Science.gov

Sample records for gmti radar system

  1. Lightweight SAR GMTI radar technology development

    NASA Astrophysics Data System (ADS)

    Kirk, John C.; Lin, Kai; Gray, Andrew; Hseih, Chung; Darden, Scott; Kwong, Winston; Majumder, Uttam; Scarborough, Steven

    2013-05-01

    A small and lightweight dual-channel radar has been developed for SAR data collections. Using standard Displaced Phase Center Antenna (DPCA) radar digital signal processing, SAR GMTI images have been obtained. The prototype radar weighs 5-lbs and has demonstrated the extraction of ground moving targets (GMTs) embedded in high-resolution SAR imagery data. Heretofore this type of capability has been reserved for much larger systems such as the JSTARS. Previously, small lightweight SARs featured only a single channel and only displayed SAR imagery. Now, with the advent of this new capability, SAR GMTI performance is now possible for small UAV class radars.

  2. GMTI radar minimum detectable velocity.

    SciTech Connect

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  3. Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.

    SciTech Connect

    Doerry, Armin Walter

    2010-09-01

    The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the 'seek time'.

  4. Analysis of orthogonal waveform for spaceborne MIMO-GMTI radar

    NASA Astrophysics Data System (ADS)

    Zou, Bo; Dong, Zhen; Du, Xiang-yu

    2011-10-01

    The application of MIMO (Multiple input multiple output) techniques to spaceborne multichannel radar offers a number of advantages, including target detection, parameter estimation, and so on. Based on two kinds of waveforms presented in MIMO radar, a concise definition of synthetical ISLR is proposed. Through analysis of synthetical ISLR for two kinds of waveforms, it concludes that compared with orthogonal frequency division waveform, the crosscorrelation of orthogonal code waveform badly weakens the performance of spaceborne MIMO radar in GMTI (Ground moving target indication). Thus, by adopting orthogonal frequency division waveform, the basic principle of space-time-frequency adaptive processing is studied. Simulation results demonstrate the superiority of frequency division orthogonal MIMO radar in improving clutter suppression and GMTI performance.

  5. Situational awareness sensor management of space-based EO/IR and airborne GMTI radar for road targets tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2010-04-01

    Dynamic sensor management of heterogeneous and distributed sensors presents a daunting theoretical and practical challenge. We present a Situational Awareness Sensor Management (SA-SM) algorithm for the tracking of ground targets moving on a road map. It is based on the previously developed information-theoretic Posterior Expected Number of Targets of Interest (PENTI) objective function, and utilizes combined measurements form an airborne GMTI radar, and a space-based EO/IR sensor. The resulting filtering methods and techniques are tested and evaluated. Different scan rates for the GMTI radar and the EO/IR sensor are evaluated and compared.

  6. Gmti Motion Compensation

    DOEpatents

    Doerry, Armin W.

    2004-07-20

    Movement of a GMTI radar during a coherent processing interval over which a set of radar pulses are processed may cause defocusing of a range-Doppler map in the video signal. This problem may be compensated by varying waveform or sampling parameters of each pulse to compensate for distortions caused by variations in viewing angles from the radar to the target.

  7. Circular SAR GMTI

    NASA Astrophysics Data System (ADS)

    Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven

    2014-06-01

    We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).

  8. Backprojection for GMTI processing

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2014-05-01

    Backprojection has long been applied to SAR image formation. It has equal utility in forming the range-velocity maps for Ground Moving Target Indicator (GMTI) radar processing. In particular, it overcomes the problem of targets migrating through range resolution cells.

  9. SAR based adaptive GMTI

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Guo, Bin; Xu, Luzhou; Li, Jian

    2010-04-01

    We consider ground moving target indication (GMTI) and target velocity estimation based on multi-channel synthetic aperture radar (SAR) images. Via forming velocity versus cross-range images, we show that small moving targets can be detected even in the presence of strong stationary ground clutter. Moreover, the velocities of the moving targets can be estimated, and the misplaced moving targets can be placed back to their original locations based on the estimated velocities. Adaptive beamforming techniques, including Capon and generalizedlikelihood ratio test (GLRT), are used to form velocity versus cross-range images for each range bin of interest. The velocity estimation ambiguities caused by the multi-channel array geometry are analyzed. We also demonstrate the effectiveness of our approaches using the Air Force Research Laboratory (AFRL) publicly-released Gotcha SAR based GMTI data set.

  10. GMTI processing using back projection.

    SciTech Connect

    Doerry, Armin Walter

    2013-07-01

    Backprojection has long been applied to SAR image formation. It has equal utility in forming the range-velocity maps for Ground Moving Target Indicator (GMTI) radar processing. In particular, it overcomes the problem of targets migrating through range resolution cells.

  11. Some comments on GMTI false alarm rate

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2011-06-01

    A typical Ground Moving Target Indicator (GMTI) radar specification includes the parameters Probability of Detection (PD) - typically on the order of 0.85, and False Alarm Rate (FAR) - typically on the order of 0.1 Hz. The PD is normally associated with a particular target 'size', such as Radar Cross Section (RCS) with perhaps some statistical description (e.g. Swerling number). However, the concept of FAR is embodied at a fundamental level in the detection process, which traditionally employs a Constant-FAR (CFAR) detector to set thresholds for initial decisions on whether a target is present or not. While useful, such a metric for radar specification and system comparison is not without some serious shortcomings. In particular, when comparing FAR across various radar systems, some degree of normalization needs to occur to account for perhaps swath width and scan rates. This in turn suggests some useful testing strategies.

  12. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    SciTech Connect

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  13. A SW Simulator Paradigm For Spaceborn GMTI Performance Analysis In Sea Clutter

    NASA Astrophysics Data System (ADS)

    Maffei, Marco; Venturini, Roberto

    2013-12-01

    Modern system engineering for Spaceborne Radars (SBRs) relies on a rigorous mathematical analysis and related simulation software (SW) tools as an aid to radar performance prediction as well as to support breadboarding activities for novel payloads. This paper outlines the design paradigm of a SW Simulator for Spaceborne Ground Moving Target Indicator (GMTI) Performace Analysis in Sea Clutter complying to standard policies of system design and development based on Flexibility, Modularity, Interoperability, and Efficiency. Clearly the Efficacy relies on the core engineering issue which has not been faced completely by the scientific and technical community in terms of enabling technologies for SBRs, the thorough applicability of SBR-GMTI techniques to the marine environment in harsh environmental conditions, as well as sea clutter modeling.

  14. Intent Inference and Syntactic Tracking with GMTI Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Alex; Krishnamurthy, Vikram; Balaji, Bhashyam

    In conventional target tracking systems, human operators use the estimated target tracks to make higher level inference of the target behaviour/intent. This paper develops syntactic filtering algorithms that assist human operators by extracting spatial patterns from target tracks to identify suspicious/anomalous spatial trajectories. The targets' spatial trajectories are modeled by a stochastic context free grammar (SCFG) and a switched mode state space model. Bayesian filtering algorithms for stochastic context free grammars are presented for extracting the syntactic structure and illustrated for a ground moving target indicator (GMTI) radar example. The performance of the algorithms is tested with the experimental data collected using DRDC Ottawa's X-band Wideband Experimental Airborne Radar (XWEAR).

  15. Spatial voting with data modeling for behavior based tracking and discrimination of human from fauna from GMTI radar tracks

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger

    2012-06-01

    We introduce a novel method of using ground track indicators in conjunction with our Spatial Voting (SV) algorithm and data fusing Data Models to distinguish target types from motion signatures alone. We simulate 3 different types of behaviors: rabbit, coyote, and human. We then apply SV to combine individual position reports obtained via radar track indicators into object tracks that are then characterized using the methods shown in this paper. The features obtained from this characterization are then used as input into a Data Model equation classifier or a look-up table classifier to label the track behavior as either rabbit, coyote, or human. Our results and methods show promise and are presented here.

  16. Multiple-input Multiple-output Ground Moving Target Indicator Radar: Theory and Practice

    NASA Astrophysics Data System (ADS)

    Bliss, Dan

    2012-02-01

    Multiple-input multiple-output (MIMO) extensions to radar systems enable a number of advantages compared to traditional approaches. These advantages include improved angle estimation and target detection. In this paper, an overview of MIMO radar is provided, and the concept of coherent MIMO radar is defined. The principle focus of the paper is the discussion of MIMO ground moving target indication (GMTI). For GMTI radar modes, the advantages of a coherent MIMO architecture include improved angle estimation and enhanced slow speed target detection. To illustrate this, the concept of coherent MIMO radar is introduced and performance comparisons made between MIMO GMTI and traditional radar GMTI. These comparisons are supported by theoretical bounds, simulations, and experimental results for GMTI angle estimation accuracy and minimum detectable target velocity. For some applications, these results indicate significant potential improvements in clutter-mitigation, signal-to-noise ratio (SNR) loss, and reduction in angle-estimation error for slow-moving targets. The important effects of waveform characteristics is addressed.

  17. Effect of wind turbine micro-Doppler on SAR and GMTI signatures

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Ling, Hao

    2014-05-01

    In this paper, we present the results of a modeling study to examine the interference effect of microDopplers caused by offshore wind farms on airborne sensors operating in the synthetic aperture radar (SAR) and ground moving target indicator (GMTI) modes. The modeling is carried out by generating CAD instantiations of the dynamic wind turbine and using the high-frequency electromagnetic code Xpatch to perform the scattering calculations. Artifacts in the resulting SAR and GMTI signatures are evaluated for interference with tracking of boats in coastal waters. Results of signal filtering algorithms to reduce the dynamic turbine clutter in both SAR images and GMTI displays are presented.

  18. Clutter in the GMTI range-velocity map.

    SciTech Connect

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  19. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  20. Equatorial radar system

    NASA Technical Reports Server (NTRS)

    Rukao, S.; Tsuda, T.; Sato, T.; Kato, S.

    1989-01-01

    A large clear air radar with the sensitivity of an incoherent scatter radar for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The radar, called the Equatorial Radar, will be built in Pontianak, Kalimantan Island, Indonesia (0.03 N, 109.3 E). The system is a 47 MHz monostatic Doppler radar with an active phased array configuration similar to that of the MU radar in Japan, which has been in successful operation since 1983. It will have a PA product of more than 5 x 10(9) sq. Wm (P = average transmitter power, A = effective antenna aperture) with sensitivity more than 10 times that of the MU radar. This system configuration enables pulse-to-pulse beam steering within 25 deg from the zenith. As is the case of the MU radar, a variety of sophisticated operations will be made feasible under the supervision of the radar controller. A brief description of the system configuration is presented.

  1. Moving Target Indication via RADARSAT-2 Multichannel Synthetic Aperture Radar Processing

    NASA Astrophysics Data System (ADS)

    Chiu, S.; Dragošević, M. V.

    2009-12-01

    With the recent launches of the German TerraSAR-X and the Canadian RADARSAT-2, both equipped with phased array antennas and multiple receiver channels, synthetic aperture radar, ground moving target indication (SAR-GMTI) data are now routinely being acquired from space. Defence R&D Canada has been conducting SAR-GMTI trials to assess the performance and limitations of the RADARSAT-2 GMTI system. Several SAR-GMTI modes developed for RADARSAT-2 are described and preliminary test results of these modes are presented. Detailed equations of motion of a moving target for multiaperture spaceborne SAR geometry are derived and a moving target parameter estimation algorithm developed for RADARSAT-2 (called the Fractrum Estimator) is presented. Limitations of the simple dual-aperture SAR-GMTI mode are analysed as a function of the signal-to-noise ratio and target speed. Recently acquired RADARSAT-2 GMTI data are used to demonstrate the capability of different system modes and to validate the signal model and the algorithm.

  2. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1988-01-01

    Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary radar astronomy were performed. This work demands familiarity with the various components of a planetary radar telescope (transmitter, receiver, antenna, computer hardware and software) as well as knowledge of how the entire system must function as a cohesive unit to meet the particular scientific objectives at hand in a given observation. Support radar data-processing facilities, currently being used for virtually all Goldstone data reduction includes: a VAX 11/780 computer system, an FPS 5210 array processor, terminals, tape drives, and image-display devices, as well as a large body of data-reduction software to accommodate the variety of data-acquisition formats and strategems. Successful 113-cm radar observation of Callisto and the near-Earth asteroid 1981 Midas and Goldstone/VLA radar observations of Saturn's rings were obtained. Quick-look verification programs from data taken with phase-coded cw (i.e., ranging) waveforms, applicable to Venus, the Moon, and small bodies were completed. Definition of scientific and engineering requirements on instrument performance, radar system configuration, and personnel, for all 1988 Goldstone radar investigations was accomplished.

  3. Simultaneous SAR and GMTI using ATI/DPCA

    NASA Astrophysics Data System (ADS)

    Deming, Ross; Best, Matthew; Farrell, Sean

    2014-06-01

    In previous work, we presented GMTI detection and geo-location results from the AFRL Gotcha challenge data set, which was collected using a 3-channel, X-band, circular SAR system. These results were compared against GPS truth for a scripted vehicle target. The algorithm used for this analysis is known as ATI/DPCA, which is a hybrid of along-track interferometry (ATI) and the displaced phase center antenna (DPCA) technique. In the present paper the use of ATI/DPCA is extended in order to detect and geo-locate all observable moving targets in the Gotcha challenge data, including both the scripted movers and targets of opportunity. In addition, a computationally efficient SAR imaging technique is presented, appropriate for short integration times, which is used for computing an image of the scene of interest using the same pulses of data used for the GMTI processing. The GMTI detections are then overlaid on the SAR image to produce a simultaneous SAR/GMTI map.

  4. Knowledge-Aided Multichannel Adaptive SAR/GMTI Processing: Algorithm and Experimental Results

    NASA Astrophysics Data System (ADS)

    Wu, Di; Zhu, Daiyin; Zhu, Zhaoda

    2010-12-01

    The multichannel synthetic aperture radar ground moving target indication (SAR/GMTI) technique is a simplified implementation of space-time adaptive processing (STAP), which has been proved to be feasible in the past decades. However, its detection performance will be degraded in heterogeneous environments due to the rapidly varying clutter characteristics. Knowledge-aided (KA) STAP provides an effective way to deal with the nonstationary problem in real-world clutter environment. Based on the KA STAP methods, this paper proposes a KA algorithm for adaptive SAR/GMTI processing in heterogeneous environments. It reduces sample support by its fast convergence properties and shows robust to non-stationary clutter distribution relative to the traditional adaptive SAR/GMTI scheme. Experimental clutter suppression results are employed to verify the virtue of this algorithm.

  5. GMTI Direction of Arrival Measurements from Multiple Phase Centers.

    SciTech Connect

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Ground Moving Target Indicator (GMTI) radar attempts to detect and locate targets with unknown motion. Very slow-moving targets are difficult to locate in the presence of surrounding clutter. This necessitates multiple antenna phase centers (or equivalent) to offer independent Direction of Arrival (DOA) measurements. DOA accuracy and precision generally remains dependent on target Signal-to-Noise Ratio (SNR), Clutter-toNoise Ratio (CNR), scene topography, interfering signals, and a number of antenna parameters. This is true even for adaptive techniques like Space-Time-AdaptiveProcessing (STAP) algorithms.

  6. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  7. EM-based Gaussian mixture model estimation for GMTI-based tracking using speedboat data

    NASA Astrophysics Data System (ADS)

    Akselrod, David; McDonald, Michael; Kirubarajan, T.

    2009-08-01

    In this paper, the problem of detection, classification and tracking of highly manoeuvring boats in sea clutter is considered. The considered problem is challenging due to numerous inherent issues: abrupt direction changes, high level of false alarms, lowered detectability, group movement and re-grouping, among many others. The results of applying a proposed measurement extraction and estimation technique to a set of real data from DRDC-Ottawa trials using Ground Moving Target Indicator (GMTI) radar are described. Real radar data containing a small manoeuvring boat in sea clutter is processed using Expectation Maximization (EM) Gaussian Mixture Model (GMM) based estimation. A trial was undertaken to collect data against highly maneuvering speedboats in the sea. All the data were collected in the GMTI single-channel high-resolution spotlight mode. True data were collected using GPS recording equipment. Real data processing results are presented.

  8. Enhanced Mars Radar Observations with the Goldstone Solar System Radar

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F. C.; Jurgens, R. F.; Anderson, F. S.; Slade, M. A.

    2000-10-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. GSSR radar data were critical in assessing the Viking Lander 1 as well as the Mars Pathfinder landing sites. A reprocessing to common format of the last ten years worth of GSSR Mars delay-Doppler sub-Earth radar track profiles was recently completed in aid of landing site characterization. The radar data obtained since 1988 by the GSSR comprise some 73 delay-Doppler radar tracks. Sixteen of those tracks also have interferometric radar data, which has never been processed, because the signal to noise is insufficient to constrain both the phases and the radar scattering parameters. The new topographic data from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft offer the best means to finally make radar maps that extend the radar properties coverage some 3 to 4 degrees beyond the sub-Earth radar track. This would be a significant expansion of the dataset, and is all the more warranted as the radar spatial resolution improves away from the sub-Earth track. At the outer edges the radar resolution cell is of the same order of size as the landing site ellipses for future mission (approximately 20 km diameter). Initial results of processing the interferometric data will be presented at the meeting. The 2001 Mars opposition offers an opportunity to fill in some areas where radar data are lacking in the current dataset. We are planning 18 radar experiments from May through July of 2001. The goal of the observations will be to provide new, interferometric, improved-spatial-resolution radar data over the equatorial regions (latitudes -2 to +7) of Mars, in particular over the so-called Hematite Site in Sinus Meridiani. This work was carried out at the Jet Propulsion Laboratory, a division of the California Institute of Technology, with funding from the Mars Data Analysis Program of NASA OSS.

  9. A new GMTI detector based on spaceborne single channel SAR

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Sun, Jinping; Bai, Xia; Yu, Zhenming

    2007-11-01

    This paper examines moving targets detection using single channel Synthetic aperture radar (SAR) in spaceborne platform. Building on previous work moving targets can be retrieved from multi-look images via magnitude subtraction or phase interferometry. A more effective method is proposed which mainly consists of signal subspace processing- based data equilibrium and change detection in multi-look covariance matrix. Also different baseline is checked and weak targets may be found. Test results show that precise calibration of multi-look images are essential and short baseline is preferred when the interesting targets are weak. Therefore, the proposed method leads to improved detection performance and provides ways of GMTI in single channel SAR.

  10. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

  11. Simulating the Phoenix Landing Radar System

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.

    2008-01-01

    A computer program called phxlrsim simulates the behavior of the radar system used as an altimeter and velocimeter during the entry, descent, and landing phases of the Phoenix lander spacecraft. The simulation includes modeling of internal functions of the radar system, the spacecraft trajectory, and the terrain. The computational models incorporate representations of nonideal hardware effects in the radar system and effects of radar speckle (coherent scatter of radar signals from terrain).

  12. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1991-01-01

    Caltech/Jet Propulsion Laboratory (JPL) radar astronomers made use of the Very Large Array (VLA) at Socorro, NM, during February 1990, to receive radio echoes from the planet Venus. The transmitter was the 70 meter antenna at the Goldstone complex northwest of Barstow, CA. These observations contain new information about the roughness of Venus at cm to decimeter scales and are complementary to information being obtained by the Magellan spacecraft. Asteroid observations are also discussed.

  13. Spurious effects of analog-to-digital conversion nonlinearities on radar range-Doppler maps

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.; Dubbert, D. F.; Tise, B. L.

    2015-05-01

    High-performance radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. System nonlinearities generate harmonic spurs that at best degrade, and at worst generate false target detections. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this paper the relationship of INL to radar performance; in particular its manifestation in a range-Doppler map or image.

  14. Meteorological radar facility. Part 1: System design

    NASA Technical Reports Server (NTRS)

    Brassaw, L. L., Jr.; Hamren, S. D.; Mullins, W. H.; Schweitzer, B. P.

    1976-01-01

    A compilation of information regarding systems design of space shuttles used in meteorological radar probes is presented. Necessary radar equipment is delineated, while space system elements, calibration techniques, antenna systems and other subsystems are reviewed.

  15. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  16. Verification of target motion effects on SAR imagery using the Gotcha GMTI challenge dataset

    NASA Astrophysics Data System (ADS)

    Hack, Dan E.; Saville, Michael A.

    2010-04-01

    This paper investigates the relationship between a ground moving target's kinematic state and its SAR image. While effects such as cross-range offset, defocus, and smearing appear well understood, their derivations in the literature typically employ simplifications of the radar/target geometry and assume point scattering targets. This study adopts a geometrical model for understanding target motion effects in SAR imagery, termed the target migration path, and focuses on experimental verification of predicted motion effects using both simulated and empirical datasets based on the Gotcha GMTI challenge dataset. Specifically, moving target imagery is generated from three data sources: first, simulated phase history for a moving point target; second, simulated phase history for a moving vehicle derived from a simulated Mazda MPV X-band signature; and third, empirical phase history from the Gotcha GMTI challenge dataset. Both simulated target trajectories match the truth GPS target position history from the Gotcha GMTI challenge dataset, allowing direct comparison between all three imagery sets and the predicted target migration path. This paper concludes with a discussion of the parallels between the target migration path and the measurement model within a Kalman filtering framework, followed by conclusions.

  17. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  18. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to Commemorate the 60th Anniversary of the Invention of Holography, Springfield, Massachusetts USA, October 27-29, pp. 183-197, 2008. [2] I. Catapano, L. Crocco, A. F. Morabito, F. Soldovieri, "Tomographic imaging of holographic GPR data for non-invasive structural assessment: the Musmeci bridge investigation", Nondestructive testing and evaluation, vol. 27, pp. 229-237, 2012.

  19. Goldstone Solar System Radar (GSSR)

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1991-01-01

    The primary objective of the Goldstone Solar System Radar is the investigation of solar system bodies by means of Earth-based radar. Targets of primary interest include the Galilean moons, Saturn's rings and moons, and Earth-approaching asteroids and comets. Planets are also of interest, particularly Mercury and the planets to which NASA has not yet planned spacecraft visits. Based on a history of solid achievement, including the definition of the Astronomical Unit, imaging and topography of Mars, Venus, and Mercury, and contributions to the general theory of relativity, the program will continue to support flight project requirements and its primary objectives. The individual target objectives are presented, and information on the following topics are presented in tabular form: Deep Space Network support, compatibility tests, telemetry, command, and tracking support responsibility.

  20. Consistency of stochastic context-free grammars and application to stochastic parsing of GMTI tracker data

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam

    2012-06-01

    Conventional trackers provide the human operator with estimated target tracks. It is desirable to make higher level inference of the target behaviour/intent (e.g., trajectory inference) in an automated manner. One such approach is to use stochastic context-free grammars and the Earley-Stoelcke parsing algorithm. The problem of inference is reformulated as one of parsing. In this paper, the consistency of stochastic context-free grammars is reviewed. Some examples illustrating the constraints on SCFGs due to consistency are presented, including a toy SCFG that has been used to successfully parse real GMTI radar data.

  1. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  2. Radar cross section statistics of cultural clutter at Ku-band

    NASA Astrophysics Data System (ADS)

    Raynal, Ann Marie; Bickel, Douglas L.; Dubbert, Dale F.; Verge, Tobias J.; Burns, Bryan L.; Dunkel, Ralf; Doerry, Armin W.

    2012-06-01

    Knowing the statistical characteristics of the radar cross-section (RCS) of man-made, or cultural clutter, is crucial to the success of clutter mitigation, radar target detection algorithms, and radar system requirements in urban environments. Open literature studies regarding the statistical nature of cultural clutter focus primarily on radar probability models or limited experimental data analysis of specific locations and frequencies. This paper seeks to expand the existing body of work on cultural clutter RCS statistics at Ku-band for ground moving target indication (GMTI) and synthetic aperture radar (SAR) applications. We examine the normalized RCS probability distributions of cultural clutter in several urban scenes, across aspect and elevation angle, for vertical transmit/receive (VV) polarizations, and at diverse resolutions, using experimental data collected at Ku-band. We further describe frequency and RCS strength statistics of clutter discretes per unit area to understand system demands on radars operating in urban environments in this band.

  3. FM/CW radar system

    NASA Technical Reports Server (NTRS)

    Brey, H.; Geise, P. E., Jr. (Inventor)

    1978-01-01

    An FM/CW radar system is presented with improved noise discrimination in which the received signal is multiplied by a sample of the transmitted signal, and the product signal is employed to deflect a laser beam as a function of frequency. The position of the beam is thus indicative of a discrete frequency, and it is detected by the frequency encoded positions of an array of photodiodes. The outputs of the photodiodes are scanned, then threshold detected, and used to obtain the range and velocity of a target.

  4. A Bayesian framework with an auxiliary particle filter for GMTI-based ground vehicle tracking aided by domain knowledge

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Liu, Cunjia; Chen, Wen-hua; Chambers, Jonathon

    2014-06-01

    In this work, we propose a new ground moving target indicator (GMTI) radar based ground vehicle tracking method which exploits domain knowledge. Multiple state models are considered and a Monte-Carlo sampling based algorithm is preferred due to the manoeuvring of the ground vehicle and the non-linearity of the GMTI measurement model. Unlike the commonly used algorithms such as the interacting multiple model particle filter (IMMPF) and bootstrap multiple model particle filter (BS-MMPF), we propose a new algorithm integrating the more efficient auxiliary particle filter (APF) into a Bayesian framework. Moreover, since the movement of the ground vehicle is likely to be constrained by the road, this information is taken as the domain knowledge and applied together with the tracking algorithm for improving the tracking performance. Simulations are presented to show the advantages of both the new algorithm and incorporation of the road information by evaluating the root mean square error (RMSE).

  5. Radar Attitude Sensing System (RASS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.

  6. Road network estimation through GMTI track fusion

    NASA Astrophysics Data System (ADS)

    Scalzo, Maria; Jones, Eric; Bubalo, Adnan; Alford, Mark; Wood, Gregory

    2011-06-01

    Road networks and associated traffic flow information are topics that have an innumerable number of applications, ranging from highway planning to military intelligence. Despite the importance of these networks, archival databases that often have update rates on the order of years or even decades have historically been the main source for obtaining and analyzing road network information. This somewhat static view of a potentially changing infrastructure can cause the information to therefore be incomplete and incorrect. Furthermore, these road databases are not only static, but rarely provide information beyond a simple two-dimensional view of a road, where divided high-ways are represented in the same manner as a rural dirt road. It is for these reasons that the use of Ground Moving Target Indicator (GMTI) data and tracks to create road networks is explored. This data lends itself to being able to not only provide a single static snapshot of a network that is considered the network for years, but to provide a consistently accurate and updated changing picture of the environment. The approach employed for creating a road network from GMTI tracks includes a technique known as Continuous Dynamic Time Warping (CDTW), as well as a general fusion routine.

  7. Performance evaluation of ground based radar systems

    NASA Astrophysics Data System (ADS)

    Grant, Stanley E.

    1994-06-01

    Ground based radar systems are a critical resource to the command, control, and communications system. This thesis provides the tools and methods to better understand the actual performance of an operational ground based radar system. This thesis defines two measurable performance standards: (1) the baseline performance, which is based on the sensor's internal characteristics, and (2) the theoretical performance, which considers not only the sensor's internal characteristics, but also the effects of the surrounding terrain and atmosphere on the sensor's performance. The baseline radar system performance, often used by operators, contractors, and radar modeling software to determine the expected system performance, is a simplistic and unrealistic means to predict actual radar system performance. The theoretical radar system performance is more complex; but, the results are much more indicative of the actual performance of an operational radar system. The AN/UPS-1 at the Naval Postgraduate School was used as the system under test to illustrate the baseline and theoretical radar system performance. The terrain effects are shown by performing a multipath study and producing coverage diagrams. The key variables used to construct the multipath study and coverage diagrams are discussed in detail. The atmospheric effects are illustrated by using the Integrated Refractive Effects Prediction System (IREPS) and the Engineer's Refractive Effects Prediction System (EREPS) software tools to produce propagations conditions summaries and coverage displays.

  8. Possibility of investigating star systems by radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    1986-01-01

    There is no fundamental reason why radar cannot be used in investigations of star systems. In order to detect star systems by radar it is necessary to construct an antenna with a diameter of several tens of kilometers and a transmitter whose power is commensurable with the power of all electric power stations on the Earth. Such an antenna should be in outer space in order to avoid the influence of radio ray refraction in the Earth's troposphere and to to give rise to radio noise. At present the construction of such a radar apparatus may seem incredible, but there are no fundamentally insoluble problems. The closest stars are 10,000 times more distant from the Sun than Pluto. In order to make successful radar observations of star systems there would have to be the same jump in energy potential as with the transition from radar observations of the Moon to radar observations of Pluto. If the rates of increase in energy potential persist, radar observations of star systems will become realistic by the middle of the 21st century. A system for interstellar communication having a receiving antenna with an effective area of 2 x 10 to the 9th power square meters operating at a wavelength of 3 cm with a receiver noise temperature of 10 K can ensure transmission of a television signal from a distance of 4.34 light years with use at the transmitting end of an antenna with a diameter of 10 m and a transmitter with a power of 1 million W. Radar observations of star systems will open the way to interstellar ships in the same way that radar observations of planets in the solar system opened the way for the interplanetary stations.

  9. Radar cross section statistics of dismounts at Ku-band

    NASA Astrophysics Data System (ADS)

    Raynal, Ann Marie; Burns, Bryan L.; Verge, Tobias J.; Bickel, Douglas L.; Dunkel, Ralf; Doerry, Armin W.

    2011-06-01

    Knowing the statistical characteristics of a target's radar cross-section (RCS) is crucial to the success of radar target detection algorithms. A wide range of applications currently exist for dismount (i.e. human body) detection and monitoring using ground-moving target indication (GMTI) radar systems. Dismounts are particularly challenging to detect. Their RCS is orders of magnitude lower than traditional GMTI targets, such as vehicles. Their velocity of about 0 to 1.5 m/s is also much slower than vehicular targets. Studies regarding the statistical nature of the RCS of dismounts focus primarily on simulations or very limited empirical data at specific frequencies. This paper seeks to enhance the existing body of work on dismount RCS statistics at Ku-band, which is currently lacking, and has become an important band for such remote sensing applications. We examine the RCS probability distributions of different sized humans in various stances, across aspect and elevation angle, for horizontal (HH) and vertical (VV) transmit/receive polarizations, and at diverse resolutions, using experimental data collected at Ku-band. We further fit Swerling target models to the RCS distributions and suggest appropriate detection thresholds for dismounts in this band.

  10. Knowledge Based Systems and Metacognition in Radar

    NASA Astrophysics Data System (ADS)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  11. Range-only multistatic radar system

    NASA Astrophysics Data System (ADS)

    Montana, D. M.; Herd, R. S.

    1985-10-01

    A range-only multistatic radar system has a plurality of radar stations located in a square grid pattern. Each radar station has a plurality of low power pulsed transmitters and receivers that operate on omnidirection whip antennas. Echo information received by the receivers is transmitted to a computer wherein a technique is employed to deghost and identify real targets. The computer applies a range difference similarity test, a uniqueness test, and a position test to determine real targets from the plurality of echo returns received.

  12. Radar Studies in the Solar System

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    1996-01-01

    We aid in a study of the solar system by means of ground-based radar. We have concentrated on (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size, shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics.

  13. Radar Studies in the Solar System

    NASA Technical Reports Server (NTRS)

    Shaprio, Irwin I.

    1998-01-01

    We aid in study of the solar system by means of ground-based radar. We have concentrated on: (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size , shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics. We are engaged in radar observations of asteroids and comets, both as systematically planned targets and as "targets of opportunity." In the course of the program, we have prepared ephemerides for about 80 asteroids and three comets, and the radar observations have been made or attempted at the Arecibo Observatory, in most cases successfully, and in some cases on more than one apparition. The results of these observations have included echo spectra for the targets and, in some cases, delay - Doppler images and measurements of the total round-trip delay to the targets. Perhaps the most dramatic of these results are the images obtained for asteroids (4179) Toutatis and 1989PB (Castalia), which were revealed to be double-lobed objects by the radar images. Besides these direct results, the radar observations have furnished information on the sizes and shapes of the targets through analysis of the Doppler width of the echoes as a function of time, and on the surface properties (such as composition, bulk density, and roughness) through analysis of the reflectivity and of the polarization state of the echoes. We have also refined the orbits of the observed asteroids as a result of the Doppler (and in some cases delay) measurements from the radar observations. Although the orbits of main-belt asteroids accessible to ground-based radar are quite well known from the available optical data, some near-Earth objects have been seen by radar very soon after their optical discovery (for example, 199OMF, just eight days after discovery). In such cases. the radar results ensure that the object in question can be anticipated and identified at the next apparition. We have also participated in radar studies of the terrestrial planets. The results of these studies have included both planetary topography profiles from the analysis of round-trip delays to points along the target Doppler equator and determinations of the target spin state. The latter is of special interest in the case of Venus, which is very close to, but not on, a multi-body spin-orbit resonance such that Venus rotates 12 times for every 8 Earth orbits and 13 Venus orbits. As a result, Venus presents nearly the same face toward Earth at each inferior conjunction. Our latest results confirm that the spin state of Venus is slightly off the resonance. The delay measurements from planetary 2 ranging have also been used in combination with other types of range data in testing general relativity with increasing accuracy. We have also been engaged in radar studies of planetary satellites. Using our ephemerides, Arecibo made radar observations of the Galilean satellites of Jupiter and of Mars' satellite Phobos during the favorable opposition seasons (1988-1992 for Jupiter and 1990 for Mars). An attempt was also made to observe Deimos, but without detecting an echo. In 1997, an attempt was made to observe Saturn's satellite Titan, using the newly upgraded Arecibo radar system for transmitting and the Goldstone radar for receiving, but no echo was detected. The study of satellites by radar is in many ways similar to that of asteroids. The results from these observations have included characterization of the surface properties from the reflectivity and polarization ratio, as well as (in the case of the large satellites of Jupiter) the variation of reflectivity with incidence angle.

  14. Urban Flood Warning Systems using Radar Technologies

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P. B.

    2013-12-01

    There have been an increasing number of urban areas that rely on weather radars to provide accurate precipitation information for flood warning purposes. As non-structural tools, radar-based flood warning systems can provide accurate and timely warnings to the public and private entities in urban areas that are prone to flash floods. The wider spatial and temporal coverage from radar increases flood warning lead-time when compared to rain and stream gages alone. The Third Generation Rice and Texas Medical Center (TMC) Flood Alert System (FAS3) has been delivering warning information with 2 to 3 hours of lead time and a R2 value of 93% to facility personnel in a readily understood format for more than 50 events in the past 15 years. The current FAS utilizes NEXRAD Level II radar rainfall data coupled with a real-time hydrologic model (RTHEC-1) to deliver warning information. The system has a user-friendly dashboard to provide rainfall maps, Google Maps based inundation maps, hydrologic predictions, and real-time monitoring at the bayou. This paper will evaluate its reliable performance during the recent events occurring in 2012 and 2013 and the development of a similar radar-based flood warning system for the City of Sugar Land, Texas. Having a significant role in the communication of flood information, FAS marks an important step towards the establishment of an operational and reliable flood warning system for flood-prone urban areas.

  15. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  16. Noise sources in laser radar systems.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H

    1989-07-01

    To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets. PMID:20555575

  17. Accurate 3D rigid-body target motion and structure estimation by using GMTI/HRR with template information

    NASA Astrophysics Data System (ADS)

    Wu, Shunguang; Hong, Lang

    2008-04-01

    A framework of simultaneously estimating the motion and structure parameters of a 3D object by using high range resolution (HRR) and ground moving target indicator (GMTI) measurements with template information is given. By decoupling the motion and structure information and employing rigid-body constraints, we have developed the kinematic and measurement equations of the problem. Since the kinematic system is unobservable by using only one scan HRR and GMTI measurements, we designed an architecture to run the motion and structure filters in parallel by using multi-scan measurements. Moreover, to improve the estimation accuracy in large noise and/or false alarm environments, an interacting multi-template joint tracking (IMTJT) algorithm is proposed. Simulation results have shown that the averaged root mean square errors for both motion and structure state vectors have been significantly reduced by using the template information.

  18. The instrumental principles of MST radars and incoherent scatter radars and the configuration of radar system hardware

    NASA Technical Reports Server (NTRS)

    Roettger, Juergen

    1989-01-01

    The principle of pulse modulation used in the case of coherent scatter radars (MST radars) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent transmitter/receiver system is described. Transmit/receive duplexers, transmitters, receivers, and quadrature detectors are explained. The radar controller, integrator, decoder and correlator design as well as the data transfer and the control and monitoring by the host computer are delineated. Typical operation parameters of some well-known radars are summarized.

  19. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Working Conditions § 1915.85 Vessel radar and communication systems. (a) The employer shall service each vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous Energy... 29 Labor 7 2013-07-01 2013-07-01 false Vessel radar and communication systems. 1915.85...

  20. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Working Conditions § 1915.85 Vessel radar and communication systems. (a) The employer shall service each vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous Energy... 29 Labor 7 2012-07-01 2012-07-01 false Vessel radar and communication systems. 1915.85...

  1. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Working Conditions § 1915.85 Vessel radar and communication systems. (a) The employer shall service each vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous Energy... 29 Labor 7 2014-07-01 2014-07-01 false Vessel radar and communication systems. 1915.85...

  2. A low-power radar imaging system

    NASA Astrophysics Data System (ADS)

    Charvat, Gregory Louis

    A near real-time radar-based imaging system is developed in this dissertation. This system uses the combination of a spatially diverse antenna array, a high sensitivity range-gated frequency-modulated continuous wave (FMCW) radar system, and an airborne synthetic aperture radar (SAR) imaging algorithm to produce near real-time high resolution imagery of what is behind a dielectric wall. This system is capable of detecting and providing accurate imagery of target scenes made up of objects as small as 6 inch tall metallic rods and cylinders behind a 4 inch thick dielectric slab. A study is conducted of through-dielectric slab imaging by the development of a 2D model of a dielectric slab and cylinder. The SAR imaging algorithm is developed and tested on this model for a variety of simulated imaging scenarios and the results are then used to develop an unusually high sensitivity range-gated FMCW radar architecture. An S-band rail SAR imaging system is developed using this architecture and used to image through two different dielectric slabs as well as free-space. All results are in agreement with the simulations. It is found that free-space target scenes could be imaged using low transmit power, as low as 5 picowatts. From this result it was decided to develop an X-band front end which mounts directly on to the S-band rail SAR so that objects as small as groups of pushpins and aircraft models in free-space could be imaged. These results are compared to previous X-band direct conversion FMCW rail SAR work. It was found that groups of pushpins and models could be imaged at transmit powers as low as 10 nanowatts. A spatially diverse S-band antenna array will be shown to be developed for use with the S-band radar; thereby providing the ability for near real-time SAR imaging of objects behind dielectric slabs with the same performance characteristics of the S-band rail SAR. The research presented in this dissertation will show that near real-time radar imaging through lossy-dielectric slabs is accomplished when using a highly sensitive radar system located at a stand-off range from the slab using a free-space SAR imaging algorithm.

  3. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and is controlled through a 1 Gb/s Ethernet UDP/IP interface. This real-time generation of a timebase distorted radar waveform for continuous transmission in a planetary radar is a unique capability.

  4. Three-channel processing for improved geo-location performance in SAR-based GMTI interferometry

    NASA Astrophysics Data System (ADS)

    Deming, Ross W.; MacIntosh, Scott; Best, Matthew

    2012-05-01

    This paper describes a method for accurately geo-locating moving targets using three-channel SAR-based GMTI interferometry. The main goals in GMTI processing are moving target detection and geo-location. In a 2011 SPIE paper we showed that reliable target detection is possible using two-channel interferometry, even in the presence of main-beam clutter. Unfortunately, accurate geo-location is problematic when using two-channel interferometry, since azimuth estimation is corrupted by interfering clutter. However, we show here that by performing three-channel processing in an appropriate sequence, clutter effects can be diminished and significant improvement can be obtained in geo-location accuracy. The method described here is similar to an existing technique known as Clutter Suppression Interferometry (CSI), although there are new aspects of our implementation. The main contribution of this paper is the mathematical discussion, which explains in a straightforward manner why three-channel CSI outperforms standard two-channel interferometry when target signatures are embedded in main-beam clutter. Also, to our knowledge this paper presents the first results of CSI applied to the Gotcha Challange data set, collected using an X-band circular SAR system in an urban environment.

  5. Analysis of a combined FMCW pulse radar system for Side Looking Airborne Radar (SLAR) applications

    NASA Astrophysics Data System (ADS)

    Timmerman, R.

    1985-01-01

    A theoretical and practical feasibility study for the development of an FMCW radar, combining features of FMCW and pulse radars was performed for application as SLAR for Earth observation. Design approaches were compared. Simulations with a network analyzer and an intermediate frequency system are presented. The simulation results are similar to a FMCW processed radar signal. A method to simulate the radar system at microwave frequencies is discussed. A block diagram of the final system is given. Noise behavior and transmitter power are discussed.

  6. Coherent laser radar: Current European systems

    NASA Technical Reports Server (NTRS)

    Vaughan, J. Michael

    1985-01-01

    Coherent laser radar systems at 10 micrometers have been studied in Europe for well over a decade. In the past few years, the level of activity has increased rapidly and work is now in progress on systems and components at a large number of research institutions and industrial firms. Some of the organizations have had specific involvement with wind and aerosol measuring lidars, while others are largely concerned with components. Some of the particular European strong points are reviewed in device physics and technology. In addition to wind measurement systems, much work has been done on other applications of coherent laser radar including ranging, imaging, and coherent DIAL studies. Some of these other applications are also outlined.

