Science.gov

Sample records for gnl flottante shell

  1. GNL3L Is a Nucleo-Cytoplasmic Shuttling Protein: Role in Cell Cycle Regulation

    PubMed Central

    Thoompumkal, Indu Jose; Mahalingam, Sundarasamy

    2015-01-01

    GNL3L is an evolutionarily conserved high molecular weight GTP binding nucleolar protein belonging to HSR1-MMR1 subfamily of GTPases. The present investigation reveals that GNL3L is a nucleo-cytoplasmic shuttling protein and its export from the nucleus is sensitive to Leptomycin B. Deletion mutagenesis reveals that the C-terminal domain (amino acids 501–582) is necessary and sufficient for the export of GNL3L from the nucleus and the exchange of hydrophobic residues (M567, L570 and 572) within the C-terminal domain impairs this process. Results from the protein-protein interaction analysis indicate that GNL3L interaction with CRM1 is critical for its export from the nucleus. Ectopic expression of GNL3L leads to lesser accumulation of cells in the ‘G2/M’ phase of cell cycle whereas depletion of endogenous GNL3L results in ‘G2/M’ arrest. Interestingly, cell cycle analysis followed by BrdU labeling assay indicates that significantly increased DNA synthesis occurs in cells expressing nuclear export defective mutant (GNL3L∆NES) compared to the wild type or nuclear import defective GNL3L. Furthermore, increased hyperphosphorylation of Rb at Serine 780 and the upregulation of E2F1, cyclins A2 and E1 upon ectopic expression of GNL3L∆NES results in faster ‘S’ phase progression. Collectively, the present study provides evidence that GNL3L is exported from the nucleus in CRM1 dependent manner and the nuclear localization of GNL3L is important to promote ‘S’ phase progression during cell proliferation. PMID:26274615

  2. GNL3 and SKA3 are novel prostate cancer metastasis susceptibility genes.

    PubMed

    Lee, Minnkyong; Williams, Kendra A; Hu, Ying; Andreas, Jonathan; Patel, Shashank J; Zhang, Suiyuan; Crawford, Nigel P S

    2015-12-01

    Prostate cancer (PC) is very common in developed countries. However, the molecular determinants of PC metastasis are unclear. Previously, we reported that germline variation influences metastasis in the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of PC. These mice develop prostate tumors similar to a subset of poor outcome, treatment-associated human PC tumors. Here, we used TRAMP mice to nominate candidate genes and validate their role in aggressive human PC in PC datasets and cell lines. Candidate metastasis susceptibility genes were identified through quantitative trait locus (QTL) mapping in 201 (TRAMP × PWK/PhJ) F2 males. Two metastasis-associated QTLs were identified; one on chromosome 12 (LOD = 5.86), and one on chromosome 14 (LOD = 4.41). Correlation analysis using microarray data from (TRAMP × PWK/PhJ) F2 prostate tumors identified 35 metastasis-associated transcripts within the two loci. The role of these genes in susceptibility to aggressive human PC was determined through in silico analysis using multiple datasets. First, analysis of candidate gene expression in two human PC datasets demonstrated that five candidate genes were associated with an increased risk of aggressive disease and lower disease-free survival. Second, four of these genes (GNL3, MAT1A, SKA3, and ZMYM5) harbored SNPs associated with aggressive tumorigenesis in the PLCO/CGEMS GWAS of 1172 PC patients. Finally, over-expression of GNL3 and SKA3 in the PC-3 human PC cell line decreased in vitro cell migration and invasion. This novel approach demonstrates how mouse models can be used to identify metastasis susceptibility genes, and gives new insight into the molecular mechanisms of fatal PC. PMID:26429724

  3. Potato chip intake increases ascorbic acid levels and decreases reactive oxygen species in SMP30/GNL knockout mouse tissues.

    PubMed

    Kondo, Yoshitaka; Sakuma, Rui; Ichisawa, Megumi; Ishihara, Katsuyuki; Kubo, Misako; Handa, Setsuko; Mugita, Hiroyuki; Maruyama, Naoki; Koga, Hidenori; Ishigami, Akihito

    2014-09-24

    Potato chips (PC) contain abundant amounts of the free radical scavenger ascorbic acid (AA) due to the rapid dehydration of potato tubers (Solanum tuberosum) that occurs during frying. To evaluate the antioxidant activity of PC, this study examined reactive oxygen species (ROS) levels in tissues from SMP30/GNL knockout (KO) mice that cannot synthesize AA and determined AA and ROS levels after the animals were fed 20 and 10% PC diets for 7 weeks. Compared with AA-sufficient mice, AA-depleted SMP30/GNL KO mice showed high ROS levels in tissues. SMP30/GNL KO mice fed a PC diet showed high AA and low ROS levels in the brain, heart, lung, testis, soleus muscle, plantaris muscle, stomach, small intestine, large intestine, eyeball, and epididymal fat compared with AA-depleted mice. The data suggest that PC intake increases AA levels and enhances ROS scavenging activity in tissues of SMP30/GNL KO mice, which are a promising model for evaluating the antioxidant activity of foods. PMID:25180784

  4. Constraints on fNL and gNL from the analysis of the N-pdf of the CMB large-scale anisotropies

    NASA Astrophysics Data System (ADS)

    Vielva, P.; Sanz, J. L.

    2010-05-01

    In this paper, we extend a previous work where we presented a method based on the N-point probability density function (pdf) to study the Gaussianity of the cosmic microwave background (CMB). We explore a local non-linear perturbative model up to third order as a general characterization of the CMB anisotropies. We focus our analysis in large-scale anisotropies (θ > 1°). At these angular scales (the Sachs-Wolfe regime), the non-Gaussian description proposed in this work defaults (under certain conditions) to an approximated local form of the weak non-linear coupling inflationary model. In particular, the quadratic and cubic terms are governed by the non-linear coupling parameters fNL and gNL, respectively. The extension proposed in this paper allows us to directly constrain these non-linear parameters. Applying the proposed methodology to Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data, we obtain -5.6 × 105 < gNL < 6.4 × 105, at 95 per cent confidence level. This result is in agreement with previous findings obtained for equivalent non-Gaussian models and with different non-Gaussian estimators, although this is the first direct constraint on gNL from CMB data. A model selection test is performed, indicating that a Gaussian model (i.e. fNL ≡ 0 and gNL ≡ 0) is preferred to the non-Gaussian scenario. When comparing different non-Gaussian models, we observe that a pure fNL model (i.e. gNL ≡ 0) is the most favoured case and that a pure gNL model (i.e. fNL ≡ 0) is more likely than a general non-Gaussian scenario (i.e. fNL ≠ 0 and gNL ≠ 0). Finally, we have analysed the WMAP data in two independent hemispheres, in particular the ones defined by the dipolar pattern found by Hoftuft et al. We show that, whereas the gNL value is compatible between both hemispheres, it is not the case for fNL (with a p-value of ~0.04). However, if, as suggested by Hoftuft et al., anisotropy of the data is assumed, the distance between the likelihood distributions for

  5. MVC Shell

    SciTech Connect

    Benz, Zachary; McCain, Jonathan; Bauer, Travis

    2008-06-03

    Provides the shell of a plugin based application environment that builds on MVC Framework to allow one to rapidly construct an application by using a collection of plugins. The MVC Shell is implemented in C# as a .NET 2.0 application that can then be used as a shell for building a plugin based application. The infrastructure allows for dynamically processing a specified collection of plugins in order to determine the functionality of the application, where all plugins operate within the context of the underlying MVC Framework environment.

  6. MVC Shell

    Energy Science and Technology Software Center (ESTSC)

    2008-06-03

    Provides the shell of a plugin based application environment that builds on MVC Framework to allow one to rapidly construct an application by using a collection of plugins. The MVC Shell is implemented in C# as a .NET 2.0 application that can then be used as a shell for building a plugin based application. The infrastructure allows for dynamically processing a specified collection of plugins in order to determine the functionality of the application, wheremore » all plugins operate within the context of the underlying MVC Framework environment.« less

  7. Shelled opisthobranchs.

    PubMed

    Mikkelsen, Paula M

    2002-01-01

    In his contributions to the monographic series "Manual of Conchology", Henry Pilsbry reviewed the subgroup Tectibranchiata, comprising those opisthobranch snails that (at least primitively) still possess a shell (Pilsbry, 1894-1896). Exemplified by the Cephalaspidea (bubble shells), others included in this group at Pilsbry's time and since were Anaspidea (sea hares) and the shelled members of Notaspidea (side-gilled slugs) and Sacoglossa (leaf slugs). Pilsbry (and others since his time) considered tectibranchs to be the "root stock" from which more advanced gastropods such as Nudibranchia and Pulmonata were derived. Tectibranch systematics is firmly based on conchology and most species were originally described from empty shells. However, soft-anatomical characters were acknowledged quite early on as equally important in tectibranchs, due to the reduction of their shells and their evolutionary proximity to unshelled gastropods. Today, Tectibranchiata is not recognized as a natural taxon although the word "tectibranch" (like "prosobranch" and "mesogastropod") continues in vernacular use. Shelled opisthobranchs have been redistributed among various taxa, including several new ones--the unresolved basal opisthobranchs (Architectibranchia) and the "lower Heterobranchia", an enigmatic and currently much-studied group of families considered basal to all of Euthyneura (Opisthobranchia and landsnails (Pulmonata)). Despite their polyphyletic status, shelled opisthobranchs remain important subjects in evolutionary studies of gastropods--as the most basal members of nearly every opisthobranch clade and as organisms with mosaic combinations of primitive and derived features within evolutionary "trends" (e.g., loss of the shell, detorsion, concentration of the nervous system, ecological specialization, etc.). Although they play a pivotal role, the shelled opisthobranchs have received minimal attention in more comprehensive gastropod studies, often relegated to token

  8. Shell Games.

    ERIC Educational Resources Information Center

    Atkinson, Bill

    1982-01-01

    The author critiques the program design and educational aspects of the Shell Games, a program developed by Apple Computer, Inc., which can be used by the teacher to design objective tests for adaptation to specific assessment needs. (For related articles, see EC 142 959-962.) (Author)

  9. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  10. Building Atoms Shell by Shell.

    ERIC Educational Resources Information Center

    Sussman, Beverly

    1993-01-01

    Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…

  11. Shell worlds

    NASA Astrophysics Data System (ADS)

    Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.

    2013-02-01

    The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications

  12. Shell Worlds: The Question of Shell Stability

    NASA Astrophysics Data System (ADS)

    Roy, K. L.; Kennedy, R. G., III; Fields, D. E.

    The initial idea of shell worlds was first proposed in the January 2009 edition of JBIS. In that paper the stability of the shell around a central world was not discussed at any length except to say that it was stable due to forces induced by gravity. This paper demonstrates in a qualitative and quantitative manner that a material shell supported by atmospheric pressure around a moon or small planet is indeed stable and does not require active measures to remain centered, provided that the central body is large enough. The minimal size of the central body to provide this stability is discussed.

  13. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  14. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  15. Imperfection Insensitive Thin Shells

    NASA Astrophysics Data System (ADS)

    Ning, Xin

    The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century. This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells. Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression

  16. Iridescence color of shells

    NASA Astrophysics Data System (ADS)

    Liu, Yan

    2002-06-01

    Some shells from both salt water and fresh water show the phenomenon of iridescence color. Pearls and mother-of-pearls also display this phenomenon. In the past, the cause of the iridescence color was attributed to interference. A scanning electron microscope (SEM) was used to study the surface structure of the shell of the mollusk Pinctada Margaritifera. There is a groove structure of reflection grating on the surface area in where the iridescence color appears. An optic experiment with a laser obtained a diffraction pattern produced by the reflection grating structure of the shell. The study led to a conclusion that the iridescence color of the shell is caused by diffraction. A SEM image of the shells of an abalone Haliotis Rufescens (red abalone) showed a statistically regularly arranged tile structure that serves as a two-dimensional grating. This grating structure causes the iridescence color of the shell of red abalone. The dominant color of the iridescence of shells is caused by the uneven grating efficiency in the visible wavelength range when a shell functions as a reflection grating. The wavelength of the dominant color should be at or near the wavelength of the maximum efficiency of the grating.

  17. Cohesive Elements for Shells

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert

    2007-01-01

    A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.

  18. Applications of spherical shells

    NASA Technical Reports Server (NTRS)

    Wang, T. G.

    1985-01-01

    A new technique of producing hollow spheres of many materials at a very rapid rate, at very low cost, and with high reproducibility of shell diameter and wall thickness has been developed. Shells formed of metal or of other solid materials are expected to find numerous technical and industrial applications. For example, metal shells might be used as inertial confinement fusion targets, or as the principal constituents in lightweight structural materials for NASA Space Stations or DOD large antennas and mirrors, or be employed as containers for phase-change heat-storage media, or serve as containers for hazardous materials, or be employed as catalytic surface agents.

  19. Failure of Viral Shells

    NASA Astrophysics Data System (ADS)

    Klug, William S.; Bruinsma, Robijn F.; Michel, Jean-Philippe; Knobler, Charles M.; Ivanovska, Irena L.; Schmidt, Christoph F.; Wuite, Gijs J. L.

    2006-12-01

    We report a combined theoretical and experimental study of the structural failure of viral shells under mechanical stress. We find that discontinuities in the force-indentation curve associated with failure should appear when the so-called Föppl von Kármán (FvK) number exceeds a critical value. A nanoindentation study of a viral shell subject to a soft-mode instability, where the stiffness of the shell decreases with increasing pH, confirms the predicted onset of failure as a function of the FvK number.

  20. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  1. C-Shell Cookbook

    NASA Astrophysics Data System (ADS)

    Currie, Malcolm J.

    This cookbook describes the fundamentals of writing scripts using the UNIX C shell. It shows how to combine Starlink and private applications with shell commands and constructs to create powerful and time-saving tools for performing repetitive jobs, creating data-processing pipelines, and encapsulating useful recipes. The cookbook aims to give practical and reassuring examples to at least get you started without having to consult a UNIX manual. However, it does not offer a comprehensive description of C-shell syntax to prevent you from being overwhelmed or intimidated. The topics covered are: how to run a script, defining shell variables, prompting, arithmetic and string processing, passing information between Starlink applications, obtaining dataset attributes and FITS header information, processing multiple files and filename modification, command-line arguments and options, and loops. There is also a glossary.

  2. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  3. Shell forming system

    NASA Technical Reports Server (NTRS)

    Kendall, Jr., James M. (Inventor); Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor)

    1990-01-01

    Hollow shells of high uniformity are formed by emitting liquid through an outer nozzle and gas through an inner nozzle, to form a hollow extrusion, by flowing the gas at a velocity between about 1.3 and 10 times the liquid velocity. The natural breakup rate of the extrusion can be increased to decrease shell size by applying periodic perturbations to one of the materials prior to exiting the nozzles, to a nozzle, or to the extrusion.

  4. Shells and Patterns

    ERIC Educational Resources Information Center

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  5. Evolving dust shells

    SciTech Connect

    Siegel, H.P.

    1981-06-15

    The reduction of the Arnowitt-Deser-Misner canonical formulation of general relativity developed in the first paper of this series is applied to the full time-evolution problem for spherically symmetric charged dust shells. Detailed pictures of shell evolution are produced. Among other things, it is found that under certain well-defined circumstances the asymptotically flat spacelike hypersurfaces of constant time ''pinch off'' and become completely closed, the closure point being a locally naked singularity.

  6. Stress Localization in Elastic Shells

    NASA Astrophysics Data System (ADS)

    Selden, Sarah; Evans, Arthur; Bende, Nakul; Hayward, Ryan; Santangelo, Christian

    Upon indentation, thin shells react by localizing strain energy in polygonal structures as opposed to a uniform axisymmetric distribution. While the formation of these localized structures are well-characterized for perfect shells, a change in shell thickness or the introduction of a crease fundamentally changes the nature of the shell deformation. We perform finite element simulations, in tandem with experiments to explore the effect of different shell geometries on the energy landscape. We find that the crease induces a new symmetry-breaking localization that does not appear in perfect shells, and we explore the deformation characteristics of the creased shell over a wide range of crease radii, and crease orientations.

  7. Off-shell CHY amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.; Yao, York-Peng

    2016-06-01

    The Cachazo-He-Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  8. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    NASA Astrophysics Data System (ADS)

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-03-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.

  9. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  10. Multi-Shell Hollow Nanogels with Responsive Shell Permeability.

    PubMed

    Schmid, Andreas J; Dubbert, Janine; Rudov, Andrey A; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  11. Shell Biorefinery: Dream or Reality?

    PubMed

    Chen, Xi; Yang, Huiying; Yan, Ning

    2016-09-12

    Shell biorefinery, referring to the fractionation of crustacean shells into their major components and the transformation of each component into value-added chemicals and materials, has attracted growing attention in recent years. Since the large quantities of waste shells remain underexploited, their valorization can potentially bring both ecological and economic benefits. This Review provides an overview of the current status of shell biorefinery. It first describes the structural features of crustacean shells, including their composition and their interactions. Then, various fractionation methods for the shells are introduced. The last section is dedicated to the valorization of chitin and its derivatives for chemicals, porous carbon materials and functional polymers. PMID:27484462

  12. Oyster shell conveyor used to lift shells from the dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oyster shell conveyor used to lift shells from the dock into the receiving room housed in the 1965 concrete block addition. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  13. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  14. Shell Higher Olefins Process.

    ERIC Educational Resources Information Center

    Lutz, E. F.

    1986-01-01

    Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)

  15. 7 CFR 51.2002 - Split shell.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....2002 Split shell. Split shell means a shell having any crack which is open and conspicuous for a distance of more than one-fourth the circumference of the shell, measured in the direction of the crack....

  16. Optimum shell design.

    NASA Technical Reports Server (NTRS)

    Salama, A. M.; Ross, R. G., Jr.

    1973-01-01

    Comparison of two methods, namely Nedler and Mead's (1965) simplex method and Davidon's (1959) variable metric method, for achieving optimum design in terms of minimum weight for rotational shells under certain constraints. The superiority of one of the methods over the other is shown to depend, among other things, upon the form of the function to be minimized, and whether or not it is continuous everywhere in values and derivatives.

  17. Shell structure from nuclear observables

    NASA Astrophysics Data System (ADS)

    Bentley, I.; Rodríguez, Y. Colón; Cunningham, S.; Aprahamian, A.

    2016-04-01

    The appearance and disappearance of shells and subshells are determined using a previously introduced method of structural analysis. This work extends the approach and applies it to protons, in addition to neutrons, in an attempt to provide a more complete understanding of shell structure in nuclei. Experimental observables including the mean-square charge radius, as well as other spectroscopic and mass related quantities are analyzed for extrema. This analysis also uses differential observables among adjacent even-even nuclei to serve as the derivatives for these quantities of interest. Local extrema in these quantities indicate shell structure and the lack of local extrema indicate missing shell closures. The shell structure of low-mass nuclei is inconsistent likely as a consequence of the single-particle structure. Additionally, multiple shell features occurring in midshell regions are determined by combining information from two or more observables. Our results near stability complement previous observations further out.

  18. The structure of circumstellar shells

    NASA Technical Reports Server (NTRS)

    Fix, John D.

    1993-01-01

    This document provides a report on research activities carried out with the support of NASA grant NAG 5-1174, the Structure of Circumstellar Shells, funded under the Astrophysics Data Program. The research carried out with the support of this grant is a study of the properties of circumstellar dust shells for which spectra are available through IRAS low resolution spectrometry (LRS). This research consisted of the development and application of models of axisymmetric circumstellar shells and a preliminary survey of the applicability of neural nets for analysis of the IRAS LRS spectra of circumstellar dust shells.

  19. Automated shell theory for rotating structures (ASTROS)

    NASA Technical Reports Server (NTRS)

    Foster, B. J.; Thomas, J. M.

    1971-01-01

    A computer program for analyzing axisymmetric shells with inertial forces caused by rotation about the shell axis is developed by revising the STARS II shell program. The basic capabilities of the STARS II shell program, such as the treatment of the branched shells, stiffened wall construction, and thermal gradients, are retained.

  20. STUDIES ON SHELL FORMATION

    PubMed Central

    Watabe, Norimitsu; Wilbur, Karl M.

    1961-01-01

    Details of crystal growth in the calcitostracum of Crassostrea virginica have been studied with the purpose of analyzing the formation of the overlapping rows of oriented tabular crystals characteristic of this part of the shell. Crystal elongation, orientation, and dendritic growth suggest the presence of strong concentration gradients in a thin layer of solution in which crystallization occurs. Formation of the overlapping rows can be explained by three processes observed in the shell: a two-dimensional tree-like dendritic growth in which one set of crystal branchings creeps over an adjacent set of branchings; three-dimensional dendritic growth; and growth by dislocation of crystal surfaces. Multilayers of crystals may thus be formed at one time. This is favored by infrequent secretion of a covering organic matrix which would inhibit crystal growth. The transitional zone covering the outer part of the calcitostracum and the inner part of the prismatic region is generally characterized by aggregates of small crystals with definite orientation. Growth in this zone appears to take place in a relatively homogeneous state of solution without strong concentration gradients. Thin membranes and bands of organic matrix were commonly observed in the transitional zone bordering the prismatic region. The membrane showed a very fine oriented network pattern. PMID:13783329

  1. Studies on Shell Formation

    PubMed Central

    Watabe, Norimitsu; Sharp, D. Gordon; Wilbur, Karl M.

    1958-01-01

    Electron microscope observations have been made by means of the replica method on growth processes of calcite crystals of the nacreous layer of the shell of the oyster, Crassostrea virginica. Layer formation is initiated by the secretion of a conchiolin matrix and the deposition of rounded crystal seeds on or in this material. In some areas crystal seeds are elongate and within a given area show a similar orientation, probably due to slower deposition. The seeds appear to increase in size by dendritic growth, and smaller seeds become incorporated into larger ones which come into contact to form a single layer. With further growth, crystals overlap, forming a step-like arrangement. The direction of growth is frequently different in neighboring regions. Crystal seeds deposited on crystal surfaces are usually elongate and oriented. Well developed crystals have a tabular idiomorphic form and are parallel in their growth. Rounded and irregular crystals were also observed. The crystals show reticular structure with units of the order of 100 A and striations corresponding with the rhombohedral axes of the crystals. The role of the mantle is discussed in relation to the growth patterns of crystals and shell structure. PMID:13549499

  2. Hi shells, supershells, shell-like objects, and ''worms''

    SciTech Connect

    Heiles, C.

    1984-08-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10/sup 0/. We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo.

  3. Biomechanics of turtle shells: how whole shells fail in compression.

    PubMed

    Magwene, Paul M; Socha, John J

    2013-02-01

    Turtle shells are a form of armor that provides varying degrees of protection against predation. Although this function of the shell as armor is widely appreciated, the mechanical limits of protection and the modes of failure when subjected to breaking stresses have not been well explored. We studied the mechanical properties of whole shells and of isolated bony tissues and sutures in four species of turtles (Trachemys scripta, Malaclemys terrapin, Chrysemys picta, and Terrapene carolina) using a combination of structural and mechanical tests. Structural properties were evaluated by subjecting whole shells to compressive and point loads in order to quantify maximum load, work to failure, and relative shell deformations. The mechanical properties of bone and sutures from the plastral region of the shell were evaluated using three-point bending experiments. Analysis of whole shell structural properties suggests that small shells undergo relatively greater deformations before failure than do large shells and similar amounts of energy are required to induce failure under both point and compressive loads. Location of failures occurred far more often at sulci than at sutures (representing the margins of the epidermal scutes and the underlying bones, respectively), suggesting that the small grooves in the bone created by the sulci introduce zones of weakness in the shell. Values for bending strength, ultimate bending strain, Young's modulus, and energy absorption, calculated from the three-point bending data, indicate that sutures are relatively weaker than the surrounding bone, but are able to absorb similar amounts of energy due to higher ultimate strain values. PMID:23203474

  4. Biomineralisation in Mollusc shells

    NASA Astrophysics Data System (ADS)

    Dauphin, Y.; Cuif, J. P.; Salomé, M.; Williams, C. T.

    2009-04-01

    The main components of Mollusc shells are carbonate minerals: calcite and aragonite. ACC is present in larval stages. Calcite and aragonite can be secreted simultaneously by the mantle. Despite the small number of varieties, the arrangement of the mineral components is diverse, and dependant upon the taxonomy. They are also associated with organic components much more diverse, the diversity of which reflects the large taxonomic diversity. From TGA analyses, the organic content (water included) is high (>5% in some layers). The biomineralisation process is not a passive precipitation process, but is strongly controlled by the organism. The biological-genetic control is shown by the constancy of the arrangement of the layers, the mineralogy and the microstructure in a given species. Microstructural units (i.e. tablets, prisms etc.) have shapes that do not occur in non-biogenic counterparts. Nacreous tablets, for example, are flattened on their crystallographic c axis, which is normally the axis of maximum growth rate for non-biogenic aragonite. Morever, their inner structure is species-specific: the arrangements of nacreous tablets in Gastropoda - Cephalopoda, and in Bivalvia differ, and the inner arrangement of the nacreous tablets is different in ectocochlear and endocochlear Cephalopoda. The organic-mineral ratios also differ in the various layers of a shell. Differences in chemical composition also demonstrates the biological-genetic control: for example, aragonite has a low Sr content unknown in non-biogenic samples; two aragonitic layers in a shell have different Sr and Mg contents, S is higher in calcitic layers. Decalcification releases soluble (SOM) and insoluble (IOM) organic components. Insoluble components form the main part of the intercrystalline membranes, and contain proteins, polysaccharides and lipids. Soluble phases are present within the crystals and the intercrystalline membranes. These phases are composed of more or less glycosylated proteins

  5. detached_shells_carbon_stars

    NASA Astrophysics Data System (ADS)

    Hony, Sacha; Bouwman, Jeroen; Waters, Laurens

    2004-09-01

    We propose to obtain 19-37 micrometer IRS spectra of the detached shells around nearby carbon-stars. We have selected a small (11) sample of bright, well studied, carbon-stars with known detached shells. The sample covers a range of angular diameters of the detached shells from 8-200" and stellar effective temperatures between 800-2600 K. With the spectra of the dust in the detached shell we aim to establish: i) The location of the shell. ii) The chemistry of the shell in order to constrain it's origin. iii) Test the MgS identification for the ``30'' micrometer emission feature. iv) Determine observationally the relationship between the ``30'' micrometer feature peak-position and the distance to the star. These observations will contribute greatly to the understanding AGB-star mass loss, in general, and the phenomenon of detached shells around carbon-stars, in particular. They will also be used to develop a diagnostic tool that allows to study detached shell properties of distant carbon-stars, that cannot be spatially resolved, based on their IR spectrum alone. The total requested time is 2.5h.

  6. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  7. Manufacturing Complicated Shells And Liners

    NASA Technical Reports Server (NTRS)

    Sobol, Paul J.; Faucher, Joseph E.

    1993-01-01

    Explosive forming, wax filling, and any one of welding, diffusion bonding, or brazing used in method of manufacturing large, complicated shell-and-liner vessels or structures. Method conceived for manufacture of film-cooled rocket nozzles but applicable to joining large coaxial shells and liners in general.

  8. Improved Connector Shell for Cable Shields

    NASA Technical Reports Server (NTRS)

    Prisk, A. L.; Rotta, J. W., Jr.

    1983-01-01

    Cable connector shell improves electrostatic and electromagnetic shielding by electrically connecting cable braid around entire circumference. Connector cable braid is slipped over ferrule and sleeve is slipped over braid, clamping it tightly to shell. Connector shell completely shields cable conductors.

  9. Core-shell nanostructured catalysts.

    PubMed

    Zhang, Qiao; Lee, Ilkeun; Joo, Ji Bong; Zaera, Francisco; Yin, Yadong

    2013-08-20

    Novel nanotechnologies have allowed great improvements in the syn-thesis of catalysts with well-controlled size, shape, and surface properties. Transition metal nanostructures with specific sizes and shapes, for instance, have shown great promise as catalysts with high selectivities and relative ease of recycling. Researchers have already demonstrated new selective catalysis with solution-dispersed or supported-metal nanocatalysts, in some cases applied to new types of reactions. Several challenges remain, however, particularly in improving the structural stability of the catalytic active phase. Core-shell nanostructures are nanoparticles encapsulated and protected by an outer shell that isolates the nanoparticles and prevents their migration and coalescence during the catalytic reactions. The synthesis and characterization of effective core-shell catalysts has been at the center of our research efforts and is the focus of this Account. Efficient core-shell catalysts require porous shells that allow free access of chemical species from the outside to the surface of nanocatalysts. For this purpose, we have developed a surface-protected etching process to prepare mesoporous silica and titania shells with controllable porosity. In certain cases, we can tune catalytic reaction rates by adjusting the porosity of the outer shell. We also designed and successfully applied a silica-protected calcination method to prepare crystalline shells with high surface area, using anatase titania as a model system. We achieved a high degree of control over the crystallinity and porosity of the anatase shells, allowing for the systematic optimization of their photocatalytic activity. Core-shell nanostructures also provide a great opportunity for controlling the interaction among the different components in ways that might boost structural stability or catalytic activity. For example, we fabricated a SiO₂/Au/N-doped TiO₂ core-shell photocatalyst with a sandwich structure that showed

  10. Shell forming apparatus

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Granett, Dan (Inventor); Akutagawa, Wesley M. (Inventor)

    1987-01-01

    A nozzle assembly is described for use in a system that forms small gas-filled shells, which avoids the need for holding a miniature inner nozzle precisely concentric with a miniature outer nozzle. The outer nozzle has a diameter which is less than about 0.7 millimeter, which results in fluid passing through the nozzle having a progressively greater velocity at locations progressively further from the walls of the outer nozzle across most of the nozzle. This highly variable velocity profile automatically forces gas to the center of the outer nozzle. The end of the inner nozzle, which emits gas, is spaced upstream from the tip of the outer nozzle, to provide a distance along which to center the gas. This self-centering characteristic permits the inner nozzle to be positioned so its axis is not concentric with the axis of the outer nozzle.

  11. Composite shell spacecraft seat

    NASA Technical Reports Server (NTRS)

    Barackman, Victor J. (Inventor); Pulley, John K. (Inventor); Simon, Xavier D. (Inventor); McKee, Sandra D. (Inventor)

    2008-01-01

    A two-part seat (10) providing full body support that is specific for each crew member (30) on an individual basis. The two-part construction for the seat (10) can accommodate many sizes and shapes for crewmembers (30) because it is reconfigurable and therefore reusable for subsequent flights. The first component of the two-part seat construction is a composite shell (12) that surrounds the crewmember's entire body and is generically fitted to their general size in height and weight. The second component of the two-part seat (10) is a cushion (20) that conforms exactly to the specific crewmember's entire body and gives total body support in more complex environment.

  12. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Ebner, M. A.; Nolen, R. L., Jr.

    1981-01-01

    Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time.

  13. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  14. Optimum rotationally symmetric shells for flywheel rotors

    SciTech Connect

    Blake, Henry W.

    2000-01-01

    A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

  15. MicroShell Minimalist Shell for Xilinx Microprocessors

    NASA Technical Reports Server (NTRS)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  16. Comparative study of shell swab and shell crush methods for the recovery of Salmonella from shell eggs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swabbing (SW) is the standard methodology for the recovery of resident microorganisms from shell eggs in Japan. A comparative study of shell swab (SW) and a shell crush (CR) technique was performed to recover the laboratory-inoculated Salmonella from shell eggs. It was found that the recovery of ...

  17. K-shell and L-shell plasma spectroscopy experiments

    SciTech Connect

    Charatis, G. )

    1990-10-01

    Detailed atomic level populations in high temperature and dense plasmas have become increasingly important in laser generated plasmas. Certain spectral line intensity ratios are density-dependent while others are temperature-dependent. Both can be used to extract information concerning population kinetics and ion level populations. In order to be useful these dependencies must be characterized by independent means. In laser produced plasmas this can be done via holographic interferometry for electron density determinations and via the slope of the H-like free-bound continuum of K-shell lines for electron temperature determinations. The characterization of density- and temperature-dependent L-shell lines can be accomplished in ionization balance experiments in which laser irradiance is varied on targets which contain both K-shell and L-shell emitters. The K-shell free-bound continua provide the local temperature determination while holographic interferometry yields density profile information, from which the temperature and density dependent L-shell lines can be characterized. This paper discusses these concepts.

  18. Studies on Shell Formation

    PubMed Central

    Tsujii, Tadashi; Sharp, D. Gordon; Wilbur, Karl M.

    1958-01-01

    The submicroscopic structure of the growing surface of the shell of the oyster, Crassostrea virginica, was studied by means of shadowed replicas. The outer edge of the prismatic region consists of a fine grained matrix enclosing crystals, the surfaces of which show a finely pebbled structure. Crystal size varies continously from 0.01 µ to 8 µ. The matrix surface shows no evidence of fibrous structure. The outer portions of the prismatic region exhibit a tile-like arrangement of large crystals separated by granular matrix 0.02 to 0.08 µ in thickness. The exposed crystal surfaces have indentations of varying form which appear as roughly parallel grooves spaced at intervals of approximately 0.3 µ. The final form of this region is believed to result from the random distribution of crystal seeds, which grow without orientation and through coalescence and growth come into contact, producing polygonal areas. The crystal arrangement of the nacreous region is one of overlapping rows of crystals in side to side contact, and with one end of each crystal free, permitting continued increase in length. Crystal angles and plane indices are presented. PMID:13549498

  19. Insulative laser shell coupler

    DOEpatents

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  20. Insulative laser shell coupler

    DOEpatents

    Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.

    1994-01-01

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

  1. Recovery of Salmonella from commercial shell eggs by shell rinse and shell crush methodologies.

    PubMed

    Musgrove, M T; Jones, D R; Northcutt, J K; Harrison, M A; Cox, N A; Ingram, K D; Hinton, A J

    2005-12-01

    Salmonella is the most important human pathogen associated with shell eggs. Salmonella Enteritidis is the serotype most often implicated in outbreaks, although other serotypes have been recovered from eggs and from the commercial shell egg washing environment. Many sample methods are used to recover microorganisms from eggshells and membranes. A shell rinse and modified shell-and-membrane crush method for recovery of Salmonella were compared. Eggs were collected from 3 commercial shell-washing facilities (X, Y, and Z) during 3 visits. Twelve eggs were collected from each of 10 to 12 locations along the egg processing chain. After being transported back to the laboratory, each egg was sampled first by a shell rinse method and then by a shell crush method. For each technique (rinse or crush), 2 pools of 5 eggs per location sampled were selectively enriched for the recovery of Salmonella. Presumptive samples positive for Salmonella were confirmed serologically. Overall, there were 10.1% (40/396) Salmonella-positive pooled samples. Salmonella were recovered by the shell rinse and shell crush techniques (4.8 vs. 5.3%, respectively). Plant X yielded 21.5% Salmonella positives, whereas less than 5% of samples from plants Y and Z were found to be contaminated with the organism (4.2 and 4.5%, respectively). Salmonella was recovered more often from unwashed eggs (15.8%) than from washed eggs (8.3%). For some eggs, Salmonella was only recovered by one of the methods. Use of both approaches in the same experiment increased sampling sensitivity, although in most cases, crushing provided more sensitive Salmonella recovery. PMID:16479955

  2. Collapsing thin shells with rotation

    NASA Astrophysics Data System (ADS)

    Delsate, Térence; Rocha, Jorge V.; Santarelli, Raphael

    2014-06-01

    We construct exact solutions describing the motion of rotating thin shells in a fully backreacted five-dimensional rotating black hole spacetime. The radial equation of motion follows from the Darmois-Israel junction conditions, where both interior and exterior geometries are taken to be equal angular momenta Myers-Perry solutions. We show that rotation generates anisotropic pressures and momentum along the shell. Gravitational collapse scenarios including rotation are analyzed and a new class of stationary solutions is introduced. Energy conditions for the anisotropic matter shell are briefly discussed. We find that the weak energy condition is not violated for the collapse scenario where the shell starts at rest from infinity, nor for the new class of stationary solutions in anti-de Sitter. We further prove that the cosmic censorship conjecture is always satisfied in our setup.

  3. Shell Scores with Interactive Video.

    ERIC Educational Resources Information Center

    Zemke, Ron

    1991-01-01

    Documents Shell Oil's success with interactive video training (IVT) and identifies the costs involved in this long-term investment. Provides guidelines for judging the effectiveness of IVT programs. (SK)

  4. Intergalactic shells at large redshift

    NASA Technical Reports Server (NTRS)

    Shull, J. M.; Silk, J.

    1981-01-01

    The intergalactic shells produced by galactic explosions at large redshift, whose interiors cool by inverse Compton scattering off the cosmic background radiation, have a characteristic angular size of about 1 arcmin at peak brightness. At z values lower than 2, the shells typically have a radius of 0.5 Mpc, a velocity of about 50 km/sec, a metal abundance of about 0.0001 of cosmic values, and strong radiation in H I(Lyman-alpha), He II 304 A, and the IR fine-structure lines of C II and Si II. The predicted extragalactic background emission from many shells, strongly peaked toward the UV, sets an upper limit to the number of exploding sources at z values of about 10. Shell absorption lines of H I, C II, Si II, and Fe II, which may be seen at more recent epochs in quasar spectra, may probe otherwise invisible explosions in the early universe.

  5. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  6. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  7. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  8. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  9. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  10. Nematic textures in spherical shells

    NASA Astrophysics Data System (ADS)

    Vitelli, V.; Nelson, D. R.

    2006-08-01

    The equilibrium texture of nematic shells is studied as a function of their thickness. For ultrathin shells the ground state has four short (1)/(2) disclination lines but, as the thickness of the film increases, a three-dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. We derive an exact solution for the nematic ground state in the one Frank constant approximation and study the stability of the corresponding texture against thermal fluctuations.

  11. Tri-soft shell technique.

    PubMed

    Arshinoff, Steve A; Norman, Richard

    2013-08-01

    Soft-shell techniques exist for lower viscosity dispersive with higher viscosity cohesive ophthalmic viscosurgical devices (OVDs) (soft-shell technique [SST]), viscoadaptive OVDs with balanced salt solution (ultimate soft-shell technique), intraoperative floppy-iris syndrome (soft-shell bridge), and many specific modifications for disinserted zonular fibers, frayed iris strands, Fuchs endothelial dystrophy, small holes in the posterior capsule with protruding vitreous, capsular dye use, and others. Soft-shell techniques exist because it is rheologically impossible to control the surgical environment with a single OVD as well as with an ordered combination of rheologically different OVDs. Surgeons frequently confuse these techniques because of their multitude. This paper unifies all SSTs into a single improved tri-soft shell technique (TSST), from which basic specific applications to unusual circumstances are simple and intuitive. As shown with previous SSTs, the TSST allows surgeons to perform complex tasks with greater surgical facility and to protect endothelial cells better than with single OVDs. PMID:23889867

  12. XPRT: An expert system shell

    SciTech Connect

    Cochrell, G.D.

