/l. The mean dose of aluminium chloride hydroxide was 3.36 g/day and of calcium carbonate 4.96 g/day. The mean (+/- SD) serum calcium level was 2.58 +/- 0.11 mmol/l under aluminium chloride hydroxide and 2.50 +/- 0.25 mmol/l under calcium carbonate. The mean phosphorus level was 1.69 +/- 0.31 mmol/l under aluminium chloride hydroxide and 1.71 +/- 0.33 under calcium carbonate. Serum aluminium fell from 64.5 +/- 14.4 micrograms/l to 28.5 +/- 17.5 micrograms/l after 3 months.

  10. Quality Risk Management: Putting GMP Controls First.

    PubMed

    O'Donnell, Kevin; Greene, Anne; Zwitkovits, Michael; Calnan, Nuala

    2012-01-01

    This paper presents a practical way in which current approaches to quality risk management (QRM) may be improved, such that they better support qualification, validation programs, and change control proposals at manufacturing sites. The paper is focused on the treatment of good manufacturing practice (GMP) controls during QRM exercises. It specifically addresses why it is important to evaluate and classify such controls in terms of how they affect the severity, probability of occurrence, and detection ratings that may be assigned to potential failure modes or negative events. It also presents a QRM process that is designed to directly link the outputs of risk assessments and risk control activities with qualification and validation protocols in the GMP environment. This paper concerns the need for improvement in the use of risk-based principles and tools when working to ensure that the manufacturing processes used to produce medicines, and their related equipment, are appropriate. Manufacturing processes need to be validated (or proven) to demonstrate that they can produce a medicine of the required quality. The items of equipment used in such processes need to be qualified, in order to prove that they are fit for their intended use. Quality risk management (QRM) tools can be used to support such qualification and validation activities, but their use should be science-based and subject to as little subjectivity and uncertainty as possible. When changes are proposed to manufacturing processes, equipment, or related activities, they also need careful evaluation to ensure that any risks present are managed effectively. This paper presents a practical approach to how QRM may be improved so that it better supports qualification, validation programs, and change control proposals in a more scientific way. This improved approach is based on the treatment of what are called good manufacturing process (GMP) controls during those QRM exercises. A GMP control can be considered

  11. Mechanisms for type-II vitellogenesis-inhibiting hormone suppression of vitellogenin transcription in shrimp hepatopancreas: Crosstalk of GC/cGMP pathway with different MAPK-dependent cascades.

    PubMed

    Chen, Ting; Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun

    2018-01-01

    Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans.

  12. Mechanisms for type-II vitellogenesis-inhibiting hormone suppression of vitellogenin transcription in shrimp hepatopancreas: Crosstalk of GC/cGMP pathway with different MAPK-dependent cascades

    PubMed Central

    Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun

    2018-01-01

    Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans. PMID:29590153

  13. Electrochemical cell with calcium anode

    DOEpatents

    Cooper, John F.; Hosmer, Pamela K.; Kelly, Benjamin E.

    1979-01-01

    An electrochemical cell comprising a calcium anode and a suitable cathode in an alkaline electrolyte consisting essentially of an aqueous solution of an hydroxide and a chloride. Specifically disclosed is a mechanically rechargeable calcium/air fuel cell with an aqueous NaOH/NaCl electrolyte.

  14. Structural Insight into the Mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchigvintsev, A.; Xu, X.; Singer, A.

    2010-08-01

    Cyclic diguanylate (or bis-(3'-5') cyclic dimeric guanosine monophosphate; c-di-GMP) is a ubiquitous second messenger that regulates diverse cellular functions, including motility, biofilm formation, cell cycle progression, and virulence in bacteria. In the cell, degradation of c-di-GMP is catalyzed by highly specific EAL domain phosphodiesterases whose catalytic mechanism is still unclear. Here, we purified 13 EAL domain proteins from various organisms and demonstrated that their catalytic activity is associated with the presence of 10 conserved EAL domain residues. The crystal structure of the TBD1265 EAL domain was determined in free state (1.8 {angstrom}) and in complex with c-di-GMP (2.35 {angstrom}), andmore » unveiled the role of conserved residues in substrate binding and catalysis. The structure revealed the presence of two metal ions directly coordinated by six conserved residues, two oxygens of c-di-GMP phosphate, and potential catalytic water molecule. Our results support a two-metal-ion catalytic mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases.« less

  15. Adrenomedullin increased the short-circuit current in the pig oviduct through chloride channels via the CGRP receptor: mediation by cAMP and calcium ions but not by nitric oxide.

    PubMed

    Liao, S B; Cheung, K H; Cheung, M P L; To, Y T; O, W S; Tang, F

    2013-10-01

    The oviduct serves as a site for the fertilization of the ovum and the transport of the conceptus down to the uterus for implantation. In this study, we investigated the presence of adrenomedullin (ADM) and its receptor component proteins in the pig oviduct. The effect of ADM on oviductal secretion, the specific receptor, and the mechanisms involved were also investigated. The presence of ADM and its receptor component proteins in the pig oviduct were confirmed using immunostaining. Short-circuit current (I(sc)) technique was employed to study chloride ion secretion in the oviductal epithelium. ADM increased I(sc) through cAMP- and calcium-activated chloride channels, and this effect could be inhibited by the CGRP receptor antagonist, hCGRP8-37. In contrast, the nitric oxide synthase inhibitor, L-NG-nitroarginine methyl ester (L-NAME), could not block the effect of ADM on I(sc). In summary, ADM may increase oviductal fluid secretion via chloride secretion independent of the nitric oxide pathway for the transport of sperm and the conceptus.

  16. Promotion of beta-glucan synthase activity in corn microsomal membranes by calcium and protein phosphorylation

    NASA Technical Reports Server (NTRS)

    Paliyath, G.; Poovaiah, B. W.

    1988-01-01

    Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.

  17. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    PubMed

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    PubMed

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium.

    PubMed

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Kishine, Naomi; Fujimoto, Zui; Yaoi, Katsuro

    2017-09-01

    The crystal structure of metagenomic β-xylosidase/α-l-arabinofuranosidase CoXyl43, activated by calcium ions, was determined in its apo and complexed forms with xylotriose or l-arabinose in the presence and absence of calcium. The presence of calcium ions dramatically increases the kcat of CoXyl43 for p-nitrophenyl β-d-xylopyranoside and reduces the Michaelis constant for p-nitrophenyl α-l-arabinofuranoside. CoXyl43 consists of a single catalytic domain comprised of a five-bladed β-propeller. In the presence of calcium, a single calcium ion was observed at the centre of this catalytic domain, behind the catalytic pocket. In the absence of calcium, the calcium ion was replaced with one sodium ion and one water molecule, and the positions of these cations were shifted by 1.3 Å. The histidine-319 side chain, which coordinates to the 2-hydroxyl oxygen atom of the bound xylose molecule in the catalytic pocket, also coordinates to the calcium ion, but not to the sodium ion. The calcium-dependent increase in activity appears to be caused by the structural change in the catalytic pocket induced by the tightly bound calcium ion and coordinating water molecules, and by the protonation state of glutamic acid-268, the catalytic acid of the enzyme. Our findings further elucidate the complex relationship between metal ions and glycosidases. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  1. Atrial natriuretic peptide induces acrosomal exocytosis in bovine spermatozoa.

    PubMed

    Zamir, N; Barkan, D; Keynan, N; Naor, Z; Breitbart, H

    1995-08-01

    The induction of acrosomal exocytosis in capacitated bull spermatozoa by atrial natriuretic peptide (ANP) was studied in vitro. ANP markedly stimulated acrosomal exocytosis in a calcium-dependent manner. Typically, ANP exerts its action via activation of the ANP receptor (ANPR-A), a particulate guanylyl cyclase-linked receptor, and subsequent formation of guanosine 3',5'-cyclic monophosphate (cGMP). We found that the ANP-induced acrosome reaction was inhibited by the competitive ANPR-A receptor antagonist-anantin, indicating a receptor-mediated effect. We could mimic the effect of ANP on the acrosome reaction by using 8-bromo-cGMP, suggesting that cGMP may serve as a signal transducer mediating the acrosome reaction. Indeed, the ANP-induced acrosome reaction was associated with elevation of cGMP levels. cGMP can also be formed by activation of the soluble form of guanylyl cyclase. Sodium nitroprusside (SNP) stimulated cGMP accumulation and acrosome reaction of capacitated spermatozoa. Thus ANP and the nitric oxide-releasing compound SNP, via activation of guanylyl cyclase (the former activating the particulate and the latter activating the soluble form of the enzyme), may play a significant role in the induction of the acrosome reaction.