  7. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  8. Laser Docking System Radar flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Flight experiments to verify the Laser Docking System Radar are discussed. The docking requirements are summarized, and the breadboarded hardware is described, emphasizing the two major scanning concepts being utilized: a mechanical scanning technique employing galvanometer beamsteerers and an electronic scanning technique using an image dissector. The software simulations used to apply hardware solutions to the docking requirements are briefly discussed, the tracking test bed is described, and the objectives of the flight experiment are reviewed.

  9. Laser radar in a system perspective

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Kamerman, Gary; Steinvall, Ove

    2011-06-01

    As a result of recent achievements in the field of laser radars, new options are available for their operation as system components. In addition to complementing and cross-checking one another, system components can generate new synergetic values. In this article, we address various roles and functions that laser radar may perform in a complete system context. Special attention is paid to range-gated imaging ladars operating in conjunction with infrared 2D sensors providing target recognition/identification at long distances and under adverse conditions of natural illumination. The multi- or hyper-spectral features of passive IR or visible sensors may be complemented by multispectral, broadband, tunable or switchable 3D imaging ladar in order to exploit the differences in target reflectance and absorption. This option opens another possibility for multi-spectral, mid-IR ladar to differentiate targets of various types, or to enhance the visualization potential and to facilitate the scene description with small targets like mines or mine-like objects. The recently discovered specificity of Raman scattering in the perturbed sea water makes the long-standing efforts in submarine wake detection more viable. Furthermore, the combination of microwave radar and laser radar, when amplified with new achievements in the fourth generation dual-mode imaging sensors, creates the possibility of single payload configurations suitable for small platforms. Emphasis is also made of the efficiency of Doppler velocimetry for precise vehicle navigation, such as for advance cruise missile control or autonomous landing. Finally, recent advances in coherent micro-ladars for optical coherence tomography now permit the reconstruction of time resolved 3D (i.e., 4D) dynamics of blood flow in heart vessels.

  10. Radar altimetry systems cost analysis

    NASA Technical Reports Server (NTRS)

    Escoe, D.; Heuring, F. T.; Denman, W. F.

    1976-01-01

    This report discusses the application and cost of two types of altimeter systems (spaceborne (satellite and shuttle) and airborne) to twelve user requirements. The overall design of the systems defined to meet these requirements is predicated on an unconstrained altimetry technology; that is, any level of altimeter or supporting equipment performance is possible.

  11. Antenna options in radar system design

    NASA Astrophysics Data System (ADS)

    Skolnik, M. I.

    1983-12-01

    The radar systems designer has many choices available regarding the antenna. A description is provided of some examples regarding these choices. Aspects of parabolic cylinder vs paraboloid section are considered along with questions of parabolic reflector vs mechanical planar array, solid-state transmitters on or off the antenna, single antenna vs back-to-back antennas, electronically-steered phased array vs mechanically steered antennas, and the choice of frequency for a phased array radar. Attention is also given to conformal electronically-steered arrays vs planar phased arrays, dome antenna vs four planar phased arrays, four fixed phased arrays vs one or two trainable phased arrays, modules per phased array element vs a single transmitter/receiver, lens antenna vs reflector, and electronic vs mechanical antenna stabilization.

  12. Ground penetrating radar data acquisition system

    NASA Astrophysics Data System (ADS)

    Beck, Robert; Cosentino, Jay; Collier, David W.; Osborn, Jim

    1991-06-01

    Carnegie Mellon University is automating the use of Ground Penetrating Radar (GPR) for cleanup of hazardous waste sites. The Site Investigation Robot (SIR) project at the Field Robotics Center is applying robotics and image processing technologies to the investigatory phase of these waste site cleanups. The current focus is on the development of an automated subsurface mapping system to locate buried objects and geological structures so that sources and migratory pathways of contaminants can be identified and cataloged. The subsurface maps are produced using the non-invasive sensing abilities of Ground Penetrating Radar. GPR operates on principles similar to conventional radar, but the data acquired is more difficult to process due to the heterogeneous nature of the subsurface medium. GPR deployment, data acquisition, and interpretation are traditionally human-driven processes which expose operators to potentially dangerous environments. Automating the GPR data collection process eliminates this undesirable situation. Accurate three dimensional subsurface maps of GPR data have not yet been generated in the field. However, the SIR project uses robots to position GPR transducers to exploit the accurate, repeatable positioning available from automated equipment. By combining the use of a position-cognizant, all-terrain mobile robot and a linear scanning mechanism, it is possible to acquire GPR records in a two-dimensional grid on the ground surface.

  13. Solid-state coherent laser radar wind shear measuring systems

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  14. A Seasat-A Synthetic Aperture Imaging Radar System

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.; Rodgers, D. H.

    1976-01-01

    The Seasat-A Synthetic Aperture Imaging Radar System is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100-km swath with 25 m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems and their solutions will be stated. The end to end data system will be described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data (110 megabits per second) requiring the use of a dedicated data link. The data link selected for use with the synthetic aperture radar is an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground will be described as well as the selected solutions to the problems.

  15. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  16. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  17. Integrated laser/radar satellite ranging and tracking system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1974-01-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse/sec ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f/11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling/recording systems. The basic concept of the laser/radar is outlined together with a listing of the numerous advantages over present singular laser range-finding systems. The developmental laser hardware is described along with preliminary range-finding results and expectations.

  18. Radar systems for the water resources mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.

  19. A single-channel SAR-GMTI algorithm based on sub-apertures and FrFT

    NASA Astrophysics Data System (ADS)

    Liu, Shujun; Yuan, Yunneng; Wei, Jun; Mao, Shiyi

    2007-11-01

    This paper investigates sub-image cancellation for ground moving target indication (GMTI) with a single-antenna airborne synthetic aperture radar (SAR). First the paper points out how to choose the sub-image from the whole image. After the generation of the sub-image, the imaging difference of stationary object and moving object in the sub-image based on the frequency division is analyzed. Once the detection is completed, the moving target is still dispersed and the FrFT(Fractional Fourier Transformation) algorithm is chosen to focus it. Using FrFT algorithm, the doppler modulation rate can be obtained so that the azimuth velocity of the moving target is estimated in this way. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets but also estimate their motion parameters precisely.

  20. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  1. Multi-Antenna Radar Systems for Doppler Rain Measurements

    NASA Technical Reports Server (NTRS)

    Durden, Stephen; Tanelli, Simone; Siqueira, Paul

    2007-01-01

    Use of multiple-antenna radar systems aboard moving high-altitude platforms has been proposed for measuring rainfall. The basic principle of the proposed systems is a variant of that of along-track interferometric synthetic-aperture radar systems used previously to measure ocean waves and currents.

  2. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  3. A FMCW Radar Ranging Device for the Teleoperator Maneuvering System

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1983-01-01

    A frequency-modulated continuous wave radar system is under development in the Communications Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Center. The radar unit is being designed for use on the teleoperator maneuvering system. Its function is to provide millimeter-level accuracy in range and range rate measurements out to a range of thirty meters. This will facilitate soft docking with accuracy. This report is an updating of previous developments reported on this system. An innovation in the system is the utilization of a standard reference signal generated by shunting a portion of the radar energy into a shorted coaxial delay line. The regular radar target return signal is constantly compared with the reference signal to provide internal error compensation. Within a five meter range, a limit imposed by present laboratory dimensions, the radar system exhibits reliable accuracy with range error less than 0.2%.

  4. The evaluation of satellite-borne weather radar system designs using real ground-based radar data

    NASA Technical Reports Server (NTRS)

    Dobson, E. B.; Kalshoven, J. E., Jr.

    1977-01-01

    The paper presents method of evaluating proposed satellite radar systems using real radar data, and discusses methods of displaying the results which will hopefully facilitate easy comparison of systems. A single pencil beam pulsed radar system is considered while the precipitation data base comes from six rain days observed by SPANDAR. The many additional factors that must be considered in the radar equation such as attenuation and scattering (Mie and Rayleigh) are discussed along with some indication where possible errors lie.

  5. A SEASAT-A synthetic aperture imaging radar system

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.; Rodgers, D. H.

    1975-01-01

    The SEASAT, a synthetic aperture imaging radar system is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100 km swath with 25m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems. The end to end data system described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data requiring the use of an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground is described as well as the selected solutions to the problems.

  6. A very wide frequency band pulsed/IF radar system

    NASA Technical Reports Server (NTRS)

    Jones, D. N.; Burnside, W. D.

    1988-01-01

    A pulsed/IF radar for compact range radar cross section measurements has been developed which converts RF returns to a fixed IF, so that amplification and grating may be performed at one frequency. This permits the use of components which have optimal performance at this frequency which results in a corresponding improvement in performance. Sensitivity and dynamic range are calculated for this system and compared with our old radar, and the effect of pulse width on clutter level is also studied. Sensitivity and accuracy tests are included to verify the performance of the radar.

  7. The Goldstone Solar System Radar: 1988-2003 Earth-based Mars Radar Observations

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Jurgens, R. F.; Slade, M. A.; Larsen, K. W.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m DSN antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay- Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 10 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars.

  8. 29. Perimeter acquisition radar building room #318, data processing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Perimeter acquisition radar building room #318, data processing system area; data processor maintenance and operations center, showing data processing consoles - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. Radome effects on coherent change detection radar systems

    NASA Astrophysics Data System (ADS)

    Raynal, Ann Marie; Dubbert, Dale F.; Burns, Bryan L.; Hensley, William H.

    2015-05-01

    A radome, or radar dome, protects a radar system from exposure to the elements. Unfortunately, radomes can affect the radiation pattern of the enclosed antenna. The co-design of a platform's radome and radar is ideal to mitigate any deleterious effects of the radome. However, maintaining structural integrity and other platform flight requirements, particularly when integrating a new radar onto an existing platform, often limits radome electrical design choices. Radars that rely heavily on phase measurements such as monopulse, interferometric, or coherent change detection (CCD) systems require particular attention be paid to components, such as the radome, that might introduce loss and phase variations as a function of the antenna scan angle. Material properties, radome wall construction, overall dimensions, and shape characteristics of a radome can impact insertion loss and phase delay, antenna beamwidth and sidelobe level, polarization, and ultimately the impulse response of the radar, among other things, over the desired radar operating parameters. The precision-guided munitions literature has analyzed radome effects on monopulse systems for well over half a century. However, to the best of our knowledge, radome-induced errors on CCD performance have not been described. The impact of radome material and wall construction, shape, dimensions, and antenna characteristics on CCD is examined herein for select radar and radome examples using electromagnetic simulations.

  10. Laser radar system for obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Bers, Karlheinz; Schulz, Karl R.; Armbruster, Walter

    2005-09-01

    The threat of hostile surveillance and weapon systems require military aircraft to fly under extreme conditions such as low altitude, high speed, poor visibility and incomplete terrain information. The probability of collision with natural and man-made obstacles during such contour missions is high if detection capability is restricted to conventional vision aids. Forward-looking scanning laser radars which are build by the EADS company and presently being flight tested and evaluated at German proving grounds, provide a possible solution, having a large field of view, high angular and range resolution, a high pulse repetition rate, and sufficient pulse energy to register returns from objects at distances of military relevance with a high hit-and-detect probability. The development of advanced 3d-scene analysis algorithms had increased the recognition probability and reduced the false alarm rate by using more readily recognizable objects such as terrain, poles, pylons, trees, etc. to generate a parametric description of the terrain surface as well as the class, position, orientation, size and shape of all objects in the scene. The sensor system and the implemented algorithms can be used for other applications such as terrain following, autonomous obstacle avoidance, and automatic target recognition. This paper describes different 3D-imaging ladar sensors with unique system architecture but different components matched for different military application. Emphasis is laid on an obstacle warning system with a high probability of detection of thin wires, the real time processing of the measured range image data, obstacle classification und visualization.

  11. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  12. Advanced Meteor radar at Tirupati: System details and first results

    NASA Astrophysics Data System (ADS)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.

  13. A compilation system for Venus radar mission (Magellan)

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Schafer, Francis J.; Howington, Annie-Elpis

    1987-01-01

    A synthetic aperture radar (SAR) compilation system was developed for extraction of topographic information of Venus from stereoradar imagery to be obtained from the Magellan mission. The system was developed for an AS-11AM analytical stereoplotter. Extensive tests were made on this compilation software by using stereo images from various radar systems, both spaceborne and airborne. Maps were compiled and the precision of planimetry and contour measurement was evaluated. Digital data of some models were also collected for processing orthophoto or perspective views by using the original radar images.

  14. A digital calibration method for synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Larson, Richard W.; Jackson, P. L.; Kasischke, Eric S.

    1988-01-01

    A basic method to calibrate imagery from synthetic aperture radar (SAR) systems is presented. SAR images are calibrated by monitoring all the terms of the radar equation. This procedure includes the use of both external (calibrated reference reflectors) and internal (system-generated calibration signals) sources to monitor the total SAR system transfer function. To illustrate the implementation of the procedure, two calibrated SAR images (X-band, 3.2-cm wavelength) are presented, along with the radar cross-section measurements of specific scenes within each image. The sources of error within the SAR image calibration procedure are identified.

  15. Ultrawideband radar imaging system for biomedical applications

    SciTech Connect

    Jafari, H.M.; Liu, W.; Hranilovic, S.; Deen, M.J.

    2006-05-15

    Ultrawideband (UWB) (3-10 GHz) radar imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration and resolution characteristics. The underlying principle of UWB cancer detection is a significant contrast in dielectric properties, which is estimated to be greater than 2:1 between normal and cancerous tissue, compared to a few-percent contrast in radiographic density exploited by x rays. This article presents a feasibility study of the UWB imaging of liver cancer tumors, based on the frequency-dependent finite difference time domain method. The reflection, radiation, and scattering properties of UWB pulses as they propagate through the human body are studied. The reflected and back-scattered electromagnetic energies from cancer tumors inside the liver are also investigated. An optimized, ultrawideband antenna was designed for near field operation, allowing for the reduction of the air-skin interface. It will be placed on the fat-liver tissue phantom with a malignant tumor stimulant. By performing an incremental scan over the phantom and removing early time artifacts, including reflection from the antenna ends, images based on the back-scattered signal from the tumor can be constructed. This research is part of our effort to develop a UWB cancer detection system with good detection and localization properties.

  16. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  17. Integrated mobile radar-camera system in airport perimeter security

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Szustakowski, M.; Ciurapinski, W.; Dulski, R.; Kastek, M.; Trzaskawka, P.

    2011-11-01

    The paper presents the test results of a mobile system for the protection of large-area objects, which consists of a radar and thermal and visual cameras. Radar is used for early detection and localization of an intruder and the cameras with narrow field of view are used for identification and tracking of a moving object. The range evaluation of an integrated system are presented as well as the probability of human detection as a function of the distance from radar-camera unit.

  18. Radar systems for the water resources mission, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence.

  19. Micropower radar systems for law enforcement technology

    SciTech Connect

    Azevedo, S.G.; Mast, J.; Brase, J.

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  20. A system model and inversion for synthetic aperture radar imaging.

    PubMed

    Soumekh, M

    1992-01-01

    A system model and its corresponding inversion for synthetic aperture radar (SAR) imaging are presented. The system model incorporates the spherical nature of a radar's radiation pattern at far field. The inverse method based on this model performs a spatial Fourier transform (Doppler processing) on the recorded signals with respect to the available coordinates of a translational radar (SAR) or target (inverse SAR). It is shown that the transformed data provide samples of the spatial Fourier transform of the target's reflectivity function. The inverse method can be modified to incorporate deviations of the radar's motion from its prescribed straight line path. The effects of finite aperture on resolution, reconstruction, and sampling constraints for the imaging problem are discussed. PMID:18296140

  1. Bistatic radar sea state monitoring system design

    NASA Technical Reports Server (NTRS)

    Ruck, G. T.; Krichbaum, C. K.; Everly, J. O.

    1975-01-01

    Remote measurement of the two-dimensional surface wave height spectrum of the ocean by the use of bistatic radar techniques was examined. Potential feasibility and experimental verification by field experiment are suggested. The required experimental hardware is defined along with the designing, assembling, and testing of several required experimental hardware components.

  2. Spaceborne Doppler Precipitation Radar: System Configurations and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Im, Eastwood

    2004-01-01

    Knowledge of the global distribution of the vertical velocity of precipitation is important in in the study of energy transportation in the atmosphere, the climate and weather. Such knowledge can only be directly acquired with the use of spaceborne Doppler precipitation radars. Although the high relative speed of the radar with respect to the rainfall particles introduces significant broadening in the Doppler spectrum, recent studies have shown that the average vertical velocity can be measured to acceptable accuracy levels by appropriate selection of radar parameters. Furthermore, methods to correct for specific errors arising from NUBF effects and pointing uncertainties have recently been developed. In this paper we will present the results of the trade studies on the performances of a spaceborne Doppler radar with different system parameters configurations.

  3. Ultrawideband imaging radar based on OFDM: system simulation analysis

    NASA Astrophysics Data System (ADS)

    Garmatyuk, Dmitriy

    2006-05-01

    Orthogonal frequency division-multiplexing (OFDM) is rapidly emerging as a preferred method of UWB signaling in commercial applications aimed mainly at low-power, high data-rate communications. This paper explores the possibility of applying OFDM to use in imaging radar technology. Ultra-wideband nature of the signal provides for high resolution of the radar, whereas usage of multi-sub-carrier method of modulation allows for dynamic spectrum allocation. Robust multi-path performance of OFDM signals and heavy reliance of transceiver design on digital processors easily implemented in modern VLSI technology make a number of possible applications viable, e.g.: portable high-resolution indoor radar/movement monitoring system; through-the-wall/foliage synthetic aperture imaging radar with a capability of image transmission/broadcasting, etc. Our work is aimed to provide a proof-of-concept simulation scenario to explore numerous aspects of UWB-OFDM radar imaging through evaluating range and cross-range imaging performance of such a system with an eventual goal of software-defined radio (SDR) implementation. Stripmap SAR topology was chosen for modeling purposes. Range/cross-range profiles were obtained along with full 2-D images for multi-target in noise scenarios. Model set-up and results of UWB-OFDM radar imaging simulation study using Matlab/Simulink modeling are presented and discussed in this paper.

  4. Radar imaging of solar system ices

    NASA Astrophysics Data System (ADS)

    Harcke, Leif J.

    We map the planet Mercury and Jupiter's moons Ganymede and Callisto using Earth-based radar telescopes and find that all of these have regions exhibiting high, depolarized radar backscatter and polarization inversion (m c > 1). Both characteristics suggest significant volume scattering from water ice or similar cold-trapped volatiles. Synthetic aperture radar mapping of Mercury's north and south polar regions at fine (6 km) resolution at 3.5 cm wavelength corroborates the results of previous 13 cm investigations of enhanced backscatter and polarization inversion (0.9 <= m c <= 1.3) from areas on the floors of craters at high latitudes, where Mercury's near-zero obliquity results in permanent Sun shadows. Co-registration with Mariner 10 optical images shows that this enhanced scattering cannot be caused by simple double-bounce geometries, since the bright, reflective regions do not appear on the radar-facing wall but, instead, in shadowed regions not directly aligned with the radar look direction. Thermal models require the existence of such a layer to preserve ice deposits in craters at other than high polar latitudes. The additional attenuation (factor 1.64 +/- 15%) of the 3.5 cm wavelength data from these experiments over previous 13 cm radar observations is consistent with a range of layer thickness from 0 +/- 11 to 35 +/- 15 cm, depending on the assumed scattering law exponent n. Our 3.5 cm wavelength bistatic aperture synthesis observations of the two outermost Galilean satellites of Jupiter, Ganymede and Callisto, resolve the north-south ambiguity of previous images, and confirm the disk-integrated enhanced backscatter and polarization inversion noted in prior investigations. The direct imaging technique more clearly shows that higher backscatter are as are associated with the terrain that has undergone recent resurfacing, such as the sulci and the impact crater basins. The leading hemispheres of both moons have somewhat higher (20% +/- 5%) depolarized echoes than their trailing hemispheres, suggesting additional wavelength-scale structure in the regolith. Two improvements to existing delay-Doppler techniques enhance data reduction. First, correlation using subsets of the standard, repetitive pseudo-noise code alleviates Doppler dimension aliasing by properly sampling the output of the range compression stage. Second, a spectral weighting technique reduces clutter in long-code processing by equalizing clutter in the delay and Doppler dimensions.

  5. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    NASA Technical Reports Server (NTRS)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  6. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  7. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant to 19 U.S.C... and display systems, radar systems, navigational aids, mapping systems and related software by reason... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  8. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system. PMID:24646997

  9. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  10. Mutual Coupling and Compensation in FMCW MIMO Radar Systems

    NASA Astrophysics Data System (ADS)

    Schmid, Christian M.; Feger, Reinhard; Wagner, Christoph; Stelzer, Andreas

    2011-09-01

    This paper deals with mutual coupling, its effects and the compensation thereof in frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) array radar systems. Starting with a signal model we introduce mutual coupling and its primary sources in FMCW MIMO systems. We also give a worst-case boundary of the effects that mutual coupling can have on the side lobe level of an array. A method of dealing with and compensating for these effects is covered in this paper and verified by measurements from a 77-GHz FMCW radar system.

  11. Knowledge-aided GMTI in a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Riedl, Michael; Potter, Lee C.

    2015-05-01

    Traditional ground moving target indicator (GMTI) processing attempts to separate moving objects in the scene from stationary clutter. Techniques such as space-time adaptive processing (STAP) require the use of an unknown covariance matrix of the interference (clutter, jamming, and thermal noise) that must be estimated from the remaining data not currently under test. Many problems exist with estimating the interference covariance including: heterogeneous, contaminated, and/or limited training data. There are many existing techniques for obtaining an interference covariance matrix estimate, most of which incorporate some kind of prior knowledge to improve the estimate. We propose a Bayesian framework that estimates both clutter and movers on a range-by- range basis without the explicit estimation of an interference covariance matrix. The approach incorporates the knowledge of an approximate digital elevation map (DEM), platform kinematics (platform velocity, crab angle, and antenna spacings), and the belief that movers are sparse in the scene. Computation using this Bayesian model is enabled by recent algorithm developments for fast inference on linear mixing models. The signal model and required processing steps are detailed. We test our approach using the KASSPER I dataset and compare the results to other current approaches.

  12. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal. PMID:18002443

  13. THz impulse radar for biomedical sensing: nonlinear system behavior

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  14. A 449 MHz modular wind profiler radar system

    NASA Astrophysics Data System (ADS)

    Lindseth, Bradley James

    This thesis presents the design of a 449 MHz radar for wind profiling, with a focus on modularity, antenna sidelobe reduction, and solid-state transmitter design. It is one of the first wind profiler radars to use low-cost LDMOS power amplifiers combined with spaced antennas. The system is portable and designed for 2-3 month deployments. The transmitter power amplifier consists of multiple 1-kW peak power modules which feed 54 antenna elements arranged in a hexagonal array, scalable directly to 126 elements. The power amplifier is operated in pulsed mode with a 10% duty cycle at 63% drain efficiency. The antenna array is designed to have low sidelobes, confirmed by measurements. The radar was operated in Boulder, Colorado and Salt Lake City, Utah. Atmospheric wind vertical and horizontal components at altitudes between 200m and 4km were calculated from the collected atmospheric return signals. Sidelobe reduction of the antenna array pattern is explored to reduce the effects of ground or sea clutter. Simulations are performed for various shapes of compact clutter fences for the 915-MHz beam-steering Doppler radar and the 449-MHz spaced antenna interferometric radar. It is shown that minimal low-cost hardware modifications to existing compact ground planes of 915-MHz beam-steering radar allow for reduction of sidelobes of up to 5dB. The results obtained on a single beam-steering array are extended to the 449 MHz triple hexagonal array spaced antenna interferometric radar. Cross-correlation, transmit beamwidth, and sidelobe levels are evaluated for various clutter fence configurations and array spacings. The resulting sidelobes are as much as 10 dB below those without a clutter fence and can be incorporated into existing and future 915 and 449 MHz wind profiler systems with minimal hardware modifications.

  15. 78. View of radar systems technical publication library, transmitter building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. View of radar systems technical publication library, transmitter building no. 102, second floor. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. Synthetic aperture radar system design for random field classification

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1973-01-01

    An optimum design study is carried out for synthetic aperture radar systems intended for classifying randomly reflecting areas (such as agricultural fields) characterized by a reflectivity density spectral density. The problem solution is obtained, neglecting interfield interference and assuming areas of known configuration and location, as well as a certain Gaussian signal field property. The optimum processor is nonlinear, but includes conventional matched filter processing. A set of summary design curves is plotted, and is applied to the design of a satellite synthetic aperture radar system.

  17. Design of a Radar Based Space Situational Awareness System

    NASA Astrophysics Data System (ADS)

    Liebschwager, T.; Neff, T.; Suess, I. H.; Foerstner, I. R.

    2013-09-01

    Existing SSA-Networks in most cases consist of sensors which originally were not designed for the purpose of detecting or tracking space debris and active satellites. Furthermore there are different kinds of sensors in use which makes it even more complicated to handle all generated data. Therefore it is reasonable to create a network consisting of homogenous sensors, which means sensors of the same type (like radar or optical) and with the same output format of the data. Technologies that are available for detection and tracking of objects (e.g. optical sensors or radar) will be discussed. Focal point will be on operational availability, reliability and obtainable accuracy. It will be shown that Phased Array Radars are the most reasonable technology to be used while creating a sensor network consisting of homogenous sensors. This paper entails to present a proposal for a network of Phased Array Radars configured for this purpose. The system is intended to detect and track objects that are at least as small as objects that can currently be found in the US SSN catalogue. Furthermore potential hazards in different orbits will be evaluated and discussed to optimize the system on these areas. The system is supposed to be able to create an own object catalogue. Therefore perseverative tracking and required capacity will also be considered. On the basis of these considerations the paper shows how to lay-up such a radar-system starting from scratch. Criteria for detection and tracking of objects will be determined. This part of the work contains aspects like choosing the frequency band or tracking-frequencies for different sizes of objects. In the next step the locations for the sensors will be chosen. Based on thoughts about infrastructure it is plausible to place the radar systems on existing observation sites. By analyzing simulations with different numbers of sensors and / or locations several feasible approaches for such a Space Situational Awareness Network will be presented in this paper.

  18. New super-resolution ranging technique for FMCW radar systems

    NASA Astrophysics Data System (ADS)

    Testar, Miquel; Stirling-Gallacher, Richard

    2011-11-01

    Range resolution enhancement techniques, or so called super-resolution ranging techniques, are a significant breakthrough in short-range radar imaging. Improving range resolution in a robust stable manner enables a target to be peeled in finer layers and/or the RF specifications of the radar system to be relaxed, which has clear effects on performance improvement and cost reduction. For a radar system using the frequency modulated continuous wave (FMCW) technique and traditional frequency domain techniques for reception, the range resolution is limited by the bandwidth of the transmitted wave. In this paper we propose and investigate a new super-resolution ranging technique. Multiple key performance characteristics including, minimum distinguishable distance between targets, accuracy in absolute positioning and stability in low SNR environments were evaluated using statistical simulations and real measured data. The presented results show that the proposed technique yields improved performance.

  19. Prototype fiber optic system to remote TRACALS radars

    NASA Astrophysics Data System (ADS)

    Radcliff, J. A.; Becker, K. E.

    1982-06-01

    The transmission mediums currently used to remote Traffic Control and Landing Systems (TRACALS) radars are coaxial cables (coax) or a microwave link. Problems and limitations are encountered in using either medium. Coax is susceptible to electromagnetic interference, moisture, ground loops, lightning and electromagnetic pulse (EMP). Microwave links are susceptible to electromagnetic interference, propagation anomaly, electronic warfare and EMP. The coax remoting system used on the Precision Approach Radar (PAR) is highly susceptible to interference from power lines for runway lights and has a maximum remoting distance of 12,000 ft. Remoting TRACALS radars via a fiber optic system appeared to be a complete solution to the problems listed above. The 1842 EEG conducted a feasiblity study of the use of a FO system to remote a PAR (AFCC Technical Report, 1842 EEG/EEIT-TR-80-9). The AN/FPN-62 radar was used in conducting the study. The study demonstrated that an analog FO system can handle the combined analog/digital, time and frequency multiplexed signals which are passed over the AN/FPN-62 remoting system. A FO system appeared to be a desirable alternative and warranted a full investigation.

  20. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2006-04-18

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  1. Development of a Low-Cost UAV Doppler Radar Data System

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph; Li, Lihua; Heymsfield, Gerry

    2005-01-01

    A viewgraph presentation on the design of a low cost unmanned aerial vehicle (UAV) doppler radar data system is presented. The topics include: 1) Science and Mission Background; 2) Radar Requirements and Specs; 3) Radar Realization: RF System; 4) Processing of RF Signal; 5) Data System Design Process; 6) Can We Remove the DSP? 7) Determining Approximate Speed Requirements; 8) Radar Realization: Data System; 9) Data System Operation; and 10) Results.

  2. Feasibility study of a microwave radar system for agricultural inspection

    SciTech Connect

    Okelo-Odongo, S.

    1994-10-03

    The feasibility of an impulse radar system for agricultural inspection is investigated. This system would be able to quickly determine the quality of foodstuffs that are passed through the system. A prototype was designed at the Lawrence Livermore National Laboratory and this report discusses it`s evaluation. A variety of apples were used to test the system and preliminary data suggests that this technology holds promise for successful application on a large scale in food processing plants.

  3. Antenna dimensions of synthetic aperture radar systems on satellites

    NASA Technical Reports Server (NTRS)

    Richter, K. R.

    1973-01-01

    Design of a synthetic aperture radar (SAR) for a satellite must take into account the limitation in weight and dimensions of the antenna. The lower limits of the antenna area are derived from the conditions of unambiguity of the SAR system. This result is applied to estimate the antenna requirements for SARs on satellites in circular orbits of various altitudes around Earth and Venus.

  4. 76 FR 67017 - Notice to Manufacturers of Airport Avian Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Federal Aviation Administration Notice to Manufacturers of Airport Avian Radar Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Airport Avian Radar Systems... waivers to foreign manufacturers of airport avian radar systems that meet the requirements of FAA...

  5. Synthetic aperture radar: not just a sensor of last resort

    NASA Astrophysics Data System (ADS)

    Wells, Lars M.; Doerry, Armin W.

    2003-08-01

    Modern high-performance Synthetic Aperture Radar (SAR) systems have evolved into highly versatile, robust, and reliable tactical sensors, offering images and information not available from other sensor systems. For example, real-time images are routinely formed by the Sandia-designed General Atomics (AN/APY-8) Lynx SAR yielding 4-inch resolution at 25 km range (representing better than arc-second resolutions) in clouds, smoke, and rain. Sandia's Real-Time Visualization (RTV) program operates an Interferometric SAR (IFSAR) system that forms three-dimensional (3D) topographic maps in near real-time with National Imagery and Mapping Agency (NIMA) Digital Terrain Elevation Data (DTED) level 4 performance (3 meter post spacing with 0.8-meter height accuracy) or better. When exported to 3-D rendering software, this data allows remarkable interactive fly-through experiences. Coherent Change Detection (CCD) allows detecting tire tracks on dirt roads, foot-prints, and other minor, otherwise indiscernible ground disturbances long after their originators have left the scene. Ground Moving Target Indicator (GMTI) radar modes allow detecting and tracking moving vehicles. A Sandia program known as "MiniSAR" is developing technologies that are expected to culminate in a fully functioning, high-performance, real-time SAR that weighs less than 20 lbs. The purpose of this paper is to provide an overview of recent technology developments, as well as current on-going research and development efforts at Sandia National Laboratories.

  6. Doppler radar sensor positioning in a fall detection system.

    PubMed

    Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn

    2012-01-01

    Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one. PMID:23365879

  7. Reliability of measured sea states using radar system on shore

    SciTech Connect

    Nieto, J.C.; Alfonso, M.; Sanz, R.

    1995-12-31

    The study of sea states at a specific area of the ocean has been carried out using directional buoys, which provide useful information, but only available at the point where the buoy is moored. Alternatively, the use of satellite radar data can give information in large oceanic areas, but it only measures once or twice a day and sometimes this could be an important limitation. As intermediate solution, navigation radar system installed on shore could measure continuously and lets one know the spatial behavior of sea states at a specific zone of the ocean. Nowadays, these devices are under study in order to know their reliability for estimating wave directional spectra. For this reason, at the end of November 1994, the Spanish Holding of Harbors installed a navigation radar on a point of the Bay of Biscay at the North of the Iberian Peninsula. This system is working systematically, measuring each hour. The data taken by the radar will be compared with directional buoy data along the year 1995.

  8. Integration of a road network into a radar ground moving target tracking (GMTT) system and its performance evaluation

    NASA Astrophysics Data System (ADS)

    Blackman, Sam; Fong, Kathy; Carroll, Douglas E.; Lancaster, Justin; Dempster, Robert

    2009-08-01

    This paper discusses the application of multiple hypothesis tracking (MHT) to the processing of ground target data collected with a long range surveillance radar. A key element in the successful tracking of ground targets is the use of road networks. Thus, the paper begins with an overview of the alternative approaches that have been considered for incorporating road data into a ground target tracker and then it gives a detailed description of the methods that have been chosen. The major design issues to be addressed include the manner in which road filter models are included into a Variable-Structure Interacting Multiple Model (IMM) filtering scheme, how the road filter models are chosen to handle winding roads and intersections, and the tracking of targets that go on and off-road. Performance will be illustrated using simulated data and real data collected from a large surveillance area with a GMTI radar. The area considered contains regions of heavy to moderate target densities and clutter. Since the real data included only targets of opportunity (TOO), it was necessary to define metrics to evaluate relative performance as alternative tracking methods/parameters are considered. These metrics are discussed and comparative results are presented.

  9. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  10. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  11. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  12. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  13. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  14. Experimental results of a continuous wave laser radar system

    NASA Technical Reports Server (NTRS)

    Petri, K. J.; Starry, R. F.

    1975-01-01

    A 1.06 micron CW laser radar system was used to establish the feasibility of remotely measuring sea surface wind magnitude and direction. Simultaneous correlation of collected laser data with the environment was established by using meteorological instruments. The experimental system and methods of analysis are summarized. Results of the experiments, including wind magnitude and direction correlation, are reported. Results are compared with theoretical predictions.

  15. Persistent GMTI surveillance: theoretical performance bounds and some experimental results

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Damini, Anthony; Wang, Kai

    2010-04-01

    In certain operational radar modes, slow ground moving targets are detected over several processing intervals using space-time adaptive processing. This enables use of Bayesian filtering and smoothing algorithms for estimation of time-varying moving target parameters. In this paper, some Bayesian filtering algorithms are investigated. The Craḿer-Rao bounds based on subsets of radar measurements (range, angle and Doppler) are derived for typical maneuvering targets and compared against simulated results from Bayesian filters. The performance is also evaluated using real data obtained from DRDC Ottawa's XWEAR radar.

  16. System-on-chip based Doppler radar occupancy sensor.

    PubMed

    Yavari, Ehsan; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    System-on-Chip (SoC) based Doppler radar occupancy sensor is developed through non contact detection of respiratory signals. The radio was developed using off the shelf low power RF CC2530 SoC chip by Texas Instruments. In order to save power, the transmitter sends signal intermittently at 2.405 GHz. Reflected pulses are demodulated, and the baseband signals are processed to recover periodic motion. The system was tested both with mechanical target and a human subject. In both cases Doppler radar detected periodic motion closely matched the actual motion, and it has been shown that an SoC based system can be used for subject detection. PMID:22254705

  17. Random Noise Monopulse Radar System for Covert Tracking of Targets

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.

    2002-07-01

    The University of Nebraska is currently developing a unique monopulse radar concept based on the use of random noise signal for covert tracking applications. This project is funded by the Missile Defense Agency (MDA). The advantage of this system over conventional frequency-modulated continuous wave (FMCW) or short pulse systems is its covertness resulting from the random waveform's immunity from interception and jamming. The system integrates a novel heterodyne correlation receiver with conventional monopulse architecture. Based on the previous work such as random noise interferometry, a series of theoretical analysis and simulations were conducted to examine the potential performance of this monopulse system. Furthermore, a prototype system is under development to exploit practical design aspects of phase comparison angle measurement. It is revealed that random noise monopulse radar can provide the same function as traditional monopulse radar, i.e., implement range and angular estimation and tracking in real time. The bandwidth of random noise signal can be optimized to achieve the best range resolution as well as the angular accuracy.

  18. Interference immunity of optical radar system with phased antenna array

    NASA Astrophysics Data System (ADS)

    Alishev, Y. V.; Yamaykin, V. Y.

    1985-03-01

    A phased antenna array of an optical radar system with single-mode or phase-locked sources is analyzed for interference immunity. A major factor influencing the performance as well as the method of analysis is the relative magnitudes of coherence length and path difference, the latter characterizing the interference pattern of light beams and its effect on the antenna radiation pattern. Although a path difference much smaller than the coherence length permits assumption of a quasimonochromatic radiation, interference must be accounted for when the path difference is comparable with the coherence length. The directive gain and the probability of detection error are calculated, assuming Poisson distributions of signal photons with either vertical or horizontal polarization and of noise photons at the receiver input. Estimates indicate that reducing the error probability to below 0.00001 is feasible by phasing the antenna of an optical radar system operating under normal conditions.

  19. Considerations for integration of a physiological radar monitoring system with gold standard clinical sleep monitoring systems.

    PubMed

    Singh, Aditya; Baboli, Mehran; Gao, Xiaomeng; Yavari, Ehsan; Padasdao, Bryson; Soll, Bruce; Boric-Lubecke, Olga; Lubecke, Victor

    2013-01-01

    A design for a physiological radar monitoring system (PRMS) that can be integrated with clinical sleep monitoring systems is presented. The PRMS uses two radar systems at 2.45 GHz and 24 GHz to achieve both high sensitivity and high resolution. The system can acquire data, perform digital processing and output appropriate conventional analog outputs with a latency of 130 ms, which can be recorded and displayed by a gold standard sleep monitoring system, along with other standard sensor measurements. PMID:24110139

  20. Homodyne laser radar system for surface displacement monitoring

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alejandro; Comeron, Adolfo; Garcia, David

    2001-03-01

    A prototype of a homodyne laser radar system for surface displacement monitoring using the reference beam technique is presented. The prototype is very simple, is easy to align and focus, and is able to measure the velocity of the surface displacement at distances up to 16 m. We present an optical analysis of the prototype, a power budget, a criterion on tolerance in distance and laboratory measurements.

  1. UNIBUS monitor for PDP 11. [DSN digital radar system

    NASA Technical Reports Server (NTRS)

    Donner, M. D.

    1978-01-01

    A UNIBUS monitor was designed and constructed to facilitate development of hardware interfaces with the PDP 11 minicomputer. The monitor provides useful displays of UNIBUS conditions and provides the user with a flexible diagnostic tool. It can also serve as a simple display and data entry device, permitting extremely simple input/output (I/O) for development software. At this time, the monitor is being used with the DSN planetary radar system, which uses a PDP 11.

  2. Interferometric aligment of the X-SAR antenna system on the space shuttle radar topography mission

    NASA Technical Reports Server (NTRS)

    Geudtner, D.; Zink, M.; Gierull, C.; Shaffer, S.

    2002-01-01

    The on-orbit alignment of the antenna beams of both the X-band and C-band radar systems during operations of the shuttle radar topography mission/X-band synthetic aperture radar (SRTM/X-SAR)was a key requirement for achieving best interferometric performance.

  3. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  4. Streamflow Measurement Using A Riversonde Uhf Radar System

    NASA Astrophysics Data System (ADS)

    Teague, C.; Barrick, D.; Lilleboe, P.; Cheng, R.

    Initial field tests have been performed to evaluate the performance of a RiverSonde streamflow measurement system. The tests were conducted at a concrete-lined canal and a natural river in central California during June, 2000. The RiverSonde is a UHF radar operating near 350 MHz and is based on a modified SeaSonde system normally used to measure ocean surface currents in salt water using lower frequencies (5­25 MHz). The RiverSonde uses energy scattered by Bragg-resonant 0.5 m water waves and does not require any sensors in the water. Water velocity is calculated by observing the Doppler shift of the scattered radar energy and comparing that with the Doppler shift expected from resonant waves in still water. The radar has sufficient resolution to allow the estimation of a velocity profile across the width of the river. The antennas consisted of a 2-element transmitting antenna and a 3-element receiving antenna. The transmitting antenna provided broad illumination of the water surface, and MUSIC direction finding was used to determine the arrival direction of the re- flected radar energy. The transmitting and receiving antennas were placed on opposite banks to reduce the signal intensity variation across the channel. A chirp frequency sweep was used to determine range. Transmitted power was under 1 W, and the max- imum range was a few hundred meters. Range resolution was on the order of 10 m, and velocity resolution was about 2.5 cm/s. Extensive in-situ surface truth measurements were performed by personnel from the United States Geological Survey. The instruments included current meters suspended at various depths from a small boat positioned at several locations across the channel, video tracking of many floaters (tennis balls) on the water surface, an optical flow meter, and anemometer wind measurements. Typical water velocities were about 40 cm/s, and RMS velocity differences between the radar and in-situ measurements were 6­18% of the mean flow, with similar differences among the various in-situ velocity measurements. Total volume flow was estimated using in-situ bottom sounders for water depth, and volume flow differences between radar and in-situ measurements were less than 10%.

