These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Godiva IV and Juliet Diagnostics CED-1, Rev. 1 (IER-176)  

SciTech Connect

The Juliet experiment is currently in preliminary design (IER-128). This experiment will utilize a suite of diagnostics to measure the physical state of the device (temperature, surface motion, stress, etc.) and the total and time rate of change of neutron and gamma fluxes. A variety of potential diagnostics has been proposed in this CED-1 report. Based on schedule and funding, a subset of diagnostics will be selected for testing using the Godiva IV pulsed reactor as a source of neutrons and gammas. The diagnostics development and testing will occur over a two year period (FY12-13) culminating in a final set of diagnostics to be fielded for he Juliet experiment currently proposed for execution in FY15.

Scorby, J C; Myers, W L

2012-04-11

2

Validation of energy moments from the one-dimensional energy dependent neutron diffusion equation, MCNP5 and Attila-7.1.0 with the GODIVA experiment  

SciTech Connect

Normalized neutron energy moments (moments) from the one-dimensional energy dependent neutron diffusion equation (EDNDE), Monte Carlo N Particle 5 version 1.40 (MCNP5) and Attila-7.1.0-beta version (Attila) are validated with the GODIVA experiment (GODIVA). Energy moments 0–5 for all three methods are compared to GODIVA moments. GODIVA moments are measured with two methods. The 1st method is a time of flight (T-O-F) measurement of the average energy (moment 1) of the leaking neutrons from the surface of GODIVA and the 2nd method is from back calculating moments from foil activation analysis of various metal foils at the center of GODIVA. The error range of the EDNDE normalized moments compared to GODIVA is from 0% to 24%. The MCNP5 error range compared to GODIVA is 0–12% and the Attila error range is 0–79%. The method of moments is shown to be a fast reliable method, compared to either Monte Carlo methods (MCNP5) or 30 multi-energy group methods (Attila) with regard to the GODIVA experiment.

Douglas S. Crawford; Terry A. Ring

2012-12-01

3

Overview of Sandia National Laboratories pulse nuclear reactors  

SciTech Connect

Sandia National Laboratories has designed, constructed and operated bare metal Godiva-type and pool-type pulse reactors since 1961. The reactor facilities were designed to support a wide spectrum of research, development, and testing activities associated with weapon and reactor systems.

Schmidt, T.R. [Sandia National Labs., Albuquerque, NM (United States); Reuscher, J.A. [Texas A& M Univ., College Station, TX (United States)

1994-10-01

4

Shielding study for fast-burst reactor building  

SciTech Connect

A study was conducted to evaluate the radiation levels and the response of various diagnostic components in and around the building that houses the Godiva IV fast-burst reactor assembly. In a typical operation of 1 MW-s (3.6{approx}10f'is{approx}s ions) in a 50 ps fwhm burst the peak power approaches 100,000 MW. The unshielded dose at 3 m is about 500 Rem. The results will be used to evaluate the radiation levels and shielding requirements for a new facility, and to anticipate problems with new safety, security, and diagnostic instrumentation. The study was required because of the difficulty of making accurate calculations, the intensity of the radiation, the mixed neutron and gamnta-ray source terms, and the complex nature of the structure. In addition to detailed dosimetry, attention was paid to the evaluation of spurious electromagnetic and radiofrequency signals produced in detectors, cables, and conduits.

Rees, B. G. (Brian G.); Malenfant, R. E. (Richard E.)

2002-01-01

5

Feasibility study of noise analysis methods on virtual thermal reactor subcriticality monitoring  

SciTech Connect

This paper presents the analysis results of Rossi-alpha, cross-correlation, Feynman-alpha, and Feynman difference methods applied to the subcriticality monitoring of nuclear reactors. A thermal spectrum Godiva model has been designed for the analysis of the four methods. This Godiva geometry consists of a spherical core containing the isotopes of H-l, U-235 and U-238, and the H{sub 2}O reflector outside the core. A Monte Carlo code, McCARD, is used in real time mode to generate virtual detector signals to analyze the feasibility of the four methods. The analysis results indicate that the four methods can be used with high accuracy for the continuous monitoring of subcriticality. In addition to that, in order to analyze the impact of the random noise contamination on the accuracy of the noise analysis, the McCARD-generated signals are contaminated with arbitrary noise. It is noticed that, even when the detector signals are contaminated, the four methods can predict the subcriticality with reasonable accuracy. Nonetheless, in order to reduce the adverse impact of the random noise, eight detector signals, rather than a single signal, are generated from the core, one signal from each equally divided eighth part of the core. The preliminary analysis with multiple virtual detector signals indicates that the approach of using many detectors is promising to improve the accuracy of criticality prediction and further study will be performed in this regard. (authors)

Kong, C.; Lee, D. [Ulsan National Institute of Science and Technology UNIST-gil, 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Lee, E. [Korea Hydro and Nuclear Power Co., 1312-70, Yuseong-daero, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

2013-07-01

6

Reactor technology. Progress report, July-September 1980  

SciTech Connect

Progress in the Space Power Advanced Reactor (SPAR) Program includes indications that revision of the BeO reflector configuration can reduce system weight. Observed boiling limit restrictions on the performance of the annular-wick core heat pipe have accelerated transition to the development of the target-design arterial heat pipe. Successful bends of core heat pipes have been made with sodium as the mandrel material. With the phasing out of the GCFR Program, work on the Low Power Safety Experiments Program is now concentrated on completion of the third 37-rod Full Length Subgroup test. In the Reactor Safety/Structural Analysis area, effort on the Category I Structures Program is toward developing an experimental test plan focusing on a specific structural design. Buckling experiments on thin-walled cylindrical shells with circular cutouts are reported. Results of a three-dimensional analysis of thermal stresses in the Fort St. Vrain core support block are presented. Materials investigations and operation of a molybdenum-core SiC heat pipe are reported. Entrainment limits for gravity-assisted heat pipes and heat pipe configurations for application to energy conservation are being investigated. The new solution critical assembly, SHEBA, was completed. Godiva IV was temporarily relocated at TA-15. Influence of scattered radiations in the test vault on InRad measurements was determined from detector scans of the vault produced by /sup 252/Cf neutron and /sup 137/Cs gamma sources.

Breslow, M. (ed.)

1980-12-01

7

Verification of Unstructured Mesh Capabilities in MCNP6 for Reactor Physics Problems  

SciTech Connect

New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructive Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.

Burke, Timothy P. [Los Alamos National Laboratory; Martz, Roger L. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

2012-08-22

8

Compact Reactor  

SciTech Connect

Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

Williams, Pharis E. [Williams Research, P.O. Box 554, Los Alamos, NM87544 (United States)

2007-01-30

9

Catalytic reactor  

DOEpatents

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10

10

Bioconversion reactor  

DOEpatents

A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

McCarty, Perry L. (Stanford, CA); Bachmann, Andre (Palo Alto, CA)

1992-01-01

11

ELECTRONUCLEAR REACTOR  

Microsoft Academic Search

An electronuclear reactor is described in which a very high-energy ; particle accelerator is employed with appropriate target structure to produce an ; artificially produced material in commercial quantities by nuclear ; transformations. The principal novelty resides in the combination of an ; accelerator with a target for converting the accelerator beam to copious ; quantities of low-energy neutrons for

E. O. Lawrence; E. M. McMillan; L. W. Alvarez

1960-01-01

12

REACTOR CONTAINMENT  

Microsoft Academic Search

A survey is presented of the technical and economic aspects of the ; containment problem and an accounting of the work in thae United States which is ; providing solutions to various facets of the problem. Studies show that release ; to the atmosphere of radioactive contents of reactors operating at useful power ; levels results in a public disaster

R. O. Brittan; J. C. Heap

1958-01-01

13

Neutronic reactor  

DOEpatents

A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

1983-01-01

14

Thermal reactor  

NASA Astrophysics Data System (ADS)

A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

Levin, H.; Ford, L. B.

1980-02-01

15

Nuclear Reactors. Revised.  

ERIC Educational Resources Information Center

This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

Hogerton, John F.

16

Photocatalytic reactor  

DOEpatents

A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

1999-01-19

17

Hybrid adsorptive membrane reactor  

NASA Technical Reports Server (NTRS)

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

2011-01-01

18

Hybrid adsorptive membrane reactor  

DOEpatents

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01

19

Reactor safety method  

DOEpatents

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11

20

Nuclear reactor  

DOEpatents

A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

Thomson, Wallace B. (Severna Park, MD)

2004-03-16

21

Tokamak reactor studies  

SciTech Connect

This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features.

Baker, C.C.

1981-01-01

22

Attrition reactor system  

DOEpatents

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28

23

Attrition reactor system  

DOEpatents

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

1993-01-01

24

University Reactor Instrumentation Grant  

SciTech Connect

A noble gas air monitoring system was purchased through the University Reactor Instrumentation Grant Program. This monitor was installed in the Kansas State TRIGA reactor bay at a location near the top surface of the reactor pool according to recommendation by the supplier. This system is now functional and has been incorporated into the facility license.

S. M. Bajorek

2000-02-01

25

Hypothetical Reactor Accident Study  

E-print Network

- W 4 DfcSkoollo Rise-R-427 CARNSORE: Hypothetical Reactor Accident Study O. Walmod-Larsen, N. O: HYPOTHETICAL REACTOR ACCIDENT STUDY O. Walmod-Larsen, N.O. Jensen, L. Kristensen, A. Heide, K.L. Nedergård, P-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are de- scribed

26

High solids fermentation reactor  

DOEpatents

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01

27

Structure of processes in flow reactor and closed reactor: Flow reactor  

E-print Network

Structure of processes in flow reactor and closed reactor: Flow reactor Closed reactor Active ZoneActive Zone Structure of processes in space Structure of processes in time Elementary reactions e A1 A1 A2 Ak

Greifswald, Ernst-Moritz-Arndt-Universität

28

Reactor vessel support system  

DOEpatents

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01

29

Reactor water cleanup system  

DOEpatents

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20

30

High temperature reactors  

NASA Astrophysics Data System (ADS)

With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

Dulera, I. V.; Sinha, R. K.

2008-12-01

31

Spinning fluids reactor  

DOEpatents

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20

32

Reactor water cleanup system  

DOEpatents

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01

33

SNTP program reactor design  

NASA Astrophysics Data System (ADS)

The Space Nuclear Thermal Propulsion (SNTP) program is evaluating the feasibility of a particle bed reactor for a high-performance nuclear thermal rocket engine. Reactors operating between 500 MW and 2,000 MW will produce engine thrusts ranging from 20,000 pounds to 80,000 pounds. The optimum reactor arrangement depends on the power level desired and the intended application. The key components of the reactor have been developed and are being tested. Flow-to-power matching considerations dominate the thermal-hydraulic design of the reactor. Optimal propellant management during decay heat cooling requires a three-pronged approach. Adequate computational methods exist to perform the neutronics analysis of the reactor core. These methods have been benchmarked to critical experiment data.

Walton, Lewis A.; Sapyta, Joseph J.

1993-06-01

34

The Oklo Fossil Fission Reactors  

NSDL National Science Digital Library

This web page gives an overview of the Oklo Fossil Fission Reactors, including the history of the area where the reactor is located, the science behind the nuclear reactions, and reasons for studying this nuclear reactor. This page also includes graphics describing the Physics behind the reactors, maps, and pictures of the reactor.

Loss, Robert

2012-06-15

35

Pressurized fluidized bed reactor  

DOEpatents

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19

36

Pressurized fluidized bed reactor  

DOEpatents

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01

37

The Integral Fast Reactor  

SciTech Connect

Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

Till, C.E.; Chang, Y.I. (Argonne National Lab., IL (USA)); Lineberry, M.J. (Argonne National Lab., Idaho Falls, ID (USA))

1990-01-01

38

Nuclear reactor control column  

DOEpatents

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01

39

Reactor Safety Research Programs  

SciTech Connect

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1981-07-01

40

Slurry reactor design studies  

SciTech Connect

The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

1990-06-01

41

REACTOR BASE, SOUTHEAST CORNER. INTERIOR WILL CONTAIN REACTOR TANK, COOLING ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

REACTOR BASE, SOUTHEAST CORNER. INTERIOR WILL CONTAIN REACTOR TANK, COOLING WATER PIPES, COOLING AIR DUCTS, AND SHIELDING. INL NEGATIVE NO. 776. Unknown Photographer, 10/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

42

Nuclear reactor reflector  

DOEpatents

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

Hopkins, R.J.; Land, J.T.; Misvel, M.C.

1994-06-07

43

Nuclear reactor reflector  

DOEpatents

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01

44

Microfluidic electrochemical reactors  

DOEpatents

A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

2011-03-22

45

Spherical torus fusion reactor  

DOEpatents

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03

46

Methanogenesis in thermophilic biogas reactors  

Microsoft Academic Search

Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in

Birgitte Kiær Ahring

1995-01-01

47

The Endurance Bioenergy Reactor  

SciTech Connect

Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor—a device that contains bacteria that can convert energy from the sun into fuel molecules.

Laible, Philip

2012-01-01

48

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01

49

Reactor Safety Research Programs  

SciTech Connect

This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Dotson, CW

1980-08-01

50

F Reactor Inspection  

ScienceCinema

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-11-24

51

F Reactor Inspection  

SciTech Connect

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-10-29

52

Control of reactor coolant flow path during reactor decay heat removal  

Microsoft Academic Search

This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor

Hunsbedt

1988-01-01

53

Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

54

Heat dissipating nuclear reactor  

DOEpatents

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

1987-01-01

55

Thermionic Reactor Design Studies  

SciTech Connect

Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

Schock, Alfred

1994-08-01

56

Reactor for exothermic reactions  

DOEpatents

A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-03-02

57

Nuclear reactor safety device  

DOEpatents

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01

58

Heat dissipating nuclear reactor  

DOEpatents

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, A.; Lazarus, J.D.

1985-11-21

59

Dynamic bed reactor  

DOEpatents

A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

Stormo, Keith E. (Moscow, ID)

1996-07-02

60

Perspectives on reactor safety  

SciTech Connect

The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

1994-03-01

61

Fast quench reactor method  

DOEpatents

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

1999-08-10

62

Fast quench reactor method  

DOEpatents

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

1999-01-01

63

Reactor operation environmental information document  

SciTech Connect

The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

1989-12-01

64

Innovative design of uranium startup fast reactors  

E-print Network

Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

Fei, Tingzhou

2012-01-01

65

Reactor operation safety information document  

SciTech Connect

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01

66

Reactor Monitoring with Neutrinos  

E-print Network

The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

M. Cribier

2007-04-06

67

NETL - Chemical Looping Reactor  

SciTech Connect

NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

None

2013-07-24

68

Nuclear reactor building  

DOEpatents

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

1994-01-01

69

Nuclear reactor building  

DOEpatents

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

Gou, P.F.; Townsend, H.E.; Barbanti, G.

1994-04-05

70

Reactor shroud joint  

Microsoft Academic Search

A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of

Gary J. Ballas; Alex Blair Fife; Israel Ganz

1998-01-01

71

Reactor component automatic grapple  

DOEpatents

A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

Greenaway, Paul R. (Bethel Park, PA)

1982-01-01

72

Fossil fuel furnace reactor  

DOEpatents

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01

73

In and Out Reactor  

NSDL National Science Digital Library

Students learn about material balances, a fundamental concept of chemical engineering. They use stoichiometry to predict the mass of carbon dioxide that escapes after reacting measured quantities of sodium bicarbonate with dilute acetic acid. Students then produce the reactions of the chemicals in a small reactor made from a plastic water bottle and balloon.

Integrated Teaching and Learning Program, College of Engineering,

74

REACTOR OPERATIONS AND CONTROL  

E-print Network

at the Swed- ish pressurized water reactor Ringhals 4. I. INTRODUCTION The axial position or elevation detectors.1 According to the technical specifications of the Ring- hals power plant, in which this work and accurate method to determine the position of a potentially mis- aligned rod, based on movable detector

Pázsit, Imre

75

NRC Targets University Reactors.  

ERIC Educational Resources Information Center

The Nuclear Regulatory Commission (NRC) wants universities to convert to low-grade fuel in their research reactions. Researchers claim the conversion, which will bring U.S. reactors in line with a policy the NRC is trying to impress on foreigners, could be financially and scientifically costly. Impact of the policy is considered. (JN)

Marshall, Eliot

1984-01-01

76

REACTOR SHIELD PENETRATION CALCULATIONS  

Microsoft Academic Search

Application of point-to-point attenuation functions to the calculation ; of fast neutron and gamma ray dose and energy absorption rates in and around ; reactor shields is described. A description of IBM-704 programs capable of ; evaluating attenuation functions along source-receiver paths in complex shields ; and performing a final integration over a source region is presented. (auth);

W. E. Edwards; J. E. MacDonald

1958-01-01

77

The First Reactor.  

ERIC Educational Resources Information Center

On December 2, 1942, in a racquet court underneath the West Stands of Stagg Field at the University of Chicago, a team of scientists led by Enrico Fermi created the first controlled, self-sustaining nuclear chain reaction. This updated and revised story of the first reactor (or "pile") is based on postwar interviews (as told to Corbin Allardice…

Department of Energy, Washington, DC.

78

Vortex centrifugal bubbling reactor  

Microsoft Academic Search

The vortex centrifugal bubbling apparatus is considered as a basis for a new type of multiphase vortex centrifugal bubbling reactor. In this device, a highly dispersed gas–liquid mixture is produced in the field of centrifugal forces inside the vortex chamber. The operation of the vortex centrifugal bubbling apparatus is based on the rotation of liquid by the tangential entry of

A. O. Kuzmin; M. Kh. Pravdina; A. I. Yavorsky; N. I. Yavorsky; V. N. Parmon

2005-01-01

79

Space reactor shielding fabrication  

NASA Technical Reports Server (NTRS)

The fabrication of space reactor neutron shielding by a melting and casting process utilizing lithium hydride is described. The first neutron shield fabricated is a large pancake shape 86 inches in diameter, containing about 1700 pounds of lithium hydride. This shield, fabricated by the unique melting and casting process, is the largest lithium hydride shield ever built.

Welch, F. H.

1972-01-01

80

SP100 reactor design  

Microsoft Academic Search

The SP-100 space reactor power system is being designed and developed as part of the Ground Engineering System (GES) contract between General Electric Company as the system developer and the Department of Energy. Other key participants in the GES program include Westinghouse Hanford Company (site operator), Los Alamos National Laboratory (fuel development and production), Oak Ridge National Laboratory (materials), and

J. S. Armijo; J. Atwell; P. R. Pluta; M. A. Smith; E. R. Solorzano

1987-01-01

81

STEELS FOR NUCLEAR REACTORS  

Microsoft Academic Search

In building a nuclear reactor of any type, the stage is reached at which ; a decision must be made as to what steels can be used in construction of each ; plant component. Nuclear engineers have recognized the limitations of some of ; the common steels in nuclear environments and are pointing out ways the ; steelmaker should go

Beeghly

1960-01-01

82

Cermet fuel reactors  

SciTech Connect

Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

1987-09-01

83

Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors  

NASA Technical Reports Server (NTRS)

The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

Roth, R. J.

1976-01-01

84

Reactor vessel support system. [LMFBR  

DOEpatents

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, M.P.; Holley, J.C.

1980-05-09

85

Nuclear reactor construction with bottom supported reactor vessel  

DOEpatents

An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

1987-01-01

86

Nuclear reactor shutdown system  

DOEpatents

An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

Bhate, Suresh K. (Niskayuna, NY); Cooper, Martin H. (Monroeville, PA); Riffe, Delmar R. (Murrysville, PA); Kinney, Calvin L. (Penn Hills, PA)

1981-01-01

87

Nuclear reactor safety device  

DOEpatents

A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

Hutter, E.

1983-08-15

88

Integrated Microfluidic Reactors  

PubMed Central

Summary Microfluidic reactors exhibit intrinsic advantages of reduced chemical consumption, safety, high surface-area-to-volume ratios, and improved control over mass and heat transfer superior to the macroscopic reaction setting. In contract to a continuous-flow microfluidic system composed of only a microchannel network, an integrated microfluidic system represents a scalable integration of a microchannel network with functional microfluidic modules, thus enabling the execution and automation of complicated chemical reactions in a single device. In this review, we summarize recent progresses on the development of integrated microfluidics-based chemical reactors for (i) parallel screening of in situ click chemistry libraries, (ii) multistep synthesis of radiolabeled imaging probes for positron emission tomography (PET), (iii) sequential preparation of individually addressable conducting polymer nanowire (CPNW), and (iv) solid-phase synthesis of DNA oligonucleotides. These proof-of-principle demonstrations validate the feasibility and set a solid foundation for exploring a broad application of the integrated microfluidic system. PMID:20209065

Lin, Wei-Yu; Wang, Yanju; Wang, Shutao; Tseng, Hsian-Rong

2009-01-01

89

Fissioning Plasma Core Reactor  

NASA Technical Reports Server (NTRS)

Institute for Scientific Research, Inc. (ISR) research program consist of: 1.Study core physics by adapting existing codes: MCNP4C - Monte Carlo code; COMBINE/VENTURE - diffusion theory; SCALE4 - Monte Carlo, with many utility codes. 2. Determine feasibility and study major design parameters: fuel selection, temperature and reflector sizing. 3. Study reactor kinetics: develop QCALC1 to model point kinetics; study dynamic behavior of the power release.