    1988-09-01

    XPRT is a rule-based expert system shell written in the C programming language. This report contains a detailed description of the commands available in XPRT and also describes the syntax rules needed to construct a knowledge base. The shell's source code uses standard ANSI C, which allows it to run on any computer that can compile a C program. The executable code occupies 70K of PC memory. XPRT's inference engine can be commanded to backward chain or forward chain. Heuristics may be employed to reduce the search space of knowledge base rules. XPRT can read and write external files and spawn processes. The shell is mainly a symbolic processor but can handle numerical data as well. A mechanism of weighted facts and rules is used as an approach for handling uncertainty. XPRT is a no-frills shell with some very practical commands. The shell was used to write an expert system that is currently scheduling over a dozen software programs to maintain and manage a large departmental database. XPRT continues to evolve, and our organization is finding the shell to be a valuable programming tool. 6 refs.

  13. Semiclassical environment of collapsing shells

    NASA Astrophysics Data System (ADS)

    Banerjee, Kinjal; Paranjape, Aseem

    2009-12-01

    We explore in detail the semiclassical environment of collapsing shells of matter, and determine the semiclassical flux measured by a variety of observers. This study is a preliminary step in a broader investigation of thermodynamic properties of the geometry of collapsing objects. Specifically, in this paper we consider spherically symmetric null and timelike collapsing shells which form an event horizon, and calculate the flux measured by observers both inside and outside the shell, and both inside and outside the event horizon, and find nontrivial results in most of the cases. Additionally, we also investigate the environment of a shell which collapses but does not form a horizon, halting at some radius larger than the Schwarzschild radius, and find that such an object generically gives rise to a pulse of radiation which is sharply peaked as it travels inwards and is reflected at the origin, and eventually emerges from the shell in a thermalized form. Our results have potential consequences in addressing questions pertaining, e.g. to black hole entropy and backreaction.

  14. Foam shell project: Progress report

    SciTech Connect

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-03-25

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 {mu}m thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D{sub 2} or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE.

  15. Vibration of perforated cylindrical shells

    NASA Astrophysics Data System (ADS)

    Cousseau, Peter L.

    For a credible design of an inertial confinement fusion (ICF) target chamber, the vibration characteristics of the chamber must be completely understood. Target chambers are usually cylindrical or spherical in shape and contain hundreds of perforations (called ports) to allow access to the inside of the chamber. The fusion reaction within the chamber creates a uniform impulsive loading, which the chamber walls must be designed to contain. Also prior to an implosion, a delicate alignment process of the drivers and diagnostics takes place. The vibration of the chamber from rotating machinery, e.g., vacuum pumps, and ambient sources must be completely understood and accounted for during these alignment procedures. This dissertation examines the vibration characteristics of perforated cylindrical shells. Because the target chambers' thickness-to-radius ratio is small, such chambers can be modeled as thin shells. Included in the text is a literature review of perforated plates and shells and examples of the use of perforated structures in constructed and proposed ICF target chambers. The natural frequencies and corresponding mode shapes of perforated and unperforated cylindrical shells are studied analytically, numerically (via finite elements) and experimentally. Conclusions and comparisons between the different solution methods are made for both the perforated and unperforated cases. In addition, the dynamic response of perforated cylindrical shells to an axisymmetric impulsive loading has been identified. A demonstration showing how the convolution integral can be used to determine the response of a cylinder to a non-impulsive loading is presented.

  16. Statistical mechanics of thin spherical shells

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Nelson, David R.

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells via renormalization group calculations. It is well known that for flat solid membranes thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations leads to novel phenomena. In spherical shells thermal fluctuations effectively produce negative surface tension, which is equivalent to applying external pressure. We find that small spherical shells are stable, but for sufficiently large shells this thermally generated ``pressure'' becomes big enough to crush spherical shells. Such shells can be reinflated by increasing internal pressure, where the effective shell size grows non-linearly as a function of internal pressure with a power law exponent characteristic for thermally fluctuating flat membranes under uniform tension.

  17. Shell corrections in stopping powers

    NASA Astrophysics Data System (ADS)

    Bichsel, H.

    2002-05-01

    One of the theories of the electronic stopping power S for fast light ions was derived by Bethe. The algorithm currently used for the calculation of S includes terms known as the mean excitation energy I, the shell correction, the Barkas correction, and the Bloch correction. These terms are described here. For the calculation of the shell corrections an atomic model is used, which is more realistic than the hydrogenic approximation used so far. A comparison is made with similar calculations in which the local plasma approximation is utilized. Close agreement with the experimental data for protons with energies from 0.3 to 10 MeV traversing Al and Si is found without the need for adjustable parameters for the shell corrections.

  18. Asymptotic safety goes on shell

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario

    2012-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.

  19. Chemical Analysis Of Beryllium Shells

    SciTech Connect

    Gunther, J; Cook, R

    2005-11-17

    There is a need to understand the level of high-Z impurities in Beryllium shells prepared by sputter coating. The Ignition Point Design Requirements state the following: ''Except for allowed ingredients, as listed in the ablator composition entries, the ablator material in all layers shall contain sufficiently low impurity levels that the sum over all impurities of atom fraction*Z{sup 2} shall be less than or equal to 0.2''. This is a tight specification that requires careful materials analysis. Early in the first quarter of FY06, we undertook a study of Be shell impurities via ICP-MS{sup 2} and determined that the impurity levels in the sputtered shells are very close to the specification.

  20. Shell model Monte Carlo methods

    SciTech Connect

    Koonin, S.E.; Dean, D.J.

    1996-10-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of {gamma}-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs.

  1. Shell may expand detergent alcohols

    SciTech Connect

    1996-10-23

    Shell Chemical is studying plans to expand detergent alcohols capacity in the US, CW has learned. The company is considering adding capacity for about 80 million lbs/year. If the project is approved, it would be implemented at the company`s Geismar, LA site. Shell will make a final decision on whether to proceed with the project within six months. It has been rumored to be considering a capacity addition as a result of tightening supply of natural and synthetic detergent alcohols.

  2. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Nolen, R. L., Jr.; Ebner, M. A.; Downs, R. L.

    1980-01-01

    A heat transfer model was developed that mathematically describes the heating and calculates the thermal history of a gel particle in free-fall through the furnace. The model parameters that greatly affect the calculations were found to be gel particle mass, geometry, specific heat, and furnace gas. Empirical testing of the model has commenced. The code calculations and the initial empirical testing results both indicate that the gel-to-shell transformation occurs early and rapidly in the thermal history of the gel particle, and that for current work the heat transfer rate is not a limitation in shell production.

  3. On Closed Shells in Nuclei

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1948-02-01

    It has been suggested in the past that special numbers of neutrons or protons in the nucleus form a particularly stable configuration.{sup1} The complete evidence for this has never been summarized, nor is it generally recognized how convincing this evidence is. That 20 neutrons or protons (Ca{sup40}) form a closed shell is predicted by the Hartree model. A number of calculations support this fact.{sup2} These considerations will not be repeated here. In this paper, the experimental facts indicating a particular stability of shells of 50 and 82 protons and of 50, 82, and 126 neutrons will be listed.

  4. The Shell-Model Code NuShellX@MSU

    SciTech Connect

    Brown, B.A.; Rae, W.D.M.

    2014-06-15

    Use of the code NuShellX@MSU is outlined. It connects to the ENSDF data files for automatic comparisons to energy level data. Operator overlaps provide predictions for spectroscopic factors, two-nucleon transfer amplitudes, nuclear moments, gamma decay and beta decay.

  5. Method and apparatus for an inflatable shell

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor)

    2012-01-01

    A method of assembling an inflatable shell of a structure comprises folding a plurality of shell sections about a set of fold lines and integrating the plurality of shell sections together with one another to form the shell. In another embodiment, an inflatable shell comprises a plurality of shell sections, each shell section having two pairs of fold lines for folding into stowage comprising a first gore section having a plurality of first gore panels layered and collectively folded about at a first set of fold lines. Each layer of the first gore panels and second gore panels are configured such that, once the first gore panel and second gore panel are attached to one another at the respective side edges of each panel, the lines of attachment forming a second set of fold lines for the shell section. A system and method for fabricating gore panels is also disclosed.

  6. Shell Games: Uncovering Periodic Properties.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1983-01-01

    Describes activities (demonstrations/experiments) used to introduce history of periodic properties--without electrons, orbitals, filling shells, or any conception of atoms beyond Dalton's model. Activities supplement first chapter in a currently available chemistry text. Indicates potential danger of experiments if proper safety precautions are…

  7. Solutocapillary convection in spherical shells

    NASA Astrophysics Data System (ADS)

    Subramanian, Pravin; Zebib, Abdelfattah; McQuillan, Barry

    2005-01-01

    A linear stability study of solutocapillary driven Marangoni instabilities in small spherical shells is presented. The shells contain a binary fluid with an evaporating solvent. The viscosity is a strong function of the solvent concentration, the inner surface of the shell is assumed impermeable and stress free, while nonlinear boundary conditions are modeled and prescribed at the receding outer boundary. A time-dependent diffusive state is possible and may lose stability through the Marangoni mechanism due to surface tension dependence on solvent concentration (buoyant forces are negligible in this microscale problem). A frozen-time or quasisteady state linear stability analysis is performed to compute the critical Reynolds number and degree of surface harmonics, as well as the maximum growth rate of perturbations at specified parameters. The development of maximum growth rates in time was also computed by solving the initial value problem with random initial conditions. Results from both approaches are in good agreement except at short times where there is dependence on initial conditions. The physical problem models the manufacturing of spherical shells used as targets in inertial confinement fusion experiments where perfect sphericity is demanded for efficient fusion ignition. It is proposed that the Marangoni instability might be the source of observed surface roughness. Comparisons with the available experiments are made with reasonable qualitative and quantitative agreement.

  8. Shell structures for biogas plants

    SciTech Connect

    Sasse, L.

    1982-01-01

    The shell structures designed for biogas plants of the fixed-dome type by the Bremen Overseas Research and Development Association are described. Biogas digesters of the design described have been successfully tested in Rwanda and India without structural or contractural problems.

  9. Recent advances in shell theory. [application of asymptotic approach to thin walled shells

    NASA Technical Reports Server (NTRS)

    Simmonds, J. G.

    1976-01-01

    The results reviewed are divided into two categories: those that relate two-dimensional shell theory to three-dimensional elasticity theory and those concerned with shell theory per se. In the second category results for general elastic systems that carry over, by specialization or analogy, to shells and results that are unique to shell theory itself are considered.

  10. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  11. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  12. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  13. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  14. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  15. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  16. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  17. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  18. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  19. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  20. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  1. 7 CFR 51.2002 - Split shell.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....2002 Split shell. Split shell means a shell having any crack which is open and conspicuous for a... Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1 2...

  2. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  3. Shell Model Depiction of Isospin Mixing in sd Shell

    SciTech Connect

    Lam, Yi Hua; Smirnova, Nadya A.; Caurier, Etienne

    2011-11-30

    We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.

  4. On chaotic behavior of gravitating stellar shells.

    PubMed

    Barkov, M V; Bisnovatyi-Kogan, G S; Neishtadt, A I; Belinski, V A

    2005-03-01

    Motion of two gravitating spherical stellar shells around a massive central body is considered. Each shell consists of point particles with the same specific angular momenta and energies. In the case when one can neglect the influence of gravitation of one ("light") shell onto another ("heavy") shell ("restricted problem") the structure of the phase space is described. The scaling laws for the measure of the domain of chaotic motion and for the minimal energy of the light shell sufficient for its escape to infinity are obtained. PMID:15836258

  5. Pressure Shell Approach to Integrated Environmental Protection

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  6. Turbine blade with spar and shell

    DOEpatents

    Davies, Daniel O.; Peterson, Ross H.

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  7. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  8. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Nolen, R. L.; Downs, R. L.; Ebner, M. A.

    1982-01-01

    Highly-uniform, hollow glass spheres, which are used for inertial-confinement fusion targets, are formed from metal-organic gel powder feedstock in a drop-tower furnace. The modelling of this gel-to-sphere transformation has consisted of three phases: gel thermochemistry, furnance-to-gel heat transfer, and gravity-driven degradation of the concentricity of the molten shell. The heat transfer from the furnace to the free-falling gel particle was modelled with forced convection. The gel mass, dimensions, and specific heat as well as furnace temperature profile and furnace gas conductivity, were controlled variables. This model has been experimentally verified. In the third phase, a mathematical model was developed to describe the gravity-driven degradation of concentricity in molten glass shells.

  9. Atomic inner-shell transitions

    NASA Technical Reports Server (NTRS)

    Crasemann, B.; Chen, M. H.; Mark, H.

    1984-01-01

    Atomic inner-shell processes have quite different characteristics, in several important aspects, from processes in the optical regime. Energies are large, e.g., the 1s binding energy reaches 100 keV at Z = 87; relativistic and quantum-electrodynamic effects therefore are strong. Radiationless transitions vastly dominate over photon emission in most cases. Isolated inner-shell vacancies have pronounced single-particle character, with correlations generally contributing only approximately 1 eV to the 1s and 2p binding energies; the structure of such systems is thus well tractable by independent-particle self-consistent-field atomic models. For systems containing multiple deep inner-shell vacancies, or for highly stripped ions, the importance of relativistic intermediate coupling and configuration interaction becomes pronounced. Cancellation of the Coulomb interaction can lead to strong manifestations of the Breit interaction in such phenomena as multiplet splitting and hypersatellite X-ray shifts. Unique opportunities arise for the test of theory.

  10. Cracked shells under skew-symmetric loading

    NASA Technical Reports Server (NTRS)

    Lelale, F.

    1982-01-01

    A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.

  11. Flow past a porous approximate spherical shell

    NASA Astrophysics Data System (ADS)

    Srinivasacharya, D.

    2007-07-01

    In this paper, the creeping flow of an incompressible viscous liquid past a porous approximate spherical shell is considered. The flow in the free fluid region outside the shell and in the cavity region of the shell is governed by the Navier Stokes equation. The flow within the porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and Joseph slip condition. An exact solution for the problem is obtained. An expression for the drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is evaluated numerically for several values of the parameters governing the flow.

  12. SPSM and its application in cylindrical shells

    NASA Astrophysics Data System (ADS)

    Nie, Wu; Zhou, Su-Lian; Peng, Hui

    2008-03-01

    In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.

  13. Thermal stresses in thick laminated composite shells

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1993-01-01

    The paper provides an analytical formulation to investigate the thermomechanical behavior of thick composite shells subjected to a temperature distribution which varies arbitrarily in the radial direction. For illustrative purposes, shells under uniform temperature change are presented. It is found that thermal twist would occur even for symmetric laminated shells. Under uniform temperature rise, results for off-axis graphite/epoxy shells show that extensional-shear coupling can cause tensile radial stress throughout the shell and tensile hoop stress in the inner region. Laminated graphite/epoxy shells can exhibit negative effective thermal expansion coefficients in the longitudinal and transverse directions. Finally, the stacking sequence has a strong influence on the thermal stress distributions.

  14. Shell boosts recovery at Kernridge

    SciTech Connect

    Moore, S.

    1984-01-01

    Since acquiring the Kernridge property in December 1979, Shell Oil Co. has drilled more than 1,800 wells and steadily increased production from 42,000 to 89,000 b/d of oil. Currently, the Kernridge Production Division of Shell California Production Inc. (SCPI), a newly formed subsidiary of Shell Oil Co., is operator for the property. The property covers approximately 35,000 mostly contiguous net acres, with production concentrated mainly on about 5,500 net acres. SCPI's four major fields in the area are the North and South Belridge, Lost Hills, and Antelope Hills. Most of the production comes from the North and South Belridge fields, which were previously held by the Belridge Oil Co. Productive horizons in the fields are the Tulare, Diatomite, Brown Shale, Antelope Shale, 64 Zone, and Agua sand. The Tulare and Diatomite are the two major reservoirs SCPI is developing. The Tulare, encountered between 400 and 1,300 ft, is made up of fine- to coarse-grained, unconsolidated sands with interbedded shales and silt stones and contains 13 /sup 0/ API oil. Using steam drive as the main recovery method, SCPI estimates an ultimate recovery from the Tulare formation of about 60% of the original 1 billion barrels in place. The Diatomite horizon, found between 800 and 3,500 ft and containing light, 28 /sup 0/ API oil, has high porosity (more than 60%), low permeability (less than 1 md), and natural fractures. Because of the Diatomite's low permeability, fracture stimulation is being used to increase well productivity. SCPI anticipates that approximately 5% of the almost 2 billion barrels of oil originally in place will be recovered by primary production.

  15. Boson shells harboring charged black holes

    SciTech Connect

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  16. Monodisperse functional colloidosomes with tailored nanoparticle shells.

    PubMed

    Sander, J S; Studart, A R

    2011-04-01

    We report the assembly of monodisperse colloidosomes containing a wide range of functional nanoparticles in the outer shell using a double emulsion templating method in a microfluidic device. By selecting nanoparticles of specific functionalities, hollow capsules with inert, magnetic, photocatalytic, and potentially biocompatible and piezoelectric shells are easily obtained. Proper control over the surface chemistry of the nanoparticles forming the shell and of the liquid interfaces involved is key to enable the assembly of colloidosomes using this double emulsification route. PMID:21384846

  17. Electron Shell as a Resonator

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2002-11-01

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  18. The fragmentation of expanding shells - I. Limitations of the thin-shell approximation

    NASA Astrophysics Data System (ADS)

    Dale, James E.; Wünsch, Richard; Whitworth, Anthony; Palouš, Jan

    2009-09-01

    We investigate the gravitational fragmentation of expanding shells in the context of the linear thin-shell analysis. We make use of two very different numerical schemes; the FLASH adaptive mesh refinement code and a version of the Benz smoothed particle hydrodynamics code. We find that the agreement between the two codes is excellent. We use our numerical results to test the thin-shell approximation and we find that the external pressure applied to the shell has a strong effect on the fragmentation process. In cases where shells are not pressure-confined, the shells thicken as they expand and hydrodynamic flows perpendicular to the plane of the shell suppress fragmentation at short wavelengths. If the shells are pressure-confined internally and externally, so that their thickness remains approximately constant during their expansion, the agreement with the analytical solution is better.

  19. Thin-shell instability in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Ahmed, H.; Doria, D.; Sarri, G.; Walder, R.; Folini, D.; Bret, A.; Ynnerman, A.; Borghesi, M.

    2015-09-01

    Thin-shell instability is one process which can generate entangled structures in astrophysical plasma on collisional (fluid) scales. It is driven by a spatially varying imbalance between the ram pressure of the inflowing upstream plasma and the downstream's thermal pressure at a nonplanar shock. Here we show by means of a particle-in-cell simulation that an analog process can destabilize a thin shell formed by two interpenetrating, unmagnetized, and collisionless plasma clouds. The amplitude of the shell's spatial modulation grows and saturates after about ten inverse proton plasma frequencies, when the shell consists of connected piecewise linear patches.

  20. Plans for Double Shell Experiments on NIF

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Daughton, W. S.; Gunderson, M. A.; Simakov, A. N.; Wilson, D. C.; Watt, R. G.; Kline, J. L.; Hayes, A. C.; Herrmann, H. W.; Boswell, M.; Danly, C. R.; Merrill, F. E.; Batha, S. H.; Amendt, P. A.; Milovich, J. L.; Robey, H. F.

    2015-11-01

    Double-shells are an alternative approach to achieving indirect drive ignition. These targets consist of a low-Z ablatively-driven outer shell that impacts a high-Z inner shell filled with DT fuel. In contrast to single-shell designs, double-shell targets burn the fuel via volume ignition, albeit with a lower gain. While double-shell capsules are complicated to fabricate, their design includes several beneficial metrics such as a low convergence pusher (C.R. < 10), low implosion speed (~ 250 km/s), a simple few-ns laser drive in a vacuum hohlraum, less sensitivity to hohlraum asymmetries, and low expected laser-plasma instabilities. We present preliminary double-shell capsule designs for NIF using a cryogenic gas DT fill which are optimized for yield and minimized for fall-line mix. Challenges will be discussed, as well as uncertainties and trade-offs in the physics issues compared to single-shells. A development path for double-shell experiments on NIF will be presented. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  1. Core/shell colloidal semiconductor nanoplatelets.

    PubMed

    Mahler, Benoit; Nadal, Brice; Bouet, Cecile; Patriarche, Gilles; Dubertret, Benoit

    2012-11-14

    We have recently synthesized atomically flat semiconductor colloidal nanoplatelets with quasi 2D geometry. Here, we show that core/shell nanoplatelets can be obtained with a 2D geometry that is conserved. The epitaxial growth of the shell semiconductor is performed at room temperature. We report the detailed synthesis of CdSe/CdS and CdSe/CdZnS structures with different shell thicknesses. The shell growth is characterized both spectroscopically and structurally. In particular, the core/shell structure appears very clearly on high-resolution, high-angle annular dark-field transmission electron microscope images, thanks to the difference of atomic density between the core and the shell. When the nanoplatelets stand on their edge, we can precisely count the number of atomic planes forming the core and the shell. This provides a direct measurement, with atomic precision, of the core nanoplatelets thickness. The constraints exerted by the shell growth on the core is analyzed using global phase analysis. The core/shell nanoplatelets we obtained have narrow emission spectra with full-width at half-maximum close to 20 nm, and quantum yield that can reach 60%. PMID:23057684

  2. Fracture Mitigation Strategies in Gastropod Shells

    NASA Astrophysics Data System (ADS)

    Salinas, Christopher; Kisailus, David

    2013-04-01

    For hundreds of millions of years, gastropods have been evolving, modifying their external calcified shells for defense against shell-breaking and drilling predators. They have evolved primarily to use two different aragonitic microstructures: the evolutionary older Nacre (mother of pearl) structure and the more recently developed crossed-lamellar structure. By using both of these structures, gastropods are able to produce shells that are significantly tougher then geologic aragonite. However, the crossed-lamellar structure allows for a wider variety of shell morphologies, ensuring its increasing presence since the Mesozoic Marine Revolution more than 200 million years ago.

  3. Shell appraising deepwater discovery off Philippines

    SciTech Connect

    Scherer, M. ); Lambers, E.J.T.; Steffens, G.S. )

    1993-05-10

    Shell International Petroleum Co. Ltd. negotiated a farmout in 1990 from Occidental International Exploration and Production Co. for Block SC-38 in the South China Sea off Palawan, Philippines, following Oxy's discovery of gas in 1989 in a Miocene Nido limestone buildup. Under the terms of the farmout agreement, Shell became operator with a 50% share. Following the disappointing well North Iloc 1, Shell was successful in finding oil and gas in Malampaya 1. Water 700-1,000 m deep, remoteness, and adverse weather conditions have imposed major challenges for offshore operations. The paper describes the tectonic setting; the Nido limestone play; the Malampaya discovery; and Shell's appraisal studies.

  4. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  5. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia; Richard, Monique N.; Dehne, Aaron; Phillips, Jonathan; Stamm, Kimber L.; Fanson, Paul T.

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  6. Transitional nuclei near shell closures

    SciTech Connect

    Mukherjee, G.

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  7. Lead behavior in abalone shell

    NASA Astrophysics Data System (ADS)

    Hirao, Yoshimitsu; Matsumoto, Akikazu; Yamakawa, Hiroshi; Maeda, Masaru; Kimura, Kan

    1994-08-01

    In order to gain information about the behavior of heavy metals in biological assimilation processes in a marine food chain and to investigate the possibility that lead pollution in a marine environment can be estimated by measurement of a small number of key materials from such a food chain, muscle and shell were analyzed from abalone ( Haliotis) from a shallow water locality in a Japanese coastal region. Lead concentrations in muscle were about 26 ppb for abalone of approximately 3 years old and decreased systematically with increasing age of animals sampled, to about 3.3 ppb for a specimen approximately 8 years old. Lead concentrations in shell material gradually decreased also, from 150 ppb to 82 ppb in the oldest specimen. The decrease of concentration in tissues with increasing age indicates that a mechanism for exclusion of lead during tissue growth becomes more efficient with age. Along the food chain in which abalone is the final stage, lead was enriched at the first stage, from seawater to algae, by a factor of 100. Lead was diminished at all subsequent stages of the chain. Tissue of artificially cultured abalone had four times higher lead values compared to abalone grown in natural conditions, and this appears to reflect the fact that lead concentration was three times higher in seawater in the cultured environment.

  8. Lead behavior in abalone shell

    SciTech Connect

    Hirao, Yoshimitsu; Matsumoto, Akikazu; Kimura, Kan ); Yamakawa, Hiroshi; Maeda, Masaru )

    1994-08-01

    In order to gain information about the behavior of heavy metals in biological assimilation processes in a marine food chain and to investigate the possibility that lead pollution in a marine environment can be estimated by measurement of a small number of key materials from such a food chain, muscle and shell were analyzed from abalone (Haliotis) from a shallow water locality in a Japanese coastal region. Lead concentrations in muscle were about 26 ppb for abalone approximately 3 years old and decreased systematically with increasing age of animals sampled, to about 3.3 ppb for a specimen approximately 8 years old. Lead concentrations in shell material gradually decreased also, from 150 ppb to 82 ppb in the oldest specimen. The decrease of concentration in tissues with increasing age indicates that a mechanism for exclusion of lead during tissue growth becomes more efficient with age. Along the food chain in which abalone is the final stage, lead was enriched at the first stage, from seawater to algae, by a factor of 100. Lead was diminished at all subsequent stages of the chain. Tissue of artificially cultured abalone had four times higher lead values compared to abalone grown in natural conditions, and this appears to reflect the fact that lead concentration was three times higher in seawater in the cultured environment.

  9. Apparatus and methods for installing, removing and adjusting an inner turbine shell section relative to an outer turbine shell section

    DOEpatents

    Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim

    2001-01-01

    A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.

  10. Layzer type models for pressure driven shells

    SciTech Connect

    Hurricane, O A

    2004-09-16

    Models for the nonlinear instability of finite thickness shells driven by pressure are constructed in the style of Layzer. Equations for both Cartesian and cylindrically convergent/divergent geometries are derived. The resulting equations are appropriate for incompressible shells with unity Atwood number. Predictions from the equations compare well with two-dimensional simulations.

  11. Isothermal Circumstellar Dust Shell Model for Teaching

    ERIC Educational Resources Information Center

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…

  12. A Well-Defined Bipolar Outflow Shell

    NASA Astrophysics Data System (ADS)

    Xie, Taoling; Goldsmith, Paul F.; Patel, Nimesh

    1992-12-01

    A well-defined "eggplant-shaped" thin shell is revealed in the Mon R2 central core region by CO and (13) CO J=1-0 maps obtained with QUARRY. This thin shell outlines the extended blue lobe of the massive bipolar outflow. The projected length and width of the shell are about 5.7 pc and 2.5 pc respectively, and the averaged projected thickness of the shell is ~ 0.3 pc. The shape of this shell can be satisfactorily accounted for quantitatively in terms of limb-brightening within the framework of the Shu et al shell model with radially directed wind, although the model seems to be oversimplified with respect to the complexity that our data reveal. The outflow shell's symmetry axis is estimated to be inclined by ~ 70(deg) with respect to the line of sight. We suggest that the coincident blue- and red-shifted emission and the bending of the red-shifted lobe are the result of the red-shifted shell being compressed, rather than having a second bipolar outflow aligned roughly perpendicular to the axis of the first bipolar outflow.

  13. Torsion and transverse sensing of conical shells

    NASA Astrophysics Data System (ADS)

    Li, H.; Chen, Z. B.; Tzou, H. S.

    2010-10-01

    Conical shells are widely used as payload/rocket adapters in rocket fairing systems. Generally, the conical shells are clamped at the major end and free at the minor end, where the payload is mounted. This study focuses on the dynamic sensing of conical shells with fix-free boundary conditions (BCs) by using distributed piezoelectric helical sensors. Two types of motion are studied, i.e., the transverse modes and the torsion modes. The shear-type sensors for shells sensing are presented first. Formulations of sensing signals of a general shell of revolution are presented, and then simplified to conical shells. For sensing of transverse vibrations, thin piezoelectric sensors are laminated on the top surface. Two types of sensor distribution are considered: a fully distributed and a helical or diagonal laminated. The total signal consists of four components resulting from the four strain components, and each of them is evaluated in detail. For sensing of torsion vibrations, a meridional polarized shear-type sensor with side electrodes is layered on the top surface of the shell structure. Sensing signals of natural shell modes are also evaluated. Analyses show that, in low order modes, the sensing signals induced by the circumferential membrane strains are the primary components of the total signal generations. The numerical results indicate the optimal location of the sensors. The proposed method is capable of determining the modal participation factors, while the testing signal is available; it is also capable of determining the mode shapes by using several distributed sensor segments.

  14. Thick-shell nanocrystal quantum dots

    SciTech Connect

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  15. A Geometric Theory of Nonlinear Morphoelastic Shells

    NASA Astrophysics Data System (ADS)

    Sadik, Souhayl; Angoshtari, Arzhang; Goriely, Alain; Yavari, Arash

    2016-08-01

    Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.

  16. Microbial Populations Associated with Restricted Shell Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restricted shell eggs are found in all shell egg processing facilities. The manner with which companies handle them can vary greatly. In most cases, restricted eggs are diverted to further processing. Some facilities do not rewash eggs, choosing instead to include dirts in restricted eggs. Eggs ...

  17. Semiclassical shell structure in rotating Fermi systems

    SciTech Connect

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-06-15

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  18. Engineered Magnetic Core-Shell Structures.

    PubMed

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field. PMID:26377655

  19. Electroformation of uranium hemispherical shells

    SciTech Connect

    Marshall, S.L.; Redey, L.; Vandegrift, G.F.; Vissers, D.R.

    1989-11-01

    This effort was directed at developing an electrochemical process for forming uniform and dendrite-free deposits of uranium from molten salts. This process is to be used for the electroformation of free-standing hemispherical shells of uranium for nuclear applications. Electrodeposition of uranium onto a substrate was accomplished with a fused chloride mixture containing 42 wt% UCl{sub 3} and a fused chloride-fluoride mixture containing 4 wt % UF{sub 4}. Under pulsed potential control at 504{degree}C, the chloride-fluoride mixture yielded the widest range of plating conditions for which dendrites could be avoided. Bipolar current pulse plating with both electrolytes gave good results, and successful application of this technique to a large tubular cathode has been demonstrated. 24 refs., 10 figs.

  20. The EOS TPC analysis shell

    SciTech Connect

    Olson, D.L.

    1991-03-01

    Key features of the general purpose event-based-data analysis shell (TAS) for the EOS TPC at LBL are described including the code development/code management procedures used. The architecture is designed with a view towards a distributed and multi-processing environment. TAS is interfaced seamlessly with the CERN PAW program and provides a consistent environment for both on-line and off-line analysis. The data model used is relational tables and the data structure definitions are maintained in a commercial database (INFORMIX). The interface for analysis modules is specified and enhances group participation in the development process. The use of commercial database as a data dictionary for both the table definitions and parameters used in the TAS kernel is extremely useful and productive. 6 refs., 4 figs.

  1. Faraday Wave Turbulence on a Spherical Liquid Shell

    NASA Astrophysics Data System (ADS)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-08-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  2. Faraday Wave Turbulence on a Spherical Liquid Shell

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  3. Chemistry and processing of polymer shells

    NASA Astrophysics Data System (ADS)

    Alfonso, Emmanuel Limjuco

    The fabrication of high-quality spherical shells, used as fuel capsules in fusion experiments, is essential to the progress of the inertial confinement fusion program. Two types of shell were produced: (1) Polystyrene shells were made in a microencapsulation method. The yield, diameter, wall thickness, vacuole content, and surface finish were determined for shells prepared with an organic phase of toluene and 1,2-dichloroethane with polystyrene concentrations varied from 5 to 13 wt% and an internal water phase that sometimes contained surfactants. (2) Polyimide shells were made by vapor-phase deposition onto depolymerizable spherical mandrels. High-aspect-ratio polyimide shells with diameters ranging from 700 to 1000 mum and wall thicknesses from 2 to 13 mum have been fabricated. Estimates of the composition, surface roughness, burst and buckle pressures, elastic modulus, tensile strength, permeability, and film stress have been obtained. These shells have been characterized in terms of morphological properties: the shell dimensions (diameter and wall thickness), sphericity, wall structure, outer and inner surface finish, and transparency. The structure of the outer surface and wall cross section varied strongly with the processing conditions (e.g., deposition temperatures, system pressure), while the inner surface was shown to be very smooth. The transparency of near-stoichiometric polyimide shells and flat films was demonstrated. Rutherford backscattering and nuclear resonance analysis techniques were used to provide the elemental composition and density, which were very near the theoretical values. Polyimide shells' minimum tensile strengths and moduli were determined from burst and buckle pressure tests. The tensile strength approached that reported for Kapton-HN film. The elastic moduli varied with processing conditions. The vapor-deposited polyimide was found to possess mechanical strength properties similar to commercially available polyimides. The room

  4. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2007-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  5. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  6. Photon upconversion in core-shell nanoparticles.

    PubMed

    Chen, Xian; Peng, Denfeng; Ju, Qiang; Wang, Feng

    2015-03-21

    Photon upconversion generally results from a series of successive electronic transitions within complex energy levels of lanthanide ions that are embedded in the lattice of a crystalline solid. In conventional lanthanide-doped upconversion nanoparticles, the dopant ions homogeneously distributed in the host lattice are readily accessible to surface quenchers and lose their excitation energy, giving rise to weak and susceptible emissions. Therefore, present studies on upconversion are mainly focused on core-shell nanoparticles comprising spatially confined dopant ions. By doping upconverting lanthanide ions in the interior of a core-shell nanoparticle, the upconversion emission can be substantially enhanced, and the optical integrity of the nanoparticles can be largely preserved. Optically active shells are also frequently employed to impart multiple functionalities to upconversion nanoparticles. Intriguingly, the core-shell design introduces the possibility of constructing novel upconversion nanoparticles by exploiting the energy exchange interactions across the core-shell interface. In this tutorial review, we highlight recent advances in the development of upconversion core-shell nanoparticles, with particular emphasis on the emerging strategies for regulating the interplay of dopant interactions through core-shell nanostructural engineering that leads to unprecedented upconversion properties. The improved control over photon energy conversion will open up new opportunities for biological and energy applications. PMID:25058157

  7. Geographical variation in shell shape of the pod razor shell Ensis siliqua (Bivalvia: Pharidae)

    NASA Astrophysics Data System (ADS)

    Rufino, Marta M.; Vasconcelos, Paulo; Pereira, Fábio; Fernández-Tajes, Juan; Darriba, Susana; Méndez, Josefina; Gaspar, Miguel B.

    2013-03-01

    The present study assessed the existence of variation in the shell shape of the pod razor shell ( Ensis siliqua) throughout its distributional range in the north-eastern Atlantic. Shells of E. siliqua caught at seven collecting sites (three in Portugal, three in Spain and one in Ireland) were studied by geometric morphometric methods, using both landmark- and contour-based methods. Both approaches (landmarks inside the valves and shell outline) discriminated the shells from Aveiro (centre of Portugal) and Strangford Lough (Ireland) from those caught in the nearby localities (remaining Portuguese and Spanish sites, maximum distance of 550 km by sea). Landmark analysis revealed that shells from Aveiro were more similar to shells from Ireland (~1,500 km far away). Contour analysis revealed that shells from Aveiro had a shape with a comparatively larger height-to-width ratio, whereas shells from Ireland showed a slightly more curved outline than in the remaining sites. Landmark- and contour-based methods provided coherent complementary information, confirming the usefulness of geometric morphometric analyses for discerning differences in shell shape among populations of E. siliqua. A brief review of previous applications of geometric morphometric methods to modern bivalve species is also provided.

  8. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Amabili, M.

    2003-07-01

    Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur'e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.

  9. Color fields on the light-shell

    NASA Astrophysics Data System (ADS)

    Georgi, Howard; Kestin, Greg; Sajjad, Aqil

    2016-02-01

    We study the classical color radiation from very high energy collisions that produce colored particles. In the extreme high energy limit, the classical color fields are confined to a light-shell expanding at c and are associated with a non-linear σ-model on the 2D light-shell with specific symmetry breaking terms. We argue that the quantum version of this picture exhibits asymptotic freedom and may be a useful starting point for an effective light-shell theory of the structure between the jets at a very high energy collider.

  10. On the vibration of axisymmetric shells

    NASA Astrophysics Data System (ADS)

    Heppler, G. R.; Wahl, L.

    1989-05-01

    The application of nonconventional basis functions to the linear vibration problem is explored. By employing shell coordinates the elements allow the exact geometrical modelling of shells of revolution with arbitrary meridians and the elements are able to reproduce strain free states under an arbitrary rigid body motion due to the use of these special basis functions. A generalization of the Reissner Mindlin plate theories is used because they have a broader range of applicability than the usual thin/shallow shell theories and also the trial functions need only be of class C(sup 0). The geometry treated is a hyperbola of revolution, in two configurations.

  11. Thermoluminescence analysis of irradiated oyster shells.

    PubMed

    Cruz-Zaragoza, E; Marcazzó, J; Della Monaca, S; Boniglia, C; Gargiulo, R; Bortolin, E

    2012-12-01

    This paper reports the thermoluminescence (TL) analysis performed on the oyster shells powder. TL response of (60)Co gamma-rays irradiated samples were studied in the range from 80 Gy to 8 kGy doses. TL signal of irradiated shell powder was higher as compared to the unirradiated control samples, which allowed to identify the irradiated oysters. Results show that the oyster shells have good TL properties and can be useful for the identification of irradiated seafood as well as for the evaluation of the treatment dose. PMID:22341648

  12. The off-shell c-map

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; de Wit, Bernard; Katmadas, Stefanos

    2016-01-01

    The off-shell version of the c-map is presented, based on a systematic off-shell reduction from four to three space-time dimensions for supergravity theories with eight supercharges. In the reduction, the R-symmetry group is enhanced to local [SU(2)× SU(2)]/{{Z}}_2=SO(4) and the c-map is effected by a parity transformation in the internal space that interchanges the two SU(2) factors. Vector and tensor supermultiplets are each others conjugate under the c-map and both can be dualized in three dimensions to (on-shell) hypermultiplets.