  5. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  6. Transponder-Aided Joint Calibration and Synchronization Compensation for Distributed Radar Systems

    PubMed Central

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  7. Lessons learned from experiments conducted on radar data management systems

    NASA Astrophysics Data System (ADS)

    Pierce, Mark W.

    1994-06-01

    The thesis provides lessons learned from experiments conducted by the 11th Air Force to verify the capabilities of two vendor-produced Radar Data Management Systems (RDMS). The first part of the thesis provides background information explaining the impetus for such experiments and why a lessons learned approach was taken. The experimental plan and the final report from the PACAF experiments are analyzed using evaluation tools taught in the C3 curriculum at the Naval Postgraduate School. The lessons learned from the mistakes made during these experiments are applied to produce a revised experimental plan. A lessons learned section follows the analysis. This section discusses specific lessons learned from the 11th Air Force experiments as well as more general lessons learned by the author. The thesis concludes with two chapters that provide overall conclusions and a summary, and recommendations for future work that can be accomplished in the area of radar data management.

  8. A comparison of spatial sampling techniques enabling first principles modeling of a synthetic aperture RADAR imaging platform

    NASA Astrophysics Data System (ADS)

    Gartley, Michael; Goodenough, Adam; Brown, Scott; Kauffman, Russel P.

    2010-04-01

    Simulation of synthetic aperture radar (SAR) imagery may be approached in many different ways. One method treats a scene as a radar cross section (RCS) map and simply evaluates the radar equation, convolved with a system impulse response to generate simulated SAR imagery. Another approach treats a scene as a series of primitive geometric shapes, for which a closed form solution for the RCS exists (such as boxes, spheres and cylinders), and sums their contribution at the antenna level by again solving the radar equation. We present a ray-tracing approach to SAR image simulation that treats a scene as a series of arbitrarily shaped facetized objects, each facet potentially having a unique radio frequency optical property and time-varying location and orientation. A particle based approach, as compared to a wave based approach, presents a challenge for maintaining coherency of sampled scene points between pulses that allows the reconstruction of an exploitable image from the modeled complex phase history. We present a series of spatial sampling techniques and their relative success at producing accurate phase history data for simulations of spotlight, stripmap and SAR-GMTI collection scenarios.

  9. A challenge problem for SAR-based GMTI in urban environments

    NASA Astrophysics Data System (ADS)

    Scarborough, Steven M.; Casteel, Curtis H., Jr.; Gorham, LeRoy; Minardi, Michael J.; Majumder, Uttam K.; Judge, Matthew G.; Zelnio, Edmund; Bryant, Michael; Nichols, Howard; Page, Douglas

    2009-05-01

    This document describes a challenge problem whose scope is the detection, geolocation, tracking and ID of moving vehicles from a set of X-band SAR data collected in an urban environment. The purpose of releasing this Gotcha GMTI Data Set is to provide the community with X-band SAR data that supports the development of new algorithms for SAR-based GMTI. To focus research onto specific areas of interest to AFRL, a number of challenge problems are defined. The data set provided is phase history from an AFRL airborne X-band SAR sensor. Some key features of this data set are two-pass, three phase center, one-foot range resolution, and one polarization (HH). In the scene observed, multiple vehicles are driving on roads near buildings. Ground truth is provided for one of the vehicles.

  10. An interactive system for compositing digital radar and satellite data

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Ghosh, K. K.; Chen, L. C.

    1983-01-01

    This paper describes an approach for compositing digital radar data and GOES satellite data for meteorological analysis. The processing is performed on a user-oriented image processing system, and is designed to be used in the research mode. It has a capability to construct PPIs and three-dimensional CAPPIs using conventional as well as Doppler data, and to composite other types of data. In the remapping of radar data to satellite coordinates, two steps are necessary. First, PPI or CAPPI images are remapped onto a latitude-longitude projection. Then, the radar data are projected into satellite coordinates. The exact spherical trigonometric equations, and the approximations derived for simplifying the computations are given. The use of these approximations appears justified for most meteorological applications. The largest errors in the remapping procedure result from the satellite viewing angle parallax, which varies according to the cloud top height. The horizontal positional error due to this is of the order of the error in the assumed cloud height in mid-latitudes. Examples of PPI and CAPPI data composited with satellite data are given for Hurricane Frederic on 13 September 1979 and for a squall line on 2 May 1979 in Oklahoma.

  11. An expert system for shuttle and satellite radar tracker scheduling

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul

    1988-01-01

    This expert system automates and optimizes radar tracker selection for shuttle missions. The expert system is written in the FORTRAN and C languages on an HP9000. It is portable to any UNIX machine having both ANSI-77 FORTRAN and C language compilers. It is a rule based expert system that selects tracking stations from the S-band and C-band radar stations and the TDRSS east and TDRSS west satellites under a variety of conditions. The expert system was prototyped on the Symbolics in the Automated Reasoning Tool (ART) and ZetaLisp. After the prototype demonstrated an acceptable automation of the process of selecting tracking stations to support the orbit determination requirements of Shuttle missions, the basic ART rules of the prototype were ported to the HP9000 computer using the CLIPS language. CLIPS is a forward-chaining rule-based expert system language written in C. Prior to the development of this expert system the selection process was a tedious manual process and expensive in terms of human resources. Manual tracking station selection required from 1 to 2 man weeks per mission; whereas the expert system can complete the selection process in about 2 hours.

  12. Ambiguities in spaceborne synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Li, F. K.; Johnson, W. T. K.

    1983-01-01

    An examination of aspects of spaceborne SAR time delay and Doppler ambiguities has led to the formulation of an accurate method for the evaluation of the ratio of ambiguity intensities to that of the signal, which has been applied to the nominal SAR system on Seasat. After discussing the variation of this ratio as a function of orbital latitude and attitude control error, it is shown that the detailed range migration-azimuth phase history of an ambiguity is different from that of a signal, so that the images of ambiguities are dispersed. Seasat SAR dispersed images are presented, and their dispersions are eliminated through an adjustment of the processing parameters. A method is also presented which uses a set of multiple pulse repetition sequences to determine the Doppler centroid frequency absolute values for SARs with high carrier frequencies and poor attitude measurements.

  13. Experimental 0.22 THz Stepped Frequency Radar System for ISAR Imaging

    NASA Astrophysics Data System (ADS)

    Liang, Mei Yan; Zhang, Cun Lin; Zhao, Ran; Zhao, Yue Jin

    2014-09-01

    High resolution inverse synthetic aperture radar (ISAR) imaging is demonstrated by using a 0.22 THz stepped-frequency (SF) imaging radar system. The synthesis bandwidth of the terahertz (THz) SF radar is 12 GHz, which are beneficial for high resolution imaging. The resolution of ISAR image can reach centimeter-scale with the use of Range-Doppler algorithm (RDA). Results indicate that high resolution ISAR imaging is realized by using 0.22THz SF radar coupled with turntable scanning, which can provide foundations for further research on high-resolution radar image in the THz band.

  14. Multi-agent system for target-adaptive radar tracking

    NASA Astrophysics Data System (ADS)

    O'Connor, Alan C.

    2012-06-01

    Sensor systems such as distributed sensor networks and radar systems are potentially agile - they have parameters that can be adjusted in real-time to improve the quality of data obtained for state-estimation and decision-making. The integration of such sensors with cyber systems involving many users or agents permits greater flexibility in choosing measurement actions. This paper considers the problem of selecting radar waveforms to minimize uncertainty about the state of a tracked target. Past work gave a tractable method for optimizing the choice of measurements when an accurate dynamical model is available. However, prior knowledge about a system is often not precise, for example, if the target under observation is an adversary. A multiple agent system is proposed to solve the problem in the case of uncertain target dynamics. Each agent has a different target model and the agents compete to explain past data and select the parameters of future measurements. Collaboration or competition between these agents determines which obtains access to the limited physical sensing resources. This interaction produces a self-aware sensor that adapts to changing information requirements.

  15. How Spaceborne Radar Helps Ground Radar in Precipitation Estimation: Real-time Incorporation of TRMM PR into NOAA NMQ System

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Hong, Y.; Wen, Y.; Gourley, J. J.; Qi, Y.; Zhang, J.; Kirstetter, P.

    2012-12-01

    The U.S. Next-Generation Radar (NEXRAD) network provides operational precipitation products for the National Weather Service. However, the effective coverage of NEXRAD at low levels is restricted in complex terrain leading to insufficient surveillance of low-level portions of the atmosphere. This problem is especially most severe in the intermountain region of the western US. Quantitative precipitation estimation (QPE) based on radar measurements at high levels above the surface can be over- or underestimated, depending on if the radar beam intercepts or overshoots the melting layer. To mitigate this problem, researchers at the University of Oklahoma (OU) have proposed a VPR Identification and Enhancement (VPR-IE) approach to improve radar-based QPE near the surface. VPR-IE applies the VPR observed by Ku-band Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to correct the S-band NEXRAD radar reflectivity contaminated by ice-related signals such as the bright band (BB) and dry snow signals. The real-time incorporation of TRMM-PR into the NEXRAD-based National Mosaic and Multi-sensor QPE (NMQ) system faces challenges because of their big difference in temporal resolution. The current study explores how to obtain representative VPRs for the real-time implementation of VPR-IE and investigates the potential error of VPR-IE attributed to the temporal variation of precipitation. The real-time VPR-IE is tested using the archived NMQ data collected in the mountainous West region of the U.S. (southern California, Arizona, and western New Mexico). Analysis results demonstrate the great potential of real-time VPR-IE in improving radar QPE in complex terrain.

  16. Radar data processing using a distributed computational system

    NASA Astrophysics Data System (ADS)

    Mota, Gilberto F.

    1992-06-01

    This research specifies and validates a new concurrent decomposition scheme, called Confined Space Search Decomposition (CSSD), to exploit parallelism of Radar Data Processing algorithms using a Distributed Computational System. To formalize the specification, we propose and apply an object-oriented methodology called Decomposition Cost Evaluation Model (DCEM). To reduce the penalties of load imbalance, we propose a distributed dynamic load balance heuristic called Object Reincarnation (OR). To validate the research, we first compare our decomposition with an identified alternative using the proposed DCEM model and then develop a theoretical prediction of selected parameters. We also develop a simulation to check the Object Reincarnation Concept.

  17. Analysis of chaotic FM system synchronization for bistatic radar

    NASA Astrophysics Data System (ADS)

    Pappu, Chandra S.; Verdin, Berenice; Flores, Benjamin C.; Boehm, James; Debroux, Patrick

    2015-05-01

    We propose a scheme for bistatic radar that uses a chaotic system to generate a wideband FM signal that is reconstructed at the receiver via a conventional phase lock loop. The setup for the bistatic radar includes a 3 state variable drive oscillator at the transmitter and a response oscillator at the receiver. The challenge is in synchronizing the response oscillator of the radar receiver utilizing a scaled version of the transmitted signal sr(t, x) = αst(t, x) where x is one of three driver oscillator state variables and α is the scaling factor that accounts for antenna gain, system losses, and space propagation. For FM, we also assume that the instantaneous frequency of the received signal, xs, is a scaled version of the Lorenz variable x. Since this additional scaling factor may not be known a priori, the response oscillator must be able to accept the scaled version of x as an input. Thus, to achieve synchronization we utilize a generalized projective synchronization technique that introduces a controller term -μe where μ is a control factor and e is the difference between the response state variable xs and a scaled x. Since demodulation of sr(t) is required to reconstruct the chaotic state variable x, the phase lock loop imposes a limit on the minimum error e. We verify through simulations that, once synchronization is achieved, the short-time correlation of x and xs is high and that the self-noise in the correlation is negligible over long periods of time.

  18. Battlespace surveillance using netted wireless random noise radar systems

    NASA Astrophysics Data System (ADS)

    Surender, Shrawan C.; Narayanan, Ram M.

    2005-05-01

    Network-Centric Warfare (NCW) technology is currently being investigated to enhance the military"s effectiveness in the battlespace by providing the warfighter the necessary information to take proper decisions and win wars. One of the main battlespace requirements is surveillance, especially in today"s guerilla warfare theaters, such as the littoral and urban zones. NCW requires warfighters to be networked, self-organizing, spectrally undetectable, and having precise information about hostile targets in their vicinity. Towards this end, we are developing the concept of Netted Wireless Random Noise Radars, which is presented in this paper. The low probability-of-detection (LPD) and low probability-of-intercept (LPI) properties of random noise radars are well-known. Such radar sensors form a self-organizing network-centric architecture, using a deterministically fragmented spectrum to avoid spectral fratricide. The central concept is to use notch filtering to fragment parts of the band-limited non-coherent random noise waveform spectrum, and use these intermediate bandwidths for network communication (target tracking and track fusion) among the wireless sensors. For target detection and ranging, these sensors transmit random noise waveforms combined with continuous signals carrying digital data. As seen by the hostile target, the transmitted waveform appears random and noise-like. However, for the friendly sensors of this system, the noise-like signal contains camouflaged information. The advantages being envisioned with such a system are lower probability of detection due to noise-like transmissions, mobility to sensors due to the self-organizing capability, spectral efficiency due to fragmentation of spectrum, and better immunity to coherent interference due to the use of non-coherent signal waveforms.

  19. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  20. Resolution of a phase ambiguity in a calibration procedure for polarimetric radar systems

    SciTech Connect

    Sletten, M.A. . Radar Div.)

    1994-01-01

    In response to the remote sensing communities' interest in radar polarimetry, considerable effort has recently been devoted to the development of calibration techniques for polarimetric radar systems. A cross-pol/co-pol phase ambiguity in a previously published calibration procedure for polarimetric radar systems is discussed. The original procedure is modified to resolve the ambiguity while still retaining insensitivity to calibration target orientation. The modified form is then generalized and applied to an ultrawideband radar system for which the ambiguity in the original procedure is particularly evident.

  1. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Siying Wang; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Kony, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-08-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations. PMID:26737409

  2. The Goldstone Solar System Radar: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Slade, M. A.; Benner, L. A.; Teitelbaum, L.

    2012-12-01

    The Deep Space Network (DSN) primarily uses the 70-m antenna at Goldstone — DSS -14 — for tracking, telemetry, and commanding National Aeronautics and Space Administration (NASA) spacecraft. However, for a small percentage of its time DSS-14 also provides NASA with the only fully steerable, high-power ground-based radar in the world. The Goldstone Solar System Radar (GSSR) has been used extensively for high-resolution radar ranging and imaging of planetary and small-body targets, including more than 160 asteroids, four comets, the Moon, Mercury, Venus, Mars, the Galilean satellites, Titan, and small orbital debris. The GSSR operates at a wavelength of 3.5 cm with a typical transmitter power of 450 kW, and provides radar imagery, surface topography, rotational information, and ice distribution on this wide variety of solar system objects. The bulk of current GSSR work centers on radar imaging, astrometry, and characterization of near-Earth asteroids (NEAs). GSSR has discovered binary and ternary NEAs (six to date); contact binary NEAs, and NEAs in non-principal axis rotation states. The GSSR has observed the following small-body mission targets: 4 Vesta (Dawn), 433 Eros (NEAR-Shoemaker), 25143 Itokawa (Hayabusa), 101955 1999 RQ36 (OSIRIS-REx), and 4179 Toutatis (Chang'e 2). Recently the highest range resolution improved by a factor of five from 18.75 meters to 3.75 meters. The first major application of this resolution increase was with imaging of 400-meter-diameter (308635) 2005 YU55 during the asteroid's 0.85 lunar distance flyby in November 2011. The images placed tens of thousands of pixels on the asteroid, and even revealed small surface boulders. The limitation to ~4-meter range resolution is driven by the bandwidth of the transmitter. However, by using chirp waveforms and klystrons with ~150 MHz bandwidth, the range resolution could be as fine as 1-meter. JPL is exploring methods of transmitting such wider bandwidths and potentially reaching 1-meter range resolution. The GSSR currently provides nearly encounter-quality imaging of NEAs a few times each year, and the potential exists for future imaging of even higher quality. Two main avenues exist to becoming a user of the GSSR. Successful proposers to the Research Opportunities in Space and Earth Sciences (ROSES) solicitations from the Planetary Science Division in the NASA Science Mission Directorate make up the majority of GSSR users. GSSR users also come via successful proposals to observing calls from the National Science Foundation for use of their Green Bank Telescope or the Extended Very Large Array that require 3.5-cm radar illumination of targets for primary science goals. In addition, any DSN-supported flight project can request GSSR observations that advance the goals of their mission. GSSR supports a wide community of scientists at many institutions. The research described above was carried out at the Jet Propulsion Laboratory, a division of the California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged.

  3. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  4. Radar system on a large autonomous vehicle for personnel avoidance

    NASA Astrophysics Data System (ADS)

    Silvious, Jerry; Wellman, Ron; Tahmoush, Dave; Clark, John

    2010-04-01

    The US Army Research Laboratory designed, developed and tested a novel switched beam radar system operating at 76 GHz for use in a large autonomous vehicle to detect and identify roadway obstructions including slowly-moving personnel. This paper discusses the performance requirements for the system to operate in an early collision avoidance mode to a range of 150 meters and at speeds of over 20 m/s. We report the measured capabilities of the system to operate in these modes under various conditions, such as rural and urban environments, and on various terrains, such as asphalt and grass. Finally, we discuss the range-Doppler map processing capabilities that were developed to correct for platform motion and identify roadway vehicles and personnel moving at 1 m/s or more along the path of the system.

  5. The Goldstone solar system radar: A science instrument for planetary research

    NASA Technical Reports Server (NTRS)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  6. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  7. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  8. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  9. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  10. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  11. A Portable Low-Power Harmonic Radar System and Conformal Tag for Insect Tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonic radar systems provide an effective modality for tracking insect behavior. This paper presents a harmonic radar system proposed to track the migration of the Emerald Ash Borer (EAB). The system offers a unique combination of portability, low power and small tag design. It is comprised of a...

  12. The Canadian Meteor Orbit Radar: system overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Jones, J.; Brown, P.; Ellis, K. J.; Webster, A. R.; Campbell-Brown, M.; Krzemenski, Z.; Weryk, R. J.

    2005-04-01

    This paper describes the Canadian Meteor Orbit Radar (CMOR) that has been in operation since late 2001. CMOR is a 3 station meteor radar operating at a frequency of 29.85 MHz near Tavistock, Ont. To avoid bias against fragmenting meteoroids that is inherent in the traditional multi-station method of Gill and Davies (Mon. Not. R Astron. Soc. 116 (1955) 105), we use a completely geometrical method similar to that used in the AMOR system (Quart. J. R. Astron. Soc. 35 (1994) 293) based on the interferometric determination of the echo directions and the time delays of echoes from two remote stations to obtain the trajectories and speeds of meteoroids. We describe the hardware and some of the software and present some preliminary results that provide a good indication of present capabilities of the system. Typically, we can measure 1500 individual trajectories, and hence orbits, per day with a mean accuracy of 6° in direction and about 10% in speed. A small subset of these for which it is possible to measure the speeds using Hocking's (Radio. Sci. 35 (2000) 1205) method yield speeds with a precision of about 5%. The purpose of this paper is to show that the radiants and speeds necessary for the computation of orbits are well measured rather than to discuss any orbital surveys.

  13. Design and implementation of a noise radar tomographic system

    NASA Astrophysics Data System (ADS)

    Asmuth, Mark A.; Shin, Hee Jung; Narayanan, Ram M.; Rangaswamy, Muralidhar

    2015-05-01

    A hardware system has been developed to perform ultrawideband (UWB) noise radar tomography over the 3-5 GHz frequency range. The system utilizes RF hardware to transmit multiple independent and identically distributed UWB random noise waveforms. A 3-5 GHz band-limited signal is generated using an arbitrary waveform generator and the waveform is then amplified and transmitted through a horn antenna. A linear scanner with a single antenna is used in place of an antenna array to collect backscatter. The backscatter is collected from the transmission of each waveform and reconstructed to form an image. The images that result from each scan are averaged to produce a single tomographic image of the target. After background subtraction, the scans are averaged to improve the image quality. The experimental results are compared to the theoretical predictions. The system is able to successfully image metallic and dielectric cylinders of different cross sections.

  14. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  15. A ka-band low power Doppler radar system for remote detection of cardiopulmonary motion.

    PubMed

    Xiao, Yanming; Lin, Jenshan; Boric-Lubecke, Olga; Lubecke, Victor

    2005-01-01

    A low power Ka-band Doppler radar that can detect human heartbeat and respiration signals is demonstrated. This radar system achieves better than 80% detection accuracy at the distance of 2-m with 16-μW transmitted power. Indirect-conversion receiver architecture is chosen to reduce the DC offset and 1/f noise that can degrade signal-to-noise ratio and detection accuracy. In addition, the radar has also demonstrated the capability of detecting acoustic signals. PMID:17281925

  16. Second annual progress report of the Millimeter Wave Cloud Profiling Radar System (CPRS)

    SciTech Connect

    Pazmany, A.L.; Sekelsky, S.M.; McIntosh, R.E.

    1992-06-07

    The Cloud Profiling Radar System (CPRS) is a single antenna, two frequency (33 GHz and 95 GHz) polarimetric radar which is currently under the development at the University of Massachusetts (UMASS). This system will be capable of making four dimensional Doppler and polarimetric measurements of clouds. This report gives details about the status of the various subsystems under development and discusses current research activities.

  17. On-board fault-tolerant SAR processor for spaceborne imaging radar systems

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Le, Charles; Taft, Stephanie

    2005-01-01

    A real-time high-performance and fault-tolerant FPGA-based hardware architecture for the processing of synthetic aperture radar (SAR) images has been developed for advanced spaceborne radar imaging systems. In this paper, we present the integrated design approach, from top-level algorithm specifications, system architectures, design methodology, functional verification, performance validation, down to hardware design and implementation.

  18. 78 FR 19063 - Airworthiness Approval for Aircraft Forward-Looking Windshear and Turbulence Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Turbulence Radar Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Request for comment... approval for aircraft forward-looking windshear and turbulence radar systems. The planned advisory circular... Working Group and the generic issue papers on turbulence detection to publish an advisory circular....

  19. A compressive radar system with chaotic-based FM signals using the Bernoulli map

    NASA Astrophysics Data System (ADS)

    Ochoa, Hector A.; Teja Enugula, Charan

    2013-05-01

    Matched filters are used in radar systems to identify echo signals embedded in noise. They allow us to extract range and Doppler information about the target from the reflected signal. In high frequency radars, matched filters make the system expensive and complex. For that reason, the radar research community is looking at techniques like compressive sensing or compressive sampling to eliminate the use of matched filters and high frequency analog-to-digital converters. In this work, compressive sensing is proposed as a method to increase the resolution and eliminate the use of matched filters in chaotic radars. Two basic scenarios are considered, one for stationary targets and one for non-stationary targets. For the stationary targets, the radar scene was a one dimensional vector, in which each element from the vector represents a target position. For the non-stationary targets, the radar scene was a two dimensional matrix, in which one direction of the matrix represents the target's range, and the other direction represents the target's velocity. Using optimization techniques, it was possible to recover both radar scenes from an under sampled echo signal. The reconstructed scenes were compared against a traditional matched filter system. In both cases, the matched filter was capable of recovering the radar scene. However, there was a considerable amount of artifacts introduced by the matched filter that made target identification a daunting task. On the other hand, using compressive sensing it was possible to recover both radar scenes perfectly, even when the echo signal was under sampled.

  20. Performance analysis of pulse Doppler digital radars with application to the Shuttle Ku-band system

    NASA Technical Reports Server (NTRS)

    Alem, W. K.; Weber, C. L.

    1978-01-01

    A pulse Doppler digital radar is one of the primary components of the Ku-band integrated radar and communication equipment on the Space Shuttle. The performance of the Ku-band rendezvous radar to be used on the Space Shuttle is analyzed in four parts. First an overall functional block diagram description is presented to illustrate the signal processing in the detection and the tracking modes. The detection capabilities and limitations of the radar are investigated taking all of the system losses into account. A new unified analysis of digital radar tracking loops is developed which takes into consideration the effects of a scintillating target and receiver front end noise. The behavior of the radar is discussed in the presence of thermal noise, amplitude scintillation, and target glint.

  1. Small battery operated unattended radar sensor for security systems

    NASA Astrophysics Data System (ADS)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  2. Wuhan Atmosphere Radio Exploration (WARE) radar: System design and online winds measurements

    NASA Astrophysics Data System (ADS)

    Zhengyu, Zhao; Chen, Zhou; Haiyin, Qing; Guobin, Yang; Yuannong, Zhang; Gang, Chen; Yaogai, Hu

    2013-05-01

    The basic configuration of the Wuhan MST (mesosphere-stratosphere-troposphere) radar, which was designed and constructed by the School of Electronic Information, Wuhan University, is preliminarily described in this paper. The Wuhan MST radar operates at very high frequency (VHF) band (53.8 MHz) by observing the real-time characteristics of turbulence and the wind field vector in the height range of 3.5-90 km (not including 25-60 km) with high temporal and height resolutions. This all-solid-state, all-coherent pulse Doppler radar is China's first independent development of an MST radar focusing on atmospheric observation. The subsystems of the Wuhan MST radar include an antenna system, a feeder line system, all-solid-state radar transmitters, digital receivers, a beam control system, a signal processing system, a data processing system, a product generation system, and a user terminal. Advanced radar technologies are used, including highly reliable all-solid-state transmitters, low-noise large dynamic range digital receivers, an active phased array, high-speed digital signal processing, and real-time graphic terminals. This paper describes the design and implementation of the radar. Preliminary online wind measurements and results of the comparison to simultaneous observations by a GPS rawinsonde are presented as well.

  3. The estimation and correction of refractive bending in the AR3-D tactical radar systems

    NASA Astrophysics Data System (ADS)

    Barker, F.

    1984-02-01

    The development of techniques for the estimation and correction of refractive bending, in the vertical plane, in the evolution of a family of radar systems is discussed. The systems are based on the AR3-D radar and are in service in several countries and climates. After a brief description of the AR3-D radar systems, the Operational requirements, the Engineering solutions, some of the Human Factors which affect the design and implementation, and future possibilities are discussed. A simple and exact approach to sensitivity analysis is given. A fast algorithm for the online correction of radar plot elevation data is given. The need for education on refractive effects and for understanding the possibilities which exist for estimation and correction in 3-D radar systems is emphasized.

  4. Ground-based weather radar compatibility with digital radio-relay microwave systems

    NASA Astrophysics Data System (ADS)

    Gawthrop, P. E.; Patrick, G. M.

    1990-03-01

    The potential for ground-based weather radar (meteorological radar) interference to digital microwave systems in the common carrier bands of 3700 to 4200 MHz and 5925 to 6425 MHz is examined. Reported cases of interference to microwave common carrier systems from ground-based weather radar systems have increased due to the trend towards digital modulations. Because of this interference, the National Telecommunications and Information Administration, the Federal Communications Commission and the National Spectrum Managers Association formed an informal working group to investigate and document the potential problems. The existing and planned spectrum uses by ground-based weather radars and digital microwave systems are addressed as well as regulations and policy pertaining to their electromagnetic compatibility. Methods to mitigate the interference in both the radar transmitter and microwave receiver are also provided.

  5. Application of Radar Data to Remote Sensing and Geographical Information Systems

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  6. Pediatric nephrogenic systemic fibrosis is rarely reported: a RADAR report

    PubMed Central

    Nardone, Beatrice; Saddleton, Elise; Laumann, Anne E.; Edwards, Beatrice J.; Raisch, Dennis W.; McKoy, June M.; Belknap, Steven; Bull, Christian; Haryani, Anand; Cowper, Shawn E.; Abu-Alfa, Ali K.; Miller, Frank H.; Godinez-Puig, Victoria; Dharnidharka, Vikas R.; West, Dennis P.

    2013-01-01

    Background Nephrogenic systemic fibrosis is a fibrosing disorder associated with exposure to gadolinium-based contrast agents in people with severely compromised renal function. Objective The purpose of this study was to determine the reported number of cases of nephrogenic systemic fibrosis in children using three distinct publicly available data sources. Materials and methods We conducted systematic searches of the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS), the International Center for Nephrogenic Systemic Fibrosis Research (ICNSFR) registry and published literature from January 1997 through September 2012. We contacted authors of individual published cases to obtain follow-up data. Data sets were cross-referenced to eliminate duplicate reporting. Results We identified 23 children with nephrogenic systemic fibrosis. Seventeen had documented exposure to gadolinium-based contrast agents. Six children had been reported in both the FAERS and the literature, four in the FAERS and the ICNSFR registry and five in all three data sources. Conclusion Nephrogenic systemic fibrosis has been rarely reported in children. Although rules related to confidentiality limit the ability to reconcile reports, active pharmaco-vigilance using RADAR (Research on Adverse Drug events And Reports) methodology helped in establishing the number of individual pediatric cases within the three major data sources. PMID:24057195

  7. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  8. Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status.

    PubMed

    Zito, D; Pepe, D; Mincica, M; Zito, F; De Rossi, D; Lanata, A; Scilingo, E P; Tognetti, A

    2008-01-01

    The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations. PMID:19163907

  9. Radar Techniques Applied to Subsurface Studies in Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Kofman, W.; Safaeinili, A.

    2004-04-01

    Over the past decades, a number of different Synthetic Aperture Radar (SAR) techniques were developed for mapping the surface of the planets either from Earth or from orbiting spacecrafts. However, the idea to use radar to study the subsurface started to develop during the last 15 years. The ability of the radio waves to penetrate the ice, permafrost and arid surface was at the origins of the development of the Ground Penetrating Radars (GPR). GPRs have been widely applied on Earth with a large number of the scientific and industrial applications. The application of GPR to the space exploration relies on the same operation principle but requires the development of low power and low mass equipments. In this paper, we start by discussing the general electromagnetic behavior of the materials which determines the principal characteristics of the GPR instrument. Then we describe the GPR instrument that was developed for the Mars 1998 mission (unfortunately cancelled). Then, we discuss a general GPR design that can be implemented on future rover missions. The measurements from the surface cannot replace the global mapping from orbit using orbital radar sounders. MARSIS radar is an example of these orbital radar sounders that is now in Mars orbit on the Mars Express spacecraft. Another example of an orbital radar sounder design was presented in the Surprise proposal for the Mars Express mission. These radars work essentially in the altimeter mode even if some Doppler treatment is implemented and is used in the data analysis. Another major milestone in planetary radar application will be achieved once the radar doing the tomography of the interior of the small objects is implemented. We conclude this paper by the discussion of its principle, implementation and show its tentative definition.

  10. Safety Confirmation System Using Ultrasonic Radar for Elderly People Living Alone

    NASA Astrophysics Data System (ADS)

    Tanaka, Kanya; Uchibori, Akihiko; Haruyama, Kazuo; Nishimura, Yuki; Uchikado, Shigeru; Rahman, Faridah Abd

    In Japan, the number of elderly people living alone has increased in recent years. Therefore, we propose a safety confirmation system that includes an ultrasonic radar for confirming the safety of elderly people living alone. This system consists of an ultrasonic radar, a power line communication unit, and an information processing communication unit. The safety confirmation method performs the human body detection in the restroom using ultrasonic radar. In addition, the proposed system contains a self-checking function. The effectiveness of the proposed system has been confirmed by the results of a field experiment.

  11. A videoSAR mode for the x-band wideband experimental airborne radar

    NASA Astrophysics Data System (ADS)

    Damini, A.; Balaji, B.; Parry, C.; Mantle, V.

    2010-04-01

    DRDC has been involved in the development of airborne SAR systems since the 1980s. The current system, designated XWEAR (X-band Wideband Experimental Airborne Radar), is an instrument for the collection of SAR, GMTI and maritime surveillance data at long ranges. VideoSAR is a land imaging mode in which the radar is operated in the spotlight mode for an extended period of time. Radar data is collected persistently on a target of interest while the aircraft is either flying by or circling it. The time span for a single circular data collection can be on the order of 30 minutes. The spotlight data is processed using synthetic apertures of up to 60 seconds in duration, where consecutive apertures can be contiguous or overlapped. The imagery is formed using a back-projection algorithm to a common Cartesian grid. The DRDC VideoSAR mode noncoherently sums the images, either cumulatively, or via a sliding window of, for example, 5 images, to generate an imagery stream presenting the target reflectivity as a function of viewing angle. The image summation results in significant speckle reduction which provides for increased image contrast. The contrast increases rapidly over the first few summed images and continues to increase, but at a lesser rate, as more images are summed. In the case of cumulative summation of the imagery, the shadows quickly become filled in. In the case of a sliding window, the summation introduces a form of persistence into the VideoSAR output analogous to the persistence of analog displays from early radars.

  12. Comparison of lightning observations from the KSC LDAR system with radar observations from the NCAR CP-2 radar

    NASA Technical Reports Server (NTRS)

    Krehbiel, Paul; Rison, William

    1996-01-01

    This grant supported observations of thunderstorms at Kennedy Space Center during the summer of 1995. In particular, we obtained detailed observations of lightning-producing storms over KSC with the CP2 radar of the National Center for Atmospheric Research (NCAR), for the purpose of comparing these with observations from KSC's Lightning Detection and Ranging (LDAR) system. The NCAR radar was a special purpose dual-polarization system for studying the development of precipitation in storms and was at KSC for another project, the Small Cumulus Microphysics Study - SCMS. We used the radar on a non-interference basis to obtain the desired observations. In addition we recorded the electrostatic field change of the lightning discharges at two locations. Subsequent to the field observational period we compared the LDAR lightning observations with the storm structure as indicated by the radar. The results obtained to date are summarized briefly as follows: (1) The initial lightning sequence in a small developing storm was observed to occur in a region of the storm where supercooled raindrops had frozen within the previous few minutes. This is consistent with the idea that the storm electrification is produced by interactions between ice particles. (2) The lightning discharges tended to avoid regions of supercooled liquid raindrops, possibly indicating that corona from the drops reduces any electrification in the vicinity of the drops. (3) 'Bilevel' lightning discharges within storms have been confirmed to be between the level of negative charge at mid-levels in the storm and the upper storm level. This is consistent with and expands upon our understanding that storms have a basic dipolar charge structure. (4) The upward channels of the intracloud lightning discharges are often aligned with shafts of strong precipitation, and often begin just above the upper extent of 40 dBZ reflectivity in the precipitation shaft. This is consistent with a precipitation-based mechanism of electrification.

  13. A system for the real-time display of radar and video images of targets

    NASA Technical Reports Server (NTRS)

    Allen, W. W.; Burnside, W. D.

    1990-01-01

    Described here is a software and hardware system for the real-time display of radar and video images for use in a measurement range. The main purpose is to give the reader a clear idea of the software and hardware design and its functions. This system is designed around a Tektronix XD88-30 graphics workstation, used to display radar images superimposed on video images of the actual target. The system's purpose is to provide a platform for tha analysis and documentation of radar images and their associated targets in a menu-driven, user oriented environment.

  14. High range precision laser radar system using a Pockels cell and a quadrant photodiode

    NASA Astrophysics Data System (ADS)

    Jo, Sungeun; Kong, Hong Jin; Bang, Hyochoong; Kim, Jae-Wan; Jeon, Byoung Goo

    2016-05-01

    We have proposed and demonstrated a novel technique to measure distance with high range precision. To meet the stringent requirements of a variety of applications, range precision is an important specification for laser radar systems. Range precision in conventional laser radar systems is limited by several factors, namely laser pulse width, the bandwidth of a detector, the timing resolution of the time to digital converter, shot noise and timing jitters generated by electronics. The proposed laser radar system adopts a Pockels cell and a quadrant photodiode and only measures the energy of a laser pulse to obtain range so that the effect of those factors is reduced in comparison to conventional systems. In the proposed system, the measured range precision was 5.7 mm with 100 laser pulses. The proposed method is expected to be an alternative method for laser radar system requiring high range precision in many applications.

  15. Guided radar system for arc detection: Initial results at DIIID

    NASA Astrophysics Data System (ADS)

    Salvador, S. M.; Maggiora, R.; Goulding, R. H.; Moore, J. A.; Pinsker, R. I.; Nagy, A.

    2014-02-01

    A guided radar arc detection and localization system has been designed, fabricated, installed in the feed line to one of the resonant loops on the 285/300 FW antenna, and successfully tested during vacuum conditioning. The system injects a train of binary phase-modulated pulses at a carrier frequency of 25 MHz up-shifted to around 450MHz into the main high power transmission line connected to the antenna through a septate coupler and a circulator. The pulses are reflected by arcs, and the time delay provides the distance to the arc. The reflected signals are analyzed in real time, with a time response sufficient to provide active arc detection as well as localization. RF pulses have been injected into the antenna at a power level of up to 650kW. The arc location was varied by either puffing gas into the vacuum vessel, in which case arcs always occurred in the antenna, or injecting RF without a gas puff, in which case the arcs almost always occurred in the transmission line feeding the antenna. The localization obtained during these initial tests had a relatively low resolution of about 2 m, but arcs occurring inside or outside the antenna could clearly be differentiated and corresponded with the expected location. The septate coupler proved fully compatible with the antenna feed and matching network and improved performance significantly in comparison to the use of directional couplers.

  16. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  17. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  18. High Resolution Radar Detection of Individual Raindrops in Natural Cloud Systems

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Flatau, P. J.; Harasti, P. R.; Yates, R. D.

    2014-12-01

    A high resolution C-band Doppler radar previously used to detect debris shed during space shuttle missions is shown to have the capability to determine the properties of individual raindrops in the free atmosphere. This is accomplished through a combination of the radar's narrow (0.22 degree) beamwidth, a range resolution as fine as 0.5m, and extremely high 3MW power. These attributes lead to exceptionally small radar pulse volumes (as low as 14m3 at the radar's minimum 2km range) and allow the radar to detect individual drops that exceed 0.5mm in diameter. As the radar transmits both a higher (0.5m) and lower (37m) range resolution waveform every other pulse, a unique opportunity arise to examine both the bulk radar reflectivity and individual particle properties at the same time. The larger individual drops detected by the radar appear in the radar data as bright, nearly linear, reflectivity "streaks" against the more uniform background reflectivity field generated by the population of smaller drops. These streaks can then be examined to infer the properties of the particles directly such as their size, fall velocity, concentration, and potentially other properties such as naturally occurring drop oscillations. Examples of the bulk and individual particle properties for several "streaks" associated with a deep convective system are examined. Additional high-resolution studies of the circulation fields associated with a shallow altocumulus layer and a long-lived radar reflectivity bright band associated with the melting layer within a meso-convective cloud system reveal new details of the internal circulation features associated with these phenomena.

  19. A combined quality-control methodology in Ebro Delta (NE Spain) high frequency radar system

    NASA Astrophysics Data System (ADS)

    Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2015-08-01

    Ebro River Delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three site standard-range (13.5 MHz) CODAR SeaSonde High Frequency (HF) radar was deployed in 2013. Since there is a growing demand for reliable HF radar surface current measurements, the main goal of this work is to present a combined quality control methodology. Firstly, one year-long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters is conducted in order to infer both radar site status and HF radar system performance. Signal-to-noise ratio at the monopole exhibited a consistent monthly evolution although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be a sporadic episode since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May-October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and RMSE values emerged in the ranges 0.58-0.83 and 4.02-18.31 cm s-1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely: the predominant southwestward flow, the coastal clockwise eddy confined south of Ebro Delta mouth or the Ebro River impulsive-type freshwater discharge. Future works should include the use of verified HF radar data for the rigorous skill assessment of operational ocean circulation systems currently running in Ebro estuarine region like MyOcean IBI.

  20. System for Automatic Detection and Analysis of Targets in FMICW Radar Signal

    NASA Astrophysics Data System (ADS)

    Rejfek, Luboš; Mošna, Zbyšek; Urbář, Jaroslav; Koucká Knížová, Petra

    2016-01-01

    This paper presents the automatic system for the processing of the signals from the frequency modulated interrupted continuous wave (FMICW) radar and describes methods for the primary signal processing. Further, we present methods for the detection of the targets in strong noise. These methods are tested both on the real and simulated signals. The real signals were measured using the developed at the IAP CAS experimental prototype of FMICW radar with operational frequency 35.4 GHz. The measurement campaign took place at the TU Delft, the Netherlands. The obtained results were used for development of the system for the automatic detection and analysis of the targets measured by the FMICW radar.

  1. Estimation of Microphysical and Radiative Parameters of Precipitating Cloud Systems Using mm-Wavelength Radars

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.

    2009-03-01

    A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.

  2. Radar based Ground Level Reconstruction Utilizing a Hypocycloid Antenna Positioning System

    NASA Astrophysics Data System (ADS)

    Baer, Christoph; Musch, Thomas

    2015-01-01

    In this contribution we introduce a novel radar positioning system. It makes use of a mathematical curve, called hypocycloid, for a slanting movement of the radar antenna. By means of a planetary gear, a ball, and a universal joint as well as a stepping motor, a two dimensional positioning is provided by a uniaxial drive shaft exclusively. The fundamental position calculation and different signal processing algorithms are presented. By means of an 80 GHz FMCW radar system we performed several measurements on objects with discrete heights as well as on objects with continuous surfaces. The results of these investigations are essential part of this contribution and are discussed in detail.

  3. Optical-network-connected multi-channel 96-GHz-band distributed radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Kawanishi, Tetsuya

    2015-05-01

    The millimeter-wave (MMW) radar is a promising candidate for high-precision imaging because of its short wavelength and broad range of available bandwidths. In particular in the frequency range of 92-100 GHz, which is regulated for radiolocation, an atmospheric attenuation coefficient less than 1 dB/km limits the imaging range. Therefore, a combination of MMW radar and distributed antenna system directly connected to optical fiber networks can realize both high-precision imaging and large-area surveillance. In this paper, we demonstrate a multi-channel MMW frequency-modulated continuous-wave distributed radar system connected to an analog radio-over-fiber network.