Albright, Dennis; Butler, Carey; West, Nicole; Cole, John W. (Technical Monitor)

2002-01-01

90

Tokamak fusion power reactors  

Microsoft Academic Search

The major parameters and corresponding economic characteristics of a representative class of commercial Tokamak fusion power reactors are examined as a function of four major design parameters: plasma beta-t, toroidal magnetic field strength, first-wall lifetime, and power output. It is shown that for beta-t greater than or equal to 0.06, the minimum cost of energy is obtained for toroidal field

W. M. Stacey Jr.; M. A. Abdou

1978-01-01

91

Nuclear reactor sealing system  

DOEpatents

A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

McEdwards, James A. (Calabasas, CA)

1983-01-01

92

Thermionic Reactor Design Studies  

SciTech Connect

During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

Schock, Alfred

1994-06-01

93

78 FR 71675 - Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence  

Federal Register 2010, 2011, 2012, 2013, 2014

...NRC-2013-0260] Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor...Evans, Director, Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation. [FR Doc. 2013-28699...

2013-11-29

94

Fast quench reactor and method  

DOEpatents

A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

1998-05-12

95

URSULA reactor vessel examination system  

SciTech Connect

A system for ultrasonic inspection of reactor vessel welds is described. The modular system has a robotic arm; when equipped with dual robots, it can perform a vessel examination in four days. Its use at the Catawba and Crystal River-3 nuclear power plants, both pressurized water reactors, is briefly described. A comparison is made to the Automated Reactor Inspection System (ARIS) robot, and the inspection sequence is outlined.

NONE

1996-09-01

96

High Flux Reactor Isotope Facility  

NSDL National Science Digital Library

Located at the Oak Ridge National Laboratories, Tennessee, the High Flux Reactor Isotope Facility (HFIR) produces transuranium isotopes for research, industrial, and medical applications. It is also used for a variety of neutron flux experiments. The HFIR Website gives an informative overview of the science and engineering behind the reactor. Visitors can get acquainted with HFIR's history, facilities, and experiments. Other features of the site include illustrated sections on horizontal beam poles and neutron scattering as well as daily operation status of the reactor. Photographs and schematics of the reactor and control room are other interesting parts of the site.

1969-12-31

97

Thermonuclear Reflect AB-Reactor  

E-print Network

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

Alexander Bolonkin

2008-03-26

98

Rotating reactor studies  

NASA Technical Reports Server (NTRS)

Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is thicker and extends all the way around the reactor.

Roberts, Glyn O.

1991-01-01

99

Reactor coolant pump flywheel  

DOEpatents

A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

2013-11-26

100

Reactor refueling containment system  

DOEpatents

A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

1995-01-01

101

High flux reactor  

DOEpatents

A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)

1988-01-01

102

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect

The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

Not Available

1991-04-01

103

Control of reactor coolant flow path during reactor decay heat removal  

Microsoft Academic Search

An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes

Hunsbedt; Anstein N

1988-01-01

104

Fast Reactor Fuel Type and Reactor Safety Performance  

SciTech Connect

Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

R. Wigeland; J. Cahalan

2009-09-01

105

Reactor incident status 1985 annual report  

SciTech Connect

Reactor Incident followup action is summarized through periodic status reports. This annual report summarizes action taken or anticipated for Reactor Incidents through December, 1985 for Reactors C, K, L, and P.

Pong, E.L.

1986-03-31

106

Neutrino Oscillations with Reactor Neutrinos  

E-print Network

Prospect measurements of neutrino oscillations with reactor neutrinos are reviewed in this document. The following items are described: neutrinos oscillations status, reactor neutrino experimental strategy, impact of uncertainties on the neutrino oscillation sensitivity and, finally, the experiments in the field. This is the synthesis of the talk delivered during the NOW2006 conference at Otranto (Italy) during September 2006.

Anatael Cabrera

2007-01-11

107

Proton Collimators for Fusion Reactors  

NASA Technical Reports Server (NTRS)

Proton collimators have been proposed for incorporation into inertial-electrostatic-confinement (IEC) fusion reactors. Such reactors have been envisioned as thrusters and sources of electric power for spacecraft and as sources of energetic protons in commercial ion-beam applications.

Miley, George H.; Momota, Hiromu

2003-01-01

108

Solvent refined coal reactor quench system  

DOEpatents

There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

Thorogood, R.M.

1983-11-08

109

Solvent refined coal reactor quench system  

DOEpatents

There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

Thorogood, Robert M. (Macungie, PA)

1983-01-01

110

Fuel Reformation: Microchannel Reactor Design  

SciTech Connect

Fuel processing is used to extract hydrogen from conventional vehicle fuel and allow fuel cell powered vehicles to use the existing petroleum fuel infrastructure. Kilowatt scale micro-channel steam reforming, water-gas shift and preferential oxida-tion reactors have been developed capable of achieving DOE required system performance metrics. Use of a microchannel design effectively supplies heat to the highly endothermic steam reforming reactor to maintain high conversions, controls the temperature profile for the exothermic water gas shift reactor, which optimizes the overall reaction conversion, and removes heat to prevent the unwanted hydrogen oxidation in the prefer-ential oxidation reactor. The reactors combined with micro-channel heat exchangers, when scaled to a full sized 50 kWe automotive system, will be less than 21 L in volume and 52 kg in weight.

Brooks, Kriston P.; Davis, James M.; Fischer, Christopher M.; King, David L.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

2005-09-01

111

Fast reactors and nuclear nonproliferation  

SciTech Connect

Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

Avrorin, E.N. [Russian Federal Nuclear Center - Zababakhin Institute of Applied Physics, Snezhinsk (Russian Federation); Rachkov, V.I.; Chebeskov, A.N. [State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering, Bondarenko Square, 1, Obninsk, Kaluga region, 249033 (Russian Federation)

2013-07-01

112

Temperature effects on chemical reactor  

NASA Astrophysics Data System (ADS)

In this paper we had to study some characteristics of the chemical reactors, from which we can understand the reactor operation in different circumstances; from these and the most important factor that has a great effect on the reactor operation is the temperature, it is a mathematical processing of a chemical problem that was already studied, but it may be developed by introducing new strategies of control; in our case we deal with the analysis of a liquid-gas reactor which can make the flotation of the benzene to produce the ethylene; this type of reactors can be used in vast domains of the chemical industry, especially in refinery plants where we find the oil separation and its extractions whether they are gases or liquids which become necessary for industrial technology, especially in our century.

Azzouzi, M.

2008-06-01

113

Nuclear reactor control apparatus  

DOEpatents

Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-10-25

114

University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor  

SciTech Connect

The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

Eric C. Woolstenhulme; Dana M. Hewit

2008-09-01

115

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect

This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

Not Available

1993-11-01

116

Reactor physics design of supercritical CO?-cooled fast reactors  

E-print Network

Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

Pope, Michael A. (Michael Alexander)

2004-01-01

117

Nuclear reactor downcomer flow deflector  

DOEpatents

A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

2011-02-15

118

Breeder Reactors, Understanding the Atom Series.  

ERIC Educational Resources Information Center

The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

Mitchell, Walter, III; Turner, Stanley E.

119

Conceptual design study of advanced power reactors  

Microsoft Academic Search

Conceptual design studies of advanced power reactors are summarized. The concept of power reactors cooled by supercritical water was developed. The coolant system is once through type like a supercritical fossil-fired power plant. It attains higher thermal efficiency and simpler reactor system than the light water reactors. Breeding is possible in the tight lattice core. The coolant void reactivity of

Y. Oka; S. Koshizuka

1998-01-01

120

Standard Operating Procedure (Microchannel Reactor System)  

E-print Network

. 6. Connect the glass reactor to the HPLC pump. 7. Connect the glass reservoir to the outlet to the reaction pressure. 8. Turn on the HPLC pump to start the flow of solvent into the microchannel reactor. 9 toluene to the glass reactor and connect to the HPLC pump. b. Turn on the HPLC pump to purge the reactor

Choi, Kyu Yong

121

Controllable reactor simulation using Integral Equation Method  

Microsoft Academic Search

The shunt reactors are important components in the EHV\\/UHV (Eltra\\/Ultra High Voltage) power systems used for the voltage regulation issues. One of their important roles is to compensate the reactive power. Typically for such compensation the fixed shunt reactors are used. Alternative concepts introduced recently are the controllable reactors. The controlling effect of orthogonal flux type controllable reactor is achieved

Z. Andjelic; D. Pusch; X. Yang

2010-01-01

122

Conceptual design study of JSFR reactor building  

SciTech Connect

Japan Sodium-cooled Fast Reactor (JSFR) is planning to adopt the new concepts of reactor building. One is that the steel plate reinforced concrete is adopted for containment vessel and reactor building. The other is the advanced seismic isolation system. This paper describes the detail of new concepts for JSFR reactor building and engineering evaluation of the new concepts. (authors)

Yamamoto, T.; Katoh, A.; Chikazawa, Y. [Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Ohya, T.; Iwasaki, M.; Hara, H.; Akiyama, Y. [Mitsubishi FBR Systems, Inc. MFBR, 34-17, Jingumae 2-chome, Shibuya, Tokyo 150-0001 (Japan)

2012-07-01

123

James P. Mosquera Director, Reactor Plant Components  

E-print Network

, Space Reactors (a joint civilian reactor project with NASA); Lead Investigator, Independent AssessmentJames P. Mosquera Director, Reactor Plant Components and Auxiliary Equipment Naval Sea Systems working for the U.S. Naval Nuclear Propulsion Program (a.k.a. Naval Reactors). This program is a joint

124

Jet-Stirred Reactors Olivier Herbinet1  

E-print Network

of the gas in the reactor (Eq. 8.1) is actually a mean residence time (or space time) which is defined1 Chapter 8 Jet-Stirred Reactors Olivier Herbinet1 , Guillaume Dayma2 Abstract The jet-stirred reactor is a type of ideal continuously stirred-tank reactor which is well suited for gas phase kinetic

Paris-Sud XI, Université de

125

How far is a Fusion Power Reactor from an Experimental Reactor?  

E-print Network

the reactor in parameter space. In other words we should show that ITER objectives and design features1 How far is a Fusion Power Reactor from an Experimental Reactor? R. Toschi(1) , P. Barabaschi(2 September 2000 Madrid, Spain #12;2 How far is a fusion power reactor from an experimental reactor? R. Toschi

126

University Reactor Matching Grants Program  

SciTech Connect

During the 2002 Fiscal year, funds from the DOE matching grant program, along with matching funds from the industrial sponsors, have been used to support research in the area of thermal-hydraulics. Both experimental and numerical research projects have been performed. Experimental research focused on two areas: (1) Identification of the root cause mechanism for axial offset anomaly in pressurized water reactors under prototypical reactor conditions, and (2) Fluid dynamic aspects of thin liquid film protection schemes for inertial fusion reactor chambers. Numerical research focused on two areas: (1) Multi-fluid modeling of both two-phase and two-component flows for steam conditioning and mist cooling applications, and (2) Modeling of bounded Rayleigh-Taylor instability with interfacial mass transfer and fluid injection through a porous wall simulating the ''wetted wall'' protection scheme in inertial fusion reactor chambers. Details of activities in these areas are given.

John Valentine; Farzad Rahnema; Said Abdel-Khalik

2003-02-14

127

Reactor core isolation cooling system  

DOEpatents

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

Cooke, Franklin E. (San Jose, CA)

1992-01-01

128

Advanced Catalytic Hydrogenation Retrofit Reactor  

SciTech Connect

Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

Reinaldo M. Machado

2002-08-15

129

Reactor core isolation cooling system  

DOEpatents

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

Cooke, F.E.

1992-12-08

130

Interfacial effects in fast reactors  

E-print Network

The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

Saidi, Mohammad Said

1979-01-01

131

SUMMARY REPORT: SEQUENCING BATCH REACTORS  

EPA Science Inventory

This 23 - page Technology Transfer Summary Report summarizes one of the potential innovative technologies, Sequencing Batch Reactors (SBR) for municipal and industrial wastewater treatment. ontained in the report are process descriptions, performance evaluations, and economic com...

132

Graphite surveillance in N Reactor  

SciTech Connect

Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab.

Woodruff, E.M.

1991-09-01

133

Overview of fusion reactor safety  

NASA Astrophysics Data System (ADS)

Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

Cohen, S.; Crocker, J. G.

134

NCSU PULSTAR Reactor instrumentation upgrade  

SciTech Connect

The Nuclear Reactor Program at North Carolina State University initiated an upgrade program at the NCSU PULSTAR Reactor in 1990. Twenty-year-old instrumentation is currently undergoing replacement with solid-state and current technology equipment. The financial assistance from the United States Department of Energy has been the primary source of support. This interim report provides the status of the first two phases of the upgrade program.

Perez, P.B.; Bilyj, S.J.

1993-08-12

135

(Gas-cooled reactor materials)  

SciTech Connect

The meeting of the managers of the US/FRG/CH cooperative subprogram on materials for gas-cooled reactors is described and the status of each of the work packages comprising this cooperation is summarized. Four proposals for new areas of cooperative work were developed. Briefings by sponsoring organizations on the status of gas-cooled reactor programs in the FRG are discussed and experimental efforts being conducted at KFA on materials are reviewed.

Rittenhouse, P.L.

1988-06-30

136

Automatic safety rod for reactors  

DOEpatents

An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

Germer, John H. (San Jose, CA)

1988-01-01

137

Fast quench reactor and method  

DOEpatents

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2002-01-01

138

Fast quench reactor and method  

DOEpatents

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

1998-01-01

139

Microchannel Reactors for ISRU Applications  

NASA Astrophysics Data System (ADS)

Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

2005-02-01

140

Thermoionic converter for space Reactor  

Microsoft Academic Search

Thermionic converters offer many advantages for use as space reactors. Over the last several years, six experiments were performed, of which four were in-pile experiments and two out-pile experiments. Of the four in-pile experiments, three involved the use of three converters linked in series. The use of nuclear reactors as the power source for an electrical system in space is

Shengquan Cao; Jicai Yang

1990-01-01

141

Reactor Simulator Testing Overview  

NASA Technical Reports Server (NTRS)

Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

Schoenfeld, Michael P.

2013-01-01

142

Reactor pressure vessel nozzle  

DOEpatents

A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.

Challberg, Roy C. (Livermore, CA); Upton, Hubert A. (Morgan Hill, CA)

1994-01-01

143

Reactor Simulator Testing  

NASA Technical Reports Server (NTRS)

As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

2013-01-01

144

Solar solids reactor  

DOEpatents

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24

145

Reactor pressure vessel nozzle  

DOEpatents

A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

Challberg, R.C.; Upton, H.A.

1994-10-04

146

Reactor shroud joint  

DOEpatents

A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges.

Ballas, Gary J. (San Jose, CA); Fife, Alex Blair (San Jose, CA); Ganz, Israel (San Jose, CA)

1998-01-01

147

Reactor shroud joint  

DOEpatents

A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges. 4 figs.

Ballas, G.J.; Fife, A.B.; Ganz, I.

1998-04-07

148

Heterogeneous Transmutation Sodium Fast Reactor  

SciTech Connect

The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

S. E. Bays

2007-09-01

149

When Do Commercial Reactors Permanently Shut Down?  

EIA Publications

For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

2011-01-01

150

Propellant actuated nuclear reactor steam depressurization valve  

DOEpatents

A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

1992-01-01

151

Reactor Simulator Testing  

NASA Technical Reports Server (NTRS)

As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz. Keywords: fission, space power, nuclear, liquid metal, NaK.

Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise Jon

2013-01-01

152

A comparison of N Reactor and Chernobyl  

SciTech Connect

The nuclear reactor accident at Chernobyl in the Soviet Union has resulted in a number of design reviews of the Hanford N Reactor because of some similarities between N Reactor and the Soviet RBMK reactor. While the two reactors have some common features, they also have many significant differences. In addition, the reactor characteristics associated with the common features are very different. This report compares key system design and operating features and points out the differences in N Reactor and the RBMK. A description of the Chernobyl accident provides a basis to show how the differences in the two reactors and the manner in which they are operated would preclude a similar accident in the N Reactor.

McNeece, J.P.; Omberg, R.P.; Weber, E.T.

1988-03-01

153

Rapid starting methanol reactor system  

DOEpatents

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01

154

Thermonuclear Reflect AB-Reactor  

E-print Network

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical pr...

Bolonkin, Alexander

2008-01-01

155

Imaging Fukushima Daiichi reactors with muons  

NASA Astrophysics Data System (ADS)

A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Luki?, Zarija; Masuda, Koji; Milner, Edward C.; Morris, Christopher L.; Perry, John O.

2013-05-01

156

Prospects for toroidal fusion reactors  

NASA Astrophysics Data System (ADS)

Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, approximately 2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges.

Sheffield, J.; Galambos, J. D.

1994-06-01

157

Gaseous fuel nuclear reactor research  

NASA Technical Reports Server (NTRS)

Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

Schwenk, F. C.; Thom, K.

1975-01-01

158

Reactor control rod timing system  

DOEpatents

A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

Wu, Peter T. K. (Clifton Park, NY)

1982-01-01

159

On fast reactor kinetics studies  

SciTech Connect

The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)

Seleznev, E. F.; Belov, A. A. [Nuclear Safety Inst. of the Russian Academy of Sciences IBRAE (Russian Federation); Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F. [Inst. for Physics and Power Engineering IPPE (Russian Federation)

2012-07-01

160

Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions  

Microsoft Academic Search

This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors

Uthamalingam Balachandran; Roger B. Poeppel; Mark S. Kleefisch; Thaddeus P. Kobylinski; Carl A. Udovich

1994-01-01

161

Toward reactor monitoring with antineutrinos  

SciTech Connect

The fundamental knowledge on neutrino properties acquired in recent years as well as the great experimental progress made on neutrino detection open nowadays the possibility of applied neutrino physics. Among it, the International Atomic Energy Agency (IAEA) asked to its member states to study the possibility of nuclear reactor monitoring applications, such as the thermal power measurement or the fuel composition bookkeeping. In this context, we report studies aiming at a better determination of the antineutrino energy spectrum emitted by nuclear power plants, necessary for reactor monitoring applications, but also for experiments studying the ground properties of these particles. (authors)

Guillon, Benoit; Cormon, S.; Fallot, M.; Giot, L.; Martino, J. [SUBATECH-Ecole des Mines, La Chantrerie, Nantes cedex 3, France, 44307 cedex 3 (France); Cribier, M.; Lasserre, T. [CEA/DAPNIA/SPP, APC 10, rue A. Domon et L. Duquet, Paris cedex 13, France, 75205 (France); Letourneau, A.; Lhuillier, D. [CEA/DAPNIA/SPhN, Saclay, Gif sur Yvette, France, 91191 (France)

2007-07-01

162

Actinide Burning in CANDU Reactors  

SciTech Connect

Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

Hyland, B.; Dyck, G.R. [Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2007-07-01

163

DOE's way-out reactors  

SciTech Connect

The SP-100 reactor, envisioned long before Star Wars, was to power civilian structures such as the space station and orbiting commercial labs. According to the SDI Organization, it will be the cornerstone for SDI, used as a no-maintenance, general source of energy for the military's infrastructure - weapons scale power will come later. DOE wants to spend $72 in FY 1977 to design and build these reactors. Funding problems with Congress, as well as some of the technology and timetables are discussed here.

Marshall, E.

1986-03-21

164

Summary of advanced LMR (Liquid Metal Reactor) evaluations: PRISM (Power Reactor Inherently Safe Module) and SAFR (Sodium Advanced Fast Reactor)  

Microsoft Academic Search

In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) (Berglund, 1987) and the Sodium Advanced Fast Reactor (SAFR) (Baumeister, 1987), were developed primarily by General Electric (GE)

G. J. Van Tuyle; G. C. Slovik; B. C. Chan; R. J. Kennett; H. S. Cheng; P. G. Kroeger

1989-01-01

165

Reactivity control assembly for nuclear reactor  

DOEpatents

Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

Bollinger, Lawrence R. (Schenectady, NY)

1984-01-01

166

Microfluidic reactors for the synthesis of nanocrystals  

E-print Network

Several microfluidic reactors were designed and applied to the synthesis of colloidal semiconductor nanocrystals (NCs). Initially, a simple single-phase capillary reactor was used for the synthesis of CdSe NCs. Precursors ...