  13. Photon propagator in light-shell gauge

    NASA Astrophysics Data System (ADS)

    Georgi, Howard; Kestin, Greg; Sajjad, Aqil

    2016-05-01

    We derive the photon propagator in light-shell gauge (LSG) vμAμ=0 , where vμ=(1,r ^ ) μ . This gauge is an important ingredient of the light-shell effective theory—an effective theory for describing high energy jet processes on a 2-dimensional spherical shell expanding at the speed of light around the point of the initial collision producing the jets. Since LSG is a noncovariant gauge, we cannot calculate the LSG propagator by using the standard procedure for covariant gauges. We therefore employ a new technique for computing the propagator, which we hope may be of relevance in other gauges as well.

  14. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  15. Synthesis of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Thornton, W. A.

    1974-01-01

    Computer programs for the synthesis of shells of various configurations were developed. The conditions considered are: (1) uniform shells (mainly cones) using a membrane buckling analysis, (2) completely uniform shells (cones, spheres, toroidal segments) using linear bending prebuckling analysis, and (3) revision of second design process to reduce the number of design variables to about 30 by considering piecewise uniform designs. A perturbation formula was derived and this allows exact derivatives of the general buckling load to be computed with little additional computer time.

  16. Vacuum energy of a spherical plasma shell

    SciTech Connect

    Bordag, M.; Khusnutdinov, N.

    2008-04-15

    We consider the vacuum energy of the electromagnetic field interacting with a spherical plasma shell together with a model for the classical motion of the shell. We calculate the heat kernel coefficients, especially that for the TM mode, and carry out the renormalization by redefining the parameters of the classical model. It turns out that this is possible and results in a model which, in the limit of the plasma shell becoming an ideal conductor, reproduces the vacuum energy found by Boyer in 1968.

  17. Gross shell structure of moments of inertia

    SciTech Connect

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-07-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits.

  18. Magnetic-Plasmonic Core-Shell Nanoparticles

    PubMed Central

    Levin, Carly S.; Hofmann, Cristina; Ali, Tamer A.; Kelly, Anna T.; Morosan, Emilia; Nordlander, Peter; Whitmire, Kenton H.; Halas, Naomi J.

    2013-01-01

    Nanoparticles composed of magnetic cores with continuous Au shell layers simultaneously possess both magnetic and plasmonic properties. Faceted and tetracubic nanocrystals consisting of wüstite with magnetite-rich corners and edges retain magnetic properties when coated with an Au shell layer, with the composite nanostructures showing ferrimagnetic behavior. The plasmonic properties are profoundly influenced by the high dielectric constant of the mixed-iron-oxide nanocrystalline core. A comprehensive theoretical analysis that examines the geometric plasmon tunability over a range of core permittivities enables us to identify the dielectric properties of the mixed-oxide magnetic core directly from the plasmonic behavior of the core-shell nanoparticle. PMID:19441794

  19. THE PYTHON SHELL FOR THE ORBIT CODE

    SciTech Connect

    Shishlo, Andrei P; Gorlov, Timofey V; Holmes, Jeffrey A

    2009-01-01

    A development of a Python driver shell for the ORBIT simulation code is presented. The original ORBIT code uses the SuperCode shell to organize accelerator-related simulations. It is outdated, unsupported, and it is an obstacle to future code development. The necessity and consequences of replacing the old shell language are discussed. A set of core modules and extensions that are currently in PyORBIT are presented. They include particle containers, parsers for MAD and SAD lattice files, a Python wrapper for MPI libraries, space charge calculators, TEAPOT trackers, and a laser stripping extension module.

  20. Effective Interactions from No Core Shell Model

    SciTech Connect

    Dikmen, E.; Lisetskiy, A. F.; Barrett, B. R.; Navratil, P.; Vary, J. P.

    2008-11-11

    We construct the many-body effective Hamiltonian for pf-shell by carrying out 2({Dirac_h}/2{pi}){omega}. NCSM calculations at the 2-body cluster level. We demonstrate how the effective Hamiltonian derived from realistic nucleon-nucleon (NN) potentials for the 2({Dirac_h}/2{pi}){omega} NCSM space should be modified to properly account for the many-body correlations produced by truncating to the major pf-shell. We obtain two-body effective interactions for the pf-shell by using direct projection and use them to reproduce the results of large scale NCSM for other light Ca isotopes.

  1. Comparison on pore development of activated carbon produced from palm shell and coconut shell.

    PubMed

    Daud, Wan Mohd Ashri Wan; Ali, Wan Shabuddin Wan

    2004-05-01

    A series of experiments were conducted to compare the pore development in palm-shell and coconut-shell-based activated carbons produced under identical experimental conditions. Carbonization and activation processes were carried out at 850 degrees C using a fluidized bed reactor. Within the range of burn-off studied, at any burn-off, the micropore and mesopore volumes created in palm-shell-based activated carbon were always higher than those of coconut-shell-based activated carbon. On macropore volume, for palm-shell-based activated carbon, the volume increased with increase in burn-off up to 30% and then decreased. However, for coconut-shell-based activated carbon, the change in macropore volume with burn-off was almost negligible but the absolute macropore volume decreased with burn-off. PMID:14987722

  2. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  3. Sensitivity and Uncertainty Analysis Shell

    Energy Science and Technology Software Center (ESTSC)

    1999-04-20

    SUNS (Sensitivity and Uncertainty Analysis Shell) is a 32-bit application that runs under Windows 95/98 and Windows NT. It is designed to aid in statistical analyses for a broad range of applications. The class of problems for which SUNS is suitable is generally defined by two requirements: 1. A computer code is developed or acquired that models some processes for which input is uncertain and the user is interested in statistical analysis of the outputmore » of that code. 2. The statistical analysis of interest can be accomplished using the Monte Carlo analysis. The implementation then requires that the user identify which input to the process model is to be manipulated for statistical analysis. With this information, the changes required to loosely couple SUNS with the process model can be completed. SUNS is then used to generate the required statistical sample and the user-supplied process model analyses the sample. The SUNS post processor displays statistical results from any existing file that contains sampled input and output values.« less

  4. Shape Transformations of Epithelial Shells.

    PubMed

    Misra, Mahim; Audoly, Basile; Kevrekidis, Ioannis G; Shvartsman, Stanislav Y

    2016-04-12

    Regulated deformations of epithelial sheets are frequently foreshadowed by patterning of their mechanical properties. The connection between patterns of cell properties and the emerging tissue deformations is studied in multiple experimental systems, but the general principles remain poorly understood. For instance, it is in general unclear what determines the direction in which the patterned sheet is going to bend and whether the resulting shape transformation will be discontinuous or smooth. Here these questions are explored computationally, using vertex models of epithelial shells assembled from prismlike cells. In response to rings and patches of apical cell contractility, model epithelia smoothly deform into invaginated or evaginated shapes similar to those observed in embryos and tissue organoids. Most of the observed effects can be captured by a simpler model with polygonal cells, modified to include the effects of the apicobasal polarity and natural curvature of epithelia. Our models can be readily extended to include the effects of multiple constraints and used to describe a wide range of morphogenetic processes. PMID:27074691

  5. Oyster Shell Proteins Originate from Multiple Organs and Their Probable Transport Pathway to the Shell Formation Front

    PubMed Central

    Zhu, Yabing; Du, Yishuai; Song, Xiaorui; Chen, Yuanxin; Huang, Ronglian; Que, Huayong; Fang, Xiaodong; Zhang, Guofan

    2013-01-01

    Mollusk shell is one kind of potential biomaterial, but its vague mineralization mechanism hinders its further application. Mollusk shell matrix proteins are important functional components that are embedded in the shell, which play important roles in shell formation. The proteome of the oyster shell had been determined based on the oyster genome sequence by our group and gives the chance for further deep study in this area. The classical model of shell formation posits that the shell proteins are mantle-secreted. But, in this study, we further analyzed the shell proteome data in combination with organ transcriptome data and we found that the shell proteins may be produced by multiple organs though the mantle is still the most important organ for shell formation. To identify the transport pathways of these shell proteins not in classical model of shell formation, we conducted a shell damage experiment and we determined the shell-related gene set to identify the possible transport pathways from multiple organs to the shell formation front. We also found that there may exist a remodeling mechanism in the process of shell formation. Based on these results along with some published results, we proposed a new immature model, which will help us think about the mechanism of shell formation in a different way. PMID:23840499

  6. Shell deformation studies using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Parmerter, R. R.

    1974-01-01

    The buckling of shallow spherical shells under pressure has been the subject of many theoretical and experimental papers. Experimental data above the theoretical buckling load of Huang have given rise to speculation that shallow shell theory may not adequately predict the stability of nonsymmetric modes in higher-rise shells which are normally classified as shallow by the Reissner criterion. This article considers holographic interferometry as a noncontact, high-resolution method of measuring prebuckling deformations. Prebuckling deformations of a lambda = 9, h/b = 0.038 shell are Fourier-analyzed. Buckling is found to occur in an N = 5 mode as predicted by Huang's theory. The N = 4 mode was unusually stable, suggesting that even at this low value of h/b, stabilizing effects may be at work.

  7. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  8. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  9. On the Calculation of Shallow Shells

    NASA Technical Reports Server (NTRS)

    Ambartsumyan, S. A.

    1956-01-01

    This paper considers a sufficiently thin shallow shell of nonzero Gaussian curvature. It also presents a system of symmetrically constructed differential equations, constructed by the mixed method through the stress function and the displpacement function.

  10. Indentation of pressurized viscoplastic polymer spherical shells

    NASA Astrophysics Data System (ADS)

    Tvergaard, V.; Needleman, A.

    2016-08-01

    The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations with a conical indenter. The response is analyzed for various values of the shell thickness to radius ratio and various values of the internal pressure. Two sets of material parameters are considered: one set having network stiffening at a moderate strain and the other having no network stiffening until very large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive characterization on this transition and on the deformation modes in each of these regimes.

  11. SU(3) in shell-model calculations

    SciTech Connect

    Millener, D.J.

    1991-10-01

    The essential steps in the formalism for performing multi-shell calculations in an SU(3) basis are outlined and examples of applications in which the SU(3) classification aids in the physical interpretation of structure calculation are given.

  12. Shell Eggs from Farm to Table

    MedlinePlus

    ... and stored and transported under refrigeration and ambient temperature of no greater than 45 °F. USDA also ... transported under refrigeration at an ambient (surrounding) air temperature not to exceed 45 °F; All packed shell ...

  13. The stability of a collisionless cosmological shell

    NASA Technical Reports Server (NTRS)

    White, Simon D. M.; Ostriker, J. P.

    1990-01-01

    The P3 M technique is used here to simulate the evolution of collisionless shells in an Omega = 1 universe. Starting from the spherical similarity solution, a bootstrap technique is used to follow the evolution over very large expansion factors. It is found that the overall structure follows the similarity solution for a long period during which bound clumps grow within the shell. At late times the growth of structure depends on induced velocity perturbations in material outside the shell. If such perturbations are suppressed, structure on the shell becomes self-similar. When induced motions in the background medium are included, the evolution at late times is dominated by large-scale modes as predicted by linear stability analysis. The stable final state appears to consist of one or two massive clumps on the edge of a spherical void. The possible application of these results to the origin of galaxies and large-scale structure is discussed.

  14. Damping control of 'smart' piezoelectric shell structures

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.

    Advanced 'smart' structures with self-sensation and control capabilities have attracted much attention in recent years. 'Smart' piezoelectric structures (conventional structures integrated with piezoelectric sensor and actuator elements) possessing self-monitoring and adaptive static and/or dynamic characteristics are very promising in many applications. This paper presents a study on 'smart' piezoelectric shell structures. A generic piezoelastic vibration theory for a thin piezoelectric shell continuum made of a hexagonal piezoelectric material is first derived. Piezoelastic system equation and electrostatic charge equation are formulated using Hamilton's principle and Kirchhoff-Love thin shell assumptions. Dynamic adaptivity, damping control, of a simply supported cylindrical shell structure is demonstrated in a case study. It shows that the system damping increases with the increase of feedback voltage for odd modes. The control scheme is ineffective for all even modes because of the symmetrical boundary conditions.

  15. Shell nuclear explosions in degenerate dwarfs

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O. A.; Tutukov, A. V.; Chechetkin, V. M.

    1989-08-01

    Numerical gas dynamics simulations are used to study shell nuclear explosions of degenerate carbon-oxygen dwarfs with masses of 1.17, 1.36, and 1.42 solar masses. It is assumed that the calorific capacity of the burning shell matter is between 5 X 10 to the 17th and 5 X 10 to the 18th erg/g. It is shown that, at a low calorific capacity, a remnant may form if the mass of the shell is less than 90 percent of the mass of the degenerate dwarf. In the case of high calorific capacity, a remnant may form only if the mass of the shell is less than half of the dwarf's mass.

  16. Experimental study of upper sd shell nuclei and evolution of sd-fp shell gap

    SciTech Connect

    Sarkar, M. Saha

    2012-06-27

    The intruder orbitals from the fp shell play important role in the structure of nuclei around the line of stability in the upper sd shell. Experimentally we have studied {sup 35}Cl, {sup 30}P, {sup 36}Cl, {sup 37}Ar and {sup 34}Cl in this mass region using the INGA setup. Large basis cross-shell shell model calculations have indicated the need for change of the sd-fp energy gap for reliable reproduction of negative parity and high spin positive parity states. Indication of population of states of large deformation has been found in our data. Theoretical interpretation of these states has been discussed.

  17. Shell-model study for neutron-rich sd-shell nuclei

    SciTech Connect

    Kaneko, Kazunari; Sun Yang; Mizusaki, Takahiro; Hasegawa, Munetake

    2011-01-15

    The microscopic structure of neutron-rich sd-shell nuclei is investigated by using the spherical-shell model in the sd-pf valence space with the extended pairing plus quadrupole-quadrupole forces accompanied by the monopole interaction (EPQQM). The calculation reproduces systematically the known energy levels for even-even and odd-mass nuclei including the recent data for {sup 43}S, {sup 46}S, and {sup 47}Ar. In particular, the erosion of the N=28 shell closure in {sup 42}Si can be explained. Our EPQQM results are compared with other shell-model calculations with the SDPF-NR and SDPF-U effective interactions.

  18. A circumferential crack in a cylindrical shell under tension.

    NASA Technical Reports Server (NTRS)

    Duncan-Fama, M. E.; Sanders, J. L., Jr.

    1972-01-01

    A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.

  19. Static structural analysis of shell-type structures

    NASA Technical Reports Server (NTRS)

    Baker, E. H.; Cappelli, A. P.; Kovalevsky, L.; Rish, F. L.; Verrette, R. M.

    1968-01-01

    Shell analysis manual provides methods for determining static deflections and internal load and stress distributions in shells under various loading conditions, and methods of analyzing static instability of shell structures. Also included are methods for determining the lightest shell wall for various constructions.

  20. Double shell tank waste analysis plan

    SciTech Connect

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  1. Singular Shell Embedded into a Cosmological Model

    NASA Astrophysics Data System (ADS)

    Grøn, Øyvind; Rippis, Peter D.

    2003-12-01

    We generalize Israel's formalism to cover singular shells embedded in a non-vacuum Universe. That is, we deduce the relativistic equation of motion for a thin shell embedded in a Schwarzschild/Friedmann-Lemaître-Robertson-Walker spacetime. Also, we review the embedding of a Schwarzschild mass into a cosmological model using ``curvature'' coordinates and give solutions with (Sch/FLRW) and without the embedded mass (FLRW).

  2. Structural durability of stiffened composite shells

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Rivers, James M.; Murthy, Pappu L. N.; Chamis, Christos C.

    1992-01-01

    The durability of a stiffened composite cylindrical shell panel is investigated under several loading conditions. An integrated computer code is utilized for the simulation of load induced structural degradation. Damage initiation, growth, and accumulation up to the stage of propagation to fracture are included in the computational simulation. Results indicate significant differences in the degradation paths for different loading cases. The effects of combined loading on structural durability and ultimate structural strength of a stiffened shell are assessed.

  3. Trapping of intense light in hollow shell

    SciTech Connect

    Luan, Shixia; Yu, Wei; Yu, M. Y.; Weng, Suming; Wang, Jingwei; Xu, Han; Zhuo, Hongbin; Wong, A. Y.

    2015-09-15

    A small hollow shell for trapping laser light is proposed. Two-dimensional particle-in-cell simulation shows that under appropriate laser and plasma conditions a part of the radiation fields of an intense short laser pulse can enter the cavity of a small shell through an over-critical density plasma in an adjacent guide channel and become trapped. The trapped light evolves into a circulating radial wave pattern until its energy is dissipated.

  4. Experiments on shells under base excitation

    NASA Astrophysics Data System (ADS)

    Pellicano, Francesco; Barbieri, Marco; Zippo, Antonio; Strozzi, Matteo

    2016-05-01

    The aim of the present paper is a deep experimental investigation of the nonlinear dynamics of circular cylindrical shells. The specific problem regards the response of circular cylindrical shells subjected to base excitation. The shells are mounted on a shaking table that furnishes a vertical vibration parallel to the cylinder axis; a heavy rigid disk is mounted on the top of the shells. The base vibration induces a rigid body motion, which mainly causes huge inertia forces exerted by the top disk to the shell. In-plane stresses due to the aforementioned inertias give rise to impressively large vibration on the shell. An extremely violent dynamic phenomenon suddenly appears as the excitation frequency varies up and down close to the linear resonant frequency of the first axisymmetric mode. The dynamics are deeply investigated by varying excitation level and frequency. Moreover, in order to generalise the investigation, two different geometries are analysed. The paper furnishes a complete dynamic scenario by means of: (i) amplitude frequency diagrams, (ii) bifurcation diagrams, (iii) time histories and spectra, (iv) phase portraits and Poincaré maps. It is to be stressed that all the results presented here are experimental.

  5. Buckling of conical shell with local imperfections

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Dexter, C. B.

    1974-01-01

    Small geometric imperfections in thin-walled shell structures can cause large reductions in buckling strength. Most imperfections found in structures are neither axisymmetric nor have the shape of buckling modes but rather occur locally. This report presents the results of a study of the effect of local imperfections on the critical buckling load of a specific axially compressed thin-walled conical shell. The buckling calculations were performed by using a two-dimensional shell analysis program referred to as the STAGS (Structural Analysis of General Shells) computer code, which has no axisymmetry restrictions. Results show that the buckling load found from a bifurcation buckling analysis is highly dependent on the circumferential arc length of the imperfection type studied. As the circumferential arc length of the imperfection is increased, a reduction of up to 50 percent of the critical load of the perfect shell can occur. The buckling load of the cone with an axisymmetric imperfections is nearly equal to the buckling load of imperfections which extended 60 deg or more around the circumference, but would give a highly conservative estimate of the buckling load of a shell with an imperfection of a more local nature.

  6. Core-Shell Structured Magnetic Ternary Nanocubes

    SciTech Connect

    Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N.; Wang, Chong M.; Chernova, Natalya; Engelhard, Mark H.; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

    2010-12-01

    While transition metal-doped ferrite nanoparticles constitute an important class of soft magnetic nanomaterials with spinel structures, the ability to control the shape and composition would enable a wide range of applications in homogeneous or heterogeneous reactions such as catalysis and magnetic separation of biomolecules. This report describes novel findings of an investigation of core-shell structured MnZn ferrite nanocubes synthesized in organic solvents by manipulating the reaction temperature and capping agent composition in the absence of the conventionally-used reducing agents. The core-shell structure of the highly-monodispersed nanocubes (~20 nm) are shown to consist of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9, Mn1.1)O4 shell. In comparison with Fe3O4 and other binary ferrite nanoparticles, the core-shell structured nanocubes were shown to display magnetic properties regulated by a combination of the core-shell composition, leading to a higher coercivity (~350 Oe) and field-cool/zero-field-cool characteristics drastically different from many regular MnZn ferrite nanoparticles. The findings are discussed in terms of the unique core-shell composition, the understanding of which has important implication to the exploration of this class of soft magnetic nanomaterials in many potential applications such as magnetic resonance imaging, fuel cells, and batteries.

  7. New developments of the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Poves, Alfredo

    2002-04-01

    More than fifty years ago, the independent particle model of the nucleus was proposed by M. Goeppert-Mayer and H. Jensen. The label "shell model" has since changed meaning and nowadays it applies mainly to the description of the nucleus that results of the mixing of many Slater determinants by an effective "in medium" interaction, usually limited to one and two-body terms. The advent of efficient new algorithms to solve the secular problem, together with the increase in speed and storage capacity of modern computers, has brought into the reach of large scale shell model calculations entire regions of nuclei and of nuclear phenomena traditionally considered to be out of the shell model realm. This enormous extension of its field of practical applications has occurred simultaneously with a regain of experimental interest in the nuclear spectroscopy, in particular in very neutron rich and N=Z nuclei. The shell model work in large model spaces demands a very complete understanding of the effective nuclear interaction, a basic goal of the nuclear theory. Besides, the huge increase of dimensionality that occurs when many valence orbits and valence particles are involved, is a formidable challenge for both the direct diagonalization shell model codes and for the many different approximations, based most often in physically guided truncations of the full shell model basis. In this talk I aim to transmit the effervescence of the field by highlighting the most important recent advances and applications.

  8. Batdorf parameter for the spherical shells tectonics

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kazuhei; Nagahama, Hiroyuki

    2015-04-01

    The buckling phenomena of the subducting lithosphere due to the sphericity of the earth has been studied as spherical shell tectonics which happen the megaquake along the boundary of subducting lithosphere. The earthquake scale is decided by slab length or arc length. However, a relationship between slab length and the normalized hydrostatic pressure along the bottom circumferential edge of a hemispherical shell has not been clear yet. So, by using the data set of the geometrical parameters for subducting lithosphere andBuckingham's Pi-theorem, we found out a new linear relationship between Batdorf parameter Z = L2(l - v2)0.5/(Rh) for the measurement of the slab length L and the normalized hydrostatic pressure along the bottom circumferential edge of a hemispherical shell Q = qRL2/(π2D), where D = Eh3/[12(1 - v2)] with E = modulus of elasticity of lithosphere, R is Earth radius, q is the hydrostatic pressure along the bottom circumferential edge of a hemispherical shell, and h is the thickness of subducting lithosphere. In the engineering sciences, a similar relationship between Batdorf parameter for the panel length and normalized hydrostatic pressure was proposed for the buckling of partially liquid-filled circular cylindrical shells under hydrostatic pressure. Moreover, by previous researches, the slab length is approximately proportional to the arc length or the lithosphere thickness related to lithosphere age. Therefore, the Batdorf parameter for subducting lithosphere is an important parameter for the spherical shells tectonics.

  9. Distributed neural signals on parabolic cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, S. D.; Li, H.; Tzou, H. S.

    2013-06-01

    Parabolic cylindrical shells are commonly used as key components in communication antennas, space telescopes, solar collectors, etc. This study focuses on distributed modal neural sensing signals on a flexible simply-supported parabolic cylindrical shell panel. The parabolic cylindrical shell is fully laminated with a piezoelectric layer on its outer surface and the piezoelectric layer is segmented into infinitesimal elements (neurons) to investigate the microscopic distributed neural sensing signals. Since the dominant vibration component of the shell is usually the transverse oscillation, a new transverse mode shape function is defined. Two shell cases, i.e., the ratio of the meridian height to the half span distance of a parabola at 1:4 (shallow) and 1:1 (deep), are studied to reveal the curvature effect to the neural sensing signals. Studies suggest that the membrane signal component dominates for lower natural modes and the bending signal component dominates for higher natural modes. The meridional membrane and bending signal components are mostly concentrated on the high-curvature areas, while the longitudinal bending component is mostly concentrated on the relatively flat areas. The concentration behavior becomes more prominent as the parabolic cylindrical shell deepens, primarily resulting from the enhanced membrane effect due to the increased curvature.

  10. Non-planar on-shell diagrams

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Galloni, Daniele; Penante, Brenda; Wen, Congkao

    2015-06-01

    We initiate a systematic study of non-planar on-shell diagrams in SYM and develop powerful technology for doing so. We introduce canonical variables generalizing face variables, which make the d log form of the on-shell form explicit. We make significant progress towards a general classification of arbitrary on-shell diagrams by means of two classes of combinatorial objects: generalized matching and matroid polytopes. We propose a boundary measurement that connects general on-shell diagrams to the Grassmannian. Our proposal exhibits two important and non-trivial properties: positivity in the planar case and it matches the combinatorial description of the diagrams in terms of generalized matroid polytopes. Interestingly, non-planar diagrams exhibit novel phenomena, such as the emergence of constraints on Plücker coordinates beyond Plücker relations when deleting edges, which are neatly captured by the generalized matching and matroid polytopes. This behavior is tied to the existence of a new type of poles in the on-shell form at which combinations of Plücker coordinates vanish. Finally, we introduce a prescription, applicable beyond the MHV case, for writing the on-shell form as a function of minors directly from the graph.

  11. "Auctoritas" psychiatric expert system shell.

    PubMed

    Kovács, M; Juranovics, J

    1995-01-01

    We present a short description of a complex psychiatric computer expert system, including functions that help the physicians and the hospital staff in the administrative, diagnostic, therapeutic, statistical, and scientific work. There are separate data-storing, health insurance-supporting, or simple advisory programs, but we can not avail a system--in our country--that provides us with all these functions together. Hence the aim of our program is to produce a universal computer system that makes the patients' long distance follow-up possible. Our diagnostic expert system shell, which is appropriate for using the symptoms and criteria scheme of the internationally accepted diagnostic systems such as DSM and ICD, helps to archive homogeneous, up-to-date psychiatric nosology; this is essential for the correct diagnostic, statistical, and scientific work. Let us introduce our expert system. It consists of four parts: administration, diagnostic decision support system, activities concerning treatment, and statistics. The part called "Administration" contains all data about actual and emitted in-patients and out-patients, including their particulars and data necessary for health insurance (duration of treatment, diagnosis); here we find and edit medical documents. The most important part of the "Auctoritas" system is the "Diagnostic decision support system." In practice, expert systems use decision trees with yes-no logic, fuzzy logic, and pattern matching on the basis of the method of deduction; and backward chaining or forward chaining on the basis of the direction of deduction. Our system uses the methods of fuzzy logic and backward chaining. In other medical disciplines, good results are achieved by applying the pattern matching method; to make validity and verification researches, however, these systems are inappropriate. The diagnoses relying on the up-to-date psychiatric diagnostic systems--DSM-IV and ICD-X--are based on classical logic and can be correctly

  12. 50 CFR 648.50 - Shell-height standard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9...

  13. 50 CFR 648.50 - Shell-height standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9...

  14. 50 CFR 648.50 - Shell-height standard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9...

  15. 50 CFR 648.50 - Shell-height standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9...

  16. 50 CFR 648.50 - Shell-height standard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9...

  17. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  18. Nanostructure and composition of bivalve shells

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Soldati, A. L.; Wirth, R.; Huth, J.; Wehrmeister, U.; Hofmeister, W.

    2009-04-01

    Shells and pearls of unionid mussels (Hyriopsis cumingii, Margaritifera margaritifera, Diplodon chilensis patagonicus) were studied by high resolution microbeam methods and -computer tomography to gather insight into the nanostructure and chemical composition of nacre and prism layers. Natural and cultured pearls are formed by many mollusc species and their generation is very similar to that of shells resulting in identical prismatic and nacreous structures of shells and pearls. Basic difference is, however that pearl culturing methods induce biomineralisation of CaCO3 around a crystalline bead which results in a reverse structural organisation compared to bivalve shells. Bivalve shell growth starts from a thick organic matrix (the periostracum; Eyster and Morse, 1984) which is followed towards the inside by two variously thick layers consisting of prismatic CaCO3 aggregations and layers of CaCO3 platelets, respectively. Platelets and prisms are individually covered by a chitinous organic matrix which lends structural support and is thought to exert control over the mineralization process. The minerals within the organic sheaths are highly-aligned poly-twinned crystals with a slightly distorted lattice due to inclusions of organic molecules (Pokroy et al., 2006). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and Raman Microscopy analyses of the shells and pearls show that both structures, prisms and platelets, consist of nanometre-sized organic membrane-coated granules of CaCO3 (Jacob et al., 2008). In the vicinity of the periostracum, the granules consist of amorphous calcium carbonate (ACC), but the crystallinity increases with increasing distance from the periostracum. The transition from disordered (amorphous) to crystalline CaCO3 is gradual within a few micrometers and coincides with a decrease in porosity. Concentrations of sulphur and phosphorus are higher in ACC than in aragonite indicating a

  19. Thin Shell Manufacturing for large Wavefront correctors

    NASA Astrophysics Data System (ADS)

    Ruch, Eric; Poutriquet, Florence

    2011-09-01

    One of the major key elements in large adaptive optical systems is the thin shell, used as a deformable mirror. Although the optical prescriptions are relaxed with respect to a passive mirror, especially in the low spatial frequency domain, other requirements, such as the cosmetic defects (scratch & dig), the tight control of the thickness uniformity and of course the fragility of the piece having an aspect ratio up to 1000:1, generate new problems during the manufacturing, testing and handling of such optics. Moreover, the optical surface has to be tested in two different ways: a classical optical test bench allows us to create a surface map of the mirror. This map is then computed to determine the force required by the actuators to flatten the mirror and this becomes also a specification for polishing and implies a good interaction with the voice coil manufacturer. More than twenty years ago Sagem - Reosc developed the first meter class thin shell for early adaptive optics experiments. Since then, large thin shell have been used as the optical part in composite mirrors and more recently the aspheric shell for the VLT Deformable Secondary Mirror has been polished and prototypes, up to scale 1, of the E-ELT M4 Adaptive Mirror have been delivered to ESO in 2010. This paper will present some recent results in the manufacturing and testing technologies of large this shell, especially focusing on the development of the 1,1 meter convex aspherical shell for the VLT M2 mirror and on the results obtained on the largest thin shell produced so far (2,5 meter in diameter) developed as a demonstrator for the future E-ELT M4.

  20. Simplified dispersion curves for circular cylindrical shells using shallow shell theory

    NASA Astrophysics Data System (ADS)

    Sarkar, Abhijit; Sonti, Venkata R.

    2009-04-01

    An alternative derivation of the dispersion relation for the transverse vibration of a circular cylindrical shell is presented. The use of the shallow shell theory model leads to a simpler derivation of the same result. Further, the applicability of the dispersion relation is extended to the axisymmetric mode and the high frequency beam mode.

  1. Comparative study of the shell development of hard- and soft-shelled turtles

    PubMed Central

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-01-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used – the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. PMID:24754673

  2. Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Hongxia; Ruan, Peng; Bao, Zhongqiu; Chen, Lei; Zhou, Xingfu

    2015-02-01

    The shell-in-shell structured TiO2 hollow microspheres with enhanced light scattering ability were synthesized via a facile one step hydrothermal process. The diameter of the microsphere is about 1.5 μm, the core of the unique shell-in-shell structure is composed of TiO2 nanoparticles with a diameter of about 15 nm, while the shell is constructed with ∼50 nm TiO2 nanocubes. The hollow space between the outer shell and the inner shell is about 230 nm. The formation mechanism of the unique shell-in-shell structure is interpreted. The design and the optimized application of shell-in-shell structured TiO2 hollow microspheres in the light-trapping perovskite solar cells are also investigated. Owing to the light scattering properties of the shell-in-shell structure of the hollow microsphere, the optimized photoelectrode exhibits an enhanced photoelectric conversion efficiency of 4.29% using perovskite CH3NH3PbI3 as the sensitizer. The shell-in-shell hollow TiO2 microsphere shows a 21.2% increase in conversion efficiency when compared with P25 nanoparticels photoanode. The conversion efficiency enhancement is mainly attributed to the increase of short-current density induced by the light scattering effect.

  3. Size-selective yolk-shell nanoreactors with nanometer-thin porous polymer shells.

    PubMed

    Jia, Ying; Shmakov, Sergey N; Register, Paul; Pinkhassik, Eugene

    2015-09-01

    Yolk-shell nanoreactors with metal nanoparticle core and ultrathin porous polymer shells are effective catalysts for heterogeneous reactions. Polymer shells provide size-selectivity and improved reusability of catalyst. Nanocapsules with single-nanometer porous shells are prepared by vesicle-templated directed assembly. Metal nanoparticles are formed either by selective initiation in pre-fabricated nanocapsules or simultaneously with the creation of a crosslinked polymer shell. In this study, we investigated the oxidation of benzyl alcohol and benzaldehyde catalyzed by gold nanoparticles and hydrogenation of cyclohexene catalyzed by platinum nanoparticles. Comparison of newly created nanoreactors with commercially available nanoparticles revealed superior reusability and size selectivity in nanoreactors while showing no negative effect on reaction kinetics. PMID:26223572

  4. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    PubMed

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale. PMID:27242347

  5. Lithography-free shell-substrate isolation for core–shell GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Haggren, Tuomas; Pyymaki Perros, Alexander; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique5 for the rapid construction of GaAs core–shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core–shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour‑liquid‑solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core–shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core–shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core–shell NWs on an industrial scale.

  6. Hollow Pollen Shells to Enhance Drug Delivery

    PubMed Central

    Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  7. Thick or Thin Ice Shell on Europa?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  8. Hollow pollen shells to enhance drug delivery.

    PubMed

    Diego-Taboada, Alberto; Beckett, Stephen T; Atkin, Stephen L; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  9. Folding of non-Euclidean curved shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  10. Removable inner turbine shell with bucket tip clearance control

    DOEpatents

    Sexton, Brendan F.; Knuijt, Hans M.; Eldrid, Sacheverel Q.; Myers, Albert; Coneybeer, Kyle E.; Johnson, David Martin; Kellock, Iain R.

    2000-01-01

    A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.

  11. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  12. Do freshwater mussel shells record road-salt pollution?

    NASA Astrophysics Data System (ADS)

    O'Neil, Dane D.; Gillikin, David P.

    2014-11-01

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells.

  13. Do freshwater mussel shells record road-salt pollution?

    PubMed Central

    O'Neil, Dane D.; Gillikin, David P.

    2014-01-01

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells. PMID:25418687

  14. FInal Report - Investment Casting Shell Cracking

    SciTech Connect

    Von Richards

    2003-12-01

    This project made a significant contribution to the understanding of the investment casting shell cracking problem. The effects of wax properties on the occurrence of shell cracking were demonstrated and can be measured. The properties measured include coefficient of thermal expansion, heating rate and crystallinity of the structure. The important features of production molds and materials properties have been indicated by case study analysis and fractography of low strength test bars. It was found that stress risers in shell cavity design were important and that typical critical flaws were either oversize particles or large pores just behind the prime coat. It was also found that the true effect of fugitive polymer fibers was not permeability increase, but rather a toughening mechanism due to crack deflection.

  15. Damage Tolerance of Large Shell Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Chamis, C. C.

    1999-01-01

    Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.

  16. Modeling of microencapsulated polymer shell solidification

    SciTech Connect

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-03-08

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur.

  17. COMPLETE SURFACE MAPPING OF ICF SHELLS

    SciTech Connect

    STEPHENS,R.B; OLSON,D; HUANG,H; GIBSON,J.B

    2003-06-01

    OAK-B135 Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. they have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r({theta},{psi}) surface map for accurate 3-D modeling of a shot.

  18. The microindentation behavior of several mollusk shells

    SciTech Connect

    Laraia, V.J.; Heuer, A.H. . Dept. of Materials Science and Engineering)

    1990-01-01

    An investigation of the relationship between structure and mechanical behavior is reported for mollusk shells employing foliated, nacreous, and crossed-lamellar structures by microindentation in the Knoop and Vickers geometries. Indentation damage zones develop crack systems that reflect the micro-architecture. For the crosed-lamellar structure, the system of cracks about the indentation normally developed in a brittle material is suppressed. Previous reports that shells are harder than the corresponding minerals, calcite and aragonite, are confirmed, but it is found that this effect can be strongly dependent on orientation. This anomalous hardness is not an artifact of the indentation test technique, since scratch tests confirm the relative hardness of shell over the mineral. It is suggested that microstructural organization is of central importance in producing this hardness, as opposed to intrinsic properties of the mineral or matrix phases. 17 refs., 6 figs., 1 tab.

  19. Spline Approximation of Thin Shell Dynamics

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1996-01-01

    A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.

  20. Single-Molecule Solvation-Shell Sensing

    NASA Astrophysics Data System (ADS)

    Leary, E.; Höbenreich, H.; Higgins, S. J.; van Zalinge, H.; Haiss, W.; Nichols, R. J.; Finch, C. M.; Grace, I.; Lambert, C. J.; McGrath, R.; Smerdon, J.

    2009-02-01

    We present a new route to single-molecule sensing via solvation shells surrounding a current-carrying backbone molecule. As an example, we show that the presence of a water solvation shell “gates” the conductance of a family of oligothiophene-containing molecular wires, and that the longer the oligothiophene, the larger is the effect. For the longest example studied, the molecular conductance is over 2 orders of magnitude larger in the presence of a shell comprising just 10 water molecules. A first principles theoretical investigation of electron transport through the molecules, using the nonequilibrium Green’s function method, shows that water molecules interact directly with the thiophene rings, significantly shifting transport resonances and greatly increasing the conductance. This reversible effect is confirmed experimentally through conductance measurements performed in the presence of moist air and dry argon.

  1. Locally adaptive method to define coordination shell.

    PubMed

    Higham, Jonathan; Henchman, Richard H

    2016-08-28

    An algorithm is presented to define a particle's coordination shell for any collection of particles. It requires only the particles' positions and no pre-existing knowledge or parameters beyond those already in the force field. A particle's shell is taken to be all particles that are not blocked by any other particle and not further away than a blocked particle. Because blocking is based on two distances and an angle for triplets of particles, it is called the relative angular distance (RAD) algorithm. RAD is applied to Lennard-Jones particles in molecular dynamics simulations of crystalline, liquid, and gaseous phases at various temperatures and densities. RAD coordination shells agree well with those from a cut-off in the radial distribution function for the crystals and liquids and are slightly higher for the gas. PMID:27586905

  2. Shell nebulae around luminous evolved stars

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1989-01-01

    Shell nebulae around luminous Population I Wolf-Rayet, Of, and P-Cygni stars are astrophysically interesting since they are indicators of pre-supernova mass loss and how such massive stars prepare their surrounding interstellar medium prior to explosion. Some twenty-odd such nebulae are known, for which detailed study of their morphological and spectroscopic characteristics have only begun in this decade. In this paper, some of these characteristics are reviewed in general, and new observations are reported. Emphasis has been placed on several 'prototype 'objects (NGC 7635, NGC 2359, NGC 6888, and the Eta Carinae condensations) to illustrate the varied massive-star mass-loss, the physics of their winds and shell ejecta, and related nucleosynthesis effects in the compositions of the winds and shells.