  4. Sea Clutter Reduction and Target Enhancement by Neural Networks in a Marine Radar System

    PubMed Central

    Vicen-Bueno, Raúl; Carrasco-Álvarez, Rubén; Rosa-Zurera, Manuel; Nieto-Borge, José Carlos

    2009-01-01

    The presence of sea clutter in marine radar signals is sometimes not desired. So, efficient radar signal processing techniques are needed to reduce it. In this way, nonlinear signal processing techniques based on neural networks (NNs) are used in the proposed clutter reduction system. The developed experiments show promising results characterized by different subjective (visual analysis of the processed radar images) and objective (clutter reduction, target enhancement and signal-to-clutter ratio improvement) criteria. Moreover, a deep study of the NN structure is done, where the low computational cost and the high processing speed of the proposed NN structure are emphasized. PMID:22573993

  5. FMCW radar for the sense function of sense and avoid systems onboard UAVs

    NASA Astrophysics Data System (ADS)

    Itcia, Eric; Wasselin, Jean-Philippe; Mazuel, Sbastien; Otten, Matern; Huizing, Albert

    2013-10-01

    Rockwell Collins France (RCF) radar department is currently developing, in close collaboration with TNO in The Hague, The Netherlands, a Frequency Modulated Continuous Wave (FMCW) radar sensor dedicated to Obstacle Warning function and potentially to air traffic detection. The sensor combines flood light illumination and digital beam forming to accommodate demanding detection and coverage requirements. Performances have been evaluated in flight tests and results prove that such a radar sensor is a good candidate for the Sense Function of Sense and Avoid Systems onboard UAV.

  6. 78 FR 41036 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Indicator (SAR/GMTI) Systems 40 AN/DAS-1 Multi-Spectral Targeting Systems (MTS)-B 40 Ground Data Terminals... (exportable) Synthetic Aperture Radar/Ground Moving Target Indicator (SAR/GMTI) Systems 40 AN/DAS-1 Multi...-Optical/Infrared (EO/ IR), Synthetic Aperture Radar (SAR), and laser designators. The MQ-9 systems...

  7. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  8. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar

    PubMed Central

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-01-01

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target’s position on the road as well as its radial velocity can be determined according to the target’s offset distance and traffic rules. Furthermore, the target’s azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm. PMID:26999140

  9. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    PubMed

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-01-01

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm. PMID:26999140

  10. A general interactive system for compositing digital radar and satellite data

    NASA Technical Reports Server (NTRS)

    Ghosh, K. K.; Chen, L. C.; Faghmous, M.; Heymsfield, G. M.

    1981-01-01

    Reynolds and Smith (1979) have considered the combined use of digital weather radar and satellite data in interactive systems for case study analysis and forecasting. Satellites view the top of clouds, whereas radar is capable of observing the detailed internal structure of clouds. The considered approach requires the use of a common coordinate system. In the present investigation, it was decided to use the satellite coordinate system as the base system in order to maintain the fullest resolution of the satellite data. The investigation is concerned with the development of a general interactive software system called RADPAK for remapping and analyzing conventional and Doppler radar data. RADPAK is implemented as a part of a minicomputer-based image processing system, called Atmospheric and Oceanographic Image Processing System. Attention is given to a general description of the RADPAK system, remapping methodology, and an example of satellite remapping.

  11. Standoff concealed weapon detection using a 350 GHz radar imaging system

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick LJ

    2010-04-01

    The Pacific Northwest National Laboratory is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff concealed weapon detection. The prototype radar imaging system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. Recent improvements to the system include increased imaging speed using improved balancing techniques, wider bandwidth, and image display techniques.

  12. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  13. New Cloud Science from the New ARM Cloud Radar Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2010-12-01

    The DOE ARM Program is deploying over $30M worth of scanning polarimetric Doppler radars at its four fixed and two mobile sites, with the object of advancing cloud lifecycle science, and cloud-aerosol-precipitation interaction science, by a quantum leap. As of 2011, there will be 13 scanning radar systems to complement its existing array of profiling cloud radars: C-band for precipitation, X-band for drizzle and precipitation, and two-frequency radars for cloud droplets and drizzle. This will make ARM the world’s largest science user of, and largest provider of data from, ground-based cloud radars. The philosophy behind this leap is actually quite simple, to wit: dimensionality really does matter. Just as 2D turbulence is fundamentally different from 3D turbulence, so observing clouds only at zenith provides a dimensionally starved, and sometimes misleading, picture of real clouds. In particular, the zenith view can say little or nothing about cloud lifecycle and the second indirect effect, nor about aerosol-precipitation interactions. It is not even particularly good at retrieving the cloud fraction (no matter how that slippery quantity is defined). This talk will review the history that led to this development and then discuss the aspirations for how this will propel cloud-aerosol-precipitation science forward. The step by step plan for translating raw radar data into information that is useful to cloud and aerosol scientists and climate modelers will be laid out, with examples from ARM’s recent scanning cloud radar deployments in the Azores and Oklahoma . In the end, the new systems should allow cloud systems to be understood as 4D coherent entities rather than dimensionally crippled 2D or 3D entities such as observed by satellites and zenith-pointing radars.

  14. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method. PMID:20051345

  15. The Shape and Spin Distributions of Near-Earth Asteroids Observed with the Arecibo Radar System

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.; Howell, E. S.; Nolan, M. C.; Thane, A. A.

    2012-10-01

    Radar observations of near-Earth asteroids have revealed a heterogeneous population with diameters spanning meter to kilometer scales, diverse shapes ranging from simple spheroids to extremely irregular bodies, and rotation periods stretching from minutes to weeks. Since 1998, when the Arecibo Observatory S-band radar system was upgraded to transmit up to 1 MW, over 260 near-Earth asteroids have been detected. We find the radar-observed near-Earth asteroid population with absolute magnitude H < 21 is not dominated by a single category of basic shape: spheroids, multiple-asteroid systems, double-lobed contact binaries, elongated bodies, or irregularly shaped asteroids. A radar-observed binary fraction of 17% (N = 32) among near-Earth asteroids with H < 21 is in agreement with optical observations, while contact binaries account for another 14% (N = 27). At smaller sizes, binaries and contact binaries are much rarer (one of each with H < 21). The spin distribution of near-Earth asteroids estimated from radar matches very well with the spin distribution determined from optical lightcurves, including the curious lack of small, slowly rotating bodies despite the different biases in these observational techniques. The shape and spin distributions of near-Earth asteroids observed with radar both show a distinct change in the population around H of 21 or 22 (100- to 200-m diameters), possibly indicating fundamental structural changes at this scale. Future observations will focus on the H > 21 size range to explore this possibility.

  16. Ultrawideband radar echoes of land mine targets measured at oblique incidence using a 250-kW impulse radar system

    NASA Astrophysics Data System (ADS)

    Chant, Ian J.; Staines, Geoff

    1997-07-01

    United Nations Peacekeeping forces around the world need to transport food, personnel and medical supplies through disputed regions were land mines are in active use as road blocks and terror weapons. A method of fast, effective land mine detection is needed to combat this threat to road transport. The technique must operate from a vehicle travelling at a reasonable velocity and give warning far enough ahead for the vehicle to stop in time to avoid the land mine. There is particular interest in detecting low- metallic content land mines. One possible solutionis the use of ultra-wide-band (UWB) radar. The Australian Defence Department is investigating the feasibility of using UWB radar for land mine detection from a vehicle. A 3 GHz UWB system has been used to collect target response from a series of inert land mines and mine-like objects placed on the ground and buried in the ground. The targets measured were a subset of those in the target set described in Wong et al. with the addition of inert land mines corresponding to some of the surrogate targets in this set. The results are encouraging for the detection of metallic land mines and the larger non-metallic land mines. Smaller low-metallic- content anti-personnel land mines are less likely to be detected.

  17. Impulse radar imaging system for concealed object detection

    NASA Astrophysics Data System (ADS)

    Podd, F. J. W.; David, M.; Iqbal, G.; Hussain, F.; Morris, D.; Osakue, E.; Yeow, Y.; Zahir, S.; Armitage, D. W.; Peyton, A. J.

    2013-10-01

    Electromagnetic systems for imaging concealed objects at checkpoints typically employ radiation at millimetre and terahertz frequencies. These systems have been shown to be effective and provide a sufficiently high resolution image. However there are difficulties and current electromagnetic systems have limitations particularly in accurately differentiating between threat and innocuous objects based on shape, surface emissivity or reflectivity, which are indicative parameters. In addition, water has a high absorption coefficient at millimetre wavelength and terahertz frequencies, which makes it more difficult for these frequencies to image through thick damp clothing. This paper considers the potential of using ultra wideband (UWB) in the low gigahertz range. The application of this frequency band to security screening appears to be a relatively new field. The business case for implementing the UWB system has been made financially viable by the recent availability of low-cost integrated circuits operating at these frequencies. Although designed for the communication sector, these devices can perform the required UWB radar measurements as well. This paper reports the implementation of a 2 to 5 GHz bandwidth linear array scanner. The paper describes the design and fabrication of transmitter and receiver antenna arrays whose individual elements are a type of antipodal Vivaldi antenna. The antenna's frequency and angular response were simulated in CST Microwave Studio and compared with laboratory measurements. The data pre-processing methods of background subtraction and deconvolution are implemented to improve the image quality. The background subtraction method uses a reference dataset to remove antenna crosstalk and room reflections from the dataset. The deconvolution method uses a Wiener filter to "sharpen" the returned echoes which improves the resolution of the reconstructed image. The filter uses an impulse response reference dataset and a signal-to-noise parameter to determine how the frequencies contained in the echo dataset are normalised. The chosen image reconstruction algorithm is based on the back-projection method. The algorithm was implemented in MATLAB and uses a pre-calculated sensitivity matrix to increase the computation speed. The results include both 2D and 3D image datasets. The 3D datasets were obtained by scanning the dual sixteen element linear antenna array over the test object. The system has been tested on both humans and mannequin test objects. The front surface of an object placed on the human/mannequin torso is clearly visible, but its presence is also seen from a tell-tale imaging characteristic. This characteristic is caused by a reduction in the wave velocity as the electromagnetic radiation passes through the object, and manifests as an indentation in the reconstructed image that is readily identifiable. The prototype system has been shown to easily detect a 12 mm x 30 mm x70 mm plastic object concealed under clothing.

  18. Breast surface estimation for radar-based breast imaging systems.

    PubMed

    Williams, Trevor C; Sill, Jeff M; Fear, Elise C

    2008-06-01

    Radar-based microwave breast-imaging techniques typically require the antennas to be placed at a certain distance from or on the breast surface. This requires prior knowledge of the breast location, shape, and size. The method proposed in this paper for obtaining this information is based on a modified tissue sensing adaptive radar algorithm. First, a breast surface detection scan is performed. Data from this scan are used to localize the breast by creating an estimate of the breast surface. If required, the antennas may then be placed at specified distances from the breast surface for a second tumor-sensing scan. This paper introduces the breast surface estimation and antenna placement algorithms. Surface estimation and antenna placement results are demonstrated on three-dimensional breast models derived from magnetic resonance images. PMID:18714831

  19. Comparing Goldstone Solar System Radar Earth-based Observations of Mars with Orbital Datasets

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Slade, M. A.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has collected a self-consistent set of delay-Doppler near-nadir radar echo data from Mars since 1988. Prior to the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global topography for Mars, these radar data provided local elevation information, along with radar scattering information with global coverage. Two kinds of GSSR Mars delay-Doppler data exist: low 5 km x 150 km resolution and, more recently, high (5 to 10 km) spatial resolution. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. Interpretation of these parameters, while limited by the complexities of electromagnetic scattering, provide information directly relevant to geophysical and geomorphic analyses of Mars. In this presentation we want to demonstrate how to compare GSSR delay-Doppler data to other Mars datasets, including some idiosyncracies of the radar data. Additional information is included in the original extended abstract.

  20. Space shuttle Ku-band integrated rendezvous radar/communications system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results are presented of work performed on the Space Shuttle Ku-Band Integrated Rendezvous Radar/Communications System Study. The recommendations and conclusions are included as well as the details explaining the results. The requirements upon which the study was based are presented along with the predicted performance of the recommended system configuration. In addition, shuttle orbiter vehicle constraints (e.g., size, weight, power, stowage space) are discussed. The tradeoffs considered and the operation of the recommended configuration are described for an optimized, integrated Ku-band radar/communications system. Basic system tradeoffs, communication design, radar design, antenna tradeoffs, antenna gimbal and drive design, antenna servo design, and deployed assembly packaging design are discussed. The communications and radar performance analyses necessary to support the system design effort are presented. Detailed derivations of the communications thermal noise error, the radar range, range rate, and angle tracking errors, and the communications transmitter distortion parameter effect on crosstalk between the unbalanced quadriphase signals are included.

  1. Radar seeker based autonomous navigation update system using topography feature matching techniques

    NASA Astrophysics Data System (ADS)

    Lerche, H. D.; Tumbreagel, F.

    1992-11-01

    The discussed navigation update system was designed for an unmanned platform with fire and forget capability. It meets the requirement due to fully autonomous operation. The system concept will be characterized by complementary use of the radar seeker for target identification as well as for navigation function. The system works in the navigation mode during preprogrammable phases where the primary target identification function is not active or in parallel processing. The dual function radar seeker system navigates the drone during the midcourse and terminal phases of the mission. Its high resolution due to range measurement and doppler beam sharpening in context with its radar reflectivity sensing capability are the basis for topography referenced navigation computation. The detected height jumps (coming from terrain elevation and cultural objects) and radar reflectivity features will be matched together with topography referenced features. The database comprises elevation data and selected radar reflectivity features that are robust against seasonal influences. The operational benefits of the discussed system are as follows: (1) the improved navigation performance with high probability of position fixing, even over flat terrain; (2) the operation within higher altitudes; and (3) bad weather capability. The developed software modules were verified with captive flight test data running in a hardware-in-the-loop simulation.

  2. Programmable Digital Baud Integrators for the Radar High-speed Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Farazian, K. H.; Jurgens, R. F.

    1984-01-01

    An all-digital technique for the Baud Integrators of the Radar High-Speed Data Acquisition system, a technique that avoids the inherent problems associated with analog systems such as the need for calibration and adjustment is described. The integration period of this system is selectable in 100-ns steps from 100 ns to 3276700 ns.

  3. Radar observations of the 2009 eruption of Redoubt Volcano, Alaska: Initial deployment of a transportable Doppler radar system for volcano-monitoring

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Schneider, D. J.

    2009-12-01

    The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector centered on the volcano while NEXRAD scanned a full 360 degrees. The sector strategy scanned the volcano more frequently than the 360-degree strategy. Consequently, the USGS system detected event onset within less than a minute, while the NEXRAD required about 4 minutes. The observed column heights were as high as 20 km above sea level and compared favorably to those from NEXRAD. NEXRAD tracked ash clouds to greater distances than the USGS system. This experience shows that Doppler radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  4. Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode.

    PubMed

    Overbeck, J A; Salisbury, M S; Mark, M B; Watson, E A

    1995-11-20

    The transmitted energy required for an airborne laser radar system to be able to image a target at 20 km is investigated. Because direct detection is being considered, two methods of enhancing the received signal are discussed: (1) using an avalanche photodiode (APD) as the detector and (2) using a commercial fiber amplifier as a preamplifier before a photodetector. For this analysis a specified signal-to-noise ratio was used in conjunction with the radar range equation, which includes the effects of atmospheric transmission and turbulence. Theoretical analysis reveals that a system with a fiber amplifier performs nearly the same as a system incorporating an APD. PMID:21060654

  5. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario. PMID:26811804

  6. Determination of Bragg scatter in an aircraft-generated wake vortex system for radar detection

    NASA Astrophysics Data System (ADS)

    Myers, Theodore Jon

    1997-12-01

    Remote detection and tracking of wingtip generated wake vortices is important for hazard avoidance especially near airports. Aircraft that fly through these hazardous vortices experience sudden induced roll. Experiments have demonstrated that there is sufficient radar cross section for remote detection at frequencies ranging from VHF to C band (100 MHz to 5 GHz). The mechanism that yields this radar cross section is Bragg scattering from the index of refraction variations due to the atmospheric water vapor and potential temperature fields being mixed by the wake vortex system. Refractive index variations of the size that correspond to half the operating radar wavelength produce the observed radar return. Previous analysis has postulated turbulence within the wake vortex to be the generator of the index of refraction variations. In this work, a new mechanism is identified that does not assume turbulence within the wake vortex system. This 'laminar flow mechanism' causes refractive index structuring that stretches into successively smaller spirals over time as the wake vortex system swirls and descends through the stratified atmosphere. The results are quantitatively consistent with experimental data. Results indicate that this new mechanism has a sharply peaked doppler spectrum which is encouraging for coherent detection by doppler radar.

  7. On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers

    PubMed Central

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-01-01

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521

  8. On the use of low-cost radar networks for collision warning systems aboard dumpers.

    PubMed

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-01-01

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521

  9. Radar-Derived Shape Model of Near-Earth Binary Asteroid System (285263) 1998 QE2

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Taylor, Patrick A.; Nolan, Michael C.; Howell, Ellen S.; Brozovi?, Marina; Benner, Lance A.; Giorgini, Jon D.; Busch, Michael W.; Margot, Jean-Luc; Lee, Clement; Jao, Joseph S.; Lauretta, Dante S.

    2014-11-01

    We report on shape modeling of binary asteroid 1998 QE2, a 3.2-km asteroid with a 800-m moon. We observed this asteroid with both Arecibo Observatory planetary radar (2380 MHz, 12.6 cm) and Goldstone Solar System Radar (8560 MHz, 3.5 cm) between May 31-Jun 9, 2013. The close approach on May 31, 2013 (0.039 au) presented an outstanding opportunity for radar delay-Doppler imaging with resolutions as fine as 7.5 m of both objects. The extensive radar dataset was used for shape modeling of both components. Our SHAPE 3D modeling software (Hudson, 1993 and Magri et al., 2007) uses a constrained, weighted least-squares minimization procedure to invert radar delay-Doppler images.The rotation rate of the primary, 4.749 ± 0.002 h, was well constrained from optical lightcurves (P. Pravec, pers. comm.) and rotates prograde as determined from radar data. The primary is roughly spheroidal, showing prominent concavities and surface features, with effective diameter 3.2 ± 0.3 km.The secondary is irregularly shaped, with an effective diameter of 800 ± 80 m and significant elongation. The radar data suggest it is tidally locked, with an orbital period of 31.31 ± 0.01 h hours and a semi-major orbital axis of 6.2 ± 0.1 km. The orbit is approximately circular (e < 0.01), which is typical of most near-Earth asteroid binary system orbits. We estimate a preliminary density for the primary of 0.7 ± 0.2 g/cm^3. The low density is consistent with a "rubble pile" structure.

  10. Laser radar II

    SciTech Connect

    Becherer, R.J.; Harney, R.C.

    1987-01-01

    This book contains papers divided among the following sessions: Strategic Defense Initiative laser radar technology; Advanced laser devices; Systems analysis and computer simulations; and Laser radar applications and system components.

  11. System Concepts for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    2000-01-01

    Global rainfall is the primary distributor of latent heat through atmospheric circulation. The recently launched Tropical Rainfall Measuring Mission satellite is dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided. exciting, new data on the 3-D rain structures for a variety of scientific uses. However, due to the limited mission lifetime and the dynamical nature of precipitation, the TRMM PR data acquired cannot address all the issues associated with precipitation, its related processes, and the long-term climate variability. In fact, a number of new post-TRMM mission concepts have emerged in response to the recent NASA's request for new ideas on Earth science missions at the post 2002 era. This paper will discuss the system concepts for two advanced, spaceborne rainfall profiling radars. In the first portion of this paper, we will present a system concept for a second-generation spaceborne precipitation radar for operations at the Low Earth Orbit (LEO). The key PR-2 electronics system will possess the following capabilities: (1) A 13.6/35 GHz dual frequency radar electronics that has Doppler and dual-polarization capabilities. (2) A large but light weight, dual-frequency, wide-swath scanning, deployable antenna. (3) Digital chirp generation and the corresponding on-board pulse compression scheme. This will allow a significant improvement on rain signal detection without using the traditional, high-peak-power transmitters and without sacrificing the range resolution. (4) Radar electronics and algorithm to adaptively scan the antenna so that more time can be spent to observe rain rather than clear air. and (5) Built-in flexibility on the radar parameters and timing control such that the same radar can be used by different future rain missions. This will help to reduce the overall instrument development costs. In the second portion of this paper, we will present a system concept for a geostationary rainfall monitoring radar for operations at the geosynchronous Earth Orbit (GEO). In particular, the science requirements, the observational strategy, the instrument design, and the required technologies will be discussed.

  12. Statistical evaluation of a radar rainfall system for sewer system management

    NASA Astrophysics Data System (ADS)

    Vieux, B. E.; Vieux, J. E.

    2005-09-01

    Urban areas are faced with mounting demands for managing waste and stormwater for a cleaner environment. Rainfall information is a critical component in efficient management of urban drainage systems. A major water quality impact affecting receiving waterbodies is the discharge of untreated waste and stormwater during precipitation, termed wet weather flow. Elimination or reduction of wet weather flow in metropolitan sewer districts is a major goal of environmental protection agencies and often requires considerable capital improvements. Design of these improvements requires accurate rainfall data in conjunction with monitored wastewater flow data. Characterizing the hydrologic/hydraulic performance of the sewer using distant rain gauges can cause oversizing and wasted expenditures. Advanced technology has improved our ability to measure accurately rainfall over large areas. Weather radar, when combined with rain gauge measurements, provides detailed information concerning rainfall intensities over specific watersheds. Knowing how much rain fell over contributing areas during specific periods aids in characterizing inflow and infiltration to sanitary and combined sewers, calibration of sewer system models, and in operation of predictive real-time control measures. Described herein is the design of a system for managing rainfall information for sewer system management, along with statistical analysis of 60 events from a large metropolitan sewer district. Analysis of the lower quartile rainfall events indicates that the expected average difference is 25.61%. Upper quartile rainfall events have an expected average difference of 17.25%. Rain gauge and radar accumulations are compared and evaluated in relation to specific needs of an urban application. Overall, the events analyzed agree to within ± 8% based on the median average difference between gauge and radar.

  13. Support of imaging radar for the shuttle system and subsystem definition study, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An orbital microwave imaging radar system suggested for use in conjunction with the space shuttle is presented. Several applications of the system are described, including agriculture, meteorology, terrain analysis, various types of mapping, petroleum and mineral exploration, oil spill detection and sea and lake ice monitoring. The design criteria, which are based on the requirements of the above applications, are discussed.

  14. Capability of patch antennas in a portable harmonic radar system to track insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring technologies are needed to track insects and gain a better understanding of their behavior, population, migration and movement. A portable microwave harmonic-radar tracking system that utilizes antenna miniaturization techniques was investigated to achieve this goal. The system mainly con...

  15. Primary propulsion of electrothermal, ion and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using electrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  16. Primary propulsion of electrothermal, ion, and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using eiectrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  17. Design and analysis of an FMCW radar system for vehicle tracking

    NASA Astrophysics Data System (ADS)

    Gale, Nicholas; Hong, Lang; Roy, Arunesh

    2011-09-01

    Frequency modulated continuous wave (FMCW) radar have become common place in many roadside trac and on board vehicle safety systems. The accuracy in these systems is based on the underlying calibration of these sensors, which can be a time consuming and costly process. In our approach, using an uncalibrated commercial- o-the-shelf (COTS) radar sensor, vehicles were monitored along a roadside. A moving target indication (MTI) technique is used to reduce background clutter with thresholding and CFAR techniques used for signal detection. These detections are fed into an extended Kalman lter, and using dierent association approaches, the results are compared to GPS ground truth.

  18. SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described.

  19. Systeme complet d'interferometrie radar: Etude de cas

    NASA Astrophysics Data System (ADS)

    Vincent, Frederic

    2002-09-01

    La recherche realisee a porte sur la mise au point de plusieurs ameliorations dans la chaine de traitement interferometrique necessaire pour pouvoir appliquer l'interferometrie radar (InROS) a des problemes d'interets majeurs au Quebec. Ainsi, la mesure de la deformation du sol et la creation de modeles numeriques d'altitude (MNA) par InROS en zone de coherences variables ont ete explorees au cours de cette recherche. Les faibles taux de deformation et les petites dimensions spatiales des zones affectees, les rapides variations des conditions climatiques et la presence de vegetation dense sont les principaux facteurs responsables de l'echec de l'InROS pour la mesure des deformations de glissements de terrain au Quebec. L'InROS s'est par contre averee etre un outil puissant pour le suivi des mouvements de glace sur les cours d'eau nordiques pour la securite des populations riveraines et pour la navigation fluviale. Une methode de fusion de MNA InROS de differentes configurations de prises de vue d'images en fonction des caracteristiques locales de pente et de coherence a ete developpee afin d'ameliorer la qualite des MNA InROS en zone de fortes variations de coherence. Finalement, une methode de correction des effets atmospheriques qui affectent les interferogrammes, basee sur l'acquisition simultanee de donnees GPS et de donnees radar, a aussi ete developpee au cours de cette recherche.

  20. (abstract) Asteroids and Comets: Future Imaging Opportunities with Earth-Based Radar Systems

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Black, G. J.; Ostro, S. J.

    1994-01-01

    Major improvements currently underway to the Arecibo 305 m antenna and 13 cm wavelength radar system will currently increase the radar system's sensitivity by a factor of about 20. Recent upgrades to the Goldstone 3.5 cm wavelength radar system have also improved its sensitivity. While the Arecibo system will have significantly greater sensitivity than Goldstone, the Arecibo antenna's limited declination coverage of -2(deg) to +38(deg) means that the Goldstone system will be important for the investigation of near-Earth objects with declinations outside this range. Over one hundred mainbelt and near-Earth asteroids per year will be observable with the new Arecibo system, and there will be a number of good imaging opportunities each year. While only a few imaging opportunities are predicted for comets over the next 10 years, the system will be able to respond to unexpected cometary opportunities. We are currently investigating the applicability of VLBI techniques to the direct synthesis of images of asteroids and comets illuminated by a radar signal.

  1. Network connectivity paradigm for the large data produced by weather radar systems

    NASA Astrophysics Data System (ADS)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  2. Fifty years of radar

    NASA Astrophysics Data System (ADS)

    Skolnik, M. I.

    1985-02-01

    A development history of radar technology is presented, with attention to the driving of radar system design advances by the emergence of such weapon systems as long range aircraft and cruise missiles in World War II and the range of current applications for state-of-the-art radar techniques. The applications noted encompass over-the-horizon backscatter radars for aircraft detection at 500-1800 nmi ranges, ultralow sidelobe antenna military radars, a long range, frequency scanning three-dimensional S-band radar, a shipborne phased array radar for the collection of exoatmospheric and endoatmospheric data on ballistic missile reentry vehicles, multimission/multimode X-band fighter aircraft radars, and phased array air defense radars.

  3. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    PubMed

    Gu, Changzhan; Li, Changzhi

    2015-01-01

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique. PMID:25785310

  4. Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler Multi-Radar System

    PubMed Central

    Gu, Changzhan; Li, Changzhi

    2015-01-01

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique. PMID:25785310

  5. Considerations for a Radar System to Detect an Ocean Underneath the Icy Shell of Europa

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Gogineni, Prasad; Green, James; Cooper, John; Fung, Shing; Taylor, William; Benson, Robert; Reinisch, Bodo; Song, Paul

    2004-01-01

    The detection of an ocean underneath Europa is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. An orbiting surface penetrating radar has the potential of providing that measurement thus yielding information regarding the possibility of life support on Europa. Radars in the MHz range have successfully monitored the kilometer-deep ice shelves of Greenland and Antarctica, including the detection of Lake Vostok (and others) below an ice sheet thickness of about 4 km. The performance of a radar system orbiting Europa will be subject to several potential complications and unknowns. Besides ionospheric dispersion and the actual depth of the ocean, which is estimated between 2 and 30 km, major unknowns affecting radar performance are the temperature profile, the amount of salt and other impurities within the ice crust as well as the surface roughness. These impurities can in part be produced at the highly irradiated surface by magnetospheric interactions and transported downward into the ice crust by geologic processes. The ionospheric interference must also be modeled from effects of these interactions on production of the thin neutral atmosphere and subsequent ionization of the neutrals. We investigated these uncertainties through radar simulations using different surface and ice characteristics over a frequency range from 10 to 50 MHz. The talk will present results from these simulations discussing potential limitations.

  6. Design of integrated ship monitoring system using SAR, RADAR, and AIS

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho; Hong, Danbee; Ahn, Hyung-Wook

    2013-06-01

    When we talk about for the ship detection, identification and its classification, we need to go for the wide area of monitoring and it may be possible only through satellite based monitoring approach which monitors and covers coastal as well as the oceanic zone. Synthetic aperture radar (SAR) has been widely used to detect targets of interest with the advantage of the operating capability in all weather and luminance free condition (Margarit and Tabasco, 2011). In EU waters, EMSA(European Maritime Safety Agency) is operating the SafeSeaNet and CleanSeaNet systems which provide the current positions of all ships and oil spill monitoring information in and around EU waters in a single picture to Member States using AIS, LRIT and SAR images. In many countries, a similar system has been developed and the key of the matter is to integrate all available data. This abstract describes the preliminary design concept for an integration system of RADAR, AIS and SAR data for vessel traffic monitoring. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should be also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Land-based RADAR can provide ships positions detected and tracked in near real time. In general, SAR are used to acquire image data over large coverage area, AIS reports are obtained from ship based transmitter, and RADAR can monitor continuously ships for a limited area. In this study, we developed individual ship monitoring algorithms using RADAR(FMCW and Pulse X-band), AIS and SAR(RADARSAT-2 Full-pol Mode). We conducted field experiments two times for displaying the RADAR, AIS and SAR integration over the Pyeongtaek Port, South Korea.

  7. GEOS-2 C-band system project. C-band radars and their use on the GEOS-2 project

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The material presented covers the general topic of C-band radars and their use throughout the GEOS-2 C-band Radar System Project and has direct application to the general problem of gathering accurate radar tracking data. The material is hardware oriented and all analyses and evaluations described pertain to the gathering of accurate data rather than to the application of the gathered data. The radar oriented investigations formed a basic and necessary part of the overall C-band experiment. The successful completion of these efforts led to the definition of how the radars were to be operated and calibrated. These hardware decisions directly affected the quality of the radar data and therefore played a large part in the successful application of these data to geodetic research.

  8. Global search and rescue - A new concept. [orbital digital radar system with passive reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.

  9. Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems

    NASA Technical Reports Server (NTRS)

    Hunt, W. H.; Poultney, S. K.

    1975-01-01

    Laser radar data acquisition systems have been utilized in conjunction with a light emitting diode to evaluate photomultipliers for laser radar use. Light pulses with an exponential decay rate of approximately one decade per sixty microseconds, as well as other pulse shapes, were used to drive the tubes. Properties studied in the analog mode include nonlinearity at high output currents, transient behavior upon gating, gate holdoff, dynamic range limitations because of light-induced noise, and the effect of dynode gating on tubes without a focus grid. Some of these properties were also studied in the photon counting mode, along with single photoelectron pulse shape and afterpulsing. A brief description of the laser radar technique of atmospheric measurements is included.

  10. A Multifunction Optical Fibre Communication System For Connection Between A Radar Head And Display Area.

    NASA Astrophysics Data System (ADS)

    Dakin, J. P.; Bovey, C. K.

    1984-08-01

    A multi-function fibre-optic communication system has been constructed for carrying radar information from a radar head end to a remote display area. High bandwidth video signals have been carried on FM subcarriers on a single fibre per channel basis. The radar video channels were a 20MHz analogue signal, a 10MHz analogue signal, and a 10MHz digital signal composite with a synchronising pulse. The aerial turning data was digitised and transmitted serially via a dedicated fibre with considerable capacity for additional information. Duplex speech and a TV video signal were transmitted over a single fibre using FDM and WDM. All the signals have been carried over a 3Km length of multimode optical cable using 1300nm led sources to reduce material dispersion. The WDM duplex link also used an 850nm led in the return direction.

  11. Measurement data preprocessing in a radar-based system for monitoring of human movements

    NASA Astrophysics Data System (ADS)

    Morawski, Roman Z.; Miȩkina, Andrzej; Bajurko, Paweł R.

    2015-02-01

    The importance of research on new technologies that could be employed in care services for elderly people is highlighted. The need to examine the applicability of various sensor systems for non-invasive monitoring of the movements and vital bodily functions, such as heart beat or breathing rhythm, of elderly persons in their home environment is justified. An extensive overview of the literature concerning existing monitoring techniques is provided. A technological potential behind radar sensors is indicated. A new class of algorithms for preprocessing of measurement data from impulse radar sensors, when applied for elderly people monitoring, is proposed. Preliminary results of numerical experiments performed on those algorithms are demonstrated.

  12. GNSS-based passive radar sensing using hybrid-aperture system

    NASA Astrophysics Data System (ADS)

    Silver, Randy; Zhang, Yan Rockee; Suarez, Hernan; Pan, Yu; Huang, Yih-Ru

    2013-05-01

    A hybrid-aperture radar system is being developed for passive, GNSS-based sensing and imaging missions. Different from previous work, the real aperture (RA) array has excellent cross-range resolution and electronic scanning capability, and synthetic aperture processing is applied for the dimension along the UAV/aircraft flight path. The hybrid aperture thus provides real-time, combined sensing capability and multiple functions. Multi-level signal synchronization and tracking is used to ensure the signal phase coherency and integrity. The advantages of covert radar sensing and reduced onboard computing complexity of this sensor are being demonstrated through experiments.

  13. Forth system for coherent-scatter radar data acquisition and processing

    NASA Technical Reports Server (NTRS)

    Rennier, A. D.; Bowhill, S. A.

    1985-01-01

    A real time collection system was developed for the Urbana coherent scatter radar system. The new system, designed for use with a microcomputer, has several advantages over the old system implemented with a minicomputer. The software used to collect the data is described as well as the processing software used to analyze the data. In addition a magnetic tape format for coherent scatter data exchange is given.

  14. Modeling laser radar systems in the Night Vision Integrated Performance Model (NV-IPM)

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin R.; Hodgkin, Van; Preece, Bradley; Thompson, Roger; Krapels, Keith

    2014-05-01

    Active imaging systems are currently being developed to increase the target acquisition and identification range performance of electro-optical systems. This paper reports on current efforts to extend the Night Vision Integrated Performance Model (NV-IPM) to include laser radar (LADAR) systems for unresolved targets. Combining this new LADAR modeling capability with existing sensor and environment capabilities already present in NV-IPM will enable modeling and trade studies for military relevant systems.

  15. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring.

    PubMed

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; Zito, Fabio; De Rossi, Danilo; Lanatà, Antonio

    2008-01-01

    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1-10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported. PMID:18389068

  16. Optimization of the interperiod processing of signals with clutter rejection in an incoherent radar system

    NASA Astrophysics Data System (ADS)

    Kiselev, A. Z.

    1981-12-01

    An energy criterion was used to optimize an algorithm for clutter rejection in an incoherent radar system. Explicit formulas are obtained for the weight vector and the efficiency of the algorithm, and attention is given to the conditions under which these formulas can be applied to signal processing in the postdetector channel.

  17. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  18. Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation

    NASA Technical Reports Server (NTRS)

    Leachman, Jonathan

    2010-01-01

    A three-channel data acquisition system was developed for the NASA Multi-Frequency Radar (MFR) system. The system is based on a commercial-off-the-shelf (COTS) industrial PC (personal computer) and two dual-channel 14-bit digital receiver cards. The decimated complex envelope representations of the three radar signals are passed to the host PC via the PCI bus, and then processed in parallel by multiple cores of the PC CPU (central processing unit). The innovation is this parallelization of the radar data processing using multiple cores of a standard COTS multi-core CPU. The data processing portion of the data acquisition software was built using autonomous program modules or threads, which can run simultaneously on different cores. A master program module calculates the optimal number of processing threads, launches them, and continually supplies each with data. The benefit of this new parallel software architecture is that COTS PCs can be used to implement increasingly complex processing algorithms on an increasing number of radar range gates and data rates. As new PCs become available with higher numbers of CPU cores, the software will automatically utilize the additional computational capacity.

  19. Shuttle orbiter KU-band radar/communications system design evaluation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An expanded introduction is presented which addresses the in-depth nature of the tasks and indicates continuity of the reported effort and results with previous work and related contracts, and the two major modes of operation which exist in the Ku-band system, namely, the radar mode and the communication mode, are described. The Ku-band radar system is designed to search for a target in a designated or undesignated mode, then track the detected target, which might be cooperative (active) or passive, providing accurate, estimates of the target range, range rate, angle and angle rate to enable the orbiter to rendezvous with this target. The radar mode is described along with a summary of its predicted performance. The principal sub-unit that implements the radar function is the electronics assembly 2(EA-2). The relationship of EA-2 to the remainder of the Ku-band system is shown. A block diagram of EA-2 is presented including the main command and status signals between EA-2 and the other Ku-band units.

  20. Interferometric synthetic aperture radar and the Data Collection System Digital Terrain Elevation Demonstration

    NASA Astrophysics Data System (ADS)

    Heidelbach, Robert; Bolus, R.; Chadwick, J.

    1994-08-01

    Digital Terrain Elevations (DTE) that can be rapidly generated, and that have better fidelity and accuracy than Digital Terrain Elevation Data (DTED) Levels 1 or 2, would be extremely beneficial to Department of Defense (DOD) military operations, civil works programs, and various commercial applications. As a result, the Advanced Research Projects Agency (ARPA), along with the U.S. Army Topographic Engineering Center (TEC), are developing an Interferometric Synthetic Aperture Radar (IFSAR) elevation mapping capability. This system, the Interferometric Synthetic Aperture Radar for Digital Radar Elevations (IFSARE), is capable of collecting and providing data in all weather (reasonable), in day or night scenarios, and where obscurants are present. The IFSARE, which is currently undergoing Integration and Test, will allow for rapid on-line automatic processing of the collected digital radar data into DTE and high quality imagery. The prime contractor is the Environmental Research Institute of Michigan (ERIM). This paper addresses the proof of concept for civil works applications by analyzing a data set taken by the Wright Labs/ERIM Data Collection System (DCS). The objective was to demonstrate the capability of an IFSAR system to provide high fidelity, fine resolution DTE that can be employed in hydraulic models of the Mississippi River watershed. The demonstration was sponsored by ARPA and TEC.

  1. Decision making for urban drainage systems under uncertainty caused by weather radar rainfall measurement

    NASA Astrophysics Data System (ADS)

    Dai, Qiang; Zhuo, Lu; Han, Dawei

    2015-04-01

    With the rapidly growth of urbanization and population, the decision making for managing urban flood risk has been a significant issue for most large cities in China. A high-quality measurement of rainfall at small temporal but large spatial scales is of great importance to urban flood risk management. Weather radar rainfall, with its advantage of short-term predictability and high spatial and temporal resolutions, has been widely applied in the urban drainage system modeling. It is recognized that weather radar is subjected to many uncertainties and many studies have been carried out to quantify these uncertainties in order to improve the quality of the rainfall and the corresponding outlet flow. However, considering the final action in urban flood risk management is the decision making such as flood warning and whether to build or how to operate a hydraulics structure, some uncertainties of weather radar may have little or significant influence to the final results. For this reason, in this study, we aim to investigate which characteristics of the radar rainfall are the significant ones for decision making in urban flood risk management. A radar probabilistic quantitative rainfall estimated scheme is integrated with an urban flood model (Storm Water Management Model, SWMM) to make a decision on whether to warn or not according to the decision criterions. A number of scenarios with different storm types, synoptic regime and spatial and temporal correlation are designed to analyze the relationship between these affected factors and the final decision. Based on this, parameterized radar probabilistic rainfall estimation model is established which reflects the most important elements in the decision making for urban flood risk management.

  2. Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers.

    PubMed

    Henderson, S W; Hale, C P; Magee, J R; Kavaya, M J; Huffaker, A V

    1991-05-15

    An eye-safe pulsed coherent laser radar has been developed by using single-frequency Tm,Ho:YAG lasers and heterodyne detection. Returns from a mountainside located 145 km from the laser radar system and the measurement of wind velocity to ranges exceeding 20 km have been demonstrated with transmitted pulse energies of 22 mJ. PMID:19774067

  3. Eye-safe coherent laser radar system at 2.1 microns using Tm,Ho:YAG lasers

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Hale, Charley P.; Magee, James R.; Kavaya, Michael J.; Huffaker, A. V.

    1991-01-01

    An eye-safe pulsed coherent laser radar has been developed by using single-frequency Tm,Ho:YAG lasers and heterodyne detection. Returns from a mountainside located 145 km from the laser radar system and the measurement of wind velocity to ranges exceeding 20 km have been demonstrated with transmitted pulse energies of 22 mJ.