  2. Lubiprostone: chloride channel activator for chronic constipation.

    PubMed

    Rivkin, Anastasia; Chagan, Larisa

    2006-12-01

    Chronic constipation is a common and costly health problem occurring in approximately 4.5 million Americans. Current management of constipation is suboptimal and requires a stepwise approach using a combination of laxatives to decrease symptoms. The objective of this review was to describe the efficacy and safety of a new therapeutic entity, lubiprostone, recently approved by the US Food and Drug Administration for the treatment of chronic idiopathic constipation. Computerized searches of MEDLINE and International Pharmaceutical Abstracts were conducted (1966-July 10, 2006). Search terms utilized were lubiprostone, RU-0211, and chronic constipation. References of selected articles were searched for additional articles or abstracts. All relevant published literature regarding lubiprostone was included in this review. Pertinent abstracts presented at meetings of the American College of Gastroenterology and Digestive Diseases Week were also included. Lubiprostone activates a chloride channel (ie, subtype 2) and increases chloride and fluid secretion into the intestines, resulting in relief of constipation. It is poorly absorbed after oral administration, and its metabolism occurs primarily in the stomach and jejunum. Lubiprostone was evaluated in 6 placebo-controlled, double-blind, randomized Phase II or III clinical trials. Overall, in clinical trials, >1400 patients were exposed to 24 mug of lubiprostone BID for up to 48 weeks. It improved the number of bowel movements, stool consistency, bloating, and global assessment of constipation compared with placebo (P < 0.05). Nausea was the most common adverse effect reported in clinical trials, occurring in 30.9% of patients. However, nausea was dose dependent and decreased when lubiprostone was given with food. Lubiprostone is the first in its class of chloride channel activators that results in improvement of symptoms of constipation. It has not been compared with other laxatives but, based on the available placebo

  3. Calcium dependent and independent cytokine synthesis by air pollution particle-exposed human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Noriho; Hayashi, Shizu; Gosselink, John

    2007-12-01

    Exposure to ambient air pollution particles with a diameter of < 10 {mu}m (PM{sub 10}) has been associated with increased cardiopulmonary morbidity and mortality. We have shown that human bronchial epithelial cells (HBECs) exposed to PM{sub 10} produce pro-inflammatory mediators that contribute to a local and systemic inflammatory response. Changes in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) have been demonstrated to regulate several functions of the airway epithelium including the production of pro-inflammatory mediators. The aim of the present study was to determine the nature and mechanism of calcium responses induced by PM{sub 10} in HBECs and its relationship tomore » cytokine synthesis. Methods: Primary HBECs were exposed to urban air pollution particles (EHC-93) and [Ca{sup 2+}]{sub i} responses were measured using the fluoroprobe (Fura-2). Cytokine levels were measured at mRNA and protein levels using real-time PCR and ELISA. Results: PM{sub 10} increased [Ca{sup 2+}]{sub i} in a dose-dependent manner. This calcium response was reduced by blocking the influx of calcium into cells (i.e. calcium-free medium, NiCl{sub 2}, LaCl{sub 3}). PM{sub 10} also decreased the activity of calcium pumps. PM{sub 10} increased the production of IL-1{beta}, IL-8, GM-CSF and LIF. Preincubation with intracellular calcium chelator (BAPTA-AM) attenuated IL-1{beta} and IL-8 production, but not GM-CSF and LIF production. Conclusion: We conclude that exposure to PM{sub 10} induces an increase in cytosolic calcium and cytokine production in bronchial epithelial cells. Our results also suggest that PM{sub 10} induces the production of pro-inflammatory mediators via either intracellular calcium-dependent (IL-1{beta}, IL-8) or -independent (GM-CSF, LIF) pathways.« less

  4. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  5. Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog

    NASA Technical Reports Server (NTRS)

    Lu, Y. T.; Feldman, L. J.

    1997-01-01

    Roots of many species grow downward (orthogravitropism) only when illuminated. Previous work suggests that this is a calcium-regulated response and that both calmodulin and calcium/calmodulin-dependent kinases participate in transducing gravity and light stimuli. A genomic sequence has been obtained for a calcium/calmodulin-dependent kinase homolog (MCK1) expressed in root caps, the site of perception for both light and gravity. This homolog consists of 7265 base pairs and contains 11 exons and 10 introns. Since MCK1 is expressed constitutively in both light and dark, it is unlikely that the light directly affects MCK1 expression, though the activity of the protein may be affected by light. In cultivars showing light-regulated gravitropism, we hypothesize that MCK1, or a homolog, functions in establishing the auxin asymmetry necessary for orthogravitropism.

  6. Biochemical activity and multiple locations of particulate guanylate cyclase in Rhyacophila dorsalis acutidens (Insecta: Trichoptera) provide insights into the cGMP signalling pathway in Malpighian tubules.

    PubMed

    Secca, T; Sciaccaluga, M; Marra, A; Barberini, L; Bicchierai, M C

    2011-04-01

    In insect renal physiology, cGMP and cAMP have important regulatory roles. In Drosophila melanogaster, considered a good model for molecular physiology studies, and in other insects, cGMP and cAMP act as signalling molecules in the Malpighian tubules (MTs). However, many questions related to cyclic nucleotide functions are unsolved in principal cells (PC) and stellate cells (SC), the two cell types that compose the MT. In PC, despite the large body of information available on soluble guanylate cyclase (sGC) in the cGMP pathway, the functional circuit of particulate guanylate cyclase (pGC) remains obscure. In SC, on the other side, the synthesis and physiological role of the cGMP are still unknown. Our biochemical data regarding the presence of cyclic nucleotides in the MTs of Rhyacophila dorsalis acutidens revealed a cGMP level above the 50%, in comparison with the cAMP. The specific activity values for the membrane-bound guanylate cyclase were also recorded, implying that, besides the sGC, pGC is a physiologically relevant source of cGMP in MTs. Cytochemical studies showed ultrastructurally that there was a great deal of pGC on the basolateral membranes of both the principal and stellate cells. In addition, pGC was also detected in the contact zone between the two cell types and in the apical microvillar region of the stellate cells bordering the tubule lumen. The pGC signal is so well represented in PC and, unexpectedly in SC of MTs, that it is possible to hypothesize the existence of still uncharacterized physiological processes regulated by the pGC-cGMP system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of vitamin C concentration and co-injection with calcium chloride on beef retail display color.

    PubMed

    Wheeler, T L; Koohmaraie, M; Shackelford, S D

    1996-08-01

    The objectives of these experiments were to determine 1) the most effective vitamin C concentration to stabilize color of beef cuts during retail display and 2) the effect on color of incorporating vitamin C into a calcium chloride (CaCl2) injection solution. Top round cuts (semimembranosus and adductor) were injected with 5% by weight of a 0, .25, .5, 1, 2, or 4% sodium ascorbate solution (Exp. 1) or a 0, .5, 1, or 1.5% sodium ascorbate solution (Exp. 2). In Exp. 1, vitamin C resulted in more (P < .05) stable lean color during 9 degrees C display, and .5, 1, and 2% vitamin C were most (P < .05) effective. In Exp. 2, all concentrations of vitamin C maintained redder (P < .05) steaks after 3, 5, and 7 d of display than control steaks and had a lower (P < .05) percentage of surface discoloration after 5 and 7 d of display at 1 degree C. Experiment 3 used beef bottom round cuts (biceps femoris) to compare control, vitamin C- (1%), CaCl2-(200 mM) and vitamin C + CaCl2-treated steaks displayed at 1 degree C. Calcium chloride-treated steaks were more (P < .05) brown and had a higher (P < .05) percentage of surface discoloration on d 5 and 7 than control steaks, whereas steaks treated with vitamin C or vitamin C + CaCl2 were more (P < .05) red and had lower (P < .05) discoloration on d 5 and 7 than control steaks. Vitamin C can be injected into beef subprimals to enhance lean color stability and extend retail display life. Vitamin C also can be used in combination with CaCl2 to offset potential color deterioration, after 5 d of display, due to salt-induced oxidation.

  8. Npom-Protected NONOate Enables Light-Triggered NO/cGMP Signalling in Primary Vascular Smooth Muscle Cells.

    PubMed

    Stroppel, Anna S; Paolillo, Michael; Ziegler, Thomas; Feil, Robert; Stafforst, Thorsten

    2018-06-18

    Diazeniumdiolates (NONOates) are a class of nitric-oxide-releasing substances widely used in studies of NO/cGMP signalling. Because spatiotemporal control is highly desirable for such purposes, we have synthesised a new Npom-caged pyrrolidine NONOate. A kinetic analysis together with a Griess assay showed the photodependent release of NO with high quantum yield (UV light). In primary vascular smooth muscle cells (VSMCs), our compound was reliably able to induce fast increases in cGMP, as measured with a genetically encoded FRET-based cGMP sensor and further validated by the phosphorylation of the downstream target vasodilator-stimulated phosphoprotein (VASP). Thanks to their facile synthesis, good decaging kinetics and capability to activate cGMP signalling in a fast and efficient manner, Npom-protected NONOates allow for improved spatiotemporal control of NO/cGMP signalling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural Basis of Ligand Binding by a C-di-GMP Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Lipchock, S; Ames, T

    2009-01-01

    The second messenger signaling molecule bis-(3{prime}-5{prime})-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 {angstrom} resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structuralmore » data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling.« less

  10. A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophila.

    PubMed

    Engel, J E; Xie, X J; Sokolowski, M B; Wu, C F

    2000-01-01

    The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila.