  3. Spherical shell model description of rotational motion

    SciTech Connect

    Zuker, A.P.; Retamosa, J.; Poves, A.; Caurier, E.

    1995-10-01

    Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major shell and four protons in another---or the same---major shell, behave systematically as backbending rotors. The dominance of the {ital q}{center_dot}{ital q} component of the interaction is related to an approximate ``quasi-SU3`` symmetry. It is suggested that the onset of rotational motion in the rare earth nuclei is due to the promotion of the eight particle blocks to the major shells above the ones currently filling. Assuming a ``pseudo-SU3`` coupling for the particles in the lower orbits, it is possible to account remarkably well for the observed {ital B}({ital E}2) rates at the beginning of the region.

  4. Adaptive piezoelectric shell structures: theory and experiments

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.; Zhong, J. P.

    1993-07-01

    Active "smart" space and mechanical structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g. flexible space structures, flexible robots, "smart" machines etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. Electromechanical equations of motion and generalised boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilising the converse piezoelectric effect. Applications of the theory is demonstrated in a bimorph beam case and a cylindrical shell case. Frequency manipulation of the bimorph beam is studied theoretically and experimentally. Damping control of the cylindrical shell via in-plane membrane forces is also investigated.

  5. Nova shell observation of V2275 Cyg

    NASA Astrophysics Data System (ADS)

    Esenoglu, Hasan H.; Balman, Solen; Saygac, A. Talat

    2016-07-01

    We present a recent search for nova shell of V2275 Cyg after its eruption of 9 years, using narrow bands of H-alpha, OIII and H-alpha-continuum images taken with RTT150 telescope at TUG. They were taken in November 2nd, 2010 with exposures of 600sec. There is uncertain in the literature whether the nova shell is visible in H-alpha. In this work the nova disappears on frame of OIII (wavelengt of 500.7nm with band width of 5nm) when it is faint apparent on the frames of both H-alpha and H-alpha continuum. We will calculate a new angular diameter of the nova shell by using the nebular expantion method if the data allow to measure seeing values of the nova and neighbor stars.

  6. Working and Net Available Shell Storage Capacity

    EIA Publications

    2016-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  7. Inner shell radial pin geometry and mounting arrangement

    DOEpatents

    Leach, David; Bergendahl, Peter Allen

    2002-01-01

    Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.

  8. Triggered Snap-Through of Bistable Shells

    NASA Astrophysics Data System (ADS)

    Cai, Yijie; Huang, Shicheng; Trase, Ian; Hu, Nan; Chen, Zi

    Elastic bistable shells are common structures in nature and engineering, such as the lobes of the Venus flytrap or the surface of a toy jumping poppers. Despite their ubiquity, the parameters that control the bistability of such structures are not well understood. In this study, we explore how the geometrical features of radially symmetric elastic shells affect the shape and potential energy of a shell's stable states, and how to tune certain parameters in order to generate a snap-through transition from a convex semi-stable state to concave stable state. We fabricated a series of elastic shells with varying geometric parameters out of silicone rubber and measured the resulting potential energy in the semi-stable state. Finite element simulations were also conducted in order to determine the deformation and stress in the shells during snap-through. It was found that the energy of the semi-stable state is controlled by only two geometric parameters and a dimensionless ratio. We also noted two distinct transitions during snap-through, one between monostability and semi-bistability (the state a popper toy is in before it snaps-through and jumps), and a second transition between semi-bistability and true bistability. This work shows that it is possible to use a set of simple parameters to tailor the energy landscape of an elastic shell in order to generate complex trigger motions for their potential use in smart applications. Z.C. acknowledge support from Society in Science-Branco Weiss Fellowship, administered by ETH Zurich.

  9. Static spherically symmetric thin shell wormhole colliding with a spherical thin shell

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobao; Gao, Sijie

    2016-03-01

    We consider a static spherically symmetric thin shell wormhole that collides with another thin shell consisting of ordinary matter. By employing the geometrical constraint, which leads to the conservation of energy and momentum, we show that the state after the collision can be solved from the initial data. In the low speed approximation, the solutions are rather simple. The shell may either bounce back or pass through the wormhole. In either case, the wormhole shrinks right after the collision. In the "bouncing" case, a surprising result is that the radial speeds before and after the collision satisfy an addition law, which is independent of other parameters of the wormhole and the shell. Once the shell passes through the wormhole, we find that the shell always expands. However, the expansion rate is the same as its collapsing rate right before the collision. Finally, we find the solution for the shell moving together with the wormhole. This work sheds light on the interaction between wormholes and matter.

  10. What's in a Shell? - Interactions of Chemistry and Structure at Submicron Levels in Bivalve Shells

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Piazolo, S.; Trimby, P.

    2014-12-01

    The wide geographical distribution of bivalve shells makes them much favoured paleoclimate proxy archives. However, they are amongst the materials most affected by physiological effects, making the correct deciphering of these archives a challenging task. Shell building plans are usually hierarchic, thus optimizing mechanical properties. However, different structures common to certain bivalve families, such as the prism-nacre or the crossed-lamellar structures, are assembled from very different building blocks. These structural differences coincide with chemical and crystallographic differences suggesting critically different formation mechanisms within the bivalve class. Most importantly some bivalves form their shells from amorphous calcium carbonate that crystallizes in situ once assembled into the shell. We present new correlated multi-scale structural and compositional data for different shell bivalve shell structures such as nacre-prism, cross-lamellar intermediate structures. Data are obtained using EBSD, FIB-assisted TEM and Transmission Kikuchi Diffraction combined with Nano-SIMS and Raman Microspectrometry and suggest that formation from amorphous phases is widespread and results in different calcium carbonate polymorphs to be present in the shell with distinct chemical compositions. The results highlight the complex nature of the biomaterials, which has consequences for the precision and accuracy of paleotemperature calculations.

  11. Simulation of the stress computation in shells

    NASA Technical Reports Server (NTRS)

    Salama, M.; Utku, S.

    1978-01-01

    A self-teaching computer program is described, whereby the stresses in thin shells can be computed with good accuracy using the best fit approach. The program is designed for use in interactive game mode to allow the structural engineer to learn about (1) the major sources of difficulties and associated errors in the computation of stresses in thin shells, (2) possible ways to reduce the errors, and (3) trade-off between computational cost and accuracy. Included are derivation of the computational approach, program description, and several examples illustrating the program usage.

  12. Fast optimization of static axisymmetric shell structures

    NASA Astrophysics Data System (ADS)

    Jacoby, Jeffrey

    An axisymmetric shell optimization procedure is developed which is a fast, user-friendly and practical tool for design use in disciplines including aerospace, mechanical and civil engineering. The shape and thickness of a shell can be optimized to minimize shell mass, mass/volume ratio or stress with constraints imposed on von Mises stress and local buckling. The procedure was created with the aid of the GENOPT optimization development system (Dr. D. Bushnell, Lockheed Missiles and Space Co) and uses the FAST1 shell analysis program (Prof. C. R. Steele, Stanford University) to perform the constraint analysis. The optimization method used is the modified method of feasible directions. The procedure is fast because exact analysis methods allow complex shells to be modelled with only a few large shell elements and still retain a sufficiently accurate solution. This is of particular advantage near shell boundaries and intersections which can have small regions of very detailed variation in the solution. Finite element methods would require many small elements to capture accurately this detail with a resulting increase in computation time and model complexity. Reducing the complexity of the model also reduces the size of the required input and contributes to the simplicity of the procedure. Optimization design variables are the radial and axial coordinates of nodes and the shape parameters and thicknesses of the elements. Thickness distribution within an element can be optimized by specifying the thickness at evenly spaced control points. Spline interpolation is used to provide a smooth thickness variation between the control points. An effective method is developed for reducing the number of required stress constraint equations. Various shells have been optimized and include models for comparison with published results. Shape, thickness and shape/thickness optimization has been performed on examples including a simple aerobrake, sphere-nozzle intersections, ring

  13. Computation of Thin-Walled Prismatic Shells

    NASA Technical Reports Server (NTRS)

    Vlasov, V. Z.

    1949-01-01

    We consider a prismatic shell consisting of a finite number of narrow rectangular plates and having in the cross-section a finite number of closed contours (fig. 1(a)). We shall assume that the rectangular plates composing the shell are rigidly joined so that there is no motion of any kind of one plate relative to the others meeting at a given connecting line. The position of a point on the middle prismatic surface is considered to be defined by the coordinate z, the distance to a certain initial cross-section z = O, end the coordinate s determining its position on the contour of the cross-section.

  14. Shell model for buoyancy-driven turbulence.

    PubMed

    Kumar, Abhishek; Verma, Mahendra K

    2015-04-01

    In this paper we present a unified shell model for stably stratified and convective turbulence. Numerical simulation of this model for stably stratified flow shows Bolgiano-Obukhbov scaling in which the kinetic energy spectrum varies as k(-11/5). The shell model of convective turbulence yields Kolmogorov's spectrum. These results are consistent with the energy flux and energy feed due to buoyancy, and are in good agreement with direct numerical simulations of Kumar et al. [Phys. Rev. E 90, 023016 (2014)]. PMID:25974587

  15. Distribution of neutrino fluxes from pulsar shells

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.; Silberberg, R.

    According to a model considered by Berezinsky and Prilutsky (1976), a young, dense supernova shell can be a powerful source of high-energy neutrinos. In this model, ultra-high energy protons and other nuclei are accelerated at the central pulsar. The protons interact in the supernova shell and generate cascades of mesons, which in turn yield neutrinos upon decay. The pulsar luminosity function based on all the observed Galactic pulsars is considered. It is found that the high-energy neutrinos from supernovae in the Milky Way Galaxy should be readily detectable. The corresponding pulsars would be relatively low-powered pulsars.

  16. Carbon nanotube core graphitic shell hybrid fibers.

    PubMed

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  17. Shell hoop prestress generated by welding

    SciTech Connect

    Meuser, R.B.

    1991-03-01

    For some magnet designs it is desirable to generate a prestress, approaching the yield strength, in the shell surrounding the yoke. If that prestress can be generated by weld shrinkage, then more expensive methods of prestressing can be avoided. Shell-to-yoke friction can reduce the prestress, so it is desirable to minimize it. A quick-and-dirty test was performed to address these matters. While the scatter of the data was large, it appears that weld shrinkage can indeed generate the required prestress. The scatter was too large to give any information about the friction, however. The experiment raised more questions than it answered. 1 fig., 4 tabs.

  18. Stability analysis of dynamic thin shells

    NASA Astrophysics Data System (ADS)

    Lobo, Francisco S. N.; Crawford, Paulo

    2005-11-01

    We analyse the stability of generic spherically symmetric thin shells to linearized perturbations around static solutions. We include the momentum flux term in the conservation identity, deduced from the 'ADM' constraint and the Lanczos equations. Following the Ishak Lake analysis, we deduce a master equation which dictates the stable equilibrium configurations. Considering the transparency condition, we study the stability of thin shells around black holes, showing that our analysis is in agreement with previous results. Applying the analysis to traversable wormhole geometries, by considering specific choices for the form function, we deduce stability regions and find that the latter may be significantly increased by considering appropriate choices for the redshift function.

  19. Comparative study of shell swab and shell crush methods for the recovery of Salmonella from shell eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egg associated Salmonella Enteritidis outbreaks have been a major cause of foodborne illness in Japan as well as in the United States and several European countries. Researchers have been attempting to develop a rapid and highly sensitive method for the recovery of microorganisms from shell eggs. ...

  20. Low Dimensional Models of Shell Vibrations. Parametrically Excited Vibrations of Cylinder Shells

    NASA Astrophysics Data System (ADS)

    Popov, A. A.; Thompson, J. M. T.; McRobie, F. A.

    1998-01-01

    Vibrations of cylindrical shells parametrically excited by axial forcing are considered. The governing system of two coupled non-linear partial differential equations is discretized by using Lagrange equations. The computation is simplified significantly by the application of computer algebra and as a result low dimensional models of shell vibrations are readily obtained. After applying numerical continuation techniques and ideas from dynamical systems theory, complete bifurcation diagrams are constructed. The principal aim is to investigate the interaction between different modes of shell vibration. Results for system models with two of the lowest modes are discussed.

  1. Fabrication and photocatalytic properties of SnO2 double-shelled and triple-shelled hollow spheres

    NASA Astrophysics Data System (ADS)

    Niu, Shanshan; Wang, Yong; Lu, Shan; Wang, Dongxia; Wang, Ping

    2016-06-01

    SnO2 double-shelled and triple-shelled hollow spheres were tailored by adjusting concentration of tin (IV) chloride solution during the process of the tin (IV) ions infused carbonaceous spheres. The structures of these SnO2 multi-shelled hollow spheres were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and their possible formation mechanism were also discussed. In virtue of triple-shelled hollow porous structure and higher specific surface area, SnO2 triple-shelled hollow spheres exhibited enhanced photocatalytic properties compared to SnO2 double-shelled hollow spheres.

  2. Cosmic Shell-Seekers Find a Beauty

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Two scientists have discovered a distinctive shell of hot gas around the site of a distant supernova explosion by combining 150 hours of archived data collected by NASA's Chandra X-ray Observatory. This discovery is a significant step forward in solving a decades-old puzzle as to why some stellar explosions display shells and others do not. "The likely answer is that the explosion of every massive star sends a sonic boom rumbling through interstellar space," said Samar Safi-Harb of the University of Manitoba in Winnipeg, Canada, who is a coauthor with Heather Matheson on a paper describing the research that appears in the journal Advances in Space Research. "It's just that, some of the shells are harder to find than others because of the environment where the explosion occurs." The shell marks a sonic boom, or shock wave, generated by the supernova. Gas is heated to millions of degrees by the shock wave and produces X-rays, but little visible light. By examining the properties of the shell with an X-ray telescope, astronomers can work back to deduce the age (a few thousand years), and energy of the explosion, as well as information about the state of the star a million years before it exploded. Animation of a Supernova Explosion Animation of a Supernova Explosion It is likely that the star that produced the supernova remnant and shell was about 10 times as massive as the Sun. The absence of a detectable shell around this and similar supernova remnants had led astronomers to speculate that another, weaker type of explosion had occurred there. Now this hypothesis seems unlikely. Although many supernovas leave behind bright shells, others do not. This supernova remnant, identified as G21.5-0.9 by radio astronomers 30 years ago, was considered to be one that had no shell. A diffuse cloud of X-rays around the source was detected about 5 years ago by another group of astronomers and independently by Safi-Harb and colleagues using Chandra, but it took the careful

  3. Vibrations of moderately thick shallow spherical shells at large amplitudes

    NASA Astrophysics Data System (ADS)

    Sathyamoorthy, M.

    1994-04-01

    A shallow shell theory is presented for the geometrically nonlinear analysis of moderately thick isotropic spherical shells. Effects of transverse shear deformation and rotatory inertia are included in the governing equations of motion by means of tracing constants. When these effects are ignored, the governing equations readily reduce to those applicable for thin shallow spherical shells. Solutions to the system of thick shell equations are obtained by means of Galerkin's method and the numerical Runge-Kutta procedure. Numerical results are presented for certain cases of shallow spherical shells considering different geometric shell parameters. Transverse shear and rotatory inertia effects are found to be important in linear as well as nonlinear responses of shallow spherical shells. The nonlinear frequency-amplitude behavior is of the softening type for shallow spherical shells and of the hardening type for circular plates. Frequency ratios are lower at any given amplitude when the effects of transverse shear and rotatory inertia are included in the analysis.

  4. MOND implications for spectral line profiles of shell galaxies: shell formation history and mass-velocity scaling relations

    NASA Astrophysics Data System (ADS)

    Bílek, M.; Jungwiert, B.; Ebrová, I.; Bartošková, K.

    2015-03-01

    Context. Many ellipticals are surrounded by round stellar shells probably stemming from minor mergers. A new method for constraining gravitational potential in elliptical galaxies has recently been suggested. It uses the spectral line profiles of these shells to measure the circular velocity at the edge of the shell and the expansion velocity of the shell itself. MOND is an alternative to the dark matter framework aiming to solve the missing mass problem. Aims: We study how the circular and expansion velocities behave in MOND for large shells. Methods: The asymptotic behavior for infinitely large shells is derived analytically. The applicability of the asymptotic results for finitely sized shells is studied numerically on a grid of galaxies modeled with Sérsic spheres. Results: Circular velocity settles asymptotically at a value determined by the baryonic mass of the galaxy forming the baryonic Tully-Fisher relation known for disk galaxies. Shell expansion velocity also becomes asymptotically constant. The expansion velocities of large shells form a multibranched analogy to the baryonic Tully-Fisher relation, together with the galactic baryonic masses. For many - but not all - shell galaxies, the asymptotic values of these two types of velocities are reached under the effective radius. If MOND is assumed to work in ellipticals, then the shell spectra allow many details of the history to be revealed about the formation of the shell system, including its age. The results pertaining to circular velocities apply to all elliptical galaxies, not only those with shells.

  5. On Newton’s shell theorem

    NASA Astrophysics Data System (ADS)

    Borghi, Riccardo

    2014-03-01

    In the present letter, Newton’s theorem for the gravitational field outside a uniform spherical shell is considered. In particular, a purely geometric proof of proposition LXXI/theorem XXXI of Newton’s Principia, which is suitable for undergraduates and even skilled high-school students, is proposed. Minimal knowledge of elementary calculus and three-dimensional Euclidean geometry are required.

  6. Shell seeks modifications to Mosconi sale

    SciTech Connect

    Chynoweth, E.

    1993-01-06

    Privatization of Argentina's Petroquimica General Mosconi (PGM; Buenos Aires) got under way at the end of last years with three companies submitting technical bids. The interested parties are Shell Compania Argentina de Petroleo SA, Diamond Shamrock, and Panam - a group of local companies including Perez Companc, Laboratorios Phoenix, and Quitral. The technical bids include terms of reference and plans for PGM. Shell has sent a letter to the minister in charge of privatization saying it would not present its economic bid, due January 28, unless changes are made in the sale concerning feedstock supply contracts with state oil group YPF. Shell is concerned about the impact of YPF, which supplies PGM most feedstocks. Tender conditions state YPF will retain 30% of PGM, which will be renamed Petroquimica Platense, and will be the exclusive supplier of feestocks and one of the main buyers of product. Government authorities say no decision has been taken relating to Shell's request to change the contract, but they are reviewing the situation. Other bidders made no objections about the proposed conditions. The government is selling 64% of PGM, YPF will retain 30%, and the remainder will go to the workforce.

  7. Sanitation in the Shell Egg Processing Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazard analysis and critical control programs (HACCP) will eventually be required for commercial shell egg processing plants. Sanitation is an essential prerequisite program for HACCP and is based upon current Good Manufacturing Practices (cGMPs) as listed in the Code of Federal Regulations. Good ...

  8. On the Theory of Thin Shallow Shells

    NASA Technical Reports Server (NTRS)

    Nazarov, A. A.

    1956-01-01

    This report is concerned with the theory of thin shallow shells. It does not employ the lines of curvature as the coordinate system, but employs "almost cartesian coordinates" or the coordinates obtained by cutting the surface into two mutually orthogonal systems of parallel planes.

  9. Torrefaction of pomaces and nut shells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical: Apple, grape, olive, and tomato pomaces as well as almond and walnut shells were torrefied at different temperatures and times in a muffle furnace. The fiber content and thermal stability of the raw byproducts were examined using fiber analysis and thermogravimetric analysis (TGA), respec...

  10. The 'shell effect': music from environmental noise

    NASA Astrophysics Data System (ADS)

    Diodati, Paolo

    2005-02-01

    The 'shell effect' can be used to play music with a pleasant and characteristic timbre. If you place a sensitive microphone at the rim of pipes of suitable length and diameter to obtain resonance frequencies, ambient noise will produce musical notes. The corresponding optical effect, i.e. extracting visible light from ambient radiation considered dark by the human eye, is also discussed.

  11. Orthotropic rotation-free thin shell elements

    NASA Astrophysics Data System (ADS)

    Munglani, Gautam; Vetter, Roman; Wittel, Falk K.; Herrmann, Hans J.

    2015-11-01

    A method to simulate orthotropic behaviour in thin shell finite elements is proposed. The approach is based on the transformation of shape function derivatives, resulting in a new orthogonal basis aligned to a specified preferred direction for all elements. This transformation is carried out solely in the undeformed state leaving minimal additional impact on the computational effort expended to simulate orthotropic materials compared to isotropic, resulting in a straightforward and highly efficient implementation. This method is implemented for rotation-free triangular shells using the finite element framework built on the Kirchhoff-Love theory employing subdivision surfaces. The accuracy of this approach is demonstrated using the deformation of a pinched hemispherical shell (with a 18° hole) standard benchmark. To showcase the efficiency of this implementation, the wrinkling of orthotropic sheets under shear displacement is analyzed. It is found that orthotropic subdivision shells are able to capture the wrinkling behavior of sheets accurately for coarse meshes without the use of an additional wrinkling model.

  12. Dynamical Disorder in the DNA Hydration Shell.

    PubMed

    Duboué-Dijon, Elise; Fogarty, Aoife C; Hynes, James T; Laage, Damien

    2016-06-22

    The reorientation and hydrogen-bond dynamics of water molecules within the hydration shell of a B-DNA dodecamer, which are of interest for many of its biochemical functions, are investigated via molecular dynamics simulations and an analytic jump model, which provide valuable new molecular level insights into these dynamics. Different sources of heterogeneity in the hydration shell dynamics are determined. First, a pronounced spatial heterogeneity is found at the DNA interface and explained via the jump model by the diversity in local DNA interfacial topographies and DNA-water H-bond interactions. While most of the hydration shell is moderately retarded with respect to the bulk, some water molecules confined in the narrow minor groove exhibit very slow dynamics. An additional source of heterogeneity is found to be caused by the DNA conformational fluctuations, which modulate the water dynamics. The groove widening aids the approach of, and the jump to, a new water H-bond partner. This temporal heterogeneity is especially strong in the minor groove, where groove width fluctuations occur on the same time scale as the water H-bond rearrangements, leading to a strong dynamical disorder. The usual simplifying assumption that hydration shell dynamics is much faster than DNA dynamics is thus not valid; our results show that biomolecular conformational fluctuations are essential to facilitate the water motions and accelerate the hydration dynamics in confined groove sites. PMID:27240107

  13. Polarimetry of nacre in iridescent shells

    NASA Astrophysics Data System (ADS)

    Metzler, R. A.; Burgess, C.; Regan, B.; Spano, S.; Galvez, E. J.

    2014-09-01

    We investigate the light transmitted or reflected from nacre (mother of pearl) taken from the iridescent shell of the bivalve Pinctad a fucata. These nacre surfaces have a rich structure, composed of aragonite crystals arranged as tablets or bricks, 5 μm wide and 400-500 nm thick, surrounded by 30nm thick organic mortar. The light reflected from these shell surfaces, or transmitted through thin polished layers, is rich in its polarization content, exhibiting a space dependent variation in the state of polarization with a high density of polarization singularities. Our goal is to use the polarization information to infer the structure of the biominerals and the role of the organic layer in determining the orientation of the crystals. In the experiments we send the light from a laser with a uniform state of polarization onto the shell, and analyze the light that is either transmitted or reflected, depending on the type of experiment, imaging it after its passage through polarization filters. We use the images from distinct filters to obtain the Stokes parameters, and hence the state of polarization, of each image point. We also construct the Mueller matrix for each imaged point, via 36 measurements. We do this for distinct physical and chemical treatments of the shell sample. Preliminary data shows that the organic layer may be responsible for organizing a multi-crystalline arrangement of aragonite tablets.

  14. BOWOOSS: bionic optimized wood shells with sustainability

    NASA Astrophysics Data System (ADS)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  15. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; El Eid, M. F.

    2004-03-01

    We present details of explosive nucleosynthesis in the helium-burning shell of a 25 solar mass star. We describe the production of short-lived radioactivities in this environment. We finally describe how to access the details of our calculations over the world-wide web.

  16. PEANUT SHELL FUEL FOR THE GAMBIA

    EPA Science Inventory

    The project will develop a household-scale human-powered briquette maker that will convert peanut shells into an efficient cooking fuel. The briquette maker will be designed such that it can be manufactured and used in The Gambia.

  17. Shell corrections, magic numbers, and mean field

    SciTech Connect

    Denisov, V. Yu.

    2007-02-15

    It is shown that the positions of deep local minima of shell corrections associated with magic numbers in the region of superheavy nuclei depend on the parameters of the central and spin-orbit mean-field potentials. The accuracy of nuclear-mass predictions made within various models for superheavy nuclei is analyzed.

  18. On-Shell Methods in Perturbative QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-04-25

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.

  19. Continuous representation for shell models of turbulence

    NASA Astrophysics Data System (ADS)

    Mailybaev, Alexei A.

    2015-07-01

    In this work we construct and analyze continuous hydrodynamic models in one space dimension, which are induced by shell models of turbulence. After Fourier transformation, such continuous models split into an infinite number of uncoupled subsystems, which are all identical to the same shell model. The two shell models, which allow such a construction, are considered: the dyadic (Desnyansky-Novikov) model with the intershell ratio λ = 23/2 and the Sabra model of turbulence with λ = \\sqrt{2+\\sqrt{5}} ≈ 2.058 . The continuous models allow for understanding of various properties of shell model solutions and provide their interpretation in physical space. We show that the asymptotic solutions of the dyadic model with Kolmogorov scaling correspond to the shocks (discontinuities) for the induced continuous solutions in physical space, and the finite-time blowup together with its viscous regularization follow the scenario similar to the Burgers equation. For the Sabra model, we provide the physical space representation for blowup solutions and intermittent turbulent dynamics.

  20. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN...

  1. Oyster shell calcium induced parotid swelling

    PubMed Central

    Palaniappan, Muthiah; Selvarajan, Sandhiya; Srinivasamurthy, Sureshkumar; Chandrasekaran, Adithan

    2014-01-01

    A 59 year old female consumer was started on therapy with oyster shell calcium in combination with vitamin D3 and she presented with swelling below the ear, after two doses. She stopped the drug by herself and the swelling disappeared in one day. She started the drug one day after recovery and again she developed the swelling. She was advised to stop the drug with a suggestion to take lemon to enhance parotid secretion and the swelling subsided. Calcium plays major role in salivary secretion and studies have shown reduced parotid secretion in rats, deficient of vitamin D. But in humans involvement of calcium and vitamin D3 in parotid secretion is unknown. However, the patient had no history of reaction though she had previously taken vitamin D3 with calcium carbonate which was not from oyster shell. Hence, we ruled out vitamin D3 in this reaction and suspecting oyster shell calcium as a culprit. This adverse drug reaction (ADR) was assessed using World Health Organization (WHO) causality assessment, Naranjo's and Hartwig severity scales. As per WHO causality assessment scale, the ADR was classified as “certain”. This reaction was analyzed as per Naranjo's algorithm and was classified as probable. According to Hartwig's severity scale the reaction was rated as mild. Our case is an example of a mild but rare adverse effect of oyster shell calcium carbonate which is widely used. PMID:25422569

  2. Quality and Composition of Retail Shell Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumers are becoming more aware of their food choices. As part of this movement, sourcing and production information is often desired for agricultural products. Furthermore, products associated with added health benefits are also becoming more common in the marketplace. The US shell egg industr...

  3. Measurement and calculation of L-shell transitions in M-shell iron ions

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Lepson, J. K.; Díaz, F.; Ishikawa, Y.; Träbert, E.

    2013-09-01

    We have made high-resolution measurements of the iron L-shell emission near 15 Å using the EBIT-I electron beam ion trap at Livermore that exhibit L-shell transitions from autoionizing levels in Fe13+, Fe14+ and Fe15+ ions. The observed L-shell iron spectra were modeled using the flexible atomic code augmented with transition energies produced by calculations based on the relativistic multi-reference Møller-Plesset (MRMP) perturbation theory, allowing us to identify multiple M-shell iron lines. Our measured values for the Fe XV emission lines are in excellent agreement with a recent measurement using the BESSY-II synchrotron but the present measurements have somewhat higher accuracy. Our MRMP calculations are compared to earlier calculations using the many-body perturbation theory approach, and we find good agreement for some but not all transitions.

  4. Cracking the Si Shell Growth in Hexagonal GaP-Si Core-Shell Nanowires.

    PubMed

    Conesa-Boj, S; Hauge, H I T; Verheijen, M A; Assali, S; Li, A; Bakkers, E P A M; Fontcuberta i Morral, A

    2015-05-13

    Semiconductor nanowires have increased the palette of possible heterostructures thanks to their more effective strain relaxation. Among these, core-shell heterostructures are much more sensitive to strain than axial ones. It is now accepted that the formation of misfit dislocations depends both on the lattice mismatch and relative dimensions of the core and the shell. Here, we show for the first time the existence of a new kind of defect in core-shell nanowires: cracks. These defects do not originate from a lattice mismatch (we demonstrate their appearance in an essentially zero-mismatch system) but from the thermal history during the growth of the nanowires. Crack defects lead to the development of secondary defects, such as type-I1 stacking faults and Frank-type dislocations. These results provide crucial information with important implications for the optimized synthesis of nanowire-based core-shell heterostructures. PMID:25922878

  5. Interior remodeling of the shell by a gastropod mollusc

    PubMed Central

    Kohn, Alan J.; Myers, Elizabeth R.; Meenakshi, V. R.

    1979-01-01

    As the Conus shell grows by spiraling of the outer lip around the axis, profound internal shell dissolution thins the walls of the protected penultimate whorl from several millimeters to <50μm. Shell material is added to the inside of the spire and the anterior part of the columella. The resulting shell has a uniformly thick last whorl and thickened spire that enhance defense against crushing predators and a greatly expanded interior living space for the animal. Images PMID:16592680

  6. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, Charles D.

    1985-01-01

    Large, uniform hollow spherical shells are produced by forming uniform size drops of heat decomposable or vaporizable material, evaporating the drops to form dried particles, coating the dried particles with a layer of shell forming material, and heating the composite particles to melt the outer layer and decompose or vaporize the inner particle to form an expanding inner gas bubble which expands the outer layer. By cycling the temperature and pressure on the hollow shells, spherical shells with uniform walls are produced.

  7. (Plasmonic Metal Core)/(Semiconductor Shell) Nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Caihong

    Over the past several years, integration of metal nanocrystals that can support localized surface plasmon has been demonstrated as one of the most promising methods to the improvement of the light-harvesting efficiency of semiconductors. Ag and Au nanocrystals have been extensively hybridized with semiconductors by either deposition or anchoring. However, metal nanocrystals tend to aggregate, reshape, detach, or grow into large nanocrystals, leading to a loss of the unique properties seen in the original nanocrystals. Fortunately, core/shell nanostructures, circumventing the aforementioned problems, have been demonstrated to exhibit superior photoactivities. To further improve the light-harvesting applications of (plasmonic metal core)/(semiconductor shell) nanostructures, it is vital to understand the plasmonic and structural evolutions during the preparation processes, design novel hybrid nanostructures, and improve their light-harvesting performances. In this thesis, I therefore studied the plasmonic and structural evolutions during the formation of (Ag core)/(Ag2S shell) nanostructures. Moreover, I also prepared (noble metal core)/(TiO2 shell) nanostructures and investigated their plasmonic properties and photon-harvesting applications. Clear understanding of the sulfidation process can enable fine control of the plasmonic properties as well as the structural composition of Ag/Ag 2S nanomaterials. Therefore, I investigated the plasmonic and structural variations during the sulfidation process of Ag nanocubes both experimentally and numerically. The sulfidation reactions were carried out at both the ensemble and single-particle levels. Electrodynamic simulations were also employed to study the variations of the plasmonic properties and plasmon modes. Both experiment and simulation results revealed that sulfidation initiates at the vertices of Ag nanocubes. Ag nanocubes are then gradually truncated and each nanocube becomes a nanosphere eventually. The cubic

  8. Searching for nova shells around cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Sahman, D. I.; Dhillon, V. S.; Knigge, C.; Marsh, T. R.

    2015-08-01

    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using H α images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric H α Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of ˜2.5 arcmin, indicative of a nova eruption approximately 120 yr ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined four asynchronous polars, but found no new shells around any of them, so we are unable to confirm that a recent nova eruption is the cause of the asynchronicity in the white dwarf spin. We find tentative evidence of a faint shell around the dwarf nova V1363 Cyg. In addition, we find evidence for a light echo around the nova V2275 Cyg, which erupted in 2001, indicative of an earlier nova eruption ˜300 yr ago, making V2275 Cyg a possible recurrent nova.

  9. SHELL - PRESSURE VOLUME PROPERTIES OF METALLIC BELLOWS

    NASA Technical Reports Server (NTRS)

    Kiefling, L.

    1994-01-01

    A majority of the liquid-fueled rocket vehicles developed in the past have been plagued by an instability known as POGO. The POGO phenomenon involves dynamics of the vehicle structure, dynamics of the propellant in the feedline, and the engine dynamic transfer function. Each of these three items must be accurately known in order to determine stability. Metallic bellows are commonly used as segments of propellant feedlines for rocket-propelled vehicles to accommodate temperature-induced length variations, manufacturing tolerances, and gimbaling of the engines. These bellows sections deform radially and change volume when internal pressure varies, and the magnitude of such deformation is much higher than that for the straight, cylindrical segments of the line. The greater flexibility of the bellows decreases the frequency of acoustic oscillations in the line. Calculating elastic stiffness is difficult due to the radial deformation of a bellows section. SHELL was developed specifically to calculate changes in volume of a bellows due to changes in internal pressure. Input to the program consists of tables describing the material, the geometry of the convolutions and loading. The output gives displacements and volume change that can be used for POGO or waterhammer analysis. SHELL is written in standard FORTRAN 77. This program was originally developed on a Univac 1100 series computer and has been successfully implemented on IBM 370 series computers running MVS and DEC VAX series computers running VMS. The main memory requirement for running SHELL under VMS is 116K. The program source code, IBM JCL for compiling and running SHELL, and sample input are provided with the program. SHELL is available on a 9-track 1600 BPI ASCII CARD IMAGE magnetic tape. This program was developed in 1989. IBM is a trademark of International Business Machines Corporation. DEC, VAX and VMS are registered trademarks of Digital Equipment Corporation. Univac 1100 is a trademark of Unisys

  10. Porous Core-Shell Nanostructures for Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  11. 41 CFR 102-85.120 - What is shell Rent?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is shell Rent? 102-85.120 Section 102-85.120 Public Contracts and Property Management Federal Property Management... GSA SPACE Rent Charges § 102-85.120 What is shell Rent? Shell Rent is that portion of GSA Rent...

  12. 46 CFR 174.225 - Hull penetrations and shell connections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Hull penetrations and shell connections. 174.225 Section 174.225 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... § 174.225 Hull penetrations and shell connections. Each overboard discharge and shell connection...

  13. 46 CFR 174.225 - Hull penetrations and shell connections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull penetrations and shell connections. 174.225 Section 174.225 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... § 174.225 Hull penetrations and shell connections. Each overboard discharge and shell connection...

  14. 46 CFR 174.225 - Hull penetrations and shell connections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Hull penetrations and shell connections. 174.225 Section 174.225 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... § 174.225 Hull penetrations and shell connections. Each overboard discharge and shell connection...

  15. 46 CFR 174.225 - Hull penetrations and shell connections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Hull penetrations and shell connections. 174.225 Section 174.225 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... § 174.225 Hull penetrations and shell connections. Each overboard discharge and shell connection...

  16. 46 CFR 174.225 - Hull penetrations and shell connections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Hull penetrations and shell connections. 174.225 Section 174.225 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... § 174.225 Hull penetrations and shell connections. Each overboard discharge and shell connection...

  17. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  18. Pseudo-Symmetry and Majorana Operators in pf-Shell

    SciTech Connect

    Valencia, J. P.; Wu, H. C.

    2007-10-26

    The Majorana operator of the pseudo ds-shell preserves the SU-tilde(4) symmetry, and in a unified manner it reproduces reasonably well the ground state energies of the nine nuclei in this shell. The study of {beta} decay in the same shell provides further support for the SU-tilde(4) symmetry.

  19. Leathery Hull Peanuts – Effect on Shelling Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When shelling peanuts from the 2012 peanut crop, various shellers experienced diminished shelling plant throughput when shelling peanuts harvested from isolated geographical regions. Shellers reported a reduction of 25-30% throughput of the first stage sheller bank with significant increases in spli...

  20. Shells. Modified Primary. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This publication provides information and activities for teaching about seashells and process skills including observing, classifying, collecting and interpreting data, inferring, measuring, and predicting. There are 10 lessons. Lessons 1 through 5 deal with an introduction to shells, why animals have shells, observing and classifying shells, the…

  1. Glass shell manufacturing in space. [residual gases in spherical shells made from metal-organic gels

    NASA Technical Reports Server (NTRS)

    Nolen, R. J.; Ebner, M. A.; Downs, R. L.

    1980-01-01

    Residual gases always found in glass shells are CO2, O2 and N2. In those cases where high water vapor pressure is maintained in the furnace, water is also found in the shells. Other evidence for the existence of water in shells is the presence of water-induced surface weathering of the interior shell surface. Water and CO2 are the predominant volatiles generated by the pyrolysis of both inorganic and hydrolyzed metal-organic gels. The pyrolysates of unhydrolyzed metal-organic gels also contain, in addition to water and CO2, significant levels of organic volatiles, such as ethanol and some hydrocarbons; on complete oxidation, these produce CO2 and water as well. Water is most likely the initial blowing agent, it is produced copiously during the initial stages of heating. In the later stages, CO2 becomes the dominant gas as H2O is lost at increasing rates. Water in the shell arises mainly from gel dehydration, CO2 by sodium bicarbonate/carbonate decomposition and carbon oxidation, and O2 and N2 by permeation of the ambient furnace air through the molten shell wall.