  4. Radar Observations of Convective Systems from a High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations. Both TEFLUN-A and B were amply supported by surface data, in particular a dense raingauge network, a polarization radar, wind profilers, a mobile radiosonde system, a cloud physics aircraft penetrating the overflown storms, and a network of 10 cm Doppler radars(WSR-88D). This presentation will show some preliminary comparisons between TRMM, EDOP, and WSR-88D reflectivity fields in the case of an MCS, a hurricane, and less organized convection in central Florida. A validation of TRMM reflectivity is important, because TRMM's primary objective is to estimate the rainfall climatology with 35 degrees of the equator. Rainfall is estimated from the radar reflectivity, as well from TRMM's Microwave Imager, which measures at 10.7, 19.4, 21.3, 37, and 85.5 GHz over a broader swath (78 km). While the experiments lasted about three months the cumulative period of near simultaneous observations of storms by ground-based, airborne and space borne radars is only about an hour long. Therefore the comparison is case-study-based, not climatological. We will highlight fundamental differences in the typical reflectivity profiles in stratiform regions of MCS's, Florida convection and hurricanes and will explain why Z-R relationships based on ground-based radar data for convective systems over land should be different from those for hurricanes. These catastrophically intense rainfall from hurricane Georges in Hispaniola and from Mitch in Honduras highlights the importance of accurate Z-R relationships, It will be shown that a Z-R relationship that uses the entire reflectivity profile (rather than just a 1 level) works much better in a variety of cases, making an adjustment of the constants for different precipitation system categories redundant.

  5. A new multi-channel SAR-GMTI algorithm based on frequency STAP and FrFT

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Yuan, Yunneng; Sun, Jingping; Liu, Shujun; Mao, Shiyi

    2007-11-01

    A SAR-GMTI algorithm based on space-time adaptive processing (STAP) in frequency domain by multi-channel SAR is proposed. The paper deduces the theoretical formula of the clutter suppression in-depth based on frequency STAP and finds that the output is a chirp signal and similar to the input signal of the moving targets before suppressed, so FrFT is chosen to detect them and estimate their moving parameters. The analyses in theory and simulator results show that our new algorithm is effective.

  6. The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed

    2003-01-01

    The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.

  7. MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Cross, Jack; Schneider, John; Cariani, Pete

    2013-05-01

    Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.

  8. Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    NASA Technical Reports Server (NTRS)

    Eide, Michael C.; Mathews, Bruce

    1992-01-01

    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler radar product with signal and data processing algorithms which detect realistic microburst hazards and has demonstrated those algorithms produce no false alerts (or nuisance alerts) in urban airport ground moving vehicle (GMTI) and/or clutter environments.

  9. CAMUS: an infrared, visible, and millimeter-wave radar integration system

    NASA Astrophysics Data System (ADS)

    de Villers, Yves M.; Simard, Jean-Robert

    1998-10-01

    The Defense Research Establishment, Valcartier has an ongoing project on a multi-sensors system, called CAMUS (Common Aperture MUlti-Sensors). The main objective of this project is to demonstrate the concept of fusing three sensors on a single chassis. The project covers the development of the sensors' head and the processing sub-systems required for fusing the acquired data and information. The three sensors identified for this project are: a visible camera, a 3 - 5 micrometer infrared camera and a 94 GHz millimeter-wave radar. This paper describes the approach used to combine the three sensors along with the various processing schemes to merge the visible and infrared images with the radar information. The CAMUS system will present all the information gathered by the three sensors on a single display to the operator. The main application of this project is to demonstrate an advanced sight for a direct fire control system.

  10. A Self-Calibrating Radar Sensor System for Measuring Vital Signs.

    PubMed

    Huang, Ming-Chun; Liu, Jason J; Xu, Wenyao; Gu, Changzhan; Li, Changzhi; Sarrafzadeh, Majid

    2016-04-01

    Vital signs (i.e., heartbeat and respiration) are crucial physiological signals that are useful in numerous medical applications. The process of measuring these signals should be simple, reliable, and comfortable for patients. In this paper, a noncontact self-calibrating vital signs monitoring system based on the Doppler radar is presented. The system hardware and software were designed with a four-tiered layer structure. To enable accurate vital signs measurement, baseband signals in the radar sensor were modeled and a framework for signal demodulation was proposed. Specifically, a signal model identification method was formulated into a quadratically constrained l1 minimization problem and solved using the upper bound and linear matrix inequality (LMI) relaxations. The performance of the proposed system was comprehensively evaluated using three experimental sets, and the results indicated that this system can be used to effectively measure human vital signs. PMID:26011865

  11. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  12. Parallel processing in a host plus multiple array processor system for radar

    NASA Technical Reports Server (NTRS)

    Barkan, B. Z.

    1983-01-01

    Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated.

  13. HgCdTe photomixers for CO2 laser radar systems

    NASA Technical Reports Server (NTRS)

    Bratt, Peter R.

    1992-01-01

    The Santa Barbara Research Center has developed a variety of high speed HgCdTe photodetectors for use in CO2 laser radar systems. These detectors have outstanding performance and can be made available in production quantities. Many of them have been employed in a variety of systems applications over the past ten years. In this paper, we briefly describe the detector technology, summarize the state-of-the-art, and indicate some practical applications.

  14. System feasibility study of a microwave/millimeter-wave radar for space debris tracking

    NASA Technical Reports Server (NTRS)

    Chang, Kai; Pollock, Michael A.; Skrehot, Michael K.; Arndt, G. Dickey; Suddath, Jerry

    1989-01-01

    A 35 GHz millimeter-wave radar system has been studied for space debris tracking. The objective is to track the particles ranging in size from 4 mm to 80 mm up to a range of 25 km. The system requires various state-of-the-art technologies including phased arrays, monopulse tracking, pulse compression, high power transmitters, low noise receivers, and pulse integration signal processing techniques.

  15. Auroral ion acoustic wave enhancement observed with a radar interferometer system

    NASA Astrophysics Data System (ADS)

    Schlatter, N. M.; Belyey, V.; Gustavsson, B.; Ivchenko, N.; Whiter, D.; Dahlgren, H.; Tuttle, S.; Grydeland, T.

    2015-07-01

    Measurements of naturally enhanced ion acoustic line (NEIAL) echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EISCAT) radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI) installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 × 500 m, and at times less than 160 m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.

  16. Department of Energy's ground penetrating radar (GPR): an FM-CW system

    NASA Astrophysics Data System (ADS)

    Koppenjan, Steven; Bashforth, Michael B.

    1993-11-01

    The United States Department of Energy's Special Technologies Laboratory (STL) has been actively involved with ground penetrating radar technology since 1968. A ground penetrating radar will utilize the reflective properties of various dielectric interfaces and nonhomogeneous materials in the soil to obtain target information. The production of total site characterization data will require implementation of advanced imaging techniques, data fusion, highly accurate decision, and delineation of subsurface objects. To meet these new technical requirements for high resolution data, STL is moving forward with advances to GPR technology with development of a stepped FM-CW Ground Penetrating Radar. This unit operates over a frequency range of 196 MHz to 708 MHz and produces phase-coherent data. It has a real-time display of data, saves the data to floppy discs and can also produce hard copies in the field. This system has successfully detected targets ranging from 60 mm projectiles to 500 pound bombs up to 15 feet deep. Additional field deployment of the GPR produced successful results on other metallic and nonmetallic targets. This paper outlines the theory of operation of a Stepped Frequency Modulated, Continuous-Wave (FM-CW) Ground Penetrating Radar, provides a technical description of the unit, data display format and presents some sample data sets.

  17. Radar systems for a polar mission, volume 3, appendices A-D, S, T

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    Success is reported in the radar monitoring of such features of sea ice as concentration, floe size, leads and other water openings, drift, topographic features such as pressure ridges and hummocks, fractures, and a qualitative indication of age and thickness. Scatterometer measurements made north of Alaska show a good correlation with a scattering coefficient with apparent thickness as deduced from ice type analysis of stereo aerial photography. Indications are that frequencies from 9 GHz upward seem to be better for sea ice radar purposes than the information gathered at 0.4 GHz by a scatterometer. Some information indicates that 1 GHz is useful, but not as useful as higher frequencies. Either form of like-polarization can be used and it appears that cross-polarization may be more useful for thickness measurement. Resolution requirements have not been fully established, but most of the systems in use have had poorer resolution than 20 meters. The radar return from sea ice is found to be much different than that from lake ice. Methods to decrease side lobe levels of the Fresnel zone-plate processor and to decrease the memory requirements of a synthetic radar processor are discussed.

  18. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  19. MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.

    USGS Publications Warehouse

    Bradley, Jerry A.; Wright, David L.

    1987-01-01

    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  20. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  1. Phase locking of multiple optical fiber channels for a slow-light-enabled laser radar system.

    PubMed

    Vornehm, Joseph E; Schweinsberg, Aaron; Shi, Zhimin; Gauthier, Daniel J; Boyd, Robert W

    2013-06-01

    Phase control is crucial to the operation of coherent beam combining systems, whether for laser radar or high-power beam combining. We have recently demonstrated a design for a multi-aperture, coherently combined, synchronized- and phased-array slow light laser radar (SLIDAR) that is capable of scanning in two dimensions with dynamic group delay compensation. Here we describe in detail the optical phase locking system used in the design. The phase locking system achieves an estimated Strehl ratio of 0.8, and signals from multiple emitting apertures are phase locked simultaneously to within π/5 radians (1/10 wave) after propagation through 2.2 km of single-mode fiber per channel. Phase locking performance is maintained even as two independent slow light mechanisms are utilized simultaneously. PMID:23736563

  2. Artificial Neural Network-Based Clutter Reduction Systems for Ship Size Estimation in Maritime Radars

    NASA Astrophysics Data System (ADS)

    Vicen-Bueno, R.; Carrasco-lvarez, R.; Rosa-Zurera (Eurasip Member), M.; Nieto-Borge, J. C.; Jarabo-Amores, M. P.

    2010-12-01

    The existence of clutter in maritime radars deteriorates the estimation of some physical parameters of the objects detected over the sea surface. For that reason, maritime radars should incorporate efficient clutter reduction techniques. Due to the intrinsic nonlinear dynamic of sea clutter, nonlinear signal processing is needed, what can be achieved by artificial neural networks (ANNs). In this paper, an estimation of the ship size using an ANN-based clutter reduction system followed by a fixed threshold is proposed. High clutter reduction rates are achieved using 1-dimensional (horizontal or vertical) integration modes, although inaccurate ship width estimations are achieved. These estimations are improved using a 2-dimensional (rhombus) integration mode. The proposed system is compared with a CA-CFAR system, denoting a great performance improvement and a great robustness against changes in sea clutter conditions and ship parameters, independently of the direction of movement of the ocean waves and ships.

  3. Surface roughness measuring system. [synthetic aperture radar measurements of ocean wave height and terrain peaks

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1978-01-01

    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.

  4. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  5. A convenient technique for polarimetric calibration of single-antenna radar systems

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.

    1990-01-01

    A practical technique for calibrating single-antenna polarimetric radar systems is introduced. This technique requires only a single calibration target such as a conducting sphere or a trihedral corner reflector to calibrate the radar system, both in amplitude and phase, for all linear polarization configurations. By using a metal sphere, which is orientation independent, error in calibration measurement is minimized while simultaneously calibrating the crosspolarization channels. The antenna system and two orthogonal channels (in free space) are modeled as a four-port passive network. Upon using the reciprocity relations for the passive network and assuming the crosscoupling terms of the antenna to be equal, the crosstalk factors of the antenna system and the transmit and receive channel imbalances can be obtained from measurement of the backscatter from a metal sphere. For an X-band radar system with crosspolarization isolation of 25 dB, comparison of values measured for a sphere and a cylinder with theoretical values shows agreement within 0.4 dB in magnitude and 5 deg in phase. An effective polarization isolation of 50 dB is achieved using this calibration technique.

  6. Comparison of soft computing systems for the post-calibration of weather radar

    NASA Astrophysics Data System (ADS)

    Hessami Kermani, Masoud Reza

    The most usual tools to monitor rainfall events are raingauges and weather radar. Networks of raingauges provide accurate point estimates of rainfall, when appropriately set, but their usual low density restricts considerably the spatial resolution of the gathered information. Such networks, with rain gauges at distinct points, do not reflect the spatial distribution of rainfall. The quality of raingauge observations is also susceptible to some error sources, for example wind effects around the raingauges and poor raingauge reports due to hardware problems. Radar systems offer high spatial and temporal resolution observation which is much more efficient at providing the space-time evolution of a rainfall event in comparison with raingauge networks. However the radar measurements are not free of errors due to a variety of factors including ground clutter, bright bands, anomalous propagation, beam blockages, and attenuation. The effectiveness of weather radar operation is strongly linked to rigorous calibration. Various methods have been proposed to calibrate radar data. They can be classified into two main categories: deterministic and statistical. The deterministic approach involves the calibration of radar rainfall estimations against raingauge observations. The statistical approach includes multivariate analysis and cokriging. Geostatistical approaches are known as the best methods for radar-raingauge data integration but they are usually inefficient in real time, especially when dealing with the sampling rates of one hour or less necessary for urban and small watershed applications. Such methods also rely on a strong human expertise which can lead to user-dependent results. The objectives of this research are to introduce and to investigate the feasibility of soft computing systems for the post-calibration of weather radar in comparison with the best existing method based on geostatistics. In this work, the soft computing systems include artificial neural networks and Adaptive Neuro-Fuzzy Inference System (ANFIS) and the geostatistical approach includes residual kriging. The residual kriging calibration results are satisfying however this method is based on stationary hypotheses and requires variogram modeling, making it difficult in an operational context. This method has the advantage of providing a mean squared errors map based on variogram modeling for the estimations. For the artificial neural network, thirteen variants of the multilayer feedforward networks and two variants of radial basis functions are tested in this work. The neural calibration results showed that the Levenberg-Marquardt algorithm using Bayesian regularization is robust and reliable for radar-raingauge data integration. The ANFIS offers the precision and learning capability of artificial neural networks combined with the advantages of fuzzy logic. This method based on the Jackknife approach allows the use of all the available data for training and checking the neuro-fuzzy inference system, and provides a degree of reliability of the post-calibration. The training and the interpolation results of proposed methods can be obtained within just a few seconds using an ordinary personal computer, which is incomparably faster than geostatistical approaches. The proposed algorithms would be very efficient for real time post-calibration.

  7. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  8. Embedded DSP-based telehealth radar system for remote in-door fall detection.

    PubMed

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique

    2015-01-01

    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas. PMID:25291803

  9. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  10. Precision SAW filters for a large phased-array radar system

    NASA Astrophysics Data System (ADS)

    Haydl, W. H.; Sander, W.; Wirth, W.-D.

    1981-05-01

    The electronically steerable radar (ELRA) at the Forschungsinstitut fuer Funk und Mathematik is an experimental S-band phased-array radar system consisting of separate transmitting and receiving arrays employing several coherent and incoherent signal-processing and data-handling techniques, incorporating multiple beam and multifunction operation for target search and tracking, adaptive interference suppression, and target resolution. This paper deals with the development and application of two types of SAW filters for the IF amplifier channel of the receiving array. Compared to conventional filters with lumped elements, these filters have some important merits. By making use of a special tuning technique, the center frequencies of all filters were adjusted, resulting in an rms deviation of less than 1 kHz. One type of the SAW filters represents an almost ideal approach of realizing a matched filter for rectangular shaped pulses. The conformity of the frequency responses of several hundred filters improved the noise suppression capability of the system.

  11. A slow-light laser radar system with two-dimensional scanning.

    PubMed

    Schweinsberg, Aaron; Shi, Zhimin; Vornehm, Joseph E; Boyd, Robert W

    2012-02-01

    We propose a multi-aperture slow-light laser radar with two-dimensional scanning. We demonstrate experimentally that we can use two independent slow-light mechanisms, namely dispersive delay and stimulated Brillouin scattering, to dynamically compensate the group delay mismatch among different apertures, while we use optical phase locking to control the relative phases of the optical signals emitted from different apertures, as the system steers the beam in two dimensions. PMID:22297342

  12. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization

    SciTech Connect

    Wright, David L.

    2004-12-01

    Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization EMSP Project 86992 Progress Report as of 9/2004.

  13. Multidimensional radar picture

    NASA Astrophysics Data System (ADS)

    Waz, Mariusz

    2010-05-01

    In marine navigation systems, the three-dimensional (3D) visualization is often and often used. Echosonders and sonars working in hydroacustic systems can present pictures in three dimensions. Currently, vector maps also offer 3D presentation. This presentation is used in aviation and underwater navigation. In the nearest future three-dimensional presentation may be obligatory presentation in displays of navigation systems. A part of these systems work with radar and communicates with it transmitting data in a digital form. 3D presentation of radar picture require a new technology to develop. In the first step it is necessary to compile digital form of radar signal. The modern navigation radar do not present data in three-dimensional form. Progress in technology of digital signal processing make it possible to create multidimensional radar pictures. For instance, the RSC (Radar Scan Converter) - digital radar picture recording and transforming tool can be used to create new picture online. Using RSC and techniques of modern computer graphics multidimensional radar pictures can be generated. The radar pictures mentioned should be readable for ECDIS. The paper presents a method for generating multidimensional radar picture from original signal coming from radar receiver.

  14. The EDOP radar system on the high-altitude NASA ER-2 aircraft

    USGS Publications Warehouse

    Heymsfield, G.M.; Bidwell, S.W.; Caylor, I.J.; Ameen, S.; Nicholson, S.; Boncyk, W.; Miller, L.; Vandemark, D.; Racette, P.E.; Dod, L.R.

    1996-01-01

    The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-2 Doppler radar (EDOP) has been developed and flown on the ER-2 aircraft. EDOP is a fully coherent Doppler weather radar with fixed nadir and forward pointing (33?? off nadir) beams that map out Doppler winds and reflectivities in the vertical plane along the aircraft motion vector. Doppler winds from the two beams can be used to derive vertical and along-track air motions. In addition, the forward beam provides linear depolarization measurements that are useful in discriminating microphysical characteristics of the precipitation. This paper deals with a general description of the EDOP instrument including the measurement concept, the system configuration and hardware, and recently obtained data examples from the instrument. The combined remote sensing package on the ER-2, along with EDOP, provides a unique platform for simulating spaceborne remote sensing of precipitation.

  15. Mapping of a major paleodrainage system in eastern Libya using orbital imaging radar: The Kufrah River

    NASA Astrophysics Data System (ADS)

    Paillou, Philippe; Schuster, Mathieu; Tooth, Stephen; Farr, Tom; Rosenqvist, Ake; Lopez, Sylvia; Malezieux, Jean-Marie

    2009-01-01

    Over the last few decades, remote sensing has revealed buried river channels in a number of regions worldwide, in many cases providing evidence of dramatic paleoenvironmental changes over Cenozoic time scales. Using orbital radar satellite imagery, we mapped a major paleodrainage system in eastern Libya, that could have linked the Kufrah Basin to the Mediterranean coast through the Sirt Basin, possibly as far back as the middle Miocene. Synthetic Aperture Radar images from the PALSAR sensor clearly reveal a 900 km-long river system, which starts with three main tributaries (north-eastern Tibesti, northern Uweinat and western Gilf Kebir/Abu Ras) that connect in the Kufrah oasis region. The river system then flows north through the Jebel Dalmah, and forms a large alluvial fan in the Sarir Dalmah. The sand dunes of the Calanscio Sand Sea prevent deep orbital radar penetration and preclude detailed reconstruction of any possible connection to the Mediterranean Sea, but a 300 km-long link to the Gulf of Sirt through the Wadi Sahabi paleochannel is likely. If this connection is confirmed, and its Miocene antiquity is established, then the Kufrah River, comparable in length to the Egyptian Nile, will have important implications for the understanding of the past environments and climates of northern Africa from the middle Miocene to the Holocene.

  16. Improved resistive-vee dipole based arbitrary polarization antenna system for ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Sustman, James W.; Scott, Waymond R.

    2014-05-01

    A broadband arbitrary polarization antenna system for ground penetrating radar applications is modified to improve its performance. The antenna system uses four, crossed, resistive-vee dipole (RVD) antennas operating bistaticly to measure the simultaneous transmission and reception of multiple polarizations. The RVD has low self clutter, low radar cross section and wideband performance. The RVD is a linearly polarized antenna, but other polarizations can be synthesized through the use of two orthogonal RVDs to transmit or receive orthogonal field components. The antenna system is able to distinguish rotationally symmetric and linear targets with its ability to transmit and receive both senses of circular polarization. For example, linear targets such as wires or pipes can be identified by even scattering of both senses of circular polarization. The RVDs in the previous RVD-based CP (circularly polarized) antenna were not designed for CP synthesis. The shape and resistive profile of the RVD were modified to improve dual CP performance. The design of the RVD was optimized through simulation to improve CP synthesis and forward gain, while maintaining low self clutter, low radar cross section, and wide bandwidth. Additional simulations demonstrate that the improvements to the RVD may help to correctly discriminate targets based on their geometries.

  17. Noncontact screening system with two microwave radars for the diagnosis of sleep apnea-hypopnea syndrome.

    PubMed

    Kagawa, Masayuki; Ueki, Katsuhiko; Tojima, Hirokazu; Matsui, Takemi

    2013-01-01

    There were two key problems in applying Doppler radar to a diagnosis system for sleep apnea-hypopnea syndrome. The first is noise associated with body movements and the second is the body positions in bed and the changes of the sleeping posture. We focused on the changes of the amplitude of the radar output signal corresponding to the changes in the tidal volume, and proposed a method of detecting the change of the respiratory amplitude value without the influence of body position in bed. In addition, we challenged the detection of the apnea-hypopnea event confirmed by accompanied rise of heart rates. To increase the accuracy of heart rate measurement, we propose a new automatic gain control and a real-time radar-output channel selection method based on a spectrum shape analysis. A prototype of the system was set up at a sleep disorder center in a hospital and field tests were carried out with eight subjects. Despite the subjects engaging in frequent body movements while sleeping, the system was quite effective in the diagnosis of sleep apnea-hypopnea syndrome (the correlation coefficient r = 0.98). PMID:24110122

  18. A digital signal processing system for coherent laser radar

    NASA Technical Reports Server (NTRS)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  19. A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

  20. HiVision millimeter-wave radar for enhanced vision systems in civil and military transport aircraft

    NASA Astrophysics Data System (ADS)

    Pirkl, Martin; Tospann, Franz-Jose

    1997-06-01

    This paper presents a guideline to meet the requirements of forward looking sensors of an enhanced vision system for both military and civil transport aircraft. It gives an update of a previous publication with special respect to airborne application. For civil transport aircraft an imaging mm-wave radar is proposed as the vision sensor for an enhanced vision system. For military air transport an additional high-performance weather radar should be combined with the mm-wave radar to enable advanced situation awareness, e.g. spot-SAR or air to air operation. For tactical navigation the mm-wave radar is useful due to its ranging capabilities. To meet these requirements the HiVision radar was developed and tested. It uses a robust concept of electronic beam steering and will meet the strict price constraints of transport aircraft. Advanced image processing and high frequency techniques are currently developed to enhance the performance of both the radar image and integration techniques. The advantages FMCW waveform even enables a sensor with low probability of intercept and a high resistance against jammer. The 1997 highlight will be the optimizing of the sensor and flight trials with an enhanced radar demonstrator.

  1. High resolution system for upper air (troposphere) wind and temperature profile measurements. [meteorological radar/Jimsphere system

    NASA Technical Reports Server (NTRS)

    Camp, D. W.; Vaughan, W. W.

    1973-01-01

    The Jimsphere/Jimsonde system is described and some possible applications of the system for air-sea interface measurements are presented. As space vehicles became larger and more sophisticated, an improved method for obtaining wind profile data had to be found. To satisfy this need the FPS-16 radar/Jimsphere system was developed. The Jimsphere is an aluminized mylar spherical balloon, two meters in diameter. The balloon is under superpressure, and is tracked with a high precision radar system. The development of this detailed wind profile system was started in 1963, and the present design was established in 1964. To improve the system, a program was initiated in 1965 to obtain high resolution temperature data simultaneously with the wind profile data.

  2. Terminal Doppler Weather Radar (TDWR) system characteristics and design constraints

    NASA Astrophysics Data System (ADS)

    Wieler, J. G.; Shrader, W. W.

    TDWR features two scan strategies: hazardous weather mode and monitor mode; the system has redundant transmitters, receiver/exciters, and signal processing channels. The data processing system features data base formation/conditioning, clutter residue editing, point target removal, signal-to-noise thresholding, velocity dealiasing, and a pulse-repetition frequency selection/deobscuration algorithm.

  3. Data reduction programs for a laser radar system

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.; Copeland, G. E.

    1984-01-01

    The listing and description of software routines which were used to analyze the analog data obtained from LIDAR - system are given. All routines are written in FORTRAN - IV on a HP - 1000/F minicomputer which serves as the heart of the data acquisition system for the LIDAR program. This particular system has 128 kilobytes of highspeed memory and is equipped with a Vector Instruction Set (VIS) firmware package, which is used in all the routines, to handle quick execution of different long loops. The system handles floating point arithmetic in hardware in order to enhance the speed of execution. This computer is a 2177 C/F series version of HP - 1000 RTE-IVB data acquisition computer system which is designed for real time data capture/analysis and disk/tape mass storage environment.

  4. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  5. An X-band radar system for bathymetry and wave field analysis in a harbour area.

    PubMed

    Ludeno, Giovanni; Reale, Ferdinando; Dentale, Fabio; Carratelli, Eugenio Pugliese; Natale, Antonio; Soldovieri, Francesco; Serafino, Francesco

    2015-01-01

    Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP), which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system. PMID:25594601

  6. An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area

    PubMed Central

    Ludeno, Giovanni; Reale, Ferdinando; Dentale, Fabio; Carratelli, Eugenio Pugliese; Natale, Antonio; Soldovieri, Francesco; Serafino, Francesco

    2015-01-01

    Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP), which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system. PMID:25594601

  7. Comparisons of the NASA ER-2 meteorological measurement system with radar tracking and radiosonde data

    NASA Technical Reports Server (NTRS)

    Gaines, Steven E.; Bowen, Stuart W.; Hipskind, R. S.; Bui, T. P.; Chan, K. R.

    1992-01-01

    Measurements of aircraft longitude, latitude, and velocity, and measurements of atmospheric pressure, temperature, and horizontal wind from the meteorological measurement system (MMS) on board the NASA ER-2 aircraft were compared with independent measurements of these quantities from radiosondes and radar tracking of both the ER-2 and radiosonde balloons. In general, the comparisons were good and within the expected measurement accuracy and natural variability of the meteorological parameters. Radar tracking of the ER-2 resolved the velocity and position drift of the inertial navigation system (INS). The rms errors in the horizontal velocity components of the ER-2, due to INS errors, were found to be 0.5 m/s. The magnitude of the drift in longitude and latitude depends on the sign and magnitude of the corresponding component velocity drift and can be a few hundredths of a degree. The radar altitudes of the ER-2 and radiosondes were used as the basis for comparing measurements of atmospheric pressure, temperature, and horizontal wind from these two platforms. The uncertainty in the MMS horizontal wind measurement is estimated to be +/- 2.5 m/s. The accuracy of the MMS pressure and temperature measurements were inferred to be +/- 0.3 hPa and +/- 0.3 K.

  8. The Shape and Spin Distributions of Near-Earth Asteroids Observed with the Arecibo Radar System

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.; Howell, E. S.; Nolan, M. C.; Thane, A. A.

    2012-05-01

    Radar observations of near-Earth asteroids have revealed a heterogeneous population with diameters spanning meter to kilometer scales, diverse shapes ranging from simple spheroids to extremely irregular bodies, and rotation periods stretching from minutes to weeks. Since 1998, when the Arecibo Observatory S-band radar system was upgraded to transmit up to 1 MW, over 300 near-Earth asteroids have been observed. Thane et al. (2012; AAS 219, #432.14) examined those asteroids observed through 2010 that were well resolved at high power (above 600 kW output) and observed on multiple days allowing for unambiguous basic shape determination and found that the population was rather evenly distributed among spheroids, elongated bars, double-lobed contact binaries, multiple-asteroid systems, and irregularly shaped asteroids. This seems to imply that there is no dominant process of near-Earth asteroid evolution funneling the population to a general shape. Furthermore, there was no clear correlation between size and shape. We will expand the Thane et al. shape distribution to include objects observed from 2011-2012. We will also determine the spin distribution of radar-observed near-Earth asteroids, using the echo bandwidths to place upper limits on the spin periods of the bodies (allowing for comparisons to lightcurve-derived periods where available) and examine possible correlations between sizes, shapes, and spins.

  9. Scanning Laser Radar Development for Solar System Exploration Applications

    NASA Technical Reports Server (NTRS)

    Tratt, D.; Menzies, R.; Bartman, R.; Hemmati, H.

    2000-01-01

    The Jet Propulsion Laboratory (JPL) has recently established an accelerated development initiative to enable high-resolution active optical ranging and terrain mapping capabilities for a series of upcoming Solar System exploration missions.

  10. Shuttle orbiter Ku-band radar/communications system design evaluation. Deliverable test equipment evaluation

    NASA Technical Reports Server (NTRS)

    Maronde, R. G.

    1980-01-01

    The Ku-band test equipment, known as the Deliverable System Test equipment (DSTE), is reviewed and evaluated. The DSTE is semiautomated and computer programs were generated for 14 communication mode tests and 17 radar mode tests. The 31 test modules provide a good cross section of tests with which to exercise the Ku-band system; however, it is very limited when being used to verify Ku-band system performance. More detailed test descriptions are needed, and a major area of concern is the DSTE sell-off procedure which is inadequate.

  11. Shuttle orbiter Ku-band radar/communications system design evaluation

    NASA Technical Reports Server (NTRS)

    Dodds, J.; Holmes, J.; Huth, G. K.; Iwasaki, R.; Maronde, R.; Polydoros, A.; Weber, C.; Broad, P.

    1980-01-01

    Tasks performed in an examination and critique of a Ku-band radar communications system for the shuttle orbiter are reported. Topics cover: (1) Ku-band high gain antenna/widebeam horn design evaluation; (2) evaluation of the Ku-band SPA and EA-1 LRU software; (3) system test evaluation; (4) critical design review and development test evaluation; (5) Ku-band bent pipe channel performance evaluation; (6) Ku-band LRU interchangeability analysis; and (7) deliverable test equipment evaluation. Where discrepancies were found, modifications and improvements to the Ku-band system and the associated test procedures are suggested.

  12. The scientific justification of a radar scatterometer and a passive microwave system on Seasat-A

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.

    1974-01-01

    The purpose of these two systems is to determine the winds over the ocean. The passive system may also provide data on precipitation over the ocean and sea surface temperature through clouds. They complement each other. The radar scatterometer will sense those sea surface properties that define the winds over the ocean through clouds so thick and so wet that the passive microwave system will have detected only the cloud properties. Both wind speed and direction can be found from the combined data to be obtained.

  13. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  14. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  15. The design of laser radar data acquisition system based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Han, Dalong; Han, Shaokun; Cao, Jingya; Xia, Wenze; Wang, Liang

    2015-08-01

    Lidar has been widely used in areas of ranging and imaging. To be able to perform real-time control of the entire system, this article designed a lidar data acquisition system based on LabVIEW and the PC system allows real-time display for data acquired by lidar system. Through the serial port, the PC system can adjust part of the laser radar system parameters, such as frequency, APD (Avalanche Photo Diode) bias, the echo threshold, etc in real-time. In this way, we achieve the instruction communication between the PC system and the lidar. In addition, the PC system can also acquire data from the lidar through the Ethernet. Through the practical test, the PC system can successfully acquire and display the echo signal measured by lidar system in real-time, and function of parameter adjustment is also very sensitive.

  16. Benefits of wide-area intrusion detection systems using FMCW radar

    NASA Astrophysics Data System (ADS)

    Butler, Walker; Poitevin, Pierre; Bjornholt, John

    2008-04-01

    The history of perimeter protection is based on building fences. That basic concept evolved into detecting activity along fences using a variety of sensors. Today a wide variety of fiber and wire-based sensors are available to mount on a fence, and many different types of IR, radar, optical, seismic and acoustic sensors to place along the fence line. Generally some camera support is provided, with the cameras programmed to point to pre-set locations along the fence. A more robust perimeter protection would consist of wide area sensors with the capability to look out beyond the fence to detect potential intrusion and track intruders. In looking beyond the perimeter, wide area sensors can provide precious time to plan and initiate the appropriate response. In addition, because they sweep a 360-degree circle, the sensors can provide continued tracking of the intrusion, greatly enhancing the effectiveness and safety of the response team. The new wide-area concept consists of using modern radar technology for wide area detection of objects which are moving, and then using the precise location information from the radar to point a camera for assessment. Without having to continually stare at a bank of video monitors, the operator is presented with the location, direction of travel and identification and number of potential intruders, all in a matter of seconds. This paper presents the features of this new wide area system, followed by an overview of radar technology. It closes with a discussion on the benefits of the FMCW topology over Pulse Doppler in security and surveillance applications.

  17. A millimetre-wave MIMO radar system for threat detection in urban environments

    NASA Astrophysics Data System (ADS)

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  18. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, Steven J.

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  19. Planetary radar astronomy

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1987-01-01

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  20. Radar system components to detect small and fast objects

    NASA Astrophysics Data System (ADS)

    Hülsmann, Axel; Zech, Christian; Klenner, Mathias; Tessmann, Axel; Leuther, Arnulf; Lopez-Diaz, Daniel; Schlechtweg, Michael; Ambacher, Oliver

    2015-05-01

    Small and fast objects, for example bullets of caliber 5 to 10 mm, fired from guns like AK-47, can cause serious problems to aircrafts in asymmetric warfare. Especially slow and big aircrafts, like heavy transport helicopters are an easy mark of small caliber hand fire weapons. These aircrafts produce so much noise, that the crew is not able to recognize an attack unless serious problems occur and important systems of the aircraft fail. This is just one of many scenarios, where the detection of fast and small objects is desirable. Another scenario is the collision of space debris particles with satellites.

  1. Phase correction system for automatic focusing of synthetic aperture radar

    DOEpatents

    Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.

    1990-01-01

    A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.

  2. In-Service Evaluation of the Turbulence Auto-PIREP System and Enhanced Turbulence Radar Technologies

    NASA Technical Reports Server (NTRS)

    Prince, Jason B.; Buck, Bill K.; Robinson, Paul A.; Ryan, Tim

    2007-01-01

    From August 2003 to December 2006, In-Service Evaluations (ISE) of the Turbulence Auto-PIREP System (TAPS) and Enhanced Turbulence (E-Turb) Radar, technologies developed in NASA's Turbulence Prediction and Warning System (TPAWS) element of its Aviation Safety and Security Program (AvSSP), were conducted. NASA and AeroTech Research established an industry team comprising AeroTech, Delta Air Lines, Rockwell Collins, and ARINC to conduct the ISEs. The technologies were installed on Delta aircraft and their effectiveness was evaluated in day-to-day operations. This report documents the establishment and conduct of the ISEs and presents results and feedback from various users.

  3. Dynamics of Satellites in Binary Near-Earth Asteroid Systems: A Study Based on Radar Observations

    NASA Astrophysics Data System (ADS)

    Naidu, Shantanu

    In the past 15 years, three previously unrecognized sub-populations of near-Earth asteroids (NEAs) have been discovered. About 15% of NEAs are binaries, at least 10% of NEAs are contact binaries, and dozens of asteroid pairs have been identified. Numerous science questions have arisen about the formation and evolution processes of these systems and about the inter-relationships between these groups. Addressing these questions informs us about a wide range of important solar system processes that shape small bodies and planetesimals. Here I have chosen to focus on providing one of the most complete characterizations of a binary system among all known asteroid binaries, and on studying the spin-orbit interactions in this and 8 additional binary systems. One hypothesis that has not been fully explored is the possibility of chaotic rotation of asteroid satellites and the impact that such a state has on the evolution of the binary systems. I examine this problem as well as the possibility of detecting librational motions in synchronous satellites. Because the Arecibo and Goldstone radar systems enable superb characterizations of binaries and NEAs in general, this dissertation makes abundant use of radar data. Radar observations provide images of asteroids at decameter resolution, and these images can be inverted to determine the 3D shapes of the components, which are essential to properly model the system dynamics. Radar data also enable precise determination of the mutual orbit, which is another crucial ingredient. In the first two chapters of the dissertation, I describe the observations and physical characterizations of asteroid 2000~ET70 and binary asteroid 2000 DP107. The characterization of 2000 DP107 includes size, shape, spin, mass, and density of each component, making this binary one of the best-characterized asteroid binary to date. In the last chapter of the dissertation, I describe a computationally efficient fourth-order numerical integrator that I used to investigate the coupled spin and orbital dynamics of the satellites of NEAs. The speed of the integrator enabled multi-year timescale simulations of 9 well-characterized binary near-Earth asteroids. The numerical simulations illuminate a range of rotational regimes for asteroid satellites and the conditions under which the various regimes prevail. One of the rotational regimes is chaotic, and I find that this rotation state can substantially delay the radiative evolution of binary systems.

  4. A digital system to produce imagery from SAR data. [Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1976-01-01

    This paper describes a digital processing algorithm and its associated system design for producing images from Synthetic Aperture Radar (SAR) data. The proposed system uses the Fast Fourier Transform (FFT) approach to perform the two-dimensional correlation process. The range migration problem, which is often a major obstacle to efficient processing, can be alleviated by approximating the locus of echoes from a point target by several linear segments. SAR data corresponding to each segment is correlated separately, and the results are coherently summed to produce full-resolution images. This processing approach exhibits greatly improved computation efficiency relative to conventional digital processing methods.

  5. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  6. Predictability of heavy sub-hourly precipitation amounts for a weather radar based nowcasting system

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Berenguer, Marc

    2015-04-01

    Heavy precipitation events and subsequent flash floods are one of the most dramatic hazards in many regions such as the Mediterranean basin as recently stressed in the HyMeX (HYdrological cycle in the Mediterranean EXperiment) international programme. The focus of this study is to assess the quality of very short range (below 3 hour lead times) precipitation forecasts based on weather radar nowcasting system. Specific nowcasting amounts of 10 and 30 minutes generated with a nowcasting technique (Berenguer et al 2005, 2011) are compared against raingauge observations and also weather radar precipitation estimates observed over Catalonia (NE Spain) using data from the Meteorological Service of Catalonia and the Water Catalan Agency. Results allow to discuss the feasibility of issuing warnings for different precipitation amounts and lead times for a number of case studies, including very intense convective events with 30minute precipitation amounts exceeding 40 mm (Bech et al 2005, 2011). As indicated by a number of verification scores single based radar precipitation nowcasts decrease their skill quickly with increasing lead times and rainfall thresholds. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa0nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radar based nowcasting technique. Journal of Hydrometeorology 6: 532-549 http://dx.doi.org/10.1175/JHM433.1 Berenguer M, D Sempere, G Pegram, 2011: SBMcast - An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. Journal of Hydrology 404: 226-240 http://dx.doi.org/10.1016/j.jhydrol.2011.04.033

  7. Along-track interferometry for simultaneous SAR and GMTI: application to Gotcha challenge data

    NASA Astrophysics Data System (ADS)

    Deming, Ross W.

    2011-06-01

    This paper describes several alternative techniques for detecting and localizing slowly-moving targets in cultural clutter using synthetic aperture radar (SAR) data. Here, single-pass data is jointly processed from two or more receive channels which are spatially offset in the along-track direction. We concentrate on two clutter cancelation methods known as the displaced phase center antenna (DPCA) technique and along-track SAR interferometry (AT-InSAR). Unlike the commonly-used space-time adaptive processing (STAP) techniques, both DPCA and AT-InSAR tend to perform well in the presence of non-homogeneous urban or mountainous clutter. We show, mathematically, the striking similarities between DPCA and AT-InSAR. Furthermore, we demonstrate using experimental SAR data that these two techniques yield complementary information, which can be combined into a "hybrid" technique that incorporates the advantages of each for significantly better performance. Results are generated using the Gotcha challenge data, acquired using a three-channel X-band spotlight SAR system.

  8. Buried threat detection using a handheld ground penetrating radar system

    NASA Astrophysics Data System (ADS)

    Knox, Mary; Torrione, Peter; Collins, Leslie; Morton, Kenneth

    2015-05-01

    In this work, we explore the efficacy of two buried threat detectors on handheld data. The first algorithm is an energy-based algorithm, which computes how anomalous a given A-scan measurement after it is normalized according to its local statistics. It is based on a commonly used prescreener for the Husky Mounted Detection System (HMDS). In the HMDS setting measurements are sampled on a crosstrack-downtrack grid, and sequential measurements are at neighboring downtrack locations. In contrast, in the handheld setting sequential scans are often taken at neighboring crosstrack locations, and neighboring downtrack locations can be hundreds of scans away. In order to include both downtrack and crosstrack information, we compute local statistics over a much larger area than in the HMDS setting. The second algorithm is a shape-based algorithm. Shape Invariant Feature Transform (SIFT) features, which capture the gradient distributions of local patches, are extracted and used to train a non-linear Support Vector Machine (SVM). We found that in terms of AUC, the SIFT-SVM algorithm results in a 2.2% absolute improvement over the energy-based algorithm, with the greatest gains seen at lower false alarm rates.

  9. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  10. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  11. Bistatic-radar investigation

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.

    1972-01-01

    A bistatic-radar study during the Apollo 15 flight is reviewed, with the orbiting command module as one terminal. Bistatic-radar slopes are compared to geological maps of Copernicus and Riphaeus mountain regions and Kepler region. Basic theory is discussed, including the radar echoes composed of the sum of the reflections from the moon area that is mutually visible from the spacecraft and earth. A signal receiving system and data processing system are outlined schematically.