Yen, Brian K. H

2007-01-01

167

RACEWAY REACTOR FOR MICROALGAL BIODIESEL PRODUCTION  

EPA Science Inventory

The proposed mathematical model incorporating mass transfer, hydraulics, carbonate/aquatic chemistry, biokinetics, biology and reactor design will be calibrated and validated using the data to be generated from the experiments. The practical feasibility of the proposed reactor...

168

Stability analysis of supercritical water cooled reactors  

E-print Network

The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

2005-01-01

169

Digital computer operation of a nuclear reactor  

DOEpatents

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, R.W.

1982-06-29

170

Liquid metal cooled nuclear reactor plant system  

DOEpatents

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01

171

Digital computer operation of a nuclear reactor  

DOEpatents

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, Robert W. (Richland, WA)

1984-01-01

172

Transmutation of actinides in power reactors.  

PubMed

Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides. PMID:16604724

Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

2005-01-01

173

REACTOR: An Expert System for Diagnosis and Treatment of Nuclear Reactor Accidents  

Microsoft Academic Search

REACTOR is an expert system under development at EG&G Idaho, Inc., that will assist operators in the diagnosis and treatment of nuclear reactor accidents. This paper covers the background of the nuclear industry and why expert system tech- nology may prove valuable in the reactor control room. Some of the basic features of the REACTOR system are discussed, and future

William R. Nelson

1982-01-01

174

How far is a fusion power reactor from an experimental reactor  

Microsoft Academic Search

To support a request of very substantial resources to build and operate an experimental reactor such as ITER, it is necessary to show that such a device is well positioned on the route towards a reactor and not too far from the reactor in parameter space. For the reactor definition, we choose to start from ITER design and to identify,

R Toschi; P Barabaschi; D Campbell; F Elio; D Maisonnier; D Ward

2001-01-01

175

Fast neutron source reactor, YAYOI  

Microsoft Academic Search

The characteristics of the fast neutron source reactor, YAYOI of the University of Tokyo are described. The results of major researches are summarized. Those are the studies of fast neutron shielding and neutron transport, development of standard neutron field, advanced neutron detection, measurement of decay heat, development of epithermal neutron columns for boron neutron capture therapy, on-line tritium recovery from

Y. Oka; S. Koshizuka; I. Saito; K. Okamura; N. Aizawa; N. Sasuga; T. Sukegawa; T. Terakado; Y. Mabuchi; T. Nakagawa; S. An

1998-01-01

176

Nozzle for electric dispersion reactor  

DOEpatents

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

Sisson, W.G.; Basaran, O.A.; Harris, M.T.

1995-11-07

177

Nozzle for electric dispersion reactor  

DOEpatents

A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

1996-01-01

178

Nozzle for electric dispersion reactor  

DOEpatents

A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

1998-01-01

179

Nozzle for electric dispersion reactor  

DOEpatents

A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

1998-06-02

180

Nozzle for electric dispersion reactor  

DOEpatents

A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

1996-04-02

181

Nozzle for electric dispersion reactor  

DOEpatents

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

1995-01-01

182

A Simple Tubular Reactor Experiment.  

ERIC Educational Resources Information Center

Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)

Hudgins, Robert R.; Cayrol, Bertrand

1981-01-01

183

Advanced Light-Water Reactors  

Microsoft Academic Search

Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four

Michael W. Golay; Neil E. Todreas

1990-01-01

184

Nozzle for electric dispersion reactor  

SciTech Connect

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

1998-01-01

185

CONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV  

E-print Network

CONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV Report on the Fourth IAEA Technical Committee; 7.3. Recommendations; 8. Hybrid Fusion-Fission Reactors; 8.1. Status; 8.2. Progress of fusion power reactor development is to bring to the world a new source of unlimited energy. While

Abdou, Mohamed

186

Irradiation Facilities at the Advanced Test Reactor  

SciTech Connect

The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

S. Blaine Grover

2005-12-01

187

Compact reactor\\/ORC power source  

Microsoft Academic Search

A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor\\/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite

K. L. Meier; W. L. Kirchner; G. J. Willcutt

1986-01-01

188

Interdisciplinary Institute for Innovation Nuclear reactors' construction  

E-print Network

Interdisciplinary Institute for Innovation Nuclear reactors' construction costs: The role of lead@mines-paristech.fr hal-00956292,version1-6Mar2014 #12;hal-00956292,version1-6Mar2014 #12;Nuclear reactors' construction reactor construction costs in France and the United States. Studying the cost of nuclear power has often

Paris-Sud XI, Université de

189

Advances in ICF power reactor design  

Microsoft Academic Search

Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, it is expected to be further emphasized in the future. An emphasis on economic competitiveness appears to be

W. J. Hogan; G. L. Kulcinski

1985-01-01

190

Design and Application of EHV Shunt Reactors  

Microsoft Academic Search

This paper discusses the use of EHV shunt reactors on transmission systems from the application and reactor design viewpoints. Various factors relating to reactor construction, including testing, are discussed, and emphasis is placed on a gapped-core design for EHV applications. The results of steady-state and transient performance studies for this design are presented.

G. W. Alexander; R. H. Hopkinson; A. U. Welch

1966-01-01

191

Reactor charge and discharge computer control system  

Microsoft Academic Search

The Reactor Charge and Discharge (C D) Computer Control System automates the remote loading and unloading of fuel, targets, and other components from production reactors at the Savannah River Site. The systems are currently being prepared by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The design is a 32 bit VME based system to

1989-01-01

192

Laminar Entrained Flow Reactor (Fact Sheet)  

SciTech Connect

The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

Not Available

2014-02-01

193

Arkansas Tech University TRIGA nuclear reactor  

Microsoft Academic Search

This paper describes the TRIGA nuclear reactor (ATUTR) proposed for construction on the campus of Arkansas Tech University in Russellville, Arkansas. The reactor will be part of the Center for Energy Studies located at Arkansas Tech University. The reactor has a steady state power level of 250 kW and can be pulsed with a maximum reactivity insertion of $2.0. Experience

J. Sankoorikal; R. Culp; J. Hamm; D. Elliott; L. Hodgson; S. Apple

1990-01-01

194

Search for other natural fission reactors  

Microsoft Academic Search

Precambrian uranium ores have been surveyed for evidence of other natural fission reactors. The requirements for formation of a natural reactor direct investigations to uranium deposits with large, high-grade ore zones. Massive zones with volumes approximately greater than 1 m³ and concentrations approximately greater than 20 percent uranium are likely places for a fossil reactor if they are approximately greater

K. E. Apt; J. P. Balagna; E. A. Bryant; G. A. Cowan; W. R. Daniels; R. J. Vidale

1977-01-01

195

Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina)  

E-print Network

Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina) Sandia of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being

Gratta, Giorgio

196

Heterogeneous Recycling in Fast Reactors  

SciTech Connect

Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

2012-07-30

197

Shutdown system for a nuclear reactor  

DOEpatents

An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

1984-06-05

198

Tandem Mirror Reactor Systems Code (Version I)  

SciTech Connect

A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

1985-09-01

199

Fast-acting nuclear reactor control device  

DOEpatents

A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

1993-01-01

200

Reactor monitoring and safeguards using antineutrino detectors  

SciTech Connect

Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

Bowden, N S

2008-09-07

201

Self isolating high frequency saturable reactor  

DOEpatents

The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

Moore, James A. (Powell, TN)

1998-06-23

202

Neutrino Mixing Discriminates Geo-reactor Models  

E-print Network

Geo-reactor models suggest the existence of natural nuclear reactors at different deep-earth locations with loosely defined output power. Reactor fission products undergo beta decay with the emission of electron antineutrinos, which routinely escape the earth. Neutrino mixing distorts the energy spectrum of the electron antineutrinos. Characteristics of the distorted spectrum observed at the earth's surface could specify the location of a geo-reactor, discriminating the models and facilitating more precise power measurement. The existence of a geo-reactor with known position could enable a precision measurement of the neutrino oscillation parameter delta-mass-squared.

S. T. Dye

2009-05-05

203

Savannah River Site production reactor technical specifications. K Production Reactor  

SciTech Connect

These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

NONE

1996-02-01

204

Safety control circuit for a neutronic reactor  

DOEpatents

A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

Ellsworth, Howard C. (Richland, WA)

2004-04-27

205

TerraPower's Traveling Wave Reactor  

NASA Astrophysics Data System (ADS)

TerraPower is moving forward with detailed plans for a sustainable, economic, and safe nuclear reactor. The Traveling Wave Reactor (TWR) -- a reactor in the 500-megawatt electric range - uses unique core physics to initiate a breed and burn wave which can be completely sustained in fertile material. This process allows the TWR to convert depleted uranium waste into usable fuel as the reactor operates, providing a sustainable base-load power source. TerraPower is the first company to create a practical engineering embodiment of this previously studied concept thanks to a powerful advanced reactor modeling interface, developed in-house, which enables the analysis of traveling wave reactor technology in a way that has not been possible before. This presentation will provide more detail about the origins of the TWR, the project's current status as well as some of the safety differences between TWRs and currently operating light water reactors.

Ellis, Tyler

2011-11-01

206

Reactor incident status 1987 fourth quarter report  

SciTech Connect

Reactor Incident (RI) status reports are issued quarterly to document the followup status of the Savannah River Site K, P, and L reactors RI report conclusions and recommendations. (C reactor operation has been discontinued and the reactor placed in a standby status as a result of inability to correct reactor vessel cracks and reduction in product demand. C reactor RI reports which have bearing on the other reactors are also documented). Followup status includes maintenance and other remedial actions taken and/or planned. The quarterly report documents the RI reports issued in the current quarter (fourth quarter, 1987) as well as the most significant reports issued prior to the current quarter last documented as unresolved. The status of recommendations followup activities is being traced through the use of a data base management system. 7 figs., 11 tabs. (MHB)

Pong, E.L.

1988-04-05

207

Nuclear reactor vessel fuel thermal insulating barrier  

DOEpatents

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19

208

Fission fragment assisted reactor concept for space propulsion: Foil reactor  

NASA Technical Reports Server (NTRS)

The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.

Wright, Steven A.

1991-01-01

209

Requirements for Reactor Physics Design  

SciTech Connect

It has been recognized that there is a need for requirements and guidance for design and operation of nuclear power plants. This is becoming more important as more reactors are being proposed to be built. In parallel with activities in individual countries are norms established by international organizations. This paper discusses requirements/guidance for neutronic design and operation as promulgated by the U.S. Nuclear Regulatory Commission (NRC). As an example, details are given for one reactor physics parameter, namely, the moderator temperature reactivity coefficient. The requirements/guidance from the NRC are discussed in the context of those generated for the International Atomic Energy Agency. The requirements/guidance are not identical from the two sources although they are compatible.

Diamond,D.J.

2008-04-11

210

Vanadium recycling for fusion reactors  

SciTech Connect

Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

Dolan, T.J.; Butterworth, G.J.

1994-04-01

211

Fluidized bed coal combustion reactor  

NASA Technical Reports Server (NTRS)

A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

Moynihan, P. I.; Young, D. L. (inventors)

1981-01-01

212

Nuclear reactor alignment plate configuration  

DOEpatents

An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

2014-01-28

213

SP100 space reactor design  

Microsoft Academic Search

The SP100 space nuclear reactor was designed for use as an orbital power supply, lunar or Martian surface power station, and power supply for nuclear electric propulsion, with a scaleable power range of 10's kWe to 100's kWe. The original mission was an orbital power supply for the United State's (U.S.) Strategic Defense Initiative (SDI) of the 1980s. Although the

Scott F. Demuth

2003-01-01

214

Russian RBMK reactor design information  

SciTech Connect

This document concerns the systems, design, and operations of the graphite-moderated, boiling, water-cooled, channel-type (RBMK) reactors located in the former Soviet Union (FSU). The Russian Academy of Sciences Nuclear Safety Institute (NSI) in Moscow, Russia, researched specific technical questions that were formulated by the Pacific Northwest Laboratory (PNL) and provided detailed technical answers to those questions. The Russian response was prepared in English by NSI in a question-and-answer format. This report presents the results of that technical exchange in the context they were received from the NSI organization. Pacific Northwest Laboratory is generating this document to support the US Department of Energy (DOE) community in responding to requests from FSU states, which are seeking Western technological and financial assistance to improve the safety systems of the Russian-designed reactors. This report expands upon information that was previously available to the United States through bilateral information exchanges, international nuclear society meetings, International Atomic Energy Agency (IAEA) reactor safety programs, and Research and Development Institute of Power Engineering (RDIPE) reports. The response to the PNL questions have not been edited or reviewed for technical consistency or accuracy by PNL staff or other US organizations, but are provided for use by the DOE community in the form they were received.

Not Available

1993-11-01

215

N Reactor Lessons Learned workshop  

SciTech Connect

This report describes a workshop designed to introduce participants to a process, or model, for adapting LWR Safety Standards and Analysis Methods for use on rector designs significantly different than LWR. The focus of the workshop is on the ``Lessons Learned`` from the multi-year experience in the operation of N Reactor and the efforts to adapt the safety standards developed for commercial light water reactors to a graphite moderated, water cooled, channel type reactor. It must be recognized that the objective of the workshop is to introduce the participants to the operation of a non-LWR in a LWR regulatory world. The total scope of this topic would take weeks to provide a through overview. The objective of this workshop is to provide an introduction and hopefully establish a means to develop a longer term dialogue for technical exchange. This report provides outline of the workshop, a proposed schedule of the workshop, and a description of the tasks will be required to achieve successful completion of the project.

Heaberlin, S.W.

1993-07-01

216

Launch of Russian reactor postponed  

SciTech Connect

Astronomers and weapons scientists seemed heated on a collision course a few months ago over the military's plans to send a Russian nuclear reactor into space. But an agreement reached in late January has prevented a pile-up, at least for 6 months. The astronomers, led by Donald Lamb of the University of Chicago, were objecting to plans by the Strategic Defense Initiative Office (SDIO) to launch Topaz 2, an experimental Russian nuclear reactor, arguing that rogue particles from it might ruin sensitive gamma ray experiments. The reactor is designed to propel itself in space with a jet of xenon ions. One worry was that leaking gamma rays and positrons, which can travel in the earth's magnetic field and pop up in the darndest places, might cause false signals in gamma ray monitors (Science, 18 December 1992, p. 1878). The worry has abated now that SDI officials will postpone choosing a rocket and mission altitutde for Topaz 2 for 6 months, while experts study how its emissions at various altitudes might affect instruments aboard the Gamma Ray Observatory and other satellites. In effect, the SDIO has agreed to an environmental impact study for space, following an unusual meeting organized by former Russian space official Roald Sagdeev at the University of Maryland on 19 January. There the Russian designers of Topaz 2, its new owners at the SDIO, and critics in the astronomy community achieved common ground: that more study was needed.

Not Available

1993-02-05

217

Rationale for university research reactors  

SciTech Connect

University research reactors (URRs), of which 36 are currently operating, have been declining in number, at the rate of {approximately} 2/yr, since the mid-1980s. This decrease is often attributed to the continuing malaise of the nuclear power industry. However, such reasoning is specious because, while many URRs do provide training to prospective power plant operators, few, if any, were constructed solely to support nuclear power generators. Rather, the primary mission of each URR is to serve the educational and research needs of its university. For example, URRs provide laboratory exercises for undergraduates, practical training in the radiological sciences at the master`s level, and a means for advanced studies in such fields as geology, pollution control, archaeology, nuclear medicine, control engineering, and materials as well as reactor physics and the nuclear sciences. This paper explores the rationale for university-based research reactors. The principal argument is that URRs are not tied to a given industry or technology. Rather, they provide a means to educate students and to conduct research in a variety of disciplines, and, as such, their value does not diminish with time.

Bernard, J.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1994-12-31

218

Lunar Surface Reactor Shielding Study  

NASA Astrophysics Data System (ADS)

A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.

Kang, Shawn; Lipinski, Ronald; McAlpine, William

2006-01-01

219

Using reactor operating experience to improve the design of a new Broad Application Test Reactor  

SciTech Connect

Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.

Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.

1993-07-01

220

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15

221

Reference worldwide model for antineutrinos from reactors  

E-print Network

Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of 10 years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

Marica Baldoncini; Ivan Callegari; Giovanni Fiorentini; Fabio Mantovani; Barbara Ricci; Virginia Strati; Gerti Xhixha

2015-02-16

222

Evaluation of in-vessel corium retention through external reactor vessel cooling for integral reactor  

SciTech Connect

In-vessel corium retention through external reactor vessel cooling (IVR-ERVC) for a small integral reactor has been evaluated to determine the thermal margin for the prevention of a reactor vessel failure. A thermal load analysis from the corium pool to the outer reactor vessel wall in the lower plenum of the reactor vessel has been performed to determine the heat flux distribution. The critical heat flux (CHF) on the outer reactor vessel wall has been determined to fix the maximum heat removal rate through the external coolant between the outer reactor vessel and the insulation of the reactor vessel. Finally, the thermal margin has been evaluated by comparison of the thermal load with the maximum heat removal rate of the CHF on the outer reactor vessel wall. The maximum heat flux from the corium pool to the outer reactor vessel is estimated at approximately 0.25 MW/m{sup 2} in the metallic layer because of the focusing effect. The CHF of the outer reactor vessel is approximately 1.1 MW/m{sup 2} because of a two phase natural circulation mass flow. Since the thermal margin for the IVR-ERVC is sufficient, the reactor vessel integrity is maintained during a severe accident of a small integral reactor. (authors)

Park, R. J.; Lee, J. R.; Kim, S. B.; Jin, Y.; Kim, H. Y. [Korea Atomic Energy Research Inst., 1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2012-07-01

223

PID Control Effectiveness for Surface Reactor Concepts  

SciTech Connect

Control of space and surface fission reactors should be kept as simple as possible, because of the need for high reliability and the difficulty to diagnose and adapt to control system failures. Fortunately, compact, fast-spectrum, externally controlled reactors are very simple in operation. In fact, for some applications it may be possible to design low-power surface reactors without the need for any reactor control after startup; however, a simple proportional, integral, derivative (PID) controller can allow a higher performance concept and add more flexibility to system operation. This paper investigates the effectiveness of a PID control scheme for several anticipated transients that a surface reactor might experience. To perform these analyses, the surface reactor transient code FRINK was modified to simulate control drum movements based on bulk coolant temperature.

Dixon, David D. [North Carolina State University, Raleigh, NC (United States); Los Alamos National Laboratory, Los Alamos, NM (United States); Marsh, Christopher L. [United States Naval Academy, Annapolis, MD (United States); Los Alamos National Laboratory, Los Alamos, NM (United States); Poston, David I. [Los Alamos National Laboratory, Los Alamos, NM (United States)

2007-01-30

224

Thermionic reactors for space nuclear power  

NASA Technical Reports Server (NTRS)

Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

1985-01-01

225

Zirconium Hydride Space Power Reactor design.  

NASA Technical Reports Server (NTRS)

The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

Asquith, J. G.; Mason, D. G.; Stamp, S.

1972-01-01

226

D-D tokamak reactor studies  

SciTech Connect

A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated.

Evans, K.E. Jr.; Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Finn, P.A.; Jung, J.; Mattas, R.F.; Misra, B.; Smith, D.L.; Stevens, H.C.

1980-11-01

227

The fixed bed nuclear reactor concept  

Microsoft Academic Search

In the present work, the basic features of a new reactor type, the so-called Fixed Bed Nuclear Reactor (FBNR) is presented. FBNR is a small reactor (40MWe) without the need of on-site refueling. It utilizes the PWR technology but uses the HTGR type fuel elements. It has the characteristics of being simple in design, modular, inherent safety, passive cooling, proliferation

Sümer ?ahin; Farhang Sefidvash

2008-01-01

228

Solid tags for identifying failed reactor components  

DOEpatents

A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

1987-01-01

229

Oxidation performance of graphite material in reactors  

Microsoft Academic Search

Graphite is used as a structural material and moderator for high temperature gas-cooled reactors (HTGR). When a reactor is\\u000a in operation, graphite oxidation influences the safety and operation of the reactor because of the impurities in the coolant\\u000a and\\/or the accident conditions, such as water ingress and air ingress. In this paper, the graphite oxidation process is introduced,\\u000a factors influencing

Xiaowei Luo; Xinli Yu; Suyuan Yu

2008-01-01

230

Interactive simulators for AGN and TRIGA reactors  

SciTech Connect

Students and faculty at Idaho State University (ISU) have developed several interactive research reactor simulators that operate on personal computer compatible computers. The development of the simulators was undertaken primarily to provide a framework to test feedback control algorithms prior to implementation on real systems. As the project developed, it became evident that these simulators could also be used to familiarize students and reactor operator trainees with dynamic reactor behavior before allowing them to manipulate the controls of the facility.