  2. Shell matrix proteins of the clam, Mya truncata: Roles beyond shell formation through proteomic study.

    PubMed

    Arivalagan, Jaison; Marie, Benjamin; Sleight, Victoria A; Clark, Melody S; Berland, Sophie; Marie, Arul

    2016-06-01

    Mya truncata, a soft shell clam, is presented as a new model to study biomineralization through a proteomics approach. In this study, the shell and mantle tissue were analysed in order to retrieve knowledge about the secretion of shell matrix proteins (SMPs). Out of 67 and 127 shell and mantle proteins respectively, 16 were found in both shell and mantle. Bioinformatic analysis of SMP sequences for domain prediction revealed the presence of several new domains such as fucolectin tachylectin-4 pentraxin-1 (FTP), scavenger receptor, alpha-2-macroglobulin (α2 M), lipocalin and myosin tail along with previously reported SMP domains such as chitinase, carbonic anhydrase, tyrosinase, sushi, and chitin binding. Interestingly, these newly predicted domains are attributed with molecular functions other than biomineralization. These findings suggest that shells may not only act as protective armour from predatory action, but could also actively be related to other functions such as immunity. In this context, the roles of SMPs in biomineralization need to be looked in a new perspective. PMID:27068305

  3. Scattering amplitudes with off-shell quarks

    NASA Astrophysics Data System (ADS)

    van Hameren, A.; Kutak, K.; Salwa, T.

    2013-11-01

    We present a prescription to calculate manifestly gauge invariant tree-level scattering amplitudes for arbitrary scattering processes with off-shell initial-state quarks within the kinematics of high-energy scattering. Consider the embedding of the process, in which the off-shell u-quark is replaced by an auxiliary quark qA, and an auxiliary photon γA is added in final state. The momentum flow is as if qA carries momentum k1 and the momentum of γA is identical to 0. γA only interacts via Eq. (3), and qA further only interacts with gluons via normal quark-gluon vertices. qA-line propagators are interpreted as iℓ̸1/(2ℓ1ṡp), and are diagonal in color space. Sum the squared amplitude over helicities of the auxiliary photon. For one helicity, simultaneously assign to the external qA-quark and to γA the spinor and polarization vector |ℓ1], {<ℓ1|γμ|ℓ2]}/{√{2}[ℓ1|ℓ2]}, and for the other helicity assign |ℓ1>, {<ℓ2|γμ|ℓ1]}/{√{2}<ℓ2|ℓ1>}. Multiply the amplitude with √{-x1k12/2}. For the rest, normal Feynman rules apply.Some remarks are at order. Regarding the momentum flow, we stress, as in [20], that momentum components proportional to k1 do not contribute in the eikonal propagators, and there is a freedom in the choice of the momenta flowing through qA-lines.Regarding the sum over helicities, one might argue that only one of them leads to a non-zero result for given helicity of the final-state quark, but there may, for example, be several identical such quarks in the final state with different helicities.In case of more than one quark in the final state with the same flavor as the off-shell quark, the rules as such admit graphs with γA-propagators. These must be omitted. They do not survive the limit Λ→∞ in the derivation, since the γA-propagators are suppressed by 1/Λ.The rules regarding the qA-line could be elaborated further like in [20], leading to simplified vertices for gluons attached to this line and reducing the

  4. Shells on lattice-mismatched colloidal spheres, cubes, and peanuts

    NASA Astrophysics Data System (ADS)

    Sindoro, Melinda; Granick, Steve

    2015-03-01

    Cavities form spontaneously due to geometrical frustration when crystalline shells is gradually grown on non-linear surfaces. This we conclude experimentally from growing lattice mismatched shells on colloidal spheres, cubes, and peanuts, all of them providing different local curvature. According to the core shape, the underlying interfacial curvature promotes different cavity formation which we can follow over time. The resulting spatio-temporal heterogeneity adds up to a propagation of an increasingly strong mechanical stress at the core-shell interface, inducing core-shells transformation to yolk-shells.

  5. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  6. Sound transmission into a laminated composite cylindrical shell

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1980-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a laminated composite circular cylindrical shell. Numerical results are obtained for geometry typical of a narrow-bodied jet transport. Results indicate that from the viewpoint of noise attenuation on laminated composite shell does not appear to offer any significant advantage over an aluminum shell. However, the transmission loss of a laminated composite shell is sensitive to the orientation of the fibers and this suggests the possibility of using a laminated composite shell to tailor the noise attenuation characteristics to meet a specific need.

  7. Method of fabricating nested shells and resulting product

    DOEpatents

    Henderson, Timothy M.; Kool, Lawrence B.

    1982-01-01

    A multiple shell structure and a method of manufacturing such structure wherein a hollow glass microsphere is surface treated in an organosilane solution so as to render the shell outer surface hydrophobic. The surface treated glass shell is then suspended in the oil phase of an oil-aqueous phase dispersion. The oil phase includes an organic film-forming monomer, a polymerization initiator and a blowing agent. A polymeric film forms at each phase boundary of the dispersion and is then expanded in a blowing operation so as to form an outer homogeneously integral monocellular substantially spherical thermoplastic shell encapsulating an inner glass shell of lesser diameter.

  8. Ocean acidification alters the material properties of Mytilus edulis shells.

    PubMed

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  9. Ocean acidification alters the material properties of Mytilus edulis shells

    PubMed Central

    Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie

    2015-01-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  10. A Method for Quantifying, Visualising, and Analysing Gastropod Shell Form

    PubMed Central

    Liew, Thor-Seng; Schilthuizen, Menno

    2016-01-01

    Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology. PMID:27280463

  11. A predictive model of shell morphology in CdSe/CdS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gong, Ke; Kelley, David F.

    2014-11-01

    Lattice mismatch in core/shell nanoparticles occurs when the core and shell materials have different lattice parameters. When there is a significant lattice mismatch, a coherent core-shell interface results in substantial lattice strain energy, which can affect the shell morphology. The shell can be of uniform thickness or can be rough, having thin and thick regions. A smooth shell minimizes the surface energy at the expense of increased lattice strain energy and a rough shell does the opposite. A quantitative treatment of the lattice strain energy in determining the shell morphology of CdSe/CdS core/shell nanoparticles is presented here. We use the inhomogeneity in hole tunneling rates through the shell to adsorbed hole acceptors to quantify the extent of shell thickness inhomogeneity. The results can be understood in terms of a model based on elastic continuum calculations, which indicate that the lattice strain energy depends on both core size and shell thickness. The model assumes thermodynamic equilibrium, i.e., that the shell morphology corresponds to a minimum total (lattice strain plus surface) energy. Comparison with the experimental results indicates that CdSe/CdS nanoparticles undergo an abrupt transition from smooth to rough shells when the total lattice strain energy exceeds about 27 eV or the strain energy density exceeds 0.59 eV/nm2. We also find that the predictions of this model are not followed for CdSe/CdS nanoparticles when the shell is deposited at very low temperature and therefore equilibrium is not established.

  12. A predictive model of shell morphology in CdSe/CdS core/shell quantum dots

    SciTech Connect

    Gong, Ke; Kelley, David F.

    2014-11-21

    Lattice mismatch in core/shell nanoparticles occurs when the core and shell materials have different lattice parameters. When there is a significant lattice mismatch, a coherent core-shell interface results in substantial lattice strain energy, which can affect the shell morphology. The shell can be of uniform thickness or can be rough, having thin and thick regions. A smooth shell minimizes the surface energy at the expense of increased lattice strain energy and a rough shell does the opposite. A quantitative treatment of the lattice strain energy in determining the shell morphology of CdSe/CdS core/shell nanoparticles is presented here. We use the inhomogeneity in hole tunneling rates through the shell to adsorbed hole acceptors to quantify the extent of shell thickness inhomogeneity. The results can be understood in terms of a model based on elastic continuum calculations, which indicate that the lattice strain energy depends on both core size and shell thickness. The model assumes thermodynamic equilibrium, i.e., that the shell morphology corresponds to a minimum total (lattice strain plus surface) energy. Comparison with the experimental results indicates that CdSe/CdS nanoparticles undergo an abrupt transition from smooth to rough shells when the total lattice strain energy exceeds about 27 eV or the strain energy density exceeds 0.59 eV/nm{sup 2}. We also find that the predictions of this model are not followed for CdSe/CdS nanoparticles when the shell is deposited at very low temperature and therefore equilibrium is not established.

  13. Theoretical and Observational Aspects of Expanding H I Shells

    NASA Astrophysics Data System (ADS)

    Cazzolato, François; Pineault, Serge

    2005-06-01

    We have modeled H I shells expanding into a homogeneous medium in order to explain some of their observational peculiarities. Such peculiarities include difficult-to-observe caps, the presence of stationary rings, expansion velocity determination problems, inaccurate mass measurements, and a systematic discrepancy between H I missing masses and shell masses. Velocity dispersion within the shell, in the form of either thermal or turbulent motions, has been found to be the likely major cause for the absence of observable caps and the presence of stationary rings, hence explaining the apparent lack of ring transition. We discuss different methods generally used to calculate H I shell masses and show that, if one does not take into account the varying shape of the H I background local to the shell, shell masses are likely to be underestimated by a significant factor whose value depends on the relative shell thickness and the ratio of the dispersion to the expansion velocity.

  14. Geometrically nonlinear analysis of layered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1983-01-01

    A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.

  15. Vibration of cylindrical shells of bimodulus composite materials

    NASA Astrophysics Data System (ADS)

    Bert, C. W.; Kumar, M.

    1982-03-01

    A theory is formulated for the small amplitude free vibration of thick, circular cylindrical shells laminated of bimodulus composite materials, which have different elastic properties depending upon whether the fiber-direction strain is tensile or compressive. The theory used is the dynamic, shear deformable (moderately thick shell) analog of the Sanders best first approximation thin shell theory. By means of tracers, the analysis can be reduced to that of various simpler shell theories, namely Love's first approximation, and Donnell's shallow shell theory. As an example of the application of the theory, a closed form solution is presented for a freely supported panel or complete shell. To validate the analysis, numerical results are compared with existing results for various special cases. Also, the effects of the various shell theories, thickness shear flexibility, and bimodulus action are investigated.

  16. Soft template synthesis of yolk/silica shell particles.

    PubMed

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-01

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed. PMID:20437501

  17. Cloaking by shells with radially inhomogeneous anisotropic permittivity.

    PubMed

    Reshetnyak, V Yu; Pinkevych, I P; Sluckin, T J; Evans, D R

    2016-01-25

    We model electromagnetic cloaking of a spherical or cylindrical nanoparticle enclosed by an optically anisotropic and optically inhomogeneous symmetric shell, by examining its electric response in a quasi-static uniform electric field. When the components of the shell permittivity are radially anisotropic and power-law dependent (ε~r(m)) whereris distance to the shell center, and m a positive or negative exponent which can be varied), the problem is analytically tractable. Formulas are calculated for the degree of cloaking in the general case, allowing the determination of a dielectric condition for the shells to be used as an invisibility cloak. Ideal cloaking is known to require that homogeneous shells exhibit an infinite ratio of tangential and radial components of the shell permittivity, but for radially inhomogeneous shells ideal cloaking can occur even for finite values of this ratio. PMID:26832575

  18. Determination of shell content in palm kernel cake.

    PubMed

    Siew, W L

    1996-01-01

    A method for determining shell in palm kernel cake (PKC) is described. This simple and rapid method requires little pretreatment compared with the method currently used in PKC trade, in which the sample undergoes defatting, acid and alkali digestion, and washing, before a chloroform-alcohol solution is used to separate the shells. In the proposed method, only defatting the sample is required. The shells are separated by the density difference between the shell and PKC in a potassium iodide solution. Recoveries of at least 93% were obtained, and the correlation coefficient between the actual shell content and the determined shell content was 0.999, with gradients of 0.97 and 0.98 for fine and coarse shell, respectively. PMID:8620115

  19. Symmetries and deformations in the spherical shell model

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Pittel, S.

    2016-02-01

    We discuss symmetries of the spherical shell model that make contact with the geometric collective model of Bohr and Mottelson. The most celebrated symmetry of this kind is SU(3), which is the basis of Elliott’s model of rotation. It corresponds to a deformed mean field induced by a quadrupole interaction in a single major oscillator shell N and can be generalized to include several major shells. As such, Elliott’s SU(3) model establishes the link between the spherical shell model and the (quadrupole component of the) geometric collective model. We introduce the analogue symmetry induced by an octupole interaction in two major oscillator shells N-1 and N, leading to an octupole-deformed solution of the spherical shell model. We show that in the limit of large oscillator shells, N\\to ∞ , the algebraic octupole interaction tends to that of the geometric collective model.

  20. Exchange bias in Ag/FeCo/Ag core/shell/shell nanoparticles due to partial oxidation of FeCo intermediate shell

    NASA Astrophysics Data System (ADS)

    Takahashi, Mari; Mohan, Priyank; Mott, Derrick M.; Maenosono, Shinya

    2016-03-01

    Recently we developed magnetic-plasmonic Ag/FeCo/Ag core/shell/shell nanoparticles for the purpose of biological applications. In these heterostructured nanoparticles, exchange bias is observed as a result of the formation of an interface between ferromagnetic FeCo and antiferromagnetic CoxFe1-xO due to the partial oxidation of the FeCo intermediate shell. In this study we thoroughly characterized the surface oxide layer of the FeCo shell by XPS, XRD and SQUID magnetometer.

  1. Spherical nematic shells with a threefold valence.

    PubMed

    Koning, Vinzenz; Lopez-Leon, Teresa; Darmon, Alexandre; Fernandez-Nieves, Alberto; Vitelli, V

    2016-07-01

    We present a theoretical study of the energetics of thin nematic shells with two charge-one-half defects and one charge-one defect. We determine the optimal arrangement: the defects are located on a great circle at the vertices of an isosceles triangle with angles of 66^{∘} at the charge-one-half defects and a distinct angle of 48^{∘}, consistent with experimental findings. We also analyze thermal fluctuations around this ground state and estimate the energy as a function of thickness. We find that the energy of the three-defect shell is close to the energy of other known configurations having two charge-one and four charge-one-half defects. This finding, together with the large energy barriers separating one configuration from the others, explains their observation in experiments as well as their long-time stability. PMID:27575194

  2. Spherical nematic shells with a threefold valence

    NASA Astrophysics Data System (ADS)

    Koning, Vinzenz; Lopez-Leon, Teresa; Darmon, Alexandre; Fernandez-Nieves, Alberto; Vitelli, V.

    2016-07-01

    We present a theoretical study of the energetics of thin nematic shells with two charge-one-half defects and one charge-one defect. We determine the optimal arrangement: the defects are located on a great circle at the vertices of an isosceles triangle with angles of 66∘ at the charge-one-half defects and a distinct angle of 48∘, consistent with experimental findings. We also analyze thermal fluctuations around this ground state and estimate the energy as a function of thickness. We find that the energy of the three-defect shell is close to the energy of other known configurations having two charge-one and four charge-one-half defects. This finding, together with the large energy barriers separating one configuration from the others, explains their observation in experiments as well as their long-time stability.

  3. No-Core Shell Model and Reactions

    SciTech Connect

    Navratil, Petr; Ormand, W. Erich; Caurier, Etienne; Bertulani, Carlos

    2005-10-14

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+6Li and 6He+p scattering as well as a calculation of the astrophysically important 7Be(p,{gamma})8B S-factor.

  4. Transverse shear stiffness of laminated anisotropic shells

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1978-01-01

    Equations are derived for the transverse shear stiffness of laminated anisotropic shells. Without making assumptions for thickness distribution for either transverse shear stresses or strains, constitutive equations for the transverse shear deformation theory of anisotropic heterogeneous shells are found. The equations are based on Taylor series expansions about a generic point for stress resultants and couples, identically satisfying plate equilibrium equations. These equations are used to find statically correct expressions for in-surface stresses, transverse shear stresses, and the area density of transverse shear strain energy, in terms of transverse shear stress resultants and redundants. The application of Castigliano's theorem of least work minimizes shear strain energy with respect to the redundants. Examples are presented for several laminated walls. Good agreement is found between the results and those of exact three-dimensional elasticity solutions for the cylindrical bending of a plate.

  5. Nuclear level density: Shell-model approach

    NASA Astrophysics Data System (ADS)

    Sen'kov, Roman; Zelevinsky, Vladimir

    2016-06-01

    Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally used parameters are also compared with standard phenomenological approaches.

  6. Practical applications of substructuring in shell dynamics

    SciTech Connect

    Sane, A.D.; Bitner, J.L.

    1982-01-01

    Transient dynamic stress analysis of large shell structures is often required in many industrial designs. The asymmetry features of the structure often require a full three dimensional analysis. The difficulties experienced in performing the dynamic analysis of such large and complex structures result from economic feasibility and limitations on the available computer core memory. Substructuring techniques provide a way of overcoming these difficulties. The advantages and features associated with substructuring methods are discussed in general terms. The technique is then applied to perform a transient dynamic analysis of a typical shell structure. The discussion of the example problem focused to highlight the economy, flexibility and the data handling aspects of this method. The example problem demonstrates that this method can be applied with success to a wide range of structural dynamic problems and results in significant cost savings.

  7. Gravity and on-shell probe actions

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank; Rovai, Antonin

    2016-08-01

    In any gravitational theory and in a wide class of background space-times, we argue that there exists a simple, yet profound, relation between the on-shell Euclidean gravitational action and the on-shell Euclidean action of probes. The probes can be, for instance, charged particles or branes. The relation is tightly related to the thermodynamic nature of gravity. We provide precise checks of the relation in several examples, which include both asymptotically flat and asymptotically AdS space-times, with particle, D-brane and M-brane probes. Perfect consistency is found in all cases, including in a highly non-trivial example including α'-corrections.

  8. Shell model for warm rotating nuclei

    SciTech Connect

    Matsuo, M.; Yoshida, K.; Dossing, T.

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  9. Robust Microcompartments with Hydrophobically Gated Shells.

    PubMed

    Sander, Jonathan S; Steinacher, Mathias; Loiseau, Eve; Demirörs, Ahmet F; Zanini, Michele; Isa, Lucio; Studart, André R

    2015-06-30

    We report on robust synthetic microcompartments with hydrophobically gated shells that can reversibly swell and contract multiple times upon external stimuli. The gating mechanism relies on a hydrophilic-hydrophobic transition of a polymer layer that is grafted on inorganic colloidosomes using atom-transfer radical polymerization. As a result of such a transition, the initially tight hydrophobic shell becomes permeable to the diffusion of hydrophilic solutes across the microcompartment walls. Surprisingly, the microcompartments are strong enough to retain their spherical shape during several swelling and contraction cycles. This provides a powerful alternative platform for the creation of synthetic microreactors and protocells that interact with the surrounding media through a simple gating mechanism and are sufficiently robust for further engineering of increasingly complex compartmentalized structures. PMID:26061672

  10. Geodesic defect anchoring on nematic shells.

    PubMed

    Mirantsev, Leonid V; Sonnet, André M; Virga, Epifanio G

    2012-08-01

    Nematic shells are colloidal particles coated with nematic liquid crystal molecules, which may freely glide and rotate on the colloid's surface while keeping their long axis on the local tangent plane. Molecular dynamics simulations on a nanoscopic spherical shell indicate that under appropriate adhesion conditions for the molecules on the equator, the equilibrium nematic texture exhibits at each pole a pair of +1/2 defects so close to one another to be treated as one +1 defect. Spirals connect the polar defects, though the continuum limit of the interaction potential would not feature any elastic anisotropy. A molecular averaging justifies an anchoring defect energy that feels the geodesics emanating from the defect. All our observations are explained by such a geodesic anchoring, which vanishes on flat manifolds. PMID:23005713

  11. Multifunctional composite core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Suying; Wang, Qiang; Zhu, Jiahua; Sun, Luyi; Lin, Hongfei; Guo, Zhanhu

    2011-11-01

    In this review paper, the state-of-the-art knowledge of the core-shell multifunctional nanoparticles (MNPs), especially with unique physiochemical properties, is presented. The synthesis methods were summarized from the aspects of both the advantages and the demerits. The core includes the inexpensive and easily oxidized metals and the noble shells include the relatively noble metals, carbon, silica, other oxides, and polymers. The properties including magnetic, optical, anti-corrosion and the surface chemistry of the NPs are thoroughly reviewed. The current status of the applications is reviewed with the detailed examples including the catalysis, giant magnetoresistance (GMR) sensing, electromagnetic interface shielding or microwave absorption, biomedical drug delivery, and the environmental remediation.

  12. No-Core Shell Model and Reactions

    SciTech Connect

    Navratil, P; Ormand, W E; Caurier, E; Bertulani, C

    2005-04-29

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+{sup 6}Li and {sup 6}He+p scattering as well as a calculation of the astrophysically important {sup 7}Be(p, {gamma}){sup 8}B S-factor.

  13. Shape coexistence: the shell model view

    NASA Astrophysics Data System (ADS)

    Poves, A.

    2016-02-01

    We shall discuss the meaning of the ‘nuclear shape’ in the laboratory frame proper to the spherical shell model. A brief historical promenade will bring us from Elliott’s SU3 breakthrough to today’s large scale shell model calculations. A section is devoted to the algebraic model which extends drastically the field of applicability of Elliot’s SU3, providing a precious heuristic guidance for the exploration of collectivity in the nuclear chart. Shape coexistence and shape mixing will be shown to occur as the result of the competition between the main actors in the nuclear dynamics; the spherical mean field, and the pairing and quadrupole-quadrupole interactions. These ideas will be illustrated with examples in magic nuclei (40Ca and 68Ni); neutron rich semi-magic (32Mg, and 64Cr); and in proton rich N = Z (72Kr).

  14. Understanding nuclei in the upper sd - shell

    SciTech Connect

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  15. Nonlinear axisymmetric flexural vibration of spherical shells

    NASA Technical Reports Server (NTRS)

    Kunieda, H.

    1972-01-01

    Axisymmetric responses are presented of a nonshallow thin-walled spherical shell on the basis of nonlinear bending theory. An ordinary differential equation with nonlinearity of quadratic as well as cubic terms associated with variable time is derived. The derivation is based on the assumption that the deflection mode is the sum of four Legendre polynomials, and the Galerkin procedure is applied. The equation is solved by asymptotic expansion, and a first approximate solution is adopted. Unstable regions of this solution are discussed.

  16. Thin-shell wormholes: Linearization stability

    SciTech Connect

    Poisson, E.; Visser, M.

    1995-12-15

    The class of spherically symmetric thin-shell wormholes provides a particularly elegant collection of exemplars for the study of traversable Lorentzian wormholes. In the present paper we consider linearized (spherically symmetric) perturbations around some assumed static solution of the Einstein field equations. This permits us to relate stability issues to the (linearized) equation of state of the exotic matter which is located at the wormhole throat. {copyright} 1995 The American Physical Society.

  17. On Closed Shells in Nuclei. II

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1949-04-01

    Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.

  18. Shell Measuring Machine. History and Status Report

    SciTech Connect

    Birchler, Wilbur D.; Fresquez, Philip R.

    2000-06-01

    Commercialization of the Ring Rotacon Shell Measuring Machine project is a CRADA (NO. LA98C10358) between The University of California (Los Alamos National Laboratory) and Moore Tool Company, Bridgeport, CT. The actual work started on this CRADA in December of 1998. Several meetings were held with the interested parties (Los Alamos, Oak Ridge, Moore Tool, and the University of North Carolina). The results of these meetings were that the original Ring Rotacon did not measure up to the requirements of the Department of Energy and private industry, and a new configuration was investigated. This new configuration (Shell Measuring Machine [SMM]) much better fits the needs of all parties. The work accomplished on the Shell Measuring Machine in FY 99 includes the following; Specifications for size and weight were developed; Performance error budgets were established; Designs were developed; Analyses were performed (stiffness and natural frequency); Existing part designs were compared to the working SMM volume; Peer reviews were conducted; Controller requirements were studied; Fixture requirements were evaluated; and Machine motions were analyzed. The consensus of the Peer Review Committee was that the new configuration has the potential to satisfy the shell inspection needs of Department of Energy as well as several commercial customers. They recommended that more analyses be performed on error budgets, structural stiffness, natural frequency, and thermal effects and that operational processes be developed. Several design issues need to be addressed. They are the type of bearings utilized to support the tables (air bearings or mechanical roller type bearings), the selection of the probes, the design of the probe sliding mechanisms, and the design of the upper table positioning mechanism. Each item has several possible solutions, and more work is required to obtain the best design. This report includes the background and technical objectives; minutes of the working

  19. Jess, the Java expert system shell

    SciTech Connect

    Friedman-Hill, E.J.

    1997-11-01

    This report describes Jess, a clone of the popular CLIPS expert system shell written entirely in Java. Jess supports the development of rule-based expert systems which can be tightly coupled to code written in the powerful, portable Java language. The syntax of the Jess language is discussed, and a comprehensive list of supported functions is presented. A guide to extending Jess by writing Java code is also included.

  20. Fossil dust shells around luminous supergiants

    NASA Technical Reports Server (NTRS)

    Stothers, R.

    1975-01-01

    The observed frequency with which infrared excesses appear in F, G, and K supergiants of luminosity class Ia supports the idea that these excesses arise in a 'fossil' circumstellar dust shell that was formed during a prior M-super-giant phase of evolution. The required leftward evolution of the star on the H-R diagram would then imply that the Ledoux, rather than the Schwarzschild, criterion for convective mixing is the correct criterion to use in stellar evolution calculations.

  1. The creation of AGB fallback shells

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason

    2016-04-01

    The possibility that mass ejected during Asymptotic Giant Branch (AGB) stellar evolution phases falls back towards the star has been suggested in applications ranging from the formation of accretion discs to the powering of late-thermal pulses. In this paper, we seek to explicate the properties of fallback flow trajectories from mass-loss events. We focus on a transient phase of mass ejection with sub-escape speeds, followed by a phase of a typical AGB wind. We solve the problem using both hydrodynamic simulations and a simplified one-dimensional analytic model that matches the simulations. For a given set of initial wind characteristics, we find a critical shell velocity that distinguishes between `shell fallback' and `shell escape'. We discuss the relevance of our results for both single and binary AGB stars. In particular, we discuss how our results help to frame further studies of fallback as a mechanism for forming the substantial population of observed post-AGB stars with dusty discs.

  2. Gas distribution and starbursts in shell galaxies

    NASA Technical Reports Server (NTRS)

    Weil, Melinda L.; Hernquist, Lars

    1993-01-01

    Detailed maps of most elliptical galaxies reveal that, whereas the greatest part of their luminous mass originates from a smooth distribution with a surface brightness approximated by a de Vaucouleurs law, a small percentage of their light is contributed by low surface brightness distortions termed 'fine structures'. The sharp-edged features called 'shells' are successfully reproduced by merger and infall models involving accretion from less massive companions. In this context, dwarf spheroidal and compact disk galaxies are likely progenitors of these stellar phenomena. However, it is probable that the sources of shell-forming material also contain significant amounts of gas. This component may play an important role in constraining the formation and evolution of shell galaxies. To investigate the effects of the gaseous component, numerical simulations were performed to study the tidal disruption of dwarf galaxies containing both gas and stars by more massive primaries, and the evolution of the ensuing debris. The calculations were performed with a hybrid N-body/hydrodynamics code. Collisionless matter is evolved using a conventional N-body technique and gas is treated using smoothed particle hydrodynamics in which self-gravitating fluid elements are represented as particles evolving according to Lagrangian hydrodynamic equations. An isothermal equation of state is employed so the gas remains at a temperature 104 K. Owing to the large mass ratio between the primary and companion, the primary is modeled as a rigid potential and the self-gravity of both galaxies is neglected.

  3. Fossorial Origin of the Turtle Shell.

    PubMed

    Lyson, Tyler R; Rubidge, Bruce S; Scheyer, Torsten M; de Queiroz, Kevin; Schachner, Emma R; Smith, Roger M H; Botha-Brink, Jennifer; Bever, G S

    2016-07-25

    The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event. PMID:27426515

  4. Improved Shell models for screened Coulomb balls

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Kaehlert, H.; Henning, C.; Baumgartner, H.; Filinov, A.

    2006-10-01

    Spherical Coulomb crystals in dusty plasmas [1] are well described by an isotropic Yukawa-type pair interaction and an external parabolic confinement as was shown by extensive molecular dynamics simulations [2]. A much simpler description is possible with analytical shell models which have been derived for Yukawas plasmas in [3,4]. Here we analyze improved Yukawa shell models which include correlations along the lines proposed for Coulomb crystals in [5]. The shell configurations are efficiently evaluated using a Monte Carlo procedure. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005). [4] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E [5] W.D. Kraeft and M. Bonitz, J. Phys. Conf. Ser. 35, 94 (2006).

  5. Buckling analysis of cylindrical shells with cracks

    SciTech Connect

    Limam, A.; Jullien, J.F.; Ouayou, B.S.

    1995-12-31

    In many areas of aeronautical nuclear and civil engineering practice, large thin-walled structural panels are increasingly becoming characteristic architectural features. Indeed, nuclear reactor vessels and cryogenic tanks of a launcher, for instance, are made up of several thin-walled panels welded together. Instability and buckling phenomenon present over-riding constraints on the design process. In addition, the presence of joints which are very often the origin of surface fissures poses increasing dangers on the overall stability of these structures. This research deals with the analysis of the effects of cracks on the behavior of cylindrical shells subject to external pressure. The study was divided into two major parts. In the first part, experiments were carried out with shells without cracks, in order to obtain reference data. A numerical study of various models explains the experimental results and shows the combined effect of the geometric imperfections and boundary conditions on the critical load. The second part focused on several experimental tests and numerical simulations on shells with in- depth fissures as a function of their population, orientation, length and position with respect to the welds or joints. The agreement between numerical and experimental results confirms the new possibility to design with the aid of the finite element program under the condition that the calculations are carried out by means of an appropriate numerical method.

  6. Hanford Site single-shell tank roadmap

    SciTech Connect

    Not Available

    1991-04-01

    The Hanford Site Single-Shell Tank Roadmap covers the near-term waste management activities to ensure safe interim storage of 140 million liters of waste. It also addresses the environmental restoration activities to close the 6 single-shell tank operable units, which include 149 single-shell tanks. These tanks were constructed starting in the 1940`s. Sixty-six tanks have leaked or are assumed to be leaking. This Roadmap has highlighted the need for integrated planning and resource allocation. The June 1990 Five-Year Plan did not address the tank safety concerns that evolved since its publication. Potential impacts to Tri-Party Agreement milestones for characterization, stabilization and isolation, technology development/demonstration, and closure will be examined in greater detail to strengthen the technical decision basis and to minimize consequences. The Roadmap indicates the advantage of accelerating characterization programs, technology evaluations, and supplemental environmental impact statement preparation. Working with regulators and expanded public outreach programs are essential to successful completion of this activity.

  7. Shell particles, trials, tribulations and triumphs

    SciTech Connect

    Guiochon, Georges A; Gritti, Fabrice

    2011-01-01

    The concept of pellicular particles was imagined by Horvath and Lipsky fifty years ago. They were initially intended for the analysis of macromolecules. Later, shell particles were prepared. The rational behind this concept was to improve column efficiency by shortening the pathways that analyte molecules must travel and, so doing, to improve their mass transfer kinetics. Several brands of superficially porous particles were developed and became popular in the 1970s. However, the major improvements in the manufacturing of high-quality, fully porous particles, that took place in the same time, particularly by making them finer and more homogeneous, hampered the success of shell particles, which eventually disappeared. Recently, the pressing needs to improve analytical throughputs forced particle manufacturers to find a better compromise between the demands for higher column efficiency that require short diffusion paths of analyte molecules in columns and the need for columns that can be operated with the conventional instruments for liquid chromatography, which operate with moderate column back-pressures. This lead to the apparition of a new generation of columns packed with shell particles, which bring chromatographic columns to a level of efficiency undreamed of a few years ago. This evolution is reviewed, the reason that motivated it, and the consequences of their success are discussed.

  8. Oxide Shell Reduction and Magnetic Property Changes in Core-Shell Fe Nanoclusters under Ion Irradiation

    SciTech Connect

    Sundararajan, Jennifer A.; Kaur, Maninder; Jiang, Weilin; McCloy, John S.; Qiang, You

    2014-02-12

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe3O4/FeO. These NC films were were deposited on Si substrates to thickness of ~0.5 micrometers using a NC deposition system. The films were irradiated at room temperature with 5.5 MeV Si2+ ions to ion fluences of 1015 and 1016 ions/cm2. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization of Fe3N. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe3O4 and FeO+Fe3N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  9. Shock-Sensitivity in Shell-Like Structures: With Simulations of Spherical Shell Buckling

    NASA Astrophysics Data System (ADS)

    Thompson, J. Michael T.; Sieber, Jan

    Under increasing compression, an unbuckled shell is in a metastable state which becomes increasingly precarious as the buckling load is approached. So to induce premature buckling, a lateral disturbance will have to overcome a decreasing energy barrier which reaches zero at buckling. Two archetypal problems that exhibit a severe form of this behavior are the axially-compressed cylindrical shell and the externally pressurized spherical shell. Focusing on the cylinder, a nondestructive technique was recently proposed to estimate the “shock-sensitivity” of a laboratory specimen using a lateral probe to measure the nonlinear load-deflection characteristic. If a symmetry-breaking bifurcation is encountered on the path, computer simulations showed how this can be suppressed by a controlled secondary probe. Here, we extend our understanding by assessing in general terms how a single control can capture remote saddle solutions: in particular, how a symmetric probe could locate an asymmetric solution. Then, more specifically, we analyze the spherical shell with point and ring probes, to test the procedure under challenging conditions to assess its range of applicability. Rather than a bifurcation, the spherical shell offers the challenge of a destabilizing fold (limit point) under the rigid control of the probe.

  10. Oxide shell reduction and magnetic property changes in core-shell Fe nanoclusters under ion irradiation

    SciTech Connect

    Sundararajan, Jennifer A.; Kaur, Maninder; Qiang, You; Jiang, Weilin; McCloy, John S.

    2014-05-07

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe{sub 3}O{sub 4}/Fe{sub 3}N. These NC films were deposited on Si substrates to thickness of ∼0.5 μm using a NC deposition system. The films were irradiated at room temperature with 5.5 MeV Si{sup 2+} ions to ion fluences of 10{sup 15} and 10{sup 16} ions/cm{sup 2}. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization or growth of Fe{sub 3}N. The film retained its Fe-core and its ferromagnetic properties after irradiation. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe{sub 3}O{sub 4} and FeO + Fe{sub 3}N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  11. Switching closed-shell to open-shell phenalenyl: toward designing electroactive materials.

    PubMed

    Pariyar, Anand; Vijaykumar, Gonela; Bhunia, Mrinal; Dey, Suman Kr; Singh, Santosh K; Kurungot, Sreekumar; Mandal, Swadhin K

    2015-05-13

    Open-shell phenalenyl chemistry started more than half a century back, and the first solid-state phenalenyl radical was realized only 15 years ago highlighting the synthetic challenges associated in stabilizing carbon-based radical chemistry, though it has great promise as building blocks for molecular electronics and multifunctional materials. Alternatively, stable closed-shell phenalenyl has tremendous potential as it can be utilized to create an in situ open-shell state by external spin injection. In the present study, we have designed a closed-shell phenalenyl-based iron(III) complex, Fe(III)(PLY)3 (PLY-H = 9-hydroxyphenalenone) displaying an excellent electrocatalytic property as cathode material for one compartment membraneless H2O2 fuel cell. The power density output of Fe(III)(PLY)3 is nearly 15-fold higher than the structurally related model compound Fe(III)(acac)3 (acac = acetylacetonate) and nearly 140-fold higher than an earlier reported mononuclear Fe(III) complex, Fe(III)(Pc)Cl (Pc = pthalocyaninate), highlighting the role of switchable closed-shell phenalenyl moiety for electron-transfer process in designing electroactive materials. PMID:25933051

  12. Nanostructued core-shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying; Cai, Mei; Sun, Xueliang

    2015-03-01

    Core-shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C2H4) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g-1.

  13. Silica-metal core-shell nanostructures.

    PubMed

    Jankiewicz, B J; Jamiola, D; Choma, J; Jaroniec, M

    2012-01-15

    Silica-metal nanostructures consisting of silica cores and metal nanoshells attract a lot of attention because of their unique properties and potential applications ranging from catalysis and biosensing to optical devices and medicine. The important feature of these nanostructures is the possibility of controlling their properties by the variation of their geometry, shell morphology and shell material. This review is devoted to silica-noble metal core-shell nanostructures; specifically, it outlines the main methods used for the preparation and surface modification of silica particles and presents the major strategies for the formation of metal nanoshells on the modified silica particles. A special emphasis is given to the Stöber method, which is relatively simple, effective and well verified for the synthesis of large and highly uniform silica particles (with diameters from 100 nm to a few microns). Next, the surface chemistry of these particles is discussed with a special focus on the attachment of specific organic groups such as aminopropyl or mercaptopropyl groups, which interact strongly with metal species. Finally, the synthesis, characterization and application of various silica-metal core-shell nanostructures are reviewed, especially in relation to the siliceous cores with gold or silver nanoshells. Nowadays, gold is most often used metal for the formation of nanoshells due to its beneficial properties for many applications. However, other metals such as silver, platinum, palladium, nickel and copper were also used for fabrication of core-shell nanostructures. Silica-metal nanostructures can be prepared using various methods, for instance, (i) growth of metal nanoshells on the siliceous cores with deposited metal nanoparticles, (ii) reduction of metal species accompanied by precipitation of metal nanoparticles on the modified silica cores, and (iii) formation of metal nanoshells under ultrasonic conditions. A special emphasis is given to the seed

  14. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  15. Waltzing route toward double-helix formation in cholesteric shells.

    PubMed

    Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa

    2016-08-23

    Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other. PMID:27493221

  16. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell

    PubMed Central

    Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932

  17. Testing MOND gravity in the shell galaxy NGC 3923

    NASA Astrophysics Data System (ADS)

    Bílek, M.; Jungwiert, B.; Jílková, L.; Ebrová, I.; Bartošková, K.; Křížek, M.

    2013-11-01

    Context. The elliptical galaxy NGC 3923 is surrounded by numerous stellar shells that are concentric arcs centered on the Galactic core. They are very likely a result of a minor merger and they consist of stars in nearly radial orbits. For a given potential, the shell radii at a given time after the merger can be calculated and compared to observations. The MOdified Newtonian Dynamics (MOND) is a theory that aims to solve the missing mass problem by modifying the laws of classical dynamics in the limit of small accelerations. Hernquist & Quinn (1987, ApJ, 312, 1) claimed that the shell distribution of NGC 3923 contradicted MOND, but Milgrom (1988, ApJ, 332, 86) found several substantial insufficiencies in their work. Aims: We test whether the observed shell distribution in NGC 3923 is consistent with MOND using the current observational knowledge of the shell number and positions and of the host galaxy surface brightness profile, which supersede the data available in the 1980s when the last (and negative) tests of MOND viability were performed on NGC 3923. Methods: Using the 3.6 μm bandpass image of NGC 3923 from the Spitzer space telescope we construct the mass profile of the galaxy. The evolution of shell radii in MOND is then computed using analytical formulae. We use 27 currently observed shells and allow for their multi-generation formation, unlike the Hernquist & Quinn one-generation model that used the 18 shells known at the time. Results: Our model reproduces the observed shell radii with a maximum deviation of ~5% for 25 out of 27 known shells while keeping a reasonable formation scenario. A multi-generation nature of the shell system, resulting from successive passages of the surviving core of the tidally disrupted dwarf galaxy, is one of key ingredients of our scenario supported by the extreme shell radial range. The 25 reproduced shells are interpreted as belonging to three generations.