  11. Enhanced Vascular Effects of Cyclic GMP in Septic Rat Aorta

    DTIC Science & Technology

    1988-01-01

    enzyme in turn catalyzes Integrative Comp. Physiol. 23): R436-R442, 1988--The mod- the synthesis of 3’,5’-cyclic monophosp#* (cGMP), ulation of... synthesis of endogenous cGMP or after aug- significant disparity in cGMP content of tissue from mentation of intracellular cGMP concentration by treat...and a proposal. J. Vascular reactivity in endotoxin shock: effect of lidocaine or in- Surg. Res. 29: 189-201, 1980. UNCLASSIFIED SECURITY CLASSIFICATION

  12. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivatesmore » a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.« less

  13. The RNA binding protein CsrA controls c-di-GMP metabolism by directly regulating the expression of GGDEF proteins

    PubMed Central

    Jonas, Kristina; Edwards, Adrianne N.; Simm, Roger; Romeo, Tony; Römling, Ute; Melefors, Öjar

    2009-01-01

    Summary The carbon storage regulator CsrA is an RNA binding protein that controls carbon metabolism, biofilm formation and motility in various eubacteria. Nevertheless, in Escherichia coli only five target mRNAs have been shown to be directly regulated by CsrA at the post-transcriptional level. Here we identified two new direct targets for CsrA, ycdT and ydeH, both of which encode proteins with GGDEF domains. A csrA mutation caused mRNA levels of ycdT and ydeH to increase more than 10-fold. RNA mobility shift assays confirmed the direct and specific binding of CsrA to the mRNA leaders of ydeH and ycdT. Overexpression of ycdT and ydeH resulted in a more than 20-fold increase in the cellular concentration of the second messenger c-di-GMP, implying that both proteins possess diguanylate cyclase activity. Phenotypic characterization revealed that both proteins are involved in the regulation of motility in a c-di-GMP dependent manner. CsrA was also found to regulate the expression of five additional GGDEF/EAL proteins and a csrA mutation led to modestly increased cellular levels of c-di-GMP. All together, these data demonstrate a global role for CsrA in the regulation of c-di-GMP metabolism by regulating the expression of GGDEF proteins at the post-transcriptional level. PMID:18713317

  14. Antimicrobial activity of N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides.

    PubMed

    Woźniak, Edyta; Mozrzymas, Anna; Czarny, Anna; Kocieba, Maja; Rózycka-Roszak, Bozenna; Dega-Szafran, Zofia; Dulewicz, Ewa; Petryna, Magdalena

    2004-01-01

    The aim of the study was to assay antibacterial and antifungal activity of newly synthesised N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides. The compounds tested were found to inhibit the growth of some Gram-negative bacteria, Gram-positive strains and some representatives of yeast-type Candida. From microbiological experiments two of the compounds tested, N-dodecyloxycarbonylmethyl-N-methyl-piperidinium chloride (3) and N-dodecyl-N-ethoxycarbonylmethyl-piperidinium chloride (6), emerged as more active than the other compounds. Since the resistance of biofilms to biocides should be noted during the design and testing of new antimicrobial agents therefore, we have analysed antibacterial properties of the most active compounds towards biofilms. Our study focused on strains of Pseudomonas aeruginosa and Staphylococcus aureus that served as main model organisms for the biofilm studies.

  15. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    PubMed

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  16. AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production

    PubMed Central

    Schäper, Simon; Steinchen, Wieland; Krol, Elizaveta; Altegoer, Florian; Skotnicka, Dorota; Bange, Gert; Becker, Anke

    2017-01-01

    Cyclic dimeric GMP (c-di-GMP) has emerged as a key regulatory player in the transition between planktonic and sedentary biofilm-associated bacterial lifestyles. It controls a multitude of processes including production of extracellular polysaccharides (EPSs). The PilZ domain, consisting of an N-terminal “RxxxR” motif and a β-barrel domain, represents a prototype c-di-GMP receptor. We identified a class of c-di-GMP–responsive proteins, represented by the AraC-like transcription factor CuxR in plant symbiotic α-proteobacteria. In Sinorhizobium meliloti, CuxR stimulates transcription of an EPS biosynthesis gene cluster at elevated c-di-GMP levels. CuxR consists of a Cupin domain, a helical hairpin, and bipartite helix-turn-helix motif. Although unrelated in sequence, the mode of c-di-GMP binding to CuxR is highly reminiscent to that of PilZ domains. c-di-GMP interacts with a conserved N-terminal RxxxR motif and the Cupin domain, thereby promoting CuxR dimerization and DNA binding. We unravel structure and mechanism of a previously unrecognized c-di-GMP–responsive transcription factor and provide insights into the molecular evolution of c-di-GMP binding to proteins. PMID:28559336

  17. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner.

    PubMed

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.

  18. Nitric oxide mediates local activity-dependent excitatory synapse development.

    PubMed

    Nikonenko, Irina; Nikonenko, Alexander; Mendez, Pablo; Michurina, Tatyana V; Enikolopov, Grigori; Muller, Dominique

    2013-10-29

    Learning related paradigms play an important role in shaping the development and specificity of synaptic networks, notably by regulating mechanisms of spine growth and pruning. The molecular events underlying these synaptic rearrangements remain poorly understood. Here we identify NO signaling as a key mediator of activity-dependent excitatory synapse development. We find that chronic blockade of NO production in vitro and in vivo interferes with the development of hippocampal and cortical excitatory spine synapses. The effect results from a selective loss of activity-mediated spine growth mechanisms and is associated with morphological and functional alterations of remaining synapses. These effects of NO are mediated by a cGMP cascade and can be reproduced or prevented by postsynaptic expression of vasodilator-stimulated phosphoprotein phospho-mimetic or phospho-resistant mutants. In vivo analyses show that absence of NO prevents the increase in excitatory synapse density induced by environmental enrichment and interferes with the formation of local clusters of excitatory synapses. We conclude that NO plays an important role in regulating the development of excitatory synapses by promoting local activity-dependent spine-growth mechanisms.

  19. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  20. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  1. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.

    PubMed

    Wojciechowski, Daniel; Thiemann, Stefan; Schaal, Christina; Rahtz, Alina; de la Roche, Jeanne; Begemann, Birgit; Becher, Toni; Fischer, Martin

    2018-06-01

    ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)

    2003-01-01

    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  3. Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes

    PubMed Central

    1983-01-01

    Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold

  4. In-situ capture and conversion of atmospheric CO2 into nano-CaCO3 using a novel pathway based on deep eutectic choline chloride-calcium chloride.

    PubMed

    Karimi, Mohammad; Jodaei, Akbar; Khajvandi, Asiyeh; Sadeghinik, Amirhosein; Jahandideh, Rahim

    2018-01-15

    This study presents a newfangled method and provides a new approach toward capturing-entrapping the toxic and harmful greenhouse gas CO 2 and subsequently employing it as a useful precursor for the production of value-added calcite (CaCO 3 ) nanoparticles. All the processes are done in a single system (one-pot and in-situ processing) based on deep eutectic choline chloride-calcium chloride (Calcoline) at mild temperature of 50 °C in direct contact with air. The Calcoline eutectic mixture shows the calcite production yield of 6.2 mg/ml that is reduced up to 22.6% upon recycling. The eutectic mixture provides an interesting all-in-one system acting as carbon dioxide trapper/adsorbent, solvent to solubilize CO 2 , and reagent to convert solubilized CO 2 into pure calcite nanoparticles with average particle size of 30 nm. The featured properties of the developed method including simplicity, recyclability, mobility, affordability, and sustainability make it feasible for large scale applications by which the simultaneous elimination of CO 2 from the environment and conversion of it into value added nano-products will be practicable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp

    PubMed Central

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W.; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s−1). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  6. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    PubMed

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-09-08

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.

  7. Molecular Dynamics Simulations of Membrane-Bound STIM1 to Investigate Conformational Changes during STIM1 Activation upon Calcium Release.

    PubMed

    Mukherjee, Sreya; Karolak, Aleksandra; Debant, Marjolaine; Buscaglia, Paul; Renaudineau, Yves; Mignen, Olivier; Guida, Wayne C; Brooks, Wesley H

    2017-02-27

    Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.

  8. Chronic Metabolic Acidosis Activates Renal Tubular Sodium Chloride Cotransporter through Angiotension II-dependent WNK4-SPAK Phosphorylation Pathway

    PubMed Central

    Fang, Yu-Wei; Yang, Sung-Sen; Cheng, Chih-Jen; Tseng, Min-Hua; Hsu, Hui-Min; Lin, Shih-Hua

    2016-01-01

    The mechanism by which chronic metabolic acidosis (CMA) regulates sodium (Na+)-chloride (Cl−) cotransporter (NCC) in the renal distal convoluted tubules remains unexplored. We examined the role of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and with-no-lysine kinase 4 (WNK4) on expression of NCC in mouse models of CMA. CMA was induced by NH4Cl in wild type mice (WTA mice), SPAK, and WNK4 knockout mice. The quantities of Ncc mRNA, expression of total NCC, phosphorylated (p)-NCC, SPAK and WNK4 in the kidneys as well as NCC inhibition with hydrochlorothiazide and Na+ balance were evaluated. Relative to WT mice, WTA mice had similar levels of Ncc mRNA, but increased expression of total and p-NCC, SPAK, and WNK4 and an exaggerated response to hydrochlorothiazide which could not be observed in SPAK or WNK4 knockout mice with CMA. In WTA mice, increased plasma renin activity, aldosterone and angiotensin II concentrations accompanied by a significantly negative Na+ balance. High Na+ diet abolished the enhanced NCC expression in WTA mice. Furthermore, an angiotensin II type 1 receptor blocker rather than a mineralocorticoid receptor antagonist exerted a marked inhibition on Na+ reabsorption and NCC phosphorylation in WTA mice. CMA increases WNK4-SPAK-dependent NCC phosphorylation and appears to be secondary to previous natriuresis with volume-dependent angiotensin II activation. PMID:26728390