Crawford, K.C. (Idaho State Unvi., Pocatello (United States))

1993-01-01

231

Review of light water reactor safety  

SciTech Connect

A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

Cheng, H.S.

1980-12-01

232

Desirability of small reactors, HTGR in particular  

Microsoft Academic Search

Small reactors of about 100–300 MWe, High Temperature Gas Cooled Reactors (HTGRs) in particular, are considered desirable in future, based on the following ways of thinking;Global scale enhancement of nuclear energy is considered necessary from reduction of environment impact point of view.Small reactors are desirable, due to (a) enhanced safety in terms of fuel inventory and inherent safety, then (b)

Yasuo Tsuchie

2000-01-01

233

Neutron shielding panels for reactor pressure vessels  

DOEpatents

In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

Singleton, Norman R. (Murrysville, PA)

2011-11-22

234

Fuel handling apparatus for a nuclear reactor  

DOEpatents

Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

Hawke, Basil C. (Solana Beach, CA)

1987-01-01

235

CONTROL CONCEPTS FOR NUCLEAR RAMJET REACTORS  

Microsoft Academic Search

Test plans for Tory II-A, the first experimental reactor in the Pluto ; nuclear ramjet program, are reported. The fundamental objective of Tory II-A is ; to demonstrate that a high power-density, high-temperature, air-cooled reactor ; can be successfully designed, constructed, and operated. This application places ; requirements on the reactor control system which are considerably more stringent ; than

1960-01-01

236

Control concepts for nuclear ramjet reactors  

Microsoft Academic Search

Tory II-A, the first experimental reactor in the Pluto nuclear ramjet program, will be tested in late 1960 at the Nevada Test Site of the Atomic Energy Commission. The fundamental objective of Tory II-A is to demonstrate that a high power-density, high-temperature, air-cooled reactor can be successfully designed, constructed, and operated. This application places requirements on the reactor control system

R. Finnigan

1962-01-01

237

Review of the Radkowsky Thorium reactor concept  

Microsoft Academic Search

A novel reactor?design concept termed the Radkowsky Thorium Reactor (RTR) has been developed that shows potential for early application in conventional pressurized water reactors (PWRs). The RTR concept makes use of a seed?blanket geometry with thorium as the fertile material, and uranium of less than 20 percent enrichment as fuel in both the seed and blanket regions. About 163 seed?blanket

Paul R. Kasten

1998-01-01

238

Exploring new coolants for nuclear breeder reactors  

Microsoft Academic Search

Breeder reactors are considered a unique tool for fully exploiting natural nuclear resources. In current Light Water Reactors (LWR), only 0.5% of the primary energy contained in the nuclei removed from a mine is converted into useful heat. The rest remains in the depleted uranium or spent fuel. The need to improve resource-efficiency has stimulated interest in Fast-Reactor-based fuel cycles,

A. Lafuente; M. Piera

2010-01-01

239

Small Reactor for Deep Space Exploration  

SciTech Connect

This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

None

2012-11-29

240

Small reactor power system for space application  

NASA Technical Reports Server (NTRS)

A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.

Shirbacheh, M.

1987-01-01

241

Nuclear reactor shield including magnesium oxide  

DOEpatents

An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

1981-01-01

242

A vectorized heat transfer model for solid reactor cores  

Microsoft Academic Search

The new generation of nuclear reactors includes designs that are significantly different from light water reactors. Among these new reactor designs is the Modular High-Temperature Gas-Cooled Reactor (MHTGR). In addition, nuclear thermal rockets share a number of similarities with terrestrial HTGRs and would be amenable to similar types of analyses. In these reactors, the heat transfer in the solid core

W. J. Rider; M. W. Cappiello; D. R. Liles

1990-01-01

243

NCSU reactor sharing program. Final technical report  

SciTech Connect

The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996.

Perez, P.B.

1997-01-10

244

Heat dissipating nuclear reactor with metal liner  

DOEpatents

Disclosed is a nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

Gluekler, Emil L. (San Jose, CA); Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

1987-01-01

245

Non-equilibrium radiation nuclear reactor  

NASA Technical Reports Server (NTRS)

An externally moderated thermal nuclear reactor is disclosed which is designed to provide output power in the form of electromagnetic radiation. The reactor is a gaseous fueled nuclear cavity reactor device which can operate over wide ranges of temperature and pressure, and which includes the capability of processing and recycling waste products such as long-lived transuranium actinides. The primary output of the device may be in the form of coherent radiation, so that the reactor may be utilized as a self-critical nuclear pumped laser.

Thom, K.; Schneider, R. T. (inventors)

1978-01-01

246

Search for sterile neutrinos at reactors  

NASA Astrophysics Data System (ADS)

The sensitivity to the sterile neutrino mixing at very short baseline reactor neutrino experiments is investigated. In the case of conventional (thermal neutron) reactors it is found that the sensitivity is lost for ? m 2 ? 1 eV2 due to smearing of the reactor core size. On the other hand, in the case of an experimental fast neutron reactor Joyo, because of its small size, sensitivity to sin2 2 ? 14 can be as good as 0.03 for ? m 2 ˜ several eV2 with the Bugey-like detector setup.

Yasuda, Osamu

2011-09-01

247

Heat dissipating nuclear reactor with metal liner  

DOEpatents

A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

1985-11-21

248

Italian hybrid and fission reactors scenario analysis  

SciTech Connect

Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

Ciotti, M.; Manzano, J.; Sepielli, M. [ENEA CR Frascati, Via Enrico Fermi, 45, 00044, Frascati, Roma (Italy); ENEA CR casaccia, Via Anguillarese, 301, 00123, Santa Maria di Galeria, Roma (Italy)

2012-06-19

249

Monitoring Reactor Antineutrino Flux for Nonproliferation  

NASA Astrophysics Data System (ADS)

Under the Non-Proliferation Treaty, the International Atomic Energy Agency has installed nuclear safeguard systems to monitor reactors. These systems, while effective, lack certain attractive features: they cannot provide real-time monitoring of reactor activities and some of them interfere with reactor operations. Antineutrino detectors can provide a continuous, real-time, and less intrusive method for monitoring reactors. This proposed safeguards system, tested at reactors in Russia and the United States, spins off from antineutrino experiments, many of which use reactors to produce antineutrinos. Monitoring antineutrino flux can detect illicit activities in reactors, such as the diversion of plutonium. Sensitivity to changes in fissile content in a few months using only antineutrino data has been demonstrated at the level of 70 kg of plutonium with >99% confidence. As part of the monitoring technique, it is useful to have accurate predictions of the evolving antineutrino flux that results from reactor fuel burnup. Simulations predicting the evolution are being developed and tested in present antineutrino reactor experiments.

Shen, Fangfei; Jones, Christopher; Keefer, Gregory; Winslow, Lindley; Djurcic, Zelimir; Bernstein, Adam; Conrad, Janet

2011-04-01

250

Accelerators for Subcritical Molten-Salt Reactors  

SciTech Connect

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

Johnson, Roland (Muons, Inc.) [Muons, Inc.

2011-08-03

251

Nuclear reactor multiphysics via bond graph formalism  

E-print Network

This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the ...

Sosnovsky, Eugeny

2014-01-01

252

A neutronic investigation on a helium cooled hybrid reactor using nitride fuels containing reactor grade plutonium  

Microsoft Academic Search

There has been a significant amount of reactor grade (RG) plutonium accumulated from the conventional nuclear reactors’ spent fuel. Destruction or reducing this RG plutonium is very important to prevent its misuse and\\/or release accidentally into the environment. Using very energetic fusion neutrons in fusion–fission (hybrid) reactors can burn the RG plutonium effectively. This study presents the burning of the

Adem Ac?r; ?enay Yalç?n

2008-01-01

253

151. ARAIII Reactor building (ARA608) Details of reactor pit and ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

151. ARA-III Reactor building (ARA-608) Details of reactor pit and instrument plan. Aerojet-general 880-area/GCRE-608-T-19. Date: November 1958. Ineel index code no. 063-0608-25-013-102678. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

254

Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor  

Microsoft Academic Search

Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity (?ex), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and

F. Faghihi; S. M. Mirvakili

2009-01-01

255

97. ARAIII. ML1 reactor has been moved into GCRE reactor ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

97. ARA-III. ML-1 reactor has been moved into GCRE reactor building (ARA-608) for examination of corrosion on its underside and repair. May 24, 1963. Ineel photo no. 63-3485. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

256

155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

257

PBF Reactor Building (PER620). Reactor vessel descends into pit, still ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

PBF Reactor Building (PER-620). Reactor vessel descends into pit, still under control of handling beams and pulleys. Vertical-lift door (to Reactor Building) is in background. Photographer: Holmes. Date: February 26, 1970. INEEL negative no. 70-986 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

258

Autonomous Control of Space Nuclear Reactors  

NASA Technical Reports Server (NTRS)

Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.

Merk, John

2013-01-01

259

Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors  

NASA Astrophysics Data System (ADS)

Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

Wright, Steven A.; Houts, Michael

2001-02-01

260

Compound cryopump for fusion reactors  

E-print Network

We reconsider an old idea: a three-stage compound cryopump for use in fusion reactors such as DEMO. The helium "ash" is adsorbed on a 4.5 K charcoal-coated surface, while deuterium and tritium are adsorbed at 15-22 K on a second charcoal-coated surface. The helium is released by raising the first surface to ~30 K. In a separate regeneration step, deuterium and tritium are released at ~110 K. In this way, the helium can be pre-separated from other species. In the simplest design, all three stages are in the same vessel, with a single valve to close the pump off from the tokamak during regeneration. In an alternative design, the three stages are in separate vessels, connected by valves, allowing the stages to regenerate without interfering with each other. The inclusion of the intermediate stage would not affect the overall pumping speed significantly. The downstream exhaust processing system could be scaled down, as much of the deuterium and tritium could be returned directly to the reactor. This could reduce ...

Kovari, M; Shephard, T

2013-01-01

261

Research on plasma core reactors  

NASA Technical Reports Server (NTRS)

Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diameter by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17 cm thick by 89 cm diameter beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000 cu cm aluminum canister in the central region was fueled with UF6 gas and fission density distributions determined. These results are to be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

Jarvis, G. A.; Barton, D. M.; Helmick, H. H.; Bernard, W.; White, R. H.

1976-01-01

262

Simulated nuclear reactor fuel assembly  

DOEpatents

An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, Victor T. (Idaho Falls, ID)

1993-01-01

263

Thermionic conversion reactor technology assessment  

NASA Astrophysics Data System (ADS)

The in-core thermionic space nuclear power supply is the only identified reactor-power concept that meets the SP-100 size functional requirements with demonstrated state-of-the-art reactor system and space-qualified power system component temperatures. The SP-100 configuration limits provide a net 40 m(2) of primary non-deployed radiator area. If a reasonable 7 year degradation allowance of 15% to 20% is provided then the beginning of life (BOL) net power output requirement is about 120 kWe. Consequently, the SP-100 power system must produce a P/A of 2.7 kWe/m(2). This non-deployed radiator area power density performance is only reasonably achieved by the thermionic in-core converter system, the potassium Rankine turbine system and the Stirling engine system. Past and current tests and data were examined and the potential for successful development of suitable fueled-thermionic converters that will meet SP-100 and growth requirements was assessed. The basis for the assessment will be provided and the recommended key developments plant set forth.

1984-02-01

264

NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944  

E-print Network

Reactor, setting stage for Hanford reactors' production of plutonium for war-ending atomic bomb More than, Washington; in 1945 these reactors produced plutonium for the atomic bomb that ended World War II. Wigner

Pennycook, Steve

265

77 FR 60039 - Non-Power Reactor License Renewal  

Federal Register 2010, 2011, 2012, 2013, 2014

...3150-AI96 Non-Power Reactor License Renewal AGENCY: Nuclear Regulatory Commission...and Rulemaking, Office of Nuclear Reactor Regulation, U.S. Nuclear...and Rulemaking, Office of Nuclear Reactor Regulation. [FR...

2012-10-02

266

10 CFR 1.44 - Office of New Reactors.  

Code of Federal Regulations, 2014 CFR

... false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR REGULATORY COMMISSION...1.44 Office of New Reactors. The Office of New...or the safeguarding of nuclear reactor facilities licensed...

2014-01-01

267

10 CFR 1.43 - Office of Nuclear Reactor Regulation.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 2011-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43... Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a) Develops,...

2011-01-01

268

77 FR 38742 - Non-Power Reactor License Renewal  

Federal Register 2010, 2011, 2012, 2013, 2014

...3150-AI96 Non-Power Reactor License Renewal AGENCY: Nuclear Regulatory Commission...and Rulemaking, Office of Nuclear Reactor Regulation, Mail Stop...and Rulemaking, Office of Nuclear Reactor Regulation. [FR...

2012-06-29

269

10 CFR 1.44 - Office of New Reactors.  

Code of Federal Regulations, 2011 CFR

... false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR REGULATORY COMMISSION...1.44 Office of New Reactors. The Office of New...or the safeguarding of nuclear reactor facilities licensed...

2011-01-01

270

10 CFR 1.43 - Office of Nuclear Reactor Regulation.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 2013-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43... Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a) Develops,...

2013-01-01

271

10 CFR 1.44 - Office of New Reactors.  

Code of Federal Regulations, 2010 CFR

... false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR REGULATORY COMMISSION...1.44 Office of New Reactors. The Office of New...or the safeguarding of nuclear reactor facilities licensed...

2010-01-01

272

78 FR 73898 - Operator Licensing Examination Standards for Power Reactors  

Federal Register 2010, 2011, 2012, 2013, 2014

...Licensing Examination Standards for Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG...New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington,...

2013-12-09

273

10 CFR 1.43 - Office of Nuclear Reactor Regulation.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 2012-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43... Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a) Develops,...

2012-01-01

274

10 CFR 1.44 - Office of New Reactors.  

Code of Federal Regulations, 2013 CFR

... false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR REGULATORY COMMISSION...1.44 Office of New Reactors. The Office of New...or the safeguarding of nuclear reactor facilities licensed...

2013-01-01

275

APPLICATION OF DATA ANALYSIS TECHNIQUES TO NUCLEAR REACTOR  

E-print Network

1 APPLICATION OF DATA ANALYSIS TECHNIQUES TO NUCLEAR REACTOR SYSTEMS CODE ACCURACY ASSESSMENT) has been developed by the authors to provide quantitative comparisons between nuclear reactor systems. 1. INTRODUCTION In recent years, the commercial nuclear reactor industry has focused significant

Kunz, Robert Francis

276

10 CFR 1.44 - Office of New Reactors.  

Code of Federal Regulations, 2012 CFR

... false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR REGULATORY COMMISSION...1.44 Office of New Reactors. The Office of New...or the safeguarding of nuclear reactor facilities licensed...

2012-01-01

277

10 CFR 1.43 - Office of Nuclear Reactor Regulation.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 2010-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43... Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a) Develops,...

2010-01-01

278

10 CFR 1.43 - Office of Nuclear Reactor Regulation.  

Code of Federal Regulations, 2014 CFR

...2014-01-01 2014-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43... Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a) Develops,...

2014-01-01

279

22.312 Engineering of Nuclear Reactors, Fall 2004  

E-print Network

Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

Buongiorno, Jacopo, 1971-

280

WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

281

22.312 Engineering of Nuclear Reactors, Fall 2002  

E-print Network

Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

Todreas, Neil E.

282

Helium-cooled high temperature reactors  

SciTech Connect

Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

Trauger, D.B.

1985-01-01

283

Fuel Channel Inspection Equipment for RBMK Reactors  

Microsoft Academic Search

This paper describes fuel channel inspection equipment for RBMK reactors. Specially designed equipment for inspecting RBMK reactor fuel channels has been manufactured by a Japanese joint company group and supplied to the Leningrad Nuclear Power Plant. Three different heads of the equipment were used to detect flaws in the fuel channel especially in the diffusion weld between Zr and stainless

Hiroyasu MOCHIZUKI; Sadao SATOH; Tadayoshi KOIZUMI; Mitsuo SUEYOSHI; Kazuteru NARUO

2001-01-01

284

Application of Reactor Antineutrinos: Neutrinos for Peace  

NASA Astrophysics Data System (ADS)

In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (?) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ?'s carry direct and real time information useful for the safeguard purposes. Since ? can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

Suekane, F.

2013-02-01

285

Control console replacement at the WPI Reactor  

SciTech Connect

With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.

Not Available

1992-01-01

286

Reactor Antineutrinos Signal all over the world  

E-print Network

We present an updated estimate of reactor antineutrino signal all over the world, with particular attention to the sites proposed for existing and future geo-neutrino experiment. In our calculation we take into account the most updated data on Thermal Power for each nuclear plant, on reactor antineutrino spectra and on three neutrino oscillation mechanism.

B. Ricci; F. Mantovani; M. Baldoncini; J. Esposito; L. Ludhova; S. Zavatarelli

2014-03-17

287

Topaz-II reactor control unit development  

SciTech Connect

The development for a new digital reactor control unit for the Topaz-II reactor is described. The unit is expected to provide the means for automated control during a possible Topaz flight experiment. The breadboard design and development is discussed.

Wyant, F.J.; Jensen, D.; Logothetis, J.

1994-12-31

288

Explosive demolition of K East Reactor Stack  

SciTech Connect

Using $420,000 in Recovery Act funds, the Department of Energy and contractor CH2M HILL Plateau Remediation Company topped off four months of preparations when they safely demolished the exhaust stack at the K East Reactor and equipment inside the reactor building on July 23, 2010.

2010-07-26

289

RADIATION MULTILAYER SHIELD IN THE REACTOR  

Microsoft Academic Search

The design of the reactor radiation shield is an integrated multistep process and consists of interdependent stages. On it's early stages the approximate calculation methods with different accuracy may be applied. We consider here a semi-empirical calculation model of radiation multilayer shield in the reactor having the core and shield configuration-infinite slab. Numerical calculations for three different geometrical configurations (infinite

LE VAN NGOC

2002-01-01

290

Preventing Cracks in Silicon-Reactor Liners  

NASA Technical Reports Server (NTRS)

Correct placement helps prevent contamination while eliminating crack-causing deposits. Repositioning quartz liner in silicon fluidized-bed reactor prevents cracking of liner when cools. Liner protects stainless-steel walls of reactor from abrasion by particles in fluidized bed. Prevents contamination of newly formed silicon by material abraded from wall and ensures high-quality product.

Lutwack, R.

1987-01-01

291

Chemical Reactor Models of Digestion Modulation  

E-print Network

of the digestive system and its components have provided an important framework to quantitatively studyChemical Reactor Models of Digestion Modulation William Wolesensky & J. David Logan Department give an overview of the application of chemical reactor theory to models of digestion processes

Logan, David

292

Experimental development of power reactor advanced controllers  

Microsoft Academic Search

A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability

R. M. Edwards; C. K. Weng; R. W. Lindsay

1992-01-01

293

Advanced power reactors with improved safety characteristics  

Microsoft Academic Search

The primary objective of nuclear safety is the protection of individuals, society and environment against radiological hazards from accidental releases of radioactive materials contained in nuclear reactors.At a worldwide scale, several advanced reactor concepts are currently being considered, some of them already at a design stage. Essential safety objectives include both further strengthening the prevention of accidents and improving the

A. Birkhofer

1995-01-01

294

SOAR: Space orbiting advanced fusion power reactor  

Microsoft Academic Search

The Space Orbiting Advanced Fusion Power Reactor (SOAR) is described. The SOAR reactor delivers 250 to 1000 MWe for at least 10 minutes from a D\\/He-3 plasma. About 99 percent of the fusion energy is in charged particles, and much of this energy is electrostatically converted directly into electricity at high efficiency. Advanced materials and shielding techniques allow SOAR to

J. F. Santarius; G. L. Kulcinski; H. Attaya; M. L. Corradini; L. A. El-Guebaly; G. A. Emmert; C. W. Maynard; M. E. Sawan; I. N. Sviatoslavsky; W. F. Vogelsang

1987-01-01

295

Agglomeration characteristics of fast reactor HCDA aerosols  

Microsoft Academic Search

The behavior of vaporized mixed oxide fuel aerosols postulated to result from fast reactor core disruptive accidents is a subject which is intensely evaluated in fast reactor safety analysis, containment design, and site selection licensing procedure. In this program, surrogate uranium oxide aerosols produced by vapor condensation of super-heated liquid UOâ have been produced in a variety of ways and

G. W. Parker; G. E. Creek; A. L. Jr. Sutton

1978-01-01

296

Pebble Flow Experiments For Pebble Bed Reactors  

E-print Network

Pebble Flow Experiments For Pebble Bed Reactors Andrew C. Kadak1 Department of Nuclear Engineering A series of one-to-ten-scale experiments were conducted at the Massachusetts Institute of Technology (MIT) to explore several key aspects of pebble flow in pebble-bed reactors. These experiments were done to assess

297

Mechanical cutting of irradiated reactor internal components  

SciTech Connect

Mechanical cutting methods to volume reduce and package reactor internal components are now a viable solution for stakeholders challenged with the retirement of first generation nuclear facilities. The recent completion of the removal of the Reactor Vessel Internals (RVI) from within the Sacramento Municipal Utility District's (SMUD) Rancho Seco Nuclear Power Plant demonstrates that unlike previous methods, inclusive of plasma arc and abrasive water-jet cutting, mechanical cutting minimizes exposure to workers, costly water cleanup, and excessive secondary waste generation. Reactor internal components were segmented, packaged, and removed from the reactor building for shipment or storage, allowing the reactor cavity to be drained and follow-on reactor segmentation activities to proceed in the dry state. Area exposure rates at the work positions during the segmentation process were generally 1 mR per hr. Radiological exposure documented for the underwater segmentation processes totaled 13 person rem. The reactor internals weighing 343,000 pounds were segmented into over 200 pieces for maximum shipping package efficiency and produced 5,600 lb of stainless steel chips and shavings which were packaged in void spaces of existing disposal containers, therefore creating no additional disposal volume. Because no secondary waste was driven into suspension in the reactor cavity water, the water was free released after one pass through a charcoal bed and ion exchange filter system. Mechanical cutting techniques are capable of underwater segmentation of highly radioactive components on a large scale. This method minimized radiological exposure and costly water cleanup while creating no secondary waste.