  18. The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas).

    PubMed

    Osuna-Mascaró, Antonio; Cruz-Bustos, Teresa; Benhamada, Sana; Guichard, Nathalie; Marie, Benjamin; Plasseraud, Laurent; Corneillat, Marion; Alcaraz, Gérard; Checa, Antonio; Marin, Frédéric

    2014-02-01

    In molluscs, the shell organic matrix comprises a large set of biomineral-occluded proteins, glycoproteins and polysaccharides that are secreted by the calcifying mantle epithelium, and are supposed to display several functions related to the synthesis of the shell. In the present paper, we have characterized biochemically the shell matrix associated to the crossed-lamellar structure of the giant queen conch Strombus gigas. The acid-soluble (ASM) and acid-insoluble (AIM) matrices represent an extremely minor fraction of the shell. Both are constituted of polydisperse and of few discrete proteins among which three fractions, obtained by preparative SDS-PAGE and named 1P3, 2P3 and 3P3, are dominant and were further characterized. Compared to other matrices, the acid-soluble matrix is weakly glycosylated (3%) and among the discrete components, only 3P3 seems noticeably glycosylated. The monosaccharide composition of the ASM shows that mannose represents the main monosaccharide. To our knowledge, this is the first report of a high ratio of this sugar in a skeletal matrix. Furthermore, the ASM interacts with the in vitro crystallization of calcium carbonate, but this interaction is moderate. It differs from that of the isolated 1P3 fraction but is similar to that of the 2P3 and 3P3 fractions. At last, antibodies developed from the 3P3 fraction were used to localize this fraction within the shell by immunogold. This study is the first one aiming at characterizing the organic matrix associated to the crossed-lamellar structure of the queen conch shell. PMID:24291423

  19. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  20. Effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan.

    PubMed

    Leleu, S; Herman, L; Heyndrickx, M; De Reu, K; Michiels, C W; De Baerdemaeker, J; Messens, W

    2011-01-31

    Chitosan is a biopolymer with antimicrobial activity and film-forming properties. In this study, the effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan was evaluated. A chitosan was selected from eight types (four non-commercial and four commercial) based on its antimicrobial activity against Salmonella enterica serovar Enteritidis (S. Enteritidis). For this purpose, a contact plate method was developed and chitosans were applied at a concentration of 0.25% (w/v). A commercial type with a molecular weight of 310-375 kDa and a deacetylation degree of 75% that reduced S. Enteritidis by 0.71 log(10) colony forming units compared to the control (without chitosan) was selected for further studies. The chitosan was shown to have antimicrobial activity against other egg borne bacteria, i.e., Acinetobacter baumannii, Alcaligenes sp., Carnobacterium sp., Pseudomonas sp., Serratia marcescens and Staphylococcus warneri, and against S. enterica serovar Typhimurium, Escherichia coli and Listeria monocytogenes. The effects of various concentrations of the selected chitosan (0.25%, 1% and 2%) on Salmonella shell contamination and trans-shell penetration were assessed using the agar molding technique. Effective reduction of eggshell contamination could not be demonstrated, but trans-shell penetration was significantly reduced in the presence of a 2% chitosan eggshell coating, with only 6.1% of the eggs being penetrated compared to 24.5% of the uncoated eggs. It was concluded that the 2% chitosan coating has the potential to reduce contamination of egg contents resulting from trans-shell penetration by S. Enteritidis. PMID:21146239

  1. Jacobi no-core shell model for p-shell nuclei

    NASA Astrophysics Data System (ADS)

    Liebig, S.; Meißner, U.-G.; Nogga, A.

    2016-04-01

    We introduce an algorithm to obtain coefficients of fractional parentage for light p-shell nuclei. The coefficients enable one to use Jacobi coordinates in no-core shell model calculations separating off the center-of-mass motion. Fully antisymmetrized basis states are given together with recoupling coefficients that allow one to apply two- and three-nucleon operators. As an example, we study the dependence on the harmonic oscillator frequency of 3H, 4He, 6He, 6Li and 7Li and extract their binding and excitation energies. The coefficients will be made openly accessible as HDF5 data files.

  2. Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles.

    PubMed

    Petrov, Alexey; Lehmann, Hauke; Finsel, Maik; Klinke, Christian; Weller, Horst; Vossmeyer, Tobias

    2016-01-26

    Metallodielectric nanostructured core-shell-shell particles are particularly desirable for enabling novel types of optical components, including narrow-band absorbers, narrow-band photodetectors, and thermal emitters, as well as new types of sensors and catalysts. Here, we present a facile approach for the preparation of submicron SiO2@Pt@SiO2 core-shell-shell particles. As shown by transmission and scanning electron microscopy, the first steps of this approach allow for the deposition of closed and almost perfectly smooth platinum shells onto silica cores via a seeded growth mechanism. By choosing appropriate conditions, the shell thickness could be adjusted precisely, ranging from ∼3 to ∼32 nm. As determined by X-ray diffraction, the crystalline domain sizes of the polycrystalline metal shells were ∼4 nm, regardless of the shell thickness. The platinum content of the particles was determined by atomic absorption spectroscopy and for thin shells consistent with a dense metal layer of the TEM-measured thickness. In addition, we show that the roughness of the platinum shell strongly depends on the storage time of the gold seeds used to initiate reductive platinum deposition. Further, using polyvinylpyrrolidone as adhesion layer, it was possible to coat the metallic shells with very homogeneous and smooth insulating silica shells of well-controlled thicknesses between ∼2 and ∼43 nm. After depositing the particles onto silicon substrates equipped with interdigitated electrode structures, the metallic character of the SiO2@Pt particles and the insulating character of the SiO2 shells of the SiO2@Pt@SiO2 particles were successfully demonstrated by charge transport measurements at variable temperatures. PMID:26731341

  3. Gravitationally collapsing shells in (2+1) dimensions

    SciTech Connect

    Mann, Robert B.; Oh, John J.

    2006-12-15

    We study gravitationally collapsing models of pressureless dust, fluids with pressure, and the generalized Chaplygin gas (GCG) shell in (2+1)-dimensional spacetimes. Various collapse scenarios are investigated under a variety of the background configurations such as anti-de Sitter (AdS) black hole, de Sitter (dS) space, flat and AdS space with a conical deficit. As with the case of a disk of dust, we find that the collapse of a dust shell coincides with the Oppenheimer-Snyder type collapse to a black hole provided the initial density is sufficiently large. We also find - for all types of shell - that collapse to a naked singularity is possible under a broad variety of initial conditions. For shells with pressure this singularity can occur for a finite radius of the shell. We also find that GCG shells exhibit diverse collapse scenarios, which can be easily demonstrated by an effective potential analysis.

  4. Small bending and stretching of sandwich-type shells

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1950-01-01

    A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.

  5. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  6. Cracked shells under skew-symmetric loading. [Reissner theory

    NASA Technical Reports Server (NTRS)

    Delale, F.

    1981-01-01

    The general problem of a shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and anti-plane elasticity solutions. Results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform in-plane shearing, out of plane shearing, and torsion. The problem is formulated for specially orthostropic materials, therefore, the effect of orthotropy on the results is also studied.

  7. Air Blast-Induced Vibration of a Laminated Spherical Shell

    NASA Astrophysics Data System (ADS)

    Yzgüksel, Hzgüseyin Murat; Türkmen, Halit S.

    The scope of this study is to investigate the dynamic behavior of a laminated spherical shell subjected to air blast load. The shell structure considered here is a hemisphere in shape and made of a glass/epoxy laminated composite material. The blast experiments are performed on the spherical shell. The strain-time history of the center of the spherical shell panel is obtained experimentally. The blast loaded spherical shell is also modeled and analyzed using ANSYS finite element software. The static analysis is performed to characterize the material. The dynamic response of the spherical shell panel obtained numerically is compared to the experimental results. It is observed that the response frequency corresponds to the higher vibration modes of the panel. The qualitative agreement is found between the numerical and experimental results.

  8. Fossil shell emission in dying radio loud AGNs

    NASA Astrophysics Data System (ADS)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  9. Tunable Diacetylene Polymerized Shell Microbubbles as Ultrasound Contrast Agents

    PubMed Central

    Park, Yoonjee; Luce, Adam C.; Whitaker, Ragnhild D.; Amin, Bhumica; Cabodi, Mario; Nap, Rikkert J.; Szleifer, Igal; Cleveland, Robin O.; Nagy, Jon O.; Wong, Joyce Y.

    2012-01-01

    Monodisperse gas microbubbles, encapsulated with a shell of photopolymerizable diacetylene lipids and phospholipids, were produced by microfluidic flow focusing, for use as ultrasound contrast agents. The stability of the polymerized shell microbubbles against both aggregation and gas dissolution under physiological conditions was studied. Polyethylene glycol (PEG) 5000, which was attached to the diacetylene lipids, was predicted by molecular theory to provide more steric hindrance against aggregation than PEG 2000 and this was confirmed experimentally. The polymerized shell microbubbles were found to have higher shell-resistance than nonpolymerizable shell microbubbles and commercially available microbubbles (Vevo MicroMarker). The acoustic stability under 7.5 MHz ultrasound insonation was significantly greater than for the two comparison microbubbles. The acoustic stability was tunable by varying the amount of diacetylene lipid. Thus, our polymerized shell microbubbles are a promising platform for ultrasound contrast agents. PMID:22260537

  10. Modelling apical constriction in epithelia using elastic shell theory.

    PubMed

    Jones, Gareth Wyn; Chapman, S Jonathan

    2010-06-01

    Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epithelial sheet as an elastic shell, which contains a surface representing the continuous mesh formed from the embedded fibres. Allowing this mesh to contract, an enhanced shell theory is developed in which the stiffness and bending tensors of the shell are modified to include the fibres' stiffness, and in which the active effects of the contraction appear as body forces in the shell equilibrium equations. Numerical examples are presented at the end, including the bending of a plate and a cylindrical shell (modelling neurulation) and the invagination of a spherical shell (modelling simple gastrulation). PMID:19859751

  11. Sound Transmission through a Cylindrical Sandwich Shell with Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Robinson, Jay H.; Silcox, Richard J.

    1996-01-01

    Sound transmission through an infinite cylindrical sandwich shell is studied in the context of the transmission of airborne sound into aircraft interiors. The cylindrical shell is immersed in fluid media and excited by an oblique incident plane sound wave. The internal and external fluids are different and there is uniform airflow in the external fluid medium. An explicit expression of transmission loss is derived in terms of modal impedance of the fluids and the shell. The results show the effects of (a) the incident angles of the plane wave; (b) the flight conditions of Mach number and altitude of the aircraft; (c) the ratios between the core thickness and the total thickness of the shell; and (d) the structural loss factors on the transmission loss. Comparisons of the transmission loss are made among different shell constructions and different shell theories.

  12. Effects of Internal Configuration on Afterburner Shell Temperatures

    NASA Technical Reports Server (NTRS)

    Conrad, E William; Jansen, Emmert T

    1952-01-01

    A brief investigation was conducted in the altitude wind tunnel to determine the extent to which the afterburner shell cooling problem could be alleviated by internal configuration changes. Data were obtained with and without a cooling liner installed and for variations in the radial fuel distribution and in the radial distribution in flame-seat area. Consideration is given to the effects on both shell temperature and afterburner performance. In the range of fuel-air ratio investigated, the use of a cooling liner resulted in substantial reductions in shell temperature with no penalty in performance. Appreciable reductions in afterburner shell temperature were made possible by control of the radial fuel distribution; however, the effects on performance are uncertain and may depend on other variables not investigated. No direct relation was found between shell temperature and the clearance between the flame holder and the shell; however, some cooling effect may possibly be achieved by varying the clearance.

  13. The structure of the dust shells around IRC +10216

    NASA Astrophysics Data System (ADS)

    Sloan, G. C.; Egan, M. P.

    1995-05-01

    We have investigated IRC +10216 using a long-slit mid-infrared spectrometer and modeling the circumstellar dust with a radiative transfer algorithm. Maximum entropy reconstructions of the spectral images made with the slit oriented north/south and east/west reveal three components. Two shells of cool carbon-rich dust are seen, as well as a region of blue emission between the shells, approximately 1 sec north of the central source. The dust shell structure agrees well with previous interferometric observations: a circularly symmetric inner shell enclosed within an outer shell elongated roughly north/south. The blue emission appears to arise from a region of small grains of radiatively heated amorphous carbon and implies that the polar regions of the inner shell are optically thinner that the equatorial regions.

  14. Modelling of the collision of two viscoelastic spherical shells

    NASA Astrophysics Data System (ADS)

    Rossikhin, Yury A.; Shitikova, Marina V.; Manh, Duong Tuan

    2016-03-01

    In the present paper, the collision of two viscoelastic spherical shells is investigated using the wave theory of impact. The model developed here suggests that after the moment of impact quasi-longitudinal and quasi-transverse shock waves are generated, which then propagate along the spherical shells. The solution behind the wave fronts is constructed with the help of the theory of discontinuities. Since the local bearing of the materials of the colliding viscoelastic shells is taken into account, the solution in the contact domain is found via the modified Hertz contact theory involving the operator representation of viscoelastic analogs of Young's modulus and Poisson's ratio. The collision of two elastic spherical shells is considered first, and then using Volterra correspondence principle, according to which the elastic constants in the governing equations should be replaced by the corresponding viscoelastic operators, the solution obtained for elastic shells is extended over the case of viscoelastic shells.

  15. Distribution and shell selection by two hermit crabs in different habitats on Egyptian Red Sea Coast

    NASA Astrophysics Data System (ADS)

    El-Kareem Ismail, Tarek Gad

    2010-05-01

    The present work aims to assess the spatial distribution, analyze shell utilization, shell fitness and determine the effect of coexistence of two hermit crabs Calcinus latens and Clibanarius signatus on used shell resources in various habitats on the Red Sea Coast. Also, to determine the choice of shells and investigate the shell species preference of C. latens and C. signatus in the laboratory. The hermit crabs C. latens and C. signatus were found to occupy shells of 39 gastropod species. The most commonly occupied gastropod shells are those belonging to genera Strombus, Nerita, Cerithium and Planaxis. The results showed that crab individuals utilized mainly the shell with elongate aperture. Laboratory experiments showed that two crab species preferred shells of Strombus followed by Cerithium and Nerita when offered shells of nearly similar size (optimal). Crab individuals showed a significant preference for optimal sized shells when given suboptimal shells as an alternative choice. Also, the hermit crabs avoid damaged shells when given a choice of optimal sized damaged shell and optimal sized intact one. In addition, two hermit crab species chose shells of smaller than optimal size when given a choice of damaged optimal sized shells and smaller intact ones. On the other hand, field observations showed that most crab individuals lived in adequate sized shells. The present data conclude that shell selection by hermit crabs C. latens and C. signatus depends mostly on shell internal volume, shell quality and shell aperture size than other factors, because they provide a maximum protection for hermit crabs.

  16. Threshold Phenomena in Atomic Inner Shells

    NASA Astrophysics Data System (ADS)

    Wang, Honghong

    1995-01-01

    Two types of atomic inner-shell threshold phenomena are studied: (1) atomic inner-shell radiationless resonant Raman scattering (RRRS) as a function of excitation energy, and (2) the onset of Cu Coster-Kronig (CK) transitions due to extraatomic relaxation, as a function of cluster size. (1). The K-L_{2,3}L _{2,3} and L_{2,3 }-VV Auger spectra of P in InP were measured in the vicinity of the P K-shell ionization threshold as well as at high excess energies. The evolution of the P K-L_{2,3 }L_{2,3} ^1D Auger spectrum from the radiationless resonant Raman scattering regime into the normal Auger transition regime in InP is found to be in accordance with time-independent resonant scattering theory of inner-shell threshold phenomena. The measured RRRS intensity reveals a quasi-bound state in the bulk-sensitive P K absorption spectrum. The origins of deviations of the RRRS energy from linear dispersion are examined in terms of the finite incident-photon-energy distribution and multiple resonances. Both our measurements and semiclassical calculations show that the post-collision interaction effect is relatively small. The measured P K-L_{2,3}L_{2,3} intensities and P 1s lifetime width are found to be in good agreement with atomic calculations, revealing the predominantly atomic character of P inner-shell transitions in InP. The evolution of P L_{2,3 }-VV Auger transitions in InP is found to be sensitive to the excitation energy at the P 1s threshold; the P K-L_{2,3}L_{2,3 } Raman resonance causes changes in the L _{2,3}-VV diagram-transition line shape as well as intensity enhancement of all L _{2,3}-VV features. Applying the Cini-Sawatzky model to the line shape reveals a 0.3-eV change in the local effective Coulomb interaction U _{eff} near the resonance. The difference in the line shapes between the satellite and diagram transitions indicates a change of the local density of states in the valence band in the presence of a spectator 2p hole. The single- and double-2p

  17. Evidence for variable crystallinity in bivalve shells

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wehrmeister, U.

    2012-04-01

    Bivalve shells are used as important palaeoclimate proxy archives and monitor regional climate variations. The shells mostly exist of two crystalline polymorphic phases of calcium carbonate calcite (rombohedric) and aragonite (orthorhombic). Calcite is the most stable polymorph at standard conditions, whereas vaterite (hexagonal) is the least stable and only rarely found in these structures. Shells are characterized by organized structures and several micro architectures of mollusc shell structures have been identified: Nacre shows different types: columnar and bricked forms and consists of composite inorganic- organic at the nano-scale. They are well known to display a "brick and mortar" structure. By AFM and FIB/TEM methods it could be shown, that its nanostructure consists of the structures in the range of 50 - 100 nm [1, 2]. These structures are vesicles, consisting of CaCO3 and are individually coated by a membrane. Most probably, the mantle epithelian cells of the bivalve extrude CaCO3 vesicles. By Raman spectroscopic investigations the crystalline CaCO3 polymorphs calcite, aragonite and vaterite, as well as ACC were determined. For some species (Diplodon chilensis patagonicus, Hyriopsis cumingii) pure ACC (i.e. not intermingled with a crystalline phase) could be identified. The presence of an amorphous phase is generally deduced from the lack of definite lattice modes, whereas a broad Raman band in this region is to observe. In most of the cultured pearls (Pinctada maxima and genus Hyriopsis) the ν1-Raman band of ACC clearly displays an asymmetric shape and splits into two different bands according to a nanocrystalline and an amorphous fraction. The FWHMs of most of the crystalline fractions are too high for well crystallized materials and support the assumption of nanocrystalline calcium carbonate polymorph clusters in ACC. They are primarily composed of amorphous calcium carbonate (ACC) which is later transformed into a crystalline modification [3

  18. K shell parameters of some lanthanide elements using bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Niranjana, K. M.; Badiger, N. M.

    2015-02-01

    The spectrum of external bremsstrahlung (EB) transmitted through Tb and Ho is measured using a HPGe detector spectrometer. A sudden drop in transmitted intensity at K shell binding energy has been used to determine the K shell photoelectric parameters. The unwanted characteristic K x-ray photons generated just below the K edge has been avoided by carrying out a separate experiment in the same geometry. The measured values of K shell parameters have been compared with FFAST values.

  19. Vibration of skewed cantilever plates and helicoidal shells

    NASA Technical Reports Server (NTRS)

    Beres, D. P.; Bailey, C. D.

    1975-01-01

    Theoretical vibration frequencies and mode shapes are obtained for skewed plates and helicoidal shells with a cantilever boundary. Using Hamilton's law of varying action, a power series solution is developed to obtain converged numerical results for the five lowest frequencies. Effects of geometrical variables such as aspect ratio, sweep angle and shell radius to thickness ratio are investigated. Accuracy of the solution method is substantiated by comparison with existing skewed plate spherical cap, and conical shell results.

  20. Composite particle representation for light sd shell nuclei

    SciTech Connect

    Collinson, D.F.

    1986-01-01

    The Composite Particle Representation is applied to light sd shell nuclei /sup 20/O, /sup 20/F and /sup 20/Ne. The energy spectrum is found to agree exactly with the shell model in all cases. The CPR theory is then used to examine the possible boson structure of sd shell wavefunctions. Only in the case of /sup 20/O are the wavefunctions found to have a high boson probability.

  1. Shells Evolution and Core Excitations in Semi-Magic Nuclei

    NASA Astrophysics Data System (ADS)

    Nowacki, F.

    2007-04-01

    Recent advances in Large Shell Model calculations allow now to treat extended valence spaces and more complete descriptions of (semi-)magic nuclei can be achieved with inclusion of core excitations. The interplay between shell evolution and core excitations in semi-magic nuclei will be illustrated for tin isotopic chains in the framework of Large Shell Model calculations. pn and nn monopole relative influence will be traced back on Effective Single Particle Energies and B(E2)'s.

  2. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  3. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  4. Shell transitions between metastable states of Yukawa balls

    SciTech Connect

    Kaeding, S.; Melzer, A.; Block, D.; Piel, A.; Kaehlert, H.; Ludwig, P.; Bonitz, M.

    2008-07-15

    Spherical dust clusters composed of several concentric shells are experimentally investigated with particular interest on transitions between different configurations and transitions of particles between different shells. Transitions between different ground and metastable configurations are frequently observed. The experimental analysis allows us to derive the energy differences of different configurations from particles traveling between shells. The observed transitions and transition probabilities are compared to molecular dynamics simulations.

  5. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  6. Environmental effects on shell microstructures of Cerastoderma edule

    NASA Astrophysics Data System (ADS)

    Milano, Stefania; Schöne, Bernd R.; Witbaard, Rob

    2015-04-01

    Bivalve shells serve as sensitive recorders of environmental conditions. However, reconstruction of a specific environmental parameter is still challenging. For example, variable shell growth rates simultaneously provide information on water temperature, food availability and food quality. Likewise, shell oxygen isotope values function as a dual proxy of water temperature and salinity (=oxygen isotope signature of the ambient water). Reconstruction of water temperature from δ18Oshell requires knowledge of δ18Oshell and vice versa. Unfortunately, the incorporation of trace elements in the shell is strongly controlled by biological effects and, hence, the element-to-calcium ratios of the shell are difficult to interpret in terms of environmental variables. Here, we studied if the structural properties (shell architecture, shell microstructures, fabrics) of the shell of the common cockle can function as an alternative proxy of environmental variables. Specimens of C. edule were collected alive from the intertidal zone of the North Sea. Temperature and salinity were monitored at the site where the shells lived on hourly basis for almost one year. Each portion of the shell was temporally contextualized with the tidally-deposited growth increments. Shell microstructures (composite prismatic structures) were analyzed under with a scanning electron microscope (SEM). The change of the size and shape of the mesocrystals was strongly correlated to water temperature during the growing season (May - Sep.). With rising temperatures, the size of mesocrystals increased and their morphology changed from rounded to elongated shape. Our findings suggest that shell microstructures of C. edule may serve a new, independent proxy for water temperature.

  7. Photosensitivity in feedlot calves apparently related to cocoa shells.

    PubMed

    Yeruham, I; Avidar, Y; Perl, S

    2003-10-01

    Primary photosensitization was observed in 11/78 cross-breed calves. The skin lesions were diffuse dermatitis with thickening and wrinkling with areas of alopecia. The severe photosensitivity dermatitis was associated with cocoa shell ingestion. The lesions resolved after removal of the cocoa shells from the feed ration and prevention of exposure to sunlight. Cocoa shells may contain photodynamic agents that cause photosensitization in calves. PMID:14513893

  8. K-shell photoionization of Li-like Ti XX

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Lu, Xu-yang; Zhou, Chao; Qing, Pang

    2015-04-01

    K-shell photoionization of Li-like Ti XX ions from ground state and first excited state has been studied using the R-matrix method. Through the combination of R-matrix and QB methods, we have not only studied the K-shell photoionization cross section between the first and ninth ionization threshold of Ti XX, but also identified the energy levels of K-shell excited state due to the twelve autoionization Rydberg series.

  9. Rotating blade vibration analysis using shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    Shallow shell theory and the Ritz method are employed to determine the frequencies and mode shapes of turbomachinery blades having both camber and twist, rotating with non-zero angles of attack. Frequencies obtained for different degrees of shallowness and thickness are compared with results available in the literature, obtained from finite element analyses of nonrotating blades. Frequencies are also determined for a rotating blade, showing the effects of changing the (1) angular velocity of rotation, (2) disk radius and (3) angle of attack, as well as the significance of the most important body force terms.

  10. C++ Planning and Resource Reasoning (PARR) shell

    NASA Technical Reports Server (NTRS)

    Mcintyre, James; Tuchman, Alan; Mclean, David; Littlefield, Ronald

    1994-01-01

    This paper describes a generic, C++ version of the Planning and Resource Reasoning (PARR) shell which has been developed to supersede the C-based versions of PARR that are currently used to support AI planning and scheduling applications in flight operations centers at Goddard Space Flight Center. This new object-oriented version of PARR can be more easily customized to build a variety of planning and scheduling applications, and C++ PARR applications can be more easily ported to different environments. Genetic classes, constraints, strategies, and paradigms are described along with two types of PARR interfaces.

  11. Hydrogel Nanofilaments via Core-Shell Electrospinning.

    PubMed

    Nakielski, Paweł; Pawłowska, Sylwia; Pierini, Filippo; Liwińska, Wioletta; Hejduk, Patryk; Zembrzycki, Krzysztof; Zabost, Ewelina; Kowalewski, Tomasz A

    2015-01-01

    Recent biomedical hydrogels applications require the development of nanostructures with controlled diameter and adjustable mechanical properties. Here we present a technique for the production of flexible nanofilaments to be used as drug carriers or in microfluidics, with deformability and elasticity resembling those of long DNA chains. The fabrication method is based on the core-shell electrospinning technique with core solution polymerisation post electrospinning. Produced from the nanofibers highly deformable hydrogel nanofilaments are characterised by their Brownian motion and bending dynamics. The evaluated mechanical properties are compared with AFM nanoindentation tests. PMID:26091487

  12. Multistability in rotating spherical shell convection.

    PubMed

    Feudel, F; Seehafer, N; Tuckerman, L S; Gellert, M

    2013-02-01

    The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased Rayleigh numbers all the RWs undergo transitions to modulated rotating waves (MRWs) which are classified by their spatiotemporal symmetry. The generation of a third frequency for some of the MRWs is accompanied by a further loss of symmetry. Eventually a variety of MRWs, three-frequency solutions, and chaotic saddles and attractors control the dynamics for higher Rayleigh numbers. PMID:23496624

  13. Fiber optic well monitoring for Shell`s North Sea field

    SciTech Connect

    1995-12-01

    After eight years of development work, Alcatel Kabel Norge has reached an agreement with Shell U.K. Exploration and Production to install Alcatel`s first commercial Sub-Sea Fiber Optic Well Monitoring (FOWM) system in Shell`s Guillemot A-OP2 well on its completion in August 1996. The FOWM project was started in 1988 by Norske Shell and Alcatel. BP Norway joined the project in 1991, and additional support has been contributed by Norsk Hydro and the Norwegian Research Council. The first Alcatel FOWM system was installed in onshore gas Well 7 in NAM`s Sleen field in the Netherlands in October 1993. The final offshore test took place in late 1994, in BP Norway`s Well 2/1 A-32 in Gyda field, in the Norwegian North Sea. FOWM is a new type of permanently installed downhole monitoring system based on an optical sensor system integrating simple passive silicon resonator sensors with optical communication. The system tolerates high pressure and high temperatures (HPHT). Main elements that contribute to its high reliability are discussed.

  14. Preparation of gold/titania core-shell nanocomposites with a tunable shell thickness.

    PubMed

    Kanda, Takashi; Komata, Kazuyoshi; Torigoe, Kanjiro; Endo, Takeshi; Sakai, Kenichi; Abe, Masahiko; Sakai, Hideki

    2014-01-01

    Gold/titania nanocomposites with a core-shell structure were prepared by sol-gel reaction of titanium tetrabutoxide (TTBO) with gold nanoparticles, core-stabilized with cetyltrimethylammonium bromide (CTAB), using a ternary mixture of alcohol/acetonitrile/water as solvent. TEM characterization of the resulting constructs revealed spherical nanocomposites, each containing a single gold core. The mean diameter of the gold cores was 13 nm, while the thicknesses of titania shells were readily tuned in the range 4-30 nm by varying the alkyl chain length of the alcohol. In addition, the gold nanoparticles exhibited a deep red color, with an intense extinction peak at 527 nm, owing to their surface plasmon resonance (SPR) properties. When the Au nanoparticles were coated with a titania shell, their color changed to purple and the SPR peak shifted to a higher wavelength of 537 nm. Furthermore, the core-shell nanocomposites were found to display photocatalytic activity for the oxidation of 2-propanol under illumination by visible light (λ=500-560 nm). PMID:24717542

  15. Interstellar H I Shells Identified in the SETHI Survey

    NASA Astrophysics Data System (ADS)

    Sallmen, Shauna M.; Korpela, Eric J.; Bellehumeur, Brooke; Tennyson, Elizabeth M.; Grunwald, Kurt; Lo, Cheuk Man

    2015-06-01

    Galactic H i (neutral hydrogen) shells are central to our understanding of the interstellar medium, which plays a key role in the development and evolution of galaxies, including our own. Several models involving supernovae (SNe) and stellar winds have contributed to our broad understanding, but a complete, detailed picture remains elusive. To extend existing Galactic shell catalogs, we visually examined the SETHi (Search for Extraterrestrial H i) database to identify shell-like structures. This high-sensitivity 21 cm radio survey covering the Arecibo sky uniquely provides high-resolution data on shells at a wide range of Galactic latitudes. We present basic information (location, radial velocity, angular size, shape) for 74 previously unidentified H i shells. Due to limitations of coverage and data quality, and the biases inherent in search techniques, our catalog is not a complete sample of Galactic shells. We discuss the catalog completeness, and comment on the new shells’ relationship with known interstellar structure as warranted. Unlike many previous catalogs, this sample is not biased toward expanding shells. Where possible we also estimate the kinematic distances, physical sizes, expansion velocities, and energies of these shells. Overall, they are relatively large and old, each the result of multiple SNe. Unlike previous surveys, we do not find that the shells in our sample are preferentially aligned relative to the Galactic plane.

  16. Hamiltonian treatment of the gravitational collapse of thin shells

    NASA Astrophysics Data System (ADS)

    Crisóstomo, Juan; Olea, Rodrigo

    2004-05-01

    A Hamiltonian treatment of the gravitational collapse of thin shells is presented. The direct integration of the canonical constraints reproduces the standard shell dynamics for a number of known cases. The formalism is applied in detail to three-dimensional spacetime and the properties of the (2+1)-dimensional charged black hole collapse are further elucidated. The procedure is also extended to deal with rotating solutions in three dimensions. The general form of the equations providing the shell dynamics implies the stability of black holes, as they cannot be converted into naked singularities by any shell collapse process.

  17. Controls on shell thickness in modern planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Salmon, K. H.; Anand, P.; Sexton, P. F.; Conte, M. H.; Bijma, J.

    2014-12-01

    Planktonic foraminifera calcification response to ocean acidification can be studied using shell parameters such as shell size, mass and thickness (derived from shell area density). Shell thickness changes in planktonic foraminifera have previously been linked to variations in carbonate ion concentration, light intensity, temperature and nutrient availability, providing a proxy for past changes in seawater properties. While culture studies are invaluable in assessing the main controls on shell calcification in certain species, open ocean studies are needed to understand the impact of multi-stressor environments on shell parameters of multiple species and their potential as palaeo-proxies. In this study, we present data on shell thickness of four depth-stratified species of modern planktonic foraminifera (Globoratalia truncatulinoides, Globoratalia inflata, Orbulina universa, Globigerinoides ruber-pink) from bi-weekly time-series sediment trap samples in the Sargasso Sea (Ocean Flux Program). We also use species flux, geochemical data and measured hydrographic data from Bermuda Atlantic time series to understand the seasonal and interannual changes in shell thickness due to changes in seawater properties. We show that short-lived environmental perturbations such as cyclonic eddies affect local hydrographic conditions and can dramatically influence species fluxes and shell thicknesses. Our results suggest that a combined morphometric and geochemical approach to fossil planktonic foraminifera would allow a better understanding of calcification response to past environmental change.

  18. Offshore UK; Shell starts Galleon field pre-drilling

    SciTech Connect

    Not Available

    1993-01-01

    Shell U.K. Exploration and Production (Shell), acting as operator for a consortium of companies, has described plans for the two-phase development of Galleon gas field, located 50 miles from the Shell/Esso gas processing plant at Bacton, Norfolk, in 82 ft of water. The field has estimated reserves of 1.4 Tcf. Phase 1 development will cost [Brit pounds]300 million ($500 million); and first production is expected in late 1994. British Gas has agreed to purchase at least Phase 1 gas. Shell will be the operator for the development. A preliminary costsharing arrangement has been agreed to by the co-venturers to bridge the period until equities are determined. The consortium comprises Shell and Esso, with 40% each, and Conoco (U.K.) Ltd. and Oryx U.K. Energy Co., each with 10%. The field is located in Shell/Esso Blocks 48/14, 19a and 20a, and Conoco/Oryx Block 48/15a. Galleon will be the sixth gas field to be developed in the Southern North Sea by Shell, the operator for Shell and Esso. It will be the third field in the Sole Pit area, where total reserves found by Shell/Esso are about 3.0 Tcf.

  19. A higher order theory of laminated composite cylindrical shells

    NASA Technical Reports Server (NTRS)

    Krishna Murthy, A. V.; Reddy, T. S. R.

    1986-01-01

    A new higher order theory has been proposed for the analysis of composite cylindrical shells. The formulation allows for arbitrary variation of inplane displacements. Governing equations are presented in the form of a hierarchy of sets of partial differential equations. Each set describes the shell behavior to a certain degree of approximation. The natural frequencies of simply-supported isotropic and laminated shells and stresses in a ring loaded composite shell have been determined to various orders of approximation and compared with three dimensional solutions. These numerical studies indicate the improvements achievable in estimating the natural frequencies and the interlaminar shear stresses in laminated composite cylinders.

  20. Micromagnetic studies of three-dimensional pyramidal shell structures

    NASA Astrophysics Data System (ADS)

    Knittel, A.; Franchin, M.; Fischbacher, T.; Nasirpouri, F.; Bending, S. J.; Fangohr, H.

    2010-11-01

    We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.

  1. Bearing capacity of shell strip footing on reinforced sand

    PubMed Central

    Azzam, W.R.; Nasr, A.M.

    2014-01-01

    In this paper, the ultimate load capacities of shell foundations on unreinforced and reinforced sand were determined by laboratory model tests. A series of loading tests were carried out on model shell footing with and without single layer of reinforcement. The tests were done for shell foundation at different shell embedment depth and subgrade density. The results were compared with those for flat foundations without reinforcement. The model test results were verified using finite element analysis using program PLAXIS. The experimental studies indicated that, the ultimate load capacity of shell footing on reinforced subgrade is higher than those on unreinforced cases and the load settlement curves were significantly modified. The shell foundation over reinforced subgrade can be considered a good method to increase the effective depth of the foundation and decrease the resulting settlement. Also the rupture surface of shell reinforced system was significantly deeper than both normal footing and shell footing without reinforcement. The numerical analysis helps in understanding the deformation behavior of the studied systems and identifies the failure surface of reinforced shell footing. PMID:26425361

  2. Low Cost Real-Time Sorting of in Shell Pistachio Nuts from Kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high speed sorter for separating pistachio nuts with (in shell) and without (kernels) shells is reported. Testing indicates 95% accuracy in removing kernels from the in shell stream with no false positive results out of 1000 kernels tested. Testing with 1000 each of in shell, shell halves, and ker...

  3. Natural melting within a spherical shell

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1990-01-01

    Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper.

  4. Heat exchanger, head and shell acceptance criteria

    SciTech Connect

    Lam, P.S.; Sindelar, R.L.

    1992-09-01

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report.

  5. Core-shell diodes for particle detectors

    NASA Astrophysics Data System (ADS)

    Jia, Guobin; Plentz, Jonathan; Höger, Ingmar; Dellith, Jan; Dellith, Andrea; Falk, Fritz

    2016-02-01

    High performance particle detectors are needed for fundamental research in high energy physics in the exploration of the Higgs boson, dark matter, anti-matter, gravitational waves and proof of the standard model, which will extend the understanding of our Universe. Future particle detectors should have ultrahigh radiation hardness, low power consumption, high spatial resolution and fast signal response. Unfortunately, some of these properties are counter-influencing for the conventional silicon drift detectors (SDDs), so that they cannot be optimized simultaneously. In this paper, the main issues of conventional SDDs have been analyzed, and a novel core-shell detector design based on micro- and nano-structures etched into Si-wafers is proposed. It is expected to simultaneously reach ultrahigh radiation hardness, low power consumption, fast signal response and high spatial resolution down to the sub-micrometer range, which will probably meet the requirements for the most powerful particle accelerators in the near future. A prototype core-shell detector was fabricated using modern silicon nanotechnology and the functionality was tested using electron-beam-induced current measurements. Such a high performance detector will open many new applications in extreme radiation environments such as high energy physics, astrophysics, high resolution (bio-) imaging and crystallography, which will push these fields beyond their current boundaries.

  6. A Viscoelastic Hybrid Shell Finite Element

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur

    1999-01-01

    An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.

  7. The shell spectrum of HD 94509

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.; Przybilla, Norbert; Hubrig, Swetlana

    2015-01-01

    HD 94509 is a 9th magnitude Be star with an unusually rich metallic-lined shell. The absorption spectrum is rich, comparable to that of an A or F supergiant, but Mg II (4481A), and the Si II (4128 and 4130A), are weak, indicating a dilute radiation field, as described by Otto Struve. The H-alpha emission is double with components of equal intensity and an absorption core that dips well below the stellar continuum. H-beta is weaker, but with a similar structure. H-gamma through H-epsilon have virtually black cores, indicating that the shell covers the stellar disk. The stronger metallic absorption lines are wide near the continuum, but taper to very narrow cores. This line shape is unexplained. However, the total absorption can be modeled to reveal an overall particle densities of 10^{10}-10^{12} cm^{-3}. An electron density log(n_e) = 11.2 is obtained from the Paschen-line convergence and the Inglis-Tellar relation. Column densities are obtained with the help of curves of growth by assuming uniform conditions in the cloud. These indicate a nearly solar composition. The CLOUDY code (Ferland, et al. Rev. Mex. Astron. Astroph. 49, 137, 213) is used to produce a model that predicts matching column densities of the dominant ions, the n = 3 level of hydrogen, the H-alpha strength, and the electron density (± 0.5 dex).