  12. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  13. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  14. Clutter suppression interferometry system design and processing

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2015-05-01

    Clutter suppression interferometry (CSI) has received extensive attention due to its multi-modal capability to detect slow-moving targets, and concurrently form high-resolution synthetic aperture radar (SAR) images from the same data. The ability to continuously augment SAR images with geo-located ground moving target indicators (GMTI) provides valuable real-time situational awareness that is important for many applications. CSI can be accomplished with minimal hardware and processing resources. This makes CSI a natural candidate for applications where size, weight and power (SWaP) are constrained, such as unmanned aerial vehicles (UAVs) and small satellites. This paper will discuss the theory for optimal CSI system configuration focusing on sparse time-varying transmit and receive array manifold due to SWaP considerations. The underlying signal model will be presented and discussed as well as the potential benefits that a sparse time-varying transmit receive manifold provides. The high-level processing objectives will be detailed and examined on simulated data. Then actual SAR data collected with the Space Dynamic Laboratory (SDL) FlexSAR radar system will be analyzed. The simulated data contrasted with actual SAR data helps illustrate the challenges and limitations found in practice vs. theory. A new novel approach incorporating sparse signal processing is discussed that has the potential to reduce false- alarm rates and improve detections.

  15. Plastic mine detecting radar system using complex-valued self-organizing map that deals with multiple-frequency interferometric images.

    PubMed

    Hara, Takahiro; Hirose, Akira

    2004-01-01

    Ground penetrating radars (GPR's) have been often applied to underground object imaging. However, conventional radar systems do not work sufficiently to detect anti-personnel plastic landmines. We propose a novel radar imaging system, which processes adaptively interferometric front-end data obtained at multiple-frequency points. The system deals with interferometric images using complex-valued self-organizing map (C-SOM). We demonstrate a successful visualization of a plastic mine buried near the ground surface. PMID:15555861

  16. Ultra Wideband Radar Mapping of Near Surface Internal Layers: Systems, Results and Analysis

    NASA Astrophysics Data System (ADS)

    Gogineni, S.; Kanagaratnam, P.; Parthasarathy, R.; Akins, T. L.; Braaten, D.; Jezek, K. C.

    2004-12-01

    We developed two radar systems for mapping near-surface internal layers. We developed one of these systems to operate over the frequency range 500 to 2000 MHz for surface-based measurements, and the other to operate over the frequency range from 600 to 900 MHz for airborne measurements. Both systems are designed to operate in frequency modulated continuous wave (FM-CW) mode with less than 200 mW of transmit power. We have used the airborne system to collect data over flight lines flown by a NASA P-3 aircraft as a part of NASA's Program for Arctic Regional Climate Assessment (PARCA) initiative during the 2002 and 2003 field seasons. These data show that we can map layers to a depth of about of 150 m in the dry snow zone, 50 m in the percolation zone, and 20 m in the melt zone. During the 2002 field season, one of the flight lines passed over the NASA-U_1 ice core site with coordinates of 73.84° N and 49.49° W. The ice core was analyzed to determine density at a mean sampling interval of 1.04 m and a variance of 0.05 m. Using these density data, we generated the dielectric profile, which was input into the radar waveform simulator to generate the radar return as a function of depth at the core site. We compared the simulated waveform with the measured data to identify and date a few layers. We tracked the dated layers over a distance of several kilometers to compute spatial and temporal variations in the accumulation rate. During the 2004 field season, we used the surface-based system to collect data over a 10 km x 10 km area at the Summit Camp in Greenland, in conjunction with several in-situ measurements of snow density and layering. The results from the surface-based experiment show that we can map annual layers to a depth of about 200 m and with about 10 cm resolution. We will provide an overview of the radars developed for mapping of near-surface layers and the waveform simulator. We will show results from airborne and surface-based experiments and compare theoretical and experimental data.

  17. Search and target acquisition radar for short range air defence systems: A new threat environment - A new solution

    NASA Astrophysics Data System (ADS)

    Winnberg, J. O.

    A new radar sensor designed to meet the demands of the future threat environment of air defense systems and to serve as search and target acquisition radar in short range air defense systems is presented. The design makes use of several technology advances, such as planar array phase controlled antenna, solid state transmitters, frequency agility combined with Doppler processing, and a multimode software-controlled signal processing. The development of the threat environment is briefly considered, and the consequential requirements for the air defense system are investigated. The general principles and design of the radar are addressed, and the data and performance of the system, as calculated and as verified with a prototype system, are presented.

  18. Digital Terrestrial Video Broadcast Interference Suppression in Forward-Looking Ground Penetrating Radar Systems

    NASA Astrophysics Data System (ADS)

    Rial, F. I.; Mendez-Rial, Roi; Lawadka, Lukasz; Gonzalez-Huici, Maria A.

    2014-11-01

    In this paper we show how radio frequency interference (RFI) generated by digital video broadcasting terrestrial and digital audio broadcasting transmitters can be an important noise source for forward-looking ground penetrating radar (FLGPR) systems. Even in remote locations the average interference power sometimes exceeds ultra-wideband signals by many dB, becoming the limiting factor in the system sensitivity. The overall problem of RFI and its impact in GPR systems is briefly described and several signal processing approaches to removal of RFI are discussed. These include spectral estimation and coherent subtraction algorithms and various filter approaches which have been developed and applied by the research community in similar contexts. We evaluate the performance of these methods by simulating two different scenarios submitted to real RFI acquired with a FLGPR system developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), (GER). The effectiveness of these algorithms in removing RFI is presented using some performance indices after suppression.

  19. Performance evaluation of a Doppler radar system for wind shear detection

    NASA Technical Reports Server (NTRS)

    Khalaf, Camille S.; Hibey, Joseph L.; Staton, Leo D.

    1990-01-01

    Nonlinear stochastic differential equations are used to model wind shear, and extended Kalman filters are used to generate state estimates from measurements received from a Doppler radar onboard an aircraft. Likelihood-ratio tests are then used to detect the presence of wind shear. The performance of the system is evaluated by deriving theoretical expressions for the false alarm and miss error probabiilties. The approach uses a Fokker-Planck equation. The overall methodology is general and should be of interest in other applications.

  20. The expert system of scheduling operational modes of phased array radar

    NASA Astrophysics Data System (ADS)

    Lee, Xiaoyang; Cai, Qingyu

    In order to resolve the problems caused by traditional methods of scheduling the operational modes of phased-array radar (SOMPAR), an expert system (ES) has been designed and realized. A forward inference engine and a knowledge base with various types of knowledge representation, including the fuzzy set knowledge representation method, have been constructed. This SOMPARE ES was run on the COMPAQ 386/20, and a simulation was developed. The simulation results showed that the SOMPAR ES can obtain a scheduling conclusion on the expert level. The program is assembled with C Programming Language and is very convenient to transplant.

  1. Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations

    NASA Technical Reports Server (NTRS)

    Hess, G. C.; Geller, M. A.

    1976-01-01

    The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented.

  2. Semianalytic pulsed coherent laser radar equation for coaxial and apertured systems using nearest Gaussian approximation.

    PubMed

    Kameyama, Shumpei; Ando, Toshiyuki; Asaka, Kimio; Hirano, Yoshihito

    2010-09-20

    We present a semianalytic pulsed coherent laser radar (CLR) equation for coaxial and apertured systems. It combines the conventional CLR equation, numerical Fresnel integration (NFI), and nearest Gaussian approximation, using correction factors that correspond to beam truncation. The range dependence of the signal-to-noise ratio obtained by this semianalytic equation was found to agree well with the precise NFI solution for not only the focal range, but also the near-field range. Furthermore, the optimum beam truncation condition depending on the atmospheric refractive index structure constant is shown. The derived equation is useful for precisely predicting the CLR performance simply by its semianalytic expression. PMID:20856293

  3. Four-channel readout integrated circuit for imaging laser radar systems

    NASA Astrophysics Data System (ADS)

    Yeow, Terence C.; Craig, Brian I.; Watson, Rodney J.

    1999-09-01

    Imaging laser radar systems that employ photodetector focal plane arrays with corresponding readout circuitry benefit from faster processing times and a reduction in weight due to their ability to be made into more compact units. This paper evaluates the concept of a 2D array of photodetectors and readout circuitry by performing a simple experiment on a custom-made four channel readout integrated circuit chip designed by the authors, with a single detector. Results from this initial experiment shows that though there are some problems, the concept is viable for a larger array of photodetectors.

  4. Collaborative Observations of Near-Earth Asteroids with the Goldstone and Arecibo Radar Systems

    NASA Astrophysics Data System (ADS)

    Taylor, P. A.

    2014-12-01

    The Goldstone (70-m diameter, 8560 MHz/X band) and Arecibo (305-m diameter, 2380 MHz/S band) solar system radars have long worked independently, yet in tandem, to observe near-Earth asteroids as they make close flybys of Earth. The complementary nature of each site's strengths, Goldstone's maneuverability (and, recently, higher spatial resolution) and Arecibo's higher nominal output power and unmatched collecting area, allow for better constraints on sizes, shapes, spin states, and surface properties of near-Earth asteroids than either system can provide on its own. Here, we will discuss a handful of objects observed with both facilities, including binary asteroids (285263) 1998 QE2 and (153958) 2002 AM31 and contact-binary asteroid (192642) 1999 RD32, and describe how the complementary nature of the Goldstone and Arecibo radars has enhanced our knowledge of these small bodies. The importance of collaboration between Goldstone and Arecibo will only increase in the future as we look to expand the use of high-resolution bistatic observations of near-Earth asteroids, where both sites simultaneously observe a target. Observations this past June during the close flyby of 2014 HQ124 (Benner et al., this meeting) demonstrated reception at Arecibo of a 40-MHz bandwidth (3.75-m resolution), X-band transmission from Goldstone. Future capabilities of the Deep Space Network (Busch et al., this meeting), such as the 80-MHz (1.875-m resolution) radar on the Goldstone 34-m dish, will benefit greatly from the sensitivity of Arecibo's large aperture.

  5. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  6. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  7. Radar cross section statistics of ground vehicles at Ku-band

    NASA Astrophysics Data System (ADS)

    Raynal, Ann Marie; Bickel, Douglas L.; Denton, Michael M.; Bow, Wallace J.; Doerry, Armin W.

    2011-06-01

    Knowing the statistical characteristics of a target's radar cross-section (RCS) is crucial to the success of radar target detection algorithms. Open literature studies regarding the statistical nature of the RCS of ground vehicles focus primarily on simulations, scale model chamber measurements, or limited experimental data analysis of specific vehicles at certain frequencies. This paper seeks to expand the existing body of work on ground vehicle RCS statistics at Ku-band for ground moving target indication (GMTI) applications. We examine the RCS probability distributions of civilian and military vehicles, across aspect and elevation angle, for HH and VV polarizations, and at diverse resolutions, using experimental data collected at Ku-band. We further fit Swerling target models to the distributions and suggest appropriate detection thresholds for ground vehicles in this band.

  8. HERMES: a high-speed radar imaging system for inspection of bridge decks

    SciTech Connect

    Azevedo, S.G.

    1996-10-26

    Corrosion of rebar in concrete bridges causes subsurface cracks and is a major cause of structural degradation that necessitates repair or replacement. Early detection of corrosion effects can limit the location and extent of necessary repairs, while providing long-term information about the infrastructure status. Most current detection methods, however, are destructive of the road surface and require closing or restricting traffic while the tests are performed. A ground-penetrating radar imaging system has been designed and developed that will perform the nondestructive evaluation of road-bed cracking at traffic speeds; i.e., without the need to restrict traffic flow. The first-generation system (called the HERMES bridge inspector), consists of an offset-linear array of 64 impulse radar transceivers and associated electronics housed in a trailer. Computers in the trailer and in the towing vehicle control the data acquisition, processing, and display. Cross-road resolution is three centimeters at up to 30 cm in depth, while down-road resolution depends on speed; 3 cm below 20 mph up to 8 cm at 50 mph. A two-meter- wide path is inspected on each pass over the roadway. This paper, describes the design of this system, shows preliminary results, and lays out its deployment schedule.

  9. Real - Time Orbit Determination of Low Earth Orbit Satellites Using Radar System and SGP4 Model

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Kwang; Lee, Sung-Seub; Yoon, Jae-Cheol; Choi, Kyu-Hong

    2003-03-01

    In case that we independently obtain orbital informations about the low earth satellites of foreign countries using radar systems, we develop the orbit determination algorithm for this purpose using a SGP4 model with an analytical orbit model and the extended Kalman filter with a real-time processing method. When the state vector is Keplerian orbital elements, singularity problems happen to compute partial derivative with respect to inclination and eccentricity orbit elements. To cope with this problem, we set state vector osculating to mean equinox and true equator cartesian elements with coordinate transformation. The state transition matrix and the covariance matrix are numerically computed using a SGP4 model. Observational measurements are the type of azimuth, elevation and range, filter process to each measurement in a lump. After analyzing performance of the developed orbit determination algorithm using TOPEX/POSEIDON POE(Precision Orbit Ephemeris), its position error has about 1 km. To be similar to performance of NORAD system that has up to 3km position accuracy during 7 days need to radar system performance that have accuracy within 0.1 degree for azimuth and elevation and 50m for range.

  10. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  11. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    PubMed Central

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; Zito, Fabio; De Rossi, Danilo; Lanatà, Antonio

    2008-01-01

    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported. PMID:18389068

  12. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  13. On the combined use of radar systems for multi-scale imaging of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Catapano, I.; Bavusi, M.; Loperte, A.; Crocco, L.; Soldovieri, F.

    2012-04-01

    Ground Penetrating Radar (GPR) systems are worth to be considered as in situ non invasive diagnostic tools capable of assessing stability and integrity of transport infrastructures. As a matter of fact, by exploiting the interactions among probing electromagnetic waves and hidden objects, they provide images of the inner status of the spatial region under test from which infer risk factors, such as deformations and oxidization of the reinforcement bars as well as water infiltrations, crack and air gaps. With respect to the assessment of concrete infrastructures integrity, the reconstruction capabilities of GPR systems have been widely investigated [1,2]. However, the demand for diagnostic tools capable of providing detailed and real time information motivates the design and the performance evaluation of novel technologies and data processing methodologies aimed not only to effectively detect hidden anomalies but also to estimate their geometrical features. In this framework, this communication aims at investigating the advantages offered by the joint use of two GPR systems both of them equipped with a specific tomographic imaging approach. The first considered system is a time domain GPR equipped with a 1.5GHz shielded antenna, which is suitable for quick and good resolution surveys of the shallower layers of the structure. As second system, the holographic radar Rascan-4/4000 [3,4] is taken into account, due to its capability of providing holograms of hidden targets from the amplitude of the interference signal arising between the backscattered field and a reference signal. The imaging capabilities of both the GPR tools are enhanced by means of model based data processing approaches, which afford the imaging as a linear inverse scattering problem. Mathematical details on the inversion strategies will be provided at the conference. The combined use of the above GPR systems allows to perform multi-resolution surveys of the region under test, whose aim is, first of all, to detect hidden anomalies and then to provide a high resolution image of their geometrical features. Therefore, reliable and efficient diagnostic surveys devoted to state the healthy state of a structure can be scheduled. Numerical examples and on field validations assessing the achievable reconstruction capabilities will be provided at the conference. [1] D. J. Daniels, Ground Penetrating Radar, in IEE Radar, Sonar and Navigation Series 15, London, U.K.: IEE, 2004. [2] M. Proto, M. Bavusi, R. Bernini et al., Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project, Sensors, vol.10, n.12, pp.10620-10639, 2010. [3] S. Ivashov, I. A. Vasiliev, T. D. Bechtel, C. Snapp, Comparison between impulse and holographic subsurface radar for NDT of space vehicle structural materials, Progress In Electromagnetic Research, vol.3, pp.658-661, 2004. [4] I. Catapano. L. Crocco, A. F. Morabito, F. Soldovieri, Tomographic imaging of holographic GPR data for non-invasive structural assessment: the Musmeci Bridge investigation, submitted to Nondestructive Testing and Evaluation Acknowledgement The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no 225663.

  14. Trilateration-based localization algorithm for ADS-B radar systems

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Shih

    Rapidly increasing growth and demand in various unmanned aerial vehicles (UAV) have pushed governmental regulation development and numerous technology research advances toward integrating unmanned and manned aircraft into the same civil airspace. Safety of other airspace users is the primary concern; thus, with the introduction of UAV into the National Airspace System (NAS), a key issue to overcome is the risk of a collision with manned aircraft. The challenge of UAV integration is global. As automatic dependent surveillance-broadcast (ADS-B) system has gained wide acceptance, additional exploitations of the radioed satellite-based information are topics of current interest. One such opportunity includes the augmentation of the communication ADS-B signal with a random bi-phase modulation for concurrent use as a radar signal for detecting other aircraft in the vicinity. This dissertation provides detailed discussion about the ADS-B radar system, as well as the formulation and analysis of a suitable non-cooperative multi-target tracking method for the ADS-B radar system using radar ranging techniques and particle filter algorithms. In order to deal with specific challenges faced by the ADS-B radar system, several estimation algorithms are studied. Trilateration-based localization algorithms are proposed due to their easy implementation and their ability to work with coherent signal sources. The centroid of three most closely spaced intersections of constant-range loci is conventionally used as trilateration estimate without rigorous justification. In this dissertation, we address the quality of trilateration intersections through range scaling factors. A number of well-known triangle centers, including centroid, incenter, Lemoine point (LP), and Fermat point (FP), are discussed in detail. To the author's best knowledge, LP was never associated with trilateration techniques. According our study, LP is proposed as the best trilateration estimator thanks to the desirable property that the total distance to three triangle edges is minimized. It is demonstrated through simulation that LP outperforms centroid localization without additional computational load. In addition, severe trilateration scenarios such as two-intersection cases are considered in this dissertation, and enhanced trilateration algorithms are proposed. Particle filter (PF) is also discussed in this dissertation, and a simplified resampling mechanism is proposed. In addition, the low-update-rate measurement due to the ADS-B system specification is addressed in order to provide acceptable estimation results. Supplementary particle filter (SPF) is proposed to takes advantage of the waiting time before the next measurement is available and improves the estimation convergence rate and estimation accuracy. While PF suffers from sample impoverishment, especially when the number of particles is not sufficiently large, SPF allows the particles to redistribute to high likelihood areas over iterations using the same measurement information, thereby improving the estimation performance.

  15. RF systems in space. Volume 2: Space-based radar analyses

    NASA Astrophysics Data System (ADS)

    Mrstik, A. V.; Beste, D.; Bartek, R. J.; Pazick, P. M.

    1983-04-01

    The main objective of this effort was to develop a computer based analytical capability for simulating the RF performance of large space-based radar (SBR) systems. The model is capable of simulating corporate and space fed aperture. The model also can simulate multibeam feeds, cluster/point feeds, corporate feed and various aperture distributions. The simulation is capable of accepting Draper Labs structural data and antenna current data from Atlantic Research Corporation's (ARC) First Approximation Methods (FAM) and Higher Approximation Methods (HAM) models. In addition there is a routine to input various apertures surface distortions which causes the elements in the arrays to be displaced from the ideal location on a planar lattice. There were analyses looking at calibration/compensation techniques for large aperture space radars. Passive, space fed lens SBR designs were investigated. The survivability of an SBR system was analyzed. The design of ground based SBR validation experiments for large aperture SBR concepts were investigated. SBR designs were investigated for ground target detection.

  16. Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Su, Yi

    2010-05-01

    This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method. PMID:20040416

  17. REVS: a radar-based enhanced vision system for degraded visual environments

    NASA Astrophysics Data System (ADS)

    Brailovsky, Alexander; Bode, Justin; Cariani, Pete; Cross, Jack; Gleason, Josh; Khodos, Victor; Macias, Gary; Merrill, Rahn; Randall, Chuck; Rudy, Dean

    2014-06-01

    Sierra Nevada Corporation (SNC) has developed an enhanced vision system utilizing fast-scanning 94 GHz radar technology to provide three-dimensional measurements of an aircraft's forward external scene topography. This threedimensional data is rendered as terrain imagery, from the pilot's perspective, on a Head-Up Display (HUD). The image provides the requisite "enhanced vision" to continue a safe approach along the flight path below the Decision Height (DH) in Instrument Meteorological Conditions (IMC) that would otherwise be cause for a missed approach. Terrain imagery is optionally fused with digital elevation model (DEM) data of terrain outside the radar field of view, giving the pilot additional situational awareness. Flight tests conducted in 2013 show that REVS™ has sufficient resolution and sensitivity performance to allow identification of requisite visual references well above decision height in dense fog. This paper provides an overview of the Enhanced Flight Vision System (EFVS) concept, of the technology underlying REVS, and a detailed discussion of the flight test results.

  18. A MATLAB-based planar array design assistant package with applications to meteor radar systems

    NASA Astrophysics Data System (ADS)

    Kang, C.; Palo, S.

    Interferometric techniques are commonly used in all-sky meteor radar systems for meteor location determination Essentially interferometric techniques use the phase information recorded from different receiving antennas to estimate the elevation and azimuth of the meteors Prior efforts have been made to determine an antenna geometry that improves the performance of meteor radar systems For example Hocking and Thayaparan 1997 used four antennas typically spaced by 1 5 to 3 wavelengths to locate the meteors Jones 1992 and Hocking 1997 presented an antenna geometry using a 5 element array with minimum antenna spacing of 2 wavelengths to estimate the direction of arrival DOA of the meteors By spacing the antennas more than 2 wavelength apart these array geometries were successful in reducing the electromagnetic coupling effect between the antennas which can introduce errors in the estimation of meteor locations Without a clear metric for performance it is difficult to compare geometries In this work a MATLAB planar antenna array package mainly designed for visualization of the direction of arrival DOA estimation performance of arbitrary user designed antenna array is presented Performance comparisons of nominal array geometries are also provided Several metrics are available in this package in an effort to provide the user with a comprehensive examination of an array s performance The metrics are the Cramer-Rao bound CRB which is the minimum variance that can be obtained for any unbiased estimator the co-array the

  19. Radar systems for the water resources mission. Volume 4: Appendices E-I

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.

  20. Shuttle synthetic aperture radar implementation study, volume 1. [flight instrument and ground data processor system for collecting raw imaged radar data

    NASA Technical Reports Server (NTRS)

    Mehlis, J. G.

    1976-01-01

    Results of an implementation study for a synthetic aperture radar for the space shuttle orbiter are described. The overall effort was directed toward the determination of the feasibility and usefulness of a multifrequency, multipolarization imaging radar for the shuttle orbiter. The radar is intended for earth resource monitoring as well as oceanographic and marine studies.

  1. A System Concept for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    1998-01-01

    Atmospheric latent heating field is fundamental to all modes of atmospheric circulation and upper mixed layer circulations of the ocean. The key to understanding the atmospheric heating process is understanding how and where precipitation occurs. The principal atmospheric processes which link precipitation to atmospheric circulation include: (1) convective mass fluxes in the form of updrafts and downdrafts; (2) microphysical. nucleation and growth of hydrometeors; and (3) latent heating through dynamical controls on the gravitation-driven vertical mass flux of precipitation. It is well-known that surface and near-surface rainfall are two of the key forcing functions on a number of geophysical parameters at the surface-air interface. Over ocean, rainfall variation contributes to the redistribution of water salinity, sea surface temperature, fresh water supply, and marine biology and eco-system. Over land, rainfall plays a significant role in rainforest ecology and chemistry, land hydrology and surface runoff. Precipitation has also been closely linked to a number of atmospheric anomalies and natural hazards that occur at various time scales, including hurricanes, cyclones, tropical depressions, flash floods, droughts, and most noticeable of all, the El Ninos. From this point of view, the significance of global atmospheric precipitation has gone far beyond the science arena - it has a far-reaching impact on human's socio-economic well-being and sustenance. These and many other science applications require the knowledge of, in a global basis, the vertical rain structures, including vertical motion, rain intensity, differentiation of the precipitating hydrometeors' phase state, and the classification of mesoscale physical structure of the rain systems. The only direct means to obtain such information is the use of a spaceborne profiling radar. It is important to mention that the Tropical Rainfall Measuring Mission (TRMM) have made a great stride forward towards this ultimate goal. The Precipitation Radar (PR) aboard the TRMM satellite is the first ever spaceborne radar dedicated to three-dimensional, global precipitation measurements over the tropics and the subtropics, as well as the detailed synopsis of a wide range of tropical rain storm systems. In only twelve months since launch, the PR, together with other science instruments abroad the satellite have already provided unprecedented insights into the rainfall systems. It is anticipated the a lot more exciting and important rain observations would be made by TRMM throughout its mission duration. While TRMM has provided invaluable data to the user community, it is only the first step towards advancing our knowledge on rain processes and its contributions to climate variability. It is envisioned that a TRMM follow-on mission is needed in such a way to capitalize on the pioneering information provided by TRMM, and its instrument capability must be extended beyond TRMM in such a way to fully address the key science questions from microphysical to climatic time scale. In fact, a number of new and innovative mission concepts have recently put forth for this purpose. Almost all of these new concepts have suggested the utility of a more advanced, high-resolution, Doppler-enabled, vertical profiling radar that can provide multi-parameter observations of precipitation. In this paper, a system concept for a second- gene ration precipitation radar (PR-2) which addresses the above requirements will be described.

  2. Interseismic deformation of the Shahroud fault system (NE Iran) from space-borne radar interferometry measurements

    NASA Astrophysics Data System (ADS)

    Mousavi, Z.; Pathier, E.; Walker, R. T.; Walpersdorf, A.; Tavakoli, F.; Nankali, H.; Sedighi, M.; Doin, M.-P.

    2015-07-01

    The Shahroud fault system is a major active structure in the Alborz range of NE Iran whose slip rate is not well constrained despite its potential high seismic hazard. In order to constrain the slip rate of the eastern Shahroud fault zone, we use space-borne synthetic aperture radar interferometry with both ascending and descending Envisat data to determine the rate of interseismic strain accumulation across the system. We invert the slip rate from surface velocity measurements using a half-space elastic dislocation model. The modeling results are consistent with a left-lateral slip rate of 4.75 ± 0.8 mm/yr on the Abr and Jajarm, strands of the Shahroud fault, with a 10 ± 4 km locking depth. This is in good agreement with the 4-6 mm/yr of left-lateral displacement rate accumulated across the total Shahroud fault system obtained from GPS measurements.

  3. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  4. Mean winds of the upper middle atmosphere (60-110 km): A global distribution from radar systems (M.F., METEOR, VHF)

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.; Massebeuf, M.; Fellous, J. L.; Elford, W. G.; Vincent, R. A.; Craig, R. L.; Roper, R. G.; Avery, S.; Balsley, B. B.

    1985-01-01

    Since the development of the last CIRA in 1972, the number of radars providing winds in the upper middle atmosphere has increased significantly. These systems fill the data gap between 60 km and 110 km. The radars include medium frequency (MF) radars or partial reflection systems giving data from 60/70 to 100/110 km; meteor radars, 80 to 110 km, and M.S.T. radars operating as meteor radars. Data from 12 locations are shown, which represent a good Northern Hemispheric (NH) North American chain, an Oceanian chain which is mainly in the Southern Hemisphere (SH), and some Western Europe data. Generally tidal oscillations have been removed from days or groups of days, and the remaining mean winds and longer period oscillations plotted as height-time contours. Composite cross sections from the years 1978 to 1982 were formed where possible so that only the major temporal features remain.

  5. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  6. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  7. Multi-frequency synthetic-aperture imaging with a lightweight ground penetrating radar system

    NASA Astrophysics Data System (ADS)

    Koppenjan, Steven K.; Allen, Curt M.; Gardner, Duane; Wong, Howard R.; Lee, Hua; Lockwood, Stephanie J.

    2000-03-01

    The detection of buried objects, particularly hazardous waste containers and unexploded ordnance (UXO), has gained significant interest in the Unites States in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing concern and the application of radar to this problem has received renewed attention. The US Department of Energy's Special Technologies Laboratory (STL), operated by Bechtel Nevada, has developed several frequency-modulated, continuous-wave (FM-CW) ground penetrating radar (GPR) units. To meet technical requirements for higher-resolution data, STL and the University of California, Santa Barbara (UCSB) is investigating advanced GPR hardware, signal processing, and synthetic-aperture imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery-operated unit that does not require surface contact, can be operated by a novice user, and can achieve improved resolution. The latter is accomplished by using synthetic-aperture imaging, which forms the subsurface images by fully utilizing the data sequences collectively along a scan path. We also present the backward propagation algorithm as the basic structure of the multiple-frequency tomographic imaging technique, and the conventional fast Fourier transform (FFT) method which can be described as a degenerated case of the model where the computation procedure is approximated under the narrow-beam assumption.

  8. Design considerations for high-power VHF radar transceivers: The Poker Flat MST radar phase control system

    NASA Astrophysics Data System (ADS)

    Ecklund, W. L.; Johnson, P. E.

    1983-12-01

    Sixty-four separate 50-kW peak-power transmitters are distributed throughout the 200 x 200 meter Poker Flat MST radar antenna array. The relative phase of each transmitter is automatically controlled by a 64-channel unit located in the main building at the edge of the antenna. The phase control unit is described. In operation the RF pulse from a transmitter coupler is power divided and compared with the phase reference in a mixer. The mixer output is low-pass filtered and sampled near the center of the resulting video pulse by an amplifying sample-and-hold integrated circuit. Phase control is effected by maintaining the mixer output pulse near zero volts by amplifying the sample-and-hold output which then drives the voltage-controlled phase shifter in the direction to null the mixer output. The voltage-controlled shifter achieves over 360 deg phase shift in the range from 0.7 to 24 volts. When the voltage into the shifter tracks to either voltage limit the wrap-around control resets the voltage so that the shifter is always operating within its control range.

  9. Design considerations for high-power VHF radar transceivers: The Poker Flat MST radar phase control system

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Johnson, P. E.

    1983-01-01

    Sixty-four separate 50-kW peak-power transmitters are distributed throughout the 200 x 200 meter Poker Flat MST radar antenna array. The relative phase of each transmitter is automatically controlled by a 64-channel unit located in the main building at the edge of the antenna. The phase control unit is described. In operation the RF pulse from a transmitter coupler is power divided and compared with the phase reference in a mixer. The mixer output is low-pass filtered and sampled near the center of the resulting video pulse by an amplifying sample-and-hold integrated circuit. Phase control is effected by maintaining the mixer output pulse near zero volts by amplifying the sample-and-hold output which then drives the voltage-controlled phase shifter in the direction to null the mixer output. The voltage-controlled shifter achieves over 360 deg phase shift in the range from 0.7 to 24 volts. When the voltage into the shifter tracks to either voltage limit the wrap-around control resets the voltage so that the shifter is always operating within its control range.

  10. Characterization of Adolescent Prescription Drug Abuse and Misuse Using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R]) System

    ERIC Educational Resources Information Center

    Zosel, Amy; Bartelson, Becki Bucher; Bailey, Elise; Lowenstein, Steven; Dart, Rick

    2013-01-01

    Objective: To describe the characteristics and health effects of adolescent (age 13-19 years) prescription drug abuse and misuse using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R])) System. Method: Secondary analysis of data collected from RADARS System participating poison centers was performed. Data for all

  11. Characterization of Adolescent Prescription Drug Abuse and Misuse Using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R]) System

    ERIC Educational Resources Information Center

    Zosel, Amy; Bartelson, Becki Bucher; Bailey, Elise; Lowenstein, Steven; Dart, Rick

    2013-01-01

    Objective: To describe the characteristics and health effects of adolescent (age 13-19 years) prescription drug abuse and misuse using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R])) System. Method: Secondary analysis of data collected from RADARS System participating poison centers was performed. Data for all…

  12. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  13. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  14. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  15. Binary selectable detector holdoff circuit: Design, testing, and application. [to laser radar data acquisition system

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1973-01-01

    A very high speed switching circuit, part of a laser radar data acquisition system, has been designed and tested. The primary function of this circuit was to provide computer controlled switching of photodiode detector preamplifier power supply voltages, typically less than plus or minus 20 volts, in approximately 10 nanoseconds. Thus, in actual use, detector and/or detector preamplifier damage can be avoided as a result of sudden extremely large values of backscattered radiation being detected, such as might be due to short range, very thin atmospheric dust layers. Switching of the power supply voltages was chosen over direct switching the photodiode detector input to the preamplifier, based on system noise considerations. Also, the circuit provides a synchronized trigger pulse output for triggering devices such as the Biomation Model 8100 100 MHz analog to digital converter.

  16. Design of hybrid optical delay line for automotive radar test system

    NASA Astrophysics Data System (ADS)

    Son, Byung-Hee; Kim, Kwang-Jin; Li, Ye; Park, Chang-In; Choi, Young-Wan

    2015-03-01

    In this paper, hybrid optical delay line (HODL) which is demanded on automotive radar test system (RTS) is proposed and demonstrated. HODL is composed with coaxial cable in short delay time (< 32 nsec) and optical fiber in long delay time (>= 32 nsec) which are considering the volume, loss and frequency characteristics. Also, the optical transceiver that has the bandwidth of 1 GHz is designed for frequency modulated continuous wave (FMCW). Experimental results show that the S21 is +/- 0.5 dB in the optical transceiver and +/- 1.7 dB in the whole system at 3.7 GHz ~ 4.7 GHz. The resolution of delay time is 1 ns and the delay flatness is +/- 0.23 ns.

  17. Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere.

    PubMed

    Cai, Yangjian; Korotkova, Olga; Eyyuboğlu, Halil T; Baykal, Yahya

    2008-09-29

    Propagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM) beam. We applied our analysis for the ABCD system with a single lens located on the propagation path, representing, in a particular case, the unfolded double-pass propagation scenario of active laser radar. Through a number of numerical examples we investigated the effect of local turbulence strength and lens' parameters on spectral, coherence and polarization properties of the EGSM beam. PMID:18825220

  18. Continental United States Over-The-Horizon-Backscatter (OTH-B) radar system, supplement

    NASA Astrophysics Data System (ADS)

    1981-10-01

    This supplement amends the Final Environmental Impact Statement issued in January 1975. The action proposed in the 1975 EIS was to construct and operate an OTH-B radar System in Maine, initially covering a 60 degree sector, and later expanded to cover 180 degrees . The action proposed in this supplement is to locate the integrated operations, maintenance, and security facility at Bangor International Airport, a location not considered in the 1975 EIS. Alternatives are locating at Bucks Harbor the maintenance and security personnel who support the Washington County receiver site, but leaving the maintenance and security personnel for the operations center and the Somerset County transmitter site with the operations personnel at Bangor International Airport; and not deploying either the 60 degree or the 180 degree system.

  19. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  20. Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hirose, Masafumi; Nakamura, Kenji

    2005-03-01

    The spatial and diurnal variation of rainfall over Asia was investigated using the spaceborne radar data for four seasons during 1998-2003. The regional variation of the prevailing precipitation systems most closely associated with the maximum hourly rainfall was shown by examining the fine spatial distribution of rainfall amount and scale-based precipitation systems. Small precipitation systems (<102 km2) occurred most frequently around early afternoon over most land. The south facing slopes of the Himalayas, especially south of Mount Everest and the upper portion of the Brahmaputra valley, is the most obvious region of the daytime genesis of the convective systems over the Asian landmass. Over the Tibetan Plateau the occurrence of the small systems was larger than over inland India and the foothills. Large systems (>104 km2) developed mostly in the evening over nearly flat landmasses. Wide-spread systems with intense rain pixels developed over the foothills of the Himalayas in late night-early morning period, which was distinct from the daytime convection. Over ocean, in addition to the morning signature, spatially inhomogeneous and systematic characteristics were evident over the offshore region, for example, around the maritime continent. Large systems, which are strongly associated with terrain, have a great influence on the total number of rain pixels and the total amount of rainfall. For 86% of the region where large system is dominant the time of maximum rainfall is within 3 hours of the time of maximum rainfall for large systems.

  1. Laser radar improvements

    NASA Astrophysics Data System (ADS)

    Jelalian, A. V.

    1981-11-01

    A short history of the uses of various laser radars is presented, and appropriate applications of laser and microwave radars are discussed. CO2 laser radar, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave radar is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser radar pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.

  2. Road safety alerting system with radar and GPS cooperation in a VANET environment

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Sottile, Cesare; De Rango, Floriano; Voznak, Miroslav

    2014-05-01

    New applications in wireless environments are increasing and keeping even more interests from the developer companies and researchers. In particular, in these last few years the government and institutional organization for road safety spent a lot of resources and money to promote Vehicular Ad-Hoc Network (VANET) technology, also car manufactures are giving a lot of contributions on this field as well. In our paper, we propose an innovative system to increase road safety, matching the requests of the market allowing a cooperation between on-board devices. The vehicles are equipped with On Board Unit (OBU) and On Board Radar Unit (OBRU), which can spread alerting messages around the network regarding warning and dangerous situations exploiting IEEE802.llp standard. Vehicles move along roads observing the environment, traffic and road conditions, and vehicles parameters as well. These information can be elaborated and shared between neighbors, Road Side Unit (RSU)s and, of course, with Internet, allowing inter-system communications exploiting an Road Traffic Manager (RTM). Radar systems task it the detection of the environment in order to increase the knowledge of current conditions of the roads, for example it is important to identify obstacles, road accidents, dangerous situations and so on. Once detected exploiting onboard devices, such as Global Position System (GPS) receiver it is possible to know the exact location of the caught event and after a data elaboration the information is spread along the network. Once the drivers are advised, they can make some precautionary actions such as reduction of traveling speed or modification of current road path. In this work the routing algorithms, which have the main goal to rapidly disseminate information, are also been investigated.

  3. Frequency agile polarimetric radar simulation

    NASA Astrophysics Data System (ADS)

    Sedenquist, F. W.; Russell, R. F.

    A new generation of radar systems that exploit the polarizing characteristics of various targets and clutter are under development. These radars utilize the high range resolution techniques of frequency agile fast Fourier transform techniques and are a radical departure from conventional radar. This paper examines the methods of simulating these new processes and presents typical results.

  4. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  5. Characterizing geolocation ambiguity responses in synthetic aperture radar: ground moving target indication

    NASA Astrophysics Data System (ADS)

    Holston, Matthew E.; Minardi, Michael J.; Temple, Michael A.; Saville, Michael A.

    2007-04-01

    Single-channel synthetic aperture radar (SAR) can provide high quality, focused images of moving targets by utilizing advanced SAR-GMTI techniques that focus all constant velocity targets into a three-dimensional space indexed by range, cross-range and cross-range velocity. However, an inherent geolocation ambiguity exists in that multiple, distinct moving targets may posses identical range versus time responses relative to a constant velocity collection platform. Although these targets are uniquely located within a four-dimensional space (x-position, y-position, x-velocity, and y-velocity), their responses are focused and mapped to the same three-dimensional position in the SAR-GMTI image cube. Previous research has shown that circular SAR (CSAR) collection geometry is one way to break this ambiguity and creates a four-dimensional detection space. This research determines the target resolution available in the detection space as a function of different collection parameters. A metric is introduced to relate the resolvability of multiple target responses for various parametric combinations, i.e., changes in key collection parameters such as integration time, slant range, look angle, and carrier frequency.

  6. Test and evaluation of the Airport Surveillance Radar (ASR)-8 wind shear detection system (phase 2), revision

    NASA Astrophysics Data System (ADS)

    Offi, D. L.; Lewis, W.; Lee, T.; Delamarche, A.

    1980-08-01

    A wind shear detection system developed by the Wave Propagation Laboratory (WPL) to operate with the Federal Aviation Administration (FAA) Airport Surveillance Radar (ASR)-8 was installed and is being tested at the FAA technical Center. Initial efforts, previously reported in Report NA-78-59-LR, were directed toward hardware and software shakedown and feasibility determination. Second phase tests compared radar with aircraft and tower winds, evaluated the wind shear measurement capability under various weather conditions, and investigated the effectiveness of a simple two-azimuth pointing strategy and system capabilities and limitations. Results showed the system to be compatible with and to operate satisfactorily with the ASR-8. The processing and spectral display of clear air and precipitation returns is feasible. The accuracy of agreement between radar-measured winds and components of the aircraft-measured winds in both radially oriented flights and runway offset flights, using a two-azimuth pointing technique, was examined. Radar versus tower wind agreement was also examined. Potentially dangerous wind shears associated with weather during these tests were detectable. Certain system limitations also have been defined and considered. It is recommended that tests continue to complete definition of and demonstrate capabilities in all weather situations, to optimize performance, and to provide information to specify system design for possible development of a prototype model.

  7. An active radar calibration target

    NASA Technical Reports Server (NTRS)

    Brunfeldt, D. R.; Ulaby, F. T.

    1982-01-01

    An active radar calibrator (ARC), consisting of a receive antenna and a transmit antenna with an RF amplifier in between, is proposed as a tool for conducting high-precision calibration measurements of radar systems. The ARC can be designed to have a large radar cross-section with a broad pattern. Its major advantages over passive reflectors are its small physical size and its suitability for calibrating radars operating in a cross-polarized antenna configuration.

  8. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and direction) were obtained during 2013 and 2014 from one 13.5 MHz CODAR SeaSonde radar station from Hydrographic Institute, located in Espichel Cape (Portugal). These data were compared with those obtained from one wave buoy Datawell Directional Waverider, also from Hydrographic Institute, moored inbound Sines (Portugal) at 100 m depth. For this first approach, was assumed that all the waves are in a deep water situation. Results showed that during high energetic periods, the HF radar system revealed a good correlation with wave buoy data following the bulk wave parameters gradient variations.

  9. Volumetric analysis of a New England barrier system using ground-penetrating-radar and coring techniques

    USGS Publications Warehouse

    Van Heteren, S.; FitzGerald, D.M.; Barber, D.C.; Kelley, J.T.; Belknap, D.F.

    1996-01-01

    Ground-penetrating-radar (GPR) profiles calibrated with core data allow accurate assessments of coastal barrier volumes. We applied this procedure successfully to the barrier system along Saco Bay, Maine (USA), as part of a sediment-budget study that focused on present-day sand volumes in various coastal, shoreface, and inner-shelf lith-osomes, and on sand fluxes that have affected the volume or distribution of sand in these sediment bodies through time. On GPR profiles, the components of the barrier lithosome are readily differentiated from other facies, except where the radar signal is attenuated by brackish or salty groundwater. Significant differences between dielectric properties of the barrier lithosome and other units commonly result in strong boundary reflectors. The mostly sandy barrier sediments allow deep penetration of GPR waves, in contrast to finer-grained strata and till-covered bedrock. Within the Saco Bay barrier system, 22 ??3 x 106 m3 of sediment are unevenly distributed. Two-thirds of the total barrier volume is contained within the northern and southern ends of the study area, in the Pine Point spit and the Ferry Beach/Goosefare complex, respectively. The central area around Old Orchard Beach is locally covered by only a thin veneer of barrier sand, averaging <3 m, that unconformably overlies shallow pre-Holocene facies. The prominence of barrier-spit facies and the distribution pattern of back-barrier sediments indicate that a high degree of segmentation, governed by antecedent topography, has affected the development of the Saco Bay barrier system. The present-day configuration of the barrier and back-barrier region along Saco Bay, however, conceals much of its early compartmentalized character.

  10. The orbital distribution of radar-detected meteoroids of the Solar system dust cloud

    NASA Astrophysics Data System (ADS)

    Galligan, D. P.; Baggaley, W. J.

    2004-09-01

    The radar meteoroid orbit data set obtained from the AMOR facility in Christchurch, New Zealand (longitude 172°39' E, latitude 43°34' S) between 1995 May and 1999 October contains ~5 × 105 high-quality meteor records. The system was very sensitive compared with previous surveys, with a limiting radio magnitude of +14 corresponding to a 3 × 10-10 kg meteoroid mass limit (40-μm diameter) being achieved. This data set is here examined to determine and remove biases inherent in the radar method. The fully corrected meteoroid orbital distribution at 1 au from the Sun is derived. This distribution replaces a previous, much used, orbital distribution produced by the earlier Harvard Radio Meteor Program (HRMP). Anomalies have been found in the original debiasing of the latter which strongly favoured meteoroids observed at low speeds. Three forms of output orbital element distributions have been produced in the present study. To aid comparisons, these forms are identical to those produced by the HRMP: the `directly observed' output is that with no corrections applied, the `atmospheric' sample is corrected for all in-atmosphere effects, which includes electromagnetic wave propagation and ionospheric effects and the influence of the particular form of the radar system, and the `space sample' is additionally corrected for collision probability with the Earth. The space sample has rather higher eccentricity and larger semimajor axis length orbits than directly observed by AMOR. Its inclination distribution shows a general decrease in number with inclination: with a peak at ~20° and few meteors at inclinations very close to the ecliptic; a small population remains from the original ~50 per cent of orbits in retrograde orientations. Comparison with the original HRMP space distributions shows little agreement, however the revised HRMP orbital element distributions of Taylor and Elford compares well. The higher number of orbits in the AMOR data set and the uncertainty involved in re-reducing the older HRMP data shows a strong direction for the use of the AMOR as a standard.

  11. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  12. Temporal and structural evolution of a tropical monsoon cloud system: A case study using X-band radar observations

    NASA Astrophysics Data System (ADS)

    Kumar Das, Subrata; Deshpande, Sachin M.; Shankar Das, Siddarth; Konwar, Mahen; Chakravarty, Kaustav; Kalapureddy, Madhu Chandra Reddy

    2015-10-01

    A mobile X-band (~9.535 GHz) dual-polarization Doppler weather radar system was operated at a tropical site Pune (18.5386°N, 73.8089°E, 582 m AMSL) by the Indian Institute of Tropical Meteorology, Pune, India for observing monsoon clouds. The measurement site was on the leeward (eastern) side of the Western Ghats (WG). This study focuses on the horizontal and vertical structure of monsoon precipitating clouds and its temporal evolution as observed by the X-band radar on August 27, 2011. The radar reflectivity factor (Z, dBZ) is used as a proxy for measure of intensity of cloud system. Result shows that the radar reflectivity has a strong temporal variation in the vertical, with a local peak occurring in the afternoon hours. Relatively shallow structure during the late night and early morning hours is noticed. The observed cloud tops were reached up to 8 km heights with reflectivity maxima of about 35 dBZ at ∼5 km. The spatial and vertical evolution of radar reflectivity is consistent with the large-scale monsoon circulation. The variations in the outgoing longwave radiation (OLR) from the Kalpana-1 satellite and vertical velocity and cloud-mixing ratio from the Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis data are also analyzed. As direct observations of clouds using radars are sparse over the Indian region, the results presented here would be useful to understand the processes related to cloud and precipitation formation in the tropical environment.

  13. Advantages to Geoscience and Disaster Response from QuakeSim Implementation of Interferometric Radar Maps in a GIS Database System

    NASA Astrophysics Data System (ADS)

    Parker, Jay; Donnellan, Andrea; Glasscoe, Margaret; Fox, Geoffrey; Wang, Jun; Pierce, Marlon; Ma, Yu

    2015-08-01

    High-resolution maps of earth surface deformation are available in public archives for scientific interpretation, but are primarily available as bulky downloads on the internet. The NASA uninhabited aerial vehicle synthetic aperture radar (UAVSAR) archive of airborne radar interferograms delivers very high resolution images (approximately seven meter pixels) making remote handling of the files that much more pressing. Data exploration requiring data selection and exploratory analysis has been tedious. QuakeSim has implemented an archive of UAVSAR data in a web service and browser system based on GeoServer (http://geoserver.org). This supports a variety of services that supply consistent maps, raster image data and geographic information systems (GIS) objects including standard earthquake faults. Browsing the database is supported by initially displaying GIS-referenced thumbnail images of the radar displacement maps. Access is also provided to image metadata and links for full file downloads. One of the most widely used features is the QuakeSim line-of-sight profile tool, which calculates the radar-observed displacement (from an unwrapped interferogram product) along a line specified through a web browser. Displacement values along a profile are updated to a plot on the screen as the user interactively redefines the endpoints of the line and the sampling density. The profile and also a plot of the ground height are available as CSV (text) files for further examination, without any need to download the full radar file. Additional tools allow the user to select a polygon overlapping the radar displacement image, specify a downsampling rate and extract a modest sized grid of observations for display or for inversion, for example, the QuakeSim simplex inversion tool which estimates a consistent fault geometry and slip model.

  14. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  15. Nonlinear synthetic aperture radar imaging using a harmonic radar

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle A.; Mazzaro, Gregory J.; Ranney, Kenneth I.; Nguyen, Lam H.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2015-05-01

    This paper presents synthetic aperture radar (SAR) images of linear and nonlinear targets. Data are collected using a linear/nonlinear step frequency radar. We show that it is indeed possible to produce SAR images using a nonlinear radar. Furthermore, it is shown that the nonlinear radar is able to reduce linear clutter by at least 80 dB compared to a linear radar. The nonlinear SAR images also show the system's ability to detect small electronic devices in the presence of large linear clutter. The system presented here has the ability to completely ignore a 20-inch trihedral corner reflector while detecting a RF mixer with a dipole antenna attached.

  16. Acquisition in phase demodulation: Application to ranging in radar/sonar systems

    NASA Astrophysics Data System (ADS)

    Leitao, Jose M. N.; Moura, Jose M. F.

    1995-04-01

    Ranging in radar/sonar systems is cast as a phase/frequency detection problem. In phase/frequency demodulation, there are two stages: acquisition, which resolves the global prior uncertainty before phase/frequency locking; and tracking, which follows the phase/frequency variations. In this work, ranging corresponds to absolute phase acquisition formulated as a global nonlinear filtering problem. The proposed solution propagates the associated multimodal density and generates a process relating global covariance with the single modes common covariance. Acquisition is then defined as the first passage of this process across a given threshold. Statistics such as acquisition time histograms and acquisition performance, characterizing the behavior of the developed estimator/detector, are obtained by Monte Carlo simulations.

  17. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  18. MIMO Radar System for Respiratory Monitoring Using Tx and Rx Modulation with M-Sequence Codes

    NASA Astrophysics Data System (ADS)

    Miwa, Takashi; Ogiwara, Shun; Yamakoshi, Yoshiki

    The importance of respiratory monitoring systems during sleep have increased due to early diagnosis of sleep apnea syndrome (SAS) in the home. This paper presents a simple respiratory monitoring system suitable for home use having 3D ranging of targets. The range resolution and azimuth resolution are obtained by a stepped frequency transmitting signal and MIMO arrays with preferred pair M-sequence codes doubly modulating in transmission and reception, respectively. Due to the use of these codes, Gold sequence codes corresponding to all the antenna combinations are equivalently modulated in receiver. The signal to interchannel interference ratio of the reconstructed image is evaluated by numerical simulations. The results of experiments on a developed prototype 3D-MIMO radar system show that this system can extract only the motion of respiration of a human subject 2m apart from a metallic rotatable reflector. Moreover, it is found that this system can successfully measure the respiration information of sleeping human subjects for 96.6 percent of the whole measurement time except for instances of large posture change.

  19. High Power mm-Wave Transmitter System for Radar or Telecommunications

    NASA Technical Reports Server (NTRS)

    Stride, S. L.; McMaster, R. L.; Pogorzelski, R. J.

    2003-01-01

    Future NASA deep space missions able to provide tens of kilo-watts of spacecraft DC power, make it feasible to employ high power RF telecommunications systems. Traditional flight systems (e.g., Cassini), constrained by limited DC power, used a single high-gain 4m Cassegrain reflector fed by a single lower power (20W) transmitter. Increased available DC power means that high power (1000 W) transmitters can be used. Rather than continue building traditional single-transmitter systems it now becomes feasible to engineer and build multi-element active arrays that can illuminate a dish. Illuminating a 2m dish with a spherical wavefront from an offset 1kW active array can provide sufficient ERP (Effective Radiated Power) when compared to a larger Cassegrain dish. Such a system has the advantage of lower mass, lower volume, improved reliability, less stringent pointing requirements, lower cost and risk. We propose to design and build a prototype Ka-band transmit antenna with an active sub-array using 125W TWTAs. The system could be applied to a telecommunications downlink or radar transmitter used for missions such as JIMO.

  20. Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode.

    PubMed

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Hong, Keun Ho; Kim, Byung Wook; Park, Dong Jo

    2010-03-01

    In this paper, a direct-detection laser radar system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45 ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. With both the GAPD and the TDC functioning multistop acquisition, the system operates in a multihit mode. The software for the three-dimensional visualization and an algorithm for the removal of noise are developed. It is shown that the single-shot precision of the system is approximately 10 cm (sigma) and the precision is improved by increasing the number of laser pulses to be averaged so that the precision of approximately 1 cm (sigma) was acquired with more than 150 laser pulses scattered from the target. The accuracy of the system is measured to be 12 cm when the energy of the emitted laser pulse varies with a factor of 7. PMID:20370163

  1. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the various systems. We will present the results of our calibration studies that relate to the accuracy the GPS positioning. We will discuss the effects these positioning, errors have on the resultant DEM products and imagery.

  2. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  3. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  4. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  5. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  6. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  7. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  8. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  9. System design, signal-processing procedures, and preliminary results for the Canadian (London, Ontario) VHF atmospheric radar

    NASA Astrophysics Data System (ADS)

    Hocking, W. K.

    1997-03-01

    Hardware, software, and design features of a new VHF atmospheric radar situated in Canada are described, with particular emphasis being placed on the flexibility which has been implemented at quite low cost. Called CLOVAR (Canadian (London, Ontario) VHF atmospheric radar), the instrument has now been operational since November 1993. It is located at 43°04.44'N, 81°20.20'W, operates at a frequency of 40.68 MHz, and is owned and operated by the nearby University of Western Ontario in London, Ontario, Canada. There are some unique features about this system, including its low-cost design, flexible beam-steering, and on-line software analysis procedures. In this paper we elaborate on these new developments and especially demonstrate the new signal processing algorithms currently in use. These new algorithms include procedures for rejection of signals due to aircraft, removal of instrumental drift, and full on-line spectral fitting of Gaussian functions. Typical data from the system are presented, including experimental data acquired with multibeam experiments, monthly mean vertical velocities, and some interesting results obtained during a solar eclipse. The radar can also function as an efficient meteor radar for determination of high-level winds, and this capability will also be briefly described. A special program of comparisons with colocated radiosonde flights is also discussed.

  10. Self-aligned heterodyne laser radar system for surface displacement monitoring

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alejandro; Garcia, David; Comeron, Adolfo; Dios, Federico; Rocadenbosch, Francesc

    2001-01-01

    A novel configuration for a reference-beam, continuous-wave, heterodyne low-power radar prototype is presented. It measures both magnitude and sign of the radial component of the displacement velocity. The basic set-up includes a low power (~10 mW) commercial HeNe laser, a beam-splitter, an acousto-optic modulator, and a two-lens system that both focuses the transmitted beam on the target surface and collects the scattered light. Both the reference beam and the radiation collected are focused onto a Si avalanche photo-detector. The self-aligned configuration of the receiver makes possible, theoretically, to perform optimal mixing between the received scattered radiation and the reference beam. The resulting electrical signal is fed to a transimpedance amplifier and displayed on a spectrum analyzer. Laboratory experiments employing as a target the rim of a 50 cm-diameter rotating wheel placed at several distances have been performed. Results concerning detected signal-to-noise ratio, detected- signal spectral width, accuracy of the radial component of the velocity under measurement, system working range, and system tolerance in focus-adjustment distance will be presented and discussed. Compared to a previous homodyne prototype presented by the authors, the present system shows a shorter working range (~12 m compared to nearly ~16 m in the homodyne prototype). We attribute this smaller range to the additional losses in the acousto-optic modulator.

  11. Coherent 1.06-μm cw laser radar system

    NASA Astrophysics Data System (ADS)

    Yang, Su Hui; Wu, Ke Ying; Zhao, Chang Ming; Wei, Guang Hui

    2000-10-01

    A coherent 1.06micrometers all solid state laser radar system is proposed. The system uses a LD pumped monolithic Nd:YAG ring laser as the source. Very stable output of the laser is linearly frequency modulated by an acousto-optic modulator. The wide modulation bandwidth is achieved by cascading two Bragg cells, in which each cell produces half of the total bandwidth. In order to extinguish the laser beam deflection caused by the Bragg cell, the propagation directions for the acoustic waves are arranged to be opposite in the two cells. Two single model optical fiber couplers are utilized. One is used as a beam splitter and divides the modulated laser beam into two parts: the transmitted signal beam and the local reference beam. The other coupler mixes the target-reflected signal beam with the local reference beam. The output signal form this coupler is detected by an InGaAs PIN photodiode, then analyzed by a RF electronic spectrum analyzer. The linearly frequency modulated CW ladar system can be applied for measuring both range and velocity of the target. Using this ladar system, true 3D target imaging can be achieved by additional use of a laser beam-scanning device.

  12. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system" for Master Plan 2014 of the Science Council of Japan (SCJ). We show the EMU project and its science in the presentation.

  13. Performance metric development for a group state estimator in airborne UHF GMTI applications

    NASA Astrophysics Data System (ADS)

    Elwell, Ryan A.

    2013-05-01

    This paper describes the development and implementation of evaluation metrics for group state estimator (GSE, i.e. group tracking) algorithms. Key differences between group tracker metrics and individual tracker metrics are the method used for track-to-truth association and the characterization of group raid size. Another significant contribution of this work is the incorporation of measured radar performance in assessing tracker performance. The result of this work is a set of measures of performance derived from canonical individual target tracker metrics, extended to characterize the additional information provided by a group tracker. The paper discusses additional considerations in group tracker evaluation, including the definition of a group and group-to-group confusion. Metrics are computed on real field data to provide examples of real-world analysis, demonstrating an approach which provides characterization of group tracker performance, independent of the sensor's performance.

  14. Software Radar signal processing

    NASA Astrophysics Data System (ADS)

    Grydeland, T.; Lind, F. D.; Erickson, P. J.; Holt, J. M.

    2005-01-01

    Software infrastructure is a growing part of modern radio science systems. As part of developing a generic infrastructure for implementing Software Radar systems, we have developed a set of reusable signal processing components. These components are generic software-based implementations for use on general purpose computing systems. The components allow for the implementation of signal processing chains for radio frequency signal reception, correlation-based data processing, and cross-correlation-based interferometry. The components have been used to implement the signal processing necessary for incoherent scatter radar signal reception and processing as part of the latest version of the Millstone Hill Data Acquisition System (MIDAS-W). Several hardware realizations with varying capabilities have been created, and these have been used successfully with different radars. We discuss the signal processing components in detail, describe the software patterns in which they are used, and show example data from the Millstone Hill, EISCAT Svalbard, and SOUSY Svalbard radars.

  15. The GeoSAR program: Development of a commercially viable 3-D radar terrain mapping system

    SciTech Connect

    Carlisle, R.G.; Davis, M.

    1996-11-01

    GeoSAR is joint development between the Defense Advanced Research Project Agency (DARPA) and the California Department of Conservation (CA DOC) to determine the technical and economic viability of an airborne interferometric and foliage penetration synthetic aperture radar for mapping terrain and man made objects in geographical areas obscured by foliage, urban buildings, and other concealments. The two core technology elements of this program are Interferometric Synthetic Aperture Radar (IFSAR) and Foliage Penetration Radar (FOPEN). These technologies have been developed by NASA and ARPA, principally for defense applications.

  16. Research on high precision timing system based on FPGA non scanning imaging laser radar

    NASA Astrophysics Data System (ADS)

    Fu, Yanbo; Han, Shaokun; Wang, Liang; Ma, Yayun

    2015-08-01

    The article introduced the system structure and imaging principle of no three-dimensional imaging laser radar. This paper used the XC7K325T XILINX chip of KINTEX 7 series and used temporal interpolation method to measure distance. Rough side used PLL multiplier 400MHZ, which reached 2.5ns time accuracy. This method used a thin chip delay chains carry resources to reach 50ps accuracy and greatly improved the accuracy of the timing of imaging. Application technique used a delay line in APD array imaging system, such that each channel distance accuracy greatly improved. Echo signal by photoelectric conversion is completed by APD array detector, and designed by the impedance amplifier and other analog signal processing circuit. FPGA signal processing circuit is to complete the back-end processing, which is the timing function. FPGA array timer clock is to achieve coarse portion through timing, and delay line technique for measuring the length of time a non-integer multiple of the period of the laser pulse emission and the moment of reception, each stage of the delay units delay accuracy of sub ns magnitude, so as to achieve precision measuring part timers. With the above device was close imaging experiments, obtaining the 5 × 5 pixel imaging test results, presented to further improve system accuracy improved method.

  17. A microwave measurement system for metallic object detection using swept-frequency radar

    NASA Astrophysics Data System (ADS)

    Li, Yong; Tian, Gui Y.; Bowring, Nicholas; Rezgui, Nacer

    2008-10-01

    Guns and knives have become a significant threat to public safety. Recently, a variety of techniques based on Electromagnetics (EM) have been used for their detection. For example, walk-through metal detection has been used in airports; X-ray and THz detection systems have been used for luggage screening. Different EM frequencies for metallic object detection have demonstrated different merits. This paper reports on a 1-14 GHz swept-frequency radar system for metallic object detection using reflection configuration. The swept frequency response and resonant frequency behaviour of a number of metallic objects, in terms of position, object shape, rotation and multiple objects have been tested and analysed. The system working from 1 to 14 GHz has been set up to implement sensing of metal items at a standoff distance of more than 1 meter. Through a series of experimental investigations, it can be found that the optical depths derived from the Fourier Transform of the power spectrum profile is in close relation with the relative location of the metallic object. The cross correlation between coherence-polarisation and cross-polarisation RF returns can be used to distinguish different objects. Therefore the optical depth and the cross correlation can be used as useful features for metallic object detection and characterisation in this portion of the microwave frequency spectrum.

  18. Evaluating and managing Cold War era historic properties : the cultural significance of U.S. Air Force defensive radar systems.

    SciTech Connect

    Whorton, M.

    1999-01-20

    Aircraft and later missile radar early warning stations played an important role in the Cold War. They are associated with important technological, social, political, and military themes of the Cold War and are worthy of preservation. The scope and scale of these systems make physical preservation impractical, but the U.S. Air Force program of historical evaluation and documentation of these systems will provide valuable information to future generations studying this historic period.

  19. A novel data association scheme for LEO space debris surveillance based on a double fence radar system

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Hu, Weidong; Xin, Qin; Guo, Weiwei

    2012-12-01

    The increasing amount of space debris threatens to seriously deteriorate and damage space-based instruments in Low Earth Orbit (LEO) environments. Therefore, LEO space debris surveillance systems must be developed to provide situational awareness in space and issue warnings of collisions with LEO space debris. In this paper, a double fence radar system is proposed as an emerging paradigm for LEO space debris surveillance. This system exhibits several unique and promising characteristics compared with existing surveillance systems. In this paper, we also investigate the data association scheme for LEO space debris surveillance based on a double fence radar system. We also perform a theoretical analysis of the performance of our proposed scheme. The superiority and the effectiveness of our novel data association scheme is demonstrated by experimental results. The data used in our experiments is the LEO space debris catalog produced by the North American Air Defense Command (NORAD) up to 2009, especially for scenarios with high densities of LEO space debris, which were primarily produced by the collisions between Iridium 33 and Cosmos 2251. We hope that our work will stimulate and benefit future work on LEO space debris surveillance approaches and enable construction of the double fence radar system.

  20. Development of a noncontact and long-term respiration monitoring system using microwave radar for hibernating black bear.

    PubMed

    Suzuki, Satoshi; Matsui, Takemi; Kawahara, Hiroshi; Gotoh, Shinji

    2009-05-01

    The aim of this study is to develop a prototype system for noncontact, noninvasive and unconstrained vital sign monitoring using microwave radar and to use the system to measure the respiratory rate of a Japanese black bear (Ursus thibetanus japonicus) during hibernation for ensuring the bear's safety. Ueno Zoological Gardens in Tokyo planned to help the Japanese black bear (female, approximately 2 years of age) going into hibernation. The prototype system has a microwave Doppler radar antenna (10-GHz frequency, approximately 7 mW output power) for measuring motion of the body surface caused by respiratory activity without making contact with the body. Monitoring using this system was conducted from December 2006 to April 2007. As a result, from December 18, 2006, to March 17, 2007, similar behaviors reported by earlier studies were observed, such as sleeping with curled up posture and not eating, urinating or defecating. During this hibernation period and also around the time of hibernation, the prototype system continuously measured cyclic oscillations. The presence of cyclic vibrations at 8-sec intervals (about 7 bpm) was confirmed by the system before she entered hibernation on December 3, 2006. The respiratory rate gradually decreased, and during the hibernation period the respiratory rate was extremely low at approximately 2 bpm with almost no change. The results show that motion on the body surface caused by respiratory activity can be measured without touching the animal's body. Thus, the microwave radar employed here can be utilized as an aid in observing vital signs of animals. PMID:19504598

  1. A coherent FM laser radar based system for remote metrology in ITER

    SciTech Connect

    Barry, R.E.; Burgess, T.W.; Menon, M.M.; Slotwinski, A.; Sebastian, R.

    1995-12-31

    The plasma facing surfaces in ITER must be aligned to millimeter accuracy with respect to the magnetic flux surfaces to prevent impurity influx into the plasma and to avoid component damage. Checking of in-vessel component alignment during initial assembly, operation, and subsequent maintenance is anticipated. A fully remote metrology system is necessary, particularly since major remote operations such as shield blanket exchange and divertor cassette replacement are planned. The metrology system must be compatible with the ITER in-vessel environment of high gamma radiation ({approximately} 10{sup 6} R/hr), super-clean ultra-high-vacuum ({approximately} 10{sup {minus}8} Torr), and elevated temperature ({approximately}200 C). A fast scanning rate is required since the plasma facing surface in ITER is very large ({approximately} 1,500 m{sup 2}). A coherent FM laser radar based metrology system, developed by Coleman Research Corporation, is being adopted to accomplish this task. Conceptually, this metrology system consists of a compact (few cm{sup 3}) remotely deployed laser transceiver optics module, linked through fiber optics to the laser source and imaging units that are located outside the biological shield. Range measurements conducted on a variety of surfaces using the system have yielded sub-millimeter accuracy. Therefore, the technique will easily meet the precision requirement for the ITER application. Computer simulations have been carried out to determine the optimum number of units required for complete mapping of the plasma facing surfaces. Most in-vessel components of the system appear to be radiation hardenable and vacuum compatible. Details of the system and developments required to make it fully compatible for ITER metrology application will be elaborated.

  2. Evolving subglacial water systems in East Antarctica from airborne radar sounding

    NASA Astrophysics Data System (ADS)

    Carter, Sasha Peter

    The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than -10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution. In the bedrock trough of Adventure Subglacial Trench, analysis of satellite altimetry is combined with radar sounding data to calculate a mass budget and infer a flow mechanism for a two cubic kilometer discharge reported to have traveled between two lakes in the region from 1996-1998. The volume released from the source lake exceeded the volume received by the destination lakes by one and a tenth cubic kilometers, indicating that some water must have escaped downstream from the lowest destination lake over the course of the event. Release of water from the source lake preceded arrival of the water at the destination lakes, 260 kilometers away, by about three months. Water continued draining from the destination lakes for several years after surface subsidence at the source lake had ceased. By 2003, a total of one and a half cubic km or nearly 75% of the water released by the source lake had traveled downstream from the destination lakes. Hydraulic modeling work indicates that the initial release of water from the source lake could have been accommodated by a self-enlarging semicircular channel. Subsequent evolution of the discharge and the three-month delay between release of water from the source lake and arrival of that water at the destination lakes indicates that a shallower and broader distributed water system is responsible for the transport of subglacial water in this region. Such a system would be more stable for the given ice-bedrock geometry and may explain the observations of intermittent flat bright bedrock reflections in radar data acquired upstream from the destination lake in 2000. For the purpose of better understanding the long-term water budget of the Dome C region, an area upstream of Adventure Trench, eleven dated isochronal internal layers within the ice penetrating radar data were tracked. An age-depth relationship, derived from the European ice core through Dome C is used to calculate strain, estimate melt, model ice temperature, and determine absolute basal reflectivity for the entire region which covers over 28,000 square kilometers. The two largest subglacial lakes within the survey, Concordia and Vincennes, are both associated with enhanced basal melting on their upstream shores at rates locally greater than two millimeters per year. Widely distributed melt rates in the major topographic valleys upstream of these lakes are generally less than one millimeter per year throughout the region with slightly higher melts in the basin draining into Vincennes Subglacial Lake. Although published estimates for geothermal flux are capable of explaining the behavior of ice and water in most of the area, an additional source of basal heat is required to explain melt anomalies and subglacial lakes along the Concordia Ridge. Lake Concordia is expected to discharge water on a similar scale and duration as that observed in Adventure Trench, with a repeat cycle of a few hundred years.

  3. Fractional-N PLL based FMCW sweep generator for an 80 GHz radar system with 24.5 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Jaeschke, T.; Bredendiek, C.; Vogt, M.; Pohl, N.

    2012-09-01

    A phase-locked loop (PLL) based frequency synthesizer capable of generating highly linear broadband frequency sweeps as signal source of a high resolution 80 GHz FMCW radar system is presented. The system achieves a wide output range of 24.5 GHz starting from 68 GHz up to 92.5 GHz. High frequencies allow the use of small antennas for small antenna beam angles. The wide bandwidth results in a radar system with a very high range resolution of below 1.5 cm. Furthermore, the presented synthesizer provides a very low phase noise performance of -80 dBc/Hz at 80 GHz carrier frequency and 10 kHz offset, which enables high precision distance measurements with low range errors. This is achieved by using two nested phase-looked loops with high order loop filters. The use of a fractional PLL divider and a high phase frequency discriminator (PFD) frequency assures an excellent ramp linearity.

  4. DRAINAGE PIPE DETECTOR: GROUND PENETRATING RADAR SHOWS PROMISE IN LOCATING BURIED SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the more frustrating problems confronting farmers and land improvement contractors in the Midwestern United States involves locating buried agricultural drainage pipes. Conventional geophysical methods, particularly ground penetrating radar (GPR), presently being used for environmental and co...

  5. Radar - The Future

    NASA Astrophysics Data System (ADS)

    Warwick, G.

    1985-02-01

    Progress in civil and military radar units since the invention of radar in 1935 is summarized, noting the trend to multipurpose units. The earliest systems functioned at 10 cm, then 3 cm after development of a cavity magnetron to provide power for shorter wavelengths. Military needs are driving improvements in three-dimensional scanning capabilities, Primarily to locate aircraft in the presence of ground clutter and sea surface scattering. Autonomous, separate transmitter and receiver units are being tested. Lengthening ground-based radar wavelengths to tens of meters will permit over-the-horizon sensing with backscattering, ionospheric bounce, or induction of a potential in the sea surface as the possible techniques. Mode S monopulse radars will permit transponder queries between small and large aircraft. Finally, pulse Doppler SAR systems may afford terrain recognition with no corroborating data except an expert systems data base.

  6. Cross-term free based bistatic radar system using sparse least squares

    NASA Astrophysics Data System (ADS)

    Sevimli, R. Akin; Cetin, A. Enis

    2015-05-01

    Passive Bistatic Radar (PBR) systems use illuminators of opportunity, such as FM, TV, and DAB broadcasts. The most common illuminator of opportunity used in PBR systems is the FM radio stations. Single FM channel based PBR systems do not have high range resolution and may turn out to be noisy. In order to enhance the range resolution of the PBR systems algorithms using several FM channels at the same time are proposed. In standard methods, consecutive FM channels are translated to baseband as is and fed to the matched filter to compute the range-Doppler map. Multichannel FM based PBR systems have better range resolution than single channel systems. However superious sidelobe peaks occur as a side effect. In this article, we linearly predict the surveillance signal using the modulated and delayed reference signal components. We vary the modulation frequency and the delay to cover the entire range-Doppler plane. Whenever there is a target at a specific range value and Doppler value the prediction error is minimized. The cost function of the linear prediction equation has three components. The first term is the real-part of the ordinary least squares term, the second-term is the imaginary part of the least squares and the third component is the l2-norm of the prediction coefficients. Separate minimization of real and imaginary parts reduces the side lobes and decrease the noise level of the range-Doppler map. The third term enforces the sparse solution on the least squares problem. We experimentally observed that this approach is better than both the standard least squares and other sparse least squares approaches in terms of side lobes. Extensive simulation examples will be presented in the final form of the paper.

  7. Lunar Pole Illumination and Communications Maps Computed from Goldstone Solar System Radar Elevation Data

    NASA Astrophysics Data System (ADS)

    Bryant, S.

    2009-02-01

    The Goldstone Solar System Radar (GSSR) group at JPL produced a digital elevation model (DEM) of the lunar south pole using data obtained in 2006. This new DEM has 40-m horizontal resolution and about 5-m relative vertical accuracy. This article explains how this DEM was used to evaluate average solar illumination and Earth visibility near the lunar south pole. The elevation data were converted into local terrain horizon masks for the area within 100 km of the lunar south pole. These topocentric horizon masks were converted into selenographic latitude and longitude coordinates, then compared to regions bounding the maximum Sun and Earth motions relative to the Moon. Estimates of Earth visibility were computed by integrating the area of the region bounding the Earth's motion that was below the horizon mask. Solar illumination and other metrics were computed similarly. Proposed lunar south pole base sites are examined in detail, with the best site showing multiyear averages of solar power availability of 92 percent and direct-to-Earth (DTE) communication availability of 51 percent. Results are compared with a theoretical model and with actual Sun and Earth visibility averaged over the years 2009 to 2028. Peaks near the lunar south pole with continuous DTE communications are also presented. Results for the lunar north pole were computed using the GSSR DEM of the lunar north pole produced in 1997. The article also explores using a heliostat to reduce the photovoltaic power system mass and complexity.

  8. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert, Jr.

    2015-01-01

    Assessment of space vehicle loads and trajectories during design requires a large sample of wind profiles at the altitudes where winds affect the vehicle. Traditionally, this altitude region extends from near 8-14 km to address maximum dynamic pressure upon ascent into space, but some applications require knowledge of measured wind profiles at lower altitudes. Such applications include crew capsule pad abort and plume damage analyses. Two Doppler Radar Wind Profiler (DRWP) systems exist at the United States Air Force (USAF) Eastern Range and at the National Aeronautics and Space Administration's Kennedy Space Center. The 50-MHz DRWP provides wind profiles every 3-5 minutes from roughly 2.5-18.5 km, and five 915-MHz DRWPs provide wind profiles every 15 minutes from approximately 0.2-3.0 km. Archived wind profiles from all systems underwent rigorous quality control (QC) processes, and concurrent measurements from the QC'ed 50- and 915-MHz DRWP archives were spliced into individual profiles that extend from about 0.2-18.5 km. The archive contains combined profiles from April 2000 to December 2009, and thousands of profiles during each month are available for use by the launch vehicle community. This paper presents the details of the QC and splice methodology, as well as some attributes of the archive.

  9. Determination of the effectiveness of commercial-off-the-shelf radar in the cuing of unmanned aerial vehicle pan-tilt-zoom camera systems

    NASA Astrophysics Data System (ADS)

    Ford, Patrick Joseph

    This study examined the use of low-cost commercial-off-the-shelf (COTS) radar in support of the cuing of pan-tilt-zoom (PTZ) optical payload systems. Cancellation of the U.S. Navy's vertical take off and landing (VTOL) unmanned aerial vehicle (VTUAV) program left the Navy without a UAV with radar sensor capability. Using a UAV PTZ optical payload and a COTS radar, this study collected specific time difference measurements between PTZ optical payload searches without radar cuing and searches with radar cuing. In every test run conducted, searches with radar cuing reduced PTZ optical payload detection time. The study showed that a low-cost COTS radar mounted on a small UAV can meet some of the radar requirements lost with cancellation of the VTUAV program. The study results could have a direct impact on myriad of U.S. Navy and other U.S. government surveillance requirements, especially the monitoring of U.S. coastal waters in support of homeland security goals and objectives.

  10. Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems

    NASA Technical Reports Server (NTRS)

    Mathews, Bruce D.

    1991-01-01

    Westinghouse conducted a flight test with its Sabreliner AN/APG-68 instrumented radar to assess the urban discrete/ground moving vehicle clutter environment. Glideslope approaches were flown into Washington National, BWI, and Georgetown, Delaware, airports employing radar mode timing, waveform, and processing configurations plausible for microburst windshear avoidance. The perceptions, both general and specific, of the clutter environment furnish an empirical foundation for beginning low false alarm detection algorithm development.

  11. Micropower impulse radar

    SciTech Connect

    Azevedo, S.; McEwan, T.E.

    1996-01-01

    Invented and developed at Lawrence Livermore National Laboratory is an inexpensive and highly sensitive, low-power radar system that produces and samples extremely short pulses of energy at the rate of 2 million per second. Called micropower impulse radar (MIR), it can detect objects at a greater variety of distances with greater sensitivity than conventional radar. Its origins in the Laboratory`s Laser Directorate stem from Nova`s transient digitizer. The MIR`s extraordinary range of applications include security, search and rescue, life support, nondestructive evaluation, and transportation.

  12. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  13. Active radar jamming

    NASA Astrophysics Data System (ADS)

    Jernemalm, Veine

    1988-09-01

    Active radar jammers are described. In confusion jammers the perturbing action is produced by thermal noise which is intensified, or by a carrier wave modulated by a noise signal, or by a carrier wave which is frequency modulated with a lot of sine waves of different frequencies. There are jammers to be used once, which are fired to the spot or hang from a parachute. Deception jammers (misleading jammers) emit false radar echoes, one or several produced by a repetition system, requiring a certain form of memory. It is shown how to emit varying false distance or velocities, and how to disturb angles in a radar used to guide artillery fire.

  14. Radar cross-sectional study using noise radar

    NASA Astrophysics Data System (ADS)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.

    2015-05-01

    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  15. Radar cross-section measurements and simulation of a tethered satellite. The small expendable deployer system end-mass payload

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Fralick, Dion T.; Vedeler, Erik

    1995-01-01

    The first Small Expendable Deployer System (SEDS-1), a tethered satellite system, was developed by NASA and launched March 29, 1993 as a secondary payload on a United State Air Force (USAF) Delta-2 launch vehicle. The SEDS-1 successfully deployed an instrumented end-mass payload (EMP) on a 20-km nonconducting tether from the second stage of the Delta 2. This paper describes the effort of NASA Langley Research Center's Antenna and Microwave Research Branch to provide assistance to the SEDS Investigators Working Group (IWG) in determining EMP dynamics by analyzing the mission radar skin track data. The radar cross section measurements taken and simulations done for this study are described and comparisons of the measured data with the simulated data for the EMP at 6 GHz are presented.

  16. Polarimetric synthetic aperture radar image unsupervised classification method based on artificial immune system

    NASA Astrophysics Data System (ADS)

    Jie, Yu; Gang, Wang; Teng, Zhu; Xiaojuan, Li; Qin, Yan

    2014-01-01

    An unsupervised classification method based on the H/α classifier and artificial immune system (AIS) is proposed to overcome the inefficiencies that arise when traditional classification methods deal with polarimetric synthetic aperture radar (PolSAR) data having large numbers of overlapping pixels and excess polarimetric information. The method is composed of two steps. First, Cloude-Pottier decomposition is used to obtain the entropy H and the scattering angle α. The classification result based on the H/α plane is used to initialize the AIS algorithm. Second, to obtain accurate results, the AIS clonal selection algorithm is used to perform an iterative calculation. As a self-organizing, self-recognizing, and self-optimizing algorithm, the AIS is able to obtain a global optimal solution and better classification results by making use of both the scattering mechanism of ground features and polarimetric scattering characteristics. The effectiveness and feasibility of this method are demonstrated by experiments using a NASA-JPL PolSAR image and a high-resolution PolSAR image of Lingshui autonomous county in Hainan Province.

  17. Error Ellipsoid Analysis for the Diameter Measurement of Cylindroid Components Using a Laser Radar Measurement System

    PubMed Central

    Du, Zhengchun; Wu, Zhaoyong; Yang, Jianguo

    2016-01-01

    The use of three-dimensional (3D) data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS). First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS. PMID:27213385

  18. Transmitter and receiver antenna gain analysis for laser radar and communication systems

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1973-01-01

    A comprehensive and fairly self-contained study of centrally obscured optical transmitting and receiving antennas is presented and is intended for use by the laser radar and communication systems designer. The material is presented in a format which allows the rapid and accurate evaluation of antenna gain. The Fresnel approximation to scalar wave theory is reviewed and the antenna analysis proceeds in terms of the power gain. Conventional range equations may then be used to calculate the power budget. The transmitter calculations, resulting in near and far field antenna gain patterns, assumes the antenna is illuminated by a laser operating in the fundamental cavity mode. A simple equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn which display the losses in antenna gain due to pointing errors and the cone angle of the outgoing beam as a function of antenna size and central obscuration. The use of telescope defocusing as an approach to spreading the beam for target acquisition is compared to some alternate methods.

  19. Point cloud uncertainty analysis for laser radar measurement system based on error ellipsoid model

    NASA Astrophysics Data System (ADS)

    Zhengchun, Du; Zhaoyong, Wu; Jianguo, Yang

    2016-04-01

    Three-dimensional laser scanning has become an increasingly popular measurement method in industrial fields as it provides a non-contact means of measuring large objects, whereas the conventional methods are contact-based. However, the data acquisition process is subject to many interference factors, which inevitably cause errors. Therefore, it is necessary to precisely evaluate the accuracy of the measurement results. In this study, an error-ellipsoid-based uncertainty model was applied to 3D laser radar measurement system (LRMS) data. First, a spatial point uncertainty distribution map was constructed according to the error ellipsoid attributes. The single-point uncertainty ellipsoid model was then extended to point-point, point-plane, and plane-plane situations, and the corresponding distance uncertainty models were derived. Finally, verification experiments were performed by using an LRMS to measure the height of a cubic object, and the measurement accuracies were evaluated. The results show that the plane-plane distance uncertainties determined based on the ellipsoid model are comparable to those obtained by actual distance measurements. Thus, this model offers solid theoretical support to enable further LRMS measurement accuracy improvement.

  20. Development of an ultra wide band microwave radar based footwear scanning system

    NASA Astrophysics Data System (ADS)

    Rezgui, Nacer Ddine; Bowring, Nicholas J.; Andrews, David A.; Harmer, Stuart W.; Southgate, Matthew J.; O'Reilly, Dean

    2013-10-01

    At airports, security screening can cause long delays. In order to speed up screening a solution to avoid passengers removing their shoes to have them X-ray scanned is required. To detect threats or contraband items hidden within the shoe, a method of screening using frequency swept signals between 15 to 40 GHz has been developed, where the scan is carried out whilst the shoes are being worn. Most footwear is transparent to microwaves to some extent in this band. The scans, data processing and interpretation of the 2D image of the cross section of the shoe are completed in a few seconds. Using safe low power UWB radar, scattered signals from the shoe can be observed which are caused by changes in material properties such as cavities, dielectric or metal objects concealed within the shoe. By moving the transmission horn along the length of the shoe a 2D image corresponding to a cross section through the footwear is built up, which can be interpreted by the user, or automatically, to reveal the presence of concealed threat within the shoe. A prototype system with a resolution of 6 mm or less has been developed and results obtained for a wide range of commonly worn footwear, some modified by the inclusion of concealed material. Clear differences between the measured images of modified and unmodified shoes are seen. Procedures for enhancing the image through electronic image synthesis techniques and image processing methods are discussed and preliminary performance data presented.