Anderson, Michael G. [MOTA Corporation: 3410 Sunset Boulevard, West Columbia, SC, 29169 (United States)

2008-01-15

298

Adsorptive reactor technology for VOC abatement  

Microsoft Academic Search

The use of the monolith as an adsorptive reactor (MAR) is proposed as a viable and novel alternative for VOC disposal. The MAR combines adsorptive separation and catalytic combustion of the VOC in a single reactor unit and is thought to make effective utilisation of energy due to efficient heat integration. Theoretical studies on the feasibility and application of the

Mary A. Kolade; Andreas Kogelbauer; Esat Alpay

2009-01-01

299

Autothermal fixed-bed reactor concepts  

Microsoft Academic Search

The principles, properties and applications of autothermal fixed-bed reactor concepts are presented. First we focus on different reactor types for weakly exothermic reactions and discuss their basic behavior, their stability and nonlinear dynamic features. The second part is devoted to the autothermal coupling of endothermic and exothermic reactions. A systematic classification is proposed for the process alternatives developed so far

G Kolios; J Frauhammer; G Eigenberger

2000-01-01

300

University of Virginia Reactor Facility Decommissioning Results  

SciTech Connect

The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

2003-02-24

301

Brookhaven Graphite Research Reactor Decommissioning Project  

E-print Network

Brookhaven Graphite Research Reactor Decommissioning Project FINAL Brookhaven Graphite Research Contract No. DE -AC02-98CH01886 with the UNITED STATES DEPARTMENT OF ENERGY #12;Brookhaven Graphite and removal actions that will address contamination at the Brookhaven Graphite Research Reactor. The report

302

Selective purge for hydrogenation reactor recycle loop  

DOEpatents

Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

2001-01-01

303

Trickling Filters and Biofilm Reactor Modelling  

Microsoft Academic Search

Tricking filters are biofilm reactors commonly used for biological removal of nitrogen and organic matter. A review of published and unpublished material on the function, microbiology, design and operation of trickling filters is given. This is followed by more general dynamic biofilm reactor modelling, i.e. models for rotating biological contactors, different types of biofilters, moving beds as well as trickling

T. Wik

2003-01-01

304

Methanosaeta fibers in anaerobic migrating blanket reactors  

E-print Network

; ribosomal RNA; Methanosaeta Introduction During the last 30 years, anaerobic systems that rely associated with UASB reactors (Angenent and Dague, 1996). The AMBR is a flow-through reactor consisting of three to five compartments and is operated by reversing the flow periodically (Figure 1) (Angenent

Angenent, Lars T.

305

Comparison of three ICF reactor designs  

Microsoft Academic Search

Three concepts for inertial confinement fusion (ICF) reactors are described and compared with each other, and with magnetic fusion and fission reactors on the basis of environmental impact, safety and efficiency. The critical technical developments of each concept are described. The three concepts represent alternative development paths for inertial fusion.

Hogan

1984-01-01

306

10 MWe SODIUM DEUTERIUM REACTOR DESIGN REPORT  

Microsoft Academic Search

The preliminary design is presented for a 10-Mw(e) Sodium Deuterium ; Reactor (SDR) and its associated systems and facilities. The Calandria, fuel-; coolant tubes, barrier tubes, fuel elements, control rods, shielding, and pilot ; features are described. The following systems are discussed: sodium, DâO, ; nitrogen, organic, reactor control, refueling, and waste disposal. The site, ; containment buildings, and process

1959-01-01

307

CONTROL ELEMENTS FOR SODIUM GRAPHITE REACTORS  

Microsoft Academic Search

An investigation of three control element designs for sodium-graphite ; reactors is presented: the first design utilizes wire rope supporting a rod of ; neutron absorber material, permitting installation of the complete actuator in ; the upper end of a control rod thimble below the reactor loading face; the second ; concept uses overlapping fuel and absorber elements, enabling the

Shaw

1961-01-01

308

Aerosol reactor production of uniform submicron powders  

NASA Technical Reports Server (NTRS)

A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

Flagan, Richard C. (Inventor); Wu, Jin J. (Inventor)

1991-01-01

309

Fuel elements of research reactor CM  

SciTech Connect

In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A. [Rogova St., 5A, P.O.B. 369, Moscow(Russian Federation)

2013-07-01

310

Explosive demolition of K East Reactor Stack  

ScienceCinema

Using $420,000 in Recovery Act funds, the Department of Energy and contractor CH2M HILL Plateau Remediation Company topped off four months of preparations when they safely demolished the exhaust stack at the K East Reactor and equipment inside the reactor building on July 23, 2010.

None

2010-09-02

311

A small, 1400 K, reactor for Brayton space power systems.  

NASA Technical Reports Server (NTRS)

An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

Lantz, E.; Mayo, W.

1972-01-01

312

Burning of Reactor Grade Plutonium Mixed with Thorium in a Hybrid Reactor  

NASA Astrophysics Data System (ADS)

Significant amount of plutonium have been discharged and accumulated from the conventional LWRs and CANDU reactors. Reducing this reactor grade (RG) plutonium is very important because it may be misused and/or released accidentally into the environment. Fusion-fission (hybrid) reactors have strong potential on burning plutonium effectively. This study presents the burning of RG plutonium mixed with thorium in a hybrid reactor for an operation period of 24 months. The effect of various fuel mixtures (98% ThO2 + 2% RG-PuO2, 94% ThO2 + 6% RG-PuO2 and 90% ThO2 + 10% RG-PuO2) and coolants (Flinabe, natural lithium and Li20Sn80) on the reactor's performance was investigated. Numerical results showed that utilization of RG plutonium in the mixed fuel in such a hybrid reactor not only enhanced the reactor's performance but also reduced its 239Pu content significantly.

Ac?r, Adem; Übeyli, Mustafa

2007-09-01

313

State space modeling of reactor core in a pressurized water reactor  

NASA Astrophysics Data System (ADS)

The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

Ashaari, A.; Ahmad, T.; Shamsuddin, Mustaffa; M, Wan Munirah W.; Abdullah, M. Adib

2014-07-01

314

Cooling system for a nuclear reactor  

DOEpatents

A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

Amtmann, Hans H. (Rancho Santa Fe, CA)

1982-01-01

315

Reactivity control assembly for nuclear reactor. [LMFBR  

DOEpatents

This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

Bollinger, L.R.

1982-03-17

316

A mini-cavity probe reactor.  

NASA Technical Reports Server (NTRS)

The mini-cavity reactor is a rocket engine concept which combines the high specific impulse from a central gaseous fueled cavity (0.6 m diam) and NERVA type fuel elements in a driver region that is external to a moderator-reflector zone to produce a compact light weight reactor. The overall dimension including a pressure vessel that is located outside of the spherical reactor is approximately 1.21 m in diameter. Specific impulses up to 2000 sec are obtainable for 220 to 890 N of thrust with pressures less than 1000 atm. Powerplant weights including a radiator for disposing of the power in the driver region are between 4600 and 32,000 kg - less than payloads of the shuttle. This reactor could also be used as a test reactor for gas-core, MHD, breeding and materials research.

Hyland, R. E.

1971-01-01

317

Self-actuating reactor shutdown system  

DOEpatents

A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

Barrus, Donald M. (San Jose, CA); Brummond, Willian A (Livermore, CA); Peterson, Leslie F. (Danville, CA)

1988-01-01

318

Scanning tunneling microscope assembly, reactor, and system  

SciTech Connect

An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

2014-11-18

319

75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...  

Federal Register 2010, 2011, 2012, 2013, 2014

...attention of the Director, Office of Nuclear Reactor Regulation under 10 CFR 50...21. The Director, Office of Nuclear Reactor Regulation, may, in writing...writing to the Director, Office of Nuclear Reactor Regulation, U.S....

2010-11-16

320

BGRR-048, Rev. C Brookhaven Graphite Research Reactor  

E-print Network

BGRR-048, Rev. C Brookhaven Graphite Research Reactor Decommissioning Project DRAFT CANAL AND WATER ....................................................................................... 1 2.2 Brookhaven Graphite Research Reactor

321

(Meeting on fusion reactor materials)  

SciTech Connect

During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

Jones, R.H. (Pacific Northwest Lab., Richland, WA (USA)); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. (Oak Ridge National Lab., TN (USA)); Loomis, B.A. (Argonne National Lab., IL (USA))

1990-11-01

322

Reactor pressure vessel vented head  

DOEpatents

A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

Sawabe, J.K.

1994-01-11

323

Gallium and Reactor Neutrino Anomalies  

NASA Astrophysics Data System (ADS)

The observed deficit in the Gallium radioactive source experiments may be interpreted as a possible indication of active-sterile ? mixing. In the effective framework of two-neutrino mixing we obtain sin2??0.03 and ?m?0.1 eV. The compatibility of this result with the data of the Bugey reactor ? disappearance experiments is studied. It is found that the Bugey data present a hint of neutrino oscillations with 0.02?sin2??0.08 and ?m?1.8 eV, which is compatible with the Gallium allowed region of the mixing parameters. This hint persists in the combined analysis of Gallium, Bugey, and Chooz data.

Acero, M. A.; Giunti, C.; Laveder, M.

2009-03-01

324

Nuclear reactor internals alignment configuration  

SciTech Connect

An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

Gilmore, Charles B. (Greensburg, PA); Singleton, Norman R. (Murrysville, PA)

2009-11-10

325

Inspecting the reactor vessel penetrations  

SciTech Connect

The susceptibility of Alloy 600 to Primary Water Stress Corrosion Cracking (PWSCC) continues to plague nuclear power plants. Recently, the problem of PWSCC cracking has manifested itself in Control Rod Drive Mechanism (CRDM) head penetrations in nuclear plants in Europe. Framatome has been extensively involved in the performance of both inspections and repairs of CRDM head penetrations at Electricite de France (EdF) plants. B and W Nuclear Technologies (BWNT), building on Framatome technology, has developed a fully integrated service package and robotic manipulator to inspect and repair CRDM head penetrations for US utilities. Reactor vessel bottom penetration are also made of Alloy 600 and to tackle this potential PWSCC problem at EdF plants, Framatome has been performing specific inspections in order to detect the appearance of the phenomenon. This paper describes the overall range of inspection techniques and toolings developed to address these issues.

Bodson, F. [Framatome, Chalon-Sur-Saone (France); Fleming, K.W. [BWNT, Lynchburg, VA (United States)

1995-08-01

326

Particle transport in plasma reactors  

SciTech Connect

SEMATECH and the Department of Energy have established a Contamination Free Manufacturing Research Center (CFMRC) located at Sandia National Laboratories. One of the programs underway at the CFMRC is directed towards defect reduction in semiconductor process reactors by the application of computational modeling. The goal is to use fluid, thermal, plasma, and particle transport models to identify process conditions and tool designs that reduce the deposition rate of particles on wafers. The program is directed toward defect reduction in specific manufacturing tools, although some model development is undertaken when needed. The need to produce quantifiable improvements in tool defect performance requires the close cooperation among Sandia, universities, SEMATECH, SEMATECH member companies, and equipment manufacturers. Currently, both plasma (e.g., etch, PECVD) and nonplasma tools (e.g., LPCVD, rinse tanks) are being worked on under this program. In this paper the authors summarize their recent efforts to reduce particle deposition on wafers during plasma-based semiconductor manufacturing.

Rader, D.J.; Geller, A.S.; Choi, Seung J. [Sandia National Labs., Albuquerque, NM (United States); Kushner, M.J. [Illinois Univ., Urbana, IL (United States)

1995-01-01

327

Liquid-metal-cooled reactor  

DOEpatents

A perforated depressor plate extending across the bottom of the instrument ree of a fast breeder reactor cooperates with a circular cylindrical metal bellows forming a part of the upper adapter of each core assembly and bearing on the bottom of the depressor plate to restrict flow of coolant between core assemblies, thereby reducing significantly the pressure differential between the coolant inside the core assemblies and the coolant outside of the core assemblies. Openings in the depressor plate are slightly smaller than the top of the upper adapter so the depressor plate will serve as a backup mechanical holddown for the core. In addition coolant mixing devices and locating devices are provided attached to the depressor plate.

Hutter, Ernest (Wilmette, IL)

1982-01-01

328

Nuclear reactor composite fuel assembly  

DOEpatents

A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

1980-01-01

329

Gas-cooled nuclear reactor  

DOEpatents

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01

330

Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).  

SciTech Connect

The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

Parma, Edward J., Jr.

2009-06-01

331

Pneumatic solids feeder for coal gasification reactor  

SciTech Connect

This invention is comprised of a pneumatic feeder system for a coal gasification reactor which includes one or more feeder tubes entering the reactor above the level of the particle bed inside the reactor. The tubes are inclined downward at their outer ends so that coal particles introduced into the tubes through an aperture at the top of the tubes slides downward away from the reactor and does not fall directly into the reactor. Pressurized gas introduced into, or resulting from ignition of recycled combustible gas in a chamber adjacent to the tube ends, propels the coal from the tube into the reactor volume and onto the particle bed. Leveling of the top of the bed is carried out by a bladed rotor mounted on the reactor stirring shaft. Coal is introduced into the tubes from containers above the tubes by means of rotary valves placed across supply conduits. This system avoids placement of feeder hardware in the plenum above the particle bed and keeps the coal from being excessively heated prior to reaching the particle bed.

Notestein, J.E.; Halow, J.S.

1991-12-31

332

Antineutrinos from nuclear reactors: recent oscillation measurements  

NASA Astrophysics Data System (ADS)

Nuclear reactors are the most intense man-made source of antineutrinos, providing a useful tool for the study of these particles. Oscillation due to the neutrino mixing angle {{? }13} is revealed by the disappearance of reactor {{\\bar{? }}e} over ˜km distances. Use of additional identical detectors located near nuclear reactors reduce systematic uncertainties related to reactor {{\\bar{? }}e} emission and detector efficiency, significantly improving the sensitivity of oscillation measurements. The Double Chooz, RENO, and Daya Bay experiments set out in search of {{? }13} using these techniques. All three experiments have recently observed reactor {{\\bar{? }}e} disappearance, and have estimated values for {{? }13} of 9.3? ± 2.1°, 9.2? ± 0.9°, and 8.7? ± 0.4° respectively. The energy-dependence of {{\\bar{? }}e} disappearance has also allowed measurement of the effective neutrino mass difference, \\mid ? mee2\\mid ? \\mid ? m312\\mid . Comparison with \\mid ? m? ? 2\\mid ? \\mid ? m322\\mid from accelerator {{? }? } measurements supports the three-flavor model of neutrino oscillation. The current generation of reactor {{\\bar{? }}e} experiments are expected to reach ˜3% precision in both {{? }13} and \\mid ? mee2\\mid . Precise knowledge of these parameters aids interpretation of planned {{? }? } measurements, and allows future experiments to probe the neutrino mass hierarchy and possible CP-violation in neutrino oscillation. Absolute measurements of the energy spectra of {{\\bar{? }}e} deviate from existing models of reactor emission, particularly in the range of 5–7 MeV.

Dwyer, D. A.

2015-02-01

333

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

SciTech Connect

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30

334

Control system for a small fission reactor  

DOEpatents

A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.

Burelbach, James P. (Glen Ellyn, IL); Kann, William J. (Park Ridge, IL); Saiveau, James G. (Hickory Hills, IL)

1986-01-01

335

Joint analysis of spectral reactor neutrino experiments  

E-print Network

The analysis of experiments at nuclear reactors where inverse beta decay reaction positron spectrum was measured at different distances from reactor core is presented here. It was found that there appear three enclosed zones of neutrino oscillation parameters when joint analysis is applied on the ${\\Delta}m^{2}-\\sin^{2}2{\\theta}$ plane. The parameters that found are partially crossed with similar regions originating from other non reactor experiments where they observed neutrino oscillations having unusual mass parameter about 1 eV^2 and amplitude about 0.04. Confidence level for observed regions achieves the value of 99.9%.

V. V. Sinev

2011-03-12

336

Packed fluidized bed blanket for fusion reactor  

DOEpatents

A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

Chi, John W. H. (Mt. Lebanon, PA)

1984-01-01

337

Simulation fidelity in reactor irradiation of electronics  

NASA Astrophysics Data System (ADS)

Fast Burst Reactors (FBRs), and pool-type reactors, such as TRIGAs and the Sandia Annular Core Research Reactor (ACRR), are used as sources of neutrons and gamma rays in radiation effects testing of electronics. The applicability of test results to other test or operational radiation environments depends on adequate measurement and control of the test environment, and on the use of a valid damage equivalence methodology. Specific considerations which affect this applicability (simulation fidelity) are discussed. Damage equivalence methodology is discussed in the context of ASTM Standards.

Luera, Theodore F.; Griffin, Patrick J.; Kelly, John G.

338

Simulation fidelity in reactor irradiation of electronics  

NASA Astrophysics Data System (ADS)

Fast Burst Reactors (FBRs), and pool-type reactors, such as TRIGAs and the Sandia Annular Core Research Reactor (ACRR), are used as sources of neutrons and gamma rays in radiation effects testing of electronics. The applicability of test results to other test or operational radiation environments depends on adequate measurement and control of the test environment, and on the use of a valid damage equivalence methodology. Specific considerations which affect this applicability (simulation fidelity) are discussed. Damage equivalence methodology is discussed in the context of ASTM Standards.

Luera, Theodore F.; Griffin, Patrick J.; Kelly, John G.

1991-01-01

339

Nuclear reactor fissile isotopes antineutrino spectra  

E-print Network

Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.

V. Sinev

2012-07-30

340

N Reactor RELAP5 model benchmark comparisons  

SciTech Connect

This report documents work performed at the Idaho National Engineering Laboratory (INEL) in support of Westinghouse Hanford Company safety analyses for the N Reactor. The portion of the work reported here includes comparisons of RELAP5/MOD2-calculated data with measured plant data for: (1) a plant trip reactor transient from full power operation; and (2) a hot dump test performed prior to plant startup. These qualitative comparisons are valuable because they provide an indication of the capabilities of the RELAP5/MOD2 code to simulate operational and blowdonw transients in the N Reactor. 9 refs., 12 figs., 4 tabs.

Fletcher, C.D.; Bolander, M.A.

1988-02-01

341

Increase productivity with novel reactor design  

SciTech Connect

Hydrocarbon processing industry (HPI) operators have always desired flexible control over process temperature as the chemical reactions proceeded. By managing reaction temperature, petrochemical manufacturers can optimize other processing variables, thus increasing product yields and minimizing wastes and byproducts. Diverse requirements of the HPI have spawned many different reactor types. Each design has benefits but also limitations. Ongoing challenges in reactor development include large pressure drop, high catalyst inventory, labor-intensive change-out of catalysts, etc. Two case histories explore using adiabatic and nonadiabatic reactor technology for exothermic and endothermic reactions.

Arakawa, S.T.; Mulvaney, R.C.; Felch, D.E.; Petri, J.A.; Vandenbussche, K.; Dandekar, H.W. [UOP LLC, Des Plaines, IL (United States)

1998-03-01

342

Safety of next generation power reactors  

SciTech Connect

This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address.

Not Available

1988-01-01

343

Dynamics of heat-pipe reactors.  