  8. Models for elastic shells with incompatible strains

    PubMed Central

    Lewicka, Marta; Mahadevan, L.; Pakzad, Mohammad Reza

    2014-01-01

    The three-dimensional shapes of thin lamina, such as leaves, flowers, feathers, wings, etc., are driven by the differential strain induced by the relative growth. The growth takes place through variations in the Riemannian metric given on the thin sheet as a function of location in the central plane and also across its thickness. The shape is then a consequence of elastic energy minimization on the frustrated geometrical object. Here, we provide a rigorous derivation of the asymptotic theories for shapes of residually strained thin lamina with non-trivial curvatures, i.e. growing elastic shells in both the weakly and strongly curved regimes, generalizing earlier results for the growth of nominally flat plates. The different theories are distinguished by the scaling of the mid-surface curvature relative to the inverse thickness and growth strain, and also allow us to generalize the classical Föppl–von Kármán energy to theories of prestrained shallow shells. PMID:24808750

  9. Two interpretations of thin-shell instantons

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han

    2016-07-01

    For O (4 ) -symmetric instantons, there are two complementary interpretations for their analytic continuations. One is the nothing-to-something interpretation, where the initial and final hypersurfaces are disconnected by Euclidean manifolds. The other is the something-to-something interpretation, introduced by Brown and Weinberg, where the initial and final hypersurfaces are connected by the Euclidean manifold. These interpretations have their own pros and cons and hence they are complementary. In this paper, we consider analytic continuations of thin-shell instantons that have less symmetry, i.e., the spherical symmetry. When we consider the Farhi-Guth-Guven/Fischler-Morgan-Polchinski tunneling, the something-to-something interpretation has been used in the usual literature. On the other hand, we can apply the nothing-to-something interpretation with some limited conditions. We argue that for both interpretations, we can give the consistent decay rate. As we apply and interpret what follows the nothing-to-something interpretation, a stationary black hole can emit an expanding shell that results in a spacetime without a singularity or event horizon.

  10. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.

    2004-01-01

    Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.

  11. Hanford single-shell tank grouping study

    SciTech Connect

    Remund, K.M.; Anderson, C.M.; Simpson, B.C.

    1995-10-01

    A tank grouping study has been conducted to find Hanford single-shell tanks with similar waste properties. The limited sampling resources of the characterization program could be allocated more effectively by having a better understanding of the groups of tanks that have similar waste types. If meaningful groups of tanks can be identified, tank sampling requirements may be reduced, and the uncertainty of the characterization estimates may be narrowed. This tank grouping study considers the analytical sampling information and the historical information that is available for all single-shell tanks. The two primary sources of historical characterization estimates and information come from the Historical Tank Content Estimate (HTCE) Model and the Sort on Radioactive Waste Tanks (SORWT) Model. The sampling and historical information are used together to come up with meaningful groups of similar tanks. Based on the results of analyses presented in this report, credible tank grouping looks very promising. Some groups defined using historical information (HTCE and SORWT) correspond well with those based on analytical data alone.

  12. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  13. A model of layered prismatic shells

    NASA Astrophysics Data System (ADS)

    Jaiani, George

    2016-05-01

    The present paper is devoted to a model for elastic layered prismatic shells which is constructed by means of a suggested in the paper approach which essentially differs from the known approaches for constructing models of laminated structures. Using Vekua's dimension reduction method after appropriate modifications, hierarchical models for elastic layered prismatic shells are constructed. We get coupled governing systems for the whole structure in the projection of the structure. The advantage of this model consists in the fact that we solve boundary value problems separately for each ply. In addition, beginning with the second ply, we use a solution of a boundary value problem of the preceding ply. We indicate ways of investigating boundary value problems for the governing systems. For the sake of simplicity, we consider the case of two plies, in the zeroth approximation. However, we also make remarks concerning the cases when either the number of plies is more than two or higher-order approximations (hierarchical models) should be applied. As an example, we consider a special case of deformation and solve the corresponding boundary value problem in the explicit form.

  14. Rollable Thin-Shell Nanolaminate Mirrors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Lih, Shyh-Shiuh; Barbee, Troy, Jr.

    2003-01-01

    A class of lightweight, deployable, thin-shell, curved mirrors with built-in precise-shape-control actuators is being developed for high-resolution scientific imaging. This technology incorporates a combination of advanced design concepts in actuation and membrane optics that, heretofore, have been considered as separate innovations. These mirrors are conceived to be stowed compactly in a launch shroud and transported aboard spacecraft, then deployed in outer space to required precise shapes at much larger dimensions (diameters of the order of meters or tens of meters). A typical shell rollable mirror structure would include: (1) a flexible single- or multiple-layer face sheet that would include an integrated reflective surface layer that would constitute the mirror; (2) structural supports in the form of stiffeners made of a shape-memory alloy (SMA); and (3) piezoelectric actuators. The actuators, together with an electronic control subsystem, would implement a concept of hierarchical distributed control, in which (1) the SMA actuators would be used for global shape control and would generate the large deformations needed for the deployment process and (2) the piezoelectric actuators would generate smaller deformations and would be used primarily to effect fine local control of the shape of the mirror.

  15. Imaging of Compressed Pure-CH Shells and CH Shells with Titanium-Doped Layers on OMEGA

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Yaakobi, B.; Goncharov, V. N.; Delettrez, J. A.; Marshall, F. J.; Meyerhofer, D. D.

    1999-11-01

    The compressed shell integrity of spherical targets has been studied using the 60-beam, 30-kJ UV, OMEGA laser system. The emission from the hot core has been imaged through the cold shell at two narrow, x-ray energy bands, absorbing and nonabsorbing by the shell, allowing nonuniformities in the core emission and the cold shell areal density to be measured. Images of the target have been obtained using a pinhole-array with K-edge filters. The x-ray energies used are around 2.8 and 4.5 keV for pure-CH shells, and around 4.5 and 6 keV for titanium-doped layers. Additional images of the shell are obtained with a framed monochromatic x-ray microscope and a time-integrated crystal-spectrometer/pinhole-array combination. We will present measurements of the compressed shell integrity at the stagnation stage of spherical implosions by varying the position of the titanium-doped layer within the shell, by varying the thickness of the CH shell, and by using two different laser pulse shapes. The experimental results will be compared with 2-D (ORCHID) hydrodynamic simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

  16. Crystal Phase Transitions in the Shell of PbS/CdS Core/Shell Nanocrystals Influences Photoluminescence Intensity

    PubMed Central

    2014-01-01

    We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS-shell of PbS/CdS core/shell nanocrystals formed by cationic exchange. The chemical composition profile of the core/shell nanocrystals with different dimensions is determined by means of anomalous small-angle X-ray scattering with subnanometer resolution and is compared to X-ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thickness. PMID:25673918

  17. Cadmium Telluride, Cadmium Telluride/Cadmium Sulfide Core/Shell, and Cadmium Telluride/Cadmium Sulfide/Zinc Sulfide Core/Shell/Shell Quantum Dots Study

    NASA Astrophysics Data System (ADS)

    Yan, Yueran

    CdTe, CdTe/CdS core/shell, and CdTe/CdS/ZnS core/shell/shell quantum dots (QDs) are potential candidates for bio-imaging and solar cell applications because of some special physical properties in these nano materials. For example, the band gap energy of the bulk CdTe is about 1.5 eV, so that principally they can emit 790 nm light, which is in the near-infrared range (also called biological window). Moreover, theoretically hot exciton generated by QDs is possible to be caught since the exciton relaxation process in QDs is slower than in bulk materials due to the large intraband energy gap in QDs. In this dissertation, we have synthesized the CdTe and CdTe/CdS core/shell QDs, characterized their structure, and analyzed their photophysical properties. We used organometallic methods to synthesize the CdTe QDs in a noncoordinating solvent. To avoid being quenched by air, ligands, solvent, or other compounds, CdS shell was successfully deposited on the CdTe QDs by different methods, including the slow injection method, the successive ion layer adsorption and reaction (SILAR) method, and thermal-cycling coupled single precursor method (TC-SP). Our final product, quasi-type- II CdTe/CdS core/shell QDs were able to emit at 770 nm with a fluorescence quantum yield as high as 70%. We also tried to deposit a second shell ZnS on CdTe/CdS core/shell QDs since some compounds can quench CdTe/CdS core/shell QDs. Even though different methods were used to deposit ZnS shell on the CdTe/CdS core/shell QDs, CdTe/CdS/ZnS core/shell/shell QDs still can be quenched. Furthermore, the CdTe/CdS core/shell and CdTe/CdS/ZnS core/shell/shell QDs were transferred into aqueous phase, phosphate buffered saline or deionized water, by switching the hydrophilic ligands (thiol or PEG ligands). The thioglycolic acid (TGA)-capped CdTe/CdS core/shell QDs can be kept in aqueous phase with high fluorescence quantum yield (60%--70%) for more than two months. However, some other compounds in organic or

  18. Corrasion of a remoulded cohesive bed by saltating littorinid shells

    NASA Astrophysics Data System (ADS)

    Amos, C. L.; Sutherland, T. F.; Cloutier, D.; Patterson, S.

    2000-07-01

    Corrasion of a standard cohesive bed due to saltating gastropod shells of the species Littorina has been examined in a laboratory mini flume. The purpose of the study was to examine the effects of shell size and number on bed erosion rate. The movement of shells by flows explain why intertidal, glacial clays in the Bay of Fundy (which are covered in places with Littorinid shells) suffer erosion because bed erosion rate increased up to 20-fold with the introduction of a single shell to the flume (27 m -2). The standard bed was made of potters clay which had an erosion threshold of 0.19 Pa and a fluid-induced erosion rate Eo=0.072( Uy- Ucrit) gm -2 s -1, where Uy is the azimuthal current speed at height y=0.10 m. Shells of seven differing sizes ( ds) were used to define the process of erosion by shell impacts. The threshold for shell motion ( Ugcrit) was linearly related to shell size in the form: Ugcrit=9.17×10 -3 ds-0.22 m s -1. Motion began by intermittent rolling, followed by continuous rolling and then by saltation. The shell speed in saltation was 68% that of Uy, thus 32% of the horizontal shell momentum was transmitted to the bed. The length/height ratio of saltations was 6.3, and was constant for all sizes, and the mean saltation frequency was 1.7 s -1. The shell erosion rate ( Es) increased with shell diameter for both the rolling and saltating phases. During the rolling phase, Es was up to 5 times greater than Eo at the same current speed. During saltation, Es was up to 20 times greater than Eo at the same current speed. The effect of shell number (1-7) was examined for the 7-10 mm size class. During rolling, Es increased linearly with shell number. For the saltating phase, Es increased in an asymptotic fashion, suggesting that groups of saltating shells affect the erosion process differently than single shells. The ballistic momentum flux ( T) of saltating shells is highly dependent on the area of impact ( Ag), which in the case of the littorinids, is

  19. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  20. Chicken egg shell membrane associated proteins and peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egg shells are poultry industry byproducts with potential for use in various biological and agricultural applications. We have been interested in the membranes underlying the calcareous shell, as a feed supplement which showed potential to t improve immunity and performance of post hatch poultry. ...

  1. On the stability of charged thin-shell wormholes

    NASA Astrophysics Data System (ADS)

    Eid, A.

    2016-02-01

    In the framework of Darmois-Israel formalism, the stability of charged thin shell wormholes is discussed by linearized radial perturbations around static solutions at the wormhole throat. A wormhole is described as a limiting case of a constant density spherical shell, where the structure must be unstable to linearized radial perturbations.

  2. Yolk/shell nanoparticles: classifications, synthesis, properties, and applications.

    PubMed

    Purbia, Rahul; Paria, Santanu

    2015-12-21

    Core/shell nanoparticles were first reported in the early 1990s with a simple spherical core and shell structure, but the area is gradually diversifying in multiple directions such as different shapes, multishells, yolk/shell etc., because of the development of different new properties of the materials, which are useful for several advanced applications. Among different sub-areas of core/shell nanoparticles, yolk/shell nanoparticles (YS NPs) have drawn significant attention in recent years because of their unique properties such as low density, large surface area, ease of interior core functionalization, a good molecular loading capacity in the void space, tunable interstitial void space, and a hollow outer shell. The YS NPs have better properties over simple core/shell or hollow NPs in various fields including biomedical, catalysis, sensors, lithium batteries, adsorbents, DSSCs, microwave absorbers etc., mainly because of the presence of free void space, porous hollow shell, and free core surface. This review presents an extensive classification of YS NPs based on their structures and types of materials, along with synthesis strategies, properties, and applications with which one would be able to draw a complete picture of this area. PMID:26567966

  3. Pasteurization of shell eggs using radio frequency heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-FSIS estimates that pasteurization of all shell eggs in the U.S. would reduce the annual number of illnesses by more than 110,000, yet less than 1% of shell eggs are commercially pasteurized. One of the main reasons for this is that the current process, hot water immersion, requires approxi...

  4. 6. Detail of northeast corner of Shell Interlocking Tower, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail of northeast corner of Shell Interlocking Tower, showing ornamental east concrete beltcourse and tower shield with bronze numerals. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  5. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Tensile strength of shell plates. 230.26 Section 230.26 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength...

  6. PHYSICAL QUALITY AND COMPOSITION OF RETAIL SHELL EGGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of shell eggs are available to consumers in the US retail market. A survey consisting of white and brown; traditional; cage free; free roaming; pasteurized; vitamin enhanced; and fertile shell eggs was conducted to determine if physical quality and compositional differences existed. The ...

  7. Physical Quality and Composition of Retail Shell Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of specialty shell eggs available to consumers in the US retail market. A survey consisting of white and brown large size shell eggs with various production and nutritional differences (traditional, cage free, free roaming, pasteurized, nutritionally enhanced, and fertile) was co...

  8. Performance of Equipment for In-field Peanut Shelling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying, cleaning, and shelling peanuts represents approximately one-third of the costs included in growing, harvesting, and processing peanuts for the edible market. These processes are cost-prohibitive when producing peanuts for biodiesel. Shelling peanuts during harvest would significantly reduc...

  9. 21. Historic view looking northeast from tracks of Shell Interlocking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Historic view looking northeast from tracks of Shell Interlocking Tower after construction, 1909. Photographic copy of photograph published in Railway Age Gazette, February 4, 1910. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  10. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2013-10-01 2013-10-01 false Tensile strength of shell plates. 230.26...

  11. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2012-10-01 2012-10-01 false Tensile strength of shell plates. 230.26...

  12. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2010-10-01 2010-10-01 false Tensile strength of shell plates. 230.26...

  13. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2014-10-01 2014-10-01 false Tensile strength of shell plates. 230.26...

  14. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    ERIC Educational Resources Information Center

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  15. A new distributed sensor and actuator theory for ``Intelligent'' shells

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.

    1992-03-01

    An " intelligent" shell is a shell structure with a self-sensation and action/reaction capabilities contributed by built-in sensors, actuators and control electronic systems. In this study, a new intelligent shell structure composed of a conventional elastic shell, a distributed piezoelectric sensor and a distributed piezoelectric actuator is proposed. The distributed sensor provides a self-monitoring capability to sense shell oscillation and the distributed actuator contributes a self-correction (control) capability to counteract the oscillation. A new generic theory for the intelligent shell system is developed. System equations of motion coupling sensing and control effects are derived. From the theory derived, it is concluded that the distributed sensor is (theoretically) capable of sensing all shell vibration modes and the distributed actuator controlling all shell modes. However, the sensing or control effort of each mode could be different. Two feedback control algorithms, namely direct feedback control and Lyapunov control, are proposed in the paper. The generic theory can be simplified to account for other general geometries, such as cylinder, plates, beams, etc. Applications of the theory are also demonstrated.

  16. More about thin-shell wormholes associated to cosmic strings

    SciTech Connect

    Richarte, Martin G.; Simeone, Claudio

    2009-06-15

    Previous analysis about thin-shell wormholes associated to cosmic strings are extended. More evidence is found supporting the conjecture that, under reasonable assumptions about the equations of state of matter on the shell, the configurations are not stable under radial velocity perturbations.

  17. Nondestructive pasteurization of shell eggs using radio frequency energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shell eggs are on the top of the list of the 10 riskiest foods regulated by the Food and Drug Administration and 352 outbreaks from 1990 to 2006 were linked to eggs. The goals of this study were to design and assemble an apparatus to apply RF energy to shell eggs and to develop a process for pasteur...

  18. 7 CFR 984.52 - Processing of shelled walnuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Processing of shelled walnuts. 984.52 Section 984.52... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Quality Control § 984.52 Processing of shelled walnuts. (a) No handler shall slice,...

  19. 7 CFR 984.52 - Processing of shelled walnuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Processing of shelled walnuts. 984.52 Section 984.52... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Quality Control § 984.52 Processing of shelled walnuts. (a) No handler shall slice,...

  20. 7 CFR 984.52 - Processing of shelled walnuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Processing of shelled walnuts. 984.52 Section 984.52... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Quality Control § 984.52 Processing of shelled walnuts. (a) No handler shall slice,...

  1. 7 CFR 984.52 - Processing of shelled walnuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Processing of shelled walnuts. 984.52 Section 984.52... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Quality Control § 984.52 Processing of shelled walnuts. (a) No handler shall slice,...

  2. 7 CFR 984.52 - Processing of shelled walnuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Processing of shelled walnuts. 984.52 Section 984.52... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Quality Control § 984.52 Processing of shelled walnuts. (a) No handler shall slice,...

  3. Cryogenic line insulation made from prefabricated polyurethane shells

    NASA Technical Reports Server (NTRS)

    Lerma, G.

    1975-01-01

    Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.

  4. Galactic Center Shells and a Recurrent Starburst Model

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2003-04-01

    By applying filtering techniques to remove straight filaments in the 20-cm VLA radio image of the Galactic Center Arc region, we have shown that numerous concentric radio shells of radii 5 to 20pc are surrounding the Pistol and Sickle region, which we call Galactic Center Shells (GCS).Each shell has thermal energy of the order of1049-50erg.Several CO-line shells are associated, whose kinetic energies are of the order of 1049-50erg. Summing up the energies of recognized GCSs, the total energy amounts to ˜ 1051erg.The GCSs show an excellent correlation with the FIR shells observed at 16-26μm with the MSX.We propose a model in which GCSs were produced by recurrent and/or intermittent starbursts in the Pistol area during the last million years.The most recent burst occurred some 105 years ago, producing an inner round-shaped shell (GCS I);earlier ones a million years ago produced outer shells (GCS II and III), which a re more deformed by interactions with the surrounding ISM and Sgr A halo.We argue that recurrent starbursts had also occurred in the past, which produced larger scale hyper-shell structures as well.A burst some million years ago produced the Galactic Center Lobe, and a much stronger one 15 million years ago produced the North Polar Spur.

  5. Core-in-shell sorbent for hot coal gas desulfurization

    DOEpatents

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  6. Mussel Shell Evaluation as Bioindicator For Heavy Metals

    NASA Astrophysics Data System (ADS)

    Andrello, Avacir Casanova; Lopes, Fábio; Galvão, Tiago Dutra

    2010-05-01

    Recently, in Brazil, it has appeared a new and unusual "plague" in lazer and commercial fishing. It is caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as "Naiades" and its involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation. These bivalve mollusks belong to the Unionoida Order, Mycetopodidae Family. The objective of the present work was to analyze the shells of these mollusks to verify the possibility of use as bioindicators for heavy metals in freshwater. The mollusks shells were collected in a commercial fishing at Londrina-PR. A qualitative analysis was made to determine the chemical composition of the shells and verify a possible correlation with existent heavy metals in the aquatic environment. In the inner part of the shells were identified the elements Ca, P, Fe, Mn and Sr and in the outer part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio of the outer part by inner part of the analyzed shells is around of 1, as expected, because Ca is the main compound of mollusks shells. The ratio of P, Fe, Mn, and Sr to the Ca were constant in all analyzed shells, being close to 0.015. The ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment.

  7. The Strength of Shell Bodies : Theory and Practice

    NASA Technical Reports Server (NTRS)

    Ebner, H

    1937-01-01

    The monocoque form of airplane construction has introduced a number of new problems to the stress calculator and the designer. The problems for the stress calculator fall into two groups: the determination of the stress condition (shell statics) and the determination of the failing strength (shell strength). The present report summarizes the most important theoretical and experimental results on this subject.

  8. IDENTIFICATION OF ENTEROBACTERICEAE FROM WASHED AND UNWASHED COMMERCIAL SHELL EGGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, little attention has been given to the microbiology of commercial processed eggs. Therefore, to evaluate the effect of processing on the safety and quality of retail shell eggs, a storage study was conducted with unwashed and commercially washed eggs. For each of three repetitions, shell...

  9. Yolk/shell nanoparticles: classifications, synthesis, properties, and applications

    NASA Astrophysics Data System (ADS)

    Purbia, Rahul; Paria, Santanu

    2015-11-01

    Core/shell nanoparticles were first reported in the early 1990s with a simple spherical core and shell structure, but the area is gradually diversifying in multiple directions such as different shapes, multishells, yolk/shell etc., because of the development of different new properties of the materials, which are useful for several advanced applications. Among different sub-areas of core/shell nanoparticles, yolk/shell nanoparticles (YS NPs) have drawn significant attention in recent years because of their unique properties such as low density, large surface area, ease of interior core functionalization, a good molecular loading capacity in the void space, tunable interstitial void space, and a hollow outer shell. The YS NPs have better properties over simple core/shell or hollow NPs in various fields including biomedical, catalysis, sensors, lithium batteries, adsorbents, DSSCs, microwave absorbers etc., mainly because of the presence of free void space, porous hollow shell, and free core surface. This review presents an extensive classification of YS NPs based on their structures and types of materials, along with synthesis strategies, properties, and applications with which one would be able to draw a complete picture of this area.

  10. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness

    NASA Astrophysics Data System (ADS)

    Sun, Xiaolian; Li, Dongguo; Guo, Shaojun; Zhu, Wenlei; Sun, Shouheng

    2016-01-01

    Using a modified seed-mediated method, we synthesized core/shell Au/FePt nanoparticles (NPs) with Au sizes of 4, 7, and 9 nm and the FePt shell was controlled to have similar FePt compositions and 0.5, 1, and 2 nm thickness. We studied both core and shell effects on electrochemical and electrocatalytic properties of the Au/FePt NPs, and found that the Au core did change the redox chemistry of the FePt shell and promoted its electrochemical oxidation of methanol. The catalytic activity was dependent on the FePt thicknesses, but not much on the Au core sizes, and the 1 nm FePt shell was found to be the optimal thickness for catalyzing methanol oxidation in 0.1 M HClO4 + 0.1 M methanol, offering not only high activity (1.19 mA cm-2 at 0.5 V vs. Ag/AgCl), but also enhanced stability. Our studies demonstrate a general approach to the design and tuning of shell catalysis in the core/shell structure to achieve optimal catalysis for important electrochemical reactions.Using a modified seed-mediated method, we synthesized core/shell Au/FePt nanoparticles (NPs) with Au sizes of 4, 7, and 9 nm and the FePt shell was controlled to have similar FePt compositions and 0.5, 1, and 2 nm thickness. We studied both core and shell effects on electrochemical and electrocatalytic properties of the Au/FePt NPs, and found that the Au core did change the redox chemistry of the FePt shell and promoted its electrochemical oxidation of methanol. The catalytic activity was dependent on the FePt thicknesses, but not much on the Au core sizes, and the 1 nm FePt shell was found to be the optimal thickness for catalyzing methanol oxidation in 0.1 M HClO4 + 0.1 M methanol, offering not only high activity (1.19 mA cm-2 at 0.5 V vs. Ag/AgCl), but also enhanced stability. Our studies demonstrate a general approach to the design and tuning of shell catalysis in the core/shell structure to achieve optimal catalysis for important electrochemical reactions. Electronic supplementary information (ESI

  11. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    PubMed

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules. PMID:22545710

  12. Oceans, Ice Shells, and Life on Europa

    NASA Technical Reports Server (NTRS)

    Schenk, Paul

    2002-01-01

    The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic

  13. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 59.10-20 Patches in shells and tube sheets. (a) Unreinforced openings in the shells or drums of... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of...

  14. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... § 59.10-20 Patches in shells and tube sheets. (a) Unreinforced openings in the shells or drums of... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of...

  15. Deriving the nuclear shell model from first principles

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under

  16. Core@shell bimetallic nanoparticle synthesis via anion coordination

    NASA Astrophysics Data System (ADS)

    Serpell, Christopher J.; Cookson, James; Ozkaya, Dogan; Beer, Paul D.

    2011-06-01

    Core@shell structured bimetallic nanoparticles are currently of immense interest due to their unique electronic, optical and catalytic properties. However, their synthesis is non-trivial. We report a new supramolecular route for the synthesis of core@shell nanoparticles, based on an anion coordination protocol—the first to function by binding the shell metal to the surface of the pre-formed primary metal core before reduction. The resultant gold/palladium and platinum/palladium core@shell nanoparticles have been characterized by aberration-corrected scanning transmission electron microscopy (as well as other techniques), giving striking atomic-resolution images of the core@shell architecture, and the unique catalytic properties of the structured nanoparticles have been demonstrated in a remarkable improvement of the selective production of industrially valuable chloroaniline from chloronitrobenzene.

  17. Circumstellar shells resolved in IRAS survey data. II - Analysis

    NASA Technical Reports Server (NTRS)

    Young, K.; Phillips, T. G.; Knapp, G. R.

    1993-01-01

    IRAS survey data for 512 red giant stars and young planetary nebulae were processed using a computer program which fitted the data to an idealized model of a circumstellar shell. Seventy-six of these stars were found to have circumstellar shells resolved in the 60-micron survey data. Forty pct of the 76 stars are carbon stars. Thirteen are Mira variables. The evolution of these shells, involving the interaction of the expelled material with the ISM, is modeled, and the results suggest that the period during which Mira variables lose mass lasts for approximately 10 exp 5 yr. Carbon stars are found to shed mass for about 2 x 10 exp 5 yr. The expansion velocity of the outer shell for the largest shells will normally be lower by a factor of 3-5 than the expansion velocity obtained from CO observations.

  18. History of hydrocarbon exploration by Shell in East Malaysia

    SciTech Connect

    Seng, T.B. )

    1994-07-01

    Shell's east Malaysia hydrocarbon exploration history can be viewed in four phases commencing in 1909. Between 1910 and 1954, 40 onshore exploration wells were drilled, resulting in the Miri discovery. In 1956, Shell started offshore exploration by acquiring seismic and gravity data in the Baram Delta. The first offshore exploration well was drilled from a fixed platform in 1957. Availability of mobile drilling rigs, modern seismic technology, and exploration success in the 1960s led to increased exploration such that between 1955 and 1975, 167 exploration wells were drilled by Shell, resulting in 19 oil discoveries and 14 gas discoveries. Petronas changed existing concession and royalties arrangements in 1976 to production sharing contracts (PSC). Under those 1976 PSCs, between 1976 and 1988, Shell drilled 94 exploration wells, resulting in 18 oil discoveries and 12 gas discoveries. In 1985, PSC terms were again changed and Shell subsequently drilled 18 exploration wells, resulting in 2 oil discoveries and 5 gas discoveries.

  19. Hanford double shell tank corrosion monitoring instrument tree prototype

    SciTech Connect

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion.

  20. A cylindrical shell with an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1982-01-01

    The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system of five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented.

  1. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, C.D.

    1983-09-26

    The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.

  2. Incorporation of hazelnut shell and husk in MDF production.

    PubMed

    Cöpür, Yalçin; Güler, Cengiz; Taşçioğlu, Cihat; Tozluoğlu, Ayhan

    2008-10-01

    Hazelnut shell and husk (Coryllus arellana L.) is an abundant agricultural residue in Turkey and investigating the possibilities of utilizing husk and shell in panel production might help to overcome the raw material shortage that the panel industry is facing. The aim of this work was to investigate the possibilities of utilizing hazelnut shell and husk in medium density fiberboard (MDF) production. To produce general purpose fiberboards, fiber-husk and fiber-shell mixtures at various percentages were examined in this study. The results indicated that panels could be produced utilizing hazelnut husk up to 20% addition without falling below the properties required in the standards. Shell addition was restricted up to 10%, because higher addition levels diminished the elastic modulus and internal bond strength below the acceptable level. PMID:18291641

  3. Stabilization of the resistive shell mode in tokamaks

    SciTech Connect

    Fitzpatrick, R.; Aydemir, A.

    1995-02-01

    The stability of current-driven external-kink modes is investigated in a tokamak plasma surrounded by an external shell of finite electrical conductivity. According to conventional theory, the ideal mode can be stabilized by placing the shell sufficiently close to the plasma, but the non-rotating ``resistive shell mode,`` which grows on the characteristic L/R time of the shell, always persists. It is demonstrated, using both analytic and numerical techniques, that a combination of strong edge plasma rotation and dissipation somewhere inside the plasma is capable of stabilizing the resistive shell mode. This stabilization mechanism does not necessarily depend on toroidicity or presence of resonant surfaces inside the plasma.

  4. Discrete fracture patterns of virus shells reveal mechanical building blocks.

    PubMed

    Ivanovska, Irena L; Miranda, Roberto; Carrascosa, Jose L; Wuite, Gijs J L; Schmidt, Christoph F

    2011-08-01

    Viral shells are self-assembled protein nanocontainers with remarkable material properties. They combine simplicity of construction with toughness and complex functionality. These properties make them interesting for bionanotechnology. To date we know little about how virus structure determines assembly pathways and shell mechanics. We have here used atomic force microscopy to study structural failure of the shells of the bacteriophage Φ29. We observed rigidity patterns following the symmetry of the capsid proteins. Under prolonged force exertion, we observed fracture along well-defined lines of the 2D crystal lattice. The mechanically most stable building block of the shells was a trimer. Our approach of "reverse engineering" the virus shells thus made it possible to identify stable structural intermediates. Such stable intermediates point to a hierarchy of interactions among equal building blocks correlated with distinct next-neighbor interactions. The results also demonstrate that concepts from macroscopic materials science, such as fracture, can be usefully employed in molecular engineering. PMID:21768340

  5. Observations of the circumstellar gas shells around Betelgeuse and Antares

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.; Lambert, D. L.

    1975-01-01

    Results are presented on the direct observations of the circumstellar shell around alpha-Ori, along with new observations of the Ca II infrared triplet lines which provide lower limits for the Ca(+) shell radii for alpha-Ori and alpha-Sco (Antares). The 8542-A line in alpha-Ori does not show a circumstellar absorption core, and the shell radius limit is estimated to be at least 31 times stellar radius. A 108-mA circumstellar core is observed in the 8542-A line in Antares for which a shell radius equal to 4.0 times stellar radius is suggested. The discovery of circumstellar emission through resonance line scattering will provide valuable additional information on the physical conditions in the shell.

  6. Compressive behavior of a turtle's shell: experiment, modeling, and simulation.

    PubMed

    Damiens, R; Rhee, H; Hwang, Y; Park, S J; Hammi, Y; Lim, H; Horstemeyer, M F

    2012-02-01

    The turtle's shell acts as a protective armor for the animal. By analyzing a turtle shell via finite element analysis, one can obtain the strength and stiffness attributes to help design man-made armor. As such, finite element analysis was performed on a Terrapene carolina box turtle shell. Experimental data from compression tests were generated to provide insight into the scute through-thickness behavior of the turtle shell. Three regimes can be classified in terms of constitutive modeling: linear elastic, perfectly inelastic, and densification regions, where hardening occurs. For each regime, we developed a model that comprises elasticity and densification theory for porous materials and obtained all the material parameters by correlating the model with experimental data. The different constitutive responses arise as the deformation proceeded through three distinctive layers of the turtle shell carapace. Overall, the phenomenological stress-strain behavior is similar to that of metallic foams. PMID:22301179

  7. Atomic-level models of the bacterial carboxysome shell

    SciTech Connect

    Tanaka, S.; Kerfeld, C.A.; Sawaya, M.R.; Cai, F.; Heinhorst, S.; Cannon, G.C.; Yeates, T.O.

    2008-06-03

    The carboxysome is a bacterial microcompartment that functions as a simple organelle by sequestering enzymes involved in carbon fixation. The carboxysome shell is roughly 800 to 1400 angstroms in diameter and is assembled from several thousand protein subunits. Previous studies have revealed the three-dimensional structures of hexameric carboxysome shell proteins, which self-assemble into molecular layers that most likely constitute the facets of the polyhedral shell. Here, we report the three-dimensional structures of two proteins of previously unknown function, CcmL and OrfA (or CsoS4A), from the two known classes of carboxysomes, at resolutions of 2.4 and 2.15 angstroms. Both proteins assemble to form pentameric structures whose size and shape are compatible with formation of vertices in an icosahedral shell. Combining these pentamers with the hexamers previously elucidated gives two plausible, preliminary atomic models for the carboxysome shell.

  8. Process to make core-shell structured nanoparticles

    DOEpatents

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  9. Spatial symmetry breaking in rapidly rotating convective spherical shells

    NASA Technical Reports Server (NTRS)

    Zhang, Keke; Schubert, Gerald

    1995-01-01

    Many problems in geophysical and astrophysical convection systems are characterized by fast rotation and spherical shell geometry. The combined effects of Coriolis forces and spherical shell geometry produce a unique spatial symmetry for the convection pattern in a rapidly rotating spherical shell. In this paper, we first discuss the general spatial symmetries for rotating spherical shell convection. A special model, a spherical shell heated from below, is then used to illustrate how and when the spatial symmetries are broken. Symmetry breaking occurs via a sequence of spatial transitions from the primary conducting state to the complex multiple-layered columnar structure. It is argued that, because of the dominant effects of rotation, the sequence of spatial transitions identified from this particular model is likely to be generally valid. Applications of the spatial symmetry breaking to planetary convection problems are also discussed.

  10. Dynamics of magnetic shells and information loss problem

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2015-07-01

    We investigate dynamics of magnetic thin-shells in three dimensional anti-de Sitter background. Because of the magnetic field, an oscillatory solution is possible. This oscillating shell can tunnel to a collapsing shell or a bouncing shell, where both tunnelings induce an event horizon and a singularity. In the entire path integral, via the oscillating solution, there is a nonzero probability to maintain a trivial causal structure without a singularity. Therefore, due to the path integral, the entire wave function can conserve information. Since an oscillating shell can tunnel after a number of oscillations, in the end, it will allow an infinite number of different branchings to classical histories. This system can be a good model of the effective loss of information, where information is conserved by a solution that is originated from gauge fields.

  11. A quadrilateral shell element using a mixed formulation

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Chang, T. Y.; Graf, W.

    1987-01-01

    A simple quadrilateral shell element consisting of five nodes, four corner nodes and a central node, is developed for linear elastic analysis of thin as well as moderately thick shells. Based on a modified Hellinger-Reissner principle, finite element equations are derived from the assumed displacement and strain fields. By carefully choosing appropriate strain terms, all kinematic deformation modes are suppressed. Although the present element is similar to a displacement-based degenerated shell, no locking is experienced when it is applied to thin shell problems. Five examples are given to illustrate the analysis capability of the shell element. Numerical results indicate that the element shows fast mesh convergence and gives excellent stress predictions.

  12. The role of shell evolution in shape coexistence

    NASA Astrophysics Data System (ADS)

    Otsuka, T.; Tsunoda, Y.

    2016-02-01

    We first review the shell evolution in exotic nuclei driven by nuclear forces. We then demonstrate that the underlying mechanism played by the balance of the tensor and central components in the effective nucleon-nucleon interaction is crucial when describing shape coexistence. This effect will be referred to as type II shell evolution, while the shell evolution passing through a series of isotopes or isotones is denoted as type I. We describe type II shell evolution in some detail for the case of the 68Ni nucleus as an example. We present how the fission dynamics can be related to enhanced deformation triggered by type II shell evolution, at its initial stage. It is suggested that the island of stability may be related to the suppression of this mechanism.

  13. Off-shell hydrodynamics from holography

    NASA Astrophysics Data System (ADS)

    Crossley, Michael; Glorioso, Paolo; Liu, Hong; Wang, Yifan

    2016-02-01

    We outline a program for obtaining an action principle for dissipative fluid dynamics by considering the holographic Wilsonian renormalization group applied to systems with a gravity dual. As a first step, in this paper we restrict to systems with a non-dissipative horizon. By integrating out gapped degrees of freedom in the bulk gravitational system between an asymptotic boundary and a horizon, we are led to a formulation of hydrodynamics where the dynamical variables are not standard velocity and temperature fields, but the relative embedding of the boundary and horizon hypersurfaces. At zeroth order, this action reduces to that proposed by Dubovsky et al. as an off-shell formulation of ideal fluid dynamics.

  14. Naked shell singularities on the brane

    SciTech Connect

    Seahra, Sanjeev S.

    2005-04-15

    By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correction to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.

  15. Double Shell Tank (DST) Utilities Specification

    SciTech Connect

    SUSIENE, W.T.

    2000-04-27

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  16. Computational procedures for postbuckling of composite shells

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.; Felippa, Carlos A.

    1989-01-01

    A recently developed finite-element capability for general nonlinear shell analysis, featuring the use of three-dimensional constitutive equations within an efficient resultant-oriented framework, is employed to simulate the postbuckling response of an axially compressed composite cylindrical panel with a circular cutout. The problem is a generic example of modern composite aircraft components for which postbuckling strength (i.e., fail-safety) is desired in the presence of local discontinuities such as holes and cracked stiffeners. While the computational software does a reasonable job of predicting both the buckling load and the qualitative aspects of postbuckling (compared both with experiment and another code) there are some discrepancies due to: (1) uncertainties in the nominal layer material properties, (2) structural sensitivity to initial imperfections, and (3) the neglect of dynamic and local material delamination effects in the numerical model. Corresponding refinements are suggested for the realistic continuation of this type of analysis.

  17. A shell model for turbulent dynamos

    NASA Astrophysics Data System (ADS)

    Nigro, G.; Perrone, D.; Veltri, P.