  9. Role of the NO-cGMP pathway in the systemic antinociceptive effect of clonidine in rats and mice.

    PubMed

    de Moura, Roberto Soares; Rios, Anna Amélia S; Santos, Edmar J A; Nascimento, Ana Beatriz Amorim; de Castro Resende, Angela; Neto, Miguel Lemos; de Oliveira, Luiz Fernando; Mendes Ribeiro, Antonio Cláudio; Tano, Tania

    2004-06-01

    The mechanism underlying the analgesic effect of clonidine, an alpha(2)-adrenoceptor agonist, remains uncertain. Activation of alpha(2)-adrenoceptor induces the release of nitric oxide (NO) from endothelial cells, which has led us to test the hypothesis that the observed antinociceptive effect induced by the systemic administration of clonidine depends on the NO-cGMP pathway. The possible involvement of an opioid link in the antinociceptive effect of clonidine was also evaluated. The antinociceptive effect induced by systemic administration (intravenous or intraperitoneal) of clonidine was evaluated using the rat paw formalin, mice tail-flick and writhing tests. Clonidine (3-120 microg/kg) induces a dose-dependent antinociceptive effect in the formalin, tail-flick and writhing tests. The antinociceptive effect of clonidine in a dose that had no sedative effect assessed by rota rod test, was significantly reduced by NO-synthase and guanylyl cyclase inhibition. The antinociceptive effect of morphine, but not clonidine, was inhibited by naloxone. Our current results suggest that the antinociceptive effect of systemic clonidine does not involve the opioid receptor and is modulated by the NO-cGMP pathway.

  10. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters

    NASA Astrophysics Data System (ADS)

    Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli

    2018-04-01

    Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.

  11. The contribution of raised intraneuronal chloride to epileptic network activity.

    PubMed

    Alfonsa, Hannah; Merricks, Edward M; Codadu, Neela K; Cunningham, Mark O; Deisseroth, Karl; Racca, Claudia; Trevelyan, Andrew J

    2015-05-20

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl(-). Brief (1-10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl(-) level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). Copyright © 2015 Alfonsa et al.

  12. Mass dependence of calcium isotope fractionations in crown-ether resin chromatography.

    PubMed

    Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Tositaka; Sakuma, Yoichi; Suzuki, Tatsuya; Umehara, Saori; Kishimoto, Tadahumi

    2010-06-01

    Benzo 18-crown-6-ether resin was synthesised by the phenol condensation polymerisation process in porous silica beads, of which particle diameter was ca 60micro Calcium adsorption chromatography was performed with the synthesised resin packed in a glass column. The effluent was sampled in fractions, and the isotopic abundance ratios of (42)Ca, (43)Ca, (44)Ca, and (48)Ca against (40)Ca were measured by a thermo-ionisation mass spectrometer. The enrichment of heavier calcium isotopes was observed at the front boundary of calcium adsorption chromatogram. The mass dependence of mutual separation of calcium isotopes was analysed by using the three-isotope-plots method. The slopes of three-isotope-plots indicate the relative values of mutual separation coefficients for concerned isotopic pairs. The results have shown the normal mass dependence; isotope fractionation is proportional to the reduced mass difference, (M - M')/MM', where M and M' are masses of heavy and light isotope, respectively. The mass dependence clarifies that the isotope fractionations are originated from molecular vibration. The observed separation coefficient epsilon is 3.1x10(-3) for the pair of (40)Ca and (48)Ca. Productivity of enriched (48)Ca by crown-ether-resin was discussed as the function of the separation coefficient and the height equivalent to the theoretical plate.

  13. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    PubMed

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  14. Reducing toughness of beef from Bos indicus draught steers by injection of calcium chloride: Effect of concentration and time postmortem.

    PubMed

    Jaturasitha, S; Thirawong, P; Leangwunta, V; Kreuzer, M

    2004-09-01

    Calcium chloride (CaCl(2)) solution in concentrations of 0, 0.2, 0.3 and 0.4 M was injected at 10% (wt/wt) either 45 min or 24 h postmortem into longissimus dorsi muscles of eight draught steers discharged from work and >4 years of age. Shear force, after 7 days of aging, declined by CaCl(2) injection by up to 50% of control, depending on CaCl(2) concentration. Prerigor treatment was twice as efficient as postrigor injection. Collagen content and solubility were less clearly affected. Sensory tenderness scores were higher by 50% with all CaCl(2) concentrations, but only with prerigor treatment. A bitter taste was noted only with the highest concentration of CaCl(2), but overall acceptance did not increase with CaCl(2) concentration. CaCl(2) enhanced electrical conductivity, reduced redness and luminosity, and increased drip and thawing loss, but not boiling loss, of longissiumus dorsi. Results indicate a high potential of CaCl(2) treatment in extraordinarily tough meat.

  15. Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination.

    PubMed

    Hui, Qianru; Yang, Runqiang; Shen, Chang; Zhou, Yulin; Gu, Zhenxin

    2016-07-13

    Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism.

  16. A human intermediate conductance calcium-activated potassium channel.

    PubMed

    Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J

    1997-10-14

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.

  17. Calcium Chloride in Neonatal Parenteral Nutrition Solutions with and without Added Cysteine: Compatibility Studies Using Laser and Micro-Flow Imaging Methodology.

    PubMed

    Huston, Robert K; Christensen, J Mark; Alshahrani, Sultan M; Mohamed, Sumeia M; Clark, Sara M; Nason, Jeffrey A; Wu, Ying Xing

    2015-01-01

    Previous studies of compatibility of calcium chloride (CaCl2) and phosphates have not included particle counts in the range specified by the United States Pharmacopeia. Micro-flow imaging techniques have been shown to be comparable to light obscuration when determining particle count and size in pharmaceutical solutions. The purpose of this study was to do compatibility testing for parenteral nutrition (PN) solutions containing CaCl2 using dynamic light scattering and micro-flow imaging techniques. Solutions containing TrophAmine (Braun Medical Inc, Irvine, CA), CaCl2, and sodium phosphate (NaPhos) were compounded with and without cysteine. All solutions contained standard additives to neonatal PN solutions including dextrose, trace metals, and electrolytes. Control solutions contained no calcium or phosphate. Solutions were analyzed for particle size and particle count. Means of Z-average particle size and particle counts of controls were determined. Study solutions were compared to controls and United States Pharmacopeia (USP) Chapter 788 guidelines. The maximum amount of Phos that was compatible in solutions that contained at least 10 mmol/L of Ca in 2.5% amino acids (AA) was determined. Compatibility of these solutions was verified by performing analyses of 5 repeats of these solutions. Microscopic analyses of the repeats were also performed. Amounts of CaCl2 and NaPhos that were compatible in solutions containing 1.5%, 2%, 2.5%, and 3% AA were determined. The maximum amount of NaPhos that could be added to TrophAmine solutions of > = 2.5% AA containing at least 10 mmol/L of CaCl2 was 7.5 mmol/L. Adding 50 mg/dL of cysteine increased the amount of NaPhos that could be added to solutions containing 10 mmol/L of CaCl2 to 10 mmol/L. Calcium chloride can be added to neonatal PN solutions containing NaPhos in concentrations that can potentially provide an intravenous intake of adequate amounts of calcium and phosphorus.

  18. Effect of cortisone treatment on the active transport of calcium by the small intestine.

    PubMed

    Kimberg, D V; Baerg, R D; Gershon, E; Graudusius, R T

    1971-06-01

    It is generally recognized that glucocorticoid administration may diminish calcium absorption in vivo as well as the active transport of calcium by the intestine in vitro. Recent studies by others have emphasized the possibility of an alteration in the metabolism of vitamin D to 25-hydroxycholecalciferol in accounting for the steroid effects on calcium absorption. The results obtained in the present studies fail to support this hypothesis. The present studies confirm that the administration of cortisone or other glucocorticoids to the rat interferes with the active transport of calcium by duodenal gut sacs in vitro. This abnormality is not due to an alteration in the permeability of the intestine to calcium, and it cannot be corrected by the administration of either massive doses of vitamin D(2) or modest doses of 25-hydroxycholecalciferol. Experiments concerned with the effects of cortisone on the level of the vitamin D-dependent duodenal calcium-binding protein, the amount of bioassayable vitamin D activity in the mucosa, and the distribution and metabolism of (3)H-vitamin D(3), did not provide evidence in favor of a harmone-related defect in either the localization of vitamin D or its metabolism to 25-hydroxycholecalciferol. Alterations in the transport of iron and D-galactose, not dependent on vitamin D, suggest that cortisone treatment may be responsible for more than a simple antagonism to the effects of vitamin D. The results of the present studies indicate that cortisone administration affects the cellular mechanisms mediating calcium transport in a manner that is opposite to the effects of vitamin D, but seems to be independent of any direct interaction with the parent vitamin or its metabolites. If a disorder in vitamin D metabolism is at all involved, it is at a step subsequent to 25-hydroxylation.