  1. Inferring microphysical processes occurring in mesoscale convective systems from radar measurements and isotopic analysis

    NASA Astrophysics Data System (ADS)

    Narayana Rao, T.; Radhakrishna, B.; Srivastava, Rohit; Mohan Satyanarayana, T.; Narayana Rao, D.; Ramesh, R.

    2008-05-01

    An attempt has been made, for the first time, to effectively utilize the synergy of various approaches providing microphysical information of precipitation to study short term variations in a Mesoscale Convective System (MCS). A campaign has been conducted wherein rain samples are collected during the passage of MCSs over Gadanki, India, and simultaneously a powerful VHF radar and disdrometer have been operated to infer the characteristics of the vertical structure and rain drop size distribution (DSD) of precipitation. Besides the convection and transition rain, two distinctly different phases of the stratiform rain are identified. Evaporation of rain drops seems to be significant in both convection and stratiform portions of MCS. Observed changes in the temporal variation of the stable oxygen isotope ratios (δ18O) of precipitation are interpreted in terms of microphysical processes leading to isotopic fractionation. The pattern of variability in isotopic abundance is found to be different from convection to transition and to stratiform rain. The present analysis clearly shows that the height (or temperature) and the rain regime of condensation are of paramount importance in determining δ18O. Correlations of δ18O with rainfall integral parameters stress the need for caution in interpreting the depleted isotopic ratios are due to high rainfall and/or bigger drops.

  2. Validation of a microwave radar system for the monitoring of locomotor activity in mice

    PubMed Central

    Pasquali, Vittorio; Scannapieco, Eugenio; Renzi, Paolo

    2006-01-01

    Background The general or spontaneous motor activity of animals is a useful parameter in chronobiology. Modified motion detectors can be used to monitor locomotor activity rhythms. We modified a commercial microwave-based detection device and validated the device by recording circadian and ultradian rhythms. Methods Movements were detected by microwave radar based on the Doppler effect. The equipment was designed to detect and record simultaneously 12 animals in separate cages. Radars were positioned at the bottom of aluminium bulkheads. Animal cages were positioned above the bulkheads. The radars were connected to a computer through a digital I/O board. Results The apparatus was evaluated by several tests. The first test showed the ability of the apparatus to detect the exact frequency of the standard moving object. The second test demonstrated the stability over time of the sensitivity of the radars. The third was performed by simultaneous observations of video-recording of a mouse and radar signals. We found that the radars are particularly sensitive to activities that involve a displacement of the whole body, as compared to movement of only a part of the body. In the fourth test, we recorded the locomotor activity of Balb/c mice. The results were in agreement with published studies. Conclusion Radar detectors can provide automatic monitoring of an animal's locomotor activity in its home cage without perturbing the pattern of its normal behaviour or initiating the spurt of exploration occasioned by transfer to a novel environment. Recording inside breeding cages enables long-term studies with uninterrupted monitoring. The use of electromagnetic waves allows contactless detection and freedom from interference of external stimuli. PMID:16674816

  3. Radar techniques to study subsurfaces and interiors of the solar system objects.

    NASA Astrophysics Data System (ADS)

    Kofman, W.

    2007-12-01

    The radar techniques are widely used in the planetary exploration to map the surfaces. The observations from Earth or from spacecrafts were developed during the last decades. However, the idea to use this technique to study the subsurface started to develop during the last 10-15 years. The ability of the radio waves to penetrate the ice, permafrost and arid surface was at the origins of the development of the Ground Penetrating Radars (GPR) with a large number of the scientific work and industrial applications on Earth. The measurements from the surface can not replace the global mapping from orbiting platforms. In this presentation, on the example of MARSIS radar on the Mars Express mission measurements we evaluate the general capabilities of radar sounders for planetary exploration. The CONSERT is the experiment on board of the ROSETTA mission that will provide information about the deep interior of the comet (Kofman et al, 1998, 2007). The CONSERT instrument is an original concept of spaceborne transmission radar based on the propagation throughout the nucleus while the classical radars are based on the reflection. In this experiment, an electromagnetic signal is transmitted between the lander, located on the comet surface, and the orbiter. The transmitted signal will be measured as a function of time and as a function of the relative position of the orbiter and the lander for a number of orbits. Any signal that has propagated through the medium contains information concerning this medium. With a sufficient number of orbits one will be able to obtain many cuts of the interior of the comet and therefore to build up a tomographic image of the interior. On the CONSERT experiment example we discuss the main advantages and difficulties of the techniques using radiowaves to study the interior of asteroids and comets. The capacity of radar technique to do the tomography of the interior of the asteroids and comets is emphasized.

  4. MIDAS-W: a workstation-based incoherent scatter radar data acquisition system

    NASA Astrophysics Data System (ADS)

    Holt, J. M.; Erickson, P. J.; Gorczyca, A. M.; Grydeland, T.

    2000-09-01

    The Millstone Hill Incoherent Scatter Data Acquisition System (MIDAS) is based on an abstract model of an incoherent scatter radar. This model is implemented in a hierarchical software system, which serves to isolate hardware and low-level software implementation details from higher levels of the system. Inherent in this is the idea that implementation details can easily be changed in response to technological advances. MIDAS is an evolutionary system, and the MIDAS hardware has, in fact, evolved while the basic software model has remained unchanged. From the earliest days of MIDAS, it was realized that some functions implemented in specialized hardware might eventually be implemented by software in a general-purpose computer. MIDAS-W is the realization of this concept. The core component of MIDAS-W is a Sun Microsystems UltraSparc 10 workstation equipped with an Ultrarad 1280 PCI bus analog to digital (A/D) converter board. In the current implementation, a 2.25 MHz intermediate frequency (IF) is bandpass sampled at 1 µs intervals and these samples are multicast over a high-speed Ethernet which serves as a raw data bus. A second workstation receives the samples, converts them to filtered, decimated, complex baseband samples and computes the lag-profile matrix of the decimated samples. Overall performance is approximately ten times better than the previous MIDAS system, which utilizes a custom digital filtering module and array processor based correlator. A major advantage of MIDAS-W is its flexibility. A portable, single-workstation data acquisition system can be implemented by moving the software receiver and correlator programs to the workstation with the A/D converter. When the data samples are multicast, additional data processing systems, for example for raw data recording, can be implemented simply by adding another workstation with suitable software to the high-speed network. Testing of new data processing software is also greatly simplified, because a workstation with the new software can be added to the network without impacting the production system. MIDAS-W has been operated in parallel with the existing MIDAS-1 system to verify that incoherent scatter measurements by the two systems agree. MIDAS-W has also been used in a high-bandwidth mode to collect data on the November, 1999, Leonid meteor shower.

  5. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  6. Non-contact screening system with two microwave radars in the diagnosis of sleep apnea-hypopnea syndrome.

    PubMed

    Kagawa, Masayuki; Ueki, Katsuhiko; Kurita, Akira; Tojima, Hirokazu; Matsui, Takemi

    2013-01-01

    There are two key problems in applying Doppler radar to a diagnosis system for sleep apnea-hypopnea syndrome. The first is noise associated with body movement and the second is the body position in bed and the change of the sleeping posture. We propose a new automatic gain control and a real-time radar-output channel selection method which is based on a spectrum shape analysis. There are three types of sleep apnea: central sleep apnea, obstructive sleep apnea and mixed sleep apnea. In this paper we paid attention to the obstructive sleep apnea and attempted to detect the disorder of corrugated shape compared with usual breathing or the paradoxical movement of the reversed phase with chest and abdominal radar signals. A prototype of the system was set up at a sleep disorder center in a hospital and field tests were carried out with eight subjects. Despite the subjects engaging in frequent body movements while sleeping, the system was quite effective in the diagnosis of sleep apnea-hypopnea syndrome (r=0.98). PMID:23920557

  7. Installation of a Permanent Doppler Radar Monitoring System at Colima Volcano, Mexico, and its use for Eruption Cloud Modelling

    NASA Astrophysics Data System (ADS)

    Scharff, L.; Hort, M. K.; Varley, N. R.; Herzog, M.

    2011-12-01

    In February 2007 we installed a standalone Doppler radar monitoring station at Colima volcano, Mexico. During that time, a new episode of dome growth was underway with daily Vulcanian eruptive events occurring. These were continuously recorded with the Doppler radar. In December 2008 we upgraded the monitoring station with a second Doppler radar, a network video camera, and a direct WLAN connection to the 28.5km distant Colima University, which allows us to remotely reconfigure the whole system in times of volcanic crises. A custom made data logger collects and stores all data at the station before transmitting data in packages to the office. The entire system is powered by solar panels. The camera is triggered by the Doppler radar that is aimed at the vent. In case an eruption is detected, the camera switches from taking pictures at arbitrary intervals to continuous video recording until the end of the eruption. Similarly the Doppler radar switches to a high sampling rate (15Hz). In 2007 we recorded 92 events during six months with durations of 20 to 200 seconds. The velocity spectra clearly show two regimes: (a) buoyant updraft with 20 to 60 seconds of constant velocities and a maximum of 20 m/s (vertical) and (b) series of pulses of intense jetting where every pulse lasts about 20s and starts with vertical velocities up to 85 m/s (measured ~75m above vent). Our deployment at Colima volcano is the first investigation of Vulcanian eruption column dynamics using Doppler radar. The data provide particle velocities and a proxy of the particles mass ~75m above the vent, which allows us to define the activity status in near real time during an eruption. Here we focus on the dynamic processes during the early stages of eruption cloud formation. Using (1) a simple ballistic model for particle transport and (2) the active tracer high-resolution atmospheric model (ATHAM) we model the first 100 m of cloud formation in 2D (axis-symmetric) and 3D. We constrain the initial conditions for both models trying to reproduce the dynamics measured by the radars. For this comparison synthetic Doppler radar data are calculated from the numerical models by converting particle properties (size, velocity, and backscatter-efficiency) into synthetic velocity spectra. First results show that pure ballistic transport of particles in a gas jet cannot reproduce the measured spectra. Eruption clouds are a major hazard to aviation. Hence real-time tracking and forecasting of ash clouds are increasingly important tasks in volcanology. In-situ measurements of the dynamics inside the developing cloud are needed to constrain the input parameters of the Volcanic Ash Advisory Center's (VAAC) numerical ash cloud dispersion models. Our aim is to directly deduce the initial conditions for an eruption column model or ash dispersal model from the radar data in near-real time.

  8. Solid-state radar transmitters

    NASA Astrophysics Data System (ADS)

    Ostroff, E. D.; Borkowski, M.; Thomas, H.; Curtis, J.

    The technology and design procedures for introducing transistors into radio transmitters are discussed. The design characteristics of solid-state radar transmitters are described, with emphasis given to power amplifier/modules and devices for summing the output power in space or in an output combiner. Some design issues related to power supplies, pulse waveform amplitude regulation; reliability; and cost; and also considered. Some examples of successful solid-state radar systems are described, including the AN/TPS-59 radar, the AN/SPS-40 system, and the Pave/PAWS phased array radar. Black and white photographs of the different systems are provided.

  9. Characterization of Mesoscale Convective Systems by Means of Composite Radar Reflectivity Data

    NASA Technical Reports Server (NTRS)

    Geerts, Bart

    1998-01-01

    A mesoscale convective system (MCS) is broadly defined as a cloud and precipitation system of mesoscale dimensions (often too large for most aircraft to circumnavigate) with deep-convective activity concentrated in at least part of the MCS, or present during part of its evolution. A large areal fraction of MCSs is stratiform in nature, yet estimates from MCSs over the Great Plains, the Southeast, and tropical waters indicate that at least half of the precipitation is of convective origin. The presence of localized convection is important, because within convective towers cloud particles and hydrometeors are carried upward towards the cloud top. Ice crystals then move over more stratiform regions, either laterally, or through in situ settling over decaying and spreading convection. These ice crystals then grow to precipitation-size particles in mid- to upper tropospheric mesoscale updrafts. The convective portion of a MCS is often a more or less continuous line of thunderstorms, and may be either short-lived or long-lived. Geerts (1997) presents a preliminary climatology of MCSs in the southeastern USA, using just one year of composite digital radar reflectivity data. In this study MCSs are identified and characterized by means of visual inspection of animated images. A total of 398 MCSs were identified. In the warm season MCSs were found to be about twice as frequent as in the cold season. The average lifetime and maximum length of MCSs are 9 hours, and 350 km, respectively, but some MCSs are much larger and more persistent. In the summer months small and short-lived MCSs are relatively more common, whereas in winter larger and longer-lived systems occur more frequently. MCSs occur more commonly in the afternoon, in phase with thunderstorm activity, but the amplitude of the diurnal cycle is small compared to that of observed thunderstorms. It is estimated that in the Southeast more than half of all precipitation and severe weather results from MCSs.

  10. Analysis of a rank-based radar detection system operating on real data

    NASA Astrophysics Data System (ADS)

    Reid, W. S.; Tschetter, K. D.; Johnson, R. M.

    The real versus theoretical behavior of the Federal Aviation Administration's new rank-based digital radar detector, the SRAP I, used in conjunction with their airport surveillance radars, is examined. By examining the behavior of the amplitude ranking process applied to the radar video as it is received in range, it is shown that the expected distribution-free type properties are achieved for each of the Airport Surveillance Radar video types. It is shown that the SRAP I's azimuth sequential observer 'integration' process operating in azimuth on the threshold rank outputs has a random component that can reasonably be modeled as a first-order Markov process which depends on the 'single lag' azimuth correlation of the threshold rank outputs. It is also shown, however, that there is another non-Markov component of false alarms, due in part to surface clutter and vehicular traffic in some regions, for which it is desirable to complement the correlation-based SRAP I control process with direct recursive control. Using each of the three Airport Surveillance Radar video types operating on regions containing some clutter, it is shown that the SRAP I's rank-based detection process outperforms the more standard mean level amplitude comparison-based detection process in terms of standard performance by about 3 dB signal to noise while being controlled to a probability of false alarm level of about 0.00001.

  11. The NASA radar entomology program at Wallops Flight Center

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  12. A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Jiang, Steve B; Li, Changzhi

    2011-01-01

    Respiratory gating and tumor tracking are two promising motion-adaptive lung cancer treatments, minimizing incidence and severity of normal tissues and precisely delivering radiation dose to the tumor. Accurate respiration measurement is important in respiratory-gated radiotherapy. Conventional gating techniques are either invasive to the body or bring insufficient accuracy and discomfort to the patients. In this paper, we present an accurate noncontact means of measuring respiration for the use in gated lung cancer radiotherapy. We also present an accurate tumor tracking technique for dynamical beam tracking radiotherapy. Two 2.4 GHz miniature radars were used to monitor the chest wall and abdominal movements simultaneously to get high resolution and enhanced parameter identification. Ray tracing technique was used to investigate the impact of antenna size in clinical practice. It is shown that our multiple radar system can reliably measure respiration signals for respiratory gating and accurate tumor tracking in motion-adaptive lung cancer radiotherapy. PMID:22254337

  13. Statistical average estimates of high latitude field-aligned currents from the STARE and SABRE coherent VHF radar systems

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Nielsen, E.

    Two bistatic VHF radar systems, STARE and SABRE, have been employed to estimate ionospheric electric fields in the geomagnetic latitude range 61.1 - 69.3° (geographic latitude range 63.8 - 72.6°) over northern Scandinavia. 173 days of good backscatter from all four radars have been analysed during the period 1982 to 1986, from which the average ionospheric divergence electric field versus latitude and time is calculated. The average magnetic field-aligned currents are computed using an AE-dependent empirical model of the ionospheric conductance. Statistical Birkeland current estimates are presented for high and low values of the Kp and AE indices as well as positive and negative orientations of the IMF B z component. The results compare very favourably to other ground-based and satellite measurements.

  14. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    NASA Astrophysics Data System (ADS)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers, altimeter, camera) and artificial intelligence. Finally it has more than 0.3 kg payload that can be used for further instruments. With respect to the conventional approach, that uses radar sensors on fixed locations, the system prototype composed of drone and Doppler radar is more flexible and would allow carrying out velocity measurements obtaining the whole transverse surface velocity profile during high flow and for inaccessible river sites as well. This information represents the boundary condition of the entropy model (Moramarco et al. 2004) able to turn the surface velocity in discharge, known the geometry of the river site. Nowadays the prototype is being implemented and the Doppler radar sensor is tested in a static way, i.e. the flow velocity accuracy is determined in real-case situations by comparing the sensor output with that of conventional instruments. The first flying test is planned shortly in some river sites of Tiber River in central Italy and based on the surface velocity survey the capability of the radar-drone prototype will be tested and the benefit in discharge assessment by using the entropy model will be verified. Alimenti, F., Placentino, F., Battistini, A., Tasselli, G., Bernardini, W., Mezzanotte, P., Rascio, D., Palazzari, V., Leone, S., Scarponi, A., Porzi, N., Comez, M. and Roselli, L. (2007). "A Low-Cost 24GHz Doppler Radar Sensor for Traffic Monitoring Implemented in Standard Discrete-Component Technology". Proceedings of the 2007 European Radar Conference (EuRAD 2007), pp. 162-165, Munich, Germany, 10-12 October 2007 Chiu, C. L. (1987). "Entropy and probability concepts in hydraulics". J. Hydr. Engrg., ASCE, 113(5), 583-600. Moramarco, T., Saltalippi, C., Singh, V.P.(2004). "Estimation of mean velocity in natural channels based on Chiu's velocity distribution equation", Journal of Hydrologic Engineering, 9 (1), pp. 42-50

  15. Use of the X-Band Radar to Support the Detection of In-Flight Icing Hazards by the NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew

    2009-01-01

    The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.

  16. Development of a passive VHF radar system using software-defined radio for equatorial plasma instability studies

    NASA Astrophysics Data System (ADS)

    Tuysuz, B.; Urbina, J.; Lind, F. D.

    2013-07-01

    In this paper, a bistatic passive radar receiver system named "Coherent-scatter Atmospheric Passive Radar Imager (CAPRI)" is described. It is primarily designed to study the dynamics of the upper atmosphere by utilizing "transmitters of opportunity" as the RF target illuminators. CAPRI is constructed using the open source software-defined radio toolkit, GNU Radio, to meet the signal processing requirements in combination with the open source hardware, Universal Software Radio Peripheral 2, for data acquisition. The resultant system is highly flexible, and we present the details of the design as well as a performance analysis. CAPRI will be deployed in Peru, near the magnetic equator, for long-term operations in the area. FM stations near Lima, Peru, will be utilized with the targets of interest being the equatorial electrojet and the spread F. The results will then be compared to the Jicamarca Unattended Long-term investigations of the Ionosphere and Atmosphere (JULIA) radar data, and CAPRI will be used to improve the simultaneous time and spatial coverage in the region in a more cost-effective manner.

  17. Case study of Mesoscale Convective Systems over Hungary on 29 June 2006 with satellite, radar and lightning data

    NASA Astrophysics Data System (ADS)

    Putsay, Mária; Szenyán, Ildikó; Simon, André

    On 29 June 2006 two Mesoscale Convective Systems (MCS) crossed Hungary causing severe weather, heavy precipitation, hail and strong wind. The first MCS transformed to a Mesoscale Convective Vortex (MCV) in its dissipating phase. The case was analyzed using different remote sensing devices: satellites, radars and a lightning detection system. Visible images from the METEOSAT-8 satellite were used to discriminate thin and thick parts of the anvil and to identify the overshooting tops. Structures like cold rings and cold-U/V shapes detected from infrared imagery indicate possible penetration of the storm top into the tropopause or lower stratosphere. The near and medium infrared solar channels (and some thermal IR channel differences) provide information on cloud top microphysics. The spatial distribution of the cloud top ice crystal size was investigated with the use of the so called "convective storms" composite imagery obtained from brightness temperature and reflectivity differences of water vapor, infrared and short-wave channels. The MODIS band 1 (0.645 µm) image of the TERRA satellite shows gravity wave generation at the top of the thunderstorm cloud, which could be connected to the strength and pulsations of the updraft. Satellite images were overlaid with radar reflectivities, which are characterized by an asymmetric bow echo. It is concluded that composites of satellite, radar and lightning data help to assess relative locations of main up- and downdrafts and important features of the severe storm.

  18. Proposed experiment to detect air showers with the Jicamarca radar system

    NASA Astrophysics Data System (ADS)

    Vinogradova, T.; Chapin, E.; Gorham, P.; Saltzberg, D.

    2001-07-01

    When an extremely high energy particle interacts in the atmosphere, the collision induces a multiplicative cascade of charged particles, which grows exponentially until the energy per secondary degrades enough to dissipate in ionization of the surrounding air. During this process the compact cloud of energetic secondary particles travels 10-20 km through the atmosphere, leaving a column of ionization behind it. This ionized column quickly recombines, but for a period of order 0.1 ms it is highly reflective at frequencies below 100 MHz. This ionization trail, which is comparable in ionization density to that of a micro-meteor, should be clearly detectable using standard radar methods. We propose radar measurements using the facilities operated by Cornell University and the Instituto Geofisico del Peru (IGP) at the Jicamarca Radio Observatory near Lima, Peru. This facility's primary instrument is 49.92 MHz incoherent scatter radar, transmitting up to 1.5 MW of pulse power. .

  19. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Global mapping strategies for a synthetic aperture radar system in orbit about Venus

    NASA Technical Reports Server (NTRS)

    Kerridge, S. J.

    1980-01-01

    An analysis of the global mapping of Venus using a synthetic aperture radar (SAR) is presented. The geometry of the side-looking radar, the narrow swath width, and the slow rotation of Venus combine to constrain the methods required to produce such a map within the primary mapping mission of 121.5 days. Parametric studies indicate that multiple strategies can satisfy the requirements of the mission with reasonable assumptions for the total recording capacity, the downlink data rate, and the operating time of the SAR on each revolution.

  1. A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements

    NASA Astrophysics Data System (ADS)

    Marino, Richard M.; Stephens, Timothy; Hatch, Robert E.; McLaughlin, Joseph L.; Mooney, James G.; O'Brien, Michael E.; Rowe, Gregory S.; Adams, Joseph S.; Skelly, Luke; Knowlton, Robert C.; Forman, Stephen E.; Davis, W. R.

    2003-08-01

    MIT Lincoln Laboratory continues the development of novel high-resolution 3D imaging laser radar technology and sensor systems. The sensor system described in detail here uses a passively Q-switched solid-state frequency-doubled Nd:YAG laser to transmit short laser pulses (~ 700 ps FWHM) at 532 nm wavelength and derive the range to target surface element by measuring the time-of-flight for each pixel. The single photoelectron detection efficiency has been measured to be > 20 % using these Silicon Geiger-mode APDs at room temperature. The pulse out of the detector is used to stop a > 500 MHz digital clock integrated within the focal-plane array. With appropriate optics, the 32x32 array of digital time values represents a 3D spatial image frame of the scene. Successive image frames from the multi-kilohertz pulse repetition rate laser pulses are accumulated into range histograms to provide 3D volume and intensity information. In this paper, we report on a prototype sensor system, which has recently been developed using new 32x32 arrays of Geiger-mode APDs with 0.35 μm CMOS digital timing circuits at each pixel. Here we describe the sensor system development and present recent measurements of laboratory test data and field imagery.

  2. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  3. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  4. Maritime surveillance with synthetic aperture radar (SAR) and automatic identification system (AIS) onboard a microsatellite constellation

    NASA Astrophysics Data System (ADS)

    Peterson, E. H.; Zee, R. E.; Fotopoulos, G.

    2012-11-01

    New developments in small spacecraft capabilities will soon enable formation-flying constellations of small satellites, performing cooperative distributed remote sensing at a fraction of the cost of traditional large spacecraft missions. As part of ongoing research into applications of formation-flight technology, recent work has developed a mission concept based on combining synthetic aperture radar (SAR) with automatic identification system (AIS) data. Two or more microsatellites would trail a large SAR transmitter in orbit, each carrying a SAR receiver antenna and one carrying an AIS antenna. Spaceborne AIS can receive and decode AIS data from a large area, but accurate decoding is limited in high traffic areas, and the technology relies on voluntary vessel compliance. Furthermore, vessel detection amidst speckle in SAR imagery can be challenging. In this constellation, AIS broadcasts of position and velocity are received and decoded, and used in combination with SAR observations to form a more complete picture of maritime traffic and identify potentially non-cooperative vessels. Due to the limited transmit power and ground station downlink time of the microsatellite platform, data will be processed onboard the spacecraft. Herein we present the onboard data processing portion of the mission concept, including methods for automated SAR image registration, vessel detection, and fusion with AIS data. Georeferencing in combination with a spatial frequency domain method is used for image registration. Wavelet-based speckle reduction facilitates vessel detection using a standard CFAR algorithm, while leaving sufficient detail for registration of the filtered and compressed imagery. Moving targets appear displaced from their actual position in SAR imagery, depending on their velocity and the image acquisition geometry; multiple SAR images acquired from different locations are used to determine the actual positions of these targets. Finally, a probabilistic inference model combines the SAR target data with transmitted AIS data, taking into account nearest-neighbor position matches and uncertainty models of each observation.

  5. A new approach to increase the two-dimensional detection probability of CSI algorithm for WAS-GMTI mode

    NASA Astrophysics Data System (ADS)

    Yan, H.; Zheng, M. J.; Zhu, D. Y.; Wang, H. T.; Chang, W. S.

    2015-07-01

    When using clutter suppression interferometry (CSI) algorithm to perform signal processing in a three-channel wide-area surveillance radar system, the primary concern is to effectively suppress the ground clutter. However, a portion of moving target's energy is also lost in the process of channel cancellation, which is often neglected in conventional applications. In this paper, we firstly investigate the two-dimensional (radial velocity dimension and squint angle dimension) residual amplitude of moving targets after channel cancellation with CSI algorithm. Then, a new approach is proposed to increase the two-dimensional detection probability of moving targets by reserving the maximum value of the three channel cancellation results in non-uniformly spaced channel system. Besides, theoretical expression of the false alarm probability with the proposed approach is derived in the paper. Compared with the conventional approaches in uniformly spaced channel system, simulation results validate the effectiveness of the proposed approach. To our knowledge, it is the first time that the two-dimensional detection probability of CSI algorithm is studied.

  6. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  7. Radar network communication through sensing of frequency hopping

    DOEpatents

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  8. Cognitive processing for nonlinear radar

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Hedden, Abigail; Mazzaro, Gregory; McNamara, David

    2013-05-01

    An increasingly cluttered electromagnetic environment (EME) is a growing problem for radar systems. This problem is becoming critical as the available frequency spectrum shrinks due to growing wireless communication device usage and changing regulations. A possible solution to these problems is cognitive radar, where the cognitive radar learns from the environment and intelligently modifies the transmit waveform. In this paper, a cognitive nonlinear radar processing framework is introduced where the main components of this framework consist of spectrum sensing processing, target detection and classification, and decision making. The emphasis of this paper is to introduce a spectrum sensing processing technique that identifies a transmit-receive frequency pair for nonlinear radar. It will be shown that the proposed technique successfully identifies a transmit-receive frequency pair for nonlinear radar from data collected from the EME.

  9. Investigation of laser radar systems based on mid-infrared semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Rybaltowski, Adam

    This dissertation deals with the possibility of utilizing mid-infrared semiconductor lasers in systems of optical remote sensing with range resolution, called laser radar or lidar. The main subject investigated in this dissertation is two-fold: firstly, an analysis of the signal-to-noise ratio (SNR) and related maximum sensing range calculations in this type of lidar based on available system components, and---secondly---improvements in the Random-Modulation Continuous-Wave (RM-CW) lidar technique to better utilize available mid-infrared semiconductor lasers. As far as the SNR analysis is concerned, an appropriate framework has been constructed to analyze post-demodulation noise in mid-infrared direct-detection RM-CW lidar. It is based on a generalization of the Wiener-Khintchine theorem; noise is assumed to be additive, stationary, and have an arbitrary power spectrum. This is in contrast to the SNR analysis in the literature on this subject, which is inadequate for mid-infrared RM-CW lidar as it only considers Poissonian fluctuations of the number of detected photons. In addition to regular SNR analysis, the framework derived in this dissertation allows treatment of singularities such as demodulation with an unbalanced sequence in 1/f noise. To calculate maximum lidar sensing range, the following detection limits have been considered: signal shot noise, background blackbody radiation shot noise based on the Background-Limited Photodetection (BLIP) detectivity limit, and minimum-size detector noise given by diffraction-limited focusing. The latter is found to be of greatest practical interest. Furthermore, a lidar figure of merit has been introduced, and all quantities related to lidar performance and its detection limits have been presented graphically. Since pseudo-random sequences discussed in the literature have been found highly non-optimal for most applications of RM-CW lidar, a framework for the construction of new pseudo-random sequences of desired correlation properties has been introduced. As an example, a new pseudo-random sequence has been devised, and shown to have significantly improved and nearly-ideal signal and noise properties. Also, a novel scheme of continuous-wave Differential Absorption Lidar (DIAL) using only one transmitter and one receiver has been proposed, which combined with its minimal baseband signal modulation requirements should lead to greatly simplified and improved practical chemical-sensing lidar. The results of this dissertation prove the feasibility of mid-infrared semiconductor laser based lidar in many important applications, and provide an analytical framework to advance their practical realization. The most immediate applications of this work are expected in remote detection of noxious airborne biological and chemical substances, and in automobile collision avoidance systems.

  10. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  11. Research relative to weather radar measurement techniques

    NASA Astrophysics Data System (ADS)

    Smith, Paul L.

    1992-08-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  12. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  13. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  14. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  15. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  16. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  17. Development of a GPS-aided motion measurement, pointing, and stabilization system for a Synthetic Aperture Radar. [Global Positioning System (GPS)

    SciTech Connect

    Fellerhoff, J.R.; Kohler, S.M.

    1991-01-01

    An advanced Synthetic Aperture Radar Motion Compensation System has been developed by Sandia National Laboratories (SNL). The system includes a miniaturized high accuracy ring laser gyro inertial measurement unit, a three axis gimbal pointing and stabilization assembly, a differential Global Positioning System (GPS) navigation aiding system, and a pilot guidance system. The system provides several improvements over previous SNL motion compensation systems and is capable of antenna stabilization to less than 0.01 degrees RMS and absolute position measurement to less than 5.0 meters RMS. These accuracies have been demonstrated in recent flight testing aboard a DHC-6-300 Twin Otter'' aircraft.

  18. Antenna System of the NASA Wind Spacecraft Measured with the Russian Radar Facility "Sura"

    NASA Technical Reports Server (NTRS)

    Belov, Yu.; Tokarev, Yu.; Kaiser, M.; Reiner, M.; Kellog, P.; Manning, B.

    1997-01-01

    Recent (November 1996) joint experiments between the Russian radar facility "Sura" and the NASA Wind spacecraft have permitted us to measure the antenna patterns of two orthogonal dipoles mounted on the spacecraft and to determine the polarization state of the radar array. Both findings were produced by direct measurements. The Wind antenna operating frequency range is 1.075 to 13.825 MHz. The spacecraft is spinning around its Z axis and a dipole "Z" is oriented along this axis and another dipole "Z" is in the plane normal to Z which coincides with the ecliptic plane. Three modes of Wind antenna operation were used: the Y signal added with the Z signal, the Y signal phased shifted by 90 deg added with the Z signal, as well as the Z signal itself. These three Wind antenna modes permit measurement of the Stokes parameters of the radiation.

  19. An airport wind shear detection and warning system using Doppler radar: A feasibility study

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Blick, E. F.; Elmore, K. L.

    1981-01-01

    A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path.

  20. A highly capable arbitrary waveform generator for next generation radar systems

    NASA Technical Reports Server (NTRS)

    Chuang, Ernie; Hensley, Scott; Wheeler, Kevin

    2006-01-01

    We are developing an Arbitrary Waveform Generator (AWG) to provide enhanced capability for radar applications. The current design will accommodate two waveform generators on a single unit for dual frequency operation. The basic architecture of this unit employs a Field Programmable Gate Array (FPGA) and a high speed and high precision Digital to Analog Converter (DAC) for direct digital synthesis. This AWG will be capable of up to 450 MHz bandwidth with ability for frequency notching. Phase fidelity of less than 1.2(sup o) deviation RMS is also achievable. This AWG operates with lower power consumption as compared with other waveform generators, which is advantageous for future spaceborne applications. This will enable radars to return higher precision data, to be reduced in complexity, and to operate in any band without interfering with dedicated bandwidths.

  1. Detection of 3D tree root systems using high resolution ground penetration radar

    NASA Astrophysics Data System (ADS)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The demonstrated approach is a promising tool for semi-linear root detection, whereas advanced 3D processing and migration is needed for more complicated root structures.

  2. Advanced simulation of eye-safe imaging laser radar for range estimation, system comparison, and design process

    NASA Astrophysics Data System (ADS)

    Schael, Ulrich; Rothe, Hendrik

    2003-05-01

    The development of eye-safe, imaging, scannerless laser radar systems based on gated viewing with a range of some hundred meters is difficult due to the lack of fast and amplifiable detector arrays for wavelengths in the near infrared (NIR). Nevertheless, one basic approach is to gate an InGaAs-FPA-camera with an electro-optical modulator (EOM) in the range of about 30 ns to achieve a sufficient resolution of depth. The laser radar works with a Nd:YAG-OPO laser of 1574 nm wavelength, 7 ns pulse length, and 25 Hz pulse frequency. Because of the EOM in conjunction with an adapted lens design and the resolution of 128 by 128 pixels FPA, the main interest is object detection. This requires imaging with optimized system performance to reach further target distances. In this paper, we present the simulation of the current system. Comparison of simulation data with indoor measurements is shown by the calculation of range images from a sequence of range slices. We discuss advantages of this simulation for range estimation, system comparison and design process.

  3. Review of United Kingdom radar

    NASA Astrophysics Data System (ADS)

    Clarke, J.; Davies, D. E. N.; Radford, M. F.

    1984-09-01

    A review of primary radar systems in the United Kingdom that have recently entered service or are at an advanced stage of development is presented. Naval, airborn, and land-based types are all discussed covering both civil and military interests, although particular emphasis is given to airborne equipments. Some general supporting radar technology including university programs is also covered.

  4. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  5. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    PubMed Central

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  6. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  7. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  8. Modelling the performance of USV manoeuvring and target tracking: an approach using frequency modulated continuous wave radar rotary system.

    PubMed

    Onunka, Chiemela; Nnadozie, Remigius Chidozie

    2013-12-01

    The performance of frequency modulated continuous wave (FMCW) radar in tracking targets is presented and analysed. Obstacle detection, target tracking and radar target tracking performance models are developed and were used to investigate and to propose ways of improving the autonomous motion of unmanned surface vehicle (USV). Possible factors affecting the performance of FMCW radar in tracking targets are discussed and analysed. PMID:23853743

  9. System and method for measuring ocean surface currents at locations remote from land masses using synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E. (Inventor)

    1991-01-01

    A system for measuring ocean surface currents from an airborne platform is disclosed. A radar system having two spaced antennas wherein one antenna is driven and return signals from the ocean surface are detected by both antennas is employed to get raw ocean current data which are saved for later processing. There are a pair of global positioning system (GPS) systems including a first antenna carried by the platform at a first location and a second antenna carried by the platform at a second location displaced from the first antenna for determining the position of the antennas from signals from orbiting GPS navigational satellites. Data are also saved for later processing. The saved data are subsequently processed by a ground-based computer system to determine the position, orientation, and velocity of the platform as well as to derive measurements of currents on the ocean surface.

  10. A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network

    NASA Astrophysics Data System (ADS)

    Barrick, Donald; Fernandez, Vicente; Ferrer, Maria I.; Whelan, Chad; Breivik, Øyvind

    2012-05-01

    In order to address the need for surface trajectory forecasts following deployment of coastal HF radar systems during emergency-response situations (e.g., search and rescue, oil spill), a short-term predictive system (STPS) based on only a few hours data background is presented. First, open-modal analysis (OMA) coefficients are fitted to 1-D surface currents from all available radar stations at each time interval. OMA has the effect of applying a spatial low-pass filter to the data, fills gaps, and can extend coverage to areas where radial vectors are available from a single radar only. Then, a set of temporal modes is fitted to the time series of OMA coefficients, typically over a short 12-h trailing period. These modes include tidal and inertial harmonics, as well as constant and linear trends. This temporal model is the STPS basis for producing up to a 12-h current vector forecast from which a trajectory forecast can be derived. We show results of this method applied to data gathered during the September 2010 rapid-response demonstration in northern Norway. Forecasted coefficients, currents, and trajectories are compared with the same measured quantities, and statistics of skill are assessed employing 16 24-h data sets. Forecasted and measured kinetic variances of the OMA coefficients typically agreed to within 10-15%. In one case where errors were larger, strong wind changes are suspected and examined as the cause. Sudden wind variability is not included properly within the STPS attack we presently employ and will be a subject for future improvement.

  11. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    NASA Astrophysics Data System (ADS)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  12. Wearable system-on-a-chip UWB radar for health care and its application to the safety improvement of emergency operators.

    PubMed

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; De Rossi, Danilo; Lanatà, Antonio; Tognetti, Alessandro; Scilingo, Enzo Pasquale

    2007-01-01

    A new wearable system-on-a-chip UWB radar for health care systems is presented. The idea and its applications to the safety improvement of emergency operators are discussed. The system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is explained hereinafter. The results obtained by the feasibility study regarding its implementation on a modern standard silicon technology (CMOS 90 nm) are reported, demonstrating (at simulation level) the effectiveness of such an approach and enabling the standard silicon technology for new generations of wireless sensors for heath care and safeguard wearable systems. PMID:18002540

  13. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California

    USGS Publications Warehouse

    Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A.

    1998-01-01

    Interferometric synthetic aperture radar (InSAR) has great potential to detect and quantify land subsidence caused by aquifer system compaction. InSAR maps with high spatial detail and resolution of range displacement (??10 mm in change of land surface elevation) were developed for a groundwater basin (~103 km2) in Antelope Valley, California, using radar data collected from the ERS-1 satellite. These data allow comprehensive comparison between recent (1993-1995) subsidence patterns and those detected historically (1926-1992) by more traditional methods. The changed subsidence patterns are generally compatible with recent shifts in land and water use. The InSAR-detected patterns are generally consistent with predictions based on a coupled model of groundwater flow and aquifer system compaction. The minor inconsistencies may reflect our imperfect knowledge of the distribution and properties of compressible sediments. When used in conjunction with coincident measurements of groundwater levels and other geologic information, InSAR data may be useful for constraining parameter estimates in simulations of aquifer system compaction.

  14. Observations of temperature profiles by 443 MHz wind profiling radar using a radio acoustic sounding system in Okinawa

    NASA Astrophysics Data System (ADS)

    Shinoda, Tomonori; Furumoto, Jun-Ichi; Satoh, Shinsuke; Nagai, Seiji; Murayama, Yasuhiro; Tsuda, Toshitaka

    2011-06-01

    The present study is devoted to developing a radio acoustic sounding system (RASS) for the 443 MHz wind profiling radar (443 MHz WPR) installed at the Ogimi Wind Profiler Facility of the National Institute of Information and Communications Technology (NICT) in Okinawa, Japan.We used four fixed horns attached to the sides of the 443 MHz WPR antenna. Additional 15 portable horn speakers were also installed to transmit acoustic waves at frequencies of 900-1050 Hz, which is suitable for the 443 MHz WPR with RASS (443 MHz WPR/RASS) observation.We also developed the software to switch active speakers adaptively by considering the real-time raytracing results of acoustic wavefronts. In the software, four fixed speakers are always activated and several portable speakers are selectively used in order to efficiently obtain strong RASS echoes.Aiming at unmanned operation of the 443 MHz WPR/RASS, a remote control and monitoring system for 443 MHz WPR/RASS observation and a data processing system to derive virtual temperature profiles were developed.Virtual temperature profiles obtained using the 443 MHz WPR/RASS were evaluated by comparison with the data from radiosondes launched from the radar site in 2006.

  15. The gust-front detection and wind-shift algorithms for the Terminal Doppler Weather Radar system

    NASA Technical Reports Server (NTRS)

    Hermes, Laurie G.; Witt, Arthur; Smith, Steven D.; Klingle-Wilson, Diana; Morris, Dale; Stumpf, Gregory J.; Eilts, Michael D.

    1993-01-01

    The Federal Aviation Administration's (FAA) Terminal Doppler Weather Radar (TDWR) system was primarily designed to address the operational needs of pilots in the avoidance of low-altitude wind shears upon takeoff and landing at airports. One of the primary methods of wind-shear detection for the TDWR system is the gust-front detection algorithm. The algorithm is designed to detect gust fronts that produce a wind-shear hazard and/or sustained wind shifts. It serves the hazard warning function by providing an estimate of the wind-speed gain for aircraft penetrating the gust front. The gust-front detection and wind-shift algorithms together serve a planning function by providing forecasted gust-front locations and estimates of the horizontal wind vector behind the front, respectively. This information is used by air traffic managers to determine arrival and departure runway configurations and aircraft movements to minimize the impact of wind shifts on airport capacity. This paper describes the gust-front detection and wind-shift algorithms to be fielded in the initial TDWR systems. Results of a quantitative performance evaluation using Doppler radar data collected during TDWR operational demonstrations at the Denver, Kansas City, and Orlando airports are presented. The algorithms were found to be operationally useful by the FAA airport controllers and supervisors.

  16. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  17. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  18. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on...

  19. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  20. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....