    2011-06-01

    A self-consistent nonlinear dynamo model is presented. The nonlinear behavior of the plasma at small scale is described by using a MHD shell model for fields fluctuations; this allow us to study the dynamo problem in a large parameter regime which characterizes the dynamo phenomenon in many natural systems and which is beyond the power of supercomputers at today. The model is able to reproduce dynamical situations in which the system can undergo transactions to different dynamo regimes. In one of these the large-scale magnetic field jumps between two states reproducing the magnetic polarity reversals. From the analysis of long time series of reversals we infer results about the statistics of persistence times, revealing the presence of hidden long-time correlations in the chaotic dynamo process.

  18. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  19. Torrefaction of pomaces and nut shells.

    PubMed

    Chiou, Bor-Sen; Valenzuela-Medina, Diana; Bilbao-Sainz, Cristina; Klamczynski, Artur K; Avena-Bustillos, Roberto J; Milczarek, Rebecca R; Du, Wen-Xian; Glenn, Greg M; Orts, William J

    2015-02-01

    Apple, grape, olive, and tomato pomaces as well as almond and walnut shells were torrefied at different temperatures and times in a muffle furnace. The fiber content and thermal stability of the raw byproducts were examined and the moisture and ash contents, elemental composition, and gross calorific values of the raw and torrefied samples were characterized. Response surface methodology and a central composite design were used to examine the effects of temperature and time on mass and energy yields of the torrefied byproducts. Raw apple pomace had the highest hemicellulose content, whereas raw grape pomace had the highest lignin content. Raw tomato pomace had the highest gross calorific value because of its high carbon content. Temperature had a larger effect on mass and energy yields than time. Grape pomace generally had the highest mass and energy yields. Also, energy yields of the byproducts could be predicted from mass loss values. PMID:25479394

  20. Parallel transport and defects on nematic shells

    NASA Astrophysics Data System (ADS)

    Rosso, Riccardo; Virga, Epifanio G.; Kralj, Samo

    2012-11-01

    Nematic shells are thin films of nematic liquid crystal deposited on the boundary of colloidal particles, where liquid crystal molecules may freely glide, while remaining tangent to the surface substrate. The surface nematic order is described here by an appropriate tensor field Q, which vanishes wherever a defect occurs in the molecular order. We show how the classical concept of parallel transport on a manifold introduced by Levi-Civita can be adapted to this setting to define the topological charge m of a defect. We arrive at a simple formula to compute m from a generic representation of Q. In a number of separate appendices, we revisit in a unified language several, apparently disparate applications of Levi-Civita's parallel transport.

  1. Stability Analysis of Plates and Shells

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr. (Compiler); Nemeth, Michael P. (Compiler)

    1998-01-01

    This special publication contains the papers presented at the special sessions honoring Dr. Manuel Stein during the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference held in Kissimmee, Florida, Apdl 7-10, 1997. This volume, and the SDM special sessions, are dedicated to the memory of Dr. Manuel Stein, a major pioneer in structural mechanics, plate and shell buckling, and composite structures. Many of the papers presented are the work of Manny's colleagues and co-workers and are a result, directly or indirectly, of his influence. Dr. Stein earned his Ph.D. in Engineering Mechanics from Virginia Polytechnic Institute and State University in 1958. He worked in the Structural Mechanics Branch at the NASA Langley Research Center from 1943 until 1989. Following his retirement, Dr. Stein continued his involvement with NASA as a Distinguished Research Associate.

  2. Defect unbinding on a toroidal nematic shell.

    PubMed

    Jesenek, Dalija; Kralj, Samo; Rosso, Riccardo; Virga, Epifanio G

    2015-03-28

    We study nematic liquid crystal textures exhibiting topological defects (TDs) on a two-dimensional (2D) toroidal shell. For the toroidal topology the total topological charge of TDs is equal to zero. We use a mesoscopic Landau-de Gennes approach which features a 2D nematic order tensor Q. We show that fat tori unbind TDs. If no extrinsic free energy couples Q with the Weingarten tensor of the torus, then defects and antidefects are assembled along the innermost and the outermost circles of the torus, respectively. In this case, we estimate the critical condition for the onset of TDs using an electrostatic analogy. If, on the other hand, an extrinsic free energy is present, then defects are repelled from these regions. PMID:25662487

  3. Xenon, osmium, and lead formed in O-shells and C-shells of massive stars

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.

    1980-01-01

    In this paper it is shown that the explosive products from O-shells of massive stars which contain Xe-124 with large overproduction factors do not contain any of the naturally occurring isotopes of Os and Pb. Further, it is shown that the explosive products from C-shells (explosive carbon burning) do contain Os and Pb along with Xe which is strongly enriched in r-Xe of anomalous isotopic composition. The composition of Os in this matter is probably s-like rather than r-like. Pb in this matter is enriched in Pb-208. The results and arguments of this paper have implications for studies of isotopic compositions of Xe, Os, and Pb in residues of the Allende and other carbonaceous chondrites.

  4. Pathogen prevalence and microbial levels associated with restricted shell eggs.

    PubMed

    Jones, D R; Musgrove, M T

    2007-09-01

    Restricted shell eggs that do not meet quality standards for retail but maintain acceptable quality for inclusion in further processed eggs are often diverted to further processing. A study was conducted to characterize the microbiological populations present on and in these eggs. On a single day, restricted eggs were collected from three shell egg processing plants a total of three times (replicates). Six shells or egg contents were combined to create a pool. Ten pools of shells and contents were formed for each plant per replicate. Shells and membranes were macerated in 60 ml of diluent. Contents were stomacher blended to form a homogeneous mixture. Total aerobic microorganisms and Enterobacteriaceae were enumerated. The prevalence of Salmonella, Campylobacter, and Listeria was determined by cultural methods. Average aerobic counts were 4.3 log CFU/ml for the shells and 2.0 log CFU/ml for the contents. There were plant x replicate differences for both (P < 0.05 and P < 0.01, respectively). The average Enterobacteriaceae level associated with the shell was 2.4 log CFU/ml and less than 0.1 log CFU/ml for the egg contents, with 36.7% of the samples being positive. One shell sample (0.5% of total samples) was Campylobacter positive. Two shell samples (1.1% of total samples) were Salmonella positive. Twenty-one percent of samples were positive for Listeria (33 shells and 5 contents). Although current pasteurization guidelines are based on Salmonella lethality, the results of this study reiterate the need to revisit the guidelines to determine the effectiveness for other pathogenic species. PMID:17900075

  5. Studies on Freezing of Shell-Fish-I

    NASA Astrophysics Data System (ADS)

    Song, Dae Jin; Konagaya, Shiro; Tanaka, Takeo

    Ark shell, Anadara broughtonii(Shrenk), are commonly eaten raw or under-done in Korea, Japan, and East Asian countries. Along with a recent remarkable development of culture fisheries, Ark shell has become one of the commercially important shell-fish species. Transportation and storage of large quantities of shell-fish is becoming increasingly important. This work was begun with this background to make clear the effects of temperature and length of storage time on the quality of frozen stored ark shell. Results are as follows : (1) There was little chang in amounts of free and expressible drip from ark shell flesh frozen stored at -40°CdegC for 6 months. Water holding capacity of the same meat was almost constant over 6 months storage. However, a mounts of both drip increased markedly after 2 months storage at -10°C. (2) Protein extractibility of ark shell flesh tended to decrease gradually from the begining when stored at -10°C, while at -20°C, the protein extractibility was stable for 3 months before decreasing gradually. However at -40°C, the protein extractibility was stable for 6 months. It was found that paramyosin was very stable even when the ark shell was frozen stored at -10°C. (3) It was observed that ark shell flesh became tough when frozen. The toughness of ark shell flesh as measured by an instrument increased with frozen storage time and increased temperature. (4) In the smooth muscle, it was histologically observed that initial small ice crystals formed between muscle bundles grew larger during frozen storage. It was found that the higher the storage temperature, the bigger the ice crystals formed. Aggregation of some muscle fiber and empty spaces between muscle bundles were observd after thawed muscles frozen stored at relatively high temperature such as -10°C.

  6. Microscopic black holes and cosmic shells

    NASA Astrophysics Data System (ADS)

    Daghigh, Ramin Ghasemzadeh

    In the first part of this thesis the relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy. We also calculate the spectra of all three flavors of neutrinos arising from direct emission from the fluid at the neutrino- sphere and from the decay of pions and muons from their decoupling at much larger radii and smaller temperatures for neutrino energies between 1 GeV and the Planck energy. The results for neutrino spectra may be applicable for the last few hours and minutes of the lifetime of a microscopic black hole. In the second part of this thesis the combined field equations of gravity and a scalar field are studied. When a potential for a scalar field has two local minima there arise spherical shell-type solutions of the classical field equations due to gravitational attraction. We establish such solutions numerically in a space which is asymptotically de Sitter. It generically arises when the energy scale characterizing the scalar field potential is much less than the Planck scale. It is shown that the mirror image of the shell appears in the other half of the Penrose diagram. The configuration is smooth everywhere with no physical singularity.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation).

  7. RF Performance of Membrane Aperture Shells

    NASA Technical Reports Server (NTRS)

    Flint, Eirc M.; Lindler, Jason E.; Thomas, David L.; Romanofsky, Robert

    2007-01-01

    This paper provides an overview of recent results establishing the suitability of Membrane Aperture Shell Technology (MAST) for Radio Frequency (RF) applications. These single surface shells are capable of maintaining their figure with no preload or pressurization and minimal boundary support, yet can be compactly roll stowed and passively self deploy. As such, they are a promising technology for enabling a future generation of RF apertures. In this paper, we review recent experimental and numerical results quantifying suitable RF performance. It is shown that candidate materials possess metallic coatings with sufficiently low surface roughness and that these materials can be efficiently fabricated into RF relevant doubly curved shapes. A numerical justification for using a reflectivity metric, as opposed to the more standard RF designer metric of skin depth, is presented and the resulting ability to use relatively thin coating thickness is experimentally validated with material sample tests. The validity of these independent film sample measurements are then confirmed through experimental results measuring RF performance for reasonable sized doubly curved apertures. Currently available best results are 22 dBi gain at 3 GHz (S-Band) for a 0.5m aperture tested in prime focus mode, 28dBi gain for the same antenna in the C-Band (4 to 6 GHz), and 36.8dBi for a smaller 0.25m antenna tested at 32 GHz in the Ka-Band. RF range test results for a segmented aperture (one possible scaling approach) are shown as well. Measured antenna system actual efficiencies (relative to the unachievable) ideal for these on axis tests are generally quite good, typically ranging from 50 to 90%.

  8. Structural qualification of the multifunctional instrument tree for installation in double-shell and 100-series single-shell tanks

    SciTech Connect

    Strohlow, J.P.

    1995-12-01

    This document provides the technical basis and methodology for qualifying the multifunctional instrument tree (MIT) structure for installation in double-shell and 100-series single-shell tanks. Structural qualification for MIT installations in specific tanks are also contained in this document.

  9. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. PMID:25804669

  10. Dynamic and Static Shell Properties of White and Brown Shell Eggs Exposed to Modified-pressure Microcrack Detection Technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic and static shell properties of eggs provide important insight to egg quality. Understanding how processing and handling procedures affect both dynamic and static shell properties can enhance the safety and quality of egg reaching consumers. A study was conducted to determine if dynamic she...

  11. ESR dating of mollusc shell: Investigations with modern shell of four species

    NASA Astrophysics Data System (ADS)

    Brumby, Steven; Yoshida, Hiroyuki

    The dose response curves for shells of four species of marine mollusc have been studied, using chiefly the g = 2.0014 (2 mW microwave power) and g = 2.0006 (60 mW power) ESR signals. The curves show variable inflexion points and conform only approximately to saturating exponentials with linear components. Annealing experiments suggest the possibility of using the ESR signal at g = 2.0058, after suitable heat treatment, for the estimation of accumulated doses.

  12. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation

    SciTech Connect

    Tam, M.S.; Antal, M.J. Jr.

    1999-11-01

    A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbon mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.

  13. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability.

    PubMed

    Takahashi, Mari; Mohan, Priyank; Nakade, Akiko; Higashimine, Koichi; Mott, Derrick; Hamada, Tsutomu; Matsumura, Kazuaki; Taguchi, Tomohiko; Maenosono, Shinya

    2015-02-24

    Magnetic nanoparticles (NPs) have been used to separate various species such as bacteria, cells, and proteins. In this study, we synthesized Ag/FeCo/Ag core/shell/shell NPs designed for magnetic separation of subcellular components like intracellular vesicles. A benefit of these NPs is that their silver metal content allows plasmon scattering to be used as a tool to observe detection by the NPs easily and semipermanently. Therefore, these NPs are considered a potential alternative to existing fluorescent probes like dye molecules and colloidal quantum dots. In addition, the Ag core inside the NPs suppresses the oxidation of FeCo because of electron transfer from the Ag core to the FeCo shell, even though FeCo is typically susceptible to oxidation. The surfaces of the Ag/FeCo/Ag NPs were functionalized with ε-poly-L-lysine-based hydrophilic polymers to make them water-soluble and biocompatible. The imaging capability of the polymer-functionalized NPs induced by plasmon scattering from the Ag core was investigated. The response of the NPs to a magnetic field using liposomes as platforms and applying a magnetic field during observation by confocal laser scanning microscopy was assessed. The results of the magnetophoresis experiments of liposomes allowed us to calculate the magnetic force to which each liposome was subjected. PMID:25614919

  14. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications.

    PubMed

    Li, Jian-Feng; Anema, Jason R; Wandlowski, Thomas; Tian, Zhong-Qun

    2015-12-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique that provides fingerprint vibrational information with ultrahigh sensitivity. However, only a few metals (gold, silver and copper) yield a large SERS effect, and they must be rough at the nanoscale. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was developed to overcome the long-standing materials and morphological limitations of SERS. It has already been applied in a variety of fields such as materials science, electrochemistry, surface science, catalysis, food safety and the life sciences. Here, the principles and applications of SHINERS are highlighted. To provide an understanding of the plasmonics involved, finite-difference time-domain (FDTD) calculations and single nanoparticle SHINERS experiments are reviewed. Next, various shell-isolated nanoparticle (SHIN) types are described. Then a number of applications are discussed. In the first application, SHINERS is used to characterize the adsorption processes of pyridine on Au(hkl) single-crystal electrode surfaces. Then, SHINERS' applicability to food inspection and cultural heritage science is demonstrated by the detection of parathion and fenthion pesticides, and Lauth's violet (thionine dye). Finally, graphene-isolated Au nanoparticles (GIANs) are shown to be effective for multimodal cell imaging, photothermal cancer therapy and photothermally-enhanced chemotherapy. SHINERS is a fast, simple and reliable method, suitable for application to many areas of science and technology. The concept of shell-isolation can also be applied to other surface-enhanced spectroscopies such as fluorescence, infrared absorption and sum frequency generation. PMID:26426491

  15. Testing refined shell-model interactions in the s d shell: Coulomb excitation of 26Na

    NASA Astrophysics Data System (ADS)

    Siebeck, B.; Seidlitz, M.; Blazhev, A.; Reiter, P.; Altenkirch, R.; Bauer, C.; Butler, P. A.; de Witte, H.; Elseviers, J.; Gaffney, L. P.; Hess, H.; Huyse, M.; Kröll, T.; Lutter, R.; Pakarinen, J.; Pietralla, N.; Radeck, F.; Scheck, M.; Schneiders, D.; Sotty, C.; van Duppen, P.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Miniball Collaboration; Rex-Isolde Collaboration

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal s d interaction (USD) describing nuclei within the s d shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus 26Na with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with 26Na (T1 /2=1 ,07 s ) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections of the beam have been obtained by normalization to the well known Coulomb excitation cross sections of the 104Pd target. Results: The observation of three γ -ray transitions in 26Na together with available spectroscopic data allows us to determine E 2 - and M 1 -transitional matrix elements. Results are compared to theoretical predictions. Conclusion: The improved theoretical description of 26Na could be validated. Remaining discrepancies between experimental data and theoretical predictions indicate the need for future experiments and possibly further theoretical improvements.

  16. Recovery of Salmonella serovar Enteritidis from inoculated broiler hatching eggs using shell rinse and shell crush sampling methods.

    PubMed

    Webb, M L; Spickler, J L; Bourassa, D V; Cox, N A; Wilson, J L; Buhr, R J

    2014-08-01

    This study compared the recovery of Salmonella from hatching eggs using 3 sampling methods (eggshell rinsing, eggshell crush following a previous rinse, and eggshell crush without previous rinse). Eggshells were drop-inoculated with approximately 10(1), 10(2), or 10(3) cfu/eggshell of Salmonella Enteritidis and allowed to dry at room temperature for 1 or 24 h. For the shell rinse groups, each inoculated egg was rinsed with buffered peptone water. These rinsed eggs were used for the shell crush with previous rinse groups, and each egg was aseptically cracked, the contents discarded, and the eggshell and membranes crushed with buffered peptone water. This same crush procedure was used for the shell crush without previous shell rinse eggs. The recovery of Salmonella 1 h after inoculation for shell rinse sampled eggs was 16% positive at 10(1), 49% at 10(2), and 93% at 10(3) cfu/eggshell challenge. For the shell crush with previous shell rinse, sampled egg recovery was 0% positive at 10(1), 3% at 10(2), and 17% at 10(3) cfu/eggshell. For the shell crush, sampled eggs had recovery of 23% positive at 10(1), 69% at 10(2), and 96% at 10(3) cfu/eggshell challenge. The recovery of Salmonella 24 h after inoculation for the shell rinse eggs was 3% positive at 10(1), 12% at 10(2), and 22% at 10(3) cfu/eggshell challenge; recovery for shell crush with previous shell rinse sampling was 2% positive at 10(1), 8% at 10(2), and 5% at 10(3) cfu/eggshell challenge; and for the shell crush sampling recovery was 2% at 10(1), 32% at 10(2), and 42% at 10(3) cfu/eggshell challenge. Eggshell crush was a more sensitive (∼10 percentage points) sampling method than eggshell rinse at both 1 and 24 h, but both methods were equally optimal when the inoculum was at 10(3) and samples were collected after 1 h. Waiting 24 h after inoculation to sample significantly lowered the recovery for both the shell rinse and shell crush sampling methods by ∼40 percentage points. PMID:24931964

  17. The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Starnes, James H., Jr.

    1998-01-01

    A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.

  18. Temperature and Food Influence Shell Growth and Mantle Gene Expression of Shell Matrix Proteins in the Pearl Oyster Pinctada margaritifera

    PubMed Central

    Joubert, Caroline; Linard, Clémentine; Le Moullac, Gilles; Soyez, Claude; Saulnier, Denis; Teaniniuraitemoana, Vaihiti; Ky, Chin Long; Gueguen, Yannick

    2014-01-01

    In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control. PMID:25121605

  19. Exchange coupled SrFe12O19/Fe-Co core/shell particles with different shell thickness

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Hong, Yang-Ki; Park, Jihoon; Lee, Woncheol; Lane, Alan M.

    2015-11-01

    SrFe12O19/Fe-Co core/shell particles with different shell thickness were synthesized by polyol reduction of Fe and Co ions at 180°C with SrFe12O19 particles dispersed in solvent. The core/shell structure is formed by magnetic self-assembly due to the remanent magnetization of SrFe12O19 particles. Within a limited concentration range, the shell thickness could be controlled by regulating the concentration of Fe and Co ions. Core/shell structured SrFe12O19/Fe-Co particles showed more effective exchange coupling effects between hard and soft phases than physically mixed SrFe12O19 and Fe-Co particles. [Figure not available: see fulltext.

  20. Diversity between shell-like and beam-like regions for a cantilever cylindrical shell under follower forces

    NASA Astrophysics Data System (ADS)

    Torki, Mohammad Ebrahim; Kazemi, Mohammad Taghi; Mahmoudkhani, Saied

    2012-12-01

    The effect of length and thickness on dynamic stability analysis of cantilever cylindrical shells under follower forces is addressed. Beck's, Leipholz's, and Hauger's problems were solved for cylindrical shells with different length-to-radius and thicknesses-to-radius ratios using the Galerkin method. First-order shear theory was used, and rotary inertias were considered in deriving the differential equations. Critical circumferential and longitudinal mode numbers and loads were evaluated for each case. Diagrams containing nondimensional load parameters vs. length and thickness parameters were plotted for each problem. For some shells with small length-to-radius ratios, flutter occurred in high longitudinal mode numbers where the first-order shear theory may not suffice to accurately evaluate the deformations. However, for long and moderately thick shells, there are ranges in which the shell can be analyzed using the simplified equivalent beam model.

  1. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera.

    PubMed

    Joubert, Caroline; Linard, Clémentine; Le Moullac, Gilles; Soyez, Claude; Saulnier, Denis; Teaniniuraitemoana, Vaihiti; Ky, Chin Long; Gueguen, Yannick

    2014-01-01

    In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control. PMID:25121605

  2. Catalog of Interstellar HI Shells Discovered in the SETHI Database

    NASA Astrophysics Data System (ADS)

    Sallmen, Shauna; Korpela, E. J.; Lo, C.; Tennyson, E.; Bellehumeur, B.; Douglas, K. A.

    2013-01-01

    The interstellar medium (ISM) plays a key role in the development and evolution of galaxies, including our own. The effects of supernovae and stellar winds from generations of stars produce a turbulent, multiphase medium filled with complex interacting structures. As hot gas expands outward, it sweeps up cold neutral material into a shell. Over time, the shells expand and cool, mixing with the ambient material. Shells and other features are therefore evidence of how energy and matter released by stars are redistributed, eventually resulting in the formation of new generations of stars. Several models have contributed to our broad understanding of the physical state and evolution of gas phases in our Galaxy, but a complete, detailed picture remains elusive. In general, random supernovae result in a turbulent ISM with hot, low-density gas surrounding warm & cool clouds. However, the extent to which supernovae disrupt the ambient medium is controversial, the energy inputs of shells are poorly understood, and the role of magnetic fields is unclear. Clearly, HI (neutral hydrogen) shells are central to our understanding of the ISM, so we need to study as many as possible, at all stages of evolution. Our census of Galactic HI shells ISM is incomplete because: (1) Many searches for shells use expansion as key criterion for shell identification, biasing against older, more evolved shells. (2) Shells with broken outlines are missed in most computer-based searches. The human eye is better at searching for such large, irregular features. (3) Most searches carried out in high-resolution data are restricted to the Galactic plane. We have visually examined the SETHI (Search for Extraterrestrial HI) database, searching for shell-like structures. This 21-cm radio survey has an angular resolution of 0.03° and a velocity resolution of 1.5 km/s. We present basic information (location, radial velocity, angular size, shape) for over 70 previously unidentified HI shells. We also discuss

  3. Beam to Shell Temperature Differencees for the CC Cryostat

    SciTech Connect

    Luther, R.; /Fermilab

    1991-02-05

    This note documents the calculation of stresses resulting from temperature differences between the CC cryostat shell and the module array support beams, and the calculation of corresponding maximum allowable temperature differences to be monitored during the cooldown of the cryostat. A finite element model of a portion of the inner vessel shell was analyzed for a uniform temperature change. The shell was assumed to be completely restrained by the support beams. A maximum allowable temperature difference was determined based on limits on secondary stress ranges prescribed by the ASME Code (Section VID, Division 2). The maximum allowable difference between the cryostat shell and the support beams was found to vary from about 18K near room temperature to about 30K as the shell temperature approaches liquid argon temperature. The allowable values are tabulated below and plotted in Figure 1. The variation results from the decrease in the coefficient of thermal expansion of stainless steels at lower temperatures. As shown in the plot, the variation is roughly linear. Note that although the shell is assumed to be at the lower temperature in Fig. 1, the limitation on temperature difference will also apply during warmup, when the shell will likely be warmer than the beams.

  4. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  5. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  6. Effect of supercritical water shell on cavitation bubble dynamics

    NASA Astrophysics Data System (ADS)

    Shao, Wei-Hang; Chen, Wei-Zhong

    2015-05-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh-Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174145 and 11334005).

  7. Structural and Mechanical Characterization of Thermally Treated Conch Shells

    NASA Astrophysics Data System (ADS)

    Li, Haoze; Jin, Dalai; Li, Rui; Li, Xiaodong

    2015-04-01

    Seashells are natural nanocomposite armors with an exceptional combination of strength and toughness. Conch shells have a crossed-lamellar structure constructed with aragonite and biopolymer. Thermal treatment uncovered a nanoscale hierarchical structure in shell's third-order lamellae. Individual third-order lamellae were found to consist of aragonite nanoparticles cemented with biopolymer. The biopolymer renders conch shells joint increase in strength, ductility and fracture energy, and especially the fracture energy increase is more remarkable. The shell's aragonite transformed to calcite at 407°C and lime at 607°C. The shell's biopolymer was burned out in the thermal treatment at 310°C, leading to 1.7% mass loss. The crossed-lamellar structure remained in the 500°C thermally treated shell. The 900°C heat treatment destroyed the crossed-lamellar architecture completely. Thermal treatment resulted in reduction in mechanical properties due to the joint effects—burning out of biopolymer, phase transformation, and destruction of structural integrity. The findings advance our understanding of conch shell's architecture and provide new guidelines for the design and manufacturing of bio-inspired materials.

  8. Thin Shell Model for NIF capsule stagnation studies

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Buchoff, M.; Brandon, S.; Field, J. E.; Gaffney, J.; Kritcher, A.; Nora, R. C.; Peterson, J. L.; Spears, B.; Springer, P. T.

    2015-11-01

    We adapt the thin shell model of Ott et al. to asymmetric ICF capsule implosions on NIF. Through much of an implosion, the shell aspect ratio is large so the thin shell approximation is well satisfied. Asymmetric pressure drive is applied using an analytic form for ablation pressure as a function of the x-ray flux, as well as time-dependent 3D drive asymmetry from hohlraum calculations. Since deviations from a sphere are small through peak velocity, we linearize the equations, decompose them by spherical harmonics and solve ODE's for the coefficients. The model gives the shell position, velocity and areal mass variations at the time of peak velocity, near 250 microns radius. The variables are used to initialize 3D rad-hydro calculations with the HYDRA and ARES codes. At link time the cold fuel shell and ablator are each characterized by a density, adiabat and mass. The thickness, position and velocity of each point are taken from the thin shell model. The interior of the shell is filled with a uniform gas density and temperature consistent with the 3/2PV energy found from 1D rad-hydro calculations. 3D linked simulations compare favorably with integrated simulations of the entire implosion. Through generating synthetic diagnostic data, the model offers a method for quickly testing hypothetical sources of asymmetry and comparing with experiment. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Horizon shells and BMS-like soldering transformations

    NASA Astrophysics Data System (ADS)

    Blau, Matthias; O'Loughlin, Martin

    2016-03-01

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  10. Optimal control of precision paraboloidal shell structronic systems

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.; Ding, J. H.

    2004-09-01

    Paraboloidal shells of revolution are commonly used in advanced aerospace, civil and telecommunication structures, e.g., antennas, reflectors, mirrors, rocket fairings, nozzles, solar collectors, dome structures, etc. A structronic shell system is defined as an elastic shell embedded, bonded or laminated with distributed piezoelectric sensors and actuators and it is governed by either in situ or external control electronics. A closed-loop control system of paraboloidal shell structronic system consists of distributed sensors/actuators and controller coupled with an elastic paraboloidal shell. State equation for the paraboloidal shell structronic system is derived and optimal linear quadratic state feedback control is implemented, such that the "best" shell control performance with the least control cost can be achieved. The gain matrix is estimated based on minimizing a performance criterion function. Optimal control effects are compared with controlled responses with other non-optimal control parameters. Control effects of identical-sized sensor/actuator patches at different locations are studied and compared. Modal control effects for different natural modes are also investigated.

  11. Dynamics of a suspension of interacting yolk-shell particles

    SciTech Connect

    Sánchez Díaz, L. E.; Cortes-Morales, E. C.; Li, X.; Chen, Wei-Ren; Medina-Noyola, M.

    2014-12-01

    In this work we study the self-diusion properties of a liquid of hollow spherical particles (shells) bearing a smaller solid sphere in their interior (yolks). We model this system using purely repulsive hard-body interactions between all (shell and yolk) particles, but assume the presence of a background ideal solvent such that all the particles execute free Brownian motion between collisions, characterized by short-time self-diusion coecients D0 s for the shells and D0 y for the yolks. Using a softened version of these interparticle potentials we perform Brownian dynamics simulations to determine the mean squared displacement and intermediate scattering function of the yolk-shell complex. These results can be understood in terms of a set of eective Langevin equations for the N interacting shell particles, pre-averaged over the yolks' degrees of freedom, from which an approximate self-consistent description of the simulated self-diusion properties can be derived. Here we compare the theoretical and simulated results between them, and with the results for the same system in the absence of yolks. We nd that the yolks, which have no eect on the shell-shell static structure, in uence the dynamic properties in a predictable manner, fully captured by the theory.

  12. Dynamics of a suspension of interacting yolk-shell particles

    DOE PAGESBeta

    Sánchez Díaz, L. E.; Cortes-Morales, E. C.; Li, X.; Chen, Wei-Ren; Medina-Noyola, M.

    2014-12-01

    In this work we study the self-diusion properties of a liquid of hollow spherical particles (shells) bearing a smaller solid sphere in their interior (yolks). We model this system using purely repulsive hard-body interactions between all (shell and yolk) particles, but assume the presence of a background ideal solvent such that all the particles execute free Brownian motion between collisions, characterized by short-time self-diusion coecients D0 s for the shells and D0 y for the yolks. Using a softened version of these interparticle potentials we perform Brownian dynamics simulations to determine the mean squared displacement and intermediate scattering function ofmore » the yolk-shell complex. These results can be understood in terms of a set of eective Langevin equations for the N interacting shell particles, pre-averaged over the yolks' degrees of freedom, from which an approximate self-consistent description of the simulated self-diusion properties can be derived. Here we compare the theoretical and simulated results between them, and with the results for the same system in the absence of yolks. We nd that the yolks, which have no eect on the shell-shell static structure, in uence the dynamic properties in a predictable manner, fully captured by the theory.« less

  13. Elastic guided waves in a coated spherical shell

    NASA Astrophysics Data System (ADS)

    Qiao, Song; Shang, Xinchun; Pan, Ernian

    2016-04-01

    Elastic-guided wave inspection technique is important in non-destructive detection of coated shell structures. It is based on the wave propagation characteristics and various factors which influences it. In this paper, the dispersion equations of the spherical shell are derived by the decomposition approach in order to investigate the influences of the coating thickness and viscoelastic damping on the dispersion characteristics. The viscoelastic properties of the coating layer are modelled by the standard linear solid with two damping factors in the Láme constants. The dispersion equation of the coated shell is deduced by the transfer matrix method, and the dispersion and attenuation curves for different thicknesses and damping factors are calculated. The frequency range which is less affected by coating is identified by comparing the dispersion curves of the bare shell to those of the coated shell with different coating thicknesses. The effect of damping factors on the mode shapes is also examined. The present numerical results on the elastic guided wave in coated spherical shell would provide a theoretical basis for non-destructive inspections in layered spherical shell structures.

  14. Antimicrobial characteristics of heated scallop shell powder and its application.

    PubMed

    Sawai, Jun

    2011-09-01

    Scallop shells are used to make food additives and plastering and paving materials. However, most of the shell is considered commercial waste. In scallop-harvesting districts, large numbers of shells are heaped near the seaside, which creates problems such as offensive odors and soil pollution from heavy metals that leach out of the viscera. Therefore, new applications for scallop shells need to be developed. The main component of scallop shells is calcium carbonate (CaCO(3)), which is converted to calcium oxide (CaO) when heated. Heated scallop shell powder (HSSP) possesses broad antimicrobial action against the vegetative cells of bacteria, spores, and fungi. HSSP applied to fresh vegetables and processed foods reduces the number of viable bacterial cells. The use of HSSP in food processing provides a source of minerals and prolongs the shelf life of foodstuffs. Moreover, reducing the amount of scallop shell waste would reduce the related pollution problem. This report is a review of the antibacterial activity of HSSP and its application for the control of microbes. PMID:21946319

  15. Core-Shell Composite Nanoparticles: Synthesis, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Sanyal, Sriya

    Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.

  16. Composite fuselage shell structures research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Shuart, Mark J.

    1992-01-01

    Fuselage structures for transport aircraft represent a significant percentage of both the weight and the cost of these aircraft primary structures. Composite materials offer the potential for reducing both the weight and the cost of transport fuselage structures, but only limited studies of the response and failure of composite fuselage structures have been conducted for transport aircraft. The behavior of these important primary structures must be understood, and the structural mechanics methodology for analyzing and designing these complex stiffened shell structures must be validated in the laboratory. The effects of local gradients and discontinuities on fuselage shell behavior and the effects of local damage on pressure containment must be thoroughly understood before composite fuselage structures can be used for commercial aircraft. This paper describes the research being conducted and planned at NASA LaRC to help understand the critical behavior or composite fuselage structures and to validate the structural mechanics methodology being developed for stiffened composite fuselage shell structure subjected to combined internal pressure and mechanical loads. Stiffened shell and curved stiffened panel designs are currently being developed and analyzed, and these designs will be fabricated and then tested at Langley to study critical fuselage shell behavior and to validate structural analysis and design methodology. The research includes studies of the effects of combined internal pressure and mechanical loads on nonlinear stiffened panel and shell behavior, the effects of cutouts and other gradient-producing discontinuities on composite shell response, and the effects of local damage on pressure containment and residual strength. Scaling laws are being developed that relate full-scale and subscale behavior of composite fuselage shells. Failure mechanisms are being identified and advanced designs will be developed based on what is learned from early results from

  17. Radial modulation doping in core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Dillen, David C.; Kim, Kyounghwan; Liu, En-Shao; Tutuc, Emanuel

    2014-02-01

    Semiconductor nanowires are potential candidates for applications in quantum information processing, Josephson junctions and field-effect transistors and provide a unique test bed for low-dimensional physical phenomena. The ability to fabricate nanowire heterostructures with atomically flat, defect-free interfaces enables energy band engineering in both axial and radial directions. The design of radial, or core-shell, nanowire heterostructures relies on energy band offsets that confine charge carriers into the core region, potentially reducing scattering from charged impurities on the nanowire surface. Key to the design of such nanoscale heterostructures is a fundamental understanding of the heterointerface properties, particularly energy band offsets and strain. The charge-transfer and confinement mechanism can be used to achieve modulation doping in core-shell structures. By selectively doping the shell, which has a larger bandgap, charge carriers are donated and confined in the core, generating a quasi-one-dimensional electron system with higher mobility. Here, we demonstrate radial modulation doping in coherently strained Ge-SixGe1-x core-shell nanowires and a technique to directly measure their valence band offset. Radial modulation doping is achieved by incorporating a B-doped layer during epitaxial shell growth. In contrast to previous work showing site-selective doping in Ge-Si core-shell nanowires, we find both an enhancement in peak hole mobility compared with undoped nanowires and observe a decoupling of electron transport in the core and shell regions. This decoupling stems from the higher carrier mobility in the core than in the shell and allows a direct measurement of the valence band offset for nanowires of various shell compositions.

  18. Dynamics of false vacuum bubbles: beyond the thin shell approximation

    NASA Astrophysics Data System (ADS)

    Hansen, Jakob; Hwang, Dong-il; Yeom, Dong-han

    2009-11-01

    We numerically study the dynamics of false vacuum bubbles which are inside an almost flat background; we assumed spherical symmetry and the size of the bubble is smaller than the size of the background horizon. According to the thin shell approximation and the null energy condition, if the bubble is outside of a Schwarzschild black hole, unless we assume Farhi-Guth-Guven tunneling, expanding and inflating solutions are impossible. In this paper, we extend our method to beyond the thin shell approximation: we include the dynamics of fields and assume that the transition layer between a true vacuum and a false vacuum has non-zero thickness. If a shell has sufficiently low energy, as expected from the thin shell approximation, it collapses (Type 1). However, if the shell has sufficiently large energy, it tends to expand. Here, via the field dynamics, field values of inside of the shell slowly roll down to the true vacuum and hence the shell does not inflate (Type 2). If we add sufficient exotic matters to regularize the curvature near the shell, inflation may be possible without assuming Farhi-Guth-Guven tunneling. In this case, a wormhole is dynamically generated around the shell (Type 3). By tuning our simulation parameters, we could find transitions between Type 1 and Type 2, as well as between Type 2 and Type 3. Between Type 2 and Type 3, we could find another class of solutions (Type 4). Finally, we discuss the generation of a bubble universe and the violation of unitarity. We conclude that the existence of a certain combination of exotic matter fields violates unitarity.

  19. Rosette globulettes and shells in the infrared

    NASA Astrophysics Data System (ADS)

    Mäkelä, M. M.; Haikala, L. K.; Gahm, G. F.

    2014-07-01

    Context. Giant galactic H ii regions surrounding central young clusters show compressed molecular shells, which have broken up into clumps, filaments, and elephant trunks interacting with UV light from central OB stars. Tiny, dense clumps of subsolar mass, called globulettes, form in this environment. Aims: We observe and explore the nature and origin of the infrared emission and extinction in these cool, dusty shell features and globulettes in one H ii region, the Rosette nebula, and search for associated newborn stars. Methods: We imaged the northwestern quadrant of the Rosette nebula in the near-infrared (NIR) through wideband JHKs filters and narrowband H2 1-0 S(1) and Pβ plus continuum filters using the Son of Isaac (SOFI) instrument at the New Technology Telescope (NTT) at European Southern Observatory (ESO). We used the NIR images to study the surface brightness of the globulettes and associated bright rims. We used the NIR JHKs photometry to create a visual extinction map and to search for objects with NIR excess emission. In addition, archival images from Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) 24 μm and Herschel Photoconductor Array Camera and Spectrometer (PACS) observations, covering several bands in the mid-infrared and far-infrared, were used to further analyze the stellar population, to examine the structure of the trunks and other shell structures and to study this Rosette nebula photon-dominated region in more detail. Results: The globulettes and elephant trunks have bright rims in the Ks band, which are unresolved in our images, on the sides facing the central cluster. An analysis of 21 globulettes, where surface brightness in the H2 1-0 S(1) line at 2.12 μm is detected, shows that approximately a third of the surface brightness observed in the Ks filter is due to this line: the observed average of the H2/Ks surface brightness is 0.26 ± 0.02 in the globulettes' cores and 0.30 ± 0.01 in the rims

  20. Fracture mechanics analyses of partial crack closure in shell structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jun

    2007-12-01

    This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity