Science.gov

Sample records for gp64 protein analysis

  1. Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum.

    PubMed

    Takaoka, N; Fukuzawa, M; Saito, T; Sakaitani, T; Ochiai, H

    1999-10-28

    We cloned a genomic fragment of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum by inverse PCR. Primer extension analysis identified a major transcription start site 65 bp upstream of the translation start codon. The promoter region of the gp64 gene contains sequences homologous to a TATA box at position -47 to -37 and to an initiator (Inr, PyPyCAPyPyPyPy) at position -3 to +5 from the transcription start site. Successively truncated segments of the promoter were tested for their ability to drive expression of the beta-galactosidase reporter gene in transformed cells; also the difference in activity between growth conditions was compared. The results indicated that there are two positive vegetative regulatory elements extending between -187 and -62 bp from the transcription start site of the gp64 promoter; also their activity was two to three times higher in the cells grown with bacteria in shaken suspension than in the cells grown in an axenic medium. PMID:10542319

  2. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity.

    PubMed

    Yu, Qianlong; Blissard, Gary W; Liu, Tong-Xian; Li, Zhaofei

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. PMID:26655244

  3. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein

    PubMed Central

    Ardisson-Araújo, Daniel M. P.; Melo, Fernando L.; Clem, Rollie J.; Wolff, José L. C.

    2015-01-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  4. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein.

    PubMed

    Ardisson-Araújo, Daniel M P; Melo, Fernando L; Clem, Rollie J; Wolff, José L C; Ribeiro, Bergmann M

    2016-02-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  5. Functional Analysis of the Autographa californica Multiple Nucleopolyhedrovirus GP64 Terminal Fusion Loops and Interactions with Membranes

    PubMed Central

    Dong, Sicong

    2012-01-01

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) glycoprotein GP64 is the major envelope protein of the budded virus (BV). GP64 is a class III fusion protein that mediates BV attachment to the cell surface and low-pH-triggered membrane fusion between the BV envelope and the endosome membrane during entry. Class III fusion proteins contain terminal looped structures that are believed to interact with membranes. To examine the functions of 3 loops found at the apex of the GP64 postfusion structure, we generated 2-alanine substitutions that scanned the two so-called fusion loops (loop 1 and loop 2) plus an adjacent loop structure (loop 3) that is closely attached to loop 2 and is also found at the apex of the GP64 postfusion structure. We identified essential residues from Y75 to T86 (loop 1) and N149 to H156 (loop 2) that are required for fusion activity, but no essential residues in loop 3. Further analysis revealed that critical fusion loop residues fall within two groups that are associated with either membrane merger (hemifusion) or fusion pore expansion. We next examined the interactions of soluble GP64 proteins and BV with membranes composed of various phospholipids. BV interacted directly with small unilamellar vesicles (SUVs) comprised of phospholipids phosphatidylcholine and phosphatidic acid (PC/PA) or phosphatidylcholine and phosphatidylserine (PC/PS) under neutral and acidic pH. We also examined the interactions of soluble GP64 constructs containing substitutions of the most hydrophobic residues within each of the two fusion loops. We found that a 2-residue substitution in either single loop (loop 1 [positions 81 and 82] or loop 2 [positions 153 and 154]) was not sufficient to substantially reduce the GP64-liposome interaction, but the same substitutions in both fusion loops severely reduced the GP64-liposome association at neutral pH. These results suggest that critical hydrophobic residues in both fusion loops may be involved in the

  6. A single amino acid substitution modulates low-pH-triggered membrane fusion of GP64 protein in Autographa californica and Bombyx mori nucleopolyhedroviruses

    SciTech Connect

    Katou, Yasuhiro; Yamada, Hayato; Ikeda, Motoko; Kobayashi, Michihiro

    2010-09-01

    We have previously shown that budded viruses of Bombyx mori nucleopolyhedrovirus (BmNPV) enter the cell cytoplasm but do not migrate into the nuclei of non-permissive Sf9 cells that support a high titer of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) multiplication. Here we show, using the syncytium formation assay, that low-pH-triggered membrane fusion of BmNPV GP64 protein (Bm-GP64) is significantly lower than that of AcMNPV GP64 protein (Ac-GP64). Mutational analyses of GP64 proteins revealed that a single amino acid substitution between Ac-GP64 H155 and Bm-GP64 Y153 can have significant positive or negative effects on membrane fusion activity. Studies using bacmid-based GP64 recombinant AcMNPV harboring point-mutated ac-gp64 and bm-gp64 genes showed that Ac-GP64 H155Y and Bm-GP64 Y153H substitutions decreased and increased, respectively, the multiplication and cell-to-cell spread of progeny viruses. These results indicate that Ac-GP64 H155 facilitates the low-pH-triggered membrane fusion reaction between virus envelopes and endosomal membranes.

  7. Betabaculovirus F proteins showed different efficiencies when rescuing the infectivity of gp64-null Autographa californica nucleopolyhedrovirus.

    PubMed

    Yin, Feifei; Wang, Manli; Tan, Ying; Deng, Fei; Vlak, Just M; Hu, Zhihong; Wang, Hualin

    2013-02-01

    The Agrotis segetum granulovirus (AgseGV) F protein was previously identified as the first betabaculovirus F protein with functional homology to Autographa californica nucleopolyhedrovirus (AcMNPV) GP64. In the current study, F proteins from Xestia c-nigrum granulovirus (XecnGV), Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), Choristoneura occidentalis granulovirus (ChocGV) and Plutella xylostella GV (PlxyGV) were studied for their ability to rescue the infectivity of gp64-null AcMNPV. Our results showed that most studied betabaculovirus F proteins could replace the function of AcMNPV GP64, however, their efficiencies to rescue the infectivity of gp64-null AcMNPV were substantially different. PlxyF, although fusogenic, was the only protein that failed to substitute the function of AcMNPV GP64. Further studies using Sf9(0p1D) cell line showed that PlxyF appeared to be properly incorporated into AcMNPV virions and underwent correct post-translational cleavage and N-linked glycosylation. However, the gp64-null AcMNPV containing PlxyF could not be propagated in either Sf9 or P. xylostella cells. PMID:23245471

  8. Mapping the conformational epitope of a neutralizing antibody (AcV1) directed against the AcMNPV GP64 protein

    SciTech Connect

    Zhou Jian; Blissard, Gary W. . E-mail: gwb1@cornell.edu

    2006-09-01

    The envelope glycoprotein GP64 of Autographa californica nucleopolyhedrovirus (AcMNPV) is necessary and sufficient for the acid-induced membrane fusion activity that is required for fusion of the budded virus (BV) envelope and the endosome membrane during virus entry. Infectivity of the budded virus (BV) is neutralized by AcV1, a monoclonal antibody (MAb) directed against GP64. Prior studies indicated that AcV1 recognizes a conformational epitope and does not inhibit virus attachment to the cell, but instead inhibits entry at a step following virus attachment. We found that AcV1 recognition of GP64 was lost upon exposure of GP64 to low pH (pH 4.5) and restored by returning GP64 to pH 6.2. In addition, the AcV1 epitope was lost upon denaturation of GP64 in SDS, but the AcV1 epitope was restored by refolding the protein in the absence of SDS. Using truncated GP64 proteins expressed in insect cells, we mapped the AcV1 epitope to a 24 amino acid region in the central variable domain of GP64. When sequences within the mapped AcV1 epitope were substituted with a c-Myc epitope and the resulting construct was used to replace wt GP64 in recombinant AcMNPV viruses, the modified GP64 protein appeared to function normally. However, an anti-c-Myc monoclonal antibody did not neutralize infectivity of those viruses. Because binding of the c-Myc MAb to the same site in the GP64 sequence did not result in neutralization, these studies suggest that AcV1 neutralization may result from a specific structural constraint caused by AcV1 binding and not simply by steric hindrance caused by antibody binding at this position in GP64.

  9. Antisense RNA inactivation of gene expression of a cell-cell adhesion protein (gp64) in the cellular slime mold Polysphondylium pallidum.

    PubMed

    Funamoto, S; Ochiai, H

    1996-05-01

    The gp64 protein of Polysphondylium pallidum has been shown to mediate EDTA-stable cell-cell adhesion. To explore the functional role of gp64, we made an antisense RNA expression construct designed to prevent the gene expression of gp64; the construct was introduced into P. pallidum cells and the transformants were characterised. The antisense RNA-expressing clone L3mc2 which had just been harvested at the growth phase tended to re-form in aggregates smaller in size than did the parental cells in either the presence or absence of 10 mM EDTA. In contrast, 6.5-hour starved L3mc2 cells remained considerably dissociated from each other after 5 minutes gyrating, although aggregation gradually increased by 50% during a further 55 minutes gyrating in the presence of 10 mM EDTA. Correspondingly, L3mc2 lacked specifically the cell-cell adhesion protein, gp64. We therefore conclude that the gp64 protein is involved in forming the EDTA-resistant cell-cell contact. In spite of the absence of gp64, L3mc2 exhibited normal developmental processes, a fact which demonstrates that another cell-cell adhesion system exists in the development of Polysphondylium. This is the first report in which an antisense RNA technique was successfully applied to Polysphondylium. PMID:8743948

  10. Control of baculovirus gp64-induced syncytium formation by membrane lipid composition.

    PubMed Central

    Chernomordik, L; Leikina, E; Cho, M S; Zimmerberg, J

    1995-01-01

    We have investigated the effects of membrane lipid composition on biological membrane fusion triggered by low pH and mediated by the baculovirus envelope glycoprotein gp64. Lysolipids, either added exogenously or produced in situ by phospholipase A2 treatment of cell membranes, reversibly inhibited syncytium formation. Lysolipids also decreased the baculovirus infection rate. In contrast, oleic and arachidonic acids and monoolein promoted cell-cell fusion. Membrane lipid composition affected pH-independent processes which followed the low-pH-induced change in fusion protein conformation. Inhibition and promotion of membrane fusion by a number of lipids could not be explained by mere binding or incorporation into membranes, but rather was correlated with the effective molecular shape of exogenous lipids. Our data are consistent with the hypothesis that membrane fusion proceeds through highly bent membrane intermediates (stalks) having a net negative curvature. Consequently, inverted cone-shaped lysolipids inhibit and cone-shaped cis-unsaturated fatty acids promote stalk formation and, ultimately, membrane fusion. PMID:7707532

  11. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody

    PubMed Central

    2013-01-01

    Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer

  12. Baculoviral display of the green fluorescent protein and rubella virus envelope proteins.

    PubMed

    Mottershead, D; van der Linden, I; von Bonsdorff, C H; Keinänen, K; Oker-Blom, C

    1997-09-29

    The ability to display heterologous proteins and peptides on the surface of different types of bacteriophage has proven extremely useful in protein structure/function studies. To display such proteins in a eucaryotic environment, we have produced a vector allowing for fusion of proteins to the amino-terminus of the Autographa californica nuclear polyhedrosis virus (AcNPV) major envelope glycoprotein, gp64. Such fusion proteins incorporate into the baculoviral virion and display the FLAG epitope tag. We have further produced recombinant baculoviruses displaying the green fluorescent protein (GFP) and the rubella virus envelope proteins, E1 and E2. The incorporation of the GFPgp64, E1gp64, and E2gp64 fusion proteins into the baculovirus particle was demonstrated by western blot analysis of purified budded virus. This is the first report of the display of the GFP protein or the individual rubella virus spike proteins on the surface of an enveloped virus. Such a eucaryotic viral display system may be useful for the display of proteins dependent on glycosylation for activity and for targeting of recombinant baculoviruses to novel host cell types as a gene transfer vehicle. PMID:9325155

  13. Protein Analysis

    NASA Astrophysics Data System (ADS)

    Chang, Sam K. C.

    Proteins are an abundant component in all cells, and almost all except storage proteins are important for biological functions and cell structure. Food proteins are very complex. Many have been purified and characterized. Proteins vary in molecular mass, ranging from approximately 5000 to more than a million Daltons. They are composed of elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Twenty α-amino acids are the building blocks of proteins; the amino acid residues in a protein are linked by peptide bonds. Nitrogen is the most distinguishing element present in proteins. However, nitrogen content in various food proteins ranges from 13.4 to 19.1% (1) due to the variation in the specific amino acid composition of proteins. Generally, proteins rich in basic amino acids contain more nitrogen.

  14. Bioinformatics in protein analysis.

    PubMed

    Persson, B

    2000-01-01

    The chapter gives an overview of bioinformatic techniques of importance in protein analysis. These include database searches, sequence comparisons and structural predictions. Links to useful World Wide Web (WWW) pages are given in relation to each topic. Databases with biological information are reviewed with emphasis on databases for nucleotide sequences (EMBL, GenBank, DDBJ), genomes, amino acid sequences (Swissprot, PIR, TrEMBL, GenePept), and three-dimensional structures (PDB). Integrated user interfaces for databases (SRS and Entrez) are described. An introduction to databases of sequence patterns and protein families is also given (Prosite, Pfam, Blocks). Furthermore, the chapter describes the widespread methods for sequence comparisons, FASTA and BLAST, and the corresponding WWW services. The techniques involving multiple sequence alignments are also reviewed: alignment creation with the Clustal programs, phylogenetic tree calculation with the Clustal or Phylip packages and tree display using Drawtree, njplot or phylo_win. Finally, the chapter also treats the issue of structural prediction. Different methods for secondary structure predictions are described (Chou-Fasman, Garnier-Osguthorpe-Robson, Predator, PHD). Techniques for predicting membrane proteins, antigenic sites and postranslational modifications are also reviewed. PMID:10803381

  15. INITIAL SIZE AND DYNAMICS OF VIRAL FUSION PORES ARE A FUNCTION OF THE FUSION PROTEIN MEDIATING MEMBRANE FUSION

    PubMed Central

    Plonsky, I.; Kingsley, D. H.; Rashtian, A.; Blank, P.S.; Zimmerberg, J.

    2013-01-01

    To investigate the role of the fusogenic protein in the initial size and dynamics of the pore that widens to finalize membrane fusion, two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the hemaggluttinin of influenza X31 (HA). The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human red blood cells (RBC) upon acidification of the medium. High time resolution electrophysiological study of fusion pore conductance revealed fundamental differences in a) the initial pore conductance (pores created by HA were smaller than those created by GP64), b) the ability of pores to flicker (only HA-mediated pores flickered), and c) the time required for pore formation (HA-mediated pores took much longer to form following acidification). Thus 1) HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and 2) fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein. PMID:18208404

  16. Phylogenetic analysis of otospiralin protein

    PubMed Central

    Torktaz, Ibrahim; Behjati, Mohaddeseh; Rostami, Amin

    2016-01-01

    Background: Fibrocyte-specific protein, otospiralin, is a small protein, widely expressed in the central nervous system as neuronal cell bodies and glia. The increased expression of otospiralin in reactive astrocytes implicates its role in signaling pathways and reparative mechanisms subsequent to injury. Indeed, otospiralin is considered to be essential for the survival of fibrocytes of the mesenchymal nonsensory regions of the cochlea. It seems that other functions of this protein are not yet completely understood. Materials and Methods: Amino acid sequences of otospiralin from 12 vertebrates were derived from National Center for Biotechnology Information database. Phylogenetic analysis and phylogeny estimation were performed using MEGA 5.0.5 program, and neighbor-joining tree was constructed by this software. Results: In this computational study, the phylogenetic tree of otospiralin has been investigated. Therefore, dendrograms of otospiralin were depicted. Alignment performed in MUSCLE method by UPGMB algorithm. Also, entropy plot determined for a better illustration of amino acid variations in this protein. Conclusion: In the present study, we used otospiralin sequence of 12 different species and by constructing phylogenetic tree, we suggested out group for some related species. PMID:27099854

  17. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  18. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  19. NAPS: Network Analysis of Protein Structures.

    PubMed

    Chakrabarty, Broto; Parekh, Nita

    2016-07-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue-residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein-protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  20. A protein structure data and analysis system.

    PubMed

    Tian, Hao; Sunderraman, Rajshekhar; Weber, Irene; Wang, Haibin; Yang, Hong

    2005-01-01

    In this paper, we present the design and implementation of a protein structure data and analysis system that is only used in the lab for analyzing the proprietary data. It is capable of storing public protein data, such as the data in Protein Data Bank (PDB) [1], and life scientists' proprietary data. This toolkit is targeted at life scientists who want to maintain proprietary protein structure data (may be incomplete), to search and query publicly known protein structures and to compare their structure data with others. The comparison functions can be used to find structure differences between two proteins at atom level, especially in mutant versions of proteins. The system can also be used as a tool of choosing better protein structure template in new protein's tertiary structure prediction. The system is developed in Java and the protein data is stored in a relational database (Oracle 9i). PMID:17282836

  1. Comparative analysis of rigidity across protein families.

    PubMed

    Wells, S A; Jimenez-Roldan, J E; Römer, R A

    2009-01-01

    We present a comparative study in which 'pebble game' rigidity analysis is applied to multiple protein crystal structures, for each of six different protein families. We find that the main-chain rigidity of a protein structure at a given hydrogen bond energy cutoff is quite sensitive to small structural variations, and conclude that the hydrogen bond constraints in rigidity analysis should be chosen so as to form and test specific hypotheses about the rigidity of a particular protein. Our comparative approach highlights two different characteristic patterns ('sudden' or 'gradual') for protein rigidity loss as constraints are removed, in line with recent results on the rigidity transitions of glassy networks. PMID:19773604

  2. Stochastic model for protein flexibility analysis

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Wei, Guo-Wei

    2013-12-01

    Protein flexibility is an intrinsic property and plays a fundamental role in protein functions. Computational analysis of protein flexibility is crucial to protein function prediction, macromolecular flexible docking, and rational drug design. Most current approaches for protein flexibility analysis are based on Hamiltonian mechanics. We introduce a stochastic model to study protein flexibility. The essential idea is to analyze the free induction decay of a perturbed protein structural probability, which satisfies the master equation. The transition probability matrix is constructed by using probability density estimators including monotonically decreasing radial basis functions. We show that the proposed stochastic model gives rise to some of the best predictions of Debye-Waller factors or B factors for three sets of protein data introduced in the literature.

  3. Site-directed analysis on protein hydrophobicity.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2014-07-01

    Hydrophobicity of a protein is considered to be one of the major intrinsic factors dictating the protein aggregation propensity. Understanding how protein hydrophobicity is determined is, therefore, of central importance in preventing protein aggregation diseases and in the biotechnological production of human therapeutics. Traditionally, protein hydrophobicity is estimated based on hydrophobicity scales determined for individual free amino acids, assuming that those scales are unaltered when amino acids are embedded in a protein. Here, we investigate how the hydrophobicity of constituent amino acid residues depends on the protein context. To this end, we analyze the hydration free energy-free energy change on hydration quantifying the hydrophobicity-of the wild-type and 21 mutants of amyloid-beta protein associated with Alzheimer's disease by performing molecular dynamics simulations and integral-equation calculations. From detailed analysis of mutation effects on the protein hydrophobicity, we elucidate how the protein global factor such as the total charge as well as underlying protein conformations influence the hydrophobicity of amino acid residues. Our results provide a unique insight into the protein hydrophobicity for rationalizing and predicting the protein aggregation propensity on mutation, and open a new avenue to design aggregation-resistant proteins as biotherapeutics. PMID:24817476

  4. Analysis of Multidomain Protein Dynamics.

    PubMed

    Roy, Amitava; Hua, Duy P; Post, Carol Beth

    2016-01-12

    Proteins with a modular architecture of multiple domains connected by linkers often exhibit diversity in the relative positions of domains, while the domain tertiary structure remains unchanged. The biological function of these modular proteins, or the regulation of their activity, depends on the variation in domain orientation and separation. Accordingly, careful characterization of interdomain motion and correlated fluctuations of multidomain systems is relevant for understanding the functional behavior of modular proteins. Molecular dynamics (MD) simulations provides a powerful approach to study these motions in atomic detail. Nevertheless, the common procedure for analyzing fluctuations from MD simulations after rigid-body alignment fails for multidomain proteins; it greatly overestimates correlated positional fluctuations in the presence of relative domain motion. We show here that expressing the atomic motions of a multidomain protein as a combination of displacement within the domain reference frame and motion of the relative domains correctly separates the internal motions to allow a useful description of correlated fluctuations. We illustrate the methodology of separating the domain fluctuations and local fluctuations by application to the tandem SH2 domains of human Syk protein kinase and by characterizing an effect of phosphorylation on the dynamics. Correlated motions are assessed from a distance covariance rather than the more common vector-coordinate covariance. The approach makes it possible to calculate the proper correlations in fluctuations internal to a domain as well as between domains. PMID:26675644

  5. Analysis of Electroblotted Proteins by Mass Spectrometry

    PubMed Central

    Luque-Garcia, Jose L.; Neubert, Thomas A.

    2015-01-01

    Summary Identification of proteins by mass spectrometry is crucial for better understanding of many biological, biochemical, and biomedical processes. Here we describe two methods for the identification of electroblotted proteins by on-membrane digestion prior to analysis by mass spectrometry. These on-membrane methods take approximately half the time of in-gel digestion and provide better digestion efficiency, due to the better accessibility of the protease to the proteins adsorbed onto the nitrocellulose, and better protein sequence coverage, especially for membrane proteins where large and hydrophobic peptides are commonly present. PMID:26139272

  6. Proteomic analysis of protein palmitoylation in adipocytes

    PubMed Central

    Ren, Wenying; Jhala, Ulupi S.; Du, Keyong

    2013-01-01

    Protein palmitoylation, by modulating the dynamic interaction between protein and cellular membrane, is involved in a wide range of biological processes, including protein trafficking, sorting, sub-membrane partitioning, protein-protein interaction and cell signaling. To explore the role of protein palmitoylation in adipocytes, we have performed proteomic analysis of palmitoylated proteins in adipose tissue and 3T3-L1 adipocytes and identified more than 800 putative palmitoylated proteins. These include various transporters, enzymes required for lipid and glucose metabolism, regulators of protein trafficking and signaling molecules. Of note, key proteins involved in membrane translocation of the glucose-transporter Glut4 including IRAP, Munc18c, AS160 and Glut4, and signaling proteins in the JAK-STAT pathway including JAK1 and 2, STAT1, 3 and 5A and SHP2 in JAK-STAT, were palmitoylated in cultured adipocytes and primary adipose tissue. Further characterization showed that palmitoylation of Glut4 and IRAP was altered in obesity, and palmitoylation of JAK1 played a regulatory role in JAK1 intracellular localization. Overall, our studies provide evidence to suggest a novel and potentially regulatory role for protein palmitoylation in adipocyte function. PMID:23599907

  7. Global Analysis of Posttranslational Protein Arginylation

    PubMed Central

    Rai, Reena; Bailey, Aaron O; Yates, John R; Wolf, Yuri I; Zebroski, Henry; Kashina, Anna

    2007-01-01

    Posttranslational arginylation is critical for embryogenesis, cardiovascular development, and angiogenesis, but its molecular effects and the identity of proteins arginylated in vivo are largely unknown. Here we report a global analysis of this modification on the protein level and identification of 43 proteins arginylated in vivo on highly specific sites. Our data demonstrate that unlike previously believed, arginylation can occur on any N-terminally exposed residue likely defined by a structural recognition motif on the protein surface, and that it preferentially affects a number of physiological systems, including cytoskeleton and primary metabolic pathways. The results of our study suggest that protein arginylation is a general mechanism for regulation of protein structure and function and outline the potential role of protein arginylation in cell metabolism and embryonic development. PMID:17896865

  8. Proteomic Analysis of Cytoskeleton Proteins in Fish.

    PubMed

    Gotesman, Michael; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2016-01-01

    In this chapter, we describe laboratory protocols for rearing fish and a simple and efficient method of extracting and identifying pathogen and host proteins that may be involved in entry and replication of commercially important fish viruses. We have used the common carp (Cyprinus carpio L.) and goldfish (Cyprinus auratus) as a model system for studies of proteins involved in viral entry and replication. The chapter describes detailed protocols for maintenance of carp, cell culture, antibody purification of proteins, and use of electrospray-ionization mass spectrometry analysis to screen and identify cytoskeleton and other proteins that may be involved in viral infection and propagation in fish. PMID:26498797

  9. Emerging techniques for ultrasensitive protein analysis.

    PubMed

    Yang, Xiaolong; Tang, Yanan; Alt, Ryan R; Xie, Xiaoyu; Li, Feng

    2016-06-21

    Many important biomarkers for devastating diseases and biochemical processes are proteins present at ultralow levels. Traditional techniques, such as enzyme-linked immunosorbent assays (ELISA), mass spectrometry, and protein microarrays, are often not sensitive enough to detect proteins with concentrations below the picomolar level, thus requiring the development of analytical techniques with ultrahigh sensitivities. In this review, we highlight the recent advances in developing novel techniques, sensors, and assays for ultrasensitive protein analysis. Particular attention will be focused on three classes of signal generation and/or amplification mechanisms, including the uses of nanomaterials, nucleic acids, and digital platforms. PMID:26898911

  10. Applications of display technology in protein analysis.

    PubMed

    Li, M

    2000-12-01

    Display technology refers to a collection of methods for creating libraries of modularly coded biomolecules that can be screened for desired properties. It has become a routine tool for enriching molecular diversity and producing novel types of proteins. The combination of an ever-increasing variety of libraries of modularly coded protein complexxes with the development of innovative approaches to select a wide array of desired properties has facilitated large-scale analyses of protein-protein/protein-substrate interactions, rapid isolation of antibodies (or antibody mimetics) without immunization, and function-based protein analysis. Several practical and theoretical challenges remain to be addressed before display technology can be readily applied to proteomic studies. PMID:11101802

  11. Automated Protein Assay Using Flow Injection Analysis

    NASA Astrophysics Data System (ADS)

    Wolfe, Carrie A. C.; Oates, Matthew R.; Hage, David S.

    1998-08-01

    The technique of flow injection analysis (FIA) is a common instrumental method used in detecting a variety of chemical and biological agents. This paper describes an undergraduate laboratory that uses FIA to perform a bicinchoninic acid (BCA) colorimetric assay for quantitating protein samples. The method requires less than 2 min per sample injection and gives a response over a broad range of protein concentrations. This method can be used in instrumental analysis labs to illustrate the principles and use of FIA, or as a means for introducing students to common methods employed in the analysis of biological agents.

  12. Atomic-level analysis of membrane-protein structure.

    PubMed

    Hendrickson, Wayne A

    2016-06-01

    Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly underrepresented in structural databases. Recently, focused consortium efforts and advances in methodology for protein production, crystallographic analysis and cryo-EM analysis have accelerated the pace of atomic-level structure determination of membrane proteins. PMID:27273628

  13. Analysis of Protein Oligomerization by Electrophoresis.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Sánchez-Tena, Susana; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-01-01

    A polypeptide chain can interact with other polypeptide chains and form stable and functional complexes called "oligomers." Frequently, biochemical analysis of these complexes is made difficult by their great size. Traditionally, size exclusion chromatography, immunoaffinity chromatography, or immunoprecipitation techniques have been used to isolate oligomers. Components of these oligomers are then further separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and identified by immunoblotting with specific antibodies. Although they are sensitive, these techniques are not easy to perform and reproduce. The use of Tris-acetate polyacrylamide gradient gel electrophoresis allows the simultaneous analysis of proteins in the mass range of 10-500 kDa. We have used this characteristic together with cross-linking reagents to analyze the oligomerization of endogenous proteins with a single electrophoretic gel. We demonstrate how the oligomerization of p53, the pyruvate kinase isoform M2, or the heat shock protein 27 can be studied with this system. We also show how this system is useful for studying the oligomerization of large proteins such as clathrin heavy chain or the tuberous sclerosis complex. Oligomerization analysis is dependent on the cross-linker used and its concentration. All of these features make this system a very helpful tool for the analysis of protein oligomerization. PMID:27613048

  14. Predictive and comparative analysis of Ebolavirus proteins.

    PubMed

    Cong, Qian; Pei, Jimin; Grishin, Nick V

    2015-01-01

    Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus. PMID:26158395

  15. Integrative visual analysis of protein sequence mutations

    PubMed Central

    2014-01-01

    Background An important aspect of studying the relationship between protein sequence, structure and function is the molecular characterization of the effect of protein mutations. To understand the functional impact of amino acid changes, the multiple biological properties of protein residues have to be considered together. Results Here, we present a novel visual approach for analyzing residue mutations. It combines different biological visualizations and integrates them with molecular data derived from external resources. To show various aspects of the biological information on different scales, our approach includes one-dimensional sequence views, three-dimensional protein structure views and two-dimensional views of residue interaction networks as well as aggregated views. The views are linked tightly and synchronized to reduce the cognitive load of the user when switching between them. In particular, the protein mutations are mapped onto the views together with further functional and structural information. We also assess the impact of individual amino acid changes by the detailed analysis and visualization of the involved residue interactions. We demonstrate the effectiveness of our approach and the developed software on the data provided for the BioVis 2013 data contest. Conclusions Our visual approach and software greatly facilitate the integrative and interactive analysis of protein mutations based on complementary visualizations. The different data views offered to the user are enriched with information about molecular properties of amino acid residues and further biological knowledge. PMID:25237389

  16. Nanobiocatalysis for protein digestion in proteomic analysis

    SciTech Connect

    Kim, Jungbae; Kim, Byoung Chan; Lopez-Ferrer, Daniel; Petritis, Konstantinos; Smith, Richard D.

    2010-02-01

    The process of protein digestion is a critical step for successful protein identification in the bottom-up proteomic analysis. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, a lot of efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for one year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce the protein digestions under unconventional energy inputs for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches.

  17. Spectral Analysis of a Protein Conformational Switch

    NASA Astrophysics Data System (ADS)

    Rackovsky, S.

    2011-06-01

    The existence of conformational switching in proteins, induced by single amino acid mutations, presents an important challenge to our understanding of the physics of protein folding. Sequence-local methods, commonly used to detect structural homology, are incapable of accounting for this phenomenon. We examine a set of proteins, derived from the GA and GB domains of Streptococcus protein G, which are known to show a dramatic conformational change as a result of single-residue replacement. It is shown that these sequences, which are almost identical locally, can have very different global patterns of physical properties. These differences are consistent with the observed complete change in conformation. These results suggest that sequence-local methods for identifying structural homology can be misleading. They point to the importance of global sequence analysis in understanding sequence-structure relationships.

  18. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  19. Analysis of secreted proteins using SILAC.

    PubMed

    Henningsen, Jeanette; Blagoev, Blagoy; Kratchmarova, Irina

    2014-01-01

    Secreted proteins serve a crucial role in the communication between cells, tissues, and organs. Proteins released to the extracellular environment exert their function either locally or at distant points of the organism. Proteins are secreted in a highly dynamic fashion by cells and tissues in the body responding to the stimuli and requirements presented by the extracellular milieu. Characterization of secretomes derived from various cell types has been performed using different quantitative mass spectrometry-based proteomics strategies, several of them taking advantage of labeling with stable isotopes. Here, we describe the use of Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for the quantitative analysis of the skeletal muscle secretome during myogenesis. PMID:25059621

  20. Data Analysis Strategies for Protein Microarrays

    PubMed Central

    Díez, Paula; Dasilva, Noelia; González-González, María; Matarraz, Sergio; Casado-Vela, Juan; Orfao, Alberto; Fuentes, Manuel

    2012-01-01

    Microarrays constitute a new platform which allows the discovery and characterization of proteins. According to different features, such as content, surface or detection system, there are many types of protein microarrays which can be applied for the identification of disease biomarkers and the characterization of protein expression patterns. However, the analysis and interpretation of the amount of information generated by microarrays remain a challenge. Further data analysis strategies are essential to obtain representative and reproducible results. Therefore, the experimental design is key, since the number of samples and dyes, among others aspects, would define the appropriate analysis method to be used. In this sense, several algorithms have been proposed so far to overcome analytical difficulties derived from fluorescence overlapping and/or background noise. Each kind of microarray is developed to fulfill a specific purpose. Therefore, the selection of appropriate analytical and data analysis strategies is crucial to achieve successful biological conclusions. In the present review, we focus on current algorithms and main strategies for data interpretation.

  1. Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene

    SciTech Connect

    Willis, Leslie G.; Siepp, Robyn; Stewart, Taryn M.; Erlandson, Martin A.; Theilmann, David A. . E-mail: TheilmannD@agr.gc.ca

    2005-08-01

    The genome of the Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a group II NPV which infects the cabbage looper (T. ni), has been completely sequenced and analyzed. The TnSNPV DNA genome consists of 134,394 bp and has an overall G + C content of 39%. Gene analysis predicted 144 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. Comparisons with previously sequenced baculoviruses indicate that 119 TnSNPV ORFs were homologues of previously reported viral gene sequences. Ninety-four TnSNPV ORFs returned an Autographa californica multiple NPV (AcMNPV) homologue while 25 ORFs returned poor or no sequence matches with the current databases. A putative photolyase gene was also identified that had highest amino acid identity to the photolyase genes of Chrysodeixis chalcites NPV (ChchNPV) (47%) and Danio rerio (zebrafish) (40%). In addition unlike all other baculoviruses no obvious homologous repeat (hr) sequences were identified. Comparison of the TnSNPV and AcMNPV genomes provides a unique opportunity to examine two baculoviruses that are highly virulent for a common insect host (T. ni) yet belong to diverse baculovirus taxonomic groups and possess distinct biological features. In vitro fusion assays demonstrated that the TnSNPV F protein induces membrane fusion and syncytia formation and were compared to syncytia formed by AcMNPV GP64.

  2. Complement regulatory proteins are incorporated into lentiviral vectors and protect particles against complement inactivation.

    PubMed

    Schauber-Plewa, C; Simmons, A; Tuerk, M J; Pacheco, C D; Veres, G

    2005-02-01

    Lentiviral vectors pseudotyped with G glycoprotein from vesicular stomatitis virus (VSV-G) and baculovirus gp64 are inactivated by human complement. The extent of vector inactivation in serum from individual donors was examined and results showed wide donor-dependent variation in complement sensitivity for VSV-G-pseudotyped lentivectors. Amphotropic envelope (Ampho)-pseudotyped vectors were generally resistant to serum from all donors, while gp64-pseudotyped vectors were inactivated but showed less donor-to-donor variation than VSV-G. In animal sera, the vectors were mostly resistant to inactivation by rodent complement, whereas canine complement caused a moderate reduction in titer. In a novel advance for the lentiviral vector system, human complement-resistant-pseudotyped lentivector particles were produced through incorporation of complement regulatory proteins (CRPs). Decay accelerating factor (DAF)/CD55 provided the most effective protection using this method, while membrane cofactor protein (MCP)/CD46 showed donor-dependent protection and CD59 provided little or no protection against complement inactivation. Unlike previous approaches using CRPs to produce complement-resistant viral vectors, CRP-containing lentivectors particles were generated for this study without engineering the CRP molecules. Thus, through overexpression of native DAF/CD55 in the viral producer cell, an easy method was developed for generation of lentiviral vectors that are almost completely resistant to inactivation by human complement. Production of complement-resistant lentiviral particles is a critical step toward use of these vectors for in vivo gene therapy applications. PMID:15550926

  3. Self-affine analysis of protein energy

    NASA Astrophysics Data System (ADS)

    Figueirêdo, P. H.; Moret, M. A.; Pascutti, P. G.; Nogueira, E.; Coutinho, S.

    2010-07-01

    We study the time series of the total energy of polypeptides and proteins. These time series were generated by molecular dynamics methods and analyzed by applying detrended fluctuation analysis to estimate the long-range power-law correlation, i.e. to measure scaling exponents α. Such exponents were calculated for all systems and their values follow environment conditions, i.e., they are temperature dependent and also, in a continuum medium approach, vary according to the dielectric constants (we simulated ɛ=2 and ɛ=80). The procedure was applied to investigate polyalanines, and other realistic models of proteins (Insect Defensin A and Hemoglobin). The present findings exhibit results that are consistent with previous ones obtained by other methodologies.

  4. Persistent Gene Expression in Mouse Nasal Epithelia following Feline Immunodeficiency Virus-Based Vector Gene Transfer

    PubMed Central

    Sinn, Patrick L.; Burnight, Erin R.; Hickey, Melissa A.; Blissard, Gary W.; McCray, Paul B.

    2005-01-01

    Gene transfer development for treatment or prevention of cystic fibrosis lung disease has been limited by the inability of vectors to efficiently and persistently transduce airway epithelia. Influenza A is an enveloped virus with natural lung tropism; however, pseudotyping feline immunodeficiency virus (FIV)-based lentiviral vector with the hemagglutinin envelope protein proved unsuccessful. Conversely, pseudotyping FIV with the envelope protein from influenza D (Thogoto virus GP75) resulted in titers of 106 transducing units (TU)/ml and conferred apical entry into well-differentiated human airway epithelial cells. Baculovirus GP64 envelope glycoproteins share sequence identity with influenza D GP75 envelope glycoproteins. Pseudotyping FIV with GP64 from three species of baculovirus resulted in titers of 107 to 109 TU/ml. Of note, GP64 from Autographa californica multicapsid nucleopolyhedrovirus resulted in high-titer FIV preparations (∼109 TU/ml) and conferred apical entry into polarized primary cultures of human airway epithelia. Using a luciferase reporter gene and bioluminescence imaging, we observed persistent gene expression from in vivo gene transfer in the mouse nose with A. californica GP64-pseudotyped FIV (AcGP64-FIV). Longitudinal bioluminescence analysis documented persistent expression in nasal epithelia for ∼1 year without significant decline. According to histological analysis using a LacZ reporter gene, olfactory and respiratory epithelial cells were transduced. In addition, methylcellulose-formulated AcGP64-FIV transduced mouse nasal epithelia with much greater efficiency than similarly formulated vesicular stomatitis virus glycoprotein-pseudotyped FIV. These data suggest that AcGP64-FIV efficiently transduces and persistently expresses a transgene in nasal epithelia in the absence of agents that disrupt the cellular tight junction integrity. PMID:16188984

  5. Proteomics beyond large-scale protein expression analysis.

    PubMed

    Boersema, Paul J; Kahraman, Abdullah; Picotti, Paola

    2015-08-01

    Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies. PMID:25636126

  6. Toward Modular Analysis of Supramolecular Protein Assemblies.

    PubMed

    Kim, Jaehoon; Kim, Jin-Gyun; Yun, Giseok; Lee, Phill-Seung; Kim, Do-Nyun

    2015-09-01

    Despite recent advances in molecular simulation technologies, analysis of high-molecular-weight structures is still challenging. Here, we propose an automated model reduction procedure aiming to enable modular analysis of these structures. It employs a component mode synthesis for the reduction of finite element protein models. Reduced models may consist of real biological subunits or artificial partitions whose dynamics is described using the degrees of freedom at the substructural interfaces and a small set of dominant vibrational modes only. Notably, the proper number of dominant modes is automatically determined using a novel estimator for eigenvalue errors without calculating the reference eigensolutions of the full model. The performance of the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL and an electron density map of a ribosome. PMID:26575921

  7. Epock: rapid analysis of protein pocket dynamics

    PubMed Central

    Laurent, Benoist; Chavent, Matthieu; Cragnolini, Tristan; Dahl, Anna Caroline E.; Pasquali, Samuela; Derreumaux, Philippe; Sansom, Mark S.P.; Baaden, Marc

    2015-01-01

    Summary: The volume of an internal protein pocket is fundamental to ligand accessibility. Few programs that compute such volumes manage dynamic data from molecular dynamics (MD) simulations. Limited performance often prohibits analysis of large datasets. We present Epock, an efficient command-line tool that calculates pocket volumes from MD trajectories. A plugin for the VMD program provides a graphical user interface to facilitate input creation, run Epock and analyse the results. Availability and implementation: Epock C++ source code, Python analysis scripts, VMD Tcl plugin, documentation and installation instructions are freely available at http://epock.bitbucket.org. Contact: benoist.laurent@gmail.com or baaden@smplinux.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25505095

  8. Systematic analysis of human protein complexes identifies chromosome segregation proteins.

    PubMed

    Hutchins, James R A; Toyoda, Yusuke; Hegemann, Björn; Poser, Ina; Hériché, Jean-Karim; Sykora, Martina M; Augsburg, Martina; Hudecz, Otto; Buschhorn, Bettina A; Bulkescher, Jutta; Conrad, Christian; Comartin, David; Schleiffer, Alexander; Sarov, Mihail; Pozniakovsky, Andrei; Slabicki, Mikolaj Michal; Schloissnig, Siegfried; Steinmacher, Ines; Leuschner, Marit; Ssykor, Andrea; Lawo, Steffen; Pelletier, Laurence; Stark, Holger; Nasmyth, Kim; Ellenberg, Jan; Durbin, Richard; Buchholz, Frank; Mechtler, Karl; Hyman, Anthony A; Peters, Jan-Michael

    2010-04-30

    Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells. PMID:20360068

  9. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  10. Stability analysis of an autocatalytic protein model

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

  11. Kinetic Analysis of Protein Folding Lattice Models

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhou, Xin; Liaw, Chih Young; Koh, Chan Ghee

    Based on two-dimensional square lattice models of proteins, the relation between folding time and temperature is studied by Monte Carlo simulation. The results can be represented by a kinetic model with three states — random coil, molten globule, and native state. The folding process is composed of nonspecific collapse and final searching for the native state. At high temperature, it is easy to escape from local traps in the folding process. With decreasing temperature, because of the trapping in local traps, the final searching speed decreases. Then the folding shows chevron rollover. Through the analysis of the fitted parameters of the kinetic model, it is found that the main difference between the energy landscapes of the HP model and the Go model is that the number of local minima of the Go model is less than that of the HP model.

  12. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  13. ProteinHistorian: tools for the comparative analysis of eukaryote protein origin.

    PubMed

    Capra, John A; Williams, Alexander G; Pollard, Katherine S

    2012-01-01

    The evolutionary history of a protein reflects the functional history of its ancestors. Recent phylogenetic studies identified distinct evolutionary signatures that characterize proteins involved in cancer, Mendelian disease, and different ontogenic stages. Despite the potential to yield insight into the cellular functions and interactions of proteins, such comparative phylogenetic analyses are rarely performed, because they require custom algorithms. We developed ProteinHistorian to make tools for performing analyses of protein origins widely available. Given a list of proteins of interest, ProteinHistorian estimates the phylogenetic age of each protein, quantifies enrichment for proteins of specific ages, and compares variation in protein age with other protein attributes. ProteinHistorian allows flexibility in the definition of protein age by including several algorithms for estimating ages from different databases of evolutionary relationships. We illustrate the use of ProteinHistorian with three example analyses. First, we demonstrate that proteins with high expression in human, compared to chimpanzee and rhesus macaque, are significantly younger than those with human-specific low expression. Next, we show that human proteins with annotated regulatory functions are significantly younger than proteins with catalytic functions. Finally, we compare protein length and age in many eukaryotic species and, as expected from previous studies, find a positive, though often weak, correlation between protein age and length. ProteinHistorian is available through a web server with an intuitive interface and as a set of command line tools; this allows biologists and bioinformaticians alike to integrate these approaches into their analysis pipelines. ProteinHistorian's modular, extensible design facilitates the integration of new datasets and algorithms. The ProteinHistorian web server, source code, and pre-computed ages for 32 eukaryotic genomes are freely available under

  14. Large-scale proteomic analysis of membrane proteins

    SciTech Connect

    Ahram, Mamoun; Springer, David L.

    2004-10-01

    Proteomic analysis of membrane proteins is promising in identification of novel candidates as drug targets and/or disease biomarkers. Despite notable technological developments, obstacles related to extraction and solubilization of membrane proteins are frequently encountered. A critical discussion of the different preparative methods of membrane proteins is offered in relation to downstream proteomic applications, mainly gel-based analyses and mass spectrometry. Unknown proteins are often identified by high-throughput profiling of membrane proteins. In search for novel membrane proteins, analysis of protein sequences using computational tools is performed to predict for the presence of transmembrane domains. Here, we also present these bioinformatic tools with the human proteome as a case study. Along with technological innovations, advancements in the areas of sample preparation and computational prediction of membrane proteins will lead to exciting discoveries.

  15. Component analysis of the protein hydration entropy

    NASA Astrophysics Data System (ADS)

    Chong, Song-Ho; Ham, Sihyun

    2012-05-01

    We report the development of an atomic decomposition method of the protein solvation entropy in water, which allows us to understand global change in the solvation entropy in terms of local changes in protein conformation as well as in hydration structure. This method can be implemented via a combined approach based on molecular dynamics simulation and integral-equation theory of liquids. An illustrative application is made to 42-residue amyloid-beta protein in water. We demonstrate how this method enables one to elucidate the molecular origin for the hydration entropy change upon conformational transitions of protein.

  16. Comparative analysis of protein unfoldedness in human housekeeping and non-housekeeping proteins.

    PubMed

    Pandey, Neeraj; Ganapathi, Mythily; Kumar, Kaushal; Dasgupta, Dipayan; Das Sutar, Sushanta Kumar; Dash, Debasis

    2004-11-22

    Absence of any regular structure is increasingly being observed in structural studies of proteins. These disordered regions or random coils, which have been observed under physiological conditions, are indicators of protein plasticity. The wide variety of interactions possible due to the flexibility of these 'natively disordered' regions confers functional advantage to the protein and the organism in general. This concept is underscored by the increasing proportion of intrinsically unstructured proteins seen with the ascension in the complexity of the organisms. The 'natively unfolded/disordered' state of the protein can be predicted utilizing Uversky's or Dunker's algorithm. We utilized Uversky's prediction scheme and based on the unique position of a protein in the charge-hydrophobicity plot, a derived net score was used to predict the overall disorder of the human housekeeping and non-housekeeping proteins. Substantial numbers of proteins in both the classes were predicted to be unfolded. However, comparative genomic analysis of predicted unfolded Homo sapiens proteins with homologues in Caenorhabditis elegans, Drosophila melanogaster and Mus musculus revealed significant increase in unfoldedness in non-housekeeping proteins in comparison with housekeeping proteins. Our analysis in the evolutionary context suggests addition or substitution of amino acid residues which favour unfoldedness in non-housekeeping proteins compared to housekeeping proteins. PMID:15238363

  17. Rapid visco analysis of food protein pastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein isolate (WPI) powders are used in many formulations to boost nutrients. To predict the pasting behavior of proteins, WPI was tested under varying temperatures, using the Rapid-Visco-Analyzer (RVA), under pasting temperatures from 65 to 75 degrees'C, RVA speeds from 100 to 500 rpm, and ...

  18. A comparative analysis of trypanosomatid SNARE proteins.

    PubMed

    Murungi, Edwin; Barlow, Lael D; Venkatesh, Divya; Adung'a, Vincent O; Dacks, Joel B; Field, Mark C; Christoffels, Alan

    2014-04-01

    The Kinetoplastida are flagellated protozoa evolutionary distant and divergent from yeast and humans. Kinetoplastida include trypanosomatids, and a number of important pathogens. Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. inflict significant morbidity and mortality on humans and livestock as the etiological agents of human African trypanosomiasis, Chagas' disease and leishmaniasis respectively. For all of these organisms, intracellular trafficking is vital for maintenance of the host-pathogen interface, modulation/evasion of host immune system responses and nutrient uptake. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are critical components of the intracellular trafficking machinery in eukaryotes, mediating membrane fusion and contributing to organelle specificity. We asked how the SNARE complement evolved across the trypanosomatids. An in silico search of the predicted proteomes of T. b. brucei and T. cruzi was used to identify candidate SNARE sequences. Phylogenetic analysis, including comparisons with yeast and human SNAREs, allowed assignment of trypanosomatid SNAREs to the Q or R subclass, as well as identification of several SNAREs orthologous with those of opisthokonts. Only limited variation in number and identity of SNAREs was found, with Leishmania major having 27 and T. brucei 26, suggesting a stable SNARE complement post-speciation. Expression analysis of T. brucei SNAREs revealed significant differential expression between mammalian and insect infective forms, especially within R and Qb-SNARE subclasses, suggesting possible roles in adaptation to different environments. For trypanosome SNAREs with clear orthologs in opisthokonts, the subcellular localization of TbVAMP7C is endosomal while both TbSyn5 and TbSyn16B are at the Golgi complex, which suggests conservation of localization and possibly also function. Despite highly distinct life styles, the complement of trypanosomatid SNAREs is quite stable

  19. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases).

  20. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  1. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments.

    PubMed

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N P; Riedmayr, Lisa M; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  2. PIMA: Protein-Protein interactions in Macromolecular Assembly - a web server for its Analysis and Visualization

    PubMed Central

    Kaleeckal Mathew, Oommen; Sowdhamini, Ramanathan

    2016-01-01

    Protein-protein interactions are essential for the basic biological machinery of the cell. This is important for processes like protein synthesis, enzyme kinetics, molecular assembly and signal transduction. A high number of macromolecular structural complexes are known due to recent advances in structure determination techniques. Therefore, it is of interest to develop an interactive tool to objectively analyze large protein complexes. Hence, we describe the development and utility of a web enabled application named ‘Protein-Protein Interaction in Macro-molecular Assembly’ (PIMA) for the analysis of large protein assemblies. The intricate details of physical interactions amongst protein subunits in a large complex are presented as simple user preferred interactive network diagrams PMID:27212837

  3. Analysis of soybean seed proteins using proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial elaborates on investigations consisting of different proteomics technologies and their application to biological sciences. In addition, different classes of soybean seed proteins are discussed. This information will be useful to scientists in obtaining a greater understanding of the...

  4. Serum proteins are extracted along with monolayer cells in plasticware and interfere with protein analysis

    PubMed Central

    Hong, Xin; Meng, Yuling; Kalkanis, Steven N.

    2016-01-01

    Washing and lysing monolayer cells directly from cell culture plasticware is a commonly used method for protein extraction. We found that multiple protein bands were enriched in samples with low cell numbers from the 6-well plate cultures. These proteins contributed to the overestimation of cell proteins and led to the uneven protein loading in Western blotting analysis. In Coomassie blue stained SDS-PAGE gels, the main enriched protein band is about 69 kDa and it makes up 13.6% of total protein from 104 U251n cells. Analyzed by mass spectrometry, we identified two of the enriched proteins: bovine serum albumin and bovine serum transferrin. We further observed that serum proteins could be extracted from other cell culture plates, dishes and flasks even after washing the cells 3 times with PBS. A total of 2.3 mg of protein was collected from a single well of the 6-well plate. A trace amount of the protein band was still visible after washing the cells 5 times with PBS. Thus, serum proteins should be considered if extracting proteins from plasticware, especially for samples with low cell numbers.

  5. Analysis of multi-domain protein dynamics

    PubMed Central

    Roy, Amitava; Hua, Duy P; Post, Carol Beth

    2016-01-01

    Proteins with a modular architecture of multiple domains connected by linkers often exhibit diversity in the relative positions of domains while the domain tertiary structure remains unchanged. The biological function of these modular proteins, or the regulation of their activity depends on the variation in domain orientation and separation. Accordingly, careful characterization of inter-domain motion and correlated fluctuations of multi-domain systems is relevant for understanding the functional behavior of modular proteins. Molecular dynamics (MD) simulations provides a powerful approach to study these motions in atomic detail. Nevertheless, the common procedure for analyzing fluctuations from MD simulations after overall rigid-body alignment fails for multi-domain proteins; it greatly overestimates correlated positional fluctuations in the presence of relative domain motion. We show here that expressing the atomic motions of a multi-domain protein as a combination of displacement within the domain reference frame and motion of the relative domains correctly separates the internal motions to allow a useful description of correlated fluctuations. We illustrate the methodology of separating the domain fluctuations and local fluctuations by application to the tandem SH2 domains of human Syk protein kinase and by characterizing an effect of phosphorylation on the dynamics. Correlated motions are assessed from a distance covariance rather than the more common vector-coordinate covariance. The approach makes it possible to calculate the proper correlations in fluctuations internal to a domain as well as between domains. PMID:26675644

  6. Methods for the analysis of protein-chromatin interactions.

    PubMed

    Brickwood, Sarah J; Myers, Fiona A; Chandler, Simon P

    2002-01-01

    The analysis of protein interactions with chromatin is vital for the understanding of DNA sequence recognition in vivo. Chromatin binding requires the interaction of proteins with DNA lying on the macromolecular protein surface of nucleosomes, a situation that can alter factor binding characteristics substantially when compared with naked DNA. It is therefore important to study these protein-DNA interactions in the context of a chromatin substrate, the more physiologically relevant binding situation. In this article we review techniques used in the investigation of protein interactions with defined nucleosomal templates. PMID:11876294

  7. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  8. SAFE Software and FED Database to Uncover Protein-Protein Interactions using Gene Fusion Analysis.

    PubMed

    Tsagrasoulis, Dimosthenis; Danos, Vasilis; Kissa, Maria; Trimpalis, Philip; Koumandou, V Lila; Karagouni, Amalia D; Tsakalidis, Athanasios; Kossida, Sophia

    2012-01-01

    Domain Fusion Analysis takes advantage of the fact that certain proteins in a given proteome A, are found to have statistically significant similarity with two separate proteins in another proteome B. In other words, the result of a fusion event between two separate proteins in proteome B is a specific full-length protein in proteome A. In such a case, it can be safely concluded that the protein pair has a common biological function or even interacts physically. In this paper, we present the Fusion Events Database (FED), a database for the maintenance and retrieval of fusion data both in prokaryotic and eukaryotic organisms and the Software for the Analysis of Fusion Events (SAFE), a computational platform implemented for the automated detection, filtering and visualization of fusion events (both available at: http://www.bioacademy.gr/bioinformatics/projects/ProteinFusion/index.htm). Finally, we analyze the proteomes of three microorganisms using these tools in order to demonstrate their functionality. PMID:22267904

  9. Dynamic network analysis of protein interactions

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind; Deri, Joya

    2007-03-01

    Network approaches have recently become a popular tool to study complex systems such as cellular metabolism and protein interactions. A substantial number of analyses of the protein interaction network (PIN) of the yeast Saccharomyces cerevisiae have considered this network as a static entity, not taking the network's dynamic nature into account. Here, we examine the time-variation of gene regulation superimposed on the PIN by defining mRNA expression profiles throughout the cell cycle as node weights. To characterize these network dynamics, we have both developed a set of novel network measures as well as studied previously published measures for weighted networks. We expect that our approach will provide a deeper understanding of protein regulation during the cell cycle.

  10. Advances in protein complex analysis using mass spectrometry.

    PubMed

    Gingras, Anne-Claude; Aebersold, Ruedi; Raught, Brian

    2005-02-15

    Proteins often function as components of larger complexes to perform a specific function, and formation of these complexes may be regulated. For example, intracellular signalling events often require transient and/or regulated protein-protein interactions for propagation, and protein binding to a specific DNA sequence, RNA molecule or metabolite is often regulated to modulate a particular cellular function. Thus, characterizing protein complexes can offer important insights into protein function. This review describes recent important advances in mass spectrometry (MS)-based techniques for the analysis of protein complexes. Following brief descriptions of how proteins are identified using MS, and general protein complex purification approaches, we address two of the most important issues in these types of studies: specificity and background protein contaminants. Two basic strategies for increasing specificity and decreasing background are presented: whereas (1) tandem affinity purification (TAP) of tagged proteins of interest can dramatically improve the signal-to-noise ratio via the generation of cleaner samples, (2) stable isotopic labelling of proteins may be used to discriminate between contaminants and bona fide binding partners using quantitative MS techniques. Examples, as well as advantages and disadvantages of each approach, are presented. PMID:15611014

  11. Protein Analysis-on-Chip Systems in Foodomics

    PubMed Central

    Nazzaro, Filomena; Orlando, Pierangelo; Fratianni, Florinda; Di Luccia, Aldo; Coppola, Raffaele

    2012-01-01

    Protein compositional data can address nutritional, packaging, origin/authenticity, processing history, safety and other quality questions. Such data has been time-consuming and expensive to generate until recently but “protein analysis on a chip” systems are now available that can analyze a complex food sample in a few minutes and do not require great protein analytical expertise. We review some of the main new approaches with examples of their application and discuss their advantages and disadvantages. PMID:23201766

  12. An analysis pipeline for the inference of protein-protein interaction networks

    SciTech Connect

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Gilmore, Jason M.; Cannon, William R.; Domico, Kelly O.; White, Amanda M.; Auberry, Deanna L.; Auberry, Kenneth J.; Hooker, Brian S.; Hurst, G. B.; McDermott, Jason E.; McDonald, W. H.; Pelletier, Dale A.; Schmoyer, Denise A.; Wiley, H. S.

    2009-12-01

    An analysis pipeline has been created for deployment of a novel algorithm, the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro), for use in the reconstruction of protein-protein interaction networks. We have combined the Software Environment for BIological Network Inference (SEBINI), an interactive environment for the deployment and testing of network inference algorithms that use high-throughput data, and the Collective Analysis of Biological Interaction Networks (CABIN), software that allows integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources, to allow interactions computed by BEPro to be stored, visualized, and further analyzed. Incorporating BEPro into SEBINI and automatically feeding the resulting inferred network into CABIN, we have created a structured workflow for protein-protein network inference and supplemental analysis from sets of mass spectrometry bait-prey experiment data. SEBINI demo site: https://www.emsl.pnl.gov /SEBINI/ Contact: ronald.taylor@pnl.gov. BEPro is available at http://www.pnl.gov/statistics/BEPro3/index.htm. Contact: ds.daly@pnl.gov. CABIN is available at http://www.sysbio.org/dataresources/cabin.stm. Contact: mudita.singhal@pnl.gov.

  13. Protein surface representation and analysis by dimension reduction

    PubMed Central

    2012-01-01

    Background Protein structures are better conserved than protein sequences, and consequently more functional information is available in structures than in sequences. However, proteins generally interact with other proteins and molecules via their surface regions and a backbone-only analysis of protein structures may miss many of the functional and evolutionary features. Surface information can help better elucidate proteins' functions and their interactions with other proteins. Computational analysis and comparison of protein surfaces is an important challenge to overcome to enable efficient and accurate functional characterization of proteins. Methods In this study we present a new method for representation and comparison of protein surface features. Our method is based on mapping the 3-D protein surfaces onto 2-D maps using various dimension reduction methods. We have proposed area and neighbor based metrics in order to evaluate the accuracy of this surface representation. In order to capture functionally relevant information, we encode geometric and biochemical features of the protein, such as hydrophobicity, electrostatic potential, and curvature, into separate color channels in the 2-D map. The resulting images can then be compared using efficient 2-D image registration methods to identify surface regions and features shared by proteins. Results We demonstrate the utility of our method and characterize its performance using both synthetic and real data. Among the dimension reduction methods investigated, SNE, LandmarkIsomap, Isomap, and Sammon's mapping provide the best performance in preserving the area and neighborhood properties of the original 3-D surface. The enriched 2-D representation is shown to be useful in characterizing the functional site of chymotrypsin and able to detect structural similarities in heat shock proteins. A texture mapping using the 2-D representation is also proposed as an interesting application to structure visualization. PMID

  14. Analysis of Lipolytic Protein Trafficking and Interactions in Adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work examined the colocalization, trafficking, and interactions of key proteins involved in lipolysis during brief cAMP-dependent protein kinase A (PKA) activation. Double label immunofluorescence analysis of 3T3-L1 adipocytes indicated that PKA activation increases the translocation of hormon...

  15. Comprehensive Proteomic Analysis of Membrane Proteins in Toxoplasma gondii*

    PubMed Central

    Che, Fa-Yun; Madrid-Aliste, Carlos; Burd, Berta; Zhang, Hongshan; Nieves, Edward; Kim, Kami; Fiser, Andras; Angeletti, Ruth Hogue; Weiss, Louis M.

    2011-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that is an important human and animal pathogen. Experimental information on T. gondii membrane proteins is limited, and the majority of gene predictions with predicted transmembrane motifs are of unknown function. A systematic analysis of the membrane proteome of T. gondii is important not only for understanding this parasite's invasion mechanism(s), but also for the discovery of potential drug targets and new preventative and therapeutic strategies. Here we report a comprehensive analysis of the membrane proteome of T. gondii, employing three proteomics strategies: one-dimensional gel liquid chromatography-tandem MS analysis (one-dimensional gel electrophoresis LC-MS/MS), biotin labeling in conjunction with one-dimensional gel LC-MS/MS analysis, and a novel strategy that combines three-layer “sandwich” gel electrophoresis with multidimensional protein identification technology. A total of 2241 T. gondii proteins with at least one predicted transmembrane segment were identified and grouped into 841 sequentially nonredundant protein clusters, which account for 21.8% of the predicted transmembrane protein clusters in the T. gondii genome. A large portion (42%) of the identified T. gondii membrane proteins are hypothetical proteins. Furthermore, many of the membrane proteins validated by mass spectrometry are unique to T. gondii or to the Apicomplexa, providing a set of gene predictions ripe for experimental investigation, and potentially suitable targets for the development of therapeutic strategies. PMID:20935347

  16. Surface energetics and protein-protein interactions: analysis and mechanistic implications.

    PubMed

    Peri, Claudio; Morra, Giulia; Colombo, Giorgio

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifies patches of surface residues that, when mapped on the structure of their respective complexes, reveal regions of residue-pair couplings that extend across the binding interfaces, forming continuous motifs. An enhanced effect is visible across the proteins of the dataset forming larger quaternary assemblies. The method indicates the presence of energetic signatures in the isolated proteins that are retained in the bound form, which we hypothesize to determine binding orientation upon complex formation. We propose our method, BLUEPRINT, as a complement to different approaches ranging from the ab-initio characterization of PPIs, to protein-protein docking algorithms, for the physico-chemical and functional investigation of protein-protein interactions. PMID:27050828

  17. Surface energetics and protein-protein interactions: analysis and mechanistic implications

    PubMed Central

    Peri, Claudio; Morra, Giulia; Colombo, Giorgio

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifies patches of surface residues that, when mapped on the structure of their respective complexes, reveal regions of residue-pair couplings that extend across the binding interfaces, forming continuous motifs. An enhanced effect is visible across the proteins of the dataset forming larger quaternary assemblies. The method indicates the presence of energetic signatures in the isolated proteins that are retained in the bound form, which we hypothesize to determine binding orientation upon complex formation. We propose our method, BLUEPRINT, as a complement to different approaches ranging from the ab-initio characterization of PPIs, to protein-protein docking algorithms, for the physico-chemical and functional investigation of protein-protein interactions. PMID:27050828

  18. Molecular Analysis of Protein Assembly in Muscle Development.

    ERIC Educational Resources Information Center

    Epstein, Henry F.; Fischman, Donald A.

    1991-01-01

    Advances in the genetics and cell biology of muscle development are discussed. In-vitro analysis of the renaturation, polymerization, and three-dimensional structure of the purified proteins involved is described. (CW)

  19. MESSA: MEta-Server for protein Sequence Analysis

    PubMed Central

    2012-01-01

    Background Computational sequence analysis, that is, prediction of local sequence properties, homologs, spatial structure and function from the sequence of a protein, offers an efficient way to obtain needed information about proteins under study. Since reliable prediction is usually based on the consensus of many computer programs, meta-severs have been developed to fit such needs. Most meta-servers focus on one aspect of sequence analysis, while others incorporate more information, such as PredictProtein for local sequence feature predictions, SMART for domain architecture and sequence motif annotation, and GeneSilico for secondary and spatial structure prediction. However, as predictions of local sequence properties, three-dimensional structure and function are usually intertwined, it is beneficial to address them together. Results We developed a MEta-Server for protein Sequence Analysis (MESSA) to facilitate comprehensive protein sequence analysis and gather structural and functional predictions for a protein of interest. For an input sequence, the server exploits a number of select tools to predict local sequence properties, such as secondary structure, structurally disordered regions, coiled coils, signal peptides and transmembrane helices; detect homologous proteins and assign the query to a protein family; identify three-dimensional structure templates and generate structure models; and provide predictive statements about the protein's function, including functional annotations, Gene Ontology terms, enzyme classification and possible functionally associated proteins. We tested MESSA on the proteome of Candidatus Liberibacter asiaticus. Manual curation shows that three-dimensional structure models generated by MESSA covered around 75% of all the residues in this proteome and the function of 80% of all proteins could be predicted. Availability MESSA is free for non-commercial use at http://prodata.swmed.edu/MESSA/ PMID:23031578

  20. Crux: rapid open source protein tandem mass spectrometry analysis.

    PubMed

    McIlwain, Sean; Tamura, Kaipo; Kertesz-Farkas, Attila; Grant, Charles E; Diament, Benjamin; Frewen, Barbara; Howbert, J Jeffry; Hoopmann, Michael R; Käll, Lukas; Eng, Jimmy K; MacCoss, Michael J; Noble, William Stafford

    2014-10-01

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit ( http://cruxtoolkit.sourceforge.net ) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. PMID:25182276

  1. Persistent homology analysis of protein structure, flexibility and folding

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics and transport is one of most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. Based on the correlation between protein compactness, rigidity and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins. PMID:24902720

  2. High-order fluorescence fluctuation analysis of model protein clusters.

    PubMed Central

    Palmer, A G; Thompson, N L

    1989-01-01

    The technique of high-order fluorescence fluctuation autocorrelation for detecting and characterizing protein oligomers was applied to solutions containing two fluorescent proteins in which the more fluorescent proteins were analogues for clusters of the less fluorescent ones. The results show that the model protein clusters can be detected for average numbers of observed subunits (free monomers plus monomers in oligomers) equal to 10-100 and for relative fluorescent yields that correspond to oligomers as small as trimers. High-order fluorescent fluctuation analysis may therefore be applicable to cell surface receptor clusters in natural or model membranes. PMID:2548201

  3. Phthalic acid chemical probes synthesized for protein-protein interaction analysis.

    PubMed

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-01-01

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis. PMID:23797655

  4. Identification of the Lymantria dispar Nucleopolyhedrovirus Envelope Fusion Protein Provides Evidence for a Phylogenetic Division of the Baculoviridae†

    PubMed Central

    Pearson, Margot N.; Groten, Christoph; Rohrmann, George F.

    2000-01-01

    The complete genome sequences of a number of diverse members of the Baculoviridae including both nucleopolyhedroviruses (NPVs) and granuloviruses (GVs) revealed that they lack a homolog of GP64, the envelope fusion protein of the budded form of Autographa californica multinucleocapsid NPV (AcMNPV) and its close relatives. Computer-assisted analyses of the genome of one of these viruses, Lymantria dispar MNPV (LdMNPV), revealed a single open reading frame (ld130) whose product had the predicted properties of a membrane protein. Characterization of the localization of the products of the full-length ld130 gene and of an ld130-enhanced green fluorescent protein gene (egfp) fusion using both immunofluorescence and fluorescence microscopy revealed that LD130 accumulates at the plasma membranes of cells infected with LdMNPV or transfected with ld130-egfp. In addition, cells transfected with either ld130 or ld130-egfp or infected with wild-type virus undergo membrane fusion at pH 5. Western blot analyses indicate that LD130 is present in infected cells as an 83-kDa protein and is also present in budded virions as a protein doublet containing bands of 81 and 83 kDa. Tunicamycin treatment of infected cells resulted in an immunoreactive band of about 72 kDa, indicating that LD130 is N-glycosylated. Whereas the distribution of gp64 appears to be confined to a relatively closely related group of NPVs, homologs of ld130 are present in a diverse number of both NPVs and GVs. This suggests that LD130 may be the primordial baculovirus envelope fusion protein. PMID:10846096

  5. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    PubMed Central

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  6. Atom depth analysis delineates mechanisms of protein intermolecular interactions

    SciTech Connect

    Alocci, Davide; Bernini, Andrea; Niccolai, Neri

    2013-07-12

    Highlights: •3D atom depth analysis is proposed to identify different layers in protein structures. •Amino acid contents for each layers have been analyzed for a large protein dataset. •Charged amino acids in the most external layer are present at very different extents. •Atom depth indexes of K residues reflect their side chains flexibility. •Mobile surface charges can be responsible for long range protein–protein recognition. -- Abstract: The systematic analysis of amino acid distribution, performed inside a large set of resolved protein structures, sheds light on possible mechanisms driving non random protein–protein approaches. Protein Data Bank entries have been selected using as filters a series of restrictions ensuring that the shape of protein surface is not modified by interactions with large or small ligands. 3D atom depth has been evaluated for all the atoms of the 2,410 selected structures. The amino acid relative population in each of the structural layers formed by grouping atoms on the basis of their calculated depths, has been evaluated. We have identified seven structural layers, the inner ones reproducing the core of proteins and the outer one incorporating their most protruding moieties. Quantitative analysis of amino acid contents of structural layers identified, as expected, different behaviors. Atoms of Q, R, K, N, D residues are increasingly more abundant in going from core to surfaces. An opposite trend is observed for V, I, L, A, C, and G. An intermediate behavior is exhibited by P, S, T, M, W, H, F and Y. The outer structural layer hosts predominantly E and K residues whose charged moieties, protruding from outer regions of the protein surface, reorient free from steric hindrances, determining specific electrodynamics maps. This feature may represent a protein signature for long distance effects, driving the formation of encounter complexes and the eventual short distance approaches that are required for protein–protein

  7. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGESBeta

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  8. ProMAT: protein microarray analysis tool

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Varnum, Susan M.; Anderson, Kevin K.; Bollinger, Nikki; Zangar, Richard C.

    2006-04-04

    Summary: ProMAT is a software tool for statistically analyzing data from ELISA microarray experiments. The software estimates standard curves, sample protein concentrations and their uncertainties for multiple assays. ProMAT generates a set of comprehensive figures for assessing results and diagnosing process quality. The tool is available for Windows or Mac, and is distributed as open-source Java and R code. Availability: ProMAT is available at http://www.pnl.gov/statistics/ProMAT. ProMAT requires Java version 1.5.0 and R version 1.9.1 (or more recent versions) which are distributed with the tool.

  9. The analysis of protein pharmaceuticals: near future advances.

    PubMed

    Middaugh, C R

    1994-01-01

    The analysis of protein pharmaceuticals currently involves a complex series of chromatographic, electrophoretic, spectroscopic, immunological and biological measurements to unequivocally establish their identity, purity and integrity. In this review, I briefly consider the possibility that at least the functional identity and integrity of a protein drug might be established by either a single analysis involving X-ray diffraction, NMR or mass spectrometry, or by a chromatographically based multi-detector system in which a number of critical parameters are essentially simultaneously determined. The use of a protein standard to obtain comparative measurements and new advances in the technology of each of these methods is emphasized. A current major obstacle to the implementation of these approaches is the frequent microheterogeneity of protein preparations. The evolution of biological assays into measurements examining more defined intracellular signal transduction events or based on novel biosensors as well as the analysis of vaccines is also briefly discussed. PMID:7765931

  10. Cycloheximide Chase Analysis of Protein Degradation in Saccharomyces cerevisiae.

    PubMed

    Buchanan, Bryce W; Lloyd, Michael E; Engle, Sarah M; Rubenstein, Eric M

    2016-01-01

    Regulation of protein abundance is crucial to virtually every cellular process. Protein abundance reflects the integration of the rates of protein synthesis and protein degradation. Many assays reporting on protein abundance (e.g., single-time point western blotting, flow cytometry, fluorescence microscopy, or growth-based reporter assays) do not allow discrimination of the relative effects of translation and proteolysis on protein levels. This article describes the use of cycloheximide chase followed by western blotting to specifically analyze protein degradation in the model unicellular eukaryote, Saccharomyces cerevisiae (budding yeast). In this procedure, yeast cells are incubated in the presence of the translational inhibitor cycloheximide. Aliquots of cells are collected immediately after and at specific time points following addition of cycloheximide. Cells are lysed, and the lysates are separated by polyacrylamide gel electrophoresis for western blot analysis of protein abundance at each time point. The cycloheximide chase procedure permits visualization of the degradation kinetics of the steady state population of a variety of cellular proteins. The procedure may be used to investigate the genetic requirements for and environmental influences on protein degradation. PMID:27167179

  11. Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet.

    PubMed

    Tyagi, M; Sharma, P; Swamy, C S; Cadet, F; Srinivasan, N; de Brevern, A G; Offmann, B

    2006-07-01

    Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/PBE/. PMID:16844973

  12. Protein Co-Expression Network Analysis (ProCoNA)

    SciTech Connect

    Gibbs, David L.; Baratt, Arie; Baric, Ralph; Kawaoka, Yoshihiro; Smith, Richard D.; Orwoll, Eric S.; Katze, Michael G.; Mcweeney, Shannon K.

    2013-06-01

    Biological networks are important for elucidating disease etiology due to their ability to model complex high dimensional data and biological systems. Proteomics provides a critical data source for such models, but currently lacks robust de novo methods for network construction, which could bring important insights in systems biology. We have evaluated the construction of network models using methods derived from weighted gene co-expression network analysis (WGCNA). We show that approximately scale-free peptide networks, composed of statistically significant modules, are feasible and biologically meaningful using two mouse lung experiments and one human plasma experiment. Within each network, peptides derived from the same protein are shown to have a statistically higher topological overlap and concordance in abundance, which is potentially important for inferring protein abundance. The module representatives, called eigenpeptides, correlate significantly with biological phenotypes. Furthermore, within modules, we find significant enrichment for biological function and known interactions (gene ontology and protein-protein interactions). Biological networks are important tools in the analysis of complex systems. In this paper we evaluate the application of weighted co-expression network analysis to quantitative proteomics data. Protein co-expression networks allow novel approaches for biological interpretation, quality control, inference of protein abundance, a framework for potentially resolving degenerate peptide-protein mappings, and a biomarker signature discovery.

  13. Tetra Detector Analysis of Membrane Proteins

    PubMed Central

    Robbins, Rebecca A.; Stroud, Robert M.

    2014-01-01

    Well-characterized membrane protein detergent complexes (PDC) that are pure, homogenous and stable with minimized excess detergent micelles are essential for functional assays and crystallization studies. Procedural steps to measure the mass, size, shape, homogeneity and molecular composition of PDCs and their host detergent micelle using size exclusion chromatography (SEC) with a Viscotek tetra detector array (TDA; absorbance, refractive index, light scattering and viscosity detectors) are presented. The value of starting with a quality PDC sample, the precision and accuracy of the results, and the use of a digital bench top refractometer are emphasized. An alternate and simplified purification and characterization approach using SEC with dual absorbance and refractive index detectors to optimize detergent and lipid concentration while measuring the PDC homogeneity are also described. Applications relative to purification and characterization goals are illustrated as well. PMID:25081744

  14. Femtosecond protein nanocrystallography—data analysis methods

    PubMed Central

    Kirian, Richard A.; Wang, Xiaoyu; Weierstall, Uwe; Schmidt, Kevin E.; Spence, John C. H.; Hunter, Mark; Fromme, Petra; White, Thomas; Chapman, Henry N.; Holton, James

    2014-01-01

    X-ray diffraction patterns may be obtained from individual submicron protein nanocrystals using a femtosecond pulse from a free-electron X-ray laser. Many “single-shot” patterns are read out every second from a stream of nanocrystals lying in random orientations. The short pulse terminates before significant atomic (or electronic) motion commences, minimizing radiation damage. Simulated patterns for Photosystem I nanocrystals are used to develop a method for recovering structure factors from tens of thousands of snapshot patterns from nanocrystals varying in size, shape and orientation. We determine the number of shots needed for a required accuracy in structure factor measurement and resolution, and investigate the convergence of our Monte-Carlo integration method. PMID:20389587

  15. High-Bandwidth Protein Analysis Using Solid-State Nanopores

    PubMed Central

    Larkin, Joseph; Henley, Robert Y.; Muthukumar, Murugappan; Rosenstein, Jacob K.; Wanunu, Meni

    2014-01-01

    High-bandwidth measurements of the ion current through hafnium oxide and silicon nitride nanopores allow the analysis of sub-30 kD protein molecules with unprecedented time resolution and detection efficiency. Measured capture rates suggest that at moderate transmembrane bias values, a substantial fraction of protein translocation events are detected. Our dwell-time resolution of 2.5 μs enables translocation time distributions to be fit to a first-passage time distribution derived from a 1D diffusion-drift model. The fits yield drift velocities that scale linearly with voltage, consistent with an electrophoretic process. Further, protein diffusion constants (D) are lower than the bulk diffusion constants (D0) by a factor of ∼50, and are voltage-independent in the regime tested. We reason that deviations of D from D0 are a result of confinement-driven pore/protein interactions, previously observed in porous systems. A straightforward Kramers model for this inhibited diffusion points to 9- to 12-kJ/mol interactions of the proteins with the nanopore. Reduction of μ and D are found to be material-dependent. Comparison of current-blockage levels of each protein yields volumetric information for the two proteins that is in good agreement with dynamic light scattering measurements. Finally, detection of a protein-protein complex is achieved. PMID:24507610

  16. Quantitation of protein-protein interactions by thermal stability shift analysis.

    PubMed

    Layton, Curtis J; Hellinga, Homme W

    2011-08-01

    Thermal stability shift analysis is a powerful method for examining binding interactions in proteins. We demonstrate that under certain circumstances, protein-protein interactions can be quantitated by monitoring shifts in thermal stability using thermodynamic models and data analysis methods presented in this work. This method relies on the determination of protein stabilities from thermal unfolding experiments using fluorescent dyes such as SYPRO Orange that report on protein denaturation. Data collection is rapid and straightforward using readily available real-time polymerase chain reaction instrumentation. We present an approach for the analysis of the unfolding transitions corresponding to each partner to extract the affinity of the interaction between the proteins. This method does not require the construction of a titration series that brackets the dissociation constant. In thermal shift experiments, protein stability data are obtained at different temperatures according to the affinity- and concentration-dependent shifts in unfolding transition midpoints. Treatment of the temperature dependence of affinity is, therefore, intrinsic to this method and is developed in this study. We used the interaction between maltose-binding protein (MBP) and a thermostable synthetic ankyrin repeat protein (Off7) as an experimental test case because their unfolding transitions overlap minimally. We found that MBP is significantly stabilized by Off7. High experimental throughput is enabled by sample parallelization, and the ability to extract quantitative binding information at a single partner concentration. In a single experiment, we were able to quantify the affinities of a series of alanine mutants, covering a wide range of affinities (∼ 100 nM to ∼ 100 μM). PMID:21674662

  17. NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration.

    PubMed

    Xia, Jianguo; Benner, Maia J; Hancock, Robert E W

    2014-07-01

    Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required--identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. In addition, interactive visualization of large networks has been primarily restricted to locally installed programs. To address these challenges, we have developed NetworkAnalyst, taking advantage of state-of-the-art web technologies, to enable high performance network analysis with rich user experience. NetworkAnalyst integrates all three steps and presents the results via a powerful online network visualization framework. Users can upload gene or protein lists, single or multiple gene expression datasets to perform comprehensive gene annotation and differential expression analysis. Significant genes are mapped to our manually curated protein-protein interaction database to construct relevant networks. The results are presented through standard web browsers for network analysis and interactive exploration. NetworkAnalyst supports common functions for network topology and module analyses. Users can easily search, zoom and highlight nodes or modules, as well as perform functional enrichment analysis on these selections. The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca. PMID:24861621

  18. Biotinylated probes for the analysis of protein modification by electrophiles.

    PubMed

    Codreanu, Simona G; Kim, Hye-Young H; Porter, Ned A; Liebler, Daniel C

    2012-01-01

    Formation of covalent protein adducts by lipid electrophiles contributes to diseases and toxicities linked to oxidative stress, but analysis of the adducts presents a challenging analytical problem. We describe selective adduct capture using biotin affinity probes to enrich protein and peptide adducts for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). One approach employs biotinamidohexanoic acid hydrazide to covalently label residual carbonyl groups on adducts. The other employs alkynyl analogs of lipid electrophiles, which form adducts that can be postlabeled with azidobiotin tags by Cu(+)-catalyzed cycloaddition (Click chemistry). To enhance the selectivity of adduct capture, we use an azidobiotin reagent with a photocleavable linker, which allows recovery of adducted proteins and peptides under mild conditions. This approach allows both the identification of protein targets of lipid electrophiles and sequence mapping of the adducts. PMID:22065220

  19. Fluorescence plate reader for quantum dot-protein bioconjugation analysis.

    PubMed

    Carvalho, Kilmara H G; Brasil, Aluizio G; Cabral Filho, Paulo E; Tenório, Denise P L A; de Siqueira, Ana C A; Leite, Elisa S; Fontes, Adriana; Santos, Beate S

    2014-05-01

    We present here a new and alternative method that uses a Fluorescence Plate Reader in a different approach, not to study protein-protein interactions, but to evaluate the efficiency of the protein bioconjugation to quantum dots (QDs). The method is based on the QDs' native fluorescence and was successfully tested by employing two different QDs-proteins conjugation methodologies, one by promoting covalent binding and other by inducing adsorption processes. For testing, we used bioconjugates between carboxyl coated CdTe QDs and bovine serum albumin, concanavalin A lectin and anti-A antibody. Flow cytometry and fluorescence spectroscopy studies corroborated the results found by the Fluorescence Plate Reader assay. This kind of analysis is important because poor bioconjugation efficiency leads to unsuccessful applications of the fluorescent bioconjugates. We believe that our method presents the possibility of performing semi-quantitative and simultaneous analysis of different samples with accuracy taking the advantage of the high sensitivity of optical based measurements. PMID:24734547

  20. Protein structure prediction and analysis using the Robetta server

    PubMed Central

    Kim, David E.; Chivian, Dylan; Baker, David

    2004-01-01

    The Robetta server (http://robetta.bakerlab.org) provides automated tools for protein structure prediction and analysis. For structure prediction, sequences submitted to the server are parsed into putative domains and structural models are generated using either comparative modeling or de novo structure prediction methods. If a confident match to a protein of known structure is found using BLAST, PSI-BLAST, FFAS03 or 3D-Jury, it is used as a template for comparative modeling. If no match is found, structure predictions are made using the de novo Rosetta fragment insertion method. Experimental nuclear magnetic resonance (NMR) constraints data can also be submitted with a query sequence for RosettaNMR de novo structure determination. Other current capabilities include the prediction of the effects of mutations on protein–protein interactions using computational interface alanine scanning. The Rosetta protein design and protein–protein docking methodologies will soon be available through the server as well. PMID:15215442

  1. Analysis of secondary structural and physicochemical changes in protein-protein complexes.

    PubMed

    Saranya, N; Saravanan, K M; Michael Gromiha, M; Selvaraj, S

    2016-03-01

    Conformation switching in protein-protein complexes is considered important for the molecular recognition process. Overall analysis of 123 protein-protein complexes in a benchmark data-set showed that 6.8% of residues switched over their secondary structure conformation upon complex formation. Amino acid residue-wise preference for conformation change has been analyzed in binding and non-binding site residues separately. In this analysis, residues such as Ser, Leu, Glu, and Lys had higher frequency of secondary structural conformation change. The change of helix to coil and sheet to coil conformation and vice versa has been observed frequently, whereas the conformation change of helix to extended sheet occurred rarely in the studied complexes. Influence of conformation change toward the N and C terminal on either side of the binding site residues has been analyzed. Further, analysis on φ and ψ angle variation, conservation, stability, and solvent accessibility have been performed on binding site residues. Knowledge obtained from the present study could be effectively employed in the protein-protein modeling and docking studies. PMID:25990569

  2. Coupling protein complex analysis to peptide based proteomics.

    PubMed

    Gao, Qiang; Madian, Ashraf G; Liu, Xiuping; Adamec, Jiri; Regnier, Fred E

    2010-12-01

    Proteolysis is a central component of most proteomics methods. Unfortunately much of the information relating to the structural diversity of proteins is lost during digestion. This paper describes a method in which the native proteome of yeast was subjected to preliminary fractionation by size exclusion chromatography (SEC) prior to trypsin digestion of SEC fractions and reversed phase chromatography-mass spectral analysis to identify tryptic peptides thus generated. Through this approach proteins associated with other proteins in high molecular mass complexes were recognized and identified. A focus of this work was on the identification of Hub proteins that associate with multiple interaction partners. A critical component of this strategy is to choose methods and conditions that maximize retention of native structure during the various stages of analysis prior to proteolysis, especially during cell lysis. Maximum survival of protein complexes during lysis was obtained with the French press and bead-beater methods of cell disruption at approximately pH 8 with 200 mM NaCl in the lysis buffer. Structure retention was favored by higher ionic strength, suggesting that hydrophobic effects are important in maintaining the structure of protein complexes. Recovery of protein complexes declined substantially with storage at any temperature, but storage at -20°C was best when low temperature storage was necessary. Slightly lower recovery was obtained with storage at -80°C while lowest recovery was achieved at 4°C. It was concluded that initial fractionation of native proteins in cell lysates by SEC prior to RPC-MS/MS of tryptic digests can be used to recognize and identify proteins in complexes along with their interaction partners in known protein complexes. PMID:21036361

  3. Analysis of NCL Proteins from an Evolutionary Standpoint

    PubMed Central

    Muzaffar, Neda E; Pearce, David A

    2008-01-01

    The Neuronal Ceroid Lipofuscinoses (NCLs) are the most common group of neurodegenerative disorders of childhood. While mutations in eight different genes have been shown to be responsible for these clinically distinct types of NCL, the NCLs share many clinical and pathological similarities. We have conducted an exhaustive Basic Local Alignment Search Tool (BLAST) analysis of the human protein sequences for each of the eight known NCL proteins- CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN8 and CLN10. The number of homologous species per CLN-protein identified by BLAST searches varies depending on the parameters set for the BLAST search. For example, a lower threshold is able to pull up more homologous sequences whereas a higher threshold decreases this number. Nevertheless, the clade confines are consistent despite this variation in BLAST searching parameters. Further phylogenetic analyses on the appearance of NCL proteins through evolution reveals a different time line for the appearance of the CLN-proteins. Moreover, divergence of each protein shows a different pattern, providing important clues on the evolving role of these proteins. We present and review in-depth bioinformatic analysis of the NCL proteins and classify the CLN-proteins into families based on their structures and evolutionary relationships, respectively. Based on these analyses, we have grouped the CLN-proteins into common clades indicating a common evolving pathway within the evolutionary tree of life. CLN2 is grouped in Eubacteria, CLN1 and CLN10 in Viridiplantae, CLN3 in Fungi/ Metazoa, CLN7 in Bilateria and CLN5, CLN6 and CLN8 in Euteleostomi. PMID:19440452

  4. MIPS: analysis and annotation of proteins from whole genomes.

    PubMed

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:14681354

  5. Proteomic analysis of antihypertensive proteins in edible mushrooms.

    PubMed

    Lau, Ching-Ching; Abdullah, Noorlidah; Shuib, Adawiyah Suriza; Aminudin, Norhaniza

    2012-12-19

    Mushrooms are high in protein content, which makes them potentially a good source of antihypertensive peptides. Among the mushrooms tested, protein extracts from Pleurotus cystidiosus (E1Pc and E5Pc) and Agaricus bisporus (E1Ab and E3Ab) had high levels of antihypertensive activity. The protein extracts were fractionated by reverse-phase high-performance liquid chromatography (RPHPLC) into six fractions. Fraction 3 from E5Pc (E5PcF3) and fraction 6 from E3Ab (E3AbF6) had the highest antihypertensive activities. SDS-PAGE analysis showed E5PcF3 consisted mainly of low molecular weight proteins, whereas E3AbF6 contained a variety of high to low molecular weight proteins. There were 22 protein clusters detected by SELDI-TOF-MS analysis with five common peaks found in E5PcF3 and E3AbF6, which had m/z values in the range of 3940-11413. This study suggests that the antihypertensive activity in the two mushroom species could be due to proteins with molecular masses ranging from 3 to 10 kDa. PMID:23190208

  6. Principal component analysis based methodology to distinguish protein SERS spectra

    NASA Astrophysics Data System (ADS)

    Das, G.; Gentile, F.; Coluccio, M. L.; Perri, A. M.; Nicastri, A.; Mecarini, F.; Cojoc, G.; Candeloro, P.; Liberale, C.; De Angelis, F.; Di Fabrizio, E.

    2011-05-01

    Surface-enhanced Raman scattering (SERS) substrates were fabricated using electro-plating and e-beam lithography techniques. Nano-structures were obtained comprising regular arrays of gold nanoaggregates with a diameter of 80 nm and a mutual distance between the aggregates (gap) ranging from 10 to 30 nm. The nanopatterned SERS substrate enabled to have better control and reproducibility on the generation of plasmon polaritons (PPs). SERS measurements were performed for various proteins, namely bovine serum albumin (BSA), myoglobin, ferritin, lysozyme, RNase-B, α-casein, α-lactalbumin and trypsin. Principal component analysis (PCA) was used to organize and classify the proteins on the basis of their secondary structure. Cluster analysis proved that the error committed in the classification was of about 14%. In the paper, it was clearly shown that the combined use of SERS measurements and PCA analysis is effective in categorizing the proteins on the basis of secondary structure.

  7. Genomic analysis of membrane protein families: abundance and conserved motifs

    PubMed Central

    Liu, Yang; Engelman, Donald M; Gerstein, Mark

    2002-01-01

    Background Polytopic membrane proteins can be related to each other on the basis of the number of transmembrane helices and sequence similarities. Building on the Pfam classification of protein domain families, and using transmembrane-helix prediction and sequence-similarity searching, we identified a total of 526 well-characterized membrane protein families in 26 recently sequenced genomes. To this we added a clustering of a number of predicted but unclassified membrane proteins, resulting in a total of 637 membrane protein families. Results Analysis of the occurrence and composition of these families revealed several interesting trends. The number of assigned membrane protein domains has an approximately linear relationship to the total number of open reading frames (ORFs) in 26 genomes studied. Caenorhabditis elegans is an apparent outlier, because of its high representation of seven-span transmembrane (7-TM) chemoreceptor families. In all genomes, including that of C. elegans, the number of distinct membrane protein families has a logarithmic relation to the number of ORFs. Glycine, proline, and tyrosine locations tend to be conserved in transmembrane regions within families, whereas isoleucine, valine, and methionine locations are relatively mutable. Analysis of motifs in putative transmembrane helices reveals that GxxxG and GxxxxxxG (which can be written GG4 and GG7, respectively; see Materials and methods) are among the most prevalent. This was noted in earlier studies; we now find these motifs are particularly well conserved in families, however, especially those corresponding to transporters, symporters, and channels. Conclusions We carried out a genome-wide analysis on patterns of the classified polytopic membrane protein families and analyzed the distribution of conserved amino acids and motifs in the transmembrane helix regions in these families. PMID:12372142

  8. Analysis of interactions between ribosomal proteins and RNA structural motifs

    PubMed Central

    2010-01-01

    Background One important goal of structural bioinformatics is to recognize and predict the interactions between protein binding sites and RNA. Recently, a comprehensive analysis of ribosomal proteins and their interactions with rRNA has been done. Interesting results emerged from the comparison of r-proteins within the small subunit in T. thermophilus and E. coli, supporting the idea of a core made by both RNA and proteins, conserved by evolution. Recent work showed also that ribosomal RNA is modularly composed. Motifs are generally single-stranded sequences of consecutive nucleotides (ssRNA) with characteristic folding. The role of these motifs in protein-RNA interactions has been so far only sparsely investigated. Results This work explores the role of RNA structural motifs in the interaction of proteins with ribosomal RNA (rRNA). We analyze composition, local geometries and conformation of interface regions involving motifs such as tetraloops, kink turns and single extruded nucleotides. We construct an interaction map of protein binding sites that allows us to identify the common types of shared 3-D physicochemical binding patterns for tetraloops. Furthermore, we investigate the protein binding pockets that accommodate single extruded nucleotides either involved in kink-turns or in arbitrary RNA strands. This analysis reveals a new structural motif, called tripod. It corresponds to small pockets consisting of three aminoacids arranged at the vertices of an almost equilateral triangle. We developed a search procedure for the recognition of tripods, based on an empirical tripod fingerprint. Conclusion A comparative analysis with the overall RNA surface and interfaces shows that contact surfaces involving RNA motifs have distinctive features that may be useful for the recognition and prediction of interactions. PMID:20122215

  9. Protein interaction discovery using parallel analysis of translated ORFs (PLATO)

    PubMed Central

    Gao, Geng; Somwar, Romel; Zhang, Zijuan; Laserson, Uri; Ciccia, Alberto; Pavlova, Natalya; Church, George; Zhang, Wei; Kesari, Santosh; Elledge, Stephen J.

    2014-01-01

    Identifying physical interactions between proteins and other molecules is a critical aspect of biological analysis. Here we describe PLATO, an in vitro method for mapping such interactions by affinity enrichment of a library of full-length open reading frames displayed on ribosomes, followed by massively parallel analysis using DNA sequencing. We demonstrate the broad utility of the method for human proteins by identifying known and previously unidentified interacting partners of LYN kinase, patient autoantibodies, and the small-molecules gefitinib and dasatinib. PMID:23503679

  10. Kinetic analysis of drug-protein interactions by affinity chromatography.

    PubMed

    Bi, Cong; Beeram, Sandya; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-10-01

    Information on the kinetics of drug-protein interactions is of crucial importance in drug discovery and development. Several methods based on affinity chromatography have been developed in recent years to examine the association and dissociation rates of these processes. These techniques include band-broadening measurements, the peak decay method, peak fitting methods, the split-peak method, and free fraction analysis. This review will examine the general principles and applications of these approaches and discuss their use in the characterization, screening and analysis of drug-protein interactions in the body. PMID:26724332

  11. Identification of Novel Amelogenin-Binding Proteins by Proteomics Analysis

    PubMed Central

    Fukuda, Takao; Sanui, Terukazu; Toyoda, Kyosuke; Tanaka, Urara; Taketomi, Takaharu; Uchiumi, Takeshi; Nishimura, Fusanori

    2013-01-01

    Emdogain (enamel matrix derivative, EMD) is well recognized in periodontology. It is used in periodontal surgery to regenerate cementum, periodontal ligament, and alveolar bone. However, the precise molecular mechanisms underlying periodontal regeneration are still unclear. In this study, we investigated the proteins bound to amelogenin, which are suggested to play a pivotal role in promoting periodontal tissue regeneration. To identify new molecules that interact with amelogenin and are involved in osteoblast activation, we employed coupling affinity chromatography with proteomic analysis in fractionated SaOS-2 osteoblastic cell lysate. In SaOS-2 cells, many of the amelogenin-interacting proteins in the cytoplasm were mainly cytoskeletal proteins and several chaperone molecules of heat shock protein 70 (HSP70) family. On the other hand, the proteomic profiles of amelogenin-interacting proteins in the membrane fraction of the cell extracts were quite different from those of the cytosolic-fraction. They were mainly endoplasmic reticulum (ER)-associated proteins, with lesser quantities of mitochondrial proteins and nucleoprotein. Among the identified amelogenin-interacting proteins, we validated the biological interaction of amelogenin with glucose-regulated protein 78 (Grp78/Bip), which was identified in both cytosolic and membrane-enriched fractions. Confocal co-localization experiment strongly suggested that Grp78/Bip could be an amelogenin receptor candidate. Further biological evaluations were examined by Grp78/Bip knockdown analysis with and without amelogenin. Within the limits of the present study, the interaction of amelogenin with Grp78/Bip contributed to cell proliferation, rather than correlate with the osteogenic differentiation in SaOS-2 cells. Although the biological significance of other interactions are not yet explored, these findings suggest that the differential effects of amelogenin-derived osteoblast activation could be of potential clinical

  12. Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry S; Lakshman, Sukla; Garrett, Wesley M; Dhar, Arun K

    2008-01-01

    Rhizoctonia solani (Teleomorph: Thanatephorus cucumeris, T. praticola) is a basidiomycetous fungus and a major cause of root diseases of economically important plants. Various isolates of this fungus are also beneficially associated with orchids, may serve as biocontrol agents or remain as saprophytes with roles in decaying and recycling of soil organic matter. R. solani displays several hyphal anastomosis groups (AG) with distinct host and pathogenic specializations. Even though there are reports on the physiological and histological basis of Rhizoctonia-host interactions, very little is known about the molecular biology and control of gene expression early during infection by this pathogen. Proteamic technologies are powerful tools for examining alterations in protein profiles. To aid studies on its biology and host pathogen interactions, a two-dimensional (2-D) gel-based global proteomic study has been initiated. To develop an optimized protein extraction protocol for R. solani, we compared two previously reported protein extraction protocols for 2-D gel analysis of R. solani (AG-4) isolate Rs23. Both TCA-acetone precipitation and phosphate solubilization before TCA-acetone precipitation worked well for R. solani protein extraction, although selective enrichment of some proteins was noted with either method. About 450 spots could be detected with the densitiometric tracing of Coomassie blue-stained 2-D PAGE gels covering pH 4-7 and 6.5-205 kDa. Selected protein spots were subjected to mass spectrometric analysis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Eleven protein spots were positively identified based on peptide mass fingerprinting match with fungal proteins in public databases with the Mascot search engine. These results testify to the suitability of the two optimized protein extraction protocols for 2-D proteomic studies of R. solani. PMID:19202841

  13. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer

    PubMed Central

    CHEN, CHEN; SHEN, HONG; ZHANG, LI-GUO; LIU, JIAN; CAO, XIAO-GE; YAO, AN-LIANG; KANG, SHAO-SAN; GAO, WEI-XING; HAN, HUI; CAO, FENG-HONG; LI, ZHI-GUO

    2016-01-01

    Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963

  14. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer.