NASA Technical Reports Server (NTRS)

A split-core heat-pipe reactor fueled with either 233-UC or 235-UC in a tungsten cermet and cooled by 7-Li-W heat pipes is examined for the effects of the heat pipes on this reactor in trying to safely absorb large reactivity inputs through inherent shutdown mechanisms. Limits on ramp reactivity inputs due to fuel-melting temperature and heat-pipe wall heat flux are mapped for the reactor in both startup and at-power operating modes.

Niederauer, G. F.

1971-01-01

344

Advances in ICF power reactor design  

NASA Astrophysics Data System (ADS)

Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, it is expected to be further emphasized in the future. An emphasis on economic competitiveness appears to be a somewhat newer trend. Lower cost of electricity, smaller initial size (and capital cost), and more affordable development paths are three of the issues being addressed with new studies.

Hogan, W. J.; Kulcinski, G. L.

1985-04-01

345

Optimized Conditioning of Activated Reactor Graphite  

SciTech Connect

The research reactor DIORIT at the Paul Scherrer Institute was decommissioned in 1993 and is now being dismantled. One of the materials to be conditioned is activated reactor graphite, approximately 45 tons. A cost effective conditioning method has been developed. The graphite is crushed to less than 6 mm and added to concrete and grout. This graphite concrete is used as matrix for embedding dismantling waste in containers. The waste containers that would have been needed for separate conditioning and disposal of activated reactor graphite are thus saved. Applying the new method, the cost can be reduced from about 55 SFr/kg to about 17 SFr/kg graphite.

Tress, G.; Doehring, L.; Pauli, H.; Beer, H.-F.

2002-02-25

346

Cooldown criteria for light water reactors  

SciTech Connect

This Standard provides design criteria for systems and equipment necessary for the performance of those nuclear safety functions that are required to achieve and maintain a safe shutdown of the reactor to cold shutdown conditions from a hot standby or post accident condition. The following nuclear safety functions are addressed in this Standard: (1) reactivity control; (2) reactor coolant system heat removal; and (3) reactor coolant system integrity, i.e., pressure control, and inventory control. This Standard provides criteria for the design of systems used to accomplish these functions.

Not Available

1983-01-01

347

Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system  

NASA Astrophysics Data System (ADS)

Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

Harto, Andang Widi

2012-06-01

348

Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system  

SciTech Connect

Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

Harto, Andang Widi [Engineering Physics Department, Faculty of Engineering, Gadjah Mada University (Indonesia)

2012-06-06

349

Advanced Test Reactor Capabilities and Future Operating Plans  

Microsoft Academic Search

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the

Frances M. Marshall

350

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-print Network

Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

2008-08-06

351

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS  

E-print Network

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC employed for analyzing reactor dynamics. Equations of this type are used for analyzing the stability of the reactor power, etc. Among these problems the question of the boundedness of reactor power bursts

Bazhenov, Maxim

352

ME 361E Nuclear Reactor Engineering ABET EC2000 syllabus  

E-print Network

ME 361E ­ Nuclear Reactor Engineering Page 1 ABET EC2000 syllabus ME 361E ­ Nuclear Reactor students should be able to: · Compare and contrast numerous nuclear reactor designs · Calculate the effects of nuclear fuel burnup · Summarize the mechanism that affect the control of a nuclear reactor Topics Covered

Ben-Yakar, Adela

353

Applications of plasma core reactors to terrestrial energy systems  

Microsoft Academic Search

Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications

T. S. Lantham; F. R. Biancardi; R. J. Rodgers

1974-01-01

354

Oscillation experiments techniques in CEA MINERVE experimental reactor  

Microsoft Academic Search

The CEA is deeply involved in a research program (Material Testing Reactors, Zero Power Reactors) concerning the nuclear fuel advanced studies (actinides, plutonium), the waste management, the scientific and technical support of running French PWR reactors and EPR reactor, and innovating systems. In this framework, specific neutron integral experiments have been carried out in the critical facilities of the CEA

M. Antony; J. Di-Salvo; A. Pepino; J. C. Bosq; D. Bernard; P. Leconte; J. P. Hudelot; A. Lyoussi

2009-01-01

355

PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

356

Immobilized cell reactor with simultaneous product separation. II. Experimental reactor performance  

Microsoft Academic Search

The Immobilized Cell Reactor-Separator (ICRS) consists of two column reactors: a cocurrent gas-liquid enricher followed by a countercurrent stripper. The columns are four-phase tubular reactors consisting of 1) an inert gas phase, 2) the liquid fermentation broth, 3) the solid column internal packing, and 4) the immobilized biological catalyst or cells. The application of the ICRS to the ethanol-from-whey-lactose fermentation

M. C. Dale; M. R. Okos; P. C. Wankat

1985-01-01

357

Small Modular Reactors: Institutional Assessment  

SciTech Connect

? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview purposes and is a sampling of advanced SMR concepts, which will be considered as part of the current DOE SMR program but whose estimated deployment time is beyond CAP’s current investment time horizon. Attachment I is the public DOE statement describing the present approach of their SMR Program.

Joseph Perkowski, Ph.D.

2012-06-01

358

Producing tritium in a homogenous reactor  

DOEpatents

A method and apparatus are described for the joint production and separation of tritium. Tritium is produced in an aqueous homogenous reactor and heat from the nuclear reaction is used to distill tritium from the lower isotopes of hydrogen.

Cawley, William E. (Richland, WA)

1985-01-01

359

Gaseous fuel reactors for power systems  

NASA Technical Reports Server (NTRS)

Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

Kendall, J. S.; Rodgers, R. J.

1977-01-01

360

THE FAST NEUTRON BREEDER REACTOR: THE \\  

Microsoft Academic Search

The heat exchange systemo in the Fermi Fast Breeder Reactor is described. ; The primoary circuit, the intermoediate circuit, the water-steam circuit, and the ; natural circulation circuit for accidental loss of pumoping power are discussed. ; (J.S.R.);

Van Dievoet

1958-01-01

361

Technical specifications for the bulk shielding reactor  

SciTech Connect

This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs.

Not Available

1986-05-01

362

Critical assessment of thorium reactor technology  

E-print Network

Thorium-based fuels for nuclear reactors are being considered for use with current and future designs in both large and small-scale energy production. Thorium-232 is as abundant on Earth as lead, far more common than all ...

Drenkhahn, Robert (Robert A.)

2012-01-01

363

Pulsed Gas Core Reactor For Burst Power  

NASA Astrophysics Data System (ADS)

Studies are being performed on burst power mode gas core reactors that employ closed cycle disk MHD generators for energy conversion. The disk MHD generator is configured to be an integral part of the reactor. Consequently, significant fissioning occurs throughout the MHD duct and fission fragment induced ionization of the uranium bearing fuel gas/ working fluid is anticipated to yield the required nonequilibrium electrical conductivity (> 100 mho/m) despite the relatively low gas temperatures. Calculations performed to date have shown that the Burst Power Gas Core Reactor-Disk. MHD Generator system can achieve overall efficiencies of 25 percent effective radiator temperatures of 1200 K, reactor specific powers of 100 to 200 kWt/kg and system specific powers of 5 kWe/kg.

Dugan, Edward T.; Lear, William E.; Welch, Gerard E.

1988-04-01

364

Rethinking the light water reactor fuel cycle  

E-print Network

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01

365

Actinide minimization using pressurized water reactors  

E-print Network

Transuranic actinides dominate the long-term radiotoxity in spent LWR fuel. In an open fuel cycle, they impose a long-term burden on geologic repositories. Transmuting these materials in reactor systems is one way to ease ...

Visosky, Mark Michael

2006-01-01

366

Glassy materials investigated for nuclear reactor applications  

NASA Technical Reports Server (NTRS)

Studies determine the feasibility of preparing fuel-bearing glasses and glasses bearing neutron-absorbing materials for use as crystalline fuel and control rods for reactors. Properties investigated were devitrification resistance, urania solubility, and density.

Lynch, E. D.

1968-01-01

367

Reactor accelerator coupling experiments: a feasability study  

E-print Network

, from a safety perspective, limits on the allowable concentration of minor actinides (i.e, neptunium, americium, and curium) in fissile fuel for critical reactor systems is about 5%. This is due primarily to the lower delayed neutron fraction...

Woddi Venkat Krishna, Taraknath

2006-08-16

368

Safe new reactor for radionuclide production  

SciTech Connect

In late 1995, DOE is schedule to announce a new tritium production unit. Near the end of the last NPR (New Production Reactors) program, work was directed towards eliminating risks in current designs and reducing effects of accidents. In the Heavy Water Reactor Program at Savannah River, the coolant was changed from heavy to light water. An alternative, passively safe concept uses a heavy-water-filled, zircaloy reactor calandria near the bottom of a swimming pool; the calandria is supported on a light-water-coolant inlet plenum and has upflow through assemblies in the calandria tubes. The reactor concept eliminates or reduces significantly most design basis and severe accidents that plague other deigns. The proven, current SRS tritium cycle remains intact; production within the US of medical isotopes such as Mo-99 would also be possible.

Gray, P.L.

1995-02-15

369

Validation of the reactor dynamics code TRAB  

NASA Astrophysics Data System (ADS)

The validation of the one dimensional reactor dynamics code TRAB (Transient Analysis code for BWR's) is summarized. TRAB was validated with benchmark problems, comparative calculations against independent analyses, analyses of start up experiments of nuclear power plants, and real plant transients. The initial power excursion of the Chernobyl reactor accident was calculated with TRAB. TRAB was originally designed for BWR analyses, but it can in its present version be used for various modeling purposes. The core model of TRAB can be used separately for LWR calculations. For PWR modeling the core model of TRAB was coupled to circuit model SMABRE to form the SMATRA code. The versatile modeling capabilities of TRAB were used in analyses of e.g., the heating reactor SECURE and the RBMK type reactor (Chernobyl).

Raety, Hanna; Kyrki-Rajamaeki, Riitta; Rajamaeki, Markku

1991-05-01

370

Removal of hydrogen bubbles from nuclear reactors  

NASA Technical Reports Server (NTRS)

Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

Jenkins, R. V.

1980-01-01

371

Thermal-reactor safety research in Sweden  

SciTech Connect

Sweden benefits in many ways from the reactor safety research performed in other countries. Its own activity complements this effort, but a certain fraction is oriented toward safety issues that are intimately related to the special design of the ASEA-ATOM boiling-water reactor. Through the availability of the decommissioned Marviken reactor plant, Sweden has been able to play a leading role in integral containment experiments with international participation. Joint efforts with other countries are now devoted to defining new large-scale experiments to be performed in the unique Marviken facility. The largest portion of the safety research program in Sweden is performed by Studsvik Energiteknik AB, but various universities, consultant firms, and research institutes are also involved. In addition, a substantial amount of work is done by the reactor vendor ASEA-ATOM. The overall annual budget is at present between $7 and $8 million, with three governmental authorities as the main financing bodies.

Graslund, C.; Hellstrand, E.

1980-01-01

372

Thermal Shield and Reactor Structure Temperatures  

SciTech Connect

The purpose of this report is to present reactor structure and thermal shield temperature data taken during P-3 and P-5 cycles and compare them with design calculations in order to predict temperatures at higher power levels.

Collier, A.R.

2001-07-31

373

Corrosion Minimization for Research Reactor Fuel  

SciTech Connect

Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

Eric Shaber; Gerard Hofman

2005-06-01

374

Passive heat transfer means for nuclear reactors  

DOEpatents

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, James P. (Glen Ellyn, IL)

1984-01-01

375

Self-Sustaining Thorium Boiling Water Reactors  

E-print Network

A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar ...

Ganda, Francesco

376

Heat pipe reactors for space power applications  

NASA Technical Reports Server (NTRS)

A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

1977-01-01

377

Control system for a small fission reactor  

DOEpatents

A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

1985-02-08

378

Heat pipe nuclear reactor for space power  

NASA Technical Reports Server (NTRS)

A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

Koening, D. R.

1976-01-01

379

Ultra high temperature particle bed reactor design  

SciTech Connect

This study is a computer analysis of a conceptual nuclear reactor. The purpose of this work is to design a direct nuclear propulsion engine which could be used for a mission to Mars. The main features of this reactor design are high values for I{sub sp} and, secondly, very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H{sub 2} passes over the fuel bed, removes the heat and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this Particle Bed Reactor Design is suitable as a propulsion unit for this mission.

Lazareth, O.; Ludewig, H.; Perkins, K.; Powell, J.

1990-01-01

380

Advanced Test Reactor National Scientific User Facility  

SciTech Connect

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01

381

N Reactor Deactivation Program Plan. Revision 4  

SciTech Connect

This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

Walsh, J.L.

1993-12-01

382

Using fast reactor component evaluation for pressurized water reactor life extension  

Microsoft Academic Search

An understanding of the effects of long-term, low-dose-rate radiation on core components is critical to light-water reactor\\u000a plant life extension. Following reactor shutdown, materials that had experienced long exposures to low-dose-rate irradiation\\u000a were retrieved from the EBR-II research reactor for analysis. These components are being analyzed to provide insight into\\u000a pressurized water reactor life extension. In this work, three examples

T. R. Allen; J. I. Cole; E. A. Kenik; H. Tsai; S. Ukai; S. Mizuta; T. Yoshitake

1999-01-01

383

A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors  

NASA Astrophysics Data System (ADS)

Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

Recktenwald, Geoff; Deinert, Mark

2010-03-01

384

Wastewater treatment with particulate biofilm reactors  

Microsoft Academic Search

The review presented in this paper focuses on applications of particulate biofilm reactors (e.g. Upflow Sludge Blanket, Biofilm Fluidized Bed, Expanded Granular Sludge Blanket, Biofilm Airlift Suspension, Internal Circulation reactors). Several full-scale applications for municipal and industrial wastewater treatment are presented and illustrated, and their most important design and operation aspects (e.g. biofilm formation, hydrodynamics, mass transfer, mixing) are analysed

C. Nicolella; M. C. M. van Loosdrecht; J. J. Heijnen

2000-01-01

385

Power-reactor fuel-pin thermomechanics  

SciTech Connect

The authors describe a method for determining the creep and elongation and other aspects of mechanical behavior of fuel pins and cans under the effects of irradiation and temperature encountered in reactors under loading and burnup conditions. An exhaustive method for testing for fuel-cladding interactions is described. The methodology is shown to be applicable to the design, fabrication, and loading of pins for WWER, SGHWR, and RBMK type reactors, from which much of the experimental data were derived.

Tutnov, A.A.; Ul'yanov, A.I.

1987-11-01

386

Reactor for fluidized bed silane decomposition  

NASA Technical Reports Server (NTRS)

An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

Iya, Sridhar K. (Inventor)

1989-01-01

387

A fusion transmutation of waste reactor  

Microsoft Academic Search

A design concept and the performance characteristics for a fusion transmutation of waste reactor (FTWR)—a sub-critical fast reactor driven by a tokamak fusion neutron source—are presented. The present design concept is based on nuclear, processing and fusion technologies that either exist or are at an advanced stage of development and on the existing tokamak plasma physics database. A FTWR, operating

W. M Stacey; J Mandrekas; E. A Hoffman; G. P Kessler; C. M Kirby; A. N Mauer; J. J Noble; D. M Stopp; D. S Ulevich

2002-01-01

388

Nuclear electric propulsion reactor control systems status  

NASA Technical Reports Server (NTRS)

The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

Ferg, D. A.

1973-01-01

389

Basics of accelerator driven subcritical reactors  

NASA Astrophysics Data System (ADS)

This paper is an introduction to the physics of Accelerator Driven Subcritical Reactors (ADSR) and some technologies associated with them. The basic neutronics is presented with a specific discussion of modifications with respect to that of critical reactors. The fuel evolution in ADSR's is discussed, including the influence of reactivity surges and drops on the limitation of the design reactivity. The application of ADSRs to nuclear waste management is examined and the different options are discussed. Finally, some practical proposals are briefly discussed.

Nifenecker, H.; David, S.; Loiseaux, J. M.; Meplan, O.

2001-05-01

390

Explosive properties of reactor?grade plutonium  

Microsoft Academic Search

The following discussion focuses on the question of whether a terrorist organization or a threshold state could make use of plutonium recovered from light?water?reactor fuel to construct a nuclear explosive device having a significantly damaging yield. Questions persist in some nonproliferation policy circles as to whether a bomb could be made from reactor?grade plutonium of high burn?up, and if so,

J. Carson Marka

1993-01-01

391

The 5-kwe reactor thermoelectric system summary  

NASA Technical Reports Server (NTRS)

Design of the 5-kwe reactor thermoelectric system was initiated in February 1972 and extended through the conceptual design phase into the preliminary design phase. Design effort was terminated in January, 1973. This report documents the system and component requirements, design approaches, and performance and design characteristics for the 5-kwe system. Included is summary information on the reactor, radiation shields, power conversion systems, thermoelectric pump, radiator/structure, liquid metal components, and the control system.

Vanosdol, J. H. (editor)

1973-01-01

392

Advances in Tandem Mirror fusion power reactors  

Microsoft Academic Search

The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor

L. J. Perkins; B. G. Logan

1986-01-01

393

Iodine spiking model for pressurized water reactors  

Microsoft Academic Search

An analytical treatment has been developed to describe the phenomenon of iodine spiking in the reactor coolant system during reactor shutdown with defective PWR fuel rods. The iodine mass inventory is conserved in the model. The mass transport of iodine in the fuel-to-clad gap is based on a diffusion mechanism, and a bulk-convective process during pressure and temperature transients. Iodine

B. J. Lewis; F. C. Iglesias; A. K. Postma; D. A. Steininger

1997-01-01

394

Atmospheric burnup of the cosmos-954 reactor.  

PubMed

On 24 January 1978 the Russian satellite Cosmos-954 reentered the atmosphere over northern Canada. By use of high-altitude balloons, the atmosphere was sampled during 1978 up to an altitude of 39 kilometers to detect particulate debris from the reactor on board the satellite. Enriched uranium-bearing aerosols at concentrations and particle sizes compatible with partial burnup of the Cosmos-954 reactor were detected only in the high polar stratosphere. PMID:17729681

Krey, P W; Leifer, R; Benson, W K; Dietz, L A; Hendrikson, H C; Coluzza, J L

1979-08-10

395

US reactor spent-fuel storage capabilities  

Microsoft Academic Search

The spent-fuel storage situation at reactors in the US is described. The focus of the report is on the reactors that are developing a spent-fuel storage problem and the alternatives the utilities are utilizing and planning to use to minimize the problem. The alternatives the utilities are using and\\/or considering are described and include: high-density storage racks, double-tiered storage racks,

W. J. Lee; C. C. Hoffman; C. K. Caviness

1982-01-01

396

THE SODIUM GRAPHITE REACTOR: TOMMORROW'S POWER PLANT  

Microsoft Academic Search

A description is given of the Advanced Sodium Graphite Reactor Power ;\\u000a Plant, including the reactor, heat transfer systems, generatirg plant, control ;\\u000a systems, and the economics of producing 256 Mw(e). The safety of this design is ;\\u000a due to its unusually low operating pressure, absence of chemically incompatible ;\\u000a materials in the core, and excellent stability under atatic and

R. J. Beeley; E. G. Lowell; H. Polak; J. Renard

1960-01-01

397

MATERIALS TESTING REACTOR IRRADIATION OF THORIUM  

Microsoft Academic Search

Various methods of irradiating Th in the MTR for production of U²³³; have been considered. The effects on reactor operation and experimental ; facilities have also been investigated. Production would come chiefly from Th ; placed in the reactor core shim-rod (shim-safety rod) positions and\\/or the Be ; reflector. The graphite reflector is not attractive for Th irradiation. The ;

Leyse

1951-01-01

398

Advanced Reactors Transition Program Resource Loaded Schedule  

SciTech Connect

The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FETF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This revision reflects the 19 Oct 1999 baseline.

GANTT, D.A.

2000-01-12

399

A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling  

SciTech Connect

Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

Koch, M.; Kazimi, M.S.

1991-04-01

400

Reactor Simulator Integration and Testing  

NASA Technical Reports Server (NTRS)

As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

2013-01-01

401

Antineutrino reactor safeguards - a case study  

E-print Network

Antineutrinos have been proposed as a means of reactor safeguards for more than 30 years and there has been impressive experimental progress in neutrino detection. In this paper we conduct, for the first time, a case study of the application of antineutrino safeguards to a real-world scenario - the North Korean nuclear crisis in 1994. We derive detection limits to a partial or full core discharge in 1989 based on actual IAEA safeguards access and find that two independent methods would have yielded positive evidence for a second core with very high confidence. To generalize our results, we provide detailed estimates for the sensitivity to the plutonium content of various types of reactors, including most types of plutonium production reactors, based on detailed reactor simulations. A key finding of this study is that a wide class of reactors with a thermal power of less than 0.1-1 GWth can be safeguarded achieving IAEA goals for quantitative sensitivity and timeliness with detectors right outside the reactor building. This type of safeguards does not rely on the continuity of knowledge and provides information about core inventory and power status in real-time.

Eric Christensen; Patrick Huber; Patrick Jaffke

2014-02-13

402

Micro -Thermonuclear AB-Reactors for Aerospace  

E-print Network

The author offers several innovations that he first suggested publicly early in 1983 for the AB multi-reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB-Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. The Lawson criterion increases by hundreds of times. The author also suggests a new method of heating the power-making fuel pellet by outer electric current as well as new direct method of transformation of ion kinetic energy into harvestable electricity. These offered innovations dramatically decrease the size, weight and cost of thermonuclear reactor, installation, propulsion system and electric generator. Non-industrial countries can produce these researches and constructions. Currently, the author is researching the efficiency of these innovations for two types of the micro-thermonuclear reactors: multi-reflection reactor (ICF) and self-magnetic reactor (MCF).

Alexander Bolonkin

2007-01-08

403

FBR and RBR particle bed space reactors  

SciTech Connect

Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10/sup 0/K), high coolant-outlet temperatures (1500 to 3000/sup 0/K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H/sub 2/-cooled mode. The RBR will operate only in the open-cycle H/sub 2/-cooled mode.

Powell, J.R.; Botts, T.E.

1983-01-01

404

Design options for a bunsen reactor.  

SciTech Connect

This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

Moore, Robert Charles

2013-10-01

405

Uncertainty quantification approaches for advanced reactor analyses.  

SciTech Connect

The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

Briggs, L. L.; Nuclear Engineering Division

2009-03-24

406

Lessons Learned From Gen I Carbon Dioxide Cooled Reactors  

SciTech Connect

This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

David E. Shropshire

2004-04-01

407

MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)  

SciTech Connect

The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

GERBER MS

2009-04-28

408

Materials issues in fusion reactors  

NASA Astrophysics Data System (ADS)

The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks are steels for the first wall and other structurals, copper alloys for the heat sink, and beryllium for facing the plasma. For the TBMs, the materials that need to be developed include beryllium and/or beryllium-titanium alloys for neutron multiplication, lithium-bearing compounds for tritium generation, and the liquid metal coolants like lead-lithium eutectic in which lead acts as a neutron multiplier and lithium as a tritium breeder. The other materials that need attention of the materials scientists include superconductors made of NbTi, Nb3Sn and Nb3Al for the tokamaks, coatings or ceramic inserts to offset the effect of corrosion and the MHD in liquid metal cooled TBMs, and a host of other materials like nano-structured materials, special adhesives and numerous other alloys and compounds. Apart from this, the construction of the tokamaks would necessitate development of methodologies of joining the selected materials. This presentation would deal with the issues related to the development, characterization and qualification of both the structural as well as the functional materials required to carry forward the challenging task of harnessing fusion energy for use of mankind in engineered systems.

Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

2010-02-01

409

Tidal sands as biogeochemical reactors  

NASA Astrophysics Data System (ADS)

Sandy sediments of continental shelves and most beaches are often thought of as geochemical deserts because they are usually poor in organic matter and other reactive substances. The present study focuses on analyses of dissolved biogenic compounds of surface seawater and pore waters of Aquitanian coastal beach sediments. To quantitatively assess the biogeochemical reactions, we collected pore waters at low tide on tidal cross-shore transects unaffected by freshwater inputs. We recorded temperature, salinity, oxygen saturation state, and nutrient concentrations. These parameters were compared to the values recorded in the seawater entering the interstitial environment during floods. Cross-shore topography and position of piezometric level at low tide were obtained from kinematics GPS records. Residence time of pore waters was estimated by a tracer approach, using dissolved silica concentration and kinetics estimate of quartz dissolution with seawater. Kinetics parameters were based on dissolved silica concentration monitoring during 20-day incubations of sediment with seawater. We found that seawater that entered the sediment during flood tides remained up to seven tidal cycles within the interstitial environment. Oxygen saturation of seawater was close to 100%, whereas it was as low as 80% in pore waters. Concentrations of dissolved nutrients were higher in pore waters than in seawater. These results suggest that aerobic respiration occurred in the sands. We propose that mineralised organic matter originated from planktonic material that infiltrated the sediment with water during flood tides. Therefore, the sandy tidal sediment of the Aquitanian coast is a biogeochemical reactor that promotes or accelerates remineralisation of coastal pelagic primary production. Mass balance calculations suggest that this single process supplies about 37 kmol of nitrate and 1.9 kmol of dissolved inorganic phosphorus (DIP) to the 250-km long Aquitanian coast during each semi-diurnal tidal cycle. It represents about 1.5% of nitrate and 5% of DIP supplied by the nearest estuary.

Anschutz, Pierre; Smith, Thomas; Mouret, Aurélia; Deborde, Jonathan; Bujan, Stéphane; Poirier, Dominique; Lecroart, Pascal

2009-08-01

410

Proliferation Resistant Nuclear Reactor Fuel  

SciTech Connect

Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

2011-02-18

411

Reactor Monitoring Reactor Monitoring (near and far) with Neutrinos(near and far) with Neutrinos  

E-print Network

1 Reactor Monitoring Reactor Monitoring (near and far) with Neutrinos(near and far) with Neutrinos Neutrino Applications are on the horizon John G. LearnedJohn G. Learned Physics and Astronomy, University and astrophysics, initiator and participant in many neutrino experiments (IMB, DUMAND, SuperK, KamLAND, K2K

Learned, John

412

Biodiesel Yield Assessment in Continuous Flow Reactors using Batch Reactor Conditions  

Microsoft Academic Search

Fatty acid methyl esters derived from renewable sources such as vegetable oils has gained importance nowadays as an alternative fuel for diesel engines. The present study is aimed to produce biodiesel from non-edible oil (Karanja oil of Indian origin) both in batch and continuous reactors. The purpose of the study is the comparison of karanja biodiesel production with different reactor

Madhu Agarwal; Sunny Soni; Kailash Singh; S. P. Chaurasia; R. K. Dohare

2012-01-01

413

Discontinuous Galerkin hp-adaptive methods for multiscale chemical reactors: quiescent reactors  

E-print Network

Discontinuous Galerkin hp-adaptive methods for multiscale chemical reactors: quiescent reactors C, RKC, IMEX, discontinuous Galerkin, Fick's Law, energy methods, hp-adaptive, Lotka-Volterra, integrable to utilize algebraic tech- niques for the resulting reactive subsystems. A mixed form discontinuous Galerkin

Evans, John A.

414

Optimized Transition from the Reactors of Second and Third Generations to the Thorium Molten Salt Reactor  

Microsoft Academic Search

Molten salt reactors, in the configuration presented here and called Thorium Molten Salt Reactor (TMSR), are particularly well suited to fulfil the criteria chosen by the Generation IV forum, and may be operated in simplified and safe conditions in the Th\\/233U fuel cycle with fluoride salts. Amongst all MSR configurations in the thorium cycle, many studies have highlighted the configurations

E. Merle-Lucotte; D. Heuer; M. Allibert; V. Ghetta; C. Le Brun; L. Mathieu; R. Brissot; E. Liatard

415

DISMANTLING OF THE REACTOR BLOCK OF THE FRJ-1 RESEARCH REACTOR (MERLIN)  

SciTech Connect

This report describes the past procedure in dismantling the reactor block of the FRJ-1 research reactor (MERLIN). Furthermore, it gives an outlook on future activities up to the final removal of the reactor block. MERLIN is an abbreviation for Medium Energy Research Light Water Moderated Industrial Nuclear Reactor. The FRJ-1 (MERLIN) was shut down in 1985 and the fuel elements removed from the facility. After dismantling the coolant loops and removing the reactor tank internals with subsequent draining of the reactor tank water, the first activities for dismantling the reactor block were carried out in summer 2001. The relevant license was granted in late July 2001 by the licensing authority specifying 8 incidental provisions. After dismantling the reactor extension (gates of the thermal columns and steel platforms surrounding the reactor block), a heavy-load platform including a casing around the reactor block was constructed. Two ventilation systems with a volume flow of 10,000 and 2 ,000 m3/h will, moreover, serve to avoid a spread of contamination. The reactor block will be dismantled in three phases divided according to upper, central and bottom sections. Dismantling the upper section started in August 2002. This section as well as the bottom section can probably be completely measured for clearance. For this reason, the activities have so far been carried out manually using mechanical and thermal techniques. The central section will probably have to be largely disposed of as radioactive waste. This is the region of the former reactor core in which the experimental devices are also integrated. Most of this work will probably have to be carried out by remote handling. More than 80 % of the dismantled materials of the reactor block can probably be measured for clearance. For this purpose, a clearance measurement device was taken into operation in the FRJ-1. On this occasion, the limits of clearance measurement have become evident. For concrete, which constitutes the largest portion of the dismantled materials by volume, an additional conditioning step has become necessary to fulfill the clearance criteria, whereas waste packages with steel components largely have to be reconditioned once more at a later stage. Material measured for clearance will be disposed of conventionally (recycling, landfill) after inspection by the official expert and clearance by the regulatory authority. Dismantled parts that cannot be measured for clearance will be transferred to the Decontamination Department of the Research Centre. From the present perspective, the dismantling of the reactor block will be completed within the first six months of 2003.

Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

2003-02-27

416

REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS  

SciTech Connect

Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

Nichols, T.; Beals, D.; Sternat, M.

2011-07-18

417

Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor  

SciTech Connect

The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

S. Blaine Grover

2004-10-01

418

TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR  

SciTech Connect

The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

Grover, S.B.

2004-10-06

419

Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies  

NASA Astrophysics Data System (ADS)

A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

2006-01-01

420

Seismic design of the ALMR (advanced liquid metal reactor)  

SciTech Connect

Within an advanced liquid-metal reactor (ALMR) plant, the principal safety-related system is the reactor and its auxiliary equipment, all housed within a tornado-hardened, seismic category I structure called the reactor facility. The PRISM reactor module selected for the ALMR program, with a 6.05-m (19-ft, 10-in.)-diam and a height of {approximately}18.9 m (62 ft) was considered to be the safety-related equipment most vulnerable to earthquakes. With its tall, slender shape and support from the top of the reactor module, the core and internal structures would be subject to amplification of horizontal ground motion during an earthquake. Consequently, ALMR seismic design has focused on ways to mitigate these seismic effects, simplify reactor design, and enhance seismic design margin. Initially, seismic keys within the reactor module and between the reactor module and the reactor facility were considered. Later, seismic isolation was incorporated.

Snyder, C.R.; Tajirian, F.F.

1990-06-01

421

10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.  

Code of Federal Regulations, 2012 CFR

...requirements for operating nuclear power reactors. 50.72 Section 50...requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed...

2012-01-01

422

10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.  

Code of Federal Regulations, 2014 CFR

...requirements for operating nuclear power reactors. 50.72 Section 50...requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed...

2014-01-01

423

10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.  

Code of Federal Regulations, 2013 CFR

...requirements for operating nuclear power reactors. 50.72 Section 50...requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed...

2013-01-01

424

10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.  

Code of Federal Regulations, 2011 CFR

...requirements for operating nuclear power reactors. 50.72 Section 50...requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed...

2011-01-01

425

HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING  

SciTech Connect

The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment including the dome was removed, a concrete cover was to be placed over the remaining footprint and the groundwater monitored for an indefinite period to ensure compliance with environmental regulations.

Austin, W.; Brinkley, D.

2011-10-13

426

Compact reactor/ORC power source  

SciTech Connect

A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500/sup 0/C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370/sup 0/C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs.

Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

1986-01-01

427

Investigation of materials for fusion power reactors  

NASA Astrophysics Data System (ADS)

The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

Bouhaddane, A.; Sluge?, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

2014-06-01

428

Simulation of a marine nuclear reactor  

SciTech Connect

A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship`s motions because of the ship`s maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship`s motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship`s motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship`s motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship`s motions on the reactor behavior can be accurately simulated by NESSY.

Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Office of Nuclear Ship Research and Development

1995-02-01

429

Essential metal depletion in an anaerobic reactor.  

PubMed

The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. Experiments were carried out in three periods, where different organic loading rates (OLR) were applied to the reactors. The total trace metal concentration steadily decreased at a rate of 48 microg metal/g TS.d in the deprived reactor (down to 35% of their initial value). In contrast, trace metals accumulated in granules present in the control reactor. At the end of the experiment, the COD removal efficiencies were 99% and 77% for the control and deprived reactors, respectively, due to the lack of propionate conversion. Cobalt sorption experiments were carried out in order to study its speciation, and its effects on the speciation of other metals as well. A paper mill wastewater treating granular sludge was also included in the study as a comparison. Results obtained showed that the principal metal forms normally associated with any sludge are a function of each soluble metal concentration in the system, and the characteristics of the particular sludge. PMID:14640193

Osuna, M B; Iza, J; Zandvoort, M; Lens, P N L

2003-01-01

430

Risk Management for Sodium Fast Reactors.  

SciTech Connect

Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

Denman, Matthew R; Groth, Katrina; Cardoni, Jeffrey N; Wheeler, Timothy A.

2015-01-01

431

NACA Zero Power Reactor Facility Hazards Summary  

NASA Technical Reports Server (NTRS)

The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

1957-01-01

432

Lateral restraint assembly for reactor core  

DOEpatents

A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

Gorholt, Wilhelm (San Diego, CA); Luci, Raymond K. (Del Mar, CA)

1986-01-01

433

Comparison of the technology of oxidative dehydrogenation in a fluidized-bed reactor with those of other reactors for butadiene  

SciTech Connect

This paper describes a comparison among the reactor technologies used in the process of oxidation. For dehydrogenation of butene into butadiene, three reactor types are compared: (1) a fluidized-bed reactor using multi revolving link stoppers with a group VIII variable-valence catalyst, (2) an adiabatic fixed-bed reactor, and (3) a polytube, constant-temperature fixed-bed reactor. The results of the comparison indicate that the polytube fixed-bed reactor at constant temperature is better than the fluidized-bed reactor, which in turn is better than the adiabatic reactor. Using a polytube, constant-temperature fixed-bed reactor with butene`s space velocity of 400 h{sup {minus}1}, butadiene yield reached 78.7%, butene conversion reached 86.1%, and butadiene selectivity reached 91.4%. If these results can be achieved in industry, they will be the world records.

Wu Xingan; Liu Huiqin [Hunan Univ., Changsha (China). Dept. of Chemistry and Chemical Engineering

1996-08-01

434

Weld monitor and failure detector for nuclear reactor system  

DOEpatents

Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

Sutton, Jr., Harry G. (Mt. Lebanon, PA)

1987-01-01

435

NEUTRON DOSE CALIBRATION OF INDIUM PERSONNEL DOSIMETERS FOR PROMPT-CRITICAL METAL BURSTS  

Microsoft Academic Search

Thermoplastic personnel security badges containing a 0.9 gm indium foil ; were mounted on tissue-equivalent phantoms placed 1 to 4 m from the unmoderated, ; untamped, Oralloy reactor, Godiva, and subjected to radiation from prompt-; critical bursts of about 10¹⁶ fissions. Badge activities immediately after ; exposure ranged from 50 mr\\/hr to 1 mr\\/hr for exposures made out-of-doors, and 150

J. W. Wachter; L. C. Emerson

1956-01-01

436

Innovative energy production in fusion reactors  

NASA Astrophysics Data System (ADS)

Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

1993-10-01

437

Gaseous fuel reactor systems for aerospace applications  

NASA Technical Reports Server (NTRS)

Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

Thom, K.; Schwenk, F. C.

1977-01-01

438

Low power reactor for remote applications  

SciTech Connect

A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs.

Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

1985-01-01

439

Oklo reactors and implications for nuclear science  

E-print Network

We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross sections are input to all Oklo modeling and we discuss a parameter, the $^{175}$Lu ground state cross section for thermal neutron capture leading to the isomer $^{176\\mathrm{m}}$ Lu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant $\\alpha$ and the ratio $X_q=m_q/\\Lambda$ (where $m_...

Davis, E D; Sharapov, E I

2014-01-01

440

Nuclear reactor shutdown control rod assembly  

DOEpatents

A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

Bilibin, Konstantin (North Hollywood, CA)

1988-01-01

441

Gas-Fast Reactor Fuel Fabrication  

SciTech Connect

The gas-cooled fast reactor is a high temperature helium cooled Generation IV reactor concept. Operating parameters for this type of reactor are well beyond those of current fuels so a novel fuel must be developed. One fuel concept calls for UC particles dispersed throughout a SiC matrix. This study examines a hybrid reaction bonding process as a possible fabrication route for this fuel. Processing parameters are also optimized. The process combines carbon and SiC powders and a carbon yielding polymer. In order to obtain dense reaction bonded SiC samples the porosity to carbon ratio in the preform must be large enough to accommodate SiC formation from the carbon present in the sample, however too much porosity reduces mechanical integrity which leads to poor infiltration properties . The porosity must also be of a suitable size to allow silicon transport throughout the sample but keep residual silicon to a minimum.

Randall Fielding; Mitchell Meyer; Ramprashad Prabhakaran; Jim Miller; Sean McDeavitt

2005-11-01

442

Mirror Advanced Reactor Study interim design report  

SciTech Connect

The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

Not Available

1983-04-01

443

OCLATOR (One Coil Low Aspect Toroidal Reactor)  

SciTech Connect

A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the ..beta.. limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR (One Coil Low Aspect Toroidal Reactor).

Yoshikawa, S.

1980-02-01

444

Gaseous fuel reactors for power systems  

NASA Technical Reports Server (NTRS)

The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are: small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems.

Helmick, H. H.; Schwenk, F. C.

1978-01-01

445

Living anionic polymerization using a microfluidic reactor.  

PubMed

Living anionic polymerizations were conducted within aluminum-polyimide microfluidic devices. Polymerizations of styrene in cyclohexane were carried out at various conditions, including elevated temperature (60 degrees C) and high monomer concentration (42%, by volume). The reactions were safely maintained at a controlled temperature at all points in the reactor. Conducting these reactions in a batch reactor results in uncontrolled heat generation with potentially dangerous rises in pressure. Moreover, the microfluidic nature of these devices allows for flexible 2D designing of the flow channel. Four flow designs were examined (straight, periodically pinched, obtuse zigzag, and acute zigzag channels). The ability to use the channel pattern to increase the level of mixing throughout the reactor was evaluated. When moderately high molecular mass polymers with increased viscosity were made, the patterned channels produced polymers with narrower PDI, indicating that passive mixing arising from the channel design is improving the reaction conditions. PMID:19107294

Iida, Kazunori; Chastek, Thomas Q; Beers, Kathryn L; Cavicchi, Kevin A; Chun, Jaehun; Fasolka, Michael J

2009-01-21

446

Gas core reactors for coal gasification  

NASA Technical Reports Server (NTRS)

The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H2 and CO in the reactor cavity, indicating a 98% conversion of water and coal at only 1500 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H2O to CO2 and H2. Furthermore, it is shown the H2 obtained per pound of carbon has 23% greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H2, fresh water and sea salts from coal.

Weinstein, H.

1976-01-01

447

Particle bed reactor nuclear rocket concept  

NASA Technical Reports Server (NTRS)

The particle bed reactor nuclear rocket concept consists of fuel particles (in this case (U,Zr)C with an outer coat of zirconium carbide). These particles are packed in an annular bed surrounded by two frits (porous tubes) forming a fuel element; the outer one being a cold frit, the inner one being a hot frit. The fuel element are cooled by hydrogen passing in through the moderator. These elements are assembled in a reactor assembly in a hexagonal pattern. The reactor can be either reflected or not, depending on the design, and either 19 or 37 elements, are used. Propellant enters in the top, passes through the moderator fuel element and out through the nozzle. Beryllium used for the moderator in this particular design to withstand the high radiation exposure implied by the long run times.

Ludewig, Hans

1991-01-01

448

Reactor scaling for large area plasma processing  

NASA Astrophysics Data System (ADS)

Migration to 300 mm wafer size is a topic of active research and development in semiconductor processing. Plasma process tool development for 300 mm wafers faces significant technical challanges, particularly from the point of view of process uniformity across the wafer. Process and reactor modeling can play a complementary role in tool design and development. Many of the models in the literature have focused thus far on discharge physics aspects of the modeling excercise. In this work, we also focus on gas flow and other reactor issues. The model involves two dimensional solution to compressible gas flow, energy and multispecies conservation equations. A simplified chemical scheme for the chlorine etching of silicon is considered. Simulation results are presented for various reactor geometrical parameters, pressures, and flow rates. Scaling to 300 mm wafer is discussed.

Meyyappan, M.