  19. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginkel, Paul R. van; Yan, Michael B.; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cellsmore » to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP{sub 3} pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca{sup 2+}-dependent pro-apoptotic pathways inhibit cancer cell growth.« less

  20. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial α2-adrenoceptor activation

    PubMed Central

    Figueroa, Xavier F; Poblete, M Inés; Boric, Mauricio P; Mendizábal, Victoria E; Adler-Graschinsky, Edda; Huidobro-Toro, J Pablo

    2001-01-01

    To assess the involvement of endothelial α2-adrenoceptors in the clonidine-induced vasodilatation, the mesenteric artery of Sprague Dawley rats was cannulated and perfused with Tyrode solution (2 ml min−1). We measured perfusion pressure, nitric oxide (NO) in the perfusate using chemiluminescence, and tissue cyclic GMP by RIA.In phenylephrine-precontracted mesenteries, clonidine elicited concentration-dependent vasodilatations associated to a rise in luminal NO. One hundred nM rauwolscine or 100 μM Lω-nitro-L-arginine antagonized the clonidine-induced vasodilatation. Guanabenz, guanfacine, and oxymetazoline mimicked the clonidine-induced vasorelaxation.In non-contracted mesenteries, 100 nM clonidine elicited a maximal rise of NO (123±13 pmol); associated to a peak in tissue cyclic GMP. Endothelium removal, Lω-nitro-L-arginine, or rauwolscine ablated the rise in NO. One hundred nM aminoclonidine, guanfacine, guanabenz, UK14,304 and oxymetazoline mimicked the clonidine-induced surge of NO. Ten μM ODQ obliterated the clonidine-induced vasorelaxation and the associated tissue cyclic GMP accumulation; 10 – 100 nM sildenafil increased tissue cyclic GMP accumulation without altering the clonidine-induced NO release.α2-Adrenergic blockers antagonized the clonidine-induced rise in NO. Consistent with a preferential α2D-adrenoceptor activation, the KBs for yohimbine, rauwolscine, phentolamine, WB-4101, and prazosin were: 6.8, 24, 19, 165, and 1489 nM, respectively.Rat pretreatment with 100 mg kg−1 6-hydroxydopamine reduced 95% tissue noradrenaline and 60% neuropeptide Y. In these preparations, 100 nM clonidine elicited a rise of 91.9±15.5 pmol NO. Perfusion with 1 μM guanethidine or 1 μM guanethidine plus 1 μM atropine did not modify the NO surge evoked by 100 nM clonidine.Clonidine and congeners activate endothelial α2D-adrenoceptors coupled to the L-arginine pathway, suggesting that the antihypertensive action of

  1. Biofilm Formation by the Acidophile Bacterium Acidithiobacillus thiooxidans Involves c-di-GMP Pathway and Pel exopolysaccharide.

    PubMed

    Díaz, Mauricio; Castro, Matias; Copaja, Sylvia; Guiliani, Nicolas

    2018-02-21

    Acidophile bacteria belonging to the Acidithiobacillus genus are pivotal players for the bioleaching of metallic values such as copper. Cell adherence to ores and biofilm formation, mediated by the production of extracellular polymeric substances, strongly favors bioleaching activity. In recent years, the second messenger cyclic diguanylate (c-di-GMP) has emerged as a central regulator for biofilm formation in bacteria. C-di-GMP pathways have been reported in different Acidithiobacillus species; however, c-di-GMP effectors and signal transduction networks are still largely uncharacterized in these extremophile species. Here we investigated Pel exopolysaccharide and its role in biofilm formation by sulfur-oxidizing species Acidithiobacillus thiooxidans . We identified 39 open reading frames (ORFs) encoding proteins involved in c-di-GMP metabolism and signal transduction, including the c-di-GMP effector protein PelD, a structural component of the biosynthesis apparatus for Pel exopolysaccharide production. We found that intracellular c-di-GMP concentrations and transcription levels of pel genes were higher in At . thiooxidans biofilm cells compared to planktonic ones. By developing an At . thiooxidans Δ pelD null-mutant strain we revealed that Pel exopolysaccharide is involved in biofilm structure and development. Further studies are still necessary to understand how Pel biosynthesis is regulated in Acidithiobacillus species, nevertheless these results represent the first characterization of a c-di-GMP effector protein involved in biofilm formation by acidophile species.

  2. Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo.

    PubMed

    Kleiman, Robin J; Chapin, Douglas S; Christoffersen, Curt; Freeman, Jody; Fonseca, Kari R; Geoghegan, Kieran F; Grimwood, Sarah; Guanowsky, Victor; Hajós, Mihály; Harms, John F; Helal, Christopher J; Hoffmann, William E; Kocan, Geralyn P; Majchrzak, Mark J; McGinnis, Dina; McLean, Stafford; Menniti, Frank S; Nelson, Fredrick; Roof, Robin; Schmidt, Anne W; Seymour, Patricia A; Stephenson, Diane T; Tingley, Francis David; Vanase-Frawley, Michelle; Verhoest, Patrick R; Schmidt, Christopher J

    2012-05-01

    Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.

  3. Activation of cGAS-dependent antiviral responses by DNA intercalating agents

    PubMed Central

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J.; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G.; Williams, Bryan R.G.; Gantier, Michael P.

    2017-01-01

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. PMID:27694309

  4. Solution structure, mutagenesis, and NH exchange studies of the MutT enzyme-Mg 2+-8-oxo-dGMP complex

    NASA Astrophysics Data System (ADS)

    Massiah, M. A.; Saraswat, V.; Azurmendi, H. F.; Mildvan, A. S.

    2004-08-01

    The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (Δ G°=-9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (Δ G°=-3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable Δ Hbinding (-32 kcal/mol) despite an unfavorable - TΔ S° binding (+22 kcal/mol). The solution structure of the MutT-Mg 2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H- 15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position -119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3-0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT-Mg 2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of

  5. Calcium responses to synaptically activated bursts of action potentials and their synapse-independent replay in cultured networks of hippocampal neurons.

    PubMed

    Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar

    2013-07-01

    Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms.

    PubMed

    Meschiari, Cesar A; Izidoro-Toledo, Tatiane; Gerlach, Raquel F; Tanus-Santos, Jose E

    2013-06-01

    Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.

  7. Bio-inspired voltage-dependent calcium channel blockers.

    PubMed

    Yang, Tingting; He, Lin-Ling; Chen, Ming; Fang, Kun; Colecraft, Henry M

    2013-01-01

    Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.

  8. Circulating active serum calcium reduces the risk of hypertension.

    PubMed

    Kunutsor, Setor K; Laukkanen, Jari A

    2017-02-01

    Purpose Calcium, which is one the most abundant mineral elements in the body, has been suggested to be involved in blood pressure regulation. We aimed to assess the association of active serum calcium (which is the ionised and physiologically active form of serum calcium) with the future risk of hypertension. Methods The active serum calcium concentration was assessed at baseline in the Finnish Kuopio Ischemic Heart Disease population-based prospective cohort study of 1562 normotensive men aged 42-61 years at baseline. Cox proportional hazard models were used to assess the hazard ratios (95% confidence intervals (CIs)) for incident hypertension. Results During a median follow-up of 24.9 years, 247 men developed new-onset hypertension. Active serum calcium was inversely associated with incident hypertension in an approximately linear fashion. In age-adjusted analysis, the hazard ratio for hypertension per 1 standard deviation increase in active serum calcium was 0.86 (95% CI 0.76-0.98), which remained consistent after adjustment for several established risk factors and potential confounders 0.82 (0.71-0.94). In a comparison of extreme quintiles of active serum calcium levels, the corresponding adjusted hazard ratios were 0.59 (95% CI 0.39-0.90) and 0.54 (95% CI 0.35-0.82), respectively. Conclusion Active serum calcium is protective of future hypertension in a middle-aged male Caucasian population. Further research is needed to confirm these findings and help unravel the mechanistic pathways of calcium in the pathogenesis of hypertension.

  9. A cGMP-Dependent Protein Kinase Gene, foraging, Modifies Habituation-Like Response Decrement of the Giant Fiber Escape Circuit in Drosophila

    PubMed Central

    Engel, Jeff E.; Xie, Xian-Jin; Sokolowski, Marla B.; Wu, Chun-Fang

    2000-01-01

    The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila. PMID:11040266

  10. Studies on the production of endogenous pyrogen by rabbit monocytes: the role of calcium and cyclic nucleotides.

    PubMed

    Sigal, S L; Duff, G W; Atkins, E

    1985-01-01

    Rabbit monocytes stimulated with endotoxin produced endogenous pyrogen, even under conditions of high or low extracellular calcium concentrations. Maximal production occurred when the concentration was in the near-physiological range. Prolonged incubation of cells with a calcium chelator prevented subsequent activation with endotoxin, an effect which was rapidly reversible by re-addition of calcium but not other cations. Addition of small amounts of lanthanum, which acts as a calcium channel blocker, prevented the restoration of pyrogen production, indicating that entry of the added calcium into the monocyte was required. Incorporation of a calcium ionophore into the cell membrane did not stimulate pyrogen production, and no measurable influx or efflux of calcium occurred during stimulation with endotoxin. These observations suggest that a slowly exchangeable calcium pool is necessary for the production of endogenous pyrogen, but that a rise in intracellular calcium is not by itself a necessary or sufficient stimulus. This stands in contrast to other biological systems in which Ca2+ directly couples stimulus and hormone secretion. Incubation of cells with agents shown to increase cyclic 3',5' AMP or cyclic 3',5' GMP levels in monocytes similarly did not stimulate pyrogen production or modulate its production by endotoxin stimulation. Thus, cyclic nucleotides also did not play a detectable role as intracellular messengers in this system. Future work is required to define more clearly the mechanism for the production of endogenous pyrogen, given its marked effects on the immune system through lymphocyte activation and temperature regulation.

  11. Calcium supplementation prevents endothelial cell activation: possible relevance to preeclampsia.

    PubMed

    Chen, Qi; Tong, Mancy; Wu, Man; Stone, Peter R; Snowise, Saul; Chamley, Lawrence W

    2013-09-01

    Preeclampsia is a leading cause of maternal and fetal mortality and morbidity. A hallmark of preeclampsia is endothelial cell dysfunction/activation in response to 'toxins' from the placenta. Necrotic trophoblastic debris (NTD) is one possible placental toxin and other activators of endothelial cells include inflammatory cytokines. Calcium supplementation appears to protect 'at-risk' women from developing preeclampsia but how is unclear. Placental explants were cultured with interleukin-6 (IL-6) in varied concentrations of calcium. The resultant trophoblastic debris was exposed to endothelial cells. Endothelial cells were exposed to activators including NTD, IL-6, and preeclamptic sera in the presence of varied concentrations of calcium and activation monitored by quantifying cell surface markers by ELISA. Raising the levels of calcium did not prevent the IL-6-induced shedding of NTD from placental explants but did prevent the activation of endothelial cells in response to IL-6, preeclamptic sera, or NTD. Reducing the level of calcium directly induced the activation of endothelial cells. Inhibiting nitric oxide synthetase ablated the ability of high calcium levels to protect endothelial cell activation. The activity of endothelial cell nitric oxide synthetase was blocked with L-N-nitroarginine methyl ester. Our results demonstrate calcium levels do not affect the shedding of trophoblastic debris but are important to endothelial cell activation and supplemental calcium may reverse the activation of the endothelium in preeclamptic women. These results may in part explain the benefits of calcium supplementation in the reduction of risk for developing preeclampsia and provide in-vitro mechanistic support for the use of calcium supplementation in at-risk women.

  12. A human intermediate conductance calcium-activated potassium channel

    PubMed Central

    Ishii, Takahiro M.; Silvia, Christopher; Hirschberg, Birgit; Bond, Chris T.; Adelman, John P.; Maylie, James

    1997-01-01

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel. PMID:9326665

  13. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Dysbalance of Astrocyte Calcium under Hyperammonemic Conditions

    PubMed Central

    Haack, Nicole; Dublin, Pavel; Rose, Christine R.

    2014-01-01

    Increased brain ammonium (NH4 +/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4 +/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4 +/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4 +/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4 +/NH3, developed within 10–20 minutes and was maintained as long as the NH4 +/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4 +/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4 +/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4 +/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests

  15. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue andmore » promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, Gd

  16. Chlordetect: Commercial Calcium Aluminate Based Conductimetric Sensor for Chloride Presence Detection

    PubMed Central

    Torres-Luque, Magda; Sánchez-Silva, Mauricio

    2017-01-01

    Chloride presence affects different environments (soil, water, concrete) decreasing their qualities. In order to assess chloride concentration this paper proposes a novel sensor for detecting and measuring it. This sensor is based on electric changes of commercial monocalcium aluminate (CA) when it interacts with chloride aqueous solutions. CA is used as a dielectric material between two coplanar capacitors. The geometry proposed for this sensor allows to assess the chloride content profile, or to make four times the same measurement. Besides, the experimental design gives us the possibility of study not just the chloride effect, but also the time and some geometric effects due to the sensor design. As a result, this sensor shows a limit of detection, sensitivity, and response time: 0.01 wt % Cl− and 0.06 wt % Cl−, and 2 min, respectively, comparable with other non invasive techniques as optical fibre sensors. PMID:28902147

  17. Regulation of ATP production: dependence on calcium concentration and respiratory state.

    PubMed

    Fink, Brian D; Bai, Fan; Yu, Liping; Sivitz, William I

    2017-08-01

    Nanomolar free calcium enhances oxidative phosphorylation. However, the effects over a broad concentration range, at different respiratory states, or on specific energy substrates are less clear. We examined the action of varying [Ca 2+ ] over respiratory states ranging 4 to 3 on skeletal muscle mitochondrial respiration, potential, ATP production, and H 2 O 2 production using ADP recycling to clamp external [ADP]. Calcium at 450 nM enhanced respiration in mitochondria energized by the complex I substrates, glutamate/malate (but not succinate), at [ADP] of 4-256 µM, but more substantially at intermediate respiratory states and not at all at state 4. Using varied [Ca 2+ ], we found that the stimulatory effects on respiration and ATP production were most prominent at nanomolar concentrations, but inhibitory at 10 µM or higher. ATP production decreased more than respiration at 10 µM calcium. However, potential continued to increase up to 10 µM; suggesting a calcium-induced inability to utilize potential for phosphorylation independent of opening of the mitochondrial permeability transition pore (MTP). This effect of 10 µM calcium was confirmed by direct determination of ATP production over a range of potential created by differing substrate concentrations. Consistent with past reports, nanomolar [Ca 2+ ] had a stimulatory effect on utilization of potential for phosphorylation. Increasing [Ca 2+ ] was positively and continuously associated with H 2 O 2 production. In summary, the stimulatory effect of calcium on mitochondrial function is substrate dependent and most prominent over intermediate respiratory states. Calcium stimulates or inhibits utilization of potential for phosphorylation dependent on concentration with inhibition at higher concentration independent of MTP opening.

  18. c-di-GMP Turn-Over in Clostridium difficile Is Controlled by a Plethora of Diguanylate Cyclases and Phosphodiesterases

    PubMed Central

    Bordeleau, Eric; Fortier, Louis-Charles; Malouin, François; Burrus, Vincent

    2011-01-01

    Clostridium difficile infections have become a major healthcare concern in the last decade during which the emergence of new strains has underscored this bacterium's capacity to cause persistent epidemics. c-di-GMP is a bacterial second messenger regulating diverse bacterial phenotypes, notably motility and biofilm formation, in proteobacteria such as Vibrio cholerae, Pseudomonas aeruginosa, and Salmonella. c-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a conserved GGDEF domain. It is degraded by phosphodiesterases (PDEs) that contain either an EAL or an HD-GYP conserved domain. Very little is known about the role of c-di-GMP in the regulation of phenotypes of Gram-positive or fastidious bacteria. Herein, we exposed the main components of c-di-GMP signalling in 20 genomes of C. difficile, revealed their prevalence, and predicted their enzymatic activity. Ectopic expression of 31 of these conserved genes was carried out in V. cholerae to evaluate their effect on motility and biofilm formation, two well-characterized phenotype alterations associated with intracellular c-di-GMP variation in this bacterium. Most of the predicted DGCs and PDEs were found to be active in the V. cholerae model. Expression of truncated versions of CD0522, a protein with two GGDEF domains and one EAL domain, suggests that it can act alternatively as a DGC or a PDE. The activity of one purified DGC (CD1420) and one purified PDE (CD0757) was confirmed by in vitro enzymatic assays. GTP was shown to be important for the PDE activity of CD0757. Our results indicate that, in contrast to most Gram-positive bacteria including its closest relatives, C. difficile encodes a large assortment of functional DGCs and PDEs, revealing that c-di-GMP signalling is an important and well-conserved signal transduction system in this human pathogen. PMID:21483756

  19. Guanosine 5′-monophosphate-chelated calcium and iron feed additives maintains egg production and prevents Salmonella Gallinarum in experimentally infected layers

    PubMed Central

    Noh, Hye-Ji; Kim, HeeKyong; Heo, Su Jeong; Cho, Hyang Hyun

    2017-01-01

    We evaluated the effects of guanosine 5′-monophosphate (GMP)-chelated calcium and iron (CaFe-GMP) on health and egg quality in layers experimentally infected with Salmonella Gallinarum. In this study, a CaFe-GMP feed additive was added to a commercial layer feed and fed to layers over a four-week period. All were inoculated with Salmonella Gallinarum. Body weight, mortality, clinical symptoms, and poultry production including feed intake, egg production, egg loss, and feed conversion rate were observed, and Salmonella Gallinarum was re-isolated from the liver, spleen, and cecum of the layers. All tested internal organs for the CaFe-GMP additive group exhibited significantly lower re-isolation numbers of Salmonella Gallinarum and less severe pathological changes than those in the control group, indicating that the CaFe-GMP feed supplement induced bacterial clearance and increased resistance to Salmonella Gallinarum. Additionally, due to the inhibitory action of CaFe-GMP on the growth of Salmonella Gallinarum, the CaFe-GMP additive group exhibited better egg production, including a higher laying rate and fewer broken eggs. The results suggest that a 0.16% CaFe-GMP additive may help prevent salmonellosis in the poultry industry. PMID:28057911

  20. ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa

    PubMed Central

    Jones, Christopher J.; Newsom, David; Kelly, Benjamin; Irie, Yasuhiko; Jennings, Laura K.; Xu, Binjie; Limoli, Dominique H.; Harrison, Joe J.; Parsek, Matthew R.; White, Peter; Wozniak, Daniel J.

    2014-01-01

    The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for Amr

  1. Occurrence of Cyclic di-GMP-Modulating Output Domains in Cyanobacteria: an Illuminating Perspective

    PubMed Central

    Agostoni, Marco; Koestler, Benjamin J.; Waters, Christopher M.; Williams, Barry L.; Montgomery, Beronda L.

    2013-01-01

    ABSTRACT Microorganisms use a variety of metabolites to respond to external stimuli, including second messengers that amplify primary signals and elicit biochemical changes in a cell. Levels of the second messenger cyclic dimeric GMP (c-di-GMP) are regulated by a variety of environmental stimuli and play a critical role in regulating cellular processes such as biofilm formation and cellular motility. Cyclic di-GMP signaling systems have been largely characterized in pathogenic bacteria; however, proteins that can impact the synthesis or degradation of c-di-GMP are prominent in cyanobacterial species and yet remain largely underexplored. In cyanobacteria, many putative c-di-GMP synthesis or degradation domains are found in genes that also harbor light-responsive signal input domains, suggesting that light is an important signal for altering c-di-GMP homeostasis. Indeed, c-di-GMP-associated domains are often the second most common output domain in photoreceptors—outnumbered only by a histidine kinase output domain. Cyanobacteria differ from other bacteria regarding the number and types of photoreceptor domains associated with c-di-GMP domains. Due to the widespread distribution of c-di-GMP domains in cyanobacteria, we investigated the evolutionary origin of a subset of genes. Phylogenetic analyses showed that c-di-GMP signaling systems were present early in cyanobacteria and c-di-GMP genes were both vertically and horizontally inherited during their evolution. Finally, we compared intracellular levels of c-di-GMP in two cyanobacterial species under different light qualities, confirming that light is an important factor for regulating this second messenger in vivo. PMID:23943760

  2. REPRODUCTIVE EFFECTS ASSESSMENT GROUP'S REVIEW OF THE MUTAGENICITY OF VINYLIDENE CHLORIDE

    EPA Science Inventory

    A large number of studies indicate that vinylidene chloride is mutagenic to bacteria and that this activity is largely dependent on microsomal activation. Vinylidene chloride was reported to produce positive results for gene reversion and conversion in yeast, which was also depen...

  3. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to −60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze—viabilities at 93.4%±7.4%, viable cell numbers at 14.3±1.7 million nuclei/mL alginate, and protein secretion at 10.5±1.7

  4. cGMP stimulates bile acid-independent bile formation and biliary bicarbonate excretion.

    PubMed

    Myers, N C; Grune, S; Jameson, H L; Sawkat-Anwer, M

    1996-03-01

    The effect of guanosine 3',5'-cyclic monophosphate (cGMP) on hepatic bile formation was studied in isolated perfused rat livers and rat hepatocytes. Studies in isolated perfused rat livers showed that infusion of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 3 micromol/min or 100 microM) 1) increased bile flow without affecting biliary excretion of simultaneously infused taurocholate, 2) increased biliary concentration and excretion of HCO3(-) but did not affect biliary excretion of glutathione, and 3) increased net perfusate H+ efflux without affecting hepatic O2 uptake. Studies in isolated rat hepatocytes showed that 1) 8-BrcGMP increased intracellular pH in the presence (but not in the absence) of extracellular HCO-3, and effect inhibited by 4,4' -diisothiocyanostilbene-2,2'-disulfonic acid and Na+ replacement, 2) 8-BrcGMP did not affect taurocholate uptake and intracellular [Ca2+], and 3) bile acids, like ursodeoxycholate and cholate, did not increase cellular cGMP. Taken together, these results indicate that cGMP stimulates bile acid-independent bile formation, in part by stimulating biliary HCO3- excretion. cGMP may increase HCO3- excretion by stimulating sinusoidal Na+ - HCO3- cotransport, but not Na+/H+ exchange. cGMP, unlike adenosine 3',5'-cyclic monophosphate, may not regulate hepatic taurocholate transport, and bile acid-induced HCO3- rich choleresis may not be mediated via cGMP.

  5. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner

    PubMed Central

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H2O2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H2O2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H2O2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H2O2. Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H2O2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H2O2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H2O2 level was inhibited, the effect of exogenous H2O2 on the induction of HO-1 was enhanced. Furthermore, exogenous H2O2-activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3′,5′-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H2O2-delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H2O2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H2O2 promoted cell death. PMID:29449858

  6. The NO-cGMP-PKG Signaling Pathway Regulates Synaptic Plasticity and Fear Memory Consolidation in the Lateral Amygdala via Activation of ERK/MAP Kinase

    ERIC Educational Resources Information Center

    Ota, Kristie T.; Pierre, Vicki J.; Ploski, Jonathan E.; Queen, Kaila; Schafe, Glenn E.

    2008-01-01

    Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and…

  7. Restaurant consumer acceptance of beef loin strip steaks tenderized with calcium chloride.

    PubMed

    Hoover, L C; Cook, K D; Miller, M F; Huffman, K L; Wu, C K; Lansdell, J L; Ramsey, C B

    1995-12-01

    Beef strip loins from either the right or left side of 22 carcasses of Bos indicus-type steers were injected with 200 mM calcium chloride (CaCl2) solution at 5% (wt/wt) to determine its effect on tenderness and other selected quality traits of steaks. Loins from opposite sides of the carcasses were untreated and served as the control. The steaks were evaluated for tenderness, juiciness, flavor intensity, tenderness acceptability, and overall acceptability by 62 restaurant consumers over a 6-wk period. The CaCl2 injection improved (P < .05) tenderness and flavor intensity ratings by the restaurant consumers. Tenderness acceptability and overall acceptability were improved 23 and 17%, respectively, by the CaCl2 injection. Flavor was not compromised by the CaCl2 injection. The CaCl2-treated steaks were rated superior(P < .05) for flavor compared to the control steaks. Restaurant consumers preferred the beef loin strip steaks injected with 200 mM CaCl2 at 5% (wt/wt). The results of this study are interpreted to indicate that, from a restaurant consumer perspective, CaCl2 injection is an acceptable means of making beef a more consistently tender product.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, D.J.; Laansoo, M.; Sen, A.K.

    Slices of rat submandibular gland were preloaded with /sup 86/Rb, an isotope that can substitute for K/sup +/ in the K/sup +/ release process. The efflux of /sup 86/Rb was monitored in a superfusion apparatus that efficiently removed the /sup 86/Rb as it exited from the tissue slices. Carbachol and the calcium ionophore A23187 activated a calcium-dependent increase in /sup 86/Rb efflux. Dibutyryl cGMP had no detectable effect on /sup 86/Rb efflux in contrast to its activation of ouabain-sensitive uptake of /sup 86/Rb observed in an earlier study. The stimulated release of /sup 86/Rb was not dependent on the presencemore » of either sodium or chloride ion. When /sup 86/Rb efflux was stimulated by carbachol, the efflux rate returned toward the basal rate after a few minutes of exposure to carbachol in the medium. If ouabain was then introduced into the superfusate, a large increase in efflux was stimulated. In the absence of carbachol, only a small increase in /sup 86/Rb efflux was stimulated by ouabain. The effect of ouabain indicates that there was a substantial recycling of /sup 86/Rb between the release and uptake processes in the extracellular space of the tissue slice. The significance of this observation is discussed.« less

  9. A Dihydropyridine-sensitive Voltage-dependent Calcium Channel in the Sarcolemmal Membrane of Crustacean Muscle

    PubMed Central

    Erxleben, Christian; Rathmayer, Werner

    1997-01-01

    Single-channel currents through calcium channels in muscle of a marine crustacean, the isopod Idotea baltica, were investigated in cell-attached patches. Inward barium currents were strongly voltage-dependent, and the channels were closed at the cell's resting membrane potential. The open probability (Po) increased e-fold for an 8.2 mV (±2.4, n = 13) depolarization. Channel openings were mainly brief (<0.3 ms) and evenly distributed throughout 100-ms pulses. Averaged, quasimacroscopic currents showed fast activation and deactivation and did not inactivate during 100-ms test pulses. Similarly, channel activity persisted at steadily depolarized holding potentials. With 200 mM Ba2+ as charge carrier, the average slope conductance from the unitary currents between +30 and +80 mV, was 20 pS (±2.6, n = 12). The proportion of long openings, which were very infrequent under control conditions, was greatly increased by preincubation of the muscle fibers with the calcium channel agonist, the dihydropyridine Bay K8644 (10–100 μM). Properties of these currents resemble those through the L-type calcium channels of mammalian nerve, smooth muscle, and cardiac muscle cells. PMID:9089439

  10. HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-κB and cGMP dependent mechanisms.

    PubMed

    Yang, Xinyu; Wang, Haichao; Zhang, Menmen; Liu, Jin; Lv, Ben; Chen, Fangping

    2015-08-06

    Thrombotic diseases are a group of prevalent and life-threatening diseases. Selective inhibition of pathological thrombosis holds the key to treat variety of thrombotic diseases. The pathological thrombosis can be induced by either tissue necrosis and deregulated inflammation. HMGB1, as an important proinflammatory cytokine and a late mediator, also involves on thrombosis disease. However, the underlying mechanisms are not fully understood. Immunofluorescence, ELISA assay, Platelet Aggregation, Thromboelastogram (TEG) analyzes. Flow cytometric analysis and Western blot analysis were used to investigated the role of HMGB1 in platelet aggregation and obtained following observations. By doing so, we obtained the following observations: i) Highly purified HMGB1 recombinant protein induces platelet aggregation and secretion in a dose-dependent manner in the presence of serum. ii) Low concentration of extracellular HMGB1 could synergistically promote subthreshold concentration of collagen or thrombin induced platelet aggregation. iii) Extracellular HMGB1 promoted platelet aggregation in a platelet-expressed GPIIb/IIIa-dependent manner. iv) We proposed that extracellular HMGB1 seems to promote the phosphorylation of GPIIb/IIIa and subsequent platelet aggregation via TLR4/NF-κB and cGMP pathway. In this study, we provide evidence for the hypothesis that HMGB1 interact with platelet might play an important role in the haemostasis and thrombotic diseases. Our research might be provide an interesting avenue for the treatment of thrombotic diseases in the future.

  11. The role of chloride in the mechanism of O(2) activation at the mononuclear nonheme Fe(II) center of the halogenase HctB.

    PubMed

    Pratter, Sarah M; Light, Kenneth M; Solomon, Edward I; Straganz, Grit D

    2014-07-02

    Mononuclear nonheme Fe(II) (MNH) and α-ketoglutarate (α-KG) dependent halogenases activate O2 to perform oxidative halogenations of activated and nonactivated carbon centers. While the mechanism of halide incorporation into a substrate has been investigated, the mechanism by which halogenases prevent oxidations in the absence of chloride is still obscure. Here, we characterize the impact of chloride on the metal center coordination and reactivity of the fatty acyl-halogenase HctB. Stopped-flow kinetic studies show that the oxidative transformation of the Fe(II)-α-KG-enzyme complex is >200-fold accelerated by saturating concentrations of chloride in both the absence and presence of a covalently bound substrate. By contrast, the presence of substrate, which generally brings about O2 activation at enzymatic MNH centers, only has an ∼10-fold effect in the absence of chloride. Circular dichroism (CD) and magnetic CD (MCD) studies demonstrate that chloride binding triggers changes in the metal center ligation: chloride binding induces the proper binding of the substrate as shown by variable-temperature, variable-field (VTVH) MCD studies of non-α-KG-containing forms and the conversion from six-coordinate (6C) to 5C/6C mixtures when α-KG is bound. In the presence of substrate, a site with square pyramidal five-coordinate (5C) geometry is observed, which is required for O2 activation at enzymatic MNH centers. In the absence of substrate an unusual trigonal bipyramidal site is formed, which accounts for the observed slow, uncoupled reactivity. Molecular dynamics simulations suggest that the binding of chloride to the metal center of HctB leads to a conformational change in the enzyme that makes the active site more accessible to the substrate and thus facilitates the formation of the catalytically competent enzyme-substrate complex. Results are discussed in relation to other MNH dependent halogenases.

  12. Geraniol improves the impaired vascular reactivity in diabetes and metabolic syndrome through calcium channel blocking effect.

    PubMed

    El-Bassossy, Hany M; Elberry, Ahmed A; Ghareib, Salah A

    2016-08-01

    The aim of the present study is to investigate the effect and possible mechanism of action of geraniol on the impaired vascular reactivity of aortic rings isolated from diabetes or metabolic syndrome (MS) -induced rats. Male Wistar rats were divided into control, type 1 diabetes and metabolic syndrome (MS) groups. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50mg/kg) and left for 10weeks to develop vascular complications. MS was induced by adding 10% fructose and 3% salt to water and diet for 12weeks. The present study investigated the effect of in vitro incubation with geraniol (10-300μM) on the vasoconstrictor response to phenylephrine (PE) and the vasodilator response to acetylcholine (ACh) as well as its effect on aortae incubated with methylglyoxal (MG) as an advanced glycation end product (AGE). To investigate the mechanism of action of geraniol, different blockers are used, including Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, 100μM), tetraethylammonium chloride (TEA, 10mM), and indomethacin (INDO, 5μM). Moreover, the effect of calcium chloride (CaCl2) on aortic rings precontracted with PE or potassium chloride (KCl) was examined. Thirty minutes incubation with geraniol alleviated the exaggerated vasoconstriction in aortae isolated from diabetic or MS animals or in vitro exposed to MG in a concentration-dependent manner. In addition, geraniol improved the vasodilatation response of diabetic or MS aortae or aortae exposed to MG. In search for the mechanism; geraniol produced concentration-dependent relaxation of both PE and KCl-precontracted aorta. Geraniol relaxation was not affected by L-NAME, INDO or TEA. However, geraniol significantly inhibited voltage dependent and receptor mediated Ca(2+)-induced contraction activated by KCl or PE respectively. In conclusion, geraniol ameliorates impaired vascular reactivity in experimentally induced diabetes and MS. The effect may be partially attributed to an

  13. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging

    PubMed Central

    Bhargava, Yogesh; Hampden-Smith, Kathryn; Chachlaki, Konstantina; Wood, Katherine C.; Vernon, Jeffrey; Allerston, Charles K.; Batchelor, Andrew M.; Garthwaite, John

    2013-01-01

    Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T cells. Adenoviral infection of HEK293T cells with FlincG, however, had previously proved successful. Both constructs were found to harbor a mutation in the EGFP domain and had a tail of 17 amino acids at the C-terminus that differed from the published sequence. These discrepancies were systematically examined, together with mutations found beneficial for the related GCaMP family of Ca2+ biosensors, in a HEK293T cell line stably expressing both nitric oxide (NO)-activated guanylyl cyclase and phosphodiesterase-5. Restoring the mutated amino acid improved basal fluorescence whereas additional restoration of the correct C-terminal tail resulted in poor cGMP sensing as assessed by superfusion of either 8-bromo-cGMP or NO. Ultimately, two improved FlincGs were identified: one (FlincG2) had the divergent tail and gave moderate basal fluorescence and cGMP response amplitude and the other (FlincG3) had the correct tail, a GCaMP-like mutation in the EGFP region and an N-terminal tag, and was superior in both respects. All variants tested were strongly influenced by pH over the physiological range, in common with other EGFP-based biosensors. Purified FlincG3 protein exhibited a lower cGMP affinity (0.89 μM) than reported for the original FlincG (0.17 μM) but retained rapid kinetics and a 230-fold selectivity over cAMP. Successful expression of FlincG2 or FlincG3 in differentiated N1E-115 neuroblastoma cells and in primary cultures of hippocampal and dorsal root ganglion cells commends them for real-time imaging of cGMP dynamics in neural (and other) cells, and in their subcellular specializations. PMID:24068983

  14. Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize

    PubMed Central

    Zhang, Aying; Jiang, Mingyi

    2012-01-01

    Nitric oxide (NO), hydrogen peroxide (H2O2), and calcium (Ca2+)/calmodulin (CaM) are all required for abscisic acid (ABA)-induced antioxidant defence. Ca2+/CaM-dependent protein kinase (CCaMK) is a strong candidate for the decoder of Ca2+ signals. However, whether CCaMK is involved in ABA-induced antioxidant defence is unknown. The results of the present study show that exogenous and endogenous ABA induced increases in the activity of ZmCCaMK and the expression of ZmCCaMK in leaves of maize. Subcellular localization analysis showed that ZmCCaMK is located in the nucleus, the cytoplasm, and the plasma membrane. The transient expression of ZmCCaMK and the RNA interference (RNAi) silencing of ZmCCaMK analysis in maize protoplasts revealed that ZmCCaMK is required for ABA-induced antioxidant defence. Moreover, treatment with the NO donor sodium nitroprusside (SNP) induced the activation of ZmCCaMK and the expression of ZmCCaMK. Pre-treatments with an NO scavenger and inhibitor blocked the ABA-induced increases in the activity and the transcript level of ZmCCaMK. Conversely, RNAi silencing of ZmCCaMK in maize protoplasts did not affect the ABA-induced NO production, which was further confirmed using a mutant of OsCCaMK, the homologous gene of ZmCCaMK in rice. Moreover, H2O2 was also required for the ABA activation of ZmCCaMK, and pre-treatments with an NO scavenger and inhibitor inhibited the H2O2-induced increase in the activity of ZmCCaMK. Taken together, the data clearly suggest that ZmCCaMK is required for ABA-induced antioxidant defence, and H2O2-dependent NO production plays an important role in the ABA-induced activation of ZmCCaMK. PMID:22865912

  15. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  16. Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes.

    PubMed

    Dubé, Mathieu; Etienne, Loïc; Fels, Maximilian; Kielian, Margaret

    2016-07-15

    The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH. Rubella virus causes a mild disease of childhood, but infection of pregnant women frequently results in miscarriage or severe birth defects. In spite of an effective vaccine, RuV disease remains a serious problem in many developing countries. RuV infection of host cells involves endocytic uptake and low pH-triggered membrane fusion and is unusual in its requirement for calcium binding by the membrane

  17. Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes

    PubMed Central

    Dubé, Mathieu; Etienne, Loïc; Fels, Maximilian

    2016-01-01

    ABSTRACT The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH. IMPORTANCE Rubella virus causes a mild disease of childhood, but infection of pregnant women frequently results in miscarriage or severe birth defects. In spite of an effective vaccine, RuV disease remains a serious problem in many developing countries. RuV infection of host cells involves endocytic uptake and low pH-triggered membrane fusion and is unusual in its requirement for calcium

  18. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    PubMed

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  19. Preparation and Characterization of a Calcium Phosphate Ceramic for the Immobilization of Chloride-containing Intermediate Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.

    2003-12-01

    Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides aremore » chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.« less

  20. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity

    PubMed Central

    Eisner, Verónica; Gao, Erhe; Csordás, György; Slovinsky, William S.; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S. R. Wayne; Chuprun, J. Kurt; Hoek, Jan B.; Koch, Walter J.; Hajnóczky, György

    2017-01-01

    Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24–48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2–mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy. PMID:28096338