1996-10-01

449

Reactor control rod timing system. [LMFBR  

DOEpatents

A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

Wu, P.T.K.

1980-03-18

450

Tritium issues in commercial pressurized water reactors  

SciTech Connect

Tritium has become an important radionuclide in commercial Pressurized Water Reactors because of its mobility and tendency to concentrate in plant systems as tritiated water during the recycling of reactor coolant. Small quantities of tritium are released in routine regulated effluents as liquid water and as water vapor. Tritium has become a focus of attention at commercial nuclear power plants in recent years due to inadvertent, low-level, chronic releases arising from routine maintenance operations and from component failures. Tritium has been observed in groundwater in the vicinity of stations. The nuclear industry has undertaken strong proactive corrective measures to prevent recurrence, and continues to eliminate emission sources through its singular focus on public safety and environmental stewardship. This paper will discuss: production mechanisms for tritium, transport mechanisms from the reactor through plant, systems to the environment, examples of routine effluent releases, offsite doses, basic groundwater transport and geological issues, and recent nuclear industry environmental and legal ramifications. (authors)

Jones, G. [Constellation Energy Group, R.E. Ginna Nuclear Power Plant, Ontario, NY (United States)

2008-07-15

451

Reactor safety for the Space Exploration Initiative  

NASA Technical Reports Server (NTRS)

A task force was created by the National Aeronautics and Space Administration to conduct a 90-day study to support efforts to determine requirements to meet the goals of the Space Exploration Initiative. The task force identified the need for a nuclear reactor to provide the electrical power required as the outpost power demands on the moon and Mars evolve into hundreds of kilowatts. A preliminary hazards analysis has been performed to examine safety aspects of nuclear reactor power systems for representative missions to the moon and Mars. Mission profiles were defined for reference lunar and Martian flights. Potential alternatives to each mission phase were also defined. Accident scenarios were qualitatively defined for the mission phases. The safety issues decay heat removal, reactor control, disposal, criticality, end-of-mission shutdown, radiation exposure, the Martian environment, high speed impact on the surfaces of the moon or Mars, and return flyby trajectories were identified.

Dix, Terry E.

1991-01-01

452

Two on the International Thermonuclear Experimental Reactor  

NSDL National Science Digital Library

The International Thermonuclear Experimental Reactor (ITER) is the name of a revolutionary new power plant that, when completed, will produce the first sustained nuclear fusion reactions. ITER is the culmination of a massive effort, slated as "the world's largest international cooperative research and development project after the International Space Station." In a news report from the British Broadcasting Corporation, France has been designated as the preferred site for ITER by the European Union. A meeting in December 2003 will make an official decision on the reactor's destination. The ITER homepage has a wealth of information on the reactor's proposed design, nuclear fusion, and research efforts. Additionally, the site is routinely updated with news about the remarkable project. [CL

453

Applications of the Dow TRIGA research reactor  

SciTech Connect

The Dow TRIGA Mark I reactor is a one-hundred kilowatt nuclear reactor installed by General Atomics using the Torrey Pines reactor console, seventy-five used stainless-steel clad fuel elements and one new aluminium clad fuel element. The reactor is equipped with a forty-position rotating Lazy Susan in the reflector, a pneumatic transfer system with its terminal in the F-ring of the core, and a central thimble which can be used for irradiation of samples in the center of the core or which can be emptied of the shielding water to produce a beam of neutrons and gamma rays in the area atop the pool. Samples can also be irradiated in or near the core. There is no provision for pulsing this TRIGA reactor. The neutron activation analysis program uses the Dow TRIGA reactor as a source of thermal neutrons and a Kaman A711 generator as a source of 14-MeV neutrons. The associated counting equipment includes one Gel(Li) detector and two Nal(Tl) detectors, each using a 100-position sample changer and all interfaced to a Tracor-Northern TN-11 data acquisition and computing system, one Ge(Li) detector and its TN-11 system for the pneumatic transfer system and the beam tube experiments, and two NaKTl)detectors with a TN-4000 system used with the Kaman neutron generator. The activation analysis program gets samples from all parts of the manufacturing and research efforts at Dow: raw materials, intermediates, products, effluents, research samples, samples from customers who use Dow products, and environmental samples. This presentation is devoted to the progress made in the past year on the pneumatic transfer system and the renewed work on prompt gamma-ray spectroscopy including the extensive process of method validation.

Kocher, C.W.; Quinn, T.J.; Krueger, D.A. [Dow Chemical Co., Midland, MI (United States)

1982-07-01

454

Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor  

SciTech Connect

The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

S. Blaine Grover

2006-10-01

455

Reactor design for nuclear electric propulsion  

NASA Technical Reports Server (NTRS)

The paper analyzes the consequences of heat pipe failures, that resulted in modifications to the basic design of a heat-pipe cooled, fast spectrum nuclear reactor and led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO2 and molybdenum sheets that span the diameter of the core. Design characteristics are presented and compared for two reactors. A conceptual design for a heat exchanger between the core and the thermionic converter assembly is described. This heat exchanger would provide design and fabrication decoupling of these two assemblies.

Koenig, D. R.; Ranken, W. A.

1979-01-01

456

Theta 13 Determination with Nuclear Reactors  

E-print Network

Recently there has been a lot of interest around the world in the use of nuclear reactors to measure theta 13, the last undetermined angle in the 3-neutrino mixing scenario. In this paper the motivations for theta 13 measurement using short baseline nuclear reactor experiments are discussed. The features of such an experiment are described in the context of Double Chooz, which is a new project planned to start data-taking in 2008, and to reach a sensitivity of sinsq(2 theta 13) < 0.03.

F. Dalnoki-Veress

2004-06-24

457

Operating manual for the Bulk Shielding Reactor  

SciTech Connect

The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.

Not Available

1983-04-01

458

Operating manual for the Bulk Shielding Reactor  

SciTech Connect

The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

Not Available

1987-03-01

459

Perspectives on reactor safety. Revision 1  

SciTech Connect

The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

1997-11-01

460

Distributed computing and nuclear reactor analysis  

SciTech Connect

Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations.

Brown, F.B.; Derstine, K.L.; Blomquist, R.N.

1994-03-01

461

Recycling of vanadium alloys in fusion reactors  

NASA Astrophysics Data System (ADS)

The feasibility of reprocessing a vanadium alloy after its use as a structural material in a fusion reactor, in order to enable its subsequent hands-on recycling within the nuclear industry, has been determined. For less neutron-exposed components, clearance of materials has also been considered. A conceptual model for the radiochemical processing of the alloy has been developed and tested experimentally. Using di-2-ethyl-hexyl-phosphoric acid it is possible to purify the components of the V-Cr-Ti alloy after its exposure in a fusion reactor down to the required level of activation product concentrations.

Bartenev, S. A.; Ciampichetti, A.; Firsin, N. G.; Forrest, R. A.; Kolbasov, B. N.; Kvasnitskij, I. B.; Romanov, P. V.; Romanovskij, V. N.; Zucchetti, M.

2007-08-01

462

DOE/NE robotics for advanced reactors  

SciTech Connect

This bimonthly progress report for February through March, 1991, for the US Department of Energy Robotics for Advanced Reactors program contains information on research efforts in the following areas at the noted facilities: modeling of the Fuel Cycle Facility of the Integral Fast Reactor (IFR) program (University of Florida), assembly of infrared range sensors (University of Michigan), demonstration of the autonomous surveillance of a waste storage container for radioactive surface contamination (Oak Ridge National Laboratory), development of a simulation and animation environment for sensor-based robots (University of Tennessee), and machining and installation of the actuator test stand and associated fixtures and adapters (University of Texas). (MHB)

Not Available

1991-01-01

463

Low exchange element for nuclear reactor  

DOEpatents

A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.

Brogli, Rudolf H. (Aarau, CH); Shamasunder, Bangalore I. (Encinitas, CA); Seth, Shivaji S. (Encinitas, CA)

1985-01-01

464

Space reactor power system programs overview  

NASA Technical Reports Server (NTRS)

The present development history and current development status evaluation of space reactor power system technologies gives attention to subsystem and component readiness and performance, and assesses the technology data base available in each case. This data base characterization gives attention to the most compatible reactor-power conversion system combinations for prospective DOD and commercial missions, as well as NASA missions. Candidate systems for near, middle, and far term application are selected and prioritized on the basis of technical risk. The programs covered encompass SNAPs 1, 2, 8, and 10A, SNAP 50, and SP-100.

Bloomfield, Harvey S.

1992-01-01

465

A WIMS-NESTLE reactor physics model for an RBMK reactor  

SciTech Connect

This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given.

Perry, R.T. [Los Alamos National Lab., NM (United States); Meriwether, G.H. [Pacific Northwest National Lab., Richland, WA (United States)

1996-08-01

466

Practical Combinations of Light-Water Reactors and Fast-Reactors for Future Actinide Transmutation  

SciTech Connect

Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle.

Collins, Emory D [ORNL] [ORNL; Renier, John-Paul [ORNL] [ORNL

2007-01-01

467

Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors  

SciTech Connect

Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

2005-10-01

468

Polymerization in emulsion microdroplet reactors  

NASA Astrophysics Data System (ADS)

The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to concentration and micellization of the surfactant. At the same time, the silica solidifies around the surfactant structures, forming equally sized mesoporous particles. The procedure can be tuned to produce well-separated particles or alternatively particles that are linked together. The latter allows us to create 2D or 3D structures with hierarchical porosity. Oil, water, and surfactant liquid mixtures exhibit very complex phase behavior. Depending on the conditions, such mixtures give rise to highly organized structures. A proper selection of the type and concentration of surfactants determines the structuring at the nanoscale level. In this work, we show that hierarchically bimodal nanoporous structures can be obtained by templating silica microparticles with a specially designed surfactant micelle/microemulsion mixture. Tuning the phase state by adjusting the surfactant composition and concentration allows for the controlled design of a system where microemulsion droplets coexist with smaller surfactant micellar structures. The microemulsion droplet and micellar dimensions determine the two types of pore sizes (single nanometers and tens of nanometers). We also demonstrate the fabrication of carbon and carbon/platinum replicas of the silica microspheres using a "lost-wax" approach. Such particles have great potential for the design of electrocatalysts for fuel cells, chromatography separations, and other applications. It was determined that slight variations in microemulsion mixture components (electrolyte concentration, wt% of surfactants, oil to sol ratio, etc.) produces strikingly different pore morphologies and particle surface areas. Control over the size and structure of the smaller micelle-templated pores was made possible by varying the length of the hydrocarbon block within the trimethyl ammonium bromide surfactant and characterized using X-ray diffraction. The effect of emulsion aging was studied by synthesizing particles at progressive time levels from a sample emulsion. It was discovered surface pore size increases after just a few hours, with

Carroll, Nick J.

469

Daddy, What's a Nuclear Reactor?  

SciTech Connect

No matter what we think of the nuclear industry, it is part of mankind's heritage. The decommissioning process is slowly making facilities associated with this industry disappear and not enough is being done to preserve the information for future generations. This paper provides some food for thought and provides a possible way forward. Industrial archaeology is an ever expanding branch of archaeology that is dedicated to preserving, interpreting and documenting our industrial past and heritage. Normally it begins with analyzing an old building or ruins and trying to determine what was done, how it was done and what changes might have occurred during its operation. We have a unique opportunity to document all of these issues and provide them before the nuclear facility disappears. Entombment is an acceptable decommissioning strategy; however we would have to change our concept of entombment. It is proposed that a number of nuclear facilities be entombed or preserved for future generations to appreciate. This would include a number of different types of facilities such as different types of nuclear power and research reactors, a reprocessing plant, part of an enrichment plant and a fuel manufacturing plant. One of the main issues that would require resolution would be that of maintaining information of the location of the buried facility and the information about its operation and structure, and passing this information on to future generations. This can be done, but a system would have to be established prior to burial of the facility so that no information would be lost. In general, our current set of requirements and laws may need to be re-examined and modified to take into account these new situations. As an alternative, and to compliment the above proposal, it is recommended that a study and documentation of the nuclear industry be considered as part of twentieth century industrial archaeology. This study should not only include the power and fuel cycle facilities, but also the nuclear weapons complex and the industrial and research sectors. This would be a large chore due to the considerable number of different types of facilities that have been used in these industries, but it would be a worthwhile endeavor. This study would gather information that would normally be lost due to the decommissioning process and allow future generations to appreciate these industries. Because of the volume and varying types of facilities, it might be more beneficial to produce a set of studies relating to different aspects of the industry. A logical division would be the separation of the commercial nuclear industry and the nuclear weapons complex. The separation of the fuel cycle facilities may also be considered. If done properly, this could result in a set of documents of interest to a wide audience. The current nuclear industry is slowly disappearing through the decommissioning process. This industry is unique and is part of mankind's heritage. It must not be forgotten and the information should be made available for future generations. The U.S. Department of Energy and the National Park Service are doing some limited preservation of information, but I do not believe its enough. It is not being done in a manner that will preserve the true activities that were performed. It is recommended that the American Nuclear Society, along with other organizations, evaluate this proposal and possibly provide funds for a set of studies to be prepared and ensure that this valuable part of our heritage is not lost.

Reisenweaver, Dennis W. [Alion Science and Technology, 1475 Central Ave., Los Alamos, NM 87544 (United States)

2008-01-15

470

Advanced burner test reactor preconceptual design report.  

SciTech Connect

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

2008-12-16

471

Post-doc: Modelling & Control of Continuous Reactors  

E-print Network

Post-doc: Modelling & Control of Continuous Reactors Engels -- Faculty/department Mechanical in groundbreaking scientific research in the fields of mechanical, maritime and materials engineering. 3ME model using first principles modelling. Reaction kinetics and flow properties of reactors

Langendoen, Koen

472

Analysis of UF6 breeder reactor power plants  

NASA Technical Reports Server (NTRS)

Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

Clement, J. D.; Rust, J. H.

1976-01-01

473

Experimental and Computational Study of Fluid Dynamics in Solar Reactor  

E-print Network

The experimental simulation and a computational validation of a methane-cracking solar reactor powered by solar energy is the focus of this article. A solar cyclone reactor operates at over 1000 °C where the methane decomposition reaction takes...

Chien, Min-Hsiu

2014-02-19

474

Research reactor de-fueling and fuel shipment  

SciTech Connect

Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

Ice, R.D.; Jawdeh, E.; Strydom, J.

1998-08-01

475

78 FR 58575 - Review of Experiments for Research Reactors  

Federal Register 2010, 2011, 2012, 2013, 2014

...NRC-2013-0219] Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory...Alexander.Adams@nrc.gov, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington DC...

2013-09-24

476

78 FR 64028 - Decommissioning of Nuclear Power Reactors  

Federal Register 2010, 2011, 2012, 2013, 2014

...NRC-2012-0035] Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory...guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC...

2013-10-25

477

Steady-state differential calorimeter measures gamma heating in reactor  

NASA Technical Reports Server (NTRS)

Steady-state differential calorimeter, which displays good accuracy and reproducibility of results, is used to measure gamma heating in a reactor environment. The calorimeter has a long life expectancy since it is virtually unharmed by the reactor environment.

Herbst, D.; Talboy, J. H.

1968-01-01

478

9 CFR 78.7 - Brucellosis reactor cattle.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Brucellosis reactor cattle. 78.7 Section 78.7 Animals... Restrictions on Interstate Movement of Cattle Because of Brucellosis § 78.7 Brucellosis reactor cattle. (a) Destination. Brucellosis...

2011-01-01

479

Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology  

SciTech Connect

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

Toseland, B.A.

1998-10-29

480

Ssessment methodology for proliferation resistant fast breeder reactor  

E-print Network

Due to perceived proliferation risks, current US fast reactor designs have avoided the use of uranium blankets. While reducing the amount of plutonium produced, this omission also restrains the reactor design space and has ...

Singh, Mohit, S.M. Massachusetts Institute of Technology

2014-01-01

481

Development of a system model for advanced small modular reactors.  

SciTech Connect

This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

2014-01-01

482

IET. Typical detail during Snaptran reactor experiments. Shielding bricks protect ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

IET. Typical detail during Snaptran reactor experiments. Shielding bricks protect ion chamber beneath reactor on dolly. Photographer: Page Comiskey. Date: August 11, 1965. INEEL negative no. 65-4039 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

483

The TITAN reversed-field-pinch fusion reactor study  

SciTech Connect

This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors.

Not Available

1990-01-01

484

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

Bernard A. Toseland

2000-06-30

485

Reactor Physics Methods and Analysis Capabilities in SCALE  

SciTech Connect

The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

DeHart, Mark D [ORNL; Bowman, Stephen M [ORNL

2011-01-01

486

Investigation of bond graphs for nuclear reactor simulations  

E-print Network

This work proposes a simple and effective approach to modeling multiphysics nuclear reactor problems using bond graphs. The conventional method of modeling the coupled multiphysics transients in nuclear reactors is operator ...

Sosnovsky, Eugeny

2010-01-01

487

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

Bernard A. Toseland

2002-09-30

488

75 FR 78777 - Advisory Committee On Reactor Safeguards; Renewal  

Federal Register 2010, 2011, 2012, 2013, 2014

...on Reactor Safeguards was established by Section 29 of the Atomic Energy Act (AEA) of 1954, as amended. Its purpose is to...reactor accident phenomena; design of nuclear power plant structures, systems and components; materials science; and...

2010-12-16

489

Reactor technology. Progress report, January-March 1980  

SciTech Connect

Progress is reported concerning space reactor (SPAR) electric power supply; GCFR reactor safety experiments; structural analysis of HTGR, PWR, and BWR containment vessels and pressure vessels; heat pipe technology development; and nuclear criticality experiments and safety.

Breslow, M.; Sullivan, S. (eds.)

1980-06-01

490

Optimization algorithms in boiling water reactor lattice design  

E-print Network

Given the highly complex nature of neutronics and reactor physics, efficient methods of optimizing are necessary to effectively design the core reloading pattern and operate a nuclear reactor. The current popular methods ...

Burns, Chad (Chad D.), III

2013-01-01

491

Reactor Physics Methods and Analysis Capabilities in SCALE  

SciTech Connect

The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

Mark D. DeHart; Stephen M. Bowman

2011-05-01

492

Benchmark experiments for space Reactor neutron shielding of mission electronics  

Microsoft Academic Search

Experiments and calculations simulating the neutron shadow shield for a reactor-powered space vehicle are described, including calculations for a variety of shield configurations and materials, and an experimental benchmark test using a bare fast reactor.

John G. Williams; Insoo Jun; Wesley W. Sallee; Michael Cherng

2004-01-01

493

Mother Nature's nuclear reactor described by WUSTL researchers  

NSDL National Science Digital Library

This website contains an article about a natural nuclear reactor, which was located in what is now Africa. The article contains quotations from researchers plus information about the discovery and how a natural reactor is possible.

2007-07-16

494

77 FR 61446 - Proposed Revision Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors  

Federal Register 2010, 2011, 2012, 2013, 2014

...Accident Evaluation for New Reactors AGENCY: Nuclear Regulatory Commission. ACTION...Cubbage, Office of New Reactors, U.S. Nuclear Regulatory Commission, Washington...Reactors and the Office of Nuclear Reactor Regulation are revising...

2012-10-09

495

77 FR 66649 - Proposed Revision to Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors  

Federal Register 2010, 2011, 2012, 2013, 2014

...Accident Evaluation for New Reactors AGENCY: Nuclear Regulatory Commission. ACTION...Cubbage, Office of New Reactors, U.S. Nuclear Regulatory Commission, Washington...Reactors and the Office of Nuclear Reactor Regulation are revising...

2012-11-06

496

Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980  

SciTech Connect

Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

Not Available

1980-05-01

497

A fast spectrum dual path flow cermet reactor  

SciTech Connect

A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket.

Anghaie, S.; Feller, G.J. (University of Florida, 202 Nuclear Sciences Center, Gainesville, Florida 32611 (United States)); Peery, S.D.; Parsley, R.C. (Pratt Whitney, M.S. 714-25, P.O. Box 109600, West Palm Beach, Florida 33410-9600 (United States))

1993-01-15

498

Seismic design of the ALMR (advanced liquid metal reactor)  

Microsoft Academic Search

Within an advanced liquid-metal reactor (ALMR) plant, the principal safety-related system is the reactor and its auxiliary equipment, all housed within a tornado-hardened, seismic category I structure called the reactor facility. The PRISM reactor module selected for the ALMR program, with a 6.05-m (19-ft, 10-in.)-diam and a height of â¼18.9 m (62 ft) was considered to be the safety-related equipment

C. R. Snyder; F. F. Tajirian

1990-01-01

499

Reactor D and D at Argonne National Laboratory - lessons learned.  

SciTech Connect

This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals.

Fellhauer, C. R.

1998-03-23

500

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

SciTech Connect

Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

2008-08-06