    PubMed

    Chen, Chen; Shen, Hong; Zhang, Li-Guo; Liu, Jian; Cao, Xiao-Ge; Yao, An-Liang; Kang, Shao-San; Gao, Wei-Xing; Han, Hui; Cao, Feng-Hong; Li, Zhi-Guo

    2016-06-01

    Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963

  15. Protein identification by spectral networks analysis.

    PubMed

    Bandeira, Nuno; Tsur, Dekel; Frank, Ari; Pevzner, Pavel A

    2007-04-10

    Advances in tandem mass spectrometry (MS/MS) steadily increase the rate of generation of MS/MS spectra. As a result, the existing approaches that compare spectra against databases are already facing a bottleneck, particularly when interpreting spectra of modified peptides. Here we explore a concept that allows one to perform an MS/MS database search without ever comparing a spectrum against a database. We propose to take advantage of spectral pairs, which are pairs of spectra obtained from overlapping (often nontryptic) peptides or from unmodified and modified versions of the same peptide. Having a spectrum of a modified peptide paired with a spectrum of an unmodified peptide allows one to separate the prefix and suffix ladders, to greatly reduce the number of noise peaks, and to generate a small number of peptide reconstructions that are likely to contain the correct one. The MS/MS database search is thus reduced to extremely fast pattern-matching (rather than time-consuming matching of spectra against databases). In addition to speed, our approach provides a unique paradigm for identifying posttranslational modifications by means of spectral networks analysis. PMID:17404225

  16. Comparative Analysis of Techniques to Purify Plasma Membrane Proteins

    PubMed Central

    Weekes, Michael P.; Antrobus, Robin; Lill, Jennie R.; Duncan, Lidia M.; Hör, Simon; Lehner, Paul J.

    2010-01-01

    The aim of this project was to identify the best method for the enrichment of plasma membrane (PM) proteins for proteomics experiments. Following tryptic digestion and extended liquid chromatography-tandem mass spectrometry acquisitions, data were processed using MaxQuant and Gene Ontology (GO) terms used to determine protein subcellular localization. The following techniques were examined for the total number and percentage purity of PM proteins identified: (a) whole cell lysate (total number, 84–112; percentage purity, 9–13%); (b) crude membrane preparation (104–111; 17–20%); (c) biotinylation of surface proteins with N-hydroxysulfosuccinimydyl-S,S-biotin and streptavidin pulldown (78–115; 27–31%); (d) biotinylation of surface glycoproteins with biocytin hydrazide and streptavidin pulldown (41–54; 59–85%); or (e) biotinylation of surface glycoproteins with amino-oxy-biotin (which labels the sialylated fraction of PM glycoproteins) and streptavidin pulldown (120; 65%). A two- to threefold increase in the overall number of proteins identified was achieved by using stop and go extraction tip (StageTip)-based anion exchange (SAX) fractionation. Combining technique (e) with SAX fractionation increased the number of proteins identified to 281 (54%). Analysis of GO terms describing these proteins identified a large subset of proteins integral to the membrane with no subcellular assignment. These are likely to be of PM location and bring the total PM protein identifications to 364 (68%). This study suggests that selective biotinylation of the cell surface using amino-oxy-biotin in combination with SAX fractionation is a useful method for identification of sialylated PM proteins. PMID:20808639

  17. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGESBeta

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; Morrell-Falvey, J. L.

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  18. Kojak: Efficient analysis of chemically cross-linked protein complexes

    PubMed Central

    Hoopmann, Michael R.; Zelter, Alex; Johnson, Richard S.; Riffle, Michael; MacCoss, Michael J.; Davis, Trisha N.; Moritz, Robert L.

    2015-01-01

    Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies, however complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms, and can identify cross-linked peptides using many different chemical cross-linkers, with or without heavy isotope labels. Kojak was used to analyze both novel and existing datasets, and was compared with existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms, and equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing datasets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods. PMID:25812159

  19. Quantifying Aptamer-Protein Binding via Thermofluorimetric Analysis

    PubMed Central

    Hu, Juan; Kim, Joonyul; Easley, Christopher J.

    2015-01-01

    Effective aptamer-based protein assays require coupling to a quantitative reporter of aptamer-protein binding. Typically, this involves a direct optical or electrochemical readout of DNA hybridization or an amplification step coupled to the readout. However, method development is often hampered by the multiplicity of aptamer-target binding mechanisms, which can interfere with the hybridization step. As a simpler and more generalizable readout of aptamer-protein binding, we report that thermofluorimetric analysis (TFA) can be used to quantitatively assay protein levels. Sub-nanomolar detection (0.74 nM) of platelet-derived growth factor (PDGF) with its corresponding aptamer is shown as a test case. In the presence of various DNA intercalating dyes, protein-bound aptamers exhibit a change in fluorescence intensity compared to the intercalated, unbound aptamer. This allows thermal resolution of bound and unbound aptamers using fluorescence melting analysis (−dF/dT curves). Remarkably, the homogeneous optical method allows subtraction of autofluorescence in human serum, giving PDGF detection limits of 1.8 and 10.7 nM in serum diluted 1:7 and 1:3, respectively. We have thus demonstrated that bound and unbound aptamers can be thermally resolved in a homogeneous format using a simple qPCR instrument—even in human serum. The simplicity of this approach provides an important step toward a robust, generalizable readout of aptamer-protein binding. PMID:26366207

  20. Quantitative proteomic analysis of cold-responsive proteins in rice.

    PubMed

    Neilson, Karlie A; Mariani, Michael; Haynes, Paul A

    2011-05-01

    Rice is susceptible to cold stress and with a future of climatic instability we will be unable to produce enough rice to satisfy increasing demand. A thorough understanding of the molecular responses to thermal stress is imperative for engineering cultivars, which have greater resistance to low temperature stress. In this study we investigated the proteomic response of rice seedlings to 48, 72 and 96 h of cold stress at 12-14°C. The use of both label-free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics. The approaches yielded a similar biological response to cold stress despite a disparity in proteins identified. The label-free approach identified 236 cold-responsive proteins compared to 85 in iTRAQ results, with only 24 proteins in common. Functional analysis revealed differential expression of proteins involved in transport, photosynthesis, generation of precursor metabolites and energy; and, more specifically, histones and vitamin B biosynthetic proteins were observed to be affected by cold stress. PMID:21433000

  1. [Comparative analysis of total cell protein electrophoregram of pathogenic Burkholderia].

    PubMed

    Budchenko, A A; Iliukhin, V I; Viktorov, D V

    2005-01-01

    Whole-cell proteins of 22 strain of Burkhoderia pseudomallei, including 13 B. mallei, 5 B. cepacia strains and 14 strains of opportunistically pathogenic Pseudomonas defined by 1D SDC-PAAG electrophoresis. Electrophoregrams contained 35 to 45 protein fractions sized 19 to 130 kDa, which were highly reproductive. On the basis of computer-aided comparative analysis of protein patterns the interspecies and intraspecies grouping of studied microorganisms was made. The cluster analysis of the similarity matrix of protein spectra made it possible to allocate two groups of strains at the level of similarity of 78%. Group I was formed by Burkholderia species that previously belonged to the II RNA-DNA homology group of Pseudomonas: B. pseudomallei, B. mallei, B. cepacia. All Pseudomonas species were added to the 2nd Group: P. aeruginosa, P. stutzeri, P. testosterone, P. fluorescens, P. putida, P. mendocina. Four phenons were isolated among the strains of B. pseudomallei and 2 phenons--among the strains of B. mallei at the threshold similarity level (89%). The authors conclude that the comparative analysis of electrophoregrams of whole-cell proteins can be useful in the identification and typing of pathogenic Burkholderia. PMID:15954473

  2. High-throughput analysis and protein engineering using microcapillary arrays.

    PubMed

    Chen, Bob; Lim, Sungwon; Kannan, Arvind; Alford, Spencer C; Sunden, Fanny; Herschlag, Daniel; Dimov, Ivan K; Baer, Thomas M; Cochran, Jennifer R

    2016-02-01

    We describe a multipurpose technology platform, termed μSCALE (microcapillary single-cell analysis and laser extraction), that enables massively parallel, quantitative biochemical and biophysical measurements on millions of protein variants expressed from yeast or bacteria. μSCALE spatially segregates single cells within a microcapillary array, enabling repeated imaging, cell growth and protein expression. We performed high-throughput analysis of cells and their protein products using a range of fluorescent assays, including binding-affinity measurements and dynamic enzymatic assays. A precise laser-based extraction method allows rapid recovery of live clones and their genetic material from microcapillaries for further study. With μSCALE, we discovered a new antibody against a clinical cancer target, evolved a fluorescent protein biosensor and engineered an enzyme to reduce its sensitivity to its inhibitor. These protein analysis and engineering applications each have unique assay requirements and different host organisms, highlighting the flexibility and technical capabilities of the μSCALE platform. PMID:26641932

  3. Analysis of Protein Oligomeric Species by Sucrose Gradients.

    PubMed

    Tenreiro, Sandra; Macedo, Diana; Marijanovic, Zrinka; Outeiro, Tiago Fleming

    2016-01-01

    Protein misfolding, aggregation, and accumulation are a common hallmark in various neurodegenerative diseases. Invariably, the process of protein aggregation is associated with both a loss of the normal biological function of the protein and a gain of toxic function that ultimately leads to cell death. The precise origin of protein cytotoxicity is presently unclear but the predominant theory posits that smaller oligomeric species are more toxic than larger aggregated forms. While there is still no consensus on this subject, this is a central question that needs to be addressed in order to enable the design of novel and more effective therapeutic strategies. Accordingly, the development and utilization of approaches that allow the biochemical characterization of the formed oligomeric species in a given cellular or animal model will enable the correlation with cytotoxicity and other parameters of interest.Here, we provide a detailed description of a low-cost protocol for the analysis of protein oligomeric species from both yeast and mammalian cell lines models, based on their separation according to sedimentation velocity using high-speed centrifugation in sucrose gradients. This approach is an adaptation of existing protocols that enabled us to overcome existing technical issues and obtain reliable results that are instrumental for the characterization of the types of protein aggregates formed by different proteins of interest in the context of neurodegenerative disorders. PMID:27613047

  4. CE-microreactor-CE-MS/MS for protein analysis

    PubMed Central

    Schoenherr, Regine M.; Ye, Mingliang; Vannatta, Michael

    2008-01-01

    We present a proof-of-principle for a fully automated bottom-up approach to protein characterization. Proteins are first separated by capillary electrophoresis. A pepsin microreactor is incorporated into the distal end of this capillary. Peptides formed in the reactor are transferred to a second capillary, where they are separated by capillary electrophoresis and characterized by mass spectrometry. While peptides generated from one digestion are being separated in the second capillary, the next protein fraction undergoes digestion in the microreactor. The migration time in the first dimension capillary is characteristic of the protein while migration time in the second dimension is characteristic of the peptide. Spot capacity for the two-dimensional separation is 590. A MS/MS analysis of a mixture of cytochrome C and myoglobin generated Mascot MOWSE scores of 107 for cytochrome C and 58 for myoglobin. The sequence coverages were 48% and 22%, respectively. PMID:17295444

  5. THE APPLICATION OF MASS SPECTROMETRY TO PROTEIN ANALYSIS

    EPA Science Inventory

    The purpose of this presentation is to give our NHEERL collaborators a brief introduction to the use of mass spectrometric (MS) techniques in the analysis of proteins. The basic principles of electrospray ionization and matrix-assisted laser desorption ionization will be discuss...

  6. Extraction of Wheat Endosperm Proteins for Proteome Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total protein extracts of wheat endosperm are widely used for the analysis of the highly abundant gliadins and glutenins. In this review, the most popular total endosperm extraction methods are compared for their effectiveness in proteome coverage. A drawback of total endosperm extracts is that the ...

  7. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  8. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins.

    PubMed

    Clarke, Victoria C; Loughlin, Patrick C; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M; Day, David A; Smith, Penelope M C

    2015-05-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  9. Functional and Structural Analysis of the Conserved EFhd2 Protein

    PubMed Central

    Acosta, Yancy Ferrer; Rodríguez Cruz, Eva N.; Vaquer, Ana del C.; Vega, Irving E.

    2013-01-01

    EFhd2 is a novel protein conserved from C. elegans to H. sapiens. This novel protein was originally identified in cells of the immune and central nervous systems. However, it is most abundant in the central nervous system, where it has been found associated with pathological forms of the microtubule-associated protein tau. The physiological or pathological roles of EFhd2 are poorly understood. In this study, a functional and structural analysis was carried to characterize the molecular requirements for EFhd2’s calcium binding activity. The results showed that mutations of a conserved aspartate on either EF-hand motif disrupted the calcium binding activity, indicating that these motifs work in pair as a functional calcium binding domain. Furthermore, characterization of an identified single-nucleotide polymorphisms (SNP) that introduced a missense mutation indicates the importance of a conserved phenylalanine on EFhd2 calcium binding activity. Structural analysis revealed that EFhd2 is predominantly composed of alpha helix and random coil structures and that this novel protein is thermostable. EFhd2’s thermo stability depends on its N-terminus. In the absence of the N-terminus, calcium binding restored EFhd2’s thermal stability. Overall, these studies contribute to our understanding on EFhd2 functional and structural properties, and introduce it into the family of canonical EF-hand domain containing proteins. PMID:22973849

  10. Lists2Networks: Integrated analysis of gene/protein lists

    PubMed Central

    2010-01-01

    Background Systems biologists are faced with the difficultly of analyzing results from large-scale studies that profile the activity of many genes, RNAs and proteins, applied in different experiments, under different conditions, and reported in different publications. To address this challenge it is desirable to compare the results from different related studies such as mRNA expression microarrays, genome-wide ChIP-X, RNAi screens, proteomics and phosphoproteomics experiments in a coherent global framework. In addition, linking high-content multilayered experimental results with prior biological knowledge can be useful for identifying functional themes and form novel hypotheses. Results We present Lists2Networks, a web-based system that allows users to upload lists of mammalian genes/proteins onto a server-based program for integrated analysis. The system includes web-based tools to manipulate lists with different set operations, to expand lists using existing mammalian networks of protein-protein interactions, co-expression correlation, or background knowledge co-annotation correlation, as well as to apply gene-list enrichment analyses against many gene-list libraries of prior biological knowledge such as pathways, gene ontology terms, kinase-substrate, microRNA-mRAN, and protein-protein interactions, metabolites, and protein domains. Such analyses can be applied to several lists at once against many prior knowledge libraries of gene-lists associated with specific annotations. The system also contains features that allow users to export networks and share lists with other users of the system. Conclusions Lists2Networks is a user friendly web-based software system expected to significantly ease the computational analysis process for experimental systems biologists employing high-throughput experiments at multiple layers of regulation. The system is freely available at http://www.lists2networks.org. PMID:20152038

  11. Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes.

    PubMed

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Altantzis, Thomas; Bals, Sara; Schotter, Joerg

    2016-04-13

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions. PMID:27023370

  12. Systematic Analysis of Protein Phosphorylation Networks From Phosphoproteomic Data*

    PubMed Central

    Song, Chunxia; Ye, Mingliang; Liu, Zexian; Cheng, Han; Jiang, Xinning; Han, Guanghui; Songyang, Zhou; Tan, Yexiong; Wang, Hongyang; Ren, Jian; Xue, Yu; Zou, Hanfa

    2012-01-01

    In eukaryotes, hundreds of protein kinases (PKs) specifically and precisely modify thousands of substrates at specific amino acid residues to faithfully orchestrate numerous biological processes, and reversibly determine the cellular dynamics and plasticity. Although over 100,000 phosphorylation sites (p-sites) have been experimentally identified from phosphoproteomic studies, the regulatory PKs for most of these sites still remain to be characterized. Here, we present a novel software package of iGPS for the prediction of in vivo site-specific kinase-substrate relations mainly from the phosphoproteomic data. By critical evaluations and comparisons, the performance of iGPS is satisfying and better than other existed tools. Based on the prediction results, we modeled protein phosphorylation networks and observed that the eukaryotic phospho-regulation is poorly conserved at the site and substrate levels. With an integrative procedure, we conducted a large-scale phosphorylation analysis of human liver and experimentally identified 9719 p-sites in 2998 proteins. Using iGPS, we predicted a human liver protein phosphorylation networks containing 12,819 potential site-specific kinase-substrate relations among 350 PKs and 962 substrates for 2633 p-sites. Further statistical analysis and comparison revealed that 127 PKs significantly modify more or fewer p-sites in the liver protein phosphorylation networks against the whole human protein phosphorylation network. The largest data set of the human liver phosphoproteome together with computational analyses can be useful for further experimental consideration. This work contributes to the understanding of phosphorylation mechanisms at the systemic level, and provides a powerful methodology for the general analysis of in vivo post-translational modifications regulating sub-proteomes. PMID:22798277

  13. Microfluidic IEF technique for sequential phosphorylation analysis of protein kinases

    NASA Astrophysics Data System (ADS)

    Choi, Nakchul; Song, Simon; Choi, Hoseok; Lim, Bu-Taek; Kim, Young-Pil

    2015-11-01

    Sequential phosphorylation of protein kinases play the important role in signal transduction, protein regulation, and metabolism in living cells. The analysis of these phosphorylation cascades will provide new insights into their physiological functions in many biological functions. Unfortunately, the existing methods are limited to analyze the cascade activity. Therefore, we suggest a microfluidic isoelectric focusing technique (μIEF) for the analysis of the cascade activity. Using the technique, we show that the sequential phosphorylation of a peptide by two different kinases can be successfully detected on a microfluidic chip. In addition, the inhibition assay for kinase activity and the analysis on a real sample have also been conducted. The results indicate that μIEF is an excellent means for studies on phosphorylation cascade activity.

  14. Suspension array technology: new tools for gene and protein analysis.

    PubMed

    Nolan, J P; Mandy, F F

    2001-11-01

    Flow cytometry has long been a key tool in the analysis of lymphocytes and other cells, owing to its ability to make quantitative, homogeneous, multiparameter measurements of particles. New developments in illumination sources, digital signal processing and microsphere chemistry are driving the development of flow cytometry in new areas of biomedical research. In particular. the maturation of approaches to perform highly parallel analyses using suspension arrays of microspheres with different morphospectral features is making flow cytometry an important tool in protein and genetic analysis. In this paper, we review the development of suspension array technology (SAT), current applications in protein and genomic analysis, and the prospects for this platform in a variety of large scale screening applications. PMID:11838973

  15. Analysis of motion features for molecular dynamics simulation of proteins

    NASA Astrophysics Data System (ADS)

    Kamada, Mayumi; Toda, Mikito; Sekijima, Masakazu; Takata, Masami; Joe, Kazuki

    2011-01-01

    Recently, a new method for time series analysis using the wavelet transformation has been proposed by Sakurai et al. We apply it to molecular dynamics simulation of Thermomyces lanuginosa lipase (TLL). Introducing indexes to characterize collective motion of the protein, we have obtained the following two results. First, time evolution of the collective motion involves not only the dynamics within a single potential well but also takes place wandering around multiple conformations. Second, correlation of the collective motion between secondary structures shows that collective motion exists involving multiple secondary structures. We discuss future prospects of our study involving 'disordered proteins'.

  16. Objective Diagnosis of Cervical Cancer by Tissue Protein Profile Analysis

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Bhat, Sujatha; Rai, Lavanya; Kartha, V. B.; Chidangil, Santhosh

    2011-07-01

    Protein profiles of homogenized normal cervical tissue samples from hysterectomy subjects and cancerous cervical tissues from biopsy samples collected from patients with different stages of cervical cancer were recorded using High Performance Liquid Chromatography coupled with Laser Induced Fluorescence (HPLC-LIF). The Protein profiles were subjected to Principle Component Analysis to derive statistically significant parameters. Diagnosis of sample types were carried out by matching three parameters—scores of factors, squared residuals, and Mahalanobis Distance. ROC and Youden's Index curves for calibration standards were used for objective estimation of the optimum threshold for decision making and performance.

  17. SCit: web tools for protein side chain conformation analysis.

    PubMed

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438

  18. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  19. Molecular Characterization and Analysis of a Novel Protein Disulfide Isomerase-Like Protein of Eimeria tenella

    PubMed Central

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC). BLAST analysis showed that the EtPDIL protein was 55–59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells. These results

  20. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis.

    PubMed

    Kohansal-Nodehi, Mahdokht; Chua, John Je; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. PMID:27115346

  1. Protein analysis in dissolved organic matter: what free proteins from soil leachate and surface water can tell us a perspective

    NASA Astrophysics Data System (ADS)

    Schulze, W.

    2004-12-01

    Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the DOM protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from DOM and organism-free surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  2. High-throughput protein analysis integrating bioinformatics and experimental assays.

    PubMed

    del Val, Coral; Mehrle, Alexander; Falkenhahn, Mechthild; Seiler, Markus; Glatting, Karl-Heinz; Poustka, Annemarie; Suhai, Sandor; Wiemann, Stefan

    2004-01-01

    The wealth of transcript information that has been made publicly available in recent years requires the development of high-throughput functional genomics and proteomics approaches for its analysis. Such approaches need suitable data integration procedures and a high level of automation in order to gain maximum benefit from the results generated. We have designed an automatic pipeline to analyse annotated open reading frames (ORFs) stemming from full-length cDNAs produced mainly by the German cDNA Consortium. The ORFs are cloned into expression vectors for use in large-scale assays such as the determination of subcellular protein localization or kinase reaction specificity. Additionally, all identified ORFs undergo exhaustive bioinformatic analysis such as similarity searches, protein domain architecture determination and prediction of physicochemical characteristics and secondary structure, using a wide variety of bioinformatic methods in combination with the most up-to-date public databases (e.g. PRINTS, BLOCKS, INTERPRO, PROSITE SWISSPROT). Data from experimental results and from the bioinformatic analysis are integrated and stored in a relational database (MS SQL-Server), which makes it possible for researchers to find answers to biological questions easily, thereby speeding up the selection of targets for further analysis. The designed pipeline constitutes a new automatic approach to obtaining and administrating relevant biological data from high-throughput investigations of cDNAs in order to systematically identify and characterize novel genes, as well as to comprehensively describe the function of the encoded proteins. PMID:14762202

  3. Screening of Small-Molecule Inhibitors of Protein-Protein Interaction with Capillary Electrophoresis Frontal Analysis.

    PubMed

    Xu, Mei; Liu, Chao; Zhou, Mi; Li, Qing; Wang, Renxiao; Kang, Jingwu

    2016-08-16

    A simple and effective method for identifying inhibitors of protein-protein interactions (PPIs) was developed by using capillary electrophoresis frontal analysis (CE-FA). Antiapoptotic B-cell-2 (Bcl-2) family member Bcl-XL protein, a 5-carboxyfluorescein labeled peptide truncated from the BH3 domain of Bid (F-Bid) as the ligand, and a known Bcl-XL-Bid interaction inhibitor ABT-263 were employed as an experimental model for the proof of concept. In CE-FA, the free ligand is separated from the protein and protein-ligand complex to permit the measurement of the equilibrium concentration of the ligand, hence the dissociation constant of the protein-ligand complex. In the presence of inhibitors, formation of the protein-ligand complex is hindered, thereby the inhibition can be easily identified by the raised plateau height of the ligand and the decayed plateau of the complex. Further, we proposed an equation used to convert the IC50 value into the inhibition constant Ki value, which is more useful than the former for comparison. In addition, the sample pooling strategy was employed to improve the screening throughput more than 10 times. A small chemical library composed of synthetic compounds and natural extracts were screened with the method, two natural products, namely, demethylzeylasteral and celastrol, were identified as new inhibitors to block the Bcl-XL-Bid interaction. Cell-based assay was performed to validate the activity of the identified compounds. The result demonstrated that CE-FA represents a straightforward and robust technique for screening of PPI inhibitors. PMID:27425825

  4. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses.

    PubMed

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1's role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  5. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes.

    PubMed

    Calvanese, Luisa; D'Auria, Gabriella; Vangone, Anna; Falcigno, Lucia; Oliva, Romina

    2016-06-01

    NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different conservations. The different exhibited conservations do not simply correlate with the size of the systems/interfaces, and are most probably the result of an interplay between different factors, including the quality of experimental data and the intrinsic complex flexibility. In any case, this information is not to be missed when NMR structures of protein-protein complexes are analyzed; especially considering that, as we also show here, the first NMR conformer is usually not the one which best reflects the overall interface. To quantify the interface conservation and to analyze it, we used an approach originally conceived for the analysis and ranking of ensembles of docking models, which has now been extended to directly deal with NMR ensembles. We propose this approach, based on the conservation of the inter-residue contacts at the interface, both for the analysis of the interface in whole ensembles of NMR complexes and for the possible selection of a single conformer as the best representative of the overall interface. In order to make the analyses automatic and fast, we made the protocol available as a web tool at: https://www.molnac.unisa.it/BioTools/consrank/consrank-nmr.html. PMID:26968364

  6. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    PubMed Central

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  7. The pros and cons of increased trypsin-to-protein ratio in targeted protein analysis.

    PubMed

    Egeland, Siri Valen; Reubsaet, Léon; Halvorsen, Trine Grønhaug

    2016-05-10

    The effect of increasing the trypsin amount in bottom-up based targeted protein analysis is evaluated. By applying an increased trypsin-to-protein ratio (1:1 (w/w)) after heat denaturation (60°C), reduction and alkylation, the digestion time could be reduced profoundly compared to conventional digestion conditions (ratio 1:40, overnight) without compromising method sensitivity or digestion repeatability. The procedure was obtained after a systematic evaluation of trypsin level and trypsin quality using a set of three model proteins: human chorionic gonadotropin (hCG), bovine serum albumin (BSA) and cytochrome C (CytC). All peptides monitored were produced at similar or higher levels after 45min at trypsin-to-protein ratio 1:1, compared to conventional overnight digestion (exception: CytC using modified trypsin, required up to 4h (at 1:1 ratio) in order achieve this). Peptide decay due to chymotryptic activity was observed at longer digestion times, but the effect was circumvented using digestion times <4h. The accelerated digestion protocol (1:1 (w/w), 45min) was applied to realistic human serum samples containing the biomarker protein hCG to demonstrate its applicability. PMID:26907699

  8. A comprehensive analysis of the La-motif protein superfamily

    PubMed Central

    Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2009-01-01

    The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits. PMID:19299548

  9. Protein Significance Analysis in Selected Reaction Monitoring (SRM) Measurements*

    PubMed Central

    Chang, Ching-Yun; Picotti, Paola; Hüttenhain, Ruth; Heinzelmann-Schwarz, Viola; Jovanovic, Marko; Aebersold, Ruedi; Vitek, Olga

    2012-01-01

    Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that provides sensitive and accurate protein detection and quantification in complex biological mixtures. Statistical and computational tools are essential for the design and analysis of SRM experiments, particularly in studies with large sample throughput. Currently, most such tools focus on the selection of optimized transitions and on processing signals from SRM assays. Little attention is devoted to protein significance analysis, which combines the quantitative measurements for a protein across isotopic labels, peptides, charge states, transitions, samples, and conditions, and detects proteins that change in abundance between conditions while controlling the false discovery rate. We propose a statistical modeling framework for protein significance analysis. It is based on linear mixed-effects models and is applicable to most experimental designs for both isotope label-based and label-free SRM workflows. We illustrate the utility of the framework in two studies: one with a group comparison experimental design and the other with a time course experimental design. We further verify the accuracy of the framework in two controlled data sets, one from the NCI-CPTAC reproducibility investigation and the other from an in-house spike-in study. The proposed framework is sensitive and specific, produces accurate results in broad experimental circumstances, and helps to optimally design future SRM experiments. The statistical framework is implemented in an open-source R-based software package SRMstats, and can be used by researchers with a limited statistics background as a stand-alone tool or in integration with the existing computational pipelines. PMID:22190732

  10. A Fourier analysis of symmetry in protein structure.

    PubMed

    Taylor, William R; Heringa, Jaap; Baud, Franck; Flores, Tomas P

    2002-02-01

    The score matrix from a structure comparison program (SAP) was used to search for repeated structures using a Fourier analysis. When tested with artificial data, a simple Fourier transform of the smoothed matrix provided a clear signal of the repeat periodicity that could be used to extract the repeating units with the SAP program. The strength of the Fourier signal was calibrated against the signal from model proteins. The most useful of these was the novel random-walk approach employed to generate realistic 'fake' structures. On the basis of these it was possible to conclude that only a small proportion of protein structures have an unexpected degree of symmetry. Artificially generated 'ideal' folds provided an upper limit on the strength of signal that could be expected from a 'perfectly' repeating compact structure. Unexpectedly, some of the very regular beta-propellor folds attained the same strength but the majority of symmetric structures lay below this region. When native proteins were ranked by the power of their spectrum a wide variety of fold types were seen to score highly. In the betaalpha class, these included the globular betaalpha proteins and the more repetitive leucine-rich betaalpha folds. In the all-beta class; beta-propellors, beta-prisms and beta-helices were found as well as the more globular gamma-crystalin domains. When this ranked list was filtered to remove proteins that contained detectable internal sequence similarity (using the program REPRO), the list became exclusively composed of just globular betaalpha class proteins and in the top 50 re-ranked proteins, only a single 4-fold propellor structure remained. PMID:11917144

  11. Sequence and comparative genomic analysis of actin-related proteins.

    PubMed

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-12-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4. PMID:16195354

  12. Analysis of proteins involved in biodegradation of crop biomass

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  13. Analysis of informational redundancy in the protein-assembling machinery

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2004-03-01

    Entropy analysis of the DNA structure does not reveal a significant departure from randomness indicating lack of informational redundancy. This signifies the absence of a hidden meaning in the genome text and supports the 'barcode' interpretation of DNA given in [1]. Lack of informational redundancy is a characteristic property of an identification label rather than of a message of instructions. Yet randomness of DNA has to induce non-random structures of the proteins. Protein synthesis is a two-step process: transcription into RNA with gene splicing and formation a structure of amino acids. Entropy estimations, performed by A. Djebbari, show typical values of redundancy of the biomolecules along these pathways: DNA gene 4proteins 15-40in gene expression, the RNA copy carries the same information as the original DNA template. Randomness is essentially eliminated only at the step of the protein creation by a degenerate code. According to [1], the significance of the substitution of U for T with a subsequent gene splicing is that these transformations result in a different pattern of RNA oscillations, so the vital DNA communications are protected against extraneous noise coming from the protein making activities. 1. S. Berkovich, "On the 'barcode' functionality of DNA, or the Phenomenon of Life in the Physical Universe", Dorrance Publishing Co., Pittsburgh, 2003

  14. Graph theory and stability analysis of protein complex interaction networks.

    PubMed

    Huang, Chien-Hung; Chen, Teng-Hung; Ng, Ka-Lok

    2016-04-01

    Protein complexes play an essential role in many biological processes. Complexes can interact with other complexes to form protein complex interaction network (PCIN) that involves in important cellular processes. There are relatively few studies on examining the interaction topology among protein complexes; and little is known about the stability of PCIN under perturbations. We employed graph theoretical approach to reveal hidden properties and features of four species PCINs. Two main issues are addressed, (i) the global and local network topological properties, and (ii) the stability of the networks under 12 types of perturbations. According to the topological parameter classification, we identified some critical protein complexes and validated that the topological analysis approach could provide meaningful biological interpretations of the protein complex systems. Through the Kolmogorov-Smimov test, we showed that local topological parameters are good indicators to characterise the structure of PCINs. We further demonstrated the effectiveness of the current approach by performing the scalability and data normalization tests. To measure the robustness of PCINs, we proposed to consider eight topological-based perturbations, which are specifically applicable in scenarios of targeted, sustained attacks. We found that the degree-based, betweenness-based and brokering-coefficient-based perturbations have the largest effect on network stability. PMID:26997661

  15. Analysis of protein dynamics in the pericellular matrix

    NASA Astrophysics Data System (ADS)

    Scrimgeour, Jan; Young, Dylan

    2015-03-01

    The pericellular matrix (PCM) is a low density, hydrated polymer coating that extends into the extracellular space from the surface of many living cells. The PCM controls access to cell and tissue surfaces, regulating a diverse set of processes from cell adhesion to protein transport and storage. The cell coat consists of a malleable backbone - the large polysaccharide hyaluronan (HA) - with its structure, its material properties, and its bio-functionality tuned by a diverse set of HA binding proteins. These proteins add charge, cross-links and growth factor-like ligands into the brush. Dynamic interactions between the HA and its binding proteins can be observed using single particle tracking in a fluorescence microscope. The resulting single molecule trajectories can contain evidence of site hoping, with the proteins dynamically moving between different states of motion as they bind and unbind from the HA. Here, we present an evaluation of hidden Markov models for the analysis of such multi-mobility trajectories. Simulated trajectories are used to probe the limits of this approach for molecular trajectories of limited length and the results are used to inform the design of particle tracking experiments.

  16. N-terminal protein processing: A comparative proteogenomic analysis

    SciTech Connect

    Bonissone, Stefano; Gupta, Nitin; Romine, Margaret F.; Bradshaw, Ralph A.; Pevzner, Pavel A.

    2013-01-01

    N-Terminal Methionine Excision (NME) is a universally conserved mechanism with the same specificity across all life forms that removes the first Methionine in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val. In spite of its necessity for proper cell functioning, the functional role of NME remains unclear. In 1988, Arfin and Bradshaw connected NME with the N-end protein degradation rule and postulated that the role of NME is to expose the stabilizing residues with the goal to resist protein degradation. While this explanation (that treats 7 stabilizing residues in the same manner) has become the de facto dogma of NME, comparative proteogenomics analysis of NME tells a different story. We suggest that the primary role of NME is to expose only two (rather than seven) amino acids Ala and Ser for post-translational modifications (e.g., acetylation) rather than to regulate protein degradation. We argue that, contrary to the existing view, NME is not crucially important for proteins with 5 other stabilizing residue at the 2nd positions that are merely bystanders (their function is not affected by NME) that become exposed to NME because their sizes are comparable or smaller than the size of Ala and Ser.

  17. Computational analysis of protein interaction networks for infectious diseases.

    PubMed

    Pan, Archana; Lahiri, Chandrajit; Rajendiran, Anjana; Shanmugham, Buvaneswari

    2016-05-01

    Infectious diseases caused by pathogens, including viruses, bacteria and parasites, pose a serious threat to human health worldwide. Frequent changes in the pattern of infection mechanisms and the emergence of multidrug-resistant strains among pathogens have weakened the current treatment regimen. This necessitates the development of new therapeutic interventions to prevent and control such diseases. To cater to the need, analysis of protein interaction networks (PINs) has gained importance as one of the promising strategies. The present review aims to discuss various computational approaches to analyse the PINs in context to infectious diseases. Topology and modularity analysis of the network with their biological relevance, and the scenario till date about host-pathogen and intra-pathogenic protein interaction studies were delineated. This would provide useful insights to the research community, thereby enabling them to design novel biomedicine against such infectious diseases. PMID:26261187

  18. Comprehensive analysis of sequences of a protein switch.

    PubMed

    Chen, Szu-Hua; Meller, Jaroslaw; Elber, Ron

    2016-01-01

    Switches form a special class of proteins that dramatically change their three-dimensional structures upon a small perturbation. One possible perturbation that we explore is that of a single point mutation. Building on the pioneering experimental work of Alexander et al. (Alexander et al. PNAS, 2007; 104,11963-11968) that determines switch sequences between α and α+β folds we conduct a comprehensive sequence sampling by a Markov Chain with multiple fitness criteria to identify new switches given the experimental folds. We screen for switch sequences using a combination of contact potential, secondary structure prediction, and finally molecular dynamics simulations. Statistical properties of switch sequences are discussed and illustrated to be most sensitive to mutation at the N- and C- termini of the switch protein. Based on this analysis, a particularly stable putative switch pair is identified and proposed for further experimental analysis. PMID:26073558

  19. GeLC-MS/MS Analysis of Complex Protein Mixtures

    PubMed Central

    Dzieciatkowska, Monika; Hill, Ryan; Hansen, Kirk C.

    2015-01-01

    Discovery-based proteomics has found its place in nearly every facet of biological research. A key objective of this approach is to maximize sequence coverage for proteins across a wide concentration range. Fractionating samples at the protein level is one of the most common ways to circumvent challenges due to sample complexity and improve proteome coverage. Of the available methods, one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry (GeLC-MS/MS) is a robust and reproducible method for qualitative and quantitative proteomic analysis. Here we describe a general GeLC-MS/MS protocol and include technical advice and outline caveats to increase the probability of a successful analysis. PMID:24791981

  20. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. PMID:27135912

  1. Scalable web services for the PSIPRED Protein Analysis Workbench.

    PubMed

    Buchan, Daniel W A; Minneci, Federico; Nugent, Tim C O; Bryson, Kevin; Jones, David T

    2013-07-01

    Here, we present the new UCL Bioinformatics Group's PSIPRED Protein Analysis Workbench. The Workbench unites all of our previously available analysis methods into a single web-based framework. The new web portal provides a greatly streamlined user interface with a number of new features to allow users to better explore their results. We offer a number of additional services to enable computationally scalable execution of our prediction methods; these include SOAP and XML-RPC web server access and new HADOOP packages. All software and services are available via the UCL Bioinformatics Group website at http://bioinf.cs.ucl.ac.uk/. PMID:23748958

  2. Protein-protein interaction analysis highlights additional loci of interest for multiple sclerosis.

    PubMed

    Ragnedda, Giammario; Disanto, Giulio; Giovannoni, Gavin; Ebers, George C; Sotgiu, Stefano; Ramagopalan, Sreeram V

    2012-01-01

    Genetic factors play an important role in determining the risk of multiple sclerosis (MS). The strongest genetic association in MS is located within the major histocompatibility complex class II region (MHC), but more than 50 MS loci of modest effect located outside the MHC have now been identified. However, the relative candidate genes that underlie these associations and their functions are largely unknown. We conducted a protein-protein interaction (PPI) analysis of gene products coded in loci recently reported to be MS associated at the genome-wide significance level and in loci suggestive of MS association. Our aim was to identify which suggestive regions are more likely to be truly associated, which genes are mostly implicated in the PPI network and their expression profile. From three recent independent association studies, SNPs were considered and divided into significant and suggestive depending on the strength of the statistical association. Using the Disease Association Protein-Protein Link Evaluator tool we found that direct interactions among genetic products were significantly higher than expected by chance when considering both significant regions alone (p<0.0002) and significant plus suggestive (p<0.007). The number of genes involved in the network was 43. Of these, 23 were located within suggestive regions and many of them directly interacted with proteins coded within significant regions. These included genes such as SYK, IL-6, CSF2RB, FCLR3, EIF4EBP2 and CHST12. Using the gene portal BioGPS, we tested the expression of these genes in 24 different tissues and found the highest values among immune-related cells as compared to non-immune tissues (p<0.001). A gene ontology analysis confirmed the immune-related functions of these genes. In conclusion, loci currently suggestive of MS association interact with and have similar expression profiles and function as those significantly associated, highlighting the fact that more common variants remain to be

  3. Complete VAX/VMS DNA/protein sequence analysis system

    SciTech Connect

    Smith, D.W.

    1987-05-01

    A complete yet flexible system of programs and database libraries for analysis of DNA, RNA and protein sequences is implemented for VAX/VMS computers. Types of analysis include 1) construction and analysis of chimeric sequences (cloning in the VAX), 2) multiple analysis of one or more single sequences, 3) search and comparison studies using sequence libraries, and 4) direct input and analysis of experimental data. Published groups of programs, including the Staden, Los Alamos, Zuker, Pearson, and PHYLIP programs, are used. GenBank and EMBL DNA libraries and PIR and Doolittle NEWAT protein libraries are available, with associated programs. The system is tutorial, with online documentation for relevent VAX software, the programs, and the databases. The complete documentation is flexibly maintained on reserve via computer printout placed in 3-ring binders. Command files are used extensively; porting of the entire system to another VAX/VMS system requires modification of a single command. Users of the system are members of a VAX group, with automatic implementation of the system upon login. The present system occupies about 140,000 blocks, and is easily expanded, or contracted, as desired. The UCSD system is used extensively for both teaching and research purposes. Use of microcomputers emulating Tektronix 4014 graphics terminals permits saving of graphics output to disk for subsequent modification to generate high quality publishable figures.

  4. Analysis of phosphorylation-dependent protein-protein interactions of histone h3.

    PubMed

    Klingberg, Rebecca; Jost, Jan Oliver; Schümann, Michael; Gelato, Kathy Ann; Fischle, Wolfgang; Krause, Eberhard; Schwarzer, Dirk

    2015-01-16

    Multiple posttranslational modifications (PTMs) of histone proteins including site-specific phosphorylation of serine and threonine residues govern the accessibility of chromatin. According to the histone code theory, PTMs recruit regulatory proteins or block their access to chromatin. Here, we report a general strategy for simultaneous analysis of both of these effects based on a SILAC MS scheme. We applied this approach for studying the biochemical role of phosphorylated S10 of histone H3. Differential pull-down experiments with H3-tails synthesized from l- and d-amino acids uncovered that histone acetyltransferase 1 (HAT1) and retinoblastoma-binding protein 7 (RBBP7) are part of the protein network, which interacts with the unmodified H3-tail. An additional H3-derived bait containing the nonhydrolyzable phospho-serine mimic phosphonomethylen-alanine (Pma) at S10 recruited several isoforms of the 14-3-3 family and blocked the recruitment of HAT1 and RBBP7 to the unmodified H3-tail. Our observations provide new insights into the many functions of H3S10 phosphorylation. In addition, the outlined methodology is generally applicable for studying specific binding partners of unmodified histone tails. PMID:25330109

  5. Approaches for functional analysis of flagellar proteins in African trypanosomes

    PubMed Central

    Oberholzer, Michael; Lopez, Miguel A.; Ralston, Katherine S.; Hill, Kent L.

    2013-01-01

    The eukaryotic flagellum is a highly conserved organelle serving motility, sensory and transport functions. Although genetic, genomic and proteomic studies have led to the identification of hundreds of flagellar and putative flagellar proteins, precisely how these proteins function individually and collectively to drive flagellum motility and other functions remains to be determined. In this chapter we provide an overview of tools and approaches available for studying flagellum protein function in the protozoan parasite Trypanosoma brucei. We begin by outlining techniques for in vitro cultivation of both T. brucei lifecycle stages, as well as transfection protocols for the delivery of DNA constructs. We then describe specific assays used to assess flagellum function including flagellum preparation and quantitative motility assays. We conclude the chapter with a description of molecular genetic approaches for manipulating gene function. In summary, the availability of potent molecular tools, as well as the health and economic relevance of T. brucei as a pathogen, combine to make the parasite an attractive and integral experimental system for the functional analysis of flagellar proteins. PMID:20409810

  6. Analysis of Cavity Volumes in Proteins Using Percolation Theory

    NASA Astrophysics Data System (ADS)

    Green, Sheridan; Jacobs, Donald; Farmer, Jenny

    Molecular packing is studied in a diverse set of globular proteins in their native state ranging in size from 34 to 839 residues An new algorithm has been developed that builds upon the classic Hoshen-Kopelman algorithm for site percolation combined with a local connection criterion that classifies empty space within a protein as a cavity when large enough to hold a spherical shaped probe of radius, R, otherwise a microvoid. Although microvoid cannot fit an object (e.g. molecule or ion) that is the size of the probe or larger, total microvoid volume is a major contribution to protein volume. Importantly, the cavity and microvoid classification depends on probe radius. As probe size decreases, less microvoid forms in favor of more cavities. As probe size is varied from large to small, many disconnected cavities merge to form a percolating path. For fixed probe size, microvoid, cavity and solvent accessible boundary volume properties reflect conformational fluctuations. These results are visualized on three-dimensional structures. Analysis of the cluster statistics within the framework of percolation theory suggests interconversion between microvoid and cavity pathways regulate the dynamics of solvent penetration during partial unfolding events important to protein function.

  7. Efficiency analysis of sampling protocols used in protein crystallization screening

    NASA Astrophysics Data System (ADS)

    Segelke, Brent W.

    2001-11-01

    In an effort to objectively compare the efficiency of protein crystallization screening techniques, a probability model of sampling efficiency is developed and used to calculate sampling efficiencies from experimental data. Three typical sampling protocols (grid screening, footprint screening, and random screening) are used to crystallize each of five proteins (Phospholipase A 2, Thaumatin, Catalase, Lysozyme, and Ribonuclease B). For each of the three sampling protocols, experiments are chosen from a large set of possible experiments generated by systematic combination of a number of parameters common in crystallization screens. Software has been developed to generate and select from the combinations with each of the three sampling protocols examined in this study. The protocols differ only in the order samples are chosen from the set of possible combinations. Random sampling is motivated by the "Incomplete Factorial" screen (Carter and Carter, J. Biol. Chem. 254 (1979) 12 219); sampling with subsets of four is motivated by the "Footprint" screen (Stura et al., J. Crystal Growth 122 (1992) 273) and sampling with subsets of twenty-four is motivated by the "Grid" screen (McPherson, Prepartion and Analysis of Protein Crystals, Wiley, New York, 1982). For the five proteins examined, random sampling has the greatest average efficiency. Additional benefits of random sampling are discussed.

  8. Analysis and Interpretation of Single Molecule Protein Unfolding Kinetics

    NASA Astrophysics Data System (ADS)

    Lannon, Herbert; Brujic, Jasna

    2012-02-01

    The kinetics of protein unfolding under a stretching force has been extensively studied by atomic force microscopy (AFM) over the past decade [1]. Experimental artifacts at the single molecule level introduce uncertainties in the data analysis that have led to several competing physical models for the unfolding process. For example, the unfolding dynamics of the protein ubiquitin under constant force has been described by probability distributions as diverse as exponential [2,3], a sum of exponentials, log-normal [4], and more recently a function describing static disorder in the Arrhenius model [5]. A new method for data analysis is presented that utilizes maximum likelihood estimation (MLE) combined with other traditional statistical tests to unambiguously rank the consistency of these and other models with the experimental data. These techniques applied to the ubiquitin unfolding data shows that the probability of unfolding is best fit with a stretched exponential distribution, with important implications on the complexity of the mechanism of protein unfolding. [4pt] [1] Carrion-Vazquez, et. al. Springer Series in Biophys. 2006 [0pt] [2] Fernandez et. al. Science 2004 [0pt] [3] Brujic et. al. Nat. Phys 2006 [0pt] [4] Garcia-Manyes et. al. Biophys. J. 2007 [0pt] [5] Kuo et. al. PNAS 2010

  9. Functional and protein-protein interaction network analysis of colorectal cancer induced by ulcerative colitis

    PubMed Central

    DAI, YONG; JIANG, JIN-BO; WANG, YAN-LEI; JIN, ZU-TAO; HU, SAN-YUAN

    2015-01-01

    Colorectal cancer (CRC) is a well-recognized complication of ulcerative colitis (UC), and patients with UC have a higher incidence of CRC, compared with the general population. However, the properties of CRC induced by UC have not been clarified using an interaction network to analyze and compare gene sets. In the present study, six microarray datasets of CRC and UC were extracted from the Array Express database, and gene signatures were identified using the genome-wide relative significance (GWRS) method. Functional analysis was performed based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Prediction of the genes and microRNA were performed using a hypergeometric method. A protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/proteins, and clusters were obtained through the Molecular Complex Detection algorithm. Topological centrality and a novel analyzing method, based on the rank value of GWGS, were used to characterize the biological importance of the clusters. A total of 217 differentially expressed (DE) genes of CRC were identified, 341 DE genes were identified in UC, and 62 common genes existed in the two. Several KEGG pathways were the same in CRC and UC. Collagenase, progesterone, heparin, urokinase, nadh and adenosine drugs demonstrated potential for use in treatment of CRC and UC. In the PPI network of CRC, 210 nodes and 752 edges were observed, wheras 314 nodes and 882 edges were identified in UC. Cluster 3 in UC had the highest GWGS, while the topological centrality of Cluster 3 in UC had the lowest degree and betweenness. PPI network analysis provided an effective way to estimate and understand the likelihood of the potential connections between proteins/genes. The results obtained following the use of GWGS to analyze differences between clusters did not agree with the topological degree and betweenness centrality, which indicated that gene fold change based GWGS was

  10. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling*

    PubMed Central

    Larance, Mark; Kirkwood, Kathryn J.; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A. J.; Lamond, Angus I.

    2016-01-01

    We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452

  11. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling.

    PubMed

    Larance, Mark; Kirkwood, Kathryn J; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A J; Lamond, Angus I

    2016-07-01

    We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452

  12. Towards proteomic analysis of milk proteins in historical building materials

    NASA Astrophysics Data System (ADS)

    Kuckova, S.; Crhova, M.; Vankova, L.; Hnizda, A.; Hynek, R.; Kodicek, M.

    2009-07-01

    The addition of proteinaceous binders to mortars and plasters has a long tradition. The protein additions were identified in many sacral and secular historical buildings. For this method of peptide mass mapping, three model mortar samples with protein additives were prepared. These samples were analysed fresh (1-2 weeks old) and after 9 months of natural ageing. The optimal duration of tryptic cleavage (2 h) and the lowest amount of material needed for relevant analysis of fresh and weathered samples were found; the sufficient amounts of weathered and fresh mortars were set to 0.05 and 0.005 g. The list of main tryptic peptides coming from milk additives (bovine milk, curd, and whey), their relative intensities and theoretical amino acid sequences assignment is presented. Several sequences have been "de novo" confirmed by mass spectrometry.

  13. Analysis of the irregular planar distribution of proteins in membranes.

    PubMed

    Hui, S W; Frank, J

    1985-03-01

    Methods to characterize the irregular but non-random planar distribution of proteins in biological membranes were investigated. The distribution of the proteins constituting the intramembranous particles (IMP) in human erythrocyte membranes was used as an example. The distribution of IMPs was deliberately altered by experimental means. For real space analyses, the IMP positions in freeze fracture micrograph S were determined by an automatic procedure described. Radial distribution and autocorrelation analysis revealed quantitative differences between experimental groups. These methods are more sensitive than the corresponding optical diffraction or Fourier-Bessel analyses of the same IMP distribution data, due to the inability of the diffraction methods to separate contrast and distribution effects. A method to identify IMPs on a non-uniform background is described. PMID:3999133

  14. [Molecularly imprinted polymers in electro analysis of proteins].

    PubMed

    Shumyantseva, V V; Bulko, T V; Baychorov, I Kh; Archakov, A I

    2015-01-01

    In the review the main approaches to creation of recognition materials capable of competing with biological specific receptors, (polymeric analogs of antibodies or molecularly imprinted polymers, MIP) for the electro analysis of functionally significant proteins such as a myoglobin, troponin T, albumin, human ferritin, calmodulin are considered. The main types of monomers for MIP fabrication, and methods for MIP/protein interactions, such as a surface plasmon resonance (SPR), nanogravimetry with use of the quartz crystal resonator (QCM), spectral and electrochemical methods are discussed. Experimental data on electrochemical registration of a myoglobin using MIP/electrode are presented. For a development of electrochemical sensor systems based on MIPs, o-phenylenediamine (1,2-diaminobenzene was used as a monomer. It was shown that the imprinting factor Imax(MIP)/Imax(NIP), calculated as a myoglobin signal ratio when embedding in MIP to a myoglobin signal when embedding in the polymer received without molecular template (NIP) corresponds 2-4. PMID:26215409

  15. Comprehensive bioinformatics analysis of cell-free protein synthesis: identification of multiple protein properties that correlate with successful expression.

    PubMed

    Kurotani, Atsushi; Takagi, Tetsuo; Toyama, Mitsutoshi; Shirouzu, Mikako; Yokoyama, Shigeyuki; Fukami, Yasuo; Tokmakov, Alexander A

    2010-04-01

    High-throughput cell-free protein synthesis is being used increasingly in structural/functional genomics projects. However, the factors determining expression success are poorly understood. Here, we evaluated the expression of 3066 human proteins and their domains in a bacterial cell-free system and analyzed the correlation of protein expression with 39 physicochemical and structural properties of proteins. As a result of the bioinformatics analysis performed, we determined the 18 most influential features that affect protein amenability to cell-free expression. They include protein length; hydrophobicity; pI; content of charged, nonpolar, and aromatic residues;, cysteine content; solvent accessibility; presence of coiled coil; content of intrinsically disordered and structured (alpha-helix and beta-sheet) sequence; number of disulfide bonds and functional domains; presence of transmembrane regions; PEST motifs; and signaling sequences. This study represents the first comprehensive bioinformatics analysis of heterologous protein synthesis in a cell-free system. The rules and correlations revealed here provide a plethora of important insights into rationalization of cell-free protein production and can be of practical use for protein engineering with the aim of increasing expression success.-Kurotani, A., Takagi, T., Toyama, M., Shirouzu, M., Yokoyama, S., Fukami, Y., Tokmakov, A. A. Comprehensive bioinformatics analysis of cell-free protein synthesis: identification of multiple protein properties that correlate with successful expression. PMID:19940260

  16. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins.

    PubMed

    Bish, Rebecca; Cuevas-Polo, Nerea; Cheng, Zhe; Hambardzumyan, Dolores; Munschauer, Mathias; Landthaler, Markus; Vogel, Christine

    2015-01-01

    DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely

  17. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins

    PubMed Central

    Bish, Rebecca; Cuevas-Polo, Nerea; Cheng, Zhe; Hambardzumyan, Dolores; Munschauer, Mathias; Landthaler, Markus; Vogel, Christine

    2015-01-01

    DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6’s multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6’s interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions—many of which are

  18. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    PubMed Central

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to

  19. Functionalized membrane supports for covalent protein microsequence analysis

    SciTech Connect

    Coull, J.M.; Pappin, D.J.; Mark, J.; Aebersold, R.; Koester, H. )

    1991-04-01

    Methods were developed for high yield covalent attachment of peptides and proteins to isothiocyanate and arylamine-derivatized poly(vinylidene difluoride) membranes for solid-phase sequence analysis. Solutions of protein or peptide were dried onto 8-mm membrane disks such that the functional groups on the surface and the polypeptide were brought into close proximity. In the case of the isothiocyanate membrane, reaction between polypeptide amino groups and the surface isothiocyanate moieties was promoted by application of aqueous N-methylmorpholine. Attachment of proteins and peptides to the arylamine surface was achieved by application of water-soluble carbodiimide in a pH 5.0 buffer. Edman degradation of covalently bound polypeptides was accomplished with initial and repetitive sequence yields ranging from 33 to 75% and 88.5 to 98.5%, respectively. The yields were independent of the sample load (20 pmol to greater than 1 nmol) for either surface. Significant loss of material was not observed when attachment residues were encountered during sequence runs. Application of bovine beta-lactoglobulin A chain, staphylococcus protein A, or the peptide melittin to the isothiocyanate membrane allowed for extended N-terminal sequence identification (35 residues from 20 pmol of beta-lactoglobulin). A number of synthetic and naturally occurring peptides were sequenced to the C-terminal residue following attachment to the arylamine surface. In one example, 10 micrograms of bovine alpha-casein was digested with staphylococcal protease V8 and the peptides were separated by reverse-phase chromatography. Peptide fractions were then directly applied to arylamine membrane disks for covalent sequence analysis. From as little as 2 pmol of initial signal it was possible to determine substantial sequence information (greater than 10 residues).

  20. Functionalized membrane supports for covalent protein microsequence analysis.

    PubMed

    Coull, J M; Pappin, D J; Mark, J; Aebersold, R; Köster, H

    1991-04-01

    Methods were developed for high yield covalent attachment of peptides and proteins to isothiocyanate and arylamine-derivatized poly(vinylidene difluoride) membranes for solid-phase sequence analysis. Solutions of protein or peptide were dried onto 8-mm membrane disks such that the functional groups on the surface and the polypeptide were brought into close proximity. In the case of the isothiocyanate membrane, reaction between polypeptide amino groups and the surface isothiocyanate moieties was promoted by application of aqueous N-methylmorpholine. Attachment of proteins and peptides to the arylamine surface was achieved by application of water-soluble carbodiimide in a pH 5.0 buffer. Edman degradation of covalently bound polypeptides was accomplished with initial and repetitive sequence yields ranging from 33 to 75% and 88.5 to 98.5%, respectively. The yields were independent of the sample load (20 pmol to greater than 1 nmol) for either surface. Significant loss of material was not observed when attachment residues were encountered during sequence runs. Application of bovine beta-lactoglobulin A chain, staphylococcus protein A, or the peptide melittin to the isothiocyanate membrane allowed for extended N-terminal sequence identification (35 residues from 20 pmol of beta-lactoglobulin). A number of synthetic and naturally occurring peptides were sequenced to the C-terminal residue following attachment to the arylamine surface. In one example, 10 micrograms of bovine alpha-casein was digested with staphylococcal protease V8 and the peptides were separated by reverse-phase chromatography. Peptide fractions were then directly applied to arylamine membrane disks for covalent sequence analysis. From as little as 2 pmol of initial signal it was possible to determine substantial sequence information (greater than 10 residues). PMID:1867375

  1. Hyperdimensional analysis of amino acid pair distributions in proteins.

    PubMed

    Henriksen, Svend B; Mortensen, Rasmus J; Geertz-Hansen, Henrik M; Neves-Petersen, Maria Teresa; Arnason, Omar; Söring, Jón; Petersen, Steffen B

    2011-01-01

    Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis. PMID:22174733

  2. Analysis of differentially expressed proteins in colorectal cancer using hydroxyapatite column and SDS-PAGE.

    PubMed

    Lim, Shi-Rou; Gooi, Boon-Hui; Singh, Manjit; Gam, Lay-Harn

    2011-11-01

    Limitation on two dimensional (2D) gel electrophoresis technique causes some proteins to be under presented, especially the extreme acidic, basic, or membrane proteins. To overcome the limitation of 2D electrophoresis, an analysis method was developed for identification of differentially expressed proteins in normal and cancerous colonic tissues using self-pack hydroxyapatite (HA) column. Normal and cancerous colon tissues were homogenized and proteins were extracted using sodium phosphate buffer at pH 6.8. Protein concentration was determined and the proteins were loaded unto the HA column. HA column reduced the complexity of proteins mixture by fractionating the proteins according to their ionic strength. Further protein separation was accomplished by a simple and cost effective sodium dodecyl sulfate-polyacrylamide gel electrophoresis method. The protein bands were subjected to in-gel digestion and protein analysis was performed using electrospray ionization (ESI) ion trap mass spectrometer. There were 17 upregulated proteins and seven downregulated proteins detected with significant differential expression. Some of these proteins were low abundant proteins or proteins with extreme pH that were usually under presented in 2D gel analysis. We have identified brain mitochondrial carrier protein 1, T-cell surface glycoprotein CD1a, SOSS complex subunit B2, and Protein Jade 1 which were previously not detected in 2D gel analysis method. PMID:21863284

  3. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis

    PubMed Central

    Kohansal-Nodehi, Mahdokht; Chua, John JE; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.14530.001 PMID:27115346

  4. Analysis of antifreeze protein activity using colorimetric gold nanosensors

    NASA Astrophysics Data System (ADS)

    Jing, Xu; Choi, Ho-seok; Park, Ji-In; Kim, Young-Pil

    2015-07-01

    High activity and long stability of antifreeze proteins (AFPs), also known as ice-binding proteins (IBPs), are necessary for exerting their physiological functions in biotechnology and cryomedicine. Here we report a simple analysis of antifreeze protein activity and stability based on self-assembly of gold nanoparticles (AuNPs) via freezing and thawing cycles. While the mercaptosuccinic acid-capped AuNP (MSA-AuNP) was easily self-assembled after a freezing/thawing cycle, due to the mechanical attack of ice crystal on the MSA-AuNP surface, the presence of AFP impeded the self-assembly of MSA-AuNP via the interaction of AFP with ice crystals via freezing and thawing cycles, which led to a strong color in the MSA-AuNP solution. As a result, the aggregation parameter (E520/E650) of MSA-AuNP showed the rapid detection of both activity and stability of AFPs. We suggest that our newly developed method is very suitable for measuring antifreeze activity and stability in a simple and rapid manner with reliable quantification.

  5. Quantitative analysis of protein dynamics during asymmetric cell division.

    PubMed

    Mayer, Bernd; Emery, Gregory; Berdnik, Daniela; Wirtz-Peitz, Frederik; Knoblich, Juergen A

    2005-10-25

    In dividing Drosophila sensory organ precursor (SOP) cells, the fate determinant Numb and its associated adaptor protein Pon localize asymmetrically and segregate into the anterior daughter cell, where Numb influences cell fate by repressing Notch signaling. Asymmetric localization of both proteins requires the protein kinase aPKC and its substrate Lethal (2) giant larvae (Lgl). Because both Numb and Pon localization require actin and myosin, lateral transport along the cell cortex has been proposed as a possible mechanism for their asymmetric distribution. Here, we use quantitative live analysis of GFP-Pon and Numb-GFP fluorescence and fluorescence recovery after photobleaching (FRAP) to characterize the dynamics of Numb and Pon localization during SOP division. We demonstrate that Numb and Pon rapidly exchange between a cytoplasmic pool and the cell cortex and that preferential recruitment from the cytoplasm is responsible for their asymmetric distribution during mitosis. Expression of a constitutively active form of aPKC impairs membrane recruitment of GFP-Pon. This defect can be rescued by coexpression of nonphosphorylatable Lgl, indicating that Lgl is the main target of aPKC. We propose that a high-affinity binding site is asymmetrically distributed by aPKC and Lgl and is responsible for asymmetric localization of cell-fate determinants during mitosis. PMID:16243032

  6. Electronic Tongue Generating Continuous Recognition Patterns for Protein Analysis

    PubMed Central

    Hou, Yanxia; Genua, Maria; Garçon, Laurie-Amandine; Buhot, Arnaud; Calemczuk, Roberto; Bonnaffé, David; Lortat-Jacob, Hugues; Livache, Thierry

    2014-01-01

    In current protocol, a combinatorial approach has been developed to simplify the design and production of sensing materials for the construction of electronic tongues (eT) for protein analysis. By mixing a small number of simple and easily accessible molecules with different physicochemical properties, used as building blocks (BBs), in varying and controlled proportions and allowing the mixtures to self-assemble on the gold surface of a prism, an array of combinatorial surfaces featuring appropriate properties for protein sensing was created. In this way, a great number of cross-reactive receptors can be rapidly and efficiently obtained. By combining such an array of combinatorial cross-reactive receptors (CoCRRs) with an optical detection system such as surface plasmon resonance imaging (SPRi), the obtained eT can monitor the binding events in real-time and generate continuous recognition patterns including 2D continuous evolution profile (CEP) and 3D continuous evolution landscape (CEL) for samples in liquid. Such an eT system is efficient for discrimination of common purified proteins. PMID:25286325

  7. Electronic tongue generating continuous recognition patterns for protein analysis.

    PubMed

    Hou, Yanxia; Genua, Maria; Garçon, Laurie-Amandine; Buhot, Arnaud; Calemczuk, Roberto; Bonnaffé, David; Lortat-Jacob, Hugues; Livache, Thierry

    2014-01-01

    In current protocol, a combinatorial approach has been developed to simplify the design and production of sensing materials for the construction of electronic tongues (eT) for protein analysis. By mixing a small number of simple and easily accessible molecules with different physicochemical properties, used as building blocks (BBs), in varying and controlled proportions and allowing the mixtures to self-assemble on the gold surface of a prism, an array of combinatorial surfaces featuring appropriate properties for protein sensing was created. In this way, a great number of cross-reactive receptors can be rapidly and efficiently obtained. By combining such an array of combinatorial cross-reactive receptors (CoCRRs) with an optical detection system such as surface plasmon resonance imaging (SPRi), the obtained eT can monitor the binding events in real-time and generate continuous recognition patterns including 2D continuous evolution profile (CEP) and 3D continuous evolution landscape (CEL) for samples in liquid. Such an eT system is efficient for discrimination of common purified proteins. PMID:25286325

  8. Laminated microfluidic system for small sample protein analysis

    PubMed Central

    Saedinia, Sara; Nastiuk, Kent L.; Krolewski, John J.; Li, G. P.; Bachman, Mark

    2014-01-01

    We describe a technology based on lamination that allows for the production of highly integrated 3D devices suitable for performing a wide variety of microfluidic assays. This approach uses a suite of microfluidic coupons (“microfloupons”) that are intended to be stacked as needed to produce an assay of interest. Microfloupons may be manufactured in paper, plastic, gels, or other materials, in advance, by different manufacturers, then assembled by the assay designer as needed. To demonstrate this approach, we designed, assembled, and characterized a microfloupon device that performs sodium-dodecyl-sulfate polyacrylamide gel electrophoresis on a small sample of protein. This device allowed for the manipulation and transport of small amounts of protein sample, tight injection into a thin polyacrylamide gel, electrophoretic separation of the proteins into bands, and subsequent removal of the gel from the device for imaging and further analysis. The microfloupons are rugged enough to handle and can be easily aligned and laminated, allowing for a variety of different assays to be designed and configured by selecting appropriate microfloupons. This approach provides a convenient way to perform assays that have multiple steps, relieving the need to design highly sophisticated devices that incorporate all functions in a single unit, while still achieving the benefits of small sample size, automation, and high speed operation. PMID:24753728

  9. Molecular analysis of the muscle protein projectin in Lepidoptera.

    PubMed

    Ayme-Southgate, A J; Turner, L; Southgate, R J

    2013-01-01

    Striated muscles of both vertebrates and insects contain a third filament composed of the giant proteins, namely kettin and projectin (insects) and titin (vertebrates). All three proteins have been shown to contain several domains implicated in conferring elasticity, in particular a PEVK segment. In this study, the characterization of the projectin protein in the silkmoth, Bombyx mori L. (Lepidoptera: Bombycidae), and the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), as well as a partial characterization in the Carolina sphinx, Manduca sexta L. (Lepidoptera: Sphingidae), are presented. This study showed that, similar to other insects, projectin's overall modular organization was conserved, but in contrast, the PEVK region had a highly divergent sequence. The analysis of alternative splicing in the PEVK region revealed a small number of possible isoforms and the lack of a flight-muscle specific variant, both characteristics being in sharp contrast with findings from other insects. The possible correlation with difference in flight muscle stiffness and physiology between Lepidoptera and other insect orders is discussed. PMID:24206568

  10. PINK1-Interacting Proteins: Proteomic Analysis of Overexpressed PINK1.

    PubMed

    Rakovic, Aleksandar; Grünewald, Anne; Voges, Lisa; Hofmann, Sarah; Orolicki, Slobodanka; Lohmann, Katja; Klein, Christine

    2011-01-01

    Recent publications suggest that the Parkinson's disease- (PD-) related PINK1/Parkin pathway promotes elimination of dysfunctional mitochondria by autophagy. We used tandem affinity purification (TAP), SDS-PAGE, and mass spectrometry as a first step towards identification of possible substrates for PINK1. The cellular abundance of selected identified interactors was investigated by Western blotting. Furthermore, one candidate gene was sequenced in 46 patients with atypical PD. In addition to two known binding partners (HSP90, CDC37), 12 proteins were identified using the TAP assay; four of which are mitochondrially localized (GRP75, HSP60, LRPPRC, and TUFM). Western blot analysis showed no differences in cellular abundance of these proteins comparing PINK1 mutant and control fibroblasts. When sequencing LRPPRC, four exonic synonymous changes and 20 polymorphisms in noncoding regions were detected. Our study provides a list of putative PINK1 binding partners, confirming previously described interactions, but also introducing novel mitochondrial proteins as potential components of the PINK1/Parkin mitophagy pathway. PMID:21437181

  11. Integrated visual analysis of protein structures, sequences, and feature data

    PubMed Central

    2015-01-01

    Background To understand the molecular mechanisms that give rise to a protein's function, biologists often need to (i) find and access all related atomic-resolution 3D structures, and (ii) map sequence-based features (e.g., domains, single-nucleotide polymorphisms, post-translational modifications) onto these structures. Results To streamline these processes we recently developed Aquaria, a resource offering unprecedented access to protein structure information based on an all-against-all comparison of SwissProt and PDB sequences. In this work, we provide a requirements analysis for several frequently occuring tasks in molecular biology and describe how design choices in Aquaria meet these requirements. Finally, we show how the interface can be used to explore features of a protein and gain biologically meaningful insights in two case studies conducted by domain experts. Conclusions The user interface design of Aquaria enables biologists to gain unprecedented access to molecular structures and simplifies the generation of insight. The tasks involved in mapping sequence features onto structures can be conducted easier and faster using Aquaria. PMID:26329268

  12. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases.

    PubMed

    Lin, Peng-Lin; Yu, Ya-Wen; Chung, Ren-Hua

    2016-01-01

    Pathway analysis has become popular as a secondary analysis strategy for genome-wide association studies (GWAS). Most of the current pathway analysis methods aggregate signals from the main effects of single nucleotide polymorphisms (SNPs) in genes within a pathway without considering the effects of gene-gene interactions. However, gene-gene interactions can also have critical effects on complex diseases. Protein-protein interaction (PPI) networks have been used to define gene pairs for the gene-gene interaction tests. Incorporating the PPI information to define gene pairs for interaction tests within pathways can increase the power for pathway-based association tests. We propose a pathway association test, which aggregates the interaction signals in PPI networks within a pathway, for GWAS with case-control samples. Gene size is properly considered in the test so that genes do not contribute more to the test statistic simply due to their size. Simulation studies were performed to verify that the method is a valid test and can have more power than other pathway association tests in the presence of gene-gene interactions within a pathway under different scenarios. We applied the test to the Wellcome Trust Case Control Consortium GWAS datasets for seven common diseases. The most significant pathway is the chaperones modulate interferon signaling pathway for Crohn's disease (p-value = 0.0003). The pathway modulates interferon gamma, which induces the JAK/STAT pathway that is involved in Crohn's disease. Several other pathways that have functional implications for the seven diseases were also identified. The proposed test based on gene-gene interaction signals in PPI networks can be used as a complementary tool to the current existing pathway analysis methods focusing on main effects of genes. An efficient software implementing the method is freely available at http://puppi.sourceforge.net. PMID:27622767

  13. Protein crystallization analysis on the World Community Grid

    PubMed Central

    Cumbaa, Christian A.

    2010-01-01

    We have developed an image-analysis and classification system for automatically scoring images from high-throughput protein crystallization trials. Image analysis for this system is performed by the Help Conquer Cancer (HCC) project on the World Community Grid. HCC calculates 12,375 distinct image features on microbatch-under-oil images from the Hauptman-Woodward Medical Research Institute’s High-Throughput Screening Laboratory. Using HCC-computed image features and a massive training set of 165,351 hand-scored images, we have trained multiple Random Forest classifiers that accurately recognize multiple crystallization outcomes, including crystals, clear drops, precipitate, and others. The system successfully recognizes 80% of crystal-bearing images, 89% of precipitate images, and 98% of clear drops. Electronic supplementary material The online version of this article (doi:10.1007/s10969-009-9076-9) contains supplementary material, which is available to authorized users. PMID:20072819

  14. Theoretical analysis of protein organization in lipid membranes.

    PubMed

    Gil, T; Ipsen, J H; Mouritsen, O G; Sabra, M C; Sperotto, M M; Zuckermann, M J

    1998-11-10

    The fundamental physical principles of the lateral organization of trans-membrane proteins and peptides as well as peripheral membrane proteins and enzymes are considered from the point of view of the lipid-bilayer membrane, its structure, dynamics, and cooperative phenomena. Based on a variety of theoretical considerations and model calculations, the nature of lipid-protein interactions is considered both for a single protein and an assembly of proteins that can lead to aggregation and protein crystallization in the plane of the membrane. Phenomena discussed include lipid sorting and selectivity at protein surfaces, protein-lipid phase equilibria, lipid-mediated protein-protein interactions, wetting and capillary condensation as means of protein organization, mechanisms of two-dimensional protein crystallization, as well as non-equilibrium organization of active proteins in membranes. The theoretical findings are compared with a variety of experimental data. PMID:9804966

  15. Bioinformatics analysis of the epitope regions for norovirus capsid protein

    PubMed Central

    2013-01-01

    Background Norovirus is the major cause of nonbacterial epidemic gastroenteritis, being highly prevalent in both developing and developed countries. Despite of the available monoclonal antibodies (MAbs) for different sub-genogroups, a comprehensive epitope analysis based on various bioinformatics technology is highly desired for future potential antibody development in clinical diagonosis and treatment. Methods A total of 18 full-length human norovirus capsid protein sequences were downloaded from GenBank. Protein modeling was performed with program Modeller 9.9. The modeled 3D structures of capsid protein of norovirus were submitted to the protein antigen spatial epitope prediction webserver (SEPPA) for predicting the possible spatial epitopes with the default threshold. The results were processed using the Biosoftware. Results Compared with GI, we found that the GII genogroup had four deletions and two special insertions in the VP1 region. The predicted conformational epitope regions mainly concentrated on N-terminal (1~96), Middle Part (298~305, 355~375) and C-terminal (560~570). We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. Conclusions The predicted conformational epitope regions of norovirus VP1 mainly concentrated on N-terminal, Middle Part and C-terminal. We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. The overlapping with experimental epitopes indicates the important role of latest computational technologies. With the fast development of computational immunology tools, the bioinformatics pipeline will be more and more critical to vaccine design. PMID:23514273

  16. Analysis of zinc binding sites in protein crystal structures.

    PubMed Central

    Alberts, I. L.; Nadassy, K.; Wodak, S. J.

    1998-01-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations. PMID:10082367

  17. Sample Preparation for Mass Spectrometry Analysis of Protein-Protein Interactions in Cancer Cell Lines and Tissues.

    PubMed

    Beigbeder, Alice; Vélot, Lauriane; James, D Andrew; Bisson, Nicolas

    2016-01-01

    A precisely controlled network of protein-protein interactions constitutes the basis for functional signaling pathways. This equilibrium is more often than not disrupted in cancer cells, by the aberrant expression or activation of oncogenic proteins. Therefore, the analysis of protein interaction networks in cancer cells has become crucial to expand our comprehension of the molecular underpinnings of tumor formation and progression. This protocol describes a sample preparation method for the analysis of signaling complexes by mass spectrometry (MS), following the affinity purification of a protein of interest from a cancer cell line or a solid tumor. In particular, we provide a spin tip-based protease digestion procedure that offers a more rapid and controlled alternative to other gel-based and gel-free methods. This sample preparation protocol represents a useful strategy to identify protein interactions and to gain insight into the molecular mechanisms that contribute to a given cancer phenotype. PMID:27581032

  18. Analysis of Immunogenic Relevant Proteins in Rhipicephalus (Boophilus) annulatus Tick

    PubMed Central

    Nikpay, A; Nabian, S; Taheri, M

    2012-01-01

    Background Considering the importance of ticks as a main group transmitting pathogen organisms, this study designed to recognize immunogenic proteins in different tissues of Rhipicephalus (Boophilus) annulatus tick and to find out if there are common proteins in these tissues. Methods: Seven cattle were experimentally infested with about 10000 R. annulatus larvae and their humoral immune response to extracts of salivary gland and ovary of adult ticks and larval extracts during infestation were determined by ELISA and Western blot analysis. Measurements of serum antibodies level recorded weekly, from week 0 to week 9. Results: Using Western blot analysis, 15 fractions from soluble antigens extracted from salivary gland and larvae, and 14 fractions in the larval extracts were recognized. These findings illustrate the recognition of common antigens with molecular weight of 170, 117, 100, 70, 37, 33 and 30 kDa from different antigens by resistant cattle sera. Conclusion: Common antigens are present in different tissues of Rhipicephalus (Boophilus) annulatus, which can be used as a target in immunization against ticks. PMID:23293777

  19. An Introductory Classroom Exercise on Protein Molecular Model Visualization and Detailed Analysis of Protein-Ligand Binding

    ERIC Educational Resources Information Center

    Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria

    2013-01-01

    A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…

  20. Targeted protein-omic methods are bridging the gap between proteomic and hypothesis-driven protein analysis approaches

    PubMed Central

    Hause, Ronald J.; Kim, Hyung-Do; Leung, Kin; Jones, Richard Baker

    2011-01-01

    While proteomic methods have illuminated many areas of biological protein space, many fundamental questions remain with regard to systems-level relationships between mRNAs, proteins, and cell behaviors. While mass spectrometric methods offer a panoramic picture of the relative expression and modification of large numbers of proteins, they are neither optimal for the analysis of pre-defined targets across large numbers of samples nor for assessing differences in proteins between individual cells or cell compartments. Conversely, traditional antibody-based methods are effective at sensitively analyzing small numbers of proteins across small numbers of conditions, and can be used to analyze relative differences in protein abundance and modification between cells and cell compartments. However, traditional antibody-based approaches are not optimal for analyzing large numbers of protein abundances and modifications across many samples. In this perspective article, we will review recent advances in methodologies and philosophies behind several microarray-based, intermediate-level, “protein-omic” methods including a focus on reverse phase lysate arrays and micro-western arrays that have been helpful for bridging gaps between large- and small-scale protein analysis approaches and have provided insight into the roles that protein systems play in several biological processes. PMID:21999828

  1. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    PubMed Central

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  2. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  3. Proteomic Analysis of Membrane Proteins of Vero Cells: Exploration of Potential Proteins Responsible for Virus Entry

    PubMed Central

    Guo, Donghua; Zhu, Qinghe; Zhang, Hong

    2014-01-01

    Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells. PMID:24286161

  4. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes.

    PubMed

    Faca, Vitor; Pitteri, Sharon J; Newcomb, Lisa; Glukhova, Veronika; Phanstiel, Doug; Krasnoselsky, Alexei; Zhang, Qing; Struthers, Jason; Wang, Hong; Eng, Jimmy; Fitzgibbon, Matt; McIntosh, Martin; Hanash, Samir

    2007-09-01

    In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions. PMID:17696519

  5. Protein chip analysis by probing time-resolved UV fluorescence

    NASA Astrophysics Data System (ADS)

    Grigaravicius, Paulius; Dietrich, Rüdiger; Fritzsche, Wolfgang; Greulich, Karl Otto; Horn, Uwe; Knoll, Dietmar; Peters, Sven; Striebel, Hans-Martin; Schellenberg, Peter

    2007-07-01

    We describe a novel label-free method to analyse protein interactions on microarrays as well as in solution. By this technique the time resolved native protein fluorescence in the UV is probed. The method is based on alterations of the protein upon ligand binding, and, as a consequence, of alterations of the environment of the proteins' aromatic amino acids. These amino acids act as internal probes, and as a result, the fluorescence lifetime of the proteins change due to binding to a ligand partner such as another protein. We were able to demonstrate the feasibility of the method with many compounds, including protein-protein, protein-antibody, protein-nucleic acid and protein-small ligand pairs. Unlike to many other label-free techniques, the sensitivity of the method does not depend on the size of the counterbinding ligand and therefore is particularly suitable for drug monitoring, when small molecules are involved.

  6. Thermal denaturation produced degenerative proteins and interfered with MS for proteins dissolved in lysis buffer in proteomic analysis.

    PubMed

    Wang, Xuchu; Wang, Haiyan; Wang, Dan; Wang, Dongyang; Han, Bing; Tian, Weimin; Guo, Anping

    2011-02-01

    In 1-DE, proteins were traditionally mixed with the standard Laemmli buffer and boiled for several minutes. Recently, proteins dissolved in lysis buffer were used to produce better-resolved 2-DE gels, but thermal denaturation procedure still remained in some proteomic analysis. To determine the detailed effects of thermal denaturation on SDS-PAGE and MS, both 1-DE and 2-DE were performed using proteins heated at 100°C for different periods of time, and 17 protein bands/spots were positively identified by MALDI TOF/TOF MS/MS. Protein profiles on both 1-DE and 2-DE gels changed obviously and more polydisperse bands/spots were observed with increased heating time for over-heated samples. Based on these observations, an alternative protein marker-producing method was designed by directly dissolving protein standards without BSA into lysis buffer. This new kind of protein marker could be stored at room temperature for a long time, thus was more convenient for using and shipping. The identification of 17 proteins via MS and comparison of their identities revealed MASCOT-searched scores, number of both matched peptides, total searched peptides and sequence coverage became progressively lower with increasing denaturation intensity, probably due to the interference of thermal denaturation on trypsin cleavage efficiency and produced redundant modified peptides. Therefore, it was concluded that thermal denaturation not only changed the protein profiles and produced more polydisperse protein bands/spots, but also heavily interfered with the subsequent MS analysis, hence not recommended in future proteomic analysis for proteins dissolved in lysis buffer. PMID:21298662

  7. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466.

    PubMed

    Huang, Canhua; Zhang, Xiaobo; Lin, Qingsong; Xu, Xun; Hu, Zhihong; Hew, Choy-L

    2002-03-01

    White spot syndrome virus (WSSV) is at present one of the major pathogens in shrimp culture worldwide. The complete genome of this virus has been sequenced recently. To identify the structural and functional proteins of WSSV, the purified virions were separated by SDS-PAGE. Twenty-four protein bands were excised, in-gel digested with trypsin, and subjected to matrix-assisted laser desorption ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry, respectively. Eighteen proteins matching the open reading frames of WSSV genome were identified. Except for three known structural proteins and collagen, the functions of the remaining 14 proteins were unknown. Temporal analysis revealed that all the genes were transcribed in the late stage of WSSV infection except for vp121. Of the newly identified proteins, VP466 (derived from band 16) was further characterized. The cDNA encoding VP466 was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. Specific antibody was generated with the purified GST-VP466 fusion protein. Western blot showed that the mouse anti-GST-VP466 antibody bound specifically to a 51-kDa protein of WSSV. Immunogold labeling revealed that VP466 protein is a component of the viral envelope. Results in this investigation thus proved the effectiveness of proteomic approaches for discovering new proteins of WSSV. PMID:12096122

  8. Mutation analysis of barley malt protein Z4 and protein Z7 on beer foam stability.

    PubMed

    Iimure, Takashi; Kimura, Tatsuji; Araki, Shigeki; Kihara, Makoto; Sato, Masahide; Yamada, Shinji; Shigyou, Tatsuro; Sato, Kazuhiro

    2012-02-15

    Beer foam stability is an important characteristic. It has been suggested that isoforms of protein Z, that is, protein Z4 and protein Z7, contribute to beer foam stability. We investigated the relationship between beer foam stability and protein Z4 and protein Z7 using their deficient mutants. As a protein Z4-deficient mutant, cv. Pirkka was used. Protein Z7 deficiency was screened in 1564 barley accessions in the world collection of Okayama University, Japan. The barley samples from normal, protein Z4-deficient, protein Z7-deficient, and double-deficient were genotyped in F(2) populations and then pooled based on the DNA marker genotypes of protein Z4 and protein Z7. For a brewing trial, F(5) pooled subpopulations were used. After malting and brewing, the foam stability was determined, and the results showed that the levels of foam stability in the four samples were comparable. Two-dimensional gel electrophoresis was used to investigate the proteome in these beer samples. The results showed that low molecular weight proteins, including lipid transfer protein (LTP2), in the deficient mutants were higher than those in the normal sample. Our results suggest that the contribution of protein Z4 and protein Z7 to beer foam stability was not greater than that of other beer proteins. PMID:22251057

  9. Techniques for the Analysis of Protein-Protein Interactions in Vivo1[OPEN

    PubMed Central

    Xing, Shuping; Wallmeroth, Niklas; Berendzen, Kenneth W.

    2016-01-01

    Identifying key players and their interactions is fundamental for understanding biochemical mechanisms at the molecular level. The ever-increasing number of alternative ways to detect protein-protein interactions (PPIs) speaks volumes about the creativity of scientists in hunting for the optimal technique. PPIs derived from single experiments or high-throughput screens enable the decoding of binary interactions, the building of large-scale interaction maps of single organisms, and the establishment of cross-species networks. This review provides a historical view of the development of PPI technology over the past three decades, particularly focusing on in vivo PPI techniques that are inexpensive to perform and/or easy to implement in a state-of-the-art molecular biology laboratory. Special emphasis is given to their feasibility and application for plant biology as well as recent improvements or additions to these established techniques. The biology behind each method and its advantages and disadvantages are discussed in detail, as are the design, execution, and evaluation of PPI analysis. We also aim to raise awareness about the technological considerations and the inherent flaws of these methods, which may have an impact on the biological interpretation of PPIs. Ultimately, we hope this review serves as a useful reference when choosing the most suitable PPI technique. PMID:27208310

  10. Techniques for the Analysis of Protein-Protein Interactions in Vivo.

    PubMed

    Xing, Shuping; Wallmeroth, Niklas; Berendzen, Kenneth W; Grefen, Christopher

    2016-06-01

    Identifying key players and their interactions is fundamental for understanding biochemical mechanisms at the molecular level. The ever-increasing number of alternative ways to detect protein-protein interactions (PPIs) speaks volumes about the creativity of scientists in hunting for the optimal technique. PPIs derived from single experiments or high-throughput screens enable the decoding of binary interactions, the building of large-scale interaction maps of single organisms, and the establishment of cross-species networks. This review provides a historical view of the development of PPI technology over the past three decades, particularly focusing on in vivo PPI techniques that are inexpensive to perform and/or easy to implement in a state-of-the-art molecular biology laboratory. Special emphasis is given to their feasibility and application for plant biology as well as recent improvements or additions to these established techniques. The biology behind each method and its advantages and disadvantages are discussed in detail, as are the design, execution, and evaluation of PPI analysis. We also aim to raise awareness about the technological considerations and the inherent flaws of these methods, which may have an impact on the biological interpretation of PPIs. Ultimately, we hope this review serves as a useful reference when choosing the most suitable PPI technique. PMID:27208310

  11. Efficient preparation and analysis of membrane and membrane protein systems.

    PubMed

    Javanainen, Matti; Martinez-Seara, Hector

    2016-10-01

    Molecular dynamics (MD) simulations have become a highly important technique to consider lipid membrane systems, and quite often they provide considerable added value to laboratory experiments. Rapid development of both software and hardware has enabled the increase of time and size scales reachable by MD simulations to match those attainable by several accurate experimental techniques. However, until recently, the quality and maturity of software tools available for building membrane models for simulations as well as analyzing the results of these simulations have seriously lagged behind. Here, we discuss the recent developments of such tools from the end-users' point of view. In particular, we review the software that can be employed to build lipid bilayers and other related structures with or without embedded membrane proteins to be employed in MD simulations. Additionally, we provide a brief critical insight into force fields and MD packages commonly used for membrane and membrane protein simulations. Finally, we list analysis tools that can be used to study the properties of membrane and membrane protein systems. In all these points we comment on the respective compatibility of the covered tools. We also share our opinion on the current state of the available software. We briefly discuss the most commonly employed tools and platforms on which new software can be built. We conclude the review by providing a few ideas and guidelines on how the development of tools can be further boosted to catch up with the rapid pace at which the field of membrane simulation progresses. This includes improving the compatibility between software tools and promoting the openness of the codes on which these applications rely. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26947184

  12. Category Theoretic Analysis of Hierarchical Protein Materials and Social Networks

    PubMed Central

    Spivak, David I.; Giesa, Tristan; Wood, Elizabeth; Buehler, Markus J.

    2011-01-01

    Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a “concept web” or “semantic network” except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine. PMID:21931622

  13. Ion/ion proton transfer reactions for protein mixture analysis.

    PubMed

    Stephenson, J L; McLuckey, S A

    1996-11-15

    Ion/ion proton transfer reactions are shown to be an effective means to facilitate the resolution of ions in electrospray mass spectrometry that differ in mass and charge but are similar in mass-to-charge ratio. Examples are shown in which a minor contaminant protein in a ribonuclease B solution is clearly apparent after ion/ion proton transfer but not in the conventional electrospray mass spectrum. A further example involving a mixture of bovine serum albumin and bovine transferrin also showed the identification of previously unnoticed "contaminant" polymer. The latter mixture also illustrated important issues in the use of the quadrupole ion trap as a reaction vessel and mass analyzer for high mass-to-charge ratio ions. The results suggest that the use of ion trap operating parameters specifically tailored for storage, ejection, detection, and mass-to-charge analysis of high mass-to-charge ratio ions can have attractive analytical figures of merit for determining mixtures of relatively high-mass proteins and, by extension, other types of high-mass biopolymers. PMID:8916454

  14. Prediction of sumoylation sites in proteins using linear discriminant analysis.

    PubMed

    Xu, Yan; Ding, Ya-Xin; Deng, Nai-Yang; Liu, Li-Ming

    2016-01-15

    Sumoylation is a multifunctional post-translation modification (PTM) in proteins by the small ubiquitin-related modifiers (SUMOs), which have relations to ubiquitin in molecular structure. Sumoylation has been found to be involved in some cellular processes. It is very significant to identify the exact sumoylation sites in proteins for not only basic researches but also drug developments. Comparing with time exhausting experiment methods, it is highly desired to develop computational methods for prediction of sumoylation sites as a complement to experiment in the post-genomic age. In this work, three feature constructions (AAIndex, position-specific amino acid propensity and modification of composition of k-space amino acid pairs) and five different combinations of them were used to construct features. At last, 178 features were selected as the optimal features according to the Mathew's correlation coefficient values in 10-fold cross validation based on linear discriminant analysis. In 10-fold cross-validation on the benchmark dataset, the accuracy and Mathew's correlation coefficient were 86.92% and 0.6845. Comparing with those existing predictors, SUMO_LDA showed its better performance. PMID:26432000

  15. A Comprehensive Analysis of Plasmodium Circumsporozoite Protein Binding to Hepatocytes

    PubMed Central

    Zhao, Jinghua; Bhanot, Purnima; Hu, Junjie; Wang, Qian

    2016-01-01

    Circumsporozoite protein (CSP) is the dominant protein on the surface of Plasmodium sporozoites and plays a critical role in the invasion by sporozoites of hepatocytes. Contacts between CSP and heparin sulfate proteoglycans (HSPGs) lead to the attachment of sporozoites to hepatocytes and trigger signaling events in the parasite that promote invasion of hepatocytes. The precise sequence elements in CSP that bind HSPGs have not been identified. We performed a systematic in vitro analysis to dissect the association between Plasmodium falciparum CSP (PfCSP) and hepatocytes. We demonstrate that interactions between PfCSP and heparin or a cultured hepatoma cell line, HepG2, are mediated primarily by a lysine-rich site in the amino terminus of PfCSP. Importantly, the carboxyl terminus of PfCSP facilitates heparin-binding by the amino-terminus but does not interact directly with heparin. These findings provide insights into how CSP recognizes hepatocytes and useful information for further functional studies of CSP. PMID:27560376

  16. Quantitative analysis of flagellar proteins in Drosophila sperm tails.

    PubMed

    Mendes Maia, Teresa; Paul-Gilloteaux, Perrine; Basto, Renata

    2015-01-01

    The cilium has a well-defined structure, which can still accommodate some morphological and molecular composition diversity to suit the functional requirements of different cell types. The sperm flagellum of the fruit fly Drosophila melanogaster appears as a good model to study the genetic regulation of axoneme assembly and motility, due to the wealth of genetic tools publically available for this organism. In addition, the fruit fly's sperm flagellum displays quite a long axoneme (∼1.8mm), which may facilitate both histological and biochemical analyses. Here, we present a protocol for imaging and quantitatively analyze proteins, which associate with the fly differentiating, and mature sperm flagella. We will use as an example the quantification of tubulin polyglycylation in wild-type testes and in Bug22 mutant testes, which present defects in the deposition of this posttranslational modification. During sperm biogenesis, flagella appear tightly bundled, which makes it more challenging to get accurate measurements of protein levels from immunostained specimens. The method we present is based on the use of a novel semiautomated, macro installed in the image processing software ImageJ. It allows to measure fluorescence levels in closely associated sperm tails, through an exact distinction between positive and background signals, and provides background-corrected pixel intensity values that can directly be used for data analysis. PMID:25837396

  17. Prediction and Analysis of Protein Hydroxyproline and Hydroxylysine

    PubMed Central

    Hu, Le-Le; Niu, Shen; Huang, Tao; Wang, Kai; Shi, Xiao-He; Cai, Yu-Dong

    2010-01-01

    Background Hydroxylation is an important post-translational modification and closely related to various diseases. Besides the biotechnology experiments, in silico prediction methods are alternative ways to identify the potential hydroxylation sites. Methodology/Principal Findings In this study, we developed a novel sequence-based method for identifying the two main types of hydroxylation sites – hydroxyproline and hydroxylysine. First, feature selection was made on three kinds of features consisting of amino acid indices (AAindex) which includes various physicochemical properties and biochemical properties of amino acids, Position-Specific Scoring Matrices (PSSM) which represent evolution information of amino acids and structural disorder of amino acids in the sliding window with length of 13 amino acids, then the prediction model were built using incremental feature selection method. As a result, the prediction accuracies are 76.0% and 82.1%, evaluated by jackknife cross-validation on the hydroxyproline dataset and hydroxylysine dataset, respectively. Feature analysis suggested that physicochemical properties and biochemical properties and evolution information of amino acids contribute much to the identification of the protein hydroxylation sites, while structural disorder had little relation to protein hydroxylation. It was also found that the amino acid adjacent to the hydroxylation site tends to exert more influence than other sites on hydroxylation determination. Conclusions/Significance These findings may provide useful insights for exploiting the mechanisms of hydroxylation. PMID:21209839

  18. Evolution of vertebrate E protein transcription factors: comparative analysis of the E protein gene family in Takifugu rubripes and humans.

    PubMed

    Hikima, Jun-ichi; Lennard, Mara L; Wilson, Melanie R; Miller, Norman W; Clem, L William; Warr, Gregory W

    2005-04-14

    E proteins are essential for B lymphocyte development and function, including immunoglobulin (Ig) gene rearrangement and expression. Previous studies of B cells in the channel catfish (Ictalurus punctatus) identified E protein homologs that are capable of binding the muE5 motif and driving a strong transcriptional response. There are three E protein genes in mammals, HEB (TCF12), E2A (TCF3), and E2-2 (TCF4). The major expressed E proteins found in catfish B cells are homologs of HEB and of E2A. Here we sought to define the complete family of E protein genes in a teleost fish, Takifugu rubripes, taking advantage of the completed genome sequence. The catfish CFEB (HEB homolog) sequence identified homologous E-protein-encoding sequences in five scaffolds in the Takifugu genome database. Detailed comparative analysis with the human genome revealed the presence of five E protein homologs in Takifugu. Single genes orthologous to HEB and to E2-2 were identified. In contrast, two members of the E2A gene family were identified in Takifugu; one of these shows the alternative processing of transcripts that identifies it as the ortholog of the E12/E47-encoding mammalian E2A gene, whereas the second Takifugu E2A gene has no predicted alternative splice products. A novel fifth E protein gene (EX) was identified in Takifugu. Phylogenetic analysis revealed four E protein branches among vertebrates: EX, E2A, HEB, and E2-2. PMID:15713784

  19. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  20. Recent applications of capillary electromigration methods to separation and analysis of proteins.

    PubMed

    Štěpánová, Sille; Kašička, Václav

    2016-08-24

    This review article describes the significant recent developments in analysis of proteins by capillary electromigration (CE) methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography and electrochromatography) during the period 2011-2015. Improvements in sample preparation, preconcentration, suppression of adsorption and control of electroosmotic flow, separations by particular CE methods, and the detection schemes used in the analysis of proteins are discussed. Innovative applications of the above CE methods for quality control of protein biopharmaceuticals, protein determination in complex biomatrices, peptide mapping of proteins, and determination of physicochemical parameters of proteins are presented. PMID:27496994

  1. Global Analysis of Protein Activities Using Proteome Chips

    NASA Astrophysics Data System (ADS)

    Zhu, Heng; Bilgin, Metin; Bangham, Rhonda; Hall, David; Casamayor, Antonio; Bertone, Paul; Lan, Ning; Jansen, Ronald; Bidlingmaier, Scott; Houfek, Thomas; Mitchell, Tom; Miller, Perry; Dean, Ralph A.; Gerstein, Mark; Snyder, Michael

    2001-09-01

    To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and phospholipid-interacting proteins; a common potential binding motif was identified for many of the calmodulin-binding proteins. Thus, microarrays of an entire eukaryotic proteome can be prepared and screened for diverse biochemical activities. The microarrays can also be used to screen protein-drug interactions and to detect posttranslational modifications.

  2. Network Analysis of Circular Permutations in Multidomain Proteins Reveals Functional Linkages for Uncharacterized Proteins

    PubMed Central

    Adjeroh, Donald; Jiang, Yue; Jiang, Bing-Hua; Lin, Jie

    2014-01-01

    Various studies have implicated different multidomain proteins in cancer. However, there has been little or no detailed study on the role of circular multidomain proteins in the general problem of cancer or on specific cancer types. This work represents an initial attempt at investigating the potential for predicting linkages between known cancer-associated proteins with uncharacterized or hypothetical multidomain proteins, based primarily on circular permutation (CP) relationships. First, we propose an efficient algorithm for rapid identification of both exact and approximate CPs in multidomain proteins. Using the circular relations identified, we construct networks between multidomain proteins, based on which we perform functional annotation of multidomain proteins. We then extend the method to construct subnetworks for selected cancer subtypes, and performed prediction of potential link-ages between uncharacterized multidomain proteins and the selected cancer types. We include practical results showing the performance of the proposed methods. PMID:25741177

  3. Graph spectral analysis of protein interaction network evolution.

    PubMed

    Thorne, Thomas; Stumpf, Michael P H

    2012-10-01

    We present an analysis of protein interaction network data via the comparison of models of network evolution to the observed data. We take a bayesian approach and perform posterior density estimation using an approximate bayesian computation with sequential Monte Carlo method. Our approach allows us to perform model selection over a selection of potential network growth models. The methodology we apply uses a distance defined in terms of graph spectra which captures the network data more naturally than previously used summary statistics such as the degree distribution. Furthermore, we include the effects of sampling into the analysis, to properly correct for the incompleteness of existing datasets, and have analysed the performance of our method under various degrees of sampling. We consider a number of models focusing not only on the biologically relevant class of duplication models, but also including models of scale-free network growth that have previously been claimed to describe such data. We find a preference for a duplication-divergence with linear preferential attachment model in the majority of the interaction datasets considered. We also illustrate how our method can be used to perform multi-model inference of network parameters to estimate properties of the full network from sampled data. PMID:22552917

  4. Protein Expression Analysis of Melanocyte Differentiation Antigen TRP-2.

    PubMed

    Avogadri, Francesca; Gnjatic, Sacha; Tassello, Jodie; Frosina, Denise; Hanson, Nicole; Laudenbach, Megan; Ritter, Erika; Merghoub, Taha; Busam, Klaus J; Jungbluth, Achim A

    2016-03-01

    Melanocyte differentiation antigens, such as gp100, tyrosinase, and Melan-A and their corresponding antibodies HMB45, T311, and A103, are major diagnostic tools in surgical pathology. Little is known about tyrosinase-related protein 2 (TRP-2, or dopachrome tautomerase/DCT) another melanocyte differentiation antigen, which is an enzymatic component of melanogenesis. We identified a commercial reagent to TRP-2, monoclonal antibody (mAb) C-9 and undertook a comprehensive analysis to assess its specificity and usefulness for surgical pathology. Subsequently, we analyzed panels of normal tissues and tumors. We show that TRP-2 is regularly expressed in melanocytes of the normal skin. In cutaneous nevi, TRP-2 is present in junctional as well as in dermal nevocytes. In malignant tumors, C-9 reactivity is restricted to melanocytic and related lesions and present in 84% and 58% of primary and metastatic melanomas, respectively. Ten primary melanomas of the anorectal mucosa were all positive. Like the other melanocyte differentiation antigens, TRP-2 was absent in 6 desmoplastic melanomas. Also, only 2 of 9 angiomyolipomas were TRP-2 positive. We conclude that mAb C-9 is a valuable reagent for the analysis of TRP-2 expression in archival surgical pathology material. The expression pattern of TRP-2 in melanocytic and related lesions appears to parallel other melanocyte differentiation antigens, although the overall incidence is lower than other antigens, such as Melan-A or gp100. PMID:26894771

  5. Analysis of three Xanthomonas axonopodis pv. citri effector proteins in pathogenicity and their interactions with host plant proteins.

    PubMed

    Dunger, Germán; Garofalo, Cecilia G; Gottig, Natalia; Garavaglia, Betiana S; Rosa, María C Pereda; Farah, Chuck S; Orellano, Elena G; Ottado, Jorgelina

    2012-10-01

    Xanthomonas axonopodis pv. citri, the bacterium responsible for citrus canker, uses effector proteins secreted by a type III protein secretion system to colonize its hosts. Among the putative effector proteins identified for this bacterium, we focused on the analysis of the roles of AvrXacE1, AvrXacE2 and Xac3090 in pathogenicity and their interactions with host plant proteins. Bacterial deletion mutants in avrXacE1, avrXacE2 and xac3090 were constructed and evaluated in pathogenicity assays. The avrXacE1 and avrXacE2 mutants presented lesions with larger necrotic areas relative to the wild-type strain when infiltrated in citrus leaves. Yeast two-hybrid studies were used to identify several plant proteins likely to interact with AvrXacE1, AvrXacE2 and Xac3090. We also assessed the localization of these effector proteins fused to green fluorescent protein in the plant cell, and observed that they co-localized to the subcellular spaces in which the plant proteins with which they interacted were predicted to be confined. Our results suggest that, although AvrXacE1 localizes to the plant cell nucleus, where it interacts with transcription factors and DNA-binding proteins, AvrXacE2 appears to be involved in lesion-stimulating disease 1-mediated cell death, and Xac3090 is directed to the chloroplast where its function remains to be clarified. PMID:22435635

  6. Northwestern Blot Analysis: Detecting RNA-Protein Interaction After Gel Separation of Protein Mixture.

    PubMed

    Zang, Shangbing; Lin, Ren-Jang

    2016-01-01

    Northwestern assays detect a direct binding of a given RNA molecule to a protein immobilized on a nitrocellulose membrane. Here, we describe protocols to prepare (32)P-labeled RNA probes and to use them to assay for RNA-protein interactions after partially purified protein preparations are resolved on denaturing SDS-polyacrylamide gels. The method can unambiguously determine whether the protein of interest can directly and independently bind RNA even in the presence of contaminating bacterial proteins or degradation products that at times may hinder interpretation of results obtained from gel mobility shift or RNP immunoprecipitation assays. PMID:26965261

  7. Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    PubMed Central

    Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K.; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-01-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139

  8. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139

  9. Proteome Analysis. Novel Proteins Identified at the Peribacteroid Membrane from Lotus japonicus Root Nodules1

    PubMed Central

    Wienkoop, Stefanie; Saalbach, Gerhard

    2003-01-01

    The peribacteroid membrane (PBM) forms the structural and functional interface between the legume plant and the rhizobia. The model legume Lotus japonicus was chosen to study the proteins present at the PBM by proteome analysis. PBM was purified from root nodules by an aqueous polymer two-phase system. Extracted proteins were subjected to a global trypsin digest. The peptides were separated by nanoscale liquid chromatography and analyzed by tandem mass spectrometry. Searching the nonredundant protein database and the green plant expressed sequence tag database using the tandem mass spectrometry data identified approximately 94 proteins, a number far exceeding the number of proteins reported for the PBM hitherto. In particular, a number of membrane proteins like transporters for sugars and sulfate; endomembrane-associated proteins such as GTP-binding proteins and vesicle receptors; and proteins involved in signaling, for example, receptor kinases, calmodulin, 14-3-3 proteins, and pathogen response-related proteins, including a so-called HIR protein, were detected. Several ATPases and aquaporins were present, indicating a more complex situation than previously thought. In addition, the unexpected presence of a number of proteins known to be located in other compartments was observed. Two characteristic protein complexes obtained from native gel electrophoresis of total PBM proteins were also analyzed. Together, the results identified specific proteins at the PBM involved in important physiological processes and localized proteins known from nodule-specific expressed sequence tag databases to the PBM. PMID:12644660

  10. Graph theoretic network analysis reveals protein pathways underlying cell death following neurotropic viral infection

    PubMed Central

    Ghosh, Sourish; Kumar, G. Vinodh; Basu, Anirban; Banerjee, Arpan

    2015-01-01

    Complex protein networks underlie any cellular function. Certain proteins play a pivotal role in many network configurations, disruption of whose expression proves fatal to the cell. An efficient method to tease out such key proteins in a network is still unavailable. Here, we used graph-theoretic measures on protein-protein interaction data (interactome) to extract biophysically relevant information about individual protein regulation and network properties such as formation of function specific modules (sub-networks) of proteins. We took 5 major proteins that are involved in neuronal apoptosis post Chandipura Virus (CHPV) infection as seed proteins in a database to create a meta-network of immediately interacting proteins (1st order network). Graph theoretic measures were employed to rank the proteins in terms of their connectivity and the degree upto which they can be organized into smaller modules (hubs). We repeated the analysis on 2nd order interactome that includes proteins connected directly with proteins of 1st order. FADD and Casp-3 were connected maximally to other proteins in both analyses, thus indicating their importance in neuronal apoptosis. Thus, our analysis provides a blueprint for the detection and validation of protein networks disrupted by viral infections. PMID:26404759

  11. Graph theoretic network analysis reveals protein pathways underlying cell death following neurotropic viral infection.

    PubMed

    Ghosh, Sourish; Kumar, G Vinodh; Basu, Anirban; Banerjee, Arpan

    2015-01-01

    Complex protein networks underlie any cellular function. Certain proteins play a pivotal role in many network configurations, disruption of whose expression proves fatal to the cell. An efficient method to tease out such key proteins in a network is still unavailable. Here, we used graph-theoretic measures on protein-protein interaction data (interactome) to extract biophysically relevant information about individual protein regulation and network properties such as formation of function specific modules (sub-networks) of proteins. We took 5 major proteins that are involved in neuronal apoptosis post Chandipura Virus (CHPV) infection as seed proteins in a database to create a meta-network of immediately interacting proteins (1(st) order network). Graph theoretic measures were employed to rank the proteins in terms of their connectivity and the degree upto which they can be organized into smaller modules (hubs). We repeated the analysis on 2(nd) order interactome that includes proteins connected directly with proteins of 1(st) order. FADD and Casp-3 were connected maximally to other proteins in both analyses, thus indicating their importance in neuronal apoptosis. Thus, our analysis provides a blueprint for the detection and validation of protein networks disrupted by viral infections. PMID:26404759

  12. Analysis of crystallization data in the Protein Data Bank

    PubMed Central

    Kirkwood, Jobie; Hargreaves, David; O’Keefe, Simon; Wilson, Julie

    2015-01-01

    The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored. PMID:26457511

  13. Proteomic analysis of glycated proteins from streptozotocin-induced diabetic rat kidney.

    PubMed

    Chougale, Ashok D; Bhat, Shweta P; Bhujbal, Swapnil V; Zambare, Mandar R; Puntambekar, Shraddha; Somani, Rahul S; Boppana, Ramanamurthy; Giri, Ashok P; Kulkarni, Mahesh J

    2012-01-01

    Glycation of proteins leading to formation of advanced glycation end products (AGEs) has been considered as one of the important causes of diabetic nephropathy. Therefore, in this study, glycated proteins were detected by anti-AGE antibodies from kidney of streptozotocin-induced diabetic rat showing nephropathic symptoms, by using two dimensional electrophoresis and western blot analysis. These glycated proteins were identified and characterized by using combination of peptide mass finger printing and tandem mass spectrometric approaches. Glycated proteins identified included proteins from metabolic pathways, oxidative stress, cell signaling, and transport. Several of the proteins modified by glycation were involved in glucose metabolism. The extent of glycation was higher in diabetes compared to control, in the glycated proteins that were common to both control and diabetic kidney. Two dimensional electrophoresis proteins profiling of glycated proteins suggest that four of the glycated proteins were significantly up regulated in diabetes. PMID:21516357

  14. Analysis of Protein Phosphatase-1 and Aurora Protein Kinase Suppressors Reveals New Aspects of Regulatory Protein Function in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Anuprita; Cannon, John F.

    2013-01-01

    Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates. PMID:23894419

  15. Identification and analysis of multi-protein complexes in placenta.

    PubMed

    Wang, Fuqiang; Wang, Ling; Xu, Zhiyang; Liang, Gaolin

    2013-01-01

    Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK) channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders. PMID:23638173

  16. PSSARD: protein sequence-structure analysis relational database.

    PubMed

    Guruprasad, Kunchur; Srikanth, K; Babu, A V N

    2005-09-15

    We have implemented a relational database comprising a representative dataset of amino acid sequences and their associated secondary structure. The representative amino acid sequences were selected according to the PDB_SELECT program by choosing proteins corresponding to protein crystal structure data deposited in the protein data bank that share less than 25% overall pair-wise sequence identity. The secondary structure was extracted from the protein data bank website. The information content in the database includes the protein description, PDB code, crystal structure resolution, total number of amino acid residues in the protein chain, amino acid sequence, secondary structure conformation and its summary. The database is freely accessible from the website mentioned below and is useful to query on any of the above fields. The database is particularly useful to quickly retrieve amino acid sequences that are compatible to any super-secondary structure conformation from several proteins simultaneously. PMID:16054209

  17. Analysis of crystallization data in the Protein Data Bank

    SciTech Connect

    Kirkwood, Jobie; Hargreaves, David; O’Keefe, Simon; Wilson, Julie

    2015-09-23

    In a large-scale study using data from the Protein Data Bank, some of the many reported findings regarding the crystallization of proteins were investigated. The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored.

  18. Applications of Polymer Brushes in Protein Analysis and Purification

    NASA Astrophysics Data System (ADS)

    Jain, Parul; Baker, Gregory L.; Bruening, Merlin L.

    2009-07-01

    This review examines the application of polymer brush-modified flat surfaces, membranes, and beads for protein immobilization and isolation. Modification of porous substrates with brushes yields membranes that selectively bind tagged proteins to give 99% pure protein at capacities as high as 100 mg of protein per cubic centimeter of membrane. Moreover, enrichment of phosphopeptides on brush-modified matrix-assisted laser desorption/ionization (MALDI) plates allows detection and characterization of femtomole levels of phosphopeptides by MALDI mass spectrometry. Because swollen hydrophilic brushes can resist nonspecific protein adsorption while immobilizing a high density of proteins, they are attractive as substrates for protein microarrays. This review highlights the advantages of polymer brush-modified surfaces over self-assembled monolayers and identifies some research needs in this area.

  19. Correspondence of function and phylogeny of ABC proteins based on an automated analysis of 20 model protein data sets.

    PubMed

    Fuellen, Georg; Spitzer, Michael; Cullen, Paul; Lorkowski, Stefan

    2005-12-01

    Using our BLAST-based procedure RiPE (Retrieval-induced Phylogeny Environment), which automates the evolutionary analysis of a protein family, we assembled a set of 1138 ABC protein components [adenosine triphosphate (ATP)-binding cassette and transmembrane domain] from the protein data sets of 20 model organisms and subjected them to phylogenetic and functional analysis. For maximum speed, we based the alignment directly on a homology search with a profile of all known human ABC proteins and used neighbor-joining tree estimation. All but 11 sequences from Homo sapiens, Arabidopsis thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae were placed into the correct subtree/subfamily, reproducing published classifications of the individual organisms. By following a simple "function transfer rule", our comparative phylogenetic analysis successfully predicted the known function of human ABC proteins in 19 of 22 cases. Three functional predictions did not correspond, and 10 were novel. Predictions based on BLAST alone were inferior in five cases and superior in two. Bacterial sequences were placed close to the root of most subtrees. This placement coincides with domain architecture, suggesting an early diversification of the ABC family before the kingdoms split apart. Our approach can, in principle, be used to annotate any protein family of any organism included in the study. PMID:16254912

  20. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages

    PubMed Central

    2014-01-01

    Background The molecular history of animal evolution from single-celled ancestors remains a major question in biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study, we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular relatives. Results Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6, found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K and T as a whole subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens. Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi, choanoflagellates, and the basal metazoan Amphimedon queenslandica. Conclusions Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan emergence. PMID:24433236

  1. Introducing Students to Protein Analysis Techniques: Separation and Comparative Analysis of Gluten Proteins in Various Wheat Strains

    ERIC Educational Resources Information Center

    Pirinelli, Alyssa L.; Trinidad, Jonathan C.; Pohl, Nicola L. B.

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) is commonly taught in undergraduate laboratory classes as a traditional method to analyze proteins. An experiment has been developed to teach these basic protein gel skills in the context of gluten protein isolation from various types of wheat flour. A further goal is to relate this technique to current…

  2. Sequence and structural analysis of BTB domain proteins

    PubMed Central

    Stogios, Peter J; Downs, Gregory S; Jauhal, Jimmy JS; Nandra, Sukhjeen K; Privé, Gilbert G

    2005-01-01

    Background The BTB domain (also known as the POZ domain) is a versatile protein-protein interaction motif that participates in a wide range of cellular functions, including transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, and targeting proteins for ubiquitination. Several BTB domain structures have been experimentally determined, revealing a highly conserved core structure. Results We surveyed the protein architecture, genomic distribution and sequence conservation of BTB domain proteins in 17 fully sequenced eukaryotes. The BTB domain is typically found as a single copy in proteins that contain only one or two other types of domain, and this defines the BTB-zinc finger (BTB-ZF), BTB-BACK-kelch (BBK), voltage-gated potassium channel T1 (T1-Kv), MATH-BTB, BTB-NPH3 and BTB-BACK-PHR (BBP) families of proteins, among others. In contrast, the Skp1 and ElonginC proteins consist almost exclusively of the core BTB fold. There are numerous lineage-specific expansions of BTB proteins, as seen by the relatively large number of BTB-ZF and BBK proteins in vertebrates, MATH-BTB proteins in Caenorhabditis elegans, and BTB-NPH3 proteins in Arabidopsis thaliana. Using the structural homology between Skp1 and the PLZF BTB homodimer, we present a model of a BTB-Cul3 SCF-like E3 ubiquitin ligase complex that shows that the BTB dimer or the T1 tetramer is compatible in this complex. Conclusion Despite widely divergent sequences, the BTB fold is structurally well conserved. The fold has adapted to several different modes of self-association and interactions with non-BTB proteins. PMID:16207353

  3. Structural Analysis of Protein-Protein Interactions in Type I Polyketide Synthases

    PubMed Central

    Xu, Wei; Qiao, Kangjian; Tang, Yi

    2013-01-01

    Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo- selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system. PMID:23249187

  4. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis.

    PubMed

    Jones, Michael D; Chan, Anson C K; Nomellini, John F; Murphy, Michael E P; Smit, John

    2016-09-01

    Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported. PMID:27599857

  5. Advances in structural and functional analysis of membrane proteins by electron crystallography

    PubMed Central

    Wisedchaisri, Goragot; Reichow, Steve L.; Gonen, Tamir

    2011-01-01

    Summary Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. PMID:22000511

  6. In Silico Designing and Analysis of Inhibitors against Target Protein Identified through Host-Pathogen Protein Interactions in Malaria

    PubMed Central

    Samant, Monika; Chadha, Nidhi; Tiwari, Anjani K.; Hasija, Yasha

    2016-01-01

    Malaria, a life-threatening blood disease, has been a major concern in the field of healthcare. One of the severe forms of malaria is caused by the parasite Plasmodium falciparum which is initiated through protein interactions of pathogen with the host proteins. It is essential to analyse the protein-protein interactions among the host and pathogen for better understanding of the process and characterizing specific molecular mechanisms involved in pathogen persistence and survival. In this study, a complete protein-protein interaction network of human host and Plasmodium falciparum has been generated by integration of the experimental data and computationally predicting interactions using the interolog method. The interacting proteins were filtered according to their biological significance and functional roles. α-tubulin was identified as a potential protein target and inhibitors were designed against it by modification of amiprophos methyl. Docking and binding affinity analysis showed two modified inhibitors exhibiting better docking scores of −10.5 kcal/mol and −10.43 kcal/mol and an improved binding affinity of −83.80 kJ/mol and −98.16 kJ/mol with the target. These inhibitors can further be tested and validated in vivo for their properties as an antimalarial drug. PMID:27057354

  7. Functional Analysis of Picornavirus 2B Proteins: Effects on Calcium Homeostasis and Intracellular Protein Trafficking▿

    PubMed Central

    de Jong, Arjan S.; de Mattia, Fabrizio; Van Dommelen, Michiel M.; Lanke, Kjerstin; Melchers, Willem J. G.; Willems, Peter H. G. M.; van Kuppeveld, Frank J. M.

    2008-01-01

    The family Picornaviridae consists of a large group of plus-strand RNA viruses that share a similar genome organization. The nomenclature of the picornavirus proteins is based on their position in the viral RNA genome but does not necessarily imply a conserved function of proteins of different genera. The enterovirus 2B protein is a small hydrophobic protein that, upon individual expression, is localized to the endoplasmic reticulum (ER) and the Golgi complex, reduces ER and Golgi complex Ca2+ levels, most likely by forming transmembrane pores, and inhibits protein trafficking through the Golgi complex. At present, little is known about the function of the other picornavirus 2B proteins. Here we show that rhinovirus 2B, which is phylogenetically closely related to enterovirus 2B, shows a similar subcellular localization and function to those of enterovirus 2B. In contrast, 2B proteins of hepatitis A virus, foot-and-mouth disease virus, and encephalomyocarditis virus, all of which are more distantly related to enteroviruses, show a different localization and have little, if any, effects on Ca2+ homeostasis and intracellular protein trafficking. Our data suggest that the 2B proteins of enterovirus and rhinovirus share the same function in virus replication, while the other picornavirus 2B proteins support the viral life cycle in a different manner. Moreover, we show that an enterovirus 2B protein that is retained in the ER is unable to modify Ca2+ homeostasis and inhibit protein trafficking, demonstrating the importance of Golgi complex localization for its functioning. PMID:18216106

  8. To What Extent is FAIMS Beneficial in the Analysis of Proteins?

    NASA Astrophysics Data System (ADS)

    Cooper, Helen J.

    2016-04-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, is emerging as a tool for biomolecular analysis. In this article, the benefits and limitations of FAIMS for protein analysis are discussed. The principles and mechanisms of FAIMS separation of ions are described, and the differences between FAIMS and conventional ion mobility spectrometry are detailed. Protein analysis is considered from both the top-down (intact proteins) and the bottom-up (proteolytic peptides) perspective. The roles of FAIMS in the analysis of complex mixtures of multiple intact proteins and in the analysis of multiple conformers of a single protein are assessed. Similarly, the application of FAIMS in proteomics and targeted analysis of peptides are considered.

  9. To What Extent is FAIMS Beneficial in the Analysis of Proteins?

    PubMed

    Cooper, Helen J

    2016-04-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, is emerging as a tool for biomolecular analysis. In this article, the benefits and limitations of FAIMS for protein analysis are discussed. The principles and mechanisms of FAIMS separation of ions are described, and the differences between FAIMS and conventional ion mobility spectrometry are detailed. Protein analysis is considered from both the top-down (intact proteins) and the bottom-up (proteolytic peptides) perspective. The roles of FAIMS in the analysis of complex mixtures of multiple intact proteins and in the analysis of multiple conformers of a single protein are assessed. Similarly, the application of FAIMS in proteomics and targeted analysis of peptides are considered. Graphical Abstract ᅟ. PMID:26843211

  10. Analysis of the Protein Phosphotome of Entamoeba histolytica Reveals an Intricate Phosphorylation Network

    PubMed Central

    Anwar, Tamanna; Gourinath, Samudrala

    2013-01-01

    Phosphorylation is the most common mechanism for the propagation of intracellular signals. Protein phosphatases and protein kinases play a dynamic antagonistic role in protein phosphorylation. Protein phosphatases make up a significant fraction of eukaryotic proteome. In this article, we report the identification and analysis of protein phosphatases in the intracellular parasite Entamoeba histolytica. Based on an in silico analysis, we classified 250 non-redundant protein phosphatases in E. histolytica. The phosphotome of E. histolytica is 3.1% of its proteome and 1.3 times of the human phosphotome. In this extensive study, we identified 42 new putative phosphatases (39 hypothetical proteins and 3 pseudophosphatases). The presence of pseudophosphatases may have an important role in virulence of E. histolytica. A comprehensive phosphotome analysis of E. histolytica shows spectacular low similarity to human phosphatases, making them potent candidates for drug target. PMID:24236039

  11. Analysis of protein transport in the Brassica oleracea vasculature reveals protein-specific destinations.

    PubMed

    Niu, Chenxing; Anstead, James; Verchot, Jeanmarie

    2012-03-01

    We investigated the vascular transport properties of exogenously applied proteins to Brassica oleracea plants and compared their delivery to various aerial parts of the plant with carboxy fluorescein (CF) dye. We identified unique properties for each protein. Alexafluor-tagged bovine serum albumin (Alexa-BSA) and Alexafluor-tagged Histone H1 (Alexa-Histone) moved slower than CF dye throughout the plant. Interestingly, Alexa-Histone was retained in the phloem and phloem parenchyma while Alexa-BSA moved into the apoplast. One possibility is that Alexa-Histone sufficiently resembles plant endogenous proteins and is retained in the vascular stream, while Alexa-BSA is exported from the cell as a foreign protein. Both proteins diffuse from the leaf veins into the leaf lamina. Alexa-BSA accumulated in the leaf epidermis while Alexa-Histone accumulated mainly in the mesophyll layers. Fluorescein-tagged hepatitis C virus core protein (fluorescein-HCV) was also delivered to B. oleracea plants and is larger than Alexa-BSA. This protein moves more rapidly than BSA through the plant and was restricted to the leaf veins. Fluorescein-HCV failed to unload to the leaf lamina. These combined data suggest that there is not a single default pathway for the vascular transfer of exogenous proteins in B. oleracea plants. Specific protein properties appear to determine their destination and transport properties within the phloem. PMID:22476467

  12. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    PubMed

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ . PMID:25424913

  13. Analysis of Fluorescent Proteins with a Nanoparticle Probe

    PubMed Central

    Fernandez-Lima, Francisco A.; Eller, Michael J.; DeBord, J. Daniel; Levy, Michaella J.; Verkhoturov, Stanislav V.; Della-Negra, Serge; Schweikert, Emile A.

    2012-01-01

    This letter presents the first application of high energy, single nanoparticle probes (e.g., 520 keV Au400 2nm NP) in the characterization of surfaces containing fluorescent proteins (e.g., GFP variants) by their co-emitted photon, electron and secondary ion signals. NP induced protein luminescence increases with the NP incident energy, is originated by the NP impact and is transferred to the protein fluorophor via electronic energy transfer. Multi-electron emission is observed per single NP impacts and their distributions are specific to the target morphology and composition. Fragment ions of protein sub-units consisting of 2–7 amino acid peptides are observed under individual NP impacts that can be correlated to the random protein orientation relative to the impact site (e.g., outer layer or “skin” of the protein). PMID:22308203

  14. Extraction of intracellular protein from Glaciozyma antarctica for proteomics analysis

    NASA Astrophysics Data System (ADS)

    Faizura, S. Nor; Farahayu, K.; Faizal, A. B. Mohd; Asmahani, A. A. S.; Amir, R.; Nazalan, N.; Diba, A. B. Farah; Muhammad, M. Nor; Munir, A. M. Abdul

    2013-11-01

    Two preparation methods of crude extracts of psychrophilic yeast Glaciozyma antarctica were compared in order to obtain a good recovery of intracellular proteins. Extraction with mechanical procedures using sonication was found to be more effective for obtaining good yield compare to alkaline treatment method. The procedure is simple, rapid, and produce better yield. A total of 52 proteins were identified by combining both extraction methods. Most of the proteins identified in this study involves in the metabolic process including glycolysis pathway, pentose phosphate pathway, pyruyate decarboxylation and also urea cyle. Several chaperons were identified including probable cpr1-cyclophilin (peptidylprolyl isomerase), macrolide-binding protein fkbp12 and heat shock proteins which were postulate to accelerate proper protein folding. Characteristic of the fundamental cellular processes inferred from the expressed-proteome highlight the evolutionary and functional complexity existing in this domain of life.

  15. High-throughput analysis of protein-DNA binding affinity.

    PubMed

    Franco-Zorrilla, José M; Solano, Roberto

    2014-01-01

    Sequence-specific protein-DNA interactions mediate most regulatory processes underlying gene expression, such as transcriptional regulation by transcription factors (TFs) or chromatin organization. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies that are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. The use of protein-binding microarrays (PBMs) offers a high-throughput alternative for the identification of protein-DNA specificities. PBM consists in an array of pseudorandomized DNA sequences that are optimized to include all the possible 10- or 11-mer DNA sequences, allowing the determination of binding specificities of most eukaryotic TFs. PBMs that can be synthesized by several manufacturing companies as single-stranded DNA are converted into double-stranded in a simple primer extension reaction. The protein of interest fused to an epitope tag is then incubated onto the PBM, and specific DNA-protein complexes are revealed in a series of immunological reactions coupled to a fluorophore. After scanning and quantifying PBMs, specific DNA motifs recognized by the protein are identified with ready-to-use scripts, generating comprehensive but accessible information about the DNA-binding specificity of the protein. This chapter describes detailed procedures for preparation of double-stranded PBMs, incubation with recombinant protein, and detection of protein-DNA complexes. Finally, we outline some cues for evaluating the biological role of DNA motifs obtained in vitro. PMID:24057393

  16. Pan-Cancer Analysis for Studying Cancer Stage using Protein Expression Data

    PubMed Central

    Mishra, Sameer; Kaddi, Chanchala D.; Wang, May D.

    2016-01-01

    Pan-cancer analyses attempt to discover similar features among multiple cancers in order to identify fundamental patterns common to cancer development and progression. Pan-cancer analysis at the level of protein expression is particularly important because protein expression is more immediately related to patient phenotype than genomic or transcriptomic data. This study aims to analyze differentially expressed (DE) proteins between early and advanced cases of multiple cancer types through the usage of reverse-phase protein array data. The relevance of these proteins is further investigated by developing predictive models using K-nearest neighbor and linear discriminant analysis classifiers. The results of this study suggest that a pan-cancer analysis may be highly complementary to standard analysis of an individual cancer for identifying biologically relevant DE proteins, and can assist in developing effective predictive models for cancer progression. PMID:26738195

  17. Crysalis: an integrated server for computational analysis and design of protein crystallization

    PubMed Central

    Wang, Huilin; Feng, Liubin; Zhang, Ziding; Webb, Geoffrey I.; Lin, Donghai; Song, Jiangning

    2016-01-01

    The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/. PMID:26906024

  18. Searching for the Holy Grail; protein–protein interaction analysis and modulation

    PubMed Central

    Morelli, Xavier; Hupp, Ted

    2012-01-01

    The first EMBO workshop on ‘Protein–Protein Interaction Analysis & Modulation' took place in June 2012 in Roscoff, France. It brought together researchers to discuss the growing field of protein network analysis and the modulation of protein–protein interactions, as well as outstanding related issues including the daunting challenge of integrating interactomes in systems biology and in the modelling of signalling networks. PMID:22986552

  19. Green Fluorescent Protein-Tagged Retroviral Envelope Protein for Analysis of Virus-Cell Interactions

    PubMed Central

    Spitzer, Dirk; Dittmar, Kurt E. J.; Rohde, Manfred; Hauser, Hansjörg; Wirth, Dagmar

    2003-01-01

    Fluorescent retroviral envelope (Env) proteins were developed for direct visualization of viral particles. By fusing the enhanced green fluorescent protein (eGFP) to the N terminus of the amphotropic 4070A envelope protein, extracellular presentation of eGFP was achieved. Viruses incorporated the modified Env protein and efficiently infected cells. We used the GFP-tagged viruses for staining retrovirus receptor-positive cells, thereby circumventing indirect labeling techniques. By generating cells which conditionally expressed the GFP-tagged Env protein, we could confirm an inverse correlation between retroviral Env expression and infectivity (superinfection). eGFP-tagged virus particles are suitable for monitoring the dynamics of virus-cell interactions. PMID:12719600

  20. Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain.

    PubMed

    Kozielski, Frank; Riaz, Tahira; DeBonis, Salvatore; Koehler, Christian J; Kroening, Mario; Panse, Isabel; Strozynski, Margarita; Donaldson, Ian M; Thiede, Bernd

    2011-07-01

    The microtubule (MT) cytoskeleton is essential for a variety of cellular processes. MTs are finely regulated by distinct classes of MT-associated proteins (MAPs), which themselves bind to and are regulated by a large number of additional proteins. We have carried out proteome analyses of tubulin-rich and tubulin-depleted MAPs and their interacting partners isolated from bovine brain. In total, 573 proteins were identified giving us unprecedented access to brain-specific MT-associated proteins from mammalian brain. Most of the standard MAPs were identified and at least 500 proteins have been reported as being associated with MTs. We identified protein complexes with a large number of subunits such as brain-specific motor/adaptor/cargo complexes for kinesins, dynein, and dynactin, and proteins of an RNA-transporting granule. About 25% of the identified proteins were also found in the synaptic vesicle proteome. Analysis of the MS/MS data revealed many posttranslational modifications, amino acid changes, and alternative splice variants, particularly in tau, a key protein implicated in Alzheimer's disease. Bioinformatic analysis of known protein-protein interactions of the identified proteins indicated that the number of MAPs and their associated proteins is larger than previously anticipated and that our database will be a useful resource to identify novel binding partners. PMID:20567863

  1. Comparative genomic analysis of integral membrane transport proteins in ciliates.

    PubMed

    Kumar, Ujjwal; Saier, Milton H

    2015-01-01

    Integral membrane transport proteins homologous to those found in the Transporter Classification Database (TCDB; www.tcdb.org) were identified and bioinformatically characterized by transporter class, family, and substrate specificity in three ciliates, Paramecium tetraurelia (Para), Tetrahymena thermophila (Tetra), and Ichthyophthirius multifiliis (Ich). In these three organisms, 1,326 of 39,600 proteins (3.4%), 1,017 of 24,800 proteins (4.2%), and 504 out of 8,100 proteins (6.2%) integral membrane transport proteins were identified, respectively. Thus, an inverse relationship was observed between the % transporters identified and the number of total proteins per genome reported. This surprising observation provides insight into the evolutionary process, giving rise to genome reduction following whole genome duplication (as in the case of Para) or during pathogenic association with a host organism (Ich). Of these transport proteins in Para and Tetra, about 41% were channels (more than any other type of organism studied), 31% were secondary carriers (fewer than most eukaryotes) and 26% were primary active transporters, mostly ATP-hydrolysis driven (more than most other eukaryotes). In Ich, the number of channels was selectively reduced by 66%, relative to Para and Tetra. Para has four times more inorganic anion transporters than Tetra, and Ich has nonselectively lost most of these. Tetra and Ich preferentially transport sugars and monocarboxylates while Para prefers di- and tricarboxylates. These observations serve to characterize the transport proteins of these related ciliates, providing insight into their nutrition and metabolism. PMID:25099884

  2. Integrative analysis of human protein, function and disease networks

    PubMed Central

    Liu, Wei; Wu, Aiping; Pellegrini, Matteo; Wang, Xiaofan

    2015-01-01

    Protein-protein interaction (PPI) networks serve as a powerful tool for unraveling protein functions, disease-gene and disease-disease associations. However, a direct strategy for integrating protein interaction, protein function and diseases is still absent. Moreover, the interrelated relationships among these three levels are poorly understood. Here we present a novel systematic method to integrate protein interaction, function, and disease networks. We first identified topological modules in human protein interaction data using the network topological algorithm (NeTA) we previously developed. The resulting modules were then associated with functional terms using Gene Ontology to obtain functional modules. Finally, disease modules were constructed by associating the modules with OMIM and GWAS. We found that most topological modules have cohesive structure, significant pathway annotations and good modularity. Most functional modules (70.6%) fully cover corresponding topological modules, and most disease modules (88.5%) are fully covered by the corresponding functional modules. Furthermore, we identified several protein modules of interest that we describe in detail, which demonstrate the power of our integrative approach. This approach allows us to link genes, and pathways with their corresponding disorders, which may ultimately help us to improve the prevention, diagnosis and treatment of disease. PMID:26399914

  3. Comparative Analysis of SWIRM Domain-Containing Proteins in Plants

    PubMed Central

    Gao, Yan; Yang, Songguang; Yuan, Lianyu; Cui, Yuhai; Wu, Keqiang

    2012-01-01

    Chromatin-remodeling complexes affect gene expression by using the energy of ATP hydrolysis to locally disrupt or alter the association of histones with DNA. SWIRM (Swi3p, Rsc8p, and Moira) domain is an alpha-helical domain of about 85 residues in chromosomal proteins. SWIRM domain-containing proteins make up large multisubunit complexes by interacting with other chromatin modification factors and may have an important function in plants. However, little is known about SWIRM domain-containing proteins in plants. In this study, 67 SWIRM domain-containing proteins from 6 plant species were identified and analyzed. Plant SWIRM domain proteins can be divided into three distinct types: Swi-type, LSD1-type, and Ada2-type. Generally, the SWIRM domain forms a helix-turn-helix motif commonly found in DNA-binding proteins. The genes encoding SWIRM domain proteins in Oryza sativa are widely expressed, especially in pistils. In addition, OsCHB701 and OsHDMA701 were downregulated by cold stress, whereas OsHDMA701 and OsHDMA702 were significantly induced by heat stress. These observations indicate that SWIRM domain proteins may play an essential role in plant development and plant responses to environmental stress. PMID:22924025

  4. Aequorea green fluorescent protein analysis by flow cytometry

    SciTech Connect

    Ropp, J.D.; Cuthbertson, R.A.; Donahue, C.J.; Wolfgang-Kimball, D.

    1995-12-01

    The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types. The longer wavelength peak (470 nm) of GFP`s bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered at 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T- GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm. 29 refs., 5 figs.

  5. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    PubMed Central

    Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution. PMID:22986689

  6. Protein analysis by time-resolved measurements with an electro-switchable DNA chip

    PubMed Central

    Langer, Andreas; Hampel, Paul A.; Kaiser, Wolfgang; Knezevic, Jelena; Welte, Thomas; Villa, Valentina; Maruyama, Makiko; Svejda, Matej; Jähner, Simone; Fischer, Frank; Strasser, Ralf; Rant, Ulrich

    2013-01-01

    Measurements in stationary or mobile phases are fundamental principles in protein analysis. Although the immobilization of molecules on solid supports allows for the parallel analysis of interactions, properties like size or shape are usually inferred from the molecular mobility under the influence of external forces. However, as these principles are mutually exclusive, a comprehensive characterization of proteins usually involves a multi-step workflow. Here we show how these measurement modalities can be reconciled by tethering proteins to a surface via dynamically actuated nanolevers. Short DNA strands, which are switched by alternating electric fields, are employed as capture probes to bind target proteins. By swaying the proteins over nanometre amplitudes and comparing their motional dynamics to a theoretical model, the protein diameter can be quantified with Angström accuracy. Alterations in the tertiary protein structure (folding) and conformational changes are readily detected, and even post-translational modifications are revealed by time-resolved molecular dynamics measurements. PMID:23839273

  7. Systems Analysis of Protein Fatty Acylation in Herpes Simplex Virus-Infected Cells Using Chemical Proteomics

    PubMed Central

    Serwa, Remigiusz A.; Abaitua, Fernando; Krause, Eberhard; Tate, Edward W.; O’Hare, Peter

    2015-01-01

    Summary Protein fatty acylation regulates diverse aspects of cellular function and organization and plays a key role in host immune responses to infection. Acylation also modulates the function and localization of virus-encoded proteins. Here, we employ chemical proteomics tools, bio-orthogonal probes, and capture reagents to study myristoylation and palmitoylation during infection with herpes simplex virus (HSV). Using in-gel fluorescence imaging and quantitative mass spectrometry, we demonstrate a generalized reduction in myristoylation of host proteins, whereas palmitoylation of host proteins, including regulators of interferon and tetraspanin family proteins, was selectively repressed. Furthermore, we found that a significant fraction of the viral proteome undergoes palmitoylation; we identified a number of virus membrane glycoproteins, structural proteins, and kinases. Taken together, our results provide broad oversight of protein acylation during HSV infection, a roadmap for similar analysis in other systems, and a resource with which to pursue specific analysis of systems and functions. PMID:26256475

  8. Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes.

    PubMed

    Soung, George Y; Miller, Jennifer L; Koc, Hasan; Koc, Emine C

    2009-07-01

    Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in 24 Escherichia coli ribosomal proteins by tandem mass spectrometry. Detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining, and antibodies for phospho-Ser, Thr, and Tyr; or by mass spectrometry equipped with a capability to detect addition and loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, and L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given phosphorylation sites in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins. PMID:19469554

  9. Immunofluorescence Analysis of Endogenous and Exogenous Centromere-kinetochore Proteins.

    PubMed

    Niikura, Yohei; Kitagawa, Katsumi

    2016-01-01

    "Centromeres" and "kinetochores" refer to the site where chromosomes associate with the spindle during cell division. Direct visualization of centromere-kinetochore proteins during the cell cycle remains a fundamental tool in investigating the mechanism(s) of these proteins. Advanced imaging methods in fluorescence microscopy provide remarkable resolution of centromere-kinetochore components and allow direct observation of specific molecular components of the centromeres and kinetochores. In addition, methods of indirect immunofluorescent (IIF) staining using specific antibodies are crucial to these observations. However, despite numerous reports about IIF protocols, few discussed in detail problems of specific centromere-kinetochore proteins.(1-4) Here we report optimized protocols to stain endogenous centromere-kinetochore proteins in human cells by using paraformaldehyde fixation and IIF staining. Furthermore, we report protocols to detect Flag-tagged exogenous CENP-A proteins in human cells subjected to acetone or methanol fixation. These methods are useful in detecting and quantifying endogenous centromere-kinetochore proteins and Flag-tagged CENP-A proteins, including those in human cells. PMID:26967065

  10. Topological Analysis of Hedgehog Acyltransferase, a Multipalmitoylated Transmembrane Protein*

    PubMed Central

    Konitsiotis, Antonio D.; Jovanović, Biljana; Ciepla, Paulina; Spitaler, Martin; Lanyon-Hogg, Thomas; Tate, Edward W.; Magee, Anthony I.

    2015-01-01

    Hedgehog proteins are secreted morphogens that play critical roles in development and disease. During maturation of the proteins through the secretory pathway, they are modified by the addition of N-terminal palmitic acid and C-terminal cholesterol moieties, both of which are critical for their correct function and localization. Hedgehog acyltransferase (HHAT) is the enzyme in the endoplasmic reticulum that palmitoylates Hedgehog proteins, is a member of a small subfamily of membrane-bound O-acyltransferase proteins that acylate secreted proteins, and is an important drug target in cancer. However, little is known about HHAT structure and mode of function. We show that HHAT is comprised of ten transmembrane domains and two reentrant loops with the critical His and Asp residues on opposite sides of the endoplasmic reticulum membrane. We further show that HHAT is palmitoylated on multiple cytosolic cysteines that maintain protein structure within the membrane. Finally, we provide evidence that mutation of the conserved His residue in the hypothesized catalytic domain results in a complete loss of HHAT palmitoylation, providing novel insights into how the protein may function in vivo. PMID:25505265

  11. Topological analysis of Hedgehog acyltransferase, a multipalmitoylated transmembrane protein.

    PubMed

    Konitsiotis, Antonio D; Jovanović, Biljana; Ciepla, Paulina; Spitaler, Martin; Lanyon-Hogg, Thomas; Tate, Edward W; Magee, Anthony I

    2015-02-01

    Hedgehog proteins are secreted morphogens that play critical roles in development and disease. During maturation of the proteins through the secretory pathway, they are modified by the addition of N-terminal palmitic acid and C-terminal cholesterol moieties, both of which are critical for their correct function and localization. Hedgehog acyltransferase (HHAT) is the enzyme in the endoplasmic reticulum that palmitoylates Hedgehog proteins, is a member of a small subfamily of membrane-bound O-acyltransferase proteins that acylate secreted proteins, and is an important drug target in cancer. However, little is known about HHAT structure and mode of function. We show that HHAT is comprised of ten transmembrane domains and two reentrant loops with the critical His and Asp residues on opposite sides of the endoplasmic reticulum membrane. We further show that HHAT is palmitoylated on multiple cytosolic cysteines that maintain protein structure within the membrane. Finally, we provide evidence that mutation of the conserved His residue in the hypothesized catalytic domain results in a complete loss of HHAT palmitoylation, providing novel insights into how the protein may function in vivo. PMID:25505265

  12. Analysis of alpha-synuclein-associated proteins by quantitative proteomics.

    PubMed

    Zhou, Yong; Gu, Guangyu; Goodlett, David R; Zhang, Terry; Pan, Catherine; Montine, Thomas J; Montine, Kathleen S; Aebersold, Ruedi H; Zhang, Jing

    2004-09-10

    To identify the proteins associated with soluble alpha-synuclein (AS) that might promote AS aggregation, a key event leading to neurodegeneration, we quantitatively compared protein profiles of AS-associated protein complexes in MES cells exposed to rotenone, a pesticide that produces parkinsonism in animals and induces Lewy body (LB)-like inclusions in the remaining dopaminergic neurons, and to vehicle. We identified more than 250 proteins associated with Nonidet P-40 soluble AS, and demonstrated that at least 51 of these proteins displayed significant differences in their relative abundance in AS complexes under conditions where rotenone was cytotoxic and induced formation of cytoplasmic inclusions immunoreactive to anti-AS. Overexpressing one of these proteins, heat shock protein (hsp) 70, not only protected cells from rotenone-mediated cytotoxicity but also decreased soluble AS aggregation. Furthermore, the protection afforded by hsp70 transfection appeared to be related to suppression of rotenone-induced oxidative stress as well as mitochondrial and proteasomal dysfunction. PMID:15234983

  13. Bioinformatic analysis of the protein/DNA interface

    PubMed Central

    Schneider, Bohdan; Černý, Jiří; Svozil, Daniel; Čech, Petr; Gelly, Jean-Christophe; de Brevern, Alexandre G.

    2014-01-01

    To investigate the principles driving recognition between proteins and DNA, we analyzed more than thousand crystal structures of protein/DNA complexes. We classified protein and DNA conformations by structural alphabets, protein blocks [de Brevern, Etchebest and Hazout (2000) (Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Prots. Struct. Funct. Genet., 41:271–287)] and dinucleotide conformers [Svozil, Kalina, Omelka and Schneider (2008) (DNA conformations and their sequence preferences. Nucleic Acids Res., 36:3690–3706)], respectively. Assembling the mutually interacting protein blocks and dinucleotide conformers into ‘interaction matrices’ revealed their correlations and conformer preferences at the interface relative to their occurrence outside the interface. The analyzed data demonstrated important differences between complexes of various types of proteins such as transcription factors and nucleases, distinct interaction patterns for the DNA minor groove relative to the major groove and phosphate and importance of water-mediated contacts. Water molecules mediate proportionally the largest number of contacts in the minor groove and form the largest proportion of contacts in complexes of transcription factors. The generally known induction of A-DNA forms by complexation was more accurately attributed to A-like and intermediate A/B conformers rare in naked DNA molecules. PMID:24335080

  14. Microfluidics for the analysis of membrane proteins: how do we get there?

    PubMed

    Battle, Katrina N; Uba, Franklin I; Soper, Steven A

    2014-08-01

    The development of fully automated and high-throughput systems for proteomics is now in demand because of the need to generate new protein-based disease biomarkers. Unfortunately, it is difficult to identify protein biomarkers that are low abundant when in the presence of highly abundant proteins, especially in complex biological samples such as serum, cell lysates, and other biological fluids. Membrane proteins, which are in many cases of low abundance compared to the cytosolic proteins, have various functions and can provide insight into the state of a disease and serve as targets for new drugs making them attractive biomarker candidates. Traditionally, proteins are identified through the use of gel electrophoretic techniques, which are not always suitable for particular protein samples such as membrane proteins. Microfluidics offers the potential as a fully automated platform for the efficient and high-throughput analysis of complex samples, such as membrane proteins, and do so with performance metrics that exceed their bench-top counterparts. In recent years, there have been various improvements to microfluidics and their use for proteomic analysis as reported in the literature. Consequently, this review presents an overview of the traditional proteomic-processing pipelines for membrane proteins and insights into new technological developments with a focus on the applicability of microfluidics for the analysis of membrane proteins. Sample preparation techniques will be discussed in detail and novel interfacing strategies as it relates to MS will be highlighted. Lastly, some general conclusions and future perspectives are presented. PMID:24585436

  15. Escherichia coli as host for membrane protein structure determination: a global analysis

    PubMed Central

    Hattab, Georges; Warschawski, Dror E.; Moncoq, Karine; Miroux, Bruno

    2015-01-01

    The structural biology of membrane proteins (MP) is hampered by the difficulty in producing and purifying them. A comprehensive analysis of protein databases revealed that 213 unique membrane protein structures have been obtained after production of the target protein in E. coli. The primary expression system used was the one based on the T7 RNA polymerase, followed by the arabinose and T5 promoter based expression systems. The C41λ(DE3) and C43λ(DE3) bacterial mutant hosts have contributed to 28% of non E. coli membrane protein structures. A large scale analysis of expression protocols demonstrated a preference for a combination of bacterial host-vector together with a bimodal distribution of induction temperature and of inducer concentration. Altogether our analysis provides a set of rules for the optimal use of bacterial expression systems in membrane protein production. PMID:26160693

  16. Human muscle proteins: analysis by two-dimensional electrophoresis

    SciTech Connect

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  17. A Bayesian framework for cell-level protein network analysis for multivariate proteomics image data

    NASA Astrophysics Data System (ADS)

    Kovacheva, Violet N.; Sirinukunwattana, Korsuk; Rajpoot, Nasir M.

    2014-03-01

    The recent development of multivariate imaging techniques, such as the Toponome Imaging System (TIS), has facilitated the analysis of multiple co-localisation of proteins. This could hold the key to understanding complex phenomena such as protein-protein interaction in cancer. In this paper, we propose a Bayesian framework for cell level network analysis allowing the identification of several protein pairs having significantly higher co-expression levels in cancerous tissue samples when compared to normal colon tissue. It involves segmenting the DAPI-labeled image into cells and determining the cell phenotypes according to their protein-protein dependence profile. The cells are phenotyped using Gaussian Bayesian hierarchical clustering (GBHC) after feature selection is performed. The phenotypes are then analysed using Difference in Sums of Weighted cO-dependence Profiles (DiSWOP), which detects differences in the co-expression patterns of protein pairs. We demonstrate that the pairs highlighted by the proposed framework have high concordance with recent results using a different phenotyping method. This demonstrates that the results are independent of the clustering method used. In addition, the highlighted protein pairs are further analysed via protein interaction pathway databases and by considering the localization of high protein-protein dependence within individual samples. This suggests that the proposed approach could identify potentially functional protein complexes active in cancer progression and cell differentiation.

  18. Quantitative proteomic analysis of mice corneal tissues reveals angiogenesis-related proteins involved in corneal neovascularization.

    PubMed

    Shen, Minqian; Tao, Yimin; Feng, Yifan; Liu, Xing; Yuan, Fei; Zhou, Hu

    2016-07-01

    Corneal neovascularization (CNV) was induced in Balb/c mice by alkali burns in the central area of the cornea with a diameter of 2.5mm. After fourteen days, the cornea from one eye was collected for histological staining for CNV examination, while the cornea from the other eye of the same mouse was harvested for proteomic analysis. The label-free quantitative proteomic approach was applied to analyze five normal corneal tissues (normal group mice n=5) and five corresponding neovascularized corneal tissues (model group mice n=5). A total of 2124 proteins were identified, and 1682 proteins were quantified from these corneal tissues. Among these quantified proteins, 290 proteins were significantly changed between normal and alkali burned corneal tissues. Of these significantly changed proteins, 35 were reported or predicted as angiogenesis-related proteins. Then, these 35 proteins were analyzed using Ingenuity Pathway Analysis Software, resulting in 26 proteins enriched and connected to each other in the protein-protein interaction network, such as Lcn-2, αB-crystallin and Serpinf1 (PEDF). These three significantly changed proteins were selected for further Western blotting validation. Consistent with the quantitative proteomic results, Western blotting showed that Lcn-2 and αB-crystallin were significantly up-regulated in CNV model, while PEDF was down-regulated. This study provided increased understanding of angiogenesis-related proteins involved in corneal vascular development, which will be useful in the ophthalmic clinic of specifically target angiogenesis. PMID:27049463

  19. Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation

    PubMed Central

    Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria

    2015-01-01

    Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039

  20. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    SciTech Connect

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.

  1. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGESBeta

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  2. Conformational Selection in a Protein-Protein Interaction revealed by Dynamic Pathway Analysis

    PubMed Central

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-01-01

    SUMMARY Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Protein dynamics in free recoverin limits the overall rate of binding. PMID:26725117

  3. Co-evolution analysis to predict protein-protein interactions within influenza virus envelope.

    PubMed

    Mintaev, Ramil R; Alexeevski, Andrei V; Kordyukova, Larisa V

    2014-04-01

    Interactions between integral membrane proteins hemagglutinin (HA), neuraminidase (NA), M2 and membrane-associated matrix protein M1 of influenza A virus are thought to be crucial for assembly of functionally competent virions. We hypothesized that the amino acid residues located at the interface of two different proteins are under physical constraints and thus probably co-evolve. To predict co-evolving residue pairs, the EvFold ( http://evfold.org ) program searching the (nontransitive) Direct Information scores was applied for large samplings of amino acid sequences from Influenza Research Database ( http://www.fludb.org/ ). Having focused on the HA, NA, and M2 cytoplasmic tails as well as C-terminal domain of M1 (being the less conserved among the protein domains) we captured six pairs of correlated positions. Among them, there were one, two, and three position pairs for HA-M2, HA-M1, and M2-M1 protein pairs, respectively. As expected, no co-varying positions were found for NA-HA, NA-M1, and NA-M2 pairs obviously due to high conservation of the NA cytoplasmic tail. The sum of frequencies calculated for two major amino acid patterns observed in pairs of correlated positions was up to 0.99 meaning their high to extreme evolutionary sustainability. Based on the predictions a hypothetical model of pair-wise protein interactions within the viral envelope was proposed. PMID:24712535

  4. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression.

    PubMed

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-01-01

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm'-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment. PMID:27231931

  5. Residual on column host cell protein analysis during lifetime studies of protein A chromatography.

    PubMed

    Lintern, Katherine; Pathak, Mili; Smales, C Mark; Howland, Kevin; Rathore, Anurag; Bracewell, Daniel G

    2016-08-26

    Capacity reduction in protein A affinity chromatography with extended cycling during therapeutic antibody manufacture is well documented. Identification of which residual proteins remain from previous cycles during the lifetime of these adsorbent materials is required to understand their role in this ageing process, but represents a significant metrological challenge. Scanning electron microscopy (SEM) and liquid chromatography mass spectrometry (LC-MS/MS) are combined to detect and map this phenomenon of protein carry-over. We show that there is a morphological change at the surface of the agarose resin, revealing deposits on the polymer fibres increasing with cycle number. The amount of residual host cell proteins (HCPs) by LC-MS/MS present on the resin is shown to increase 10-fold between 50 and 100 cycles. During this same period the functional class of the predominant HCPs associated with the resin increased in diversity, with number of proteins identified increasing 5-fold. This ageing is observed in the context of the product quality of the eluate HCP and protein A leachate concentration remaining constant with cycle number. PMID:27473513

  6. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression

    PubMed Central

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-01-01

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment. PMID:27231931

  7. A genome-wide resource for the analysis of protein localisation in Drosophila.

    PubMed

    Sarov, Mihail; Barz, Christiane; Jambor, Helena; Hein, Marco Y; Schmied, Christopher; Suchold, Dana; Stender, Bettina; Janosch, Stephan; K J, Vinay Vikas; Krishnan, R T; Krishnamoorthy, Aishwarya; Ferreira, Irene R S; Ejsmont, Radoslaw K; Finkl, Katja; Hasse, Susanne; Kämpfer, Philipp; Plewka, Nicole; Vinis, Elisabeth; Schloissnig, Siegfried; Knust, Elisabeth; Hartenstein, Volker; Mann, Matthias; Ramaswami, Mani; VijayRaghavan, K; Tomancak, Pavel; Schnorrer, Frank

    2016-01-01

    The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. PMID:26896675

  8. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition

    NASA Astrophysics Data System (ADS)

    Winzen, S.; Schoettler, S.; Baier, G.; Rosenauer, C.; Mailaender, V.; Landfester, K.; Mohr, K.

    2015-02-01

    Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A-I (ApoA-I)) adsorb and interact with hydroxyethyl starch (HES) nanocapsules possessing different functionalities. To analyse the hard protein corona we used sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and a protein quantitation assay. No significant differences were observed with regards to the hard protein corona. For analysis of the soft protein corona we characterized the nanocapsule-protein interaction with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). DLS and ITC measurements revealed that a high amount of plasma proteins were adsorbed onto the capsules' surface. Although HSA was not detected in the hard protein corona, ITC measurements indicated the adsorption of an HSA amount similar to plasma with a low binding affinity and reaction heat. In contrast, only small amounts of ApoA-I protein adsorb to the capsules with high binding affinities. Through a comparison of these methods we have identified ApoA-I to be a component of the hard protein corona and HSA as a component of the soft corona. We demonstrate a pronounced difference in the protein corona observed depending on the type of characterization technique applied. As the biological identity of a particle is given by the protein corona it is crucial to use complementary characterization techniques to analyse different aspects of the protein corona.Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A

  9. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  10. An object-oriented database for protein structure analysis.

    PubMed

    Gray, P M; Paton, N W; Kemp, G J; Fothergill, J E

    1990-03-01

    An object-oriented database system has been developed which is being used to store protein structure data. The database can be queried using the logic programming language Prolog or the query language Daplex. Queries retrieve information by navigating through a network of objects which represent the primary, secondary and tertiary structures of proteins. Routines written in both Prolog and Daplex can integrate complex calculations with the retrieval of data from the database, and can also be stored in the database for sharing among users. Thus object-oriented databases are better suited to prototyping applications and answering complex queries about protein structure than relational databases. This system has been used to find loops of varying length and anchor positions when modelling homologous protein structures. PMID:2188261

  11. Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method

    SciTech Connect

    Haibo Cao

    2003-12-12

    In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation between amino acid sequences and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, they give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part includes discussions of interactions among amino acids residues, lattice HP model, and the design ability principle. In the second part, they try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in the eigenvector study of protein contact matrix. They believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, they discuss a threading method based on the correlation between amino acid sequences and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, they list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  12. Functional analysis of ZFP36 proteins in keratinocytes.

    PubMed

    Prenzler, Frauke; Fragasso, Annunziata; Schmitt, Angelika; Munz, Barbara

    2016-08-01

    The ZFP36 family of zinc finger proteins, including ZFP36, ZFP36L1, and ZFP36L2, regulates the production of growth factors and cytokines via destabilization of the respective mRNAs. We could recently demonstrate that in cultured keratinocytes, expression of the ZFP36, ZFP36L1, and ZFP36L2 genes is induced by growth factors and cytokines and that ZFP36L1 is a potent regulator of keratinocyte VEGF production. We now further analyzed the localization and function of ZFP36 proteins in the skin, specifically in epidermal keratinocytes. We found that in human epidermis, the ZFP36 protein could be detected in basal and suprabasal keratinocytes, whereas ZFP36L1 and ZFP36L2 were expressed mainly in the basal layer, indicating different and non-redundant functions of the three proteins in the epidermis. Consistently, upon inhibition of ZFP36 or ZFP36L1 expression using specific siRNAs, there was no major effect on expression of the respective other gene. In addition, we demonstrate that both ZFP36 and ZFP36L1 influence keratinocyte cell cycle, differentiation, and apoptosis in a distinct manner. Finally, we show that similarly as ZFP36L1, ZFP36 is a potent regulator of keratinocyte VEGF production. Thus, it is likely that both proteins regulate angiogenesis via paracrine mechanisms. Taken together, our results suggest that ZFP36 proteins might control reepithelialization and angiogenesis in the skin in a multimodal manner. PMID:27182009

  13. [Analysis of proteins in food with electrophoretic and chromatographic methods].

    PubMed

    Kaiser, K P; Krause, I

    1985-03-01

    The efficiency of electrophoretic methods (gel electrophoresis, isoelectric focusing, twodimensional techniques) and of chromatographic methods (size exclusion and ion exchange chromatography, reversed phase HPLC) to analyze proteins in foods is reviewed. Several selected applications are discussed in detail. The large diversity of proteins in a particular food results in a unique electrophoretic or chromatographic pattern, that can be used for identification purposes, by means of the so called indicator proteins. The adaptability and resolving power of the methods assure their extended application to many protein containing foods. The uniqueness of the patterns obtained warranties differentiations of even closely related animal or plant foods as well as mixtures of them. The methods also allow quantitative determinations of mixtures of foods. Their ease of handling and good reproducibility and reliability favours their use in routine analyses. Numerous investigations on fish, meat and derived products, non-meat proteins in meat products, milk, cheese, cereals and products made of cereals, oilseed proteins, legumes, fruits and vegetables described in the literature are here presented. PMID:3890408

  14. Functional analysis of glucan binding protein B from Streptococcus mutans.

    PubMed

    Mattos-Graner, Renata O; Porter, Kristen A; Smith, Daniel J; Hosogi, Yumiko; Duncan, Margaret J

    2006-06-01

    Mutans streptococci are major etiological agents of dental caries, and several of their secreted products contribute to bacterial accumulation on teeth. Of these, Streptococcus mutans glucan binding protein B (GbpB) is a novel, immunologically dominant protein. Its biological function is unclear, although GbpB shares homology with a putative peptidoglycan hydrolase from S. agalactiae and S. pneumoniae, indicative of a role in murein biosynthesis. To determine the cellular function of GbpB, we used several approaches to inactivate the gene, analyze its expression, and identify interacting proteins. None of the transformants analyzed were true gbpB mutants, since they all contained both disrupted and wild-type gene copies, and expression of functional GbpB was always conserved. Thus, the inability to obtain viable gbpB null mutants supports the notion that gbpB is an essential gene. Northern blot and real-time PCR analyses suggested that induction of gbpB expression in response to stress was a strain-dependent phenomenon. Proteins that interacted with GbpB were identified in pull-down and coimmunoprecipitation assays, and these data suggest that GbpB interacts with ribosomal protein L7/L12, possibly as part of a protein complex involved in peptidoglycan synthesis and cell division. PMID:16707674

  15. Large-scale analysis of phosphorylated proteins in maize leaf.

    PubMed

    Bi, Ying-Dong; Wang, Hong-Xia; Lu, Tian-Cong; Li, Xiao-Hui; Shen, Zhuo; Chen, Yi-Bo; Wang, Bai-Chen

    2011-02-01

    Phosphorylation is an ubiquitous regulatory mechanism governing the activity, subcellular localization, and intermolecular interactions of proteins. To identify a broad range of phosphoproteins from Zea mays, we enriched phosphopeptides from Zea mays leaves using titanium dioxide microcolumns and then extensively fractionated and identified the phosphopeptides by mass spectrometry. A total of 165 unique phosphorylation sites with a putative role in biological processes were identified in 125 phosphoproteins. Most of these proteins are involved in metabolism, including carbohydrate and protein metabolism. We identified novel phosphorylation sites on translation initiation factors, splicing factors, nucleolar RNA helicases, and chromatin-remodeling proteins such as histone deacetylases. Intriguingly, we also identified phosphorylation sites on several proteins associated with photosynthesis, and we speculate that these sites may be involved in carbohydrate metabolism or electron transport. Among these phosphoproteins, phosphoenolpyruvate carboxylase and NADH: nitrate reductase (NR) which catalyzes the rate-limiting and regulated step in the pathway of inorganic nitrogen assimilation were identified. A conserved phosphorylation site was found in the cytochrome b5 heme-binding domain of NADH: nitrate reductase, suggesting that NADH: nitrate reductase is phosphorylated by the same protein kinase or highly related kinases. These data demonstrate that the pathways that regulate diverse processes in plants are major targets of phosphorylation. PMID:21053013

  16. Comparative Analysis of Testis Protein Evolution in Rodents

    PubMed Central

    Turner, Leslie M.; Chuong, Edward B.; Hoekstra, Hopi E.

    2008-01-01

    Genes expressed in testes are critical to male reproductive success, affecting spermatogenesis, sperm competition, and sperm–egg interaction. Comparing the evolution of testis proteins at different taxonomic levels can reveal which genes and functional classes are targets of natural and sexual selection and whether the same genes are targets among taxa. Here we examine the evolution of testis-expressed proteins at different levels of divergence among three rodents, mouse (Mus musculus), rat (Rattus norvegicus), and deer mouse (Peromyscus maniculatus), to identify rapidly evolving genes. Comparison of expressed sequence tags (ESTs) from testes suggests that proteins with testis-specific expression evolve more rapidly on average than proteins with maximal expression in other tissues. Genes with the highest rates of evolution have a variety of functional roles including signal transduction, DNA binding, and egg–sperm interaction. Most of these rapidly evolving genes have not been identified previously as targets of selection in comparisons among more divergent mammals. To determine if these genes are evolving rapidly among closely related species, we sequenced 11 of these genes in six Peromyscus species and found evidence for positive selection in five of them. Together, these results demonstrate rapid evolution of functionally diverse testis-expressed proteins in rodents, including the identification of amino acids under lineage-specific selection in Peromyscus. Evidence for positive selection among closely related species suggests that changes in these proteins may have consequences for reproductive isolation. PMID:18689890

  17. Identification, Analysis and Prediction of Protein Ubiquitination Sites

    PubMed Central

    Radivojac, Predrag; Vacic, Vladimir; Haynes, Chad; Cocklin, Ross R.; Mohan, Amrita; Heyen, Joshua W.; Goebl, Mark G.; Iakoucheva, Lilia M.

    2009-01-01

    Summary Ubiquitination plays an important role in many cellular processes and is implicated in many diseases. Experimental identification of ubiquitination sites is challenging due to rapid turnover of ubiquitinated proteins and the large size of the ubiquitin modifier. We identified 141 new ubiquitination sites using a combination of liquid chromatography, mass spectrometry and mutant yeast strains. Investigation of the sequence biases and structural preferences around known ubiquitination sites indicated that their properties were similar to those of intrinsically disordered protein regions. Using a combined set of new and previously known ubiquitination sites, we developed a random forest predictor of ubiquitination sites, UbPred. The class-balanced accuracy of UbPred reached 72%, with the area under the ROC curve at 80%. The application of UbPred showed that high confidence Rsp5 ubiquitin ligase substrates and proteins with very short half-lives were significantly enriched in the number of predicted ubiquitination sites. Proteome-wide prediction of ubiquitination sites in Saccharomyces cerevisiae indicated that highly ubiquitinated substrates were prevalent among transcription/enzyme regulators and proteins involved in cell cycle control. In the human proteome, cytoskeletal, cell cycle, regulatory and cancer-associated proteins display higher extent of ubiquitination than proteins from other functional categories. We show that gain and loss of predicted ubiquitination sites may likely represent a molecular mechanism behind a number of disease-associated mutations. UbPred is available at http://www.ubpred.org PMID:19722269

  18. Search and Analysis of Identical Reverse Octapeptides in Unrelated Proteins

    PubMed Central

    Saravanan, Konda Mani; Selvaraj, Samuel

    2013-01-01

    For the past few decades, intensive studies have been carried out in an attempt to understand how the amino acid sequences of proteins encode their three dimensional structures to perform their specific functions. In order to understand the sequence-structure relationship of proteins, several sub-sequence search studies in non-redundant sequence-structure databases have been undertaken which have given some fruitful clues. In our earlier work, we analyzed a set of 3124 non-redundant protein sequences from the Protein Data Bank (PDB) and retrieved 30 identical octapeptides having different secondary structures. These octapeptides were characterized by using different computational procedures. This prompted us to explore the presence of octapeptides with reverse sequences and to analyze whether these octapeptides would adopt similar structures as that of their parent octapeptides. Our identical reverse octapeptide search resulted in the finding of eight octapeptide pairs (octapeptide and reverse octapeptide) with similar secondary structure and 23 octapeptide pairs with different secondary structures. In the present work, the geometrical and biophysical characteristics of identical reverse octapeptides were explored and compared with unrelated octapeptide pairs by using various computational tools. We thus conclude that proteins containing identical reverse octapeptides are not very abundant and residues in the octapeptide pairs do not contribute to the stability of the protein. Furthermore, compared to unrelated octapeptides, identical reverse octapeptides do not show certain biophysical and geometrical properties. PMID:23523652

  19. Reexamining protein-protein and protein-solvent interactions from Kirkwood-Buff analysis of light scattering in multi-component solutions

    NASA Astrophysics Data System (ADS)

    Blanco, Marco A.; Sahin, Erinc; Li, Yi; Roberts, Christopher J.

    2011-06-01

    The classic analysis of Rayleigh light scattering (LS) is re-examined for multi-component protein solutions, within the context of Kirkwood-Buff (KB) theory as well as a more generalized canonical treatment. Significant differences arise when traditional treatments that approximate constant pressure and neglect concentration fluctuations in one or more (co)solvent/co-solute species are compared with more rigorous treatments at constant volume and with all species free to fluctuate. For dilute solutions, it is shown that LS can be used to rigorously and unambiguously obtain values for the osmotic second virial coefficient (B22), in contrast with recent arguments regarding protein interactions deduced from LS experiments. For more concentrated solutions, it is shown that conventional analysis over(under)-estimates the magnitude of B22 for significantly repulsive(attractive) conditions, and that protein-protein KB integrals (G22) are the more relevant quantity obtainable from LS. Published data for α-chymotrypsinogen A and a series of monoclonal antibodies at different pH and salt concentrations are re-analyzed using traditional and new treatments. The results illustrate that while traditional analysis may be sufficient if one is interested in only the sign of B22 or G22, the quantitative values can be significantly in error. A simple approach is illustrated for determining whether protein concentration (c2) is sufficiently dilute for B22 to apply, and for correcting B22 values from traditional LS regression at higher c2 values. The apparent molecular weight M2, app obtained from LS is shown to generally not be equal to the true molecular weight, with the differences arising from a combination of protein-solute and protein-cosolute interactions that may, in principle, also be determined from LS.

  20. Photo-Assisted Peptide Enrichment in Protein Complex Cross-Linking Analysis of a Model Homodimeric Protein Using Mass Spectrometry

    PubMed Central

    Yan, Funing; Che, Fa-Yun; Nieves, Edward; Weiss, Louis M.; Angeletti, Ruth H.; Fiser, Andras

    2012-01-01

    Mass spectrometry analysis of cross-linked peptides can be used to probe protein contact sites in macromolecular complexes. We have developed a photo-cleavable cross-linker that enhances peptide enrichment, improving the signal-to-noise ratio of the cross-linked peptides in mass spectrometry analysis. This cross-linker utilizes nitro-benzyl alcohol group that can be cleaved by UV irradiation and is stable during the multiple washing steps used for peptide enrichment. The enrichment method utilizes a cross-linker that aids in eliminating contamination resulting from protein based retrieval systems, and thus, facilitates the identification of cross-linked peptides. Homodimeric pilM protein from Pseudomonas aeruginosa 2192 (pilM) was investigated to test the specificity and experimental conditions. As predicted, the known pair of lysine side chains within 14Å was cross-linked. An unexpected cross-link involving the protein’s amino terminus was also detected. This is consistent with the predicted mobility of the amino terminus that may bring the amino groups within 19Å of one another in solution. These technical improvements allow this method to be used for investigating protein-protein interactions in complex biological samples. PMID:21834138

  1. In Silico Analysis of Tumor Necrosis Factor α-Induced Protein 8-Like-1 (TIPE1) Protein.

    PubMed

    Shen, Pei; Zhang, Hong; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi

    2015-01-01

    Tumor necrosis factor α-induced protein 8 (TNFAIP8)-like protein 1 (TIPE1) was a member of TNFAIP8 family. Previous studies have shown that TIPE1 could induce apoptosis in hepatocellular carcinoma. In this study, we attempted to predict its potential structure. Bioinformatic analysis of TIPE1 was performed to predict its potential structure using the bioinfomatic web services or softwares. The results showed that the amino acid sequences of TIPE1 were well conserved in mammals. No signal peptide and no transmembrane domain existed in human TIPE1. The aliphatic index of TIPE1 was 100.75 and the theoretical pI was 9.57. TIPE1 was a kind of stable protein and its grand average of hydropathicity was -0.108. Various post-translational modifications were also speculated to exist in TIPE1. In addition, the results of Swiss-Model Server and Swiss-Pdb Viewer program revealed that the predicted three-dimensional structure of TIPE1 protein was stable and it may accord with the rule of stereochemistry. TIPE1 was predicted to interact with FBXW5, caspase8 and so on. In conclusion, TIPE1 may be a stable protein with no signal peptide and no transmembrane domain. The bioinformatic analysis of TIPE1 will provide the basis for the further study on the function of TIPE1. PMID:26207809

  2. A sol-gel-integrated protein array system for affinity analysis of aptamer-target protein interaction.

    PubMed

    Ahn, Ji-Young; Kim, Eunkyung; Kang, Jeehye; Kim, Soyoun

    2011-06-01

    A sol-gel microarray system was developed for a protein interaction assay with high activity. Comparing to 2-dimensional microarray surfaces, sol-gel can offer a more dynamic and broad range for proteins. In the present study, this sol-gel-integrated protein array was used in binding affinity analysis for aptamers. Six RNA aptamers and their target protein, yeast TBP (TATA-binding protein), were used to evaluate this method. A TBP-containing sol-gel mixture was spotted using a dispensing workstation under high-humidity conditions and each Cy-3-labeled aptamer was incubated. The dissociation constants (K(d)) were calculated by plotting the fluorescent intensity of the bound aptamers as a function of the TBP concentrations. The K(d) value of the control aptamer was found to be 8 nM, which agrees well with the values obtained using the conventional method, electric mobility shift assay. The sol-gel-based binding affinity measurements fit well with conventional binding affinity measurements, suggesting their possible use as an alternative to the conventional method. In addition, aptamer affinity measurements by the sol-gel-integrated protein chip make it possible to develop a simple high-throughput affinity method for screening high-affinity aptamers. PMID:21749295

  3. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  4. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering

    PubMed Central

    Blackburn, Matthew C.; Petrova, Ekaterina; Correia, Bruno E.; Maerkl, Sebastian J.

    2016-01-01

    The capability to rapidly design proteins with novel functions will have a significant impact on medicine, biotechnology and synthetic biology. Synthetic genes are becoming a commodity, but integrated approaches have yet to be developed that take full advantage of gene synthesis. We developed a solid-phase gene synthesis method based on asymmetric primer extension (APE) and coupled this process directly to high-throughput, on-chip protein expression, purification and characterization (via mechanically induced trapping of molecular interactions, MITOMI). By completely circumventing molecular cloning and cell-based steps, APE-MITOMI reduces the time between protein design and quantitative characterization to 3–4 days. With APE-MITOMI we synthesized and characterized over 400 zinc-finger (ZF) transcription factors (TF), showing that although ZF TFs can be readily engineered to recognize a particular DNA sequence, engineering the precise binding energy landscape remains challenging. We also found that it is possible to engineer ZF–DNA affinity precisely and independently of sequence specificity and that in silico modeling can explain some of the observed affinity differences. APE-MITOMI is a generic approach that should facilitate fundamental studies in protein biophysics, and protein design/engineering. PMID:26704969

  5. Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis.

    PubMed

    Savas, Jeffrey N; Park, Sung Kyu; Yates, John R

    2016-01-01

    The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo. Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide. PMID:26867752

  6. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    SciTech Connect

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  7. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    PubMed Central

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  8. Protein analysis in dissolved organic matter: What proteins from organic debris, soil leachate and surface water can tell us - a perspective

    NASA Astrophysics Data System (ADS)

    Schulze, W. X.

    Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the environmental protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from decomposing plant material and DOM of soil leachates and surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from litter protein extracts, leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  9. Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis

    PubMed Central

    Faya, Ngonidzashe; Penkler, David L.; Tastan Bishop, Özlem

    2015-01-01

    The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets. PMID:26793431

  10. Mass spectrometry-based shotgun proteomic analysis of C. elegans protein complexes.

    PubMed

    Fonslow, Bryan R; Moresco, James J; Tu, Patricia G; Aalto, Antti P; Pasquinelli, Amy E; Dillin, Andrew G; Yates, John R

    2014-01-01

    Mass spectrometry (MS)-based shotgun proteomics is an enabling technology for the study of C. elegans proteins. When coupled with co-immunoprecipitation (CoIP), new interactions and functions among proteins can be discovered. We provide a general background on protein complexes and methods for their analysis, along with the lifecycle and interaction types of proteins that ultimately define the identifiable components of protein complexes. We highlight traditional biochemical methods to evaluate whether the complexes are sufficiently pure and abundant for analysis with shotgun proteomics. We present two CoIP-MS case studies of protein complexes from C. elegans, using both endogenous and fusion protein antibodies to illustrate the important aspects of their analyses. We discuss results from mass spectrometers with differences in mass accuracy and resolution, along with the relevant information that can be extracted from the data generated, such as protein relative abundance, post-translational modifications, and identification confidence. Finally, we illustrate how comparative analysis can reveal candidate binding partners for biological follow-up and validation. This chapter should act as a complement and extension to the WormBook chapter Biochemistry and molecular biology, which describes tandem affinity purification (TAP) of protein complexes for analysis by mass spectrometry. PMID:24967700

  11. Atlas of protein expression: image capture, analysis, and design of terabyte image database

    NASA Astrophysics Data System (ADS)

    Wu, Jiahua; Maslen, Gareth; Warford, Anthony; Griffin, Gareth; Xie, Jane; Crowther, Sandra; McCafferty, John

    2006-03-01

    The activity of genes in health and disease are manifested through the proteins which they encode. Ultimately, proteins drive functional processes in cells and tissues and so by measuring individual protein levels, studying modifications and discovering their sites of action we will understand better their function. It is possible to visualize the location of proteins of interest in tissue sections using labeled antibodies which bind to the target protein. This procedure, known as immunohistochemistry (IHC), provides valuable information on the cellular and sub-cellular distribution of proteins in tissue. The project, atlas of protein expression, aims to create a quality, information rich database of protein expression profiles, which is accessible to the world-wide research community. For the long term archival value of the data, the accompanying validated antibody and protein clones will potentially have great research, diagnostic and possibly therapeutic potential. To achieve this we had introduced a number of novel technologies, e.g. express recombinant proteins, select antibodies, stain proteins present in tissue section, and tissue microarray (TMA) image analysis. These are currently being optimized, automated and integrated into a multi-disciplinary production process. We had also created infrastructure for multi-terabyte scale image capture, established an image analysis capability for initial screening and quantization.

  12. Teaching Genetics in Secondary Classrooms: a Linguistic Analysis of Teachers' Talk About Proteins

    NASA Astrophysics Data System (ADS)

    Thörne, Karin; Gericke, Niklas

    2014-02-01

    This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts `gene' and `trait'. Students are known to have problems with this relation because the concepts belong to different organizational levels. However, we know little about how the topic is taught and therefore this case study focuses on how teachers talk about proteins while teaching genetics and if they use proteins as a link between the micro and macro level. Four teachers were recorded during entire genetics teaching sequences, 45 lessons in total. The teachers' verbal communication was then analyzed using thematic pattern analysis, which is based in systemic functional linguistics. The linguistic analysis of teachers' talk in action revealed great variations in both the extent to which they used proteins in explanations of genetics and the ways they included proteins in linking genes and traits. Two of the teachers used protein as a link between gene and trait, while two did not. Three of the four teachers included instruction about protein synthesis. The common message from all teachers was that proteins are built, but none of the teachers talked about genes as exclusively encoding proteins. Our results suggest that students' common lack of understanding of proteins as an intermediate link between gene and trait could be explained by limitations in the way the subject is taught.

  13. Proteomic analysis of Lawsonia intracellularis reveals expression of outer membrane proteins during infection.

    PubMed

    Watson, Eleanor; Alberdi, M Pilar; Inglis, Neil F; Lainson, Alex; Porter, Megan E; Manson, Erin; Imrie, Lisa; Mclean, Kevin; Smith, David G E

    2014-12-01

    Lawsonia intracellularis is the aetiological agent of the commercially significant porcine disease, proliferative enteropathy. Current understanding of host-pathogen interaction is limited due to the fastidious microaerophilic obligate intracellular nature of the bacterium. In the present study, expression of bacterial proteins during infection was investigated using a mass spectrometry approach. LC-ESI-MS/MS analysis of two isolates of L. intracellularis from heavily-infected epithelial cell cultures and database mining using fully annotated L. intracellularis genome sequences identified 19 proteins. According to the Clusters of Orthologous Groups (COG) functional classification, proteins were identified with roles in cell metabolism, protein synthesis and oxidative stress protection; seven proteins with putative or unknown function were also identified. Detailed bioinformatic analyses of five uncharacterised proteins, which were expressed by both isolates, identified domains and motifs common to other outer membrane-associated proteins with important roles in pathogenesis including adherence and invasion. Analysis of recombinant proteins on Western blots using immune sera from L. intracellularis-infected pigs identified two proteins, LI0841 and LI0902 as antigenic. The detection of five outer membrane proteins expressed during infection, including two antigenic proteins, demonstrates the potential of this approach to interrogate L. intracellularis host-pathogen interactions and identify novel targets which may be exploited in disease control. PMID:25457368

  14. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  15. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  16. Analysis of the interactome of ribosomal protein S19 mutants.

    PubMed

    Caterino, Marianna; Aspesi, Anna; Pavesi, Elisa; Imperlini, Esther; Pagnozzi, Daniela; Ingenito, Laura; Santoro, Claudio; Dianzani, Irma; Ruoppolo, Margherita

    2014-10-01

    Diamond-Blackfan anemia, characterized by defective erythroid progenitor maturation, is caused in one-fourth of cases by mutations of ribosomal protein S19 (RPS19), which is a component of the ribosomal 40S subunit. Our previous work described proteins interacting with RPS19 with the aim to determine its functions. Here, two RPS19 mutants, R62W and R101H, have been selected to compare their interactomes versus the wild-type protein one, using the same functional proteomic approach that we employed to characterize RPS19 interactome. Mutations R62W and R101H impair RPS19 ability to associate with the ribosome. Results presented in this paper highlight the striking differences between the interactomes of wild-type and mutant RPS19 proteins. In particular, mutations abolish interactions with proteins having splicing, translational and helicase activity, thus confirming the role of RPS19 in RNA processing/metabolism and translational control. The data have been deposited to the ProteomeXchange with identifier PXD000640 (http://proteomecentral.proteomexchange.org/dataset/PXD000640). PMID:25069755

  17. Comparative analysis of nanomechanics of protein filaments under lateral loading

    NASA Astrophysics Data System (ADS)

    Solar, Max; Buehler, Markus J.

    2012-02-01

    Using a combination of explicit solvent atomistic simulation and continuum theory, here we study the lateral deformation mechanics of three distinct protein structures: an amyloid fibril, a beta helix, and an alpha helix. We find that the two β-sheet rich structures - amyloid fibril and beta helix, with persistence lengths on the order of μm - are well described by continuum mechanical theory, but differ in the degree to which shear deformation affects the overall bending behavior. The alpha helical protein structure, however, with a persistence length on the order of one nanometer, does not conform to the continuum theory and its deformation is dominated by entropic elasticity due to significant fluctuations. This study provides fundamental insight into the nanomechanics of widely found protein motifs and insight into molecular-scale deformation mechanisms, as well as quantitative estimates of Young's modulus and shear modulus in agreement with experimental results.

  18. Proteomic analysis of the differentially expressed proteins by airborne nanoparticles.

    PubMed

    Park, Seul Ki; Jeon, Yu Mi; Son, Bu Soon; Youn, Hyung Sun; Lee, Mi Young

    2011-07-01

    Airborne nanoparticles with thermodynamic diameters less than 56 nm (PM(0.056)) were collected using a Moudi cascade impactor, and the differentially expressed proteins upon exposure to the airborne nanoparticles were identified in human bronchial epithelial cells. More than 600 protein spots were detected on the two-dimensional gel, and the identified 13 of these proteins showed notable changes. Nine were up-regulated and four were down-regulated following treatment with the airborne nanoparticles. Notably, malignant transformation-associated multiple forms of keratins, epigenetic regulation-related MBD1-containing chromatin associated factor 2, epithelial malignancy-related vimentin and exocytosis-related annexin A2 were changed upon exposure to airborne nanoparticle PM(0.056). PMID:21491466

  19. MICROPROTEOMICS: ANALYSIS OF PROTEIN DIVERSITY IN SMALL SAMPLES

    PubMed Central

    Gutstein, Howard B.; Morris, Jeffrey S.; Annangudi, Suresh P.; Sweedler, Jonathan V.

    2008-01-01

    Proteomics, the large-scale study of protein expression in organisms, offers the potential to evaluate global changes in protein expression and their post-translational modifications that take place in response to normal or pathological stimuli. One challenge has been the requirement for substantial amounts of tissue in order to perform comprehensive proteomic characterization. In heterogeneous tissues, such as brain, this has limited the application of proteomic methodologies. Efforts to adapt standard methods of tissue sampling, protein extraction, arraying, and identification are reviewed, with an emphasis on those appropriate to smaller samples ranging in size from several microliters down to single cells. The effects of miniaturization on these analyses are highlighted using neuroscience-related examples, as are statistical issues unique to the high-dimensional datasets generated by proteomic experiments. PMID:18271009

  20. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis.

    PubMed

    Wang, Zhi-Gang; Lv, Nan; Bi, Wen-Zhi; Zhang, Ji-Lin; Ni, Jia-Zuan

    2015-04-29

    Reversible protein phosphorylation is a key event in numerous biological processes. Mass spectrometry (MS) is the most powerful analysis tool in modern phosphoproteomics. However, the direct MS analysis of phosphorylated proteins/peptides is still a big challenge because of the low abundance and insufficient ionization of phosphorylated proteins/peptides as well as the suppression effects of nontargets. Enrichment of phosphorylated proteins/peptides by affinity materials from complex biosamples is the most widely used strategy to enhance the MS detection. The demand of efficiently enriching phosphorylated proteins/peptides has spawned diverse affinity materials based on different enrichment principles (e.g., electronic attraction, chelating). In this review, we summarize the recent development of various affinity materials for phosphorylated proteins/peptides enrichment. We will highlight the design and fabrication of these affinity materials, discuss the enrichment mechanisms involved in different affinity materials, and suggest the future challenges and research directions in this field. PMID:25845677

  1. UNIT 11.10 N-Terminal Sequence Analysis of Proteins and Peptides

    PubMed Central

    Speicher, Kaye D.; Gorman, Nicole; Speicher, David W.

    2009-01-01

    Automated N-terminal sequence analysis involves a series of chemical reactions that derivatize and remove one amino acid at a time from the N-terminal of purified peptides or intact proteins. At least several pmoles of a purified protein or 10 to 20 pmoles of a purified peptide with an unmodified N-terminal is required in order to obtain useful sequence information. In recent years the demand for N-terminal sequencing has decreased substantially as some applications for protein identification and characterization can now be more effectively performed using mass spectrometry. However, N-terminal sequencing remains the method of choice for verifying the N-terminal boundary of recombinant proteins, determining the N-terminal of protease-resistant domains, identifying proteins isolated from species where most of the genome has not yet been sequenced, and mapping modified or crosslinked sites in proteins that prove to be refractory to analysis by mass spectrometry. PMID:18429102

  2. Analysis of peripheral amyloid precursor protein in Angelman Syndrome.

    PubMed

    Erickson, Craig A; Wink, Logan K; Baindu, Bayon; Ray, Balmiki; Schaefer, Tori L; Pedapati, Ernest V; Lahiri, Debomoy K

    2016-09-01

    Angelman Syndrome is a rare neurodevelopmental disorder associated with significant developmental and communication delays, high risk for epilepsy, motor dysfunction, and a characteristic behavioral profile. While Angelman Syndrome is known to be associated with the loss of maternal expression of the ubiquitin-protein ligase E3A gene, the molecular sequelae of this loss remain to be fully understood. Amyloid precursor protein (APP) is involved in neuronal development and APP dysregulation has been implicated in the pathophysiology of other developmental disorders including fragile X syndrome and idiopathic autism. APP dysregulation has been noted in preclinical model of chromosome 15q13 duplication, a disorder whose genetic abnormality results in duplication of the region that is epigenetically silenced in Angelman Syndrome. In this duplication model, APP levels have been shown to be significantly reduced leading to the hypothesis that enhanced ubiquitin-protein ligase E3A expression may be associated with this phenomena. We tested the hypothesis that ubiquitin-protein ligase E3A regulates APP protein levels by comparing peripheral APP and APP derivative levels in humans with Angelman Syndrome to those with neurotypical development. We report that APP total, APP alpha (sAPPα) and A Beta 40 and 42 are elevated in the plasma of humans with Angelman Syndrome compared to neurotypical matched human samples. Additionally, we found that elevations in APP total and sAPPα correlated positively with peripheral brain derived neurotrophic factor levels previously reported in this same patient cohort. Our pilot report on APP protein levels in Angelman Syndrome warrants additional exploration and may provide a molecular target of treatment for the disorder. © 2016 Wiley Periodicals, Inc. PMID:27327493

  3. Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions.

    PubMed

    Yamniuk, Aaron P; Newitt, John A; Doyle, Michael L; Arisaka, Fumio; Giannetti, Anthony M; Hensley, Preston; Myszka, David G; Schwarz, Fred P; Thomson, James A; Eisenstein, Edward

    2015-12-01

    A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions. PMID:26543437

  4. Immunochromatographic analysis of proteins. Identification, characterization and purity determination.

    PubMed

    Riggin, A; Sportsman, J R; Regnier, F E

    1993-02-19

    Antibodies specific to a protein and its structural variants were immobilized on a high-performance Protein G column. This column recognized and selectively subtracted specific molecules from a sample. When a size-exclusion column was coupled with this high-performance affinity column, a comparison between the elution profile before and after the antibody immobilization was used to study antigen components present in the sample. Various human growth hormone structural variants and aggregates were studied using this approach. The technique is simple, fast and does not involve the usage of radioactive material. PMID:8454718

  5. Vertical nanowire arrays as a versatile platform for protein detection and analysis

    NASA Astrophysics Data System (ADS)

    Rostgaard, Katrine R.; Frederiksen, Rune S.; Liu, Yi-Chi C.; Berthing, Trine; Madsen, Morten H.; Holm, Johannes; Nygård, Jesper; Martinez, Karen L.

    2013-10-01

    Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual NWs through several analytical steps, thereby allowing multiplexed detection of different proteins immobilized on different regions of the NW array. We use NW arrays for on-chip extraction, detection and functional analysis of proteins on a nano-scale platform that holds great promise for performing protein analysis on minute amounts of material. The demonstration made here on highly ordered arrays of indium arsenide (InAs) NWs is generic and can be extended to many high aspect ratio nanostructures.Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual

  6. Analysis of the aplyronine A-induced protein-protein interaction between actin and tubulin by surface plasmon resonance.

    PubMed

    Hirayama, Yuichiro; Yamagishi, Kota; Suzuki, Tomohiro; Kawagishi, Hirokazu; Kita, Masaki; Kigoshi, Hideo

    2016-06-15

    The antitumor macrolide aplyronine A induces protein-protein interaction (PPI) between actin and tubulin to exert highly potent biological activities. The interactions and binding kinetics of these molecules were analyzed by the surface plasmon resonance with biotinylated aplyronines or tubulin as ligands. Strong binding was observed for tubulin and actin with immobilized aplyronine A. These PPIs were almost completely inhibited by one equivalent of either aplyronine A or C, or mycalolide B. In contrast, a non-competitive actin-depolymerizing agent, latrunculin A, highly accelerated their association. Significant binding was also observed for immobilized tubulin with an actin-aplyronine A complex, and the dissociation constant KD was 1.84μM. Our method could be used for the quantitative analysis of the PPIs between two polymerizing proteins stabilized with small agents. PMID:27161875

  7. Ligand binding and protein relaxation in heme proteins: a room temperature analysis of NO geminate recombination.

    PubMed

    Petrich, J W; Lambry, J C; Kuczera, K; Karplus, M; Poyart, C; Martin, J L

    1991-04-23

    Ultrafast absorption spectroscopy is used to study heme-NO recombination at room temperature in aqueous buffer on time scales where the ligand cannot leave its cage environment. While a single barrier is observed for the cage recombination of NO with heme in the absence of globin, recombination in hemoglobin and myoglobin is nonexponential. Examination of hemoglobin with and without inositol hexaphosphate points to proximal constraints as important determinants of the geminate rebinding kinetics. Molecular dynamics simulations of myoglobin and heme-imidazole subsequent to ligand dissociation were used to investigate the transient behavior of the Fe-proximal histidine coordinate and its possible involvement in geminate recombination. The calculations, in the context of the absorption measurements, are used to formulate a distinction between nonexponential rebinding that results from multiple protein conformations (substates) present at equilibrium or from nonequilibrium relaxation of the protein triggered by a perturbation such as ligand dissociation. The importance of these two processes is expected to depend on the time scale of rebinding relative to equilibrium fluctuations and nonequilibrium relaxation. Since NO rebinding occurs on the picosecond time scale of the calculated myoglobin relaxation, a time-dependent barrier is likely to be an important factor in the observed nonexponential kinetics. The general implications of the present results for ligand binding in heme proteins and its time and temperature dependence are discussed. It appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well. PMID:2018766

  8. Analysis of the protein-protein interactions in the parvovirus H-1 capsid.

    PubMed Central

    Paradiso, P R

    1983-01-01

    The structure of the icosahedral capsid of the H-1 parvovirus was probed by chemical cross-linking methods. Treatment of empty capsids with high-molecular-weight polyethylene glycols resulted in irreversible aggregation of the minor capsid protein VP1. Multimers of VP1 containing at least five and perhaps six molecules were obtained, but only with empty capsids and not with the full, DNA-containing virus. Cross-linking of the empty capsids with dimethylsuberimidate confirmed the assignments of the products formed after treatment with polyethylene glycol. With dimethylsuberimidate the most abundant product was a heterologous dimer containing VP1 and the major capsid protein VP2'. A small amount of homologous VP2' dimer was also obtained, but the majority of VP2' remained unreacted even at high concentrations of dimethylsuberimidate. The capsid proteins of the full virus, on the other hand, were completely unreactive to dimethylsuberimidate. The data suggest that the minor protein VP1 may be clustered in the capsid and perhaps composes one or two of the morphological units of the icosahedral shell. Images PMID:6827655

  9. CapsidMaps: Protein-protein interaction pattern discovery platform for the structural analysis of virus capsids using Google Maps

    PubMed Central

    Carrillo-Tripp, Mauricio; Montiel-García, Daniel Jorge; Brooks, Charles L.; Reddy, Vijay

    2016-01-01

    Structural analysis and visualization of protein-protein interactions is a challenging task since it is difficult to appreciate easily the extent of all contacts made by the residues forming the interfaces. In the case of viruses, structural analysis becomes even more demanding because several interfaces coexist and, in most cases, these are formed by hundreds of contacting residues that belong to multiple interacting coat proteins. CapsidMaps is an interactive analysis and visualization tool that is designed to benefit the structural virology community. Developed as an improved extension of the φ-ψ Explorer, here we describe the details of its design and implementation. We present results of analysis of a spherical virus to showcase the features and utility of the new tool. CapsidMaps also facilitates the comparison of quaternary interactions between two spherical virus particles by computing a similarity (S)-score. The tool can also be used to identify residues that are solvent exposed and in the process of locating antigenic epitope regions as well as residues forming the inside surface of the capsid that interact with the nucleic acid genome. CapsidMaps is part of the VIPERdb Science Gateway, and is freely available as a web-based and cross-browser compliant application at http://viperdb.scripps.edu. PMID:25697908

  10. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content

    PubMed Central

    Guo, Baojian; Luan, Haiye; Lin, Shen; Lv, Chao; Zhang, Xinzhong; Xu, Rugen

    2016-01-01

    Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4–7 and 6–11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns. PMID:27200019

  11. An efficient extraction method to enhance analysis of low abundant proteins from soybean seed.

    PubMed

    Natarajan, Savithiry S; Krishnan, Hari B; Lakshman, Sukla; Garrett, Wesley M

    2009-11-15

    Large amounts of the major storage proteins, beta-conglycinin and glycinin, in soybean (Glycine max) seeds hinder the isolation and characterization of less abundant seed proteins. We investigated whether isopropanol extraction could facilitate resolution of the low abundant proteins, different from the main storage protein fractions, in one-dimensional polyacrylamide gel electrophoresis (1D-PAGE) and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). 1D-PAGE of proteins extracted by different concentrations (10%, 20%, 30%, 40%, 50%, 60%, 70% and 80%) of isopropanol showed that greater than 30% isopropanol was suitable for preferential enrichment of low abundant proteins. Analysis of 2D-PAGE showed that proteins which were less abundant or absent by the conventional extraction procedure were clearly seen in the 40% isopropanol extracts. Increasing isopropanol concentration above 40% resulted in a decrease in the number of less abundant protein spots. We have identified a total of 107 protein spots using matrix-assisted laser desorption/ionization time of flight mass spectrophotometry (MALDI-TOF-MS) and liquid chromatography-mass spectrometry (LC-MS/MS). Our results suggest that extraction of soybean seed powder with 40% isopropanol enriches lower abundance proteins and is a suitable method for 2D-PAGE separation and identification. This methodology could potentially allow the extraction and characterization of low abundant proteins of other legume seeds containing highly abundant storage proteins. PMID:19651100

  12. Intact-Protein Analysis System for Discovery of Serum-Based Disease Biomarkers

    PubMed Central

    Wang, Hong; Hanash, Samir

    2015-01-01

    Profiling of serum and plasma proteins has substantial relevance to the discovery of circulating disease biomarkers. However, the extreme complexity and vast dynamic range of protein abundance in serum and plasma present a formidable challenge for protein analysis. Thus, integration of multiple technologies is required to achieve high-resolution and high-sensitivity proteomic analysis of serum or plasma. In this chapter, we describe an orthogonal multidimensional intact-protein analysis system (IPAS) (Wang et al., Mol Cell Proteomics 4:618–625, 2005) coupled with protein tagging (Faca et al., J Proteome Res 5:2009–2018, 2006) to profile the serum and plasma proteomes quantitatively, which we have applied in our biomarker discovery studies (Katayama et al., Genome Med 1:47, 2009; Faca et al., PLoS Med 5:e123, 2008; Zhang et al. Genome Biol 9:R93, 2008). PMID:21468941

  13. Intact-protein analysis system for discovery of serum-based disease biomarkers.

    PubMed

    Wang, Hong; Hanash, Samir

    2011-01-01

    Profiling of serum and plasma proteins has substantial relevance to the discovery of circulating disease biomarkers. However, the extreme complexity and vast dynamic range of protein abundance in serum and plasma present a formidable challenge for protein analysis. Thus, integration of multiple technologies is required to achieve high-resolution and high-sensitivity proteomic analysis of serum or plasma. In this chapter, we describe an orthogonal multidimensional intact-protein analysis system (IPAS) (Wang et al., Mol Cell Proteomics 4:618-625, 2005) coupled with protein tagging (Faca et al., J Proteome Res 5:2009-2018, 2006) to profile the serum and plasma proteomes quantitatively, which we have applied in our biomarker discovery studies (Katayama et al., Genome Med 1:47, 2009; Faca et al., PLoS Med 5:e123, 2008; Zhang et al. Genome Biol 9:R93, 2008). PMID:21468941

  14. Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis

    PubMed Central

    Irrgang, A.; Weise, C.; Murugaiyan, J.; Roesler, U.

    2014-01-01

    Prototheca zopfii associated with bovine mastitis and human protothecosis exists as two genotypes, of which genotype 1 is considered as non-infectious and genotype 2 as infectious. The mechanism of infection has not yet been described. The present study was aimed to identify genotype 2-specific immunodominant proteins. Prototheca proteins were separated using two-dimensional gel electrophoresis. Subsequent western blotting with rabbit hyperimmune serum revealed 28 protein spots. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis resulted in the identification of 15 proteins including malate dehydrogenase, elongation factor 1-alpha, heat shock protein 70, and 14-3-3 protein, which were previously described as immunogenic proteins of other eukaryotic pathogens. PMID:25755891

  15. Analysis of normal and rcdl Irish setter retinal proteins.

    PubMed

    Cunnick, J; Takemoto, D

    1989-01-01

    In both of the early onset systems, the rd mouse and the rcdl Irish Setter, early elevation of cyclic GMP may be the ultimate cause of accelerated photoreceptor degeneration. This would be consistent with the data utilizing in vitro systems in which retinal samples, in culture, undergo degeneration in response to constant exposure to high levels of this nucleotide. However, the ultimate cause of the elevated cyclic GMP in the rd mouse or in the rcdl Irish Setter still remains a mystery. It appears that all of the necessary proteins of the visual cascade are produced, although they are lost at different rates. The phosphodiesterase appears to be reduced faster than other proteins. This may, in turn, account for the elevation in cyclic GMP levels. The cause of this enhanced disappearance could reside in the phosphodiesterase protein itself, or in other more distal components. The alteration in rhodopsin reaction to the specific rhod-4 antisera suggests that this protein is not properly oriented in the disc membrane. Although this may or may not alter the visual cascade, it does suggest that these membranes are not identical to those of the normal dog retina. Future studies should focus on the individual functional activities of each component, on their structures, and on their proper assembly within the disc. PMID:2558384

  16. Differential protein network analysis of the immune cell lineage.

    PubMed

    Clancy, Trevor; Hovig, Eivind

    2014-01-01

    Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks. PMID:25309909

  17. Identification, classification, and analysis of beta-bulges in proteins.

    PubMed Central

    Chan, A. W.; Hutchinson, E. G.; Harris, D.; Thornton, J. M.

    1993-01-01

    A beta-bulge is a region of irregularity in a beta-sheet involving two beta-strands. It usually involves two or more residues in the bulged strand opposite to a single residue on the adjacent strand. These irregularities in beta-sheets were identified and classified automatically, extending the definition of beta-bulges given by Richardson et al. (Richardson, J.S., Getzoff, E.D., & Richardson, D.C., 1978, Proc. Natl. Acad. Sci. USA 75, 2574-2578). A set of 182 protein chains (170 proteins) was used, and a total of 362 bulges were extracted. Five types of beta-bulges were found: classic, G1, wide, bent, and special. Their characteristic amino acid preferences were found for most classes of bulges. Basically, bulges occur frequently in proteins; on average there are more than two bulges per protein. In general, beta-bulges produce two main changes in the structure of a beta-sheet: (1) disrupt the normal alternation of side-chain direction; (2) accentuate the twist of the sheet, altering the direction of the surrounding strands. PMID:8251933

  18. CONSTRUCTION AND ANALYSIS OF IPBR/XYLS HYBRID REGULATORY PROTEINS

    EPA Science Inventory

    IpbR and XylS are related regulatory proteins (having 56% identity). IpbR responds to isopropylbenzene as well as to a variety of hydrophobic chemicals to activate expression of the isopropylbenzene catabolic pathway operon of pRE4 from ipbOP. XylS responds to substituted benzoic...

  19. Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis.

    PubMed

    Rahmouni, Souad; Hego, Alexandre; Delierneux, Céline; Wéra, Odile; Musumeci, Lucia; Tautz, Lutz; Oury, Cécile

    2016-01-01

    Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets. PMID:27514813

  20. Analysis of Myelin Basic Protein Fragmentation by Proteasome

    PubMed Central

    Bacheva, A. V.; Belogurov, A. A.; Ponomarenko, N. A.; Govorun, V. M.; Serebryakova, M. V.; Gabibov, A. G.

    2009-01-01

    The proteasome is a high molecular protein complex whose purpose is specific protein degradation in eukaryotic cells. One of the proteasome functions is to produce peptides, which will then be presented on the outer cell membrane using main histocompatibility complex (MHC) molecules of the first or second class. There are definite reasons to believe that proteasome directly takes part in the specific degradation of myelin basic protein (MBP), which make up to 30% of all proteins in the myelin sheath of neuronal axons. The details of the proteasomal degradation of MBP are still unclear. In this work, the features of specific MBP degradation by proteasome were studied. It was demonstrated that MBP (non-ubiquitinated) is a good substrate for 20S and for the 26S proteasome. This is the first work on detecting the sites of MBP proteolysis by proteasome from brains of SJL/J/J and Balb/C mice's lines. Substantial differences in the degradation pattern of this neuroantigen were found, which could indicate the better presentation MBP parts on MHC molecules in the case of mice predisposed to the development of experimental autoimmune encephalomyelitis. PMID:22649589

  1. Analysis of proteins using DIGE and MALDI mass spectrometry

    EPA Science Inventory

    In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...

  2. Analysis of protein conformational characteristics related to thermostability.

    PubMed

    Querol, E; Perez-Pons, J A; Mozo-Villarias, A

    1996-03-01

    The thermal stability of proteins was studied, 195 single amino acid residue replacements reported elsewhere being analysed for several protein conformational characteristics: type of residue replacement; conservative versus nonconservative substitution; replacement being in a homologous stretch of amino acid residues; change in hydrogen bond, van der Waals and secondary structure propensities; solvent-accessible versus inaccessible replacement; type of secondary structure involved in the substitution; the physico-chemical characteristics to which the thermostability enhancement can be attributed; and the relationship of the replacement site to the folding intermediates of the protein, when known. From the above analyses, some general rules arise which suggest where amino acid substitutions can be made to enhance protein thermostability: substitutions are conservative according to the Dayhoff matrix; mainly occur on conserved stretches of residues; preferentially occur on solvent-accessible residues; maintain or enhance the secondary structure propensity upon substitution; contribute to neutralize the dipole moment of the caps of helices and strands; and tend to increase the number of potential hydrogen bonding or van der Waals contacts or improve hydrophobic packing. PMID:8736493

  3. Analysis of serum proteins by LC-MS/MS.

    PubMed

    Tonack, Sarah; Neoptolemos, John P; Costello, Eithne

    2010-01-01

    Serum contains a vast array of proteins, some of which are specific to blood whilst others are secreted into blood from tissues and organs. The so-called tissue leakage factors reveal information about the tissue from which they originate and are therefore of great potential importance as disease biomarkers. There are already a number of blood-borne biomarkers in routine clinical use that aid in the diagnosis or management of cancer. However, there is a pressing need for additional markers, and new methods to find them are under development. Here we provide a protocol for serum protein profiling using liquid chromatography tandem mass spectrometry (LC-MS/MS). Included in this procedure, we detail the pre-processing steps of lipid and high-abundance protein removal. These procedures can also be employed up-stream of quantification methods such as isobaric tags for relative and absolute quantification (iTRAQ). Chapter 12 is devoted to the iTRAQ approach for quantifying proteins, and it is therefore not described in this chapter. PMID:20839111

  4. PROTEIN & SENSORY ANALYSIS TO CHARACTERIZE MEXICAN CHIHUAHUA CHEESES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been established that native microflora in raw milk cheeses, including Queso Chihuahua, a Mexican cheese variety, contributes to the development of unique flavors through degradation of milk proteins resulting in the release of free amino acids and short peptides that influence the taste and ...

  5. Different techniques for urinary protein analysis of normal and lung cancer patients.

    PubMed

    Tantipaiboonwong, Payungsak; Sinchaikul, Supachok; Sriyam, Supawadee; Phutrakul, Suree; Chen, Shui-Tein

    2005-03-01

    Many components in urine are useful in clinical diagnosis and urinary proteins are known as important components to define many diseases such as proteinuria, kidney, bladder and urinary tract diseases. In this study, we focused on the comparison of different sample preparation methods for isolating urinary proteins prior to protein analysis of pooled healthy and lung cancer patient samples. Selective method was used for preliminary investigation of some putative urinary protein markers. Urine samples were passed first through a gel filtration column (PD-10 desalting column) to remove high salts and subsequently concentrated. Remaining interferences were removed by ultrafiltration or four precipitation methods. The analysis of urinary proteins by high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed many similarities in profiles among preparation methods and a few profiles were different between normal and lung cancer patients. In contrast, the results of two-dimensional gel electrophoresis (2-DE) showed more distinctly different protein patterns. Our finding showed that the sequential preparation of urinary proteins by gel filtration and ultrafiltration could retain most urinary proteins which demonstrated the highest protein spots on 2-D gels and able to identify preliminary urinary protein markers related to cancer. Although sequential preparation of urine samples by gel filtration and protein precipitation resulted in low amounts of proteins on 2-D gels, high Mr proteins were easily detected. Therefore, there are alternative choices for urine sample preparation for studying the urinary proteome and identifying urinary protein markers important for further preclinical diagnostic and therapeutic applications. PMID:15693063

  6. Proteomic analysis of differentially expressed proteins in Penaeus monodon hemocytes after Vibrio harveyi infection

    PubMed Central

    2010-01-01

    Background Viral and bacterial diseases can cause mass mortalities in commercial shrimp aquaculture. In contrast to studies on the antiviral response, the responses of shrimps to bacterial infections by high throughput techniques have been reported only at the transcriptional level and not at the translational level. In this study, a proteomic analysis of shrimp hemocytes to identify differentially expressed proteins in response to a luminous bacterium Vibrio harveyi was evaluated for its feasibility and is reported for the first time. Results The two-dimensional gel electrophoresis (2-DE) patterns of the hemocyte proteins from the unchallenged and V. harveyi challenged shrimp, Penaeus monodon, at 24 and 48 h post infection were compared. From this, 27 differentially expressed protein spots, and a further 12 weakly to non-differentially regulated control spots, were selected for further analyses by the LC-ESI-MS/MS. The 21 differentially expressed proteins that could be identified by homologous annotation were comprised of proteins that are directly involved in the host defense responses, such as hemocyanin, prophenoloxidase, serine proteinase-like protein, heat shock protein 90 and alpha-2-macroglobulin, and those involved in signal transduction, such as the14-3-3 protein epsilon and calmodulin. Western blot analysis confirmed the up-regulation of hemocyanin expression upon bacterial infection. The expression of the selected proteins which were the representatives of the down-regulated proteins (the 14-3-3 protein epsilon and alpha-2-macroglobulin) and of the up-regulated proteins (hemocyanin) was further assessed at the transcription level using real-time RT-PCR. Conclusions This work suggests the usefulness of a proteomic approach to the study of shrimp immunity and revealed hemocyte proteins whose expression were up regulated upon V. harveyi infection such as hemocyanin, arginine kinase and down regulated such as alpha-2-macroglobulin, calmodulin and 14

  7. Purification, crystallization and X-ray diffraction analysis of human dynamin-related protein 1 GTPase-GED fusion protein

    PubMed Central

    Klinglmayr, Eva; Wenger, Julia; Mayr, Sandra; Bossy-Wetzel, Ella; Puehringer, Sandra

    2012-01-01

    The mechano-enzyme dynamin-related protein 1 plays an important role in mitochondrial fission and is implicated in cell physiology. Dysregulation of Drp1 is associated with abnormal mitochondrial dynamics and neuronal damage. Drp1 shares structural and functional similarities with dynamin 1 with respect to domain organization, ability to self-assemble into spiral-like oligomers and GTP-cycle-dependent membrane scission. Structural studies of human dynamin-1 have greatly improved the understanding of this prototypical member of the dynamin superfamily. However, high-resolution structural information for full-length human Drp1 covering the GTPase domain, the middle domain and the GTPase effector domain (GED) is still lacking. In order to obtain mechanistic insights into the catalytic activity, a nucleotide-free GTPase-GED fusion protein of human Drp1 was expressed, purified and crystallized. Initial X-ray diffraction experiments yielded data to 2.67 Å resolution. The hexagonal-shaped crystals belonged to space group P21212, with unit-cell parameters a = 53.59, b = 151.65, c = 43.53 Å, one molecule per asymmetric unit and a solvent content of 42%. Expression of selenomethionine-labelled protein is currently in progress. Here, the expression, purification, crystallization and X-ray diffraction analysis of the Drp1 GTPase-GED fusion protein are presented, which form a basis for more detailed structural and biophysical analysis. PMID:23027751

  8. Collection and analysis of salivary proteins from the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salivary proteins of hematophagous Culicoides spp. are thought to play an important role in pathogen transmission and skin hypersensitivity. Analysis of these proteins, however, has been problematic due to the difficulty in obtaining adequate amounts of secreted Culicoides saliva. In the current stu...

  9. LC-MS and MS/MS in the analysis of recombinant proteins

    NASA Astrophysics Data System (ADS)

    Coulot, M.; Domon, B.; Grossenbacher, H.; Guenat, C.; Maerki, W.; Müller, D. R.; Richter, W. J.

    1993-03-01

    Applicability and performance of electrospray ionization mass spectrometry (ESIMS) is demonstrated for protein analysis. ESIMS is applied in conjunction with on-line HPLC (LC-ESlMS) and direct tandem mass spectrometry (positive and negative ion mode ESlMS/MS) to the structural characterization of a recombinant protein (r-hirudin variant 1) and a congener phosphorylated at threonine 45 (RP-1).

  10. Heterologous expression and functional analysis of the wheat group 1 pathogenesis-related (PR-1) proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The group 1 pathogenesis-related (PR-1) proteins have been widely used as hallmarks of plant defense pathways, but their biological functions are still unknown. We report here the functional analysis of two basic PR-1 proteins following the identification of the wheat PR-1 gene family (Lu et al., 20...

  11. Nanopore analysis of the effect of metal ions on the folding of peptides and proteins.

    PubMed

    Lee, Jeremy S

    2014-03-01

    In this minireview, the nanopore analysis of peptides and proteins in the presence of divalent metal ions will be surveyed. In all cases the binding of the metal ions causes the peptide or protein to adopt a more compact conformation which can no longer enter the α-hemolysin pore. In the absence of Zn(II) the 30-amino acid Zn-finger peptide can readily translocate the pore; but upon addition of Zn(II) the peptide folds and only bumping events are observed. Similarly, the octapeptide repeat from the N-terminus of the prion protein binds Cu(II), which prevents it from translocating. The full-length prion protein also undergoes conformational changes upon binding Cu(II), which results in an increase in the proportion of bumping events. Myelin basic protein of 170 residues is intrinsically disordered and, perhaps surprisingly, for a basic protein of this size, can translocate against the electric field based on the observation that the event time increases with increasing voltage. It, too, folds into a more compact conformation upon binding Cu(II) and Zn(II), which prevents translocation. Finally even proteins such as maltose binding protein which does not contain a formal binding site for metal ions undergoes conformational changes in the presence of the metal chelator, EDTA. Thus, contamination of proteins with trace metal ions should be considered when studying proteins and peptides by nanopore analysis. PMID:24370255

  12. Protein surface analysis for function annotation in high-throughput structural genomics pipeline

    PubMed Central

    Binkowski, T. Andrew; Joachimiak, Andrzej; Liang, Jie

    2005-01-01

    Structural genomics (SG) initiatives are expanding the universe of protein fold space by rapidly determining structures of proteins that were intentionally selected on the basis of low sequence similarity to proteins of known structure. Often these proteins have no associated biochemical or cellular functions. The SG success has resulted in an accelerated deposition of novel structures. In some cases the structural bioinformatics analysis applied to these novel structures has provided specific functional assignment. However, this approach has also uncovered limitations in the functional analysis of uncharacterized proteins using traditional sequence and backbone structure methodologies. A novel method, named pvSOAR (pocket and void Surface of Amino Acid Residues), of comparing the protein surfaces of geometrically defined pockets and voids was developed. pvSOAR was able to detect previously unrecognized and novel functional relationships between surface features of proteins. In this study, pvSOAR is applied to several structural genomics proteins. We examined the surfaces of YecM, BioH, and RpiB from Escherichia coli as well as the CBS domains from inosine-5′-monosphate dehydrogenase from Streptococcus pyogenes, conserved hypothetical protein Ta549 from Thermoplasm acidophilum, and CBS domain protein mt1622 from Methanobacterium thermoautotrophicum with the goal to infer information about their biochemical function. PMID:16322579

  13. Network representation of protein interactions: Theory of graph description and analysis.

    PubMed

    Kurzbach, Dennis

    2016-09-01

    A methodological framework is presented for the graph theoretical interpretation of NMR data of protein interactions. The proposed analysis generalizes the idea of network representations of protein structures by expanding it to protein interactions. This approach is based on regularization of residue-resolved NMR relaxation times and chemical shift data and subsequent construction of an adjacency matrix that represents the underlying protein interaction as a graph or network. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the quantification of the importance of each amino acid of a protein for its interactions. Furthermore, the determination of the pattern of correlations between residues yields insights into the functional architecture of an interaction. This is of special interest for intrinsically disordered proteins, since the structural (three-dimensional) architecture of these proteins and their complexes is difficult to determine. The power of the proposed methodology is demonstrated at the example of the interaction between the intrinsically disordered protein osteopontin and its natural ligand heparin. PMID:27272236

  14. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    SciTech Connect

    Lee, Jae-Hyung

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries several regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this

  15. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC-MS/MS. 2. Similarity search between protein maps for the analysis of protein complexes.

    PubMed

    Jin, Ya; Yuan, Qi; Zhang, Jun; Manabe, Takashi; Tan, Wen

    2015-09-01

    Human bronchial smooth muscle cell soluble proteins were analyzed by a combined method of nondenaturing micro 2DE, grid gel-cutting, and quantitative LC-MS/MS and a native protein map was prepared for each of the identified 4323 proteins [1]. A method to evaluate the degree of similarity between the protein maps was developed since we expected the proteins comprising a protein complex would be separated together under nondenaturing conditions. The following procedure was employed using Excel macros; (i) maps that have three or more squares with protein quantity data were selected (2328 maps), (ii) within each map, the quantity values of the squares were normalized setting the highest value to be 1.0, (iii) in comparing a map with another map, the smaller normalized quantity in two corresponding squares was taken and summed throughout the map to give an "overlap score," (iv) each map was compared against all the 2328 maps and the largest overlap score, obtained when a map was compared with itself, was set to be 1.0 thus providing 2328 "overlap factors," (v) step (iv) was repeated for all maps providing 2328 × 2328 matrix of overlap factors. From the matrix, protein pairs that showed overlap factors above 0.65 from both protein sides were selected (431 protein pairs). Each protein pair was searched in a database (UniProtKB) on complex formation and 301 protein pairs, which comprise 35 protein complexes, were found to be documented. These results demonstrated that native protein maps and their similarity search would enable simultaneous analysis of multiple protein complexes in cells. PMID:26031785

  16. A review of in silico approaches for analysis and prediction of HIV-1-human protein-protein interactions.

    PubMed

    Bandyopadhyay, Sanghamitra; Ray, Sumanta; Mukhopadhyay, Anirban; Maulik, Ujjwal

    2015-09-01

    The computational or in silico approaches for analysing the HIV-1-human protein-protein interaction (PPI) network, predicting different host cellular factors and PPIs and discovering several pathways are gaining popularity in the field of HIV research. Although there exist quite a few studies in this regard, no previous effort has been made to review these works in a comprehensive manner. Here we review the computational approaches that are devoted to the analysis and prediction of HIV-1-human PPIs. We have broadly categorized these studies into two fields: computational analysis of HIV-1-human PPI network and prediction of novel PPIs. We have also presented a comparative assessment of these studies and proposed some methodologies for discussing the implication of their results. We have also reviewed different computational techniques for predicting HIV-1-human PPIs and provided a comparative study of their applicability. We believe that our effort will provide helpful insights to the HIV research community. PMID:25479794

  17. NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions.

    PubMed

    Machleidt, Thomas; Woodroofe, Carolyn C; Schwinn, Marie K; Méndez, Jacqui; Robers, Matthew B; Zimmerman, Kris; Otto, Paul; Daniels, Danette L; Kirkland, Thomas A; Wood, Keith V

    2015-08-21

    Dynamic interactions between proteins comprise a key mechanism for temporal control of cellular function and thus hold promise for development of novel drug therapies. It remains technically challenging, however, to quantitatively characterize these interactions within the biologically relevant context of living cells. Although, bioluminescence resonance energy transfer (BRET) has often been used for this purpose, its general applicability has been hindered by limited sensitivity and dynamic range. We have addressed this by combining an extremely bright luciferase (Nanoluc) with a means for tagging intracellular proteins with a long-wavelength fluorophore (HaloTag). The small size (19 kDa), high emission intensity, and relatively narrow spectrum (460 nm peak intensity) make Nanoluc luciferase well suited as an energy donor. By selecting an efficient red-emitting fluorophore (635 nm peak intensity) for attachment onto the HaloTag, an overall spectral separation exceeding 175 nm was achieved. This combination of greater light intensity with improved spectral resolution results in substantially increased detection sensitivity and dynamic range over current BRET technologies. Enhanced performance is demonstrated using several established model systems, as well as the ability to image BRET in individual cells. The capabilities are further exhibited in a novel assay developed for analyzing the interactions of bromodomain proteins with chromatin in living cells. PMID:26006698

  18. Site-specific analysis of protein hydration based on unnatural amino acid fluorescence.

    PubMed

    Amaro, Mariana; Brezovský, Jan; Kováčová, Silvia; Sýkora, Jan; Bednář, David; Němec, Václav; Lišková, Veronika; Kurumbang, Nagendra Prasad; Beerens, Koen; Chaloupková, Radka; Paruch, Kamil; Hof, Martin; Damborský, Jiří

    2015-04-22

    Hydration of proteins profoundly affects their functions. We describe a simple and general method for site-specific analysis of protein hydration based on the in vivo incorporation of fluorescent unnatural amino acids and their analysis by steady-state fluorescence spectroscopy. Using this method, we investigate the hydration of functionally important regions of dehalogenases. The experimental results are compared to findings from molecular dynamics simulations. PMID:25815779

  19. Analysis of Protein-protein Interaction Interface between Yeast Mitochondrial Proteins Rim1 and Pif1 Using Chemical Cross-linking Mass Spectrometry

    PubMed Central

    Zybailov, Boris; Gokulan, Kuppan; Wiese, Jadon; Ramanagoudr-Bhojappa, Ramanagouda; Byrd, Alicia K.; Glazko, Galina; Jaiswal, Mihir; Mackintosh, Samuel; Varughese, Kottayil I.; Raney, Kevin D.

    2015-01-01

    Defining protein-protein contacts is a challenging problem and cross-linking is a promising solution. Here, we present a case of mitochondrial single strand binding protein Rim1 and helicase Pif1, an interaction first observed in immuno-affinity pull-down from yeast cells using Pif1 bait. We found that only the short succinimidyl-diazirine cross-linker or formaldehyde captured the interaction between recombinant Rim1 and Pif1. In addition, Pif1 needed to be stripped of its N-terminal and C-terminal domains, and Rim1's C-terminus needed to be modified for the cross-linked product to become visible. Our report is an example of a non-trivial analysis, where a previously identified stable interaction escapes initial capture with cross-linking agents and requires substantial modification to recombinant proteins and fine-tuning of the mass spectrometry-based methods for the cross-links to become detectable. We used high resolution mass spectrometry to detect the cross-linked peptides. A 1:1 mixture of 15N and 14N-labeled Rim1 was used to validate the cross-links by their mass shift in the LC-MS profiles. Two sites on Rim1 were confirmed: 1) the N-terminus, and 2) the K29 residue. Performing cross-linking with a K29A variant visibly reduced the cross-linked product. Further, K29A-Rim1 showed a five-fold lower affinity to single stranded DNA compared to wild-type Rim1. Both the K29A variant and wild type Rim1 showed similar degrees of stimulation of Pif1 helicase activity. We propose structural models of the Pif1-Rim1 interaction and discuss its functional significance. Our work represents a non-trivial protein-protein interface analysis and demonstrates utility of short and non-specific cross-linkers. PMID:26807012

  20. Baculovirus as a PRRSV and PCV2 bivalent vaccine vector: baculovirus virions displaying simultaneously GP5 glycoprotein of PRRSV and capsid protein of PCV2.

    PubMed

    Xu, Xin-Gang; Wang, Zhi-Sheng; Zhang, Qi; Li, Zhao-Cai; Ding, Li; Li, Wei; Wu, Hung-Yi; Chang, Ching-Dong; Lee, Long-Huw; Tong, De-Wen; Liu, Hung-Jen

    2012-02-01

    The GP5 glycoprotein of PRRSV is the main target for inducing neutralizing antibodies and protective immunity in the natural host. The capsid (Cap) protein is the major immunogenic protein and associated with the production of PCV2-specific neutralizing antibodies. In the present study, one genetic recombinant baculovirus BacSC-Dual-GP5-Cap was constructed. This virus displays simultaneously histidine-tagged GP5 and Cap proteins with the baculovirus glycoprotein gp64 TM and CTD on the virion surface as well as the surface of the virus-infected cells. After infection, the GP5 and Cap proteins were expressed and anchored simultaneously on the plasma membrane of Sf-9 cells, as revealed by Western blot and confocal microscopy. This report demonstrated first that both GP5 and Cap proteins were displayed successfully on the viral surface, revealed by immunogold electron microscopy. Vaccination of swine with recombinant baculovirus BacSC-Dual-GP5-Cap elicited significantly higher GP5 and Cap ELISA antibody titers in swine than the control groups. Virus neutralization test also showed that serum from the BacSC-Dual-GP5-Cap treated swine had significant levels of virus neutralization titers. Lymphocyte proliferation responses could be induced in swine immunized with BacSC-Dual-GP5-Cap than the control groups. These findings demonstrate that the BacSC-Dual-GP5-Cap bivalent subunit vaccine can be a potential vaccine against PRRSV and PCV2 infections. PMID:22172969

  1. Structural and biophysical analysis of nuclease protein antibiotics.

    PubMed

    Klein, Alexander; Wojdyla, Justyna Aleksandra; Joshi, Amar; Josts, Inokentijs; McCaughey, Laura C; Housden, Nicholas G; Kaminska, Renata; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2016-09-15

    Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Å structure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria. PMID:27402794

  2. Functional Analysis of West Nile Virus Proteins in Human Cells.

    PubMed

    Kaufusi, Pakieli H; Tseng, Alanna; Nerurkar, Vivek R

    2016-01-01

    West Nile Virus (WNV) lineage 2 strains have been responsible for large outbreaks of neuroinvasive disease in the United States and Europe between 1999 and 2012. Different strains in this lineage have previously been shown to produce either severe or mild neuroinvasive disease in mice. Phylogenetic and amino acid comparisons between highly or less virulent lineage 2 strains have demonstrated that the nonstructural (NS) gene(s) were most variable. However, the roles of some of the NS proteins in virus life cycle are unknown. The aim of this chapter is to describe simple computational and experimental approaches that can be used to: (1) explore the possible roles of the NS proteins in virus life cycle and (2) test whether the subtle amino acid changes in WNV NS gene products contributed to the evolution of more virulent strains. The computational approaches include methods based on: (1) sequence similarity, (2) sequence motifs, and (3) protein membrane topology predictions. Highlighted experimental procedures include: (1) isolation of viral RNA from WNV-infected cells, (2) cDNA synthesis and PCR amplification of WNV genes, (3) cloning into GFP expression vector, (4) bacterial transformation, (5) plasmid isolation and purification, (6) transfection using activated dendrimers (Polyfect), and (7) immunofluorescence staining of transfected mammalian cells. PMID:27188549

  3. Characterization of Nora Virus Structural Proteins via Western Blot Analysis

    PubMed Central

    Ericson, Brad L.; Carlson, Darby J.

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753

  4. Taxonomy and conformational analysis of loops in proteins.

    PubMed

    Ring, C S; Kneller, D G; Langridge, R; Cohen, F E

    1992-04-01

    We propose a general classification scheme for loops, aperiodic segments of protein structure. In an effort to avoid the geometric complexity created by non-repeating phi psi angles, a morphologic definition that focuses upon the linearity and planarity of loops is utilized. Out of 432 loops (4 to 20 residues in length) extracted from 67 proteins, 205 are classified as linear (straps), 133 as non-linear and planar (omegas), and 86 as non-linear and non-planar (zetas). The remaining 8 are classified as compound loops because they contain a combination of strap, omega, and zeta morphologies. We introduce a structural alphabet as a shorthand notation for describing local conformation. The symbols of this alphabet are based on the virtual dihedral angle joining four consecutive alpha carbons. The notation is used to provide a compact description of loop motifs in phosphate binding and calcium binding proteins. Since similar loop conformations form similar "words", the structural sequence facilitates the search for common structural motifs in a family of loops. Contrary to the view of loops as "random coils", we find loops to have positional preferences for amino acid residues analogous to those previously described for beta-turns. PMID:1569550

  5. Analysis of the PS II proteins MSP and CP43

    SciTech Connect

    Sherman, L.A.

    1995-07-01

    The goals of this proposal were two-fold: (1) to analyze the impact of mutations in the psbO gene (coding for the Mn-stabilizing protein, MSP) on O{sub 2}-evolution; and (2) to analyze membrane assembly in cyanobacteria, especially the effect of iron deficiency on this process. The mutations in the psbO gene were performed in the transformable and photoheterotrophic cyanobacterium Synechocystis sp. PCC6803, whereas the research with membrane assembly and iron deficiency was performed in the transformable strain Synechococcus sp. PCC7942. Our work with the Synechocystis psbO gene demonstrated that the MSP protein is not an essential protein but serves a regulatory function. We produced a deletion mutant, which we call {triangle}psbO. The {triangle}psbO strain was still capable of photosynthetic growth and evolved O{sub 2} at rates of 1/3 to 1/2 that of the wild type. We have characterized this strain in some detail and have reported the results in two publications in Biochemistry. The second of the these two papers was published during this grant period and is enclosed.

  6. Characterization of Nora Virus Structural Proteins via Western Blot Analysis.

    PubMed

    Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753

  7. Network analysis and cross species comparison of protein-protein interaction networks of human, mouse and rat cytochrome P450 proteins that degrade xenobiotics.

    PubMed

    Karthikeyan, Bagavathy Shanmugam; Akbarsha, Mohammad Abdulkader; Parthasarathy, Subbiah

    2016-06-21

    Cytochrome P450 (CYP) enzymes that degrade xenobiotics play a critical role in the metabolism and biotransformation of drugs and xenobiotics in humans as well as experimental animal models such as mouse and rat. These proteins function as a network collectively as well as independently. Though there are several reports on the organization, regulation and functionality of various CYP enzymes at the molecular level, the understanding of organization and functionality of these proteins at the holistic level remain unclear. The objective of this study is to understand the organization and functionality of xenobiotic degrading CYP enzymes of human, mouse and rat using network theory approaches and to study species differences that exist among them at the holistic level. For our analysis, a protein-protein interaction (PPI) network for CYP enzymes of human, mouse and rat was constructed using the STRING database. Topology, centrality, modularity and robustness analyses were performed for our predicted CYP PPI networks that were then validated by comparison with randomly generated network models. Network centrality analyses of CYP PPI networks reveal the central/hub proteins in the network. Modular analysis of the CYP PPI networks of human, mouse and rat resulted in functional clusters. These clusters were subjected to ontology and pathway enrichment analysis. The analyses show that the cluster of the human CYP PPI network is enriched with pathways principally related to xenobiotic/drug metabolism. Endo-xenobiotic crosstalk dominated in mouse and rat CYP PPI networks, and they were highly enriched with endogenous metabolic and signaling pathways. Thus, cross-species comparisons and analyses of human, mouse and rat CYP PPI networks gave insights about species differences that existed at the holistic level. More investigations from both reductionist and holistic perspectives can help understand CYP metabolism and species extrapolation in a much better way. PMID:27194593

  8. Baculovirus virions displaying infectious bursal disease virus VP2 protein protect chickens against infectious bursal disease virus infection.

    PubMed

    Xu, Xin-Gang; Tong, De-Wen; Wang, Zhi Sheng; Zhang, Qi; Li, Zhao-Cai; Zhang, Kuan; Li, Wei; Liu, Hung-Jen

    2011-06-01

    Infectious bursal disease (IBD) is an acute and contagious viral infection of young chickens caused by IBD virus (IBDV). The VP2 protein of IBDV is the only antigen for inducing neutralizing antibodies and protective immunity in the natural host. In the current study, we have succeeded in construction of one recombinant baculovirus BacSC-VP2 expressing His6-tagged VP2 with the baculovirus envelope protein gp64 transmembrane domain (TM) and cytoplasmic domain (CTD). The His6-tagged recombinant VP2 was expressed and anchored on the plasma membrane of Sf-9 cells, as examined by western blot and confocal microscopy. Immunogold electron microscopy demonstrated that the VP2 protein of IBDV was successfully displayed on the viral surface. Vaccination of chickens with the VP2-pseudotyped baculovirus vaccine (BacSC-VP2) elicited significantly higher levels of VP2-specific enzyme-linked immunosorbent assay antibodies and neutralizing antibodies than the control groups. IBDV-specific proliferation of lymphocytes was observed in chickens immunized with the recombinant BacSC-VP2. An in vivo challenge study of the recombinant baculovirus BacSC-VP2 showed effective protection against a very virulent (vv) IBDV infection in chickens. In addition, mortality and gross and histopathological findings in the bursa demonstrated the efficacy of the vaccine in reducing virulence of the disease. These results indicate that the recombinant baculovirus BacSC-VP2 can be a potential vaccine against IBDV infections. PMID:21793437

  9. Loss of PEG chain in routine SDS-PAGE analysis of PEG-maleimide modified protein.

    PubMed

    Zhang, Chun; Liu, Yongdong; Feng, Cui; Wang, Qi; Shi, Hong; Zhao, Dawei; Yu, Rong; Su, Zhiguo

    2015-01-01

    SDS-PAGE represents a quick and simple method for qualitative and quantitative analysis of protein and protein-containing conjugates, mostly pegylated proteins. PEG-maleimide (MAL) is frequently used to site-specifically pegylate therapeutic proteins via free cysteine residue by forming a thiosuccinimide structure for pursuing homogeneous products. The C-S linkage between protein and PEG-MAL is generally thought to be relatively stable. However, loss of intact PEG chain in routine SDS-PAGE analysis of PEG-maleimide modified protein was observed. It is a thiol-independent thioether cleavage and the shedding of PEG chain exclusively happens to PEG-MAL modified conjugates although PEG-vinylsulfone conjugates to thiol-containing proteins also through a C-S linkage. Cleavage kinetics of PEG40k-MAL modified ciliary neurotrophic factor showed this kind of degradation could immediately happen even in 1 min incubation at high temperature and could be detected at physiological temperature and pH, although the rate was relatively slow. This may provide another degradation route for maleimide-thiol conjugate irrespective of reactive thiol, although the specific mechanism is still not very clear for us. It would also offer a basis for accurate characterization of PEG-MAL modified protein/peptide by SDS-PAGE analysis. PMID:25265901

  10. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins.

    PubMed

    Matlock, Matthew K; Holehouse, Alex S; Naegle, Kristen M

    2015-01-01

    ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments. PMID:25414335

  11. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins

    PubMed Central

    Matlock, Matthew K.; Holehouse, Alex S.; Naegle, Kristen M.

    2015-01-01

    ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments. PMID:25414335

  12. Comprehensive proteome analysis of an Apc mouse model uncovers proteins associated with intestinal tumorigenesis.

    PubMed

    Hung, Kenneth E; Faca, Vitor; Song, Kenneth; Sarracino, David A; Richard, Larissa Georgeon; Krastins, Bryan; Forrester, Sara; Porter, Andrew; Kunin, Alexandra; Mahmood, Umar; Haab, Brian B; Hanash, Samir M; Kucherlapati, Raju

    2009-03-01

    Tumor-derived proteins may occur in the circulation as a result of secretion, shedding from the cell surface, or cell turnover. We have applied an in-depth comprehensive proteomic strategy to plasma from intestinal tumor-bearing Apc mutant mice to identify proteins associated with tumor development. We used quantitative tandem mass spectrometry of fractionated mouse plasma to identify differentially expressed proteins in plasma from intestinal tumor-bearing Apc mutant mice relative to matched controls. Up-regulated proteins were assessed for the expression of corresponding genes in tumor tissue. A subset of proteins implicated in colorectal cancer were selected for further analysis at the tissue level using antibody microarrays, Western blotting, tumor immunohistochemistry, and novel fluorescent imaging. We identified 51 proteins that were elevated in plasma with concordant up-regulation at the RNA level in tumor tissue. The list included multiple proteins involved in colon cancer pathogenesis: cathepsin B and cathepsin D, cullin 1, Parkinson disease 7, muscle pyruvate kinase, and Ran. Of these, Parkinson disease 7, muscle pyruvate kinase, and Ran were also found to be up-regulated in human colon adenoma samples. We have identified proteins with direct relevance to colorectal carcinogenesis that are present both in plasma and in tumor tissue in intestinal tumor-bearing mice. Our results show that integrated analysis of the plasma proteome and tumor transcriptome of genetically engineered mouse models is a powerful approach for the identification of tumor-related plasma proteins. PMID:19240248

  13. IDENTIFICATION AND REMOVAL OF PROTEINS THAT CO-PURIFY WITH INFECTIOUS PRION PROTEIN IMPROVES THE ANALYSIS OF ITS SECONDARY STRUCTURE

    PubMed Central

    Moore, Roger A.; Timmes, Andrew; Wilmarth, Phillip A.; Safronetz, David; Priola, Suzette A.

    2013-01-01

    Prion diseases are neurodegenerative disorders associated with the accumulation of an abnormal isoform of the mammalian prion protein (PrP). Fourier transform infrared spectroscopy (FTIR) has previously been used to show that the conformation of aggregated, infectious PrP (PrPSc) varies between prion strains and these unique conformations may determine strain-specific disease phenotypes. However, the relative amounts of α-helix, β-sheet and other secondary structures have not always been consistent between studies suggesting that other proteins might be confounding the analysis of PrPSc secondary structure. We have used FTIR and tandem mass spectrometry to analyze enriched PrPSc from mouse and hamster prion strains both before and after the removal of protein contaminants that commonly co-purify with PrPSc. Our data show that non-PrP proteins do contribute to absorbances that have been associated with α-helical, loop, turn, and β-sheet structures attributed to PrPSc. The major contaminant, the α-helical protein ferritin, absorbs strongly at 1652cm−1 in the FTIR spectrum associated with PrPSc. However, even the removal of greater than 99% of the ferritin from PrPSc did not completely abolish absorbance at 1652cm−1. Our results show that contaminating proteins alter the FTIR spectrum attributed to PrPSc and suggest that the α-helical, loop/turn, and β-sheet secondary structure that remains following their removal are derived from PrPSc itself. PMID:21805638

  14. Changes in muscle protein composition induced by disuse atrophy - Analysis by two-dimensional electrophoresis

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Giometti, C. S.; Riley, D. A.

    1985-01-01

    Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.

  15. Quantitative analysis of acrylamide labeled serum proteins by LC-MS/MS.

    PubMed

    Faca, Vitor; Coram, Marc; Phanstiel, Doug; Glukhova, Veronika; Zhang, Qing; Fitzgibbon, Matthew; McIntosh, Martin; Hanash, Samir

    2006-08-01

    Isotopic labeling of cysteine residues with acrylamide was previously utilized for relative quantitation of proteins by MALDI-TOF. Here, we explored and compared the application of deuterated and (13)C isotopes of acrylamide for quantitative proteomic analysis using LC-MS/MS and high-resolution FTICR mass spectrometry. The method was applied to human serum samples that were immunodepleted of abundant proteins. Our results show reliable quantitation of proteins across an abundance range that spans 5 orders of magnitude based on ion intensities and known protein concentration in plasma. The use of (13)C isotope of acrylamide had a slightly greater advantage relative to deuterated acrylamide, because of shifts in elution of deuterated acrylamide relative to its corresponding nondeuterated compound by reversed-phase chromatography. Overall, the use of acrylamide for differentially labeling intact proteins in complex mixtures, in combination with LC-MS/MS provides a robust method for quantitative analysis of complex proteomes. PMID:16889424

  16. Nonlinear signal analysis to understand the dynamics of the protein sequences

    NASA Astrophysics Data System (ADS)

    Angadi, S.; Kulkarni, A.

    2008-10-01

    Recurrence plots are a useful tool to identify structure in a data set in a time resolved way qualitatively. Recurrence plots and its quantification has become an important research tool in the analysis of nonlinear dynamical systems. In the present work, we utilize the recurrence property to study the protein sequences. The sequences that we analyze belong to two distinct classes, viz., soluble proteins and proteins that form inclusion bodies when over expressed in Escherichia coli. We use Kyte-Doolittle hydrophobicity scale in the analysis. We study the underlying dynamics and extract the information which codes the essential class of a protein using simple statistical and global characteristics based features as well as some advanced features based on recurrence quantification. The extracted features are used in probability estimation using Gaussian Process Classification technique. The results give meaningful insights to the level of understanding the protein sequence dynamics.

  17. Display of VP1 on the Surface of Baculovirus and Its Immunogenicity against Heterologous Human Enterovirus 71 Strains in Mice

    PubMed Central

    Kiener, Tanja K.; Chow, Vincent T. K.; Kwang, Jimmy

    2011-01-01

    Background Human Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease (HFMD) in young children. It is often associated with severe neurological diseases and has caused high mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no effective vaccine and antiviral agents available against EV71 infections. VP1 is one of the major immunogenic capsid protein of EV71 and plays a crucial role in viral infection. Antibodies against VP1 are important for virus neutralization. Methodology/Principal Finding In the present study, infectious EV71 viruses were generated from their synthetic complementary DNA using the human RNA polymerase I reverse genetics system. Secondly, the major immunogenic capsid protein (VP1) of EV71-Fuyang (subgenogroup C4) was displayed on the surface of recombinant baculovirus Bac-Pie1-gp64-VP1 as gp64 fusion protein under a novel White Spot Syndrome Virus (WSSV) immediate early ie1 promoter. Baculovirus expressed VP1 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed that VP1 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired VP1 from the insect cell membrane via the budding process. After two immunizations in mice, Bac-Pie1-gp64-VP1 elicited neutralization antibody titer of 1∶64 against EV71 (subgenogroup C4) in an in vitro neutralization assay. Furthermore, the antisera showed high cross-neutralization activities against all 11 subgenogroup EV71 strains. Conclusion Our results illustrated that Bac-Pie1-gp64-VP1 retained native epitopes of VP1 and acted as an effective EV71 vaccine candidate which would enable rapid production without any biosafety concerns. PMID:21747954

  18. Topological structure analysis of the protein–protein interaction network in budding yeast

    PubMed Central

    Bu, Dongbo; Zhao, Yi; Cai, Lun; Xue, Hong; Zhu, Xiaopeng; Lu, Hongchao; Zhang, Jingfen; Sun, Shiwei; Ling, Lunjiang; Zhang, Nan; Li, Guojie; Chen, Runsheng

    2003-01-01

    Interaction detection methods have led to the discovery of thousands of interactions between proteins, and discerning relevance within large-scale data sets is important to present-day biology. Here, a spectral method derived from graph theory was introduced to uncover hidden topological structures (i.e. quasi-cliques and quasi-bipartites) of complicated protein–protein interaction networks. Our analyses suggest that these hidden topological structures consist of biologically relevant functional groups. This result motivates a new method to predict the function of uncharacterized proteins based on the classification of known proteins within topological structures. Using this spectral analysis method, 48 quasi-cliques and six quasi-bipartites were isolated from a network involving 11 855 interactions among 2617 proteins in budding yeast, and 76 uncharacterized proteins were assigned functions. PMID:12711690

  19. Analysis of 953 Human Proteins from a Mitochondrial HEK293 Fraction by Complexome Profiling

    PubMed Central

    Wessels, Hans J. C. T.; Vogel, Rutger O.; Lightowlers, Robert N.; Spelbrink, Johannes N.; Rodenburg, Richard J.; van den Heuvel, Lambert P.; van Gool, Alain J.; Gloerich, Jolein; Smeitink, Jan A. M.; Nijtmans, Leo G.

    2013-01-01

    Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP. PMID:23935861

  20. ANAP: An Integrated Knowledge Base for Arabidopsis Protein Interaction Network Analysis1[C][W][OA

    PubMed Central

    Wang, Congmao; Marshall, Alex; Zhang, Dabing; Wilson, Zoe A.

    2012-01-01

    Protein interactions are fundamental to the molecular processes occurring within an organism and can be utilized in network biology to help organize, simplify, and understand biological complexity. Currently, there are more than 10 publicly available Arabidopsis (Arabidopsis thaliana) protein interaction databases. However, there are limitations with these databases, including different types of interaction evidence, a lack of defined standards for protein identifiers, differing levels of information, and, critically, a lack of integration between them. In this paper, we present an interactive bioinformatics Web tool, ANAP (Arabidopsis Network Analysis Pipeline), which serves to effectively integrate the different data sets and maximize access to available data. ANAP has been developed for Arabidopsis protein interaction integration and network-based study to facilitate functional protein network analysis. ANAP integrates 11 Arabidopsis protein interaction databases, comprising 201,699 unique protein interaction pairs, 15,208 identifiers (including 11,931 The Arabidopsis Information Resource Arabidopsis Genome Initiative codes), 89 interaction detection methods, 73 species that interact with Arabidopsis, and 6,161 references. ANAP can be used as a knowledge base for constructing protein interaction networks based on user input and supports both direct and indirect interaction analysis. It has an intuitive graphical interface allowing easy network visualization and provides extensive detailed evidence for each interaction. In addition, ANAP displays the gene and protein annotation in the generated interactive network with links to The Arabidopsis Information Resource, the AtGenExpress Visualization Tool, the Arabidopsis 1,001 Genomes GBrowse, the Protein Knowledgebase, the Kyoto Encyclopedia of Genes and Genomes, and the Ensembl Genome Browser to significantly aid functional network analysis. The tool is available open access at http

  1. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    SciTech Connect

    Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei

    2014-06-21

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely

  2. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei

    2014-06-01

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N^2). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely, normal

  3. Saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy for nasopharyngeal cancer detection

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Duo; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Yongzeng; Huang, Shaohua; Zhao, Jianhua; Chen, Rong; Zeng, Haishan

    2014-02-01

    A method for saliva analysis combining membrane protein purification with silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) for non-invasive nasopharyngeal cancer detection was present in this paper. In this method, cellulose acetate membrane was used to obtain purified whole proteins from human saliva while removing other native saliva constituents and exogenous substances. The purified proteins were mixed with silver nanoparticle for SERS analysis. A diagnostic accuracy of 90.2% can be achieved by principal components analysis combined with linear discriminate analysis, for saliva samples obtained from patients with nasopharyngeal cancer (n = 62) and healthy volunteers (n = 30). This exploratory study demonstrated the potential for developing non-invasive, rapid saliva SERS analysis for nasopharyngeal cancer detection.

  4. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing

    PubMed Central

    Hedil, Marcio; Sterken, Mark G.; de Ronde, Dryas; Lohuis, Dick; Kormelink, Richard

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance. PMID:26275304

  5. 14C Analysis of protein extracts from Bacillus spores.

    PubMed

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  6. 14C Analysis of Protein Extracts from Bacillus Spores

    PubMed Central

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  7. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster

    PubMed Central

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer’s Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  8. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster.

    PubMed

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer's Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  9. Pigment Analysis of Chloroplast Pigment-Protein Complexes in Wheat

    PubMed Central

    Eskins, Kenneth; Duysen, Murray E.; Olson, Linda

    1983-01-01

    Pigment-protein complexes separated from wheat (Triticum aestivum L. selection ND96-25 by two gel electrophoresis techniques were analyzed by high-performance liquid chromatography for chlorophylls and carotenoids. The two techniques are compared, and pigment analyses are given for the major reaction centers and light-harvesting complexes. Reaction centers contain mostly chlorophyll a, carotene, and lutein, whereas light-harvesting complexes contain chlorophyll a, chlorophyll b, lutein, and neoxanthin. The amounts of violaxanthin are variable. Images Fig. 1 PMID:16662906

  10. ΔΔPT: a comprehensive toolbox for the analysis of protein motion

    PubMed Central

    2013-01-01

    Background Normal Mode Analysis is one of the most successful techniques for studying motions in proteins and macromolecules. It can provide information on the mechanism of protein functions, used to aid crystallography and NMR data reconstruction, and calculate protein free energies. Results ΔΔPT is a toolbox allowing calculation of elastic network models and principle component analysis. It allows the analysis of pdb files or trajectories taken from; Gromacs, Amber, and DL_POLY. As well as calculation of the normal modes it also allows comparison of the modes with experimental protein motion, variation of modes with mutation or ligand binding, and calculation of molecular dynamic entropies. Conclusions This toolbox makes the respective tools available to a wide community of potential NMA users, and allows them unrivalled ability to analyse normal modes using a variety of techniques and current software. PMID:23758746

  11. Between order and disorder in protein structures – analysis of “dual personality” fragments in proteins

    PubMed Central

    Zhang, Ying; Stec, Boguslaw; Godzik, Adam

    2007-01-01

    Summary In their natural environment, three-dimensional structures of proteins undergo significant fluctuations and are often partially or completely disordered. This phenomenon recently became the focus of much attention, as many proteins, especially from higher organisms, were shown to contain large intrinsically disordered regions. Such disordered regions may become ordered only under very specific circumstances, if at all, and can be recognized by specific amino acid composition and sequence signatures. Here, we suggest that the balance between order and disorder is much more subtle in that many regions are very close to the order/disorder boundary. Specifically, analysis of redundant sets of experimental models of protein structures, where emphasis is put on comparison of structures of identical proteins solved in different conditions and functional states, shows hundreds of fragments captured in two states: ordered and disordered. We show that such fragments, which we call here “dual-personality” (DP) fragments, have distinctive features that differentiate them from both regularly folded and intrinsically disordered fragments. We hypothesize, and show on several examples, that such fragments are often targets of regulation, either by allostery or post-translational modifications. PMID:17850753

  12. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  13. Systematic Analysis of Endometrial Cancer-Associated Hub Proteins Based on Text Mining

    PubMed Central

    Gao, Huiqiao; Zhang, Zhenyu

    2015-01-01

    Objective. The aim of this study was to systematically characterize the expression of endometrial cancer- (EC-) associated genes and to analysis the functions, pathways, and networks of EC-associated hub proteins. Methods. Gene data for EC were extracted from the PubMed (MEDLINE) database using text mining based on NLP. PPI networks and pathways were integrated and obtained from the KEGG and other databases. Proteins that interacted with at least 10 other proteins were identified as the hub proteins of the EC-related genes network. Results. A total of 489 genes were identified as EC-related with P < 0.05, and 32 pathways were identified as significant (P < 0.05, FDR < 0.05). A network of EC-related proteins that included 271 interactions was constructed. The 17 proteins that interact with 10 or more other proteins (P < 0.05, FDR < 0.05) were identified as the hub proteins of this PPI network of EC-related genes. These 17 proteins are EGFR, MET, PDGFRB, CCND1, JUN, FGFR2, MYC, PIK3CA, PIK3R1, PIK3R2, KRAS, MAPK3, CTNNB1, RELA, JAK2, AKT1, and AKT2. Conclusion. Our data may help to reveal the molecular mechanisms of EC development and provide implications for targeted therapy for EC. However, corrections between certain proteins and EC continue to require additional exploration. PMID:26366417

  14. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  15. The HaloTag: Improving Soluble Expression and Applications in Protein Functional Analysis.

    PubMed

    N Peterson, Scott; Kwon, Keehwan

    2012-01-01

    Technological and methodological advances have been critical for the rapidly evolving field of proteomics. The development of fusion tag systems is essential for purification and analysis of recombinant proteins. The HaloTag is a 34 KDa monomeric protein derived from a bacterial haloalkane dehalogenase. The majority of fusion tags in use today utilize a reversible binding interaction with a specific ligand. The HaloTag system is unique in that it forms a covalent linkage to its chloroalkane ligand. This linkage permits attachment of the HaloTag to a variety of functional reporters, which can be used to label and immobilize recombinant proteins. The success rate for HaloTag expression of soluble proteins is very high and comparable to maltose binding protein (MBP) tag. Furthermore, cleavage of the HaloTag does not result in protein insolubility that often is observed with the MBP tag. In the present report, we describe applications of the HaloTag system in our ongoing investigation of protein-protein interactions of the Y. pestis Type 3 secretion system on a custom protein microarray. We also describe the utilization of affinity purification/mass spectroscopy (AP/MS) to evaluate the utility of the Halo Tag system to characterize DNA binding activity and protein specificity. PMID:23115610

  16. The HaloTag: Improving Soluble Expression and Applications in Protein Functional Analysis

    PubMed Central

    N Peterson, Scott; Kwon, Keehwan

    2012-01-01

    Technological and methodological advances have been critical for the rapidly evolving field of proteomics. The development of fusion tag systems is essential for purification and analysis of recombinant proteins. The HaloTag is a 34 KDa monomeric protein derived from a bacterial haloalkane dehalogenase. The majority of fusion tags in use today utilize a reversible binding interaction with a specific ligand. The HaloTag system is unique in that it forms a covalent linkage to its chloroalkane ligand. This linkage permits attachment of the HaloTag to a variety of functional reporters, which can be used to label and immobilize recombinant proteins. The success rate for HaloTag expression of soluble proteins is very high and comparable to maltose binding protein (MBP) tag. Furthermore, cleavage of the HaloTag does not result in protein insolubility that often is observed with the MBP tag. In the present report, we describe applications of the HaloTag system in our ongoing investigation of protein-protein interactions of the Y. pestis Type 3 secretion system on a custom protein microarray. We also describe the utilization of affinity purification/mass spectroscopy (AP/MS) to evaluate the utility of the Halo Tag system to characterize DNA binding activity and protein specificity. PMID:23115610

  17. Enrichment of Integral Membrane Proteins for Proteomic Analysis Using Liquid Chromatography-Tandem Mass Spectrometry

    SciTech Connect

    Blonder, Josip; Goshe, Michael B.; Moore, Ronald J.; Pasa-Tolic, Liljiana; Masselon, Christophe D.; Lipton, Mary S.; Smith, Richard D.

    2002-04-01

    Currently, most proteomic studies rely on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect and identify constituent peptides of enzymatically digested proteins obtained from various organisms and cell types. However, sample preparation methods for isolating membrane proteins typically involve the use of detergents, chaotropes, or reducing reagents that often interfere with electrospray ionization (ESI). To increase the identification of integral membrane proteins by LC-ESI-MS/MS, a sample preparation method combining carbonate extraction and surfactant-free organics solvent-assisted solubilization and proteolysis was developed and used to target the membrane subproteome of Deinococcus radiodurans. Out of 503 proteins identified, 135 were recognized as hydrophobic based on their positive grand average of hydropathicity values that covers 15% of the theoretical hydrophobic proteome. Using the PSORT algorithm, 268 identified proteins were recognized as integral membrane proteins covering 21% and 43% of the predicted integral cytoplasmic and outer membrane proteins, respectively. Of the integral cytoplasmic membrane proteins containing four or more predicted transmembrane domains (TMDs), 65% were identified by detecting at least one peptide spanning a TMD using LC-MS/MS. The extensive identification of highly hydrophobic proteins containing multiple TMDs confirms the efficacy of the described sample preparation protocol to isolate and solubilize integral membrane proteins and validates the method for large-scale analysis of bacterial membrane subproteomes using LC-ESI-MS/MS.

  18. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  19. Suitability of stem latex of jatropha gossypifolia as a protein precipitant for biochemical analysis.

    PubMed

    Adeosun, O G; Oduola, T; Fagbomedo, F A; Oyedeji, S O; Akanji, B O; Adesina, A A

    2014-04-01

    The extract of Jatropha Gossypifolia stem was obtained by cutting the stem with a sharp knife and the fluid expressed out. The suitability of the stem latex extract as a precipitant for biochemical analysis was determined. The precipitating efficacy of the extract for creatinine and protein estimation was found to be optimum at 1/4 and 1/5 dilutions respectively aqueous solution. Plasma protein was precipitated with stem extract of J. Gossypifolia at the stated dilution. The mean plasma creatinine values obtained from 0.5 % sodium tungstate as a protein precipitant were compared with the values of plasma creatinine obtained when ¼ dilution of stem extract of J. Gossypifolia was used as protein precipitant. Similarly mean cerebrospinal fluid (CSF) and urinary protein values obtained from 3 % Tricholoro-acetic acid as protein precipitant were compared with values obtained from 1/5 dilution of stem extract of J. Gossypifolia as protein precipitant. The values obtained from the stem latex extract at the stated dilutions were comparable with values obtained from the conventional protein precipitants (p < 0.05). The stem latex extract of J. Gossypifolia is suitable as a protein precipitant for creatinine, CSF and urinary protein estimations. However further work need to be done to purify the extract and determine the exact concentration at the stated dilutions as well as the active ingredient in stem latex. PMID:24757304

  20. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis.

    PubMed

    Derbyshire, Paul; Ménard, Delphine; Green, Porntip; Saalbach, Gerhard; Buschmann, Henrik; Lloyd, Clive W; Pesquet, Edouard

    2015-10-01

    Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric (14)N/(15)N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning. PMID:26432860

  1. ZrO2 Nanofiber as a Versatile Tool for Protein Analysis.

    PubMed

    Wang, Hui; Duan, Yaokai; Zhong, Wenwan

    2015-12-01

    Phosphorylation is one of the most important post-translational modifications in proteins. Their essential roles in the regulation of cellular processes and alteration of protein-protein interaction networks have been actively studied. However, phosphorylated proteins are present at low abundance in cells, and ionization of the modified peptides is often suppressed by the more abundant species in mass spectrometry. Effective enrichment techniques are needed to remove the unmodified peptides and concentrate the phosphorylated ones before their identification and quantification. Herein, we prepared ZrO2 nanofibers by electrospinning, a straightforward and easy fabrication technique, and applied them to enrich phosphorylated peptides and proteins. The fibers showed good size homogeneity and porosity and could specifically bind to the phosphorylated peptides and proteins, allowing their separation from the unmodified analogues when present in either simple protein digests or highly complex cell lysates. The enrichment performance was superior to that of the commercially available nanoparticles. Moreover, modifying the solution pH could lead to selective adsorption of proteins with different pI values, suggesting the fibers' potential applicability in charge-based protein fractionation. Our results support that the electrospun ZrO2 nanofibers can serve as a versatile tool for protein analysis with great ease in preparation and handling. PMID:26571083

  2. Functional analysis of bipartite begomovirus coat protein promoter sequences

    SciTech Connect

    Lacatus, Gabriela; Sunter, Garry

    2008-06-20

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters.

  3. Atomic torsional modal analysis for high-resolution proteins

    NASA Astrophysics Data System (ADS)

    Tirion, Monique M.; ben-Avraham, Daniel

    2015-03-01

    We introduce a formulation for normal mode analyses of globular proteins that significantly improves on an earlier one-parameter formulation [M. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996), 10.1103/PhysRevLett.77.1905] that characterized the slow modes associated with protein data bank structures. Here we develop that empirical potential function that is minimized at the outset to include two features essential to reproduce the eigenspectra and associated density of states in the 0 to 300 cm-1 frequency range, not merely the slow modes. First, introduction of preferred dihedral-angle configurations via use of torsional stiffness constants eliminates anomalous dispersion characteristics due to insufficiently bound surface side chains and helps fix the spectrum thin tail frequencies (100-300 cm-1 ). Second, we take into account the atomic identities and the distance of separation of all pairwise interactions, improving the spectrum distribution in the 20 to 300 cm-1 range. With these modifications, not only does the spectrum reproduce that of full atomic potentials, but we obtain stable reliable eigenmodes for the slow modes and over a wide range of frequencies.

  4. Protein complex analysis of native brain potassium channels by proteomics.

    PubMed

    Sandoz, Guillaume; Lesage, Florian

    2008-01-01

    TREK potassium channels belong to a family of channel subunits with two-pore domains (K(2P)). TREK1 knockout mice display impaired polyunsaturated fatty acid-mediated protection against brain ischemia, reduced sensitivity to volatile anesthetics, resistance to depression and altered perception of pain. Recently, we isolated native TREK1 channels from mouse brain and identified their specific components by mass spectrometry. Among the identified partners, the A-Kinase Anchoring Protein AKAP150 binds to a regulatory domain of TREK1 and acts as a molecular switch. It transforms low activity, outwardly rectifying TREK1 currents into robust leak conductances resistant to stimulation by arachidonic acid, membrane stretch and acidification. Inhibition of the TREK1/AKAP150 channel by Gs-coupled receptors is as extensive as for TREK1 alone (but faster) whereas inhibition of TREK1/AKAP150 by Gq-coupled receptors is reduced. Furthermore, the association of AKAP150 with TREK1 channels integrates them into postsynaptic scaffolds where G protein-coupled membrane receptors and channels dock simultaneously. This chapter describes the proteomic approach used to study the composition of native TREK1 channels and point out its advantages and limitations over more classical methods (two-hybrid screenings in the yeast and bacteria or GST-pull down). PMID:18998088

  5. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    PubMed Central

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-01-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks. PMID:27198619

  6. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    NASA Astrophysics Data System (ADS)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  7. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins.

    PubMed

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-01-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks. PMID:27198619

  8. Comparison of three protein extraction procedures from toxic and non-toxic dinoflagellates for proteomics analysis.

    PubMed

    Jiang, Xi-Wen; Wang, Jing; Chan, Leo Lai; Lam, Paul Kwan Sing; Gu, Ji-Dong

    2015-08-01

    Three methods for extraction and preparation of high-quality proteins from both toxic and non-toxic dinoflagellates for proteomics analysis, including Trizol method, Lysis method and Tris method, were compared with the subsequent protein separation profiles using 2-D differential gel electrophoresis (2-D DIGE), Coomassie Blue and silver staining. These methods showed suitability for proteins with different pIs and molecular weights. Tris method was better for low molecular weight and low pI protein isolation; whereas both Lysis and Trizol method were better for high-molecular weight and high pI protein purification. Trizol method showed good results with Alexandrium species and Gynodinium species, and the background in gel was much clearer than the other two methods. At the same time, only Lysis method caused breaking down of the target proteins. On the other hand, Trizol method obtained higher concentration of ribulose-1,5-bisphosphate carboxylase/oxygenase proteins by Western-blotting, while Tris method was the best for peridinin-chlorophyll-protein complexes protein and T1 protein preparation. DIGE was better than Coomassie Blue and silver staining, except for some limitations, such as the high cost of the dyes, relatively short shelf life and the requirements for extensive and special image capturing equipment. Some proteins related to PSTs synthesis in dinoflagellates are hydrophobic with high molecular weight or binding on membranes and Trizol method performed better than Tris method for these proteins. The Trizol method and 2-D DIGE were effective combination for proteomics investigations of dinoflagellates. This procedure allows reliable and high recovery efficiency of proteins from dinoflagellates for better understanding on their occurrence and toxin-production for physiological and biochemical information. PMID:26197730

  9. A Simple Procedure for Depletion of Storage Proteins From Soybean (Glycine max) Seeds to Aid Proteome Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional electrophoretic analysis of plant proteomes containing thousands of proteins, has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the low abundance proteins within seeds is difficult when 60 – 80% is storage proteins. Resolution can ...

  10. Method developments to extract proteins from oil palm chromoplast for proteomic analysis.

    PubMed

    Lau, Benjamin Yii Chung; Deb-Choudhury, Santanu; Morton, James D; Clerens, Stefan; Dyer, Jolon M; Ramli, Umi Salamah

    2015-01-01

    Proteins from the plant chromoplast are essential for many physiological processes such as fatty acid biosynthesis. Different protein extraction methods were tested to find the most robust method to obtain oil palm chromoplast proteins for mass spectrometry analysis. Initially, two different solvents were employed to reduce the fruit lipids. Then, two plant cell wall digestive enzymes were used to acquire the protoplasts to increase the protein extraction effectiveness. A two-stage centrifugation-based fractionation approach enhanced the number of identified proteins, particularly the fatty acid biosynthetic enzymes. The effectiveness of each extraction method was assessed using protein yields and 2DE gel profiles. The ideal method was successfully used to establish the 2DE chromoplast proteome maps of low and high oleic acid mesocarps of oil palm. Further nanoLC-MS/MS analysis of the extracted chromoplast proteins led to the identification of 162 proteins, including some of the main enzymes involved in the fatty acid biosynthesis. The established procedures would provide a solid foundation for further functional studies, including fatty acid biosynthetic expression profiling and evaluation of regulatory function. PMID:26702380

  11. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues

    PubMed Central

    Kosti, Idit; Jain, Nishant; Aran, Dvir; Butte, Atul J.; Sirota, Marina

    2016-01-01

    The central dogma of molecular biology describes the translation of genetic information from mRNA to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery. PMID:27142790

  12. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues.

    PubMed

    Kosti, Idit; Jain, Nishant; Aran, Dvir; Butte, Atul J; Sirota, Marina

    2016-01-01

    The central dogma of molecular biology describes the translation of genetic information from mRNA to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery. PMID:27142790

  13. In situ structural analysis of Golgi intracisternal protein arrays.

    PubMed

    Engel, Benjamin D; Schaffer, Miroslava; Albert, Sahradha; Asano, Shoh; Plitzko, Jürgen M; Baumeister, Wolfgang

    2015-09-01

    We acquired molecular-resolution structures of the Golgi within its native cellular environment. Vitreous Chlamydomonas cells were thinned by cryo-focused ion beam milling and then visualized by cryo-electron tomography. These tomograms revealed structures within the Golgi cisternae that have not been seen before. Narrow trans-Golgi lumina were spanned by asymmetric membrane-associated protein arrays that had ∼6-nm lateral periodicity. Subtomogram averaging showed that the arrays may determine the narrow central spacing of the trans-Golgi cisternae through zipper-like interactions, thereby forcing cargo to the trans-Golgi periphery. Additionally, we observed dense granular aggregates within cisternae and intracisternal filament bundles associated with trans-Golgi buds. These native in situ structures provide new molecular insights into Golgi architecture and function. PMID:26311849

  14. In situ structural analysis of Golgi intracisternal protein arrays

    PubMed Central

    Engel, Benjamin D.; Schaffer, Miroslava; Albert, Sahradha; Asano, Shoh; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2015-01-01

    We acquired molecular-resolution structures of the Golgi within its native cellular environment. Vitreous Chlamydomonas cells were thinned by cryo-focused ion beam milling and then visualized by cryo-electron tomography. These tomograms revealed structures within the Golgi cisternae that have not been seen before. Narrow trans-Golgi lumina were spanned by asymmetric membrane-associated protein arrays that had ∼6-nm lateral periodicity. Subtomogram averaging showed that the arrays may determine the narrow central spacing of the trans-Golgi cisternae through zipper-like interactions, thereby forcing cargo to the trans-Golgi periphery. Additionally, we observed dense granular aggregates within cisternae and intracisternal filament bundles associated with trans-Golgi buds. These native in situ structures provide new molecular insights into Golgi architecture and function. PMID:26311849

  15. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    SciTech Connect

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  16. [Immunodiffusion analysis of plasma proteins in the canine family].

    PubMed

    Baranov, O K; Iurishina, N A; Savina, M A

    1976-01-01

    Immunodiffusion studies have been made on the plasma of 9 species (Vulpes vulpes, V. corsak, Alopex lagopus, Canis aureus, C. lupus, C. familiaris, C. dingo, Nyctereutes procynoides, Fennecus zerde) from the family of Canidae using milk antisera. Unlike rabbit antisera used earlier, milk antisera make it possible to detect more significant antigenic divergency with respect to 5 alpha- and beta-globulins. These globulins seem to have a higher evolution rate of antigenic mosaics as compared to other plasma proteins in the family investigated. The family Canidae serologically may be divided into two main groups: 1) the genus Canis which includes the wolf, domestic dog, dingo, jackal and 2) species which significantly differ from the former (the fox, polar fox, dog fox, fennec). In relation to these two groups, the raccoon dog occupies special position. PMID:62473

  17. HPLC-DAD protein kinase inhibitor analysis in human serum.

    PubMed

    Dziadosz, Marek; Lessig, Rüdiger; Bartels, Heidemarie

    2012-04-15

    We here describe an HPLC-DAD method to analyse different protein kinase inhibitors. Potential applications of this method are pharmacokinetic studies and therapeutic drug monitoring. Optimised chromatography conditions resulted in a very good separation of seven inhibitors (vatalanib, bosutinib, canertinib, tandutinib, pazopanib, dasatinib - internal standard and erlotinib). The good sensitivity makes this method competitive with LC/MS/MS. The separation was performed with a Lichrospher 100-5 RP8, 250 mm × 4 mm column maintained at 30 ± 1 °C, and with a mobile phase of 0.05 M H(3)PO(4)/KH(2)PO(4) (pH=2.3)-acetonitrile (7:3, v/v) at a flow rate of 0.7 mL/min. A simple and fast sample preparation sequence with liquid-liquid extraction led to good recoveries (73-90%) of all analytes. The recovery hardly reached 50% only for pazopanib. This method can also be used for targeted protein kinase inhibitor quantification. A perfect linearity in the validated range (20-10,000 ng/mL) and an LOQ of 20 ng/mL were achieved. The relative standard deviations and accuracies of all examined drug concentrations gave values much lower than 15% both for between- and within-batch calculations. All analysed PKIs were stable for 6 months in a 1mg/mL dimethyl sulfoxide stock solution. Vatalanib, bosutinib and erlotinib were also stable in human serum in the whole examined concentration range. PMID:22425385

  18. Nanosphere-based SERS immuno-sensors for protein analysis

    NASA Astrophysics Data System (ADS)

    Li, Honggang; Sun, Jian; Cullum, Brian M.

    2004-12-01

    We have developed and optimized novel nanosphere-based silver coated SERS substrates for the detection of proteins. These SERS substrates were optimized for silver thickness, number of silver layers, and extent of silver oxidation between layers. Immuno-nanosensors capable of being inserted into individual cells and non-invasively positioned to the sub-cellular location of interest using optical tweezers were constructed from monodisperse silica nanospheres. Silica nanospheres ranging in diameter from 100 to 4500 nm were condensed from tetraalkoxysilanes in an alcoholic solution of water and ammonia. By varying the reaction conditions, accurate control of the silica nanospheres" diameter was achieved. Silica sphere sizes were optimized for SERS signal response. Nanosphere-based SERS substrates were made by depositing multiple layers of silver on the nanospheres, followed by binding of the antibody of interest to the silver. In binding the antibodies, different crosslinkers were characterized and compared. On one end, each of these crosslinkers contained sulfur or isothiocyanate groups which bound to the silver surface, while the other end contained a carboxylic or primary amine group which reacted readily with the antibodies. In order to evaluate these substrates, SERS spectra of different proteins, such as insulin and interleukin-2 (IL-2), were obtained. By using silver, as the metal surface for SERS, red and near-infrared excitation wavelengths (i.e., 600-700 nm) can be used. Excitation in this range helps to avoid photodamage to cells and reduces any autofluorescence background. Evaluation of these SERS substrates was performed using a 10 mW HeNe laser, operating at 632.8 nm, in a collinear excitation/detection geometry. The SERS signals were filtered with a holographic notch filter, dispersed by 1/3 meter spectrometer and detected using an intensified charge coupled device (ICCD). This paper discusses the fabrication and optimization of these nanosensors, as

  19. The Effect of Using an Inappropriate Protein Database for Proteomic Data Analysis

    PubMed Central

    Knudsen, Giselle M.; Chalkley, Robert J.

    2011-01-01

    A recent study by Bromenshenk et al., published in PLoS One (2010), used proteomic analysis to identify peptides purportedly of Iridovirus and Nosema origin; however the validity of this finding is controversial. We show here through re-analysis of a subset of this data that many of the spectra identified by Bromenshenk et al. as deriving from Iridovirus and Nosema proteins are actually products from Apis mellifera honey bee proteins. We find no reliable evidence that proteins from Iridovirus and Nosema are present in the samples that were re-analyzed. This article is also intended as a learning exercise for illustrating some of the potential pitfalls of analysis of mass spectrometry proteomic data and to encourage authors to observe MS/MS data reporting guidelines that would facilitate recognition of analysis problems during the review process. PMID:21695130

  20. Anisotropy resolved multidimensional emission spectroscopy (ARMES): A new tool for protein analysis.

    PubMed

    Groza, Radu Constantin; Li, Boyan; Ryder, Alan G

    2015-07-30

    Structural analysis of proteins using the emission of intrinsic fluorophores is complicated by spectral overlap. Anisotropy resolved multidimensional emission spectroscopy (ARMES) overcame the overlap problem by the use of anisotropy, with chemometric analysis, to better resolve emission from different fluorophores. Total synchronous fluorescence scan (TSFS) provided information about all the fluorophores that contributed to emission while anisotropy provided information about the environment of each fluorophore. Here the utility of ARMES was demonstrated via study of the chemical and thermal denaturation of human serum albumin (HSA). Multivariate curve resolution (MCR) analysis of the constituent polarized emission ARMES data resolved contributions from four emitters: fluorescence from tryptophan (Trp), solvent exposed tyrosine (Tyr), Tyr in a hydrophobic environment, and room temperature phosphorescence (RTP) from Trp. The MCR scores, anisotropy, and literature validated these assignments and showed all the expected transitions during HSA unfolding. This new methodology for comprehensive intrinsic fluorescence analysis of proteins is applicable to any protein containing multiple fluorophores. PMID:26320645

  1. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules

    PubMed Central

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  2. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    PubMed

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  3. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  4. Characterization of Nanoparticle Tracking Analysis for Quantification and Sizing of Submicron Particles of Therapeutic Proteins.

    PubMed

    Zhou, Chen; Krueger, Aaron B; Barnard, James G; Qi, Wei; Carpenter, John F

    2015-08-01

    Submicron particles may play important roles in therapeutic protein product quality, stability, and adverse effects in patients. However, quantitation of these particles has been challenging. Nanoparticle tracking analysis (NTA) is capable of both sizing and counting submicron particles. We investigated the effects of product and instrument parameters on NTA results for nanoparticle standards and therapeutic protein samples. To obtain proper particle size distributions, complete tracking numbers of at least 200 and 400 were required for latex nanobeads and protein nanoparticles, respectively. In addition, when set at suboptimal values, the minimum expected particle size parameter led to inaccurate sizing and counting for all particles types investigated. A syringe pump allowed for higher sampling volumes, and results were reproducible for nanoparticle sizing and counts at flow rates ≤7 μL/min. Finally, because therapeutic protein products are being formulated at relatively high protein concentrations, we investigated the effects of protein concentration on nanoparticle characterization. With high protein concentrations, nanoparticle sizing was not affected, whereas particle concentrations were significantly reduced. Linear relationships between particle count and dilution factor were obtained when a high protein concentration formulation was diluted into particle-free solutions at the same protein concentrations, but not when dilutions were made into buffer. PMID:26017684

  5. A Fractal Dimension and Wavelet Transform Based Method for Protein Sequence Similarity Analysis.

    PubMed

    Yang, Lina; Tang, Yuan Yan; Lu, Yang; Luo, Huiwu

    2015-01-01

    One of the key tasks related to proteins is the similarity comparison of protein sequences in the area of bioinformatics and molecular biology, which helps the prediction and classification of protein structure and function. It is a significant and open issue to find similar proteins from a large scale of protein database efficiently. This paper presents a new distance based protein similarity analysis using a new encoding method of protein sequence which is based on fractal dimension. The protein sequences are first represented into the 1-dimensional feature vectors by their biochemical quantities. A series of Hybrid method involving discrete Wavelet transform, Fractal dimension calculation (HWF) with sliding window are then applied to form the feature vector. At last, through the similarity calculation, we can obtain the distance matrix, by which, the phylogenic tree can be constructed. We apply this approach by analyzing the ND5 (NADH dehydrogenase subunit 5) protein cluster data set. The experimental results show that the proposed model is more accurate than the existing ones such as Su's model, Zhang's model, Yao's model and MEGA software, and it is consistent with some known biological facts. PMID:26357222

  6. SDS-PAGE Analysis of Soluble Proteins in Reconstituted Milk Exposed to Different Heat Treatments

    PubMed Central

    Jovanovic, Snezana; Barac, Miroljub; Macej, Ognjen; Vucic, Tanja; Lacnjevac, Caslav

    2007-01-01

    This paper deals with the investigation of the impact of the heat treatment of reconstituted skim milk conducted at different temperatures, and the adding of demineralized whey on the protein solubility, soluble protein composition and interactions involved between proteins in a chemical complex. Commercial skim milk has been reconstituted and heat treated at 75°C, 85°C and 90°C for 20 minutes. Demineralized whey has been added in concentrations of 0.5%, 1.0 and 2.0%. The soluble protein composition has been determined by the polyacrilamide gel electrophoresis (SDS-PAGE) and by the densitometric analysis. Due to the different changes occurred during treatments at different temperatures, proteins of heat-treated samples containing added demineralized whey have had significantly different solubility. At lower temperatures (75°C and 85°C) the adding of demineralized whey decreased the protein solubility by 5.28%-26.41%, while the addition of demineralized whey performed at 90°C increased the soluble protein content by 5.61%-28.89%. Heat treatments, as well as the addition of demineralized whey, have induced high molecular weight complex formation. β-Lg, α-La and κ-casein are involved in high molecular weight complexes. The disulfide interactions between denatured molecules of these proteins are mostly responsible for the formation of coaggregates. The level of their interactions and the soluble protein composition are determined by the degree of temperature.

  7. Isolation and Analysis of Keratins and Keratin-Associated Proteins from Hair and Wool.

    PubMed

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Harland, Duane P

    2016-01-01

    The presence of highly cross-linked protein networks in hair and wool makes them very difficult substrates for protein extraction, a prerequisite for further protein analysis and characterization. It is therefore imperative that these cross-links formed by disulfide bridges are first disrupted for the efficient extraction of proteins. Chaotropes such as urea are commonly used as efficient extractants. However, a combination of urea and thiourea not only improves recovery of proteins but also results in improved resolution of the keratins in 2DE gels. Reductants also play an important role in protein dissolution. Dithiothreitol effectively removes keratinous material from the cortex, whereas phosphines, like Tris(2-carboxyethyl)phosphine, remove material from the exocuticle. The relative extractability of the keratins and keratin-associated proteins is also dependent on the concentration of chaotropes, reductants, and pH, thus providing a means to preferentially extract these proteins. Ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIM(+)[Cl](-)) are known to solubilize wool by disrupting noncovalent interactions, specifically intermolecular hydrogen bonds. BMIM(+)[Cl](-) proved to be an effective extractant of wool proteins and complementary in nature to chaotropes such as urea and thiourea for identifying unique peptides of wool proteins using mass spectrometry (MS). Successful identification of proteins resolved by one- or two-dimensional electrophoresis and MS is highly dependent on the optimal recovery of its protease-digested peptides with an efficient removal of interfering substances. The detergent sodium deoxycholate used in conjunction with Empore™ disks improved identification of proteins by mass spectrometry leading to higher percentage sequence coverage, identification of unique peptides and higher score. PMID:26795475

  8. Comprehensive analysis of heterotrimeric G-protein complex diversity and their interactions with GPCRs in solution

    PubMed Central

    Hillenbrand, Matthias; Schori, Christian; Schöppe, Jendrik; Plückthun, Andreas

    2015-01-01

    Agonist binding to G-protein–coupled receptors (GPCRs) triggers signal transduction cascades involving heterotrimeric G proteins as key players. A major obstacle for drug design is the limited knowledge of conformational changes upon agonist binding, the details of interaction with the different G proteins, and the transmission to movements within the G protein. Although a variety of different GPCR/G protein complex structures would be needed, the transient nature of this complex and the intrinsic instability against dissociation make this endeavor very challenging. We have previously evolved GPCR mutants that display higher stability and retain their interaction with G proteins. We aimed at finding all G-protein combinations that preferentially interact with neurotensin receptor 1 (NTR1) and our stabilized mutants. We first systematically analyzed by coimmunoprecipitation the capability of 120 different G-protein combinations consisting of αi1 or αsL and all possible βγ-dimers to form a heterotrimeric complex. This analysis revealed a surprisingly unrestricted ability of the G-protein subunits to form heterotrimeric complexes, including βγ-dimers previously thought to be nonexistent, except for combinations containing β5. A second screen on coupling preference of all G-protein heterotrimers to NTR1 wild type and a stabilized mutant indicated a preference for those Gαi1βγ combinations containing γ1 and γ11. Heterotrimeric G proteins, including combinations believed to be nonexistent, were purified, and complexes with the GPCR were prepared. Our results shed new light on the combinatorial diversity of G proteins and their coupling to GPCRs and open new approaches to improve the stability of GPCR/G-protein complexes. PMID:25733868

  9. Electrophoretic analysis of proteins from single bovine muscle fibres.

    PubMed Central

    Young, O A; Davey, C L

    1981-01-01

    A number of single fibres were isolated by dissection of four bovine masseter (ma) muscles, three rectus abdominis (ra) muscles and eight sternomandibularis (sm) muscles. By histochemical criteria these muscles contain respectively, solely slow fibres (often called type I), predominantly fast fibres (type II), and a mixture of fast and slow. The fibres were analysed by conventional sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the gels stained with Coomassie Blue. Irrespective of the muscle, every fibre could be classed into one of two broad groups based on the mobility of proteins in the range 135000-170000 daltons. When zones containing myosin heavy chain were cut from the single-fibre gel tracks and 'mapped' [Cleveland, Fischer, Kirschner & Laemmli (1977) J. Biol. Chem. 252, 1102-1106] with Staphylococcus proteinase, it was found that one group always contained fast myosin heavy chain, whereas the second group always contained the slow form. Moreover, a relatively fast-migrating alpha-tropomyosin was associated with the fast myosin group and a slow-migrating form with the slow myosin group. All fibres also contained beta-tropomyosin; the coexistence of alpha- and beta-tropomyosin is at variance with evidence that alpha-tropomyosin is restricted to fast fibres [Dhoot & Perry (1979) Nature (London) 278, 714-718]. Fast fibres containing the expected fast light chains and troponins I and C fast were identified in the three ra muscles, but in only four sm muscles. In three other sm muscles, all the fast fibres contained two troponins I and an additional myosin light chain that was more typical of myosin light chain 1 slow. The remaining sm muscle contained a fast fibre type that was similar to the first type, except that its myosin light chain 1 was more typical of the slow polymorph. Troponin T was bimorphic in all fast fibres from a ra muscles and in at least some fast fibres from one sm muscle. Peptide 'mapping' revealed two forms of fast myosin

  10. Proteomic analysis of Schistosoma mansoni proteins released during in vitro miracidium-to-sporocyst transformation

    PubMed Central

    Wu, Xiao-Jun; Sabat, Greg; Brown, James F.; Zhang, Mengzi; Taft, Andrew; Peterson, Nathan; Harms, Amy; Yoshino, Timothy P.

    2009-01-01

    Free-living miracidia of Schistosoma mansoni, upon penetration of the their snail intermediate host, undergo dramatic morphological and physiological changes as they transform to the parasitic sporocyst stage. During this transformation process, developing larvae release a diverse array of proteins, herein referred to as larval transformation proteins (LTPs), some of which are postulated to serve a parasite protective function. In the present study, nanoLC-tandem MS analysis was performed on all proteins represented in entire 1-dimensional SDS-PAGE-separated samples in order to gain a more comprehensive picture of the protein constituents associated with miracidium-to-sporocyst transformation and thus, their potential role in influencing establishment of intramolluscan infections. Of 127 proteins with sufficient peptide/sequence information, specific identifications were made for 99, while 28 represented unknown or hypothetical proteins. Nineteen percent of identified proteins possessed signal peptides constituting a cohort of classical secretory proteins, while 22% were identified as putative nonclassically-secreted leaderless proteins based on SecretomeP analysis. Proteins comprising these groups consisted mainly of proteases/protease inhibitors, small HSPs, redox/antioxidant enzymes, ion-binding proteins including those with anti-oxidant Fe-binding activities (ferritins, heme-binding protein), and venom allergen-like (VAL) proteins. A polyclonal antibody generated against whole LTPs recognized proteins primarily associated with the cilia, ciliated epidermal plates and intercellular ridges of miracidia and the tegument of fully-transformed sporocysts, identifying these structures as sources of a subset of LTPs. Thus lysis of plates and/or leakage during formation of the sporocyst syncytium likely represent significant contributors to the overall LTP makeup, especially identified nonsecretory proteins. However, as plate release/degradation and tegument formation

  11. Size-Exclusion Chromatography for the Analysis of Protein Biotherapeutics and their Aggregates

    PubMed Central

    Hong, Paula; Koza, Stephan; Bouvier, Edouard S. P.

    2012-01-01

    In recent years, the use and number of biotherapeutics has increased significantly. For these largely protein-based therapies, the quantitation of aggregates is of particular concern given their potential effect on efficacy and immunogenicity. This need has renewed interest in size-exclusion chromatography (SEC). In the following review we will outline the history and background of SEC for the analysis of proteins. We will also discuss the instrumentation for these analyses, including the use of different types of detectors. Method development for protein analysis by SEC will also be outlined, including the effect of mobile phase and column parameters (column length, pore size). We will also review some of the applications of this mode of separation that are of particular importance to protein biopharmaceutical development and highlight some considerations in their implementation. PMID:23378719

  12. Selectivity analysis of single binder assays used in plasma protein profiling

    PubMed Central

    Neiman, Maja; Fredolini, Claudia; Johansson, Henrik; Lehtiö, Janne; Nygren, Per-Åke; Uhlén, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2013-01-01

    The increasing availability of antibodies toward human proteins enables broad explorations of the proteomic landscape in cells, tissues, and body fluids. This includes assays with antibody suspension bead arrays that generate protein profiles of plasma samples by flow cytometer analysis. However, antibody selectivity is context dependent so it is necessary to corroborate on-target detection over off-target binding. To address this, we describe a concept to directly verify interactions from antibody-coupled beads by analysis of their eluates by Western blots and MS. We demonstrate selective antibody binding in complex samples with antibodies toward a set of chosen proteins with different abundance in plasma and serum, and illustrate the need to adjust sample and bead concentrations accordingly. The presented approach will serve as an important tool for resolving differential protein profiles from antibody arrays within plasma biomarker discoveries. PMID:24151238

  13. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  14. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition

    PubMed Central

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-01-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis – based on cellular components and biological process GO terms – was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in “Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation” [1]. PMID:27104213

  15. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition.

    PubMed

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-06-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis - based on cellular components and biological process GO terms - was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in "Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation" [1]. PMID:27104213

  16. Mutational analysis of the capsid protein of Leishmania RNA virus LRV1-4.

    PubMed Central

    Cadd, T L; MacBeth, K; Furlong, D; Patterson, J L

    1994-01-01

    The virion of Leishmania RNA virus is predicted to be composed of a 742-amino-acid major capsid protein and a small percentage of capsid-polymerase fusion molecules. Recently, the capsid protein alone was expressed and shown to spontaneously assemble into viruslike particles. Since the major structural protein of the virion shell self-assembles into viruslike particles when expressed in the baculovirus expression system, assembly of the virion can be studied by mutational analysis and expression of a single open reading frame. In this study, several deletions and one addition of the capsid protein of Leishmania RNA virus LRV1-4 were generated. These mutants show different degrees of assembly. Assembly domains are being identified such that the capsid protein may be used as a macromolecular packaging and delivery system for Leishmania species. Images PMID:7966563

  17. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks.

    PubMed

    White, Forest M; Wolf-Yadlin, Alejandro

    2016-06-12

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks. PMID:27049636

  18. Methods for the Analysis of Protein Phosphorylation–Mediated Cellular Signaling Networks

    NASA Astrophysics Data System (ADS)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation–mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  19. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    PubMed Central

    Karpowicz, Steven J.; Heinnickel, Mark; Dewez, David; Hamel, Blaise; Dent, Rachel; Niyogi, Krishna K.; Johnson, Xenie; Alric, Jean; Wollman, Francis-André; Li, Huiying; Merchant, Sabeeha S.

    2010-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus. PMID:20490922

  20. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Sadqi, Mourad; de Alba, Eva; Muñoz, Victor

    2013-01-01

    The study of protein folding has been conventionally hampered by the assumption that all single-domain proteins fold by an all-or-none process (two-state folding) that makes it impossible to resolve folding mechanisms experimentally. Here we describe an experimental method for the thermodynamic analysis of protein folding at atomic resolution using nuclear magnetic resonance (NMR). The method is specifically developed for the study of small proteins that fold autonomously into basic supersecondary structure motifs, and that do so in the sub-millisecond timescale (folding archetypes). From the NMR experiments we obtain hundreds of atomic unfolding curves that are subsequently analyzed leading to the determination of the characteristic network of folding interactions. The application of this approach to a comprehensive catalog of elementary folding archetypes holds the promise of becoming the first experimental approach capable of unraveling the basic rules connecting protein structure and folding mechanism. PMID:22987355

  1. Proteomic analysis and candidate allergenic proteins in Populus deltoides CL. "2KEN8" mature pollen.

    PubMed

    Zhang, Jin; Wu, Li-Shuan; Fan, Wei; Zhang, Xiao-Ling; Jia, Hui-Xia; Li, Yu; Yin, Ya-Fang; Hu, Jian-Jun; Lu, Meng-Zhu

    2015-01-01

    Proteomic analysis was used to generate a map of Populus deltoides CL. "2KEN8" mature pollen proteins. By applying 2-D electrophoresis, we resolved 403 protein spots from mature pollen. Using the matrix-assisted laser desorption/ionization time time-of-flight/time-of-flight tandem mass spectrometry method, we identified 178 distinct proteins from 218 protein spots expressed in mature pollen. Moreover, out of these, 28 proteins were identified as putative allergens. The expression patterns of these putative allergen genes indicate that several of these genes are highly expressed in pollen. In addition, the members of profilin allergen family were analyzed and their expression patterns were compared with their homologous genes in Arabidopsis and rice. Knowledge of these identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with poplar pollen allergy. PMID:26284084

  2. Gene transduction in mammalian cells using Bombyx mori nucleopolyhedrovirus assisted by glycoprotein 64 of Autographa californica multiple nucleopolyhedrovirus

    PubMed Central

    Kato, Tatsuya; Sugioka, Saki; Itagaki, Kohei; Park, Enoch Y.

    2016-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an alphabaculovirus, has been widely utilized for protein expression in not only insect cells but also mammalian cells. AcMNPV is closely related to Bombyx mori nucleopolyhedrovirus (BmNPV), and nucleotide sequences of AcMNPV genes have high similarity with those of BmNPV. However, the transduction of BmNPV into mammalian cells has not been reported. In this study, we constructed a recombinant BmNPV (BmNPVΔbgp/AcGP64/EGFP) whose surface 64 kDa glycoprotein (BmGP64) was substituted with that from AcMNPV (AcGP64). BmNPVΔbgp/AcGP64/EGFP also carried an EGFP gene under the control of the CMV promoter. BmNPVΔbgp/AcGP64/EGFP successfully transduced HEK293T cells. In comparison, a control construct (BmNPVΔbgp/BmGP64/EGFP) which possessed BmGP64 instead of AcGP64 did not express EGFP in HEK293T cells. The transduction efficiency of BmNPVΔbgp/AcGP64/EGFP was lower than that of an AcMNPV based-BacMam GFP transduction control. This result indicates that AcGP64 facilitates BmNPV transduction into HEK293T cells. BmNPV can be prepared easily on a large scale because BmNPV can infect silkworm larvae without any special equipment, even though specific diet is needed for silkworm rearing. BmNPV gene transduction into mammalian cells can potentially be applied easily for gene delivery into mammalian cells. PMID:27562533

  3. Folding analysis of the most complex Stevedore's protein knot.

    PubMed

    Wang, Iren; Chen, Szu-Yu; Hsu, Shang-Te Danny

    2016-01-01

    DehI is a homodimeric haloacid dehalogenase from Pseudomonas putida that contains the most complex 61 Stevedore's protein knot within its folding topology. To examine how DehI attains such an intricate knotted topology we combined far-UV circular dichroism (CD), intrinsic fluorescence spectroscopy and small angle X-ray scattering (SAXS) to investigate its folding mechanism. Equilibrium unfolding of DehI by chemical denaturation indicated the presence of two highly populated folding intermediates, I and I'. While the two intermediates vary in secondary structure contents and tertiary packing according to CD and intrinsic fluorescence, respectively, their overall dimension and compactness are similar according to SAXS. Three single-tryptophan variants (W34, W53, and W196) were generated to probe non-cooperative unfolding events localized around the three fluorophores. Kinetic fluorescence measurements indicated that the transition from the intermediate I' to the unfolded state is rate limiting. Our multiparametric folding analyses suggest that DehI unfolds through a linear folding pathway with two distinct folding intermediates by initial hydrophobic collapse followed by nucleation condensation, and that knotting precedes the formation of secondary structures. PMID:27527519

  4. Quantitative analysis of pheromone-binding protein specificity

    PubMed Central

    Katti, S.; Lokhande, N.; González, D.; Cassill, A.; Renthal, R.

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-phenyl-1-naphthylamine (NPN) binding and Förster resonance energy transfer between LUSH tryptophan 123 (W123) and NPN. Binding of cVA was measured from quenching of W123 fluorescence as a function of cVA concentration. The equilibrium constant for transfer of cVA between β-cyclodextrin and LUSH was determined from a linked equilibria model. This constant, multiplied by the β-cyclodextrin-cVA dissociation constant, gives the LUSH-cVA dissociation constant: ~100 nM. It was also found that other ligands quench W123 fluorescence. The LUSH-ligand dissociation constants were determined to be ~200 nM for the silk moth pheromone bombykol and ~90 nM for methyl oleate. The results indicate that the ligand-binding cavity of LUSH can accommodate a variety ligands with strong binding interactions. Implications of this for the pheromone receptor model proposed by Laughlin et al. (Cell 133: 1255–65, 2008) are discussed. PMID:23121132

  5. Genetic analysis of extracellular proteins of Serratia marcescens.

    PubMed Central

    Hines, D A; Saurugger, P N; Ihler, G M; Benedik, M J

    1988-01-01

    Serratia marcescens, a gram-negative enteric bacterium, is capable of secreting a number of proteins extracellularly. The types of activity found in the growth media include proteases, chitinases, a nuclease, and a lipase. Genetic studies have been undertaken to investigate the mechanisms used for the extracellular secretion of these exoproteins by S. marcescens. Many independent mutations affecting the extracellular enzymes were isolated after chemical and transposon mutagenesis. Using indicator media, we have identified loci involved in the production or excretion of extracellular protease, nuclease, or chitinase by S. marcescens. None of the mutations represented general extracellular-excretion mutants; in no case was the production or excretion of multiple exoproteins affected. A variety of loci were identified, including regulatory mutations affecting nuclease and chitinase expression. A number of phenotypically different protease mutants arose. Some of them may represent different gene products required for the production and excretion of the major metalloprotease, a process more complex than that for the other S. marcescens exoproteins characterized to date. PMID:2842305

  6. Analysis of protein-ligand interactions by fluorescence polarization

    PubMed Central

    Rossi, Ana M.; Taylor, Colin W.

    2011-01-01

    Quantification of the associations between biomolecules is required both to predict and understand the interactions that underpin all biological activity. Fluorescence polarization (FP) provides a non-disruptive means of measuring the association of a fluorescent ligand with a larger molecule. We describe an FP assay in which binding of fluorescein-labelled inositol 1,4,5-trisphosphate (IP3) to N-terminal fragments of IP3 receptors can be characterised at different temperatures and in competition with other ligands. The assay allows the standard Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) changes of ligand binding to be determined. The method is applicable to any purified ligand-binding site for which an appropriate fluorescent ligand is available. FP can be used to measure low-affinity interactions in real-time without use of radioactive materials, it is non-destructive, and with appropriate care it can resolve ΔH° and ΔS°. The first part of the protocol, protein preparation, may take several weeks, while the FP measurements, once they have been optimised, would normally take 1-6 h. PMID:21372817

  7. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis

    PubMed Central

    2013-01-01

    Protein timing is a popular dietary strategy designed to optimize the adaptive response to exercise. The strategy involves consuming protein in and around a training session in an effort to facilitate muscular repair and remodeling, and thereby enhance post-exercise strength- and hypertrophy-related adaptations. Despite the apparent biological plausibility of the strategy, however, the effectiveness of protein timing in chronic training studies has been decidedly mixed. The purpose of this paper therefore was to conduct a multi-level meta-regression of randomized controlled trials to determine whether protein timing is a viable strategy for enhancing post-exercise muscular adaptations. The strength analysis comprised 478 subjects and 96 ESs, nested within 41 treatment or control groups and 20 studies. The hypertrophy analysis comprised 525 subjects and 132 ESs, nested with 47 treatment or control groups and 23 studies. A simple pooled analysis of protein timing without controlling for covariates showed a small to moderate effect on muscle hypertrophy with no significant effect found on muscle strength. In the full meta-regression model controlling for all covariates, however, no significant differences were found between treatment and control for strength or hypertrophy. The reduced model was not significantly different from the full model for either strength or hypertrophy. With respect to hypertrophy, total protein intake was the strongest predictor of ES magnitude. These results refute the commonly held belief that the timing of protein intake in and around a training session is critical to muscular adaptations and indicate that consuming adequate protein in combination with resistance exercise is the key factor for maximizing muscle protein accretion. PMID:24299050

  8. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90

    PubMed Central

    Singh, Salam Pradeep; Deb, Chitta Ranjan; Ahmed, Sharif Udin; Saratchandra, Yenisetti; Konwar, Bolin Kumar

    2016-01-01

    Abstract Hsp90 is a major protein involved in the stabilization of various proteins in cancer cells. The present investigation focused on the molecular docking simulation studies of flavanols as inhibitors of Hsp90 at the high affinity adenosine triphosphate (ATP) binding site and analyzed absorption, distribution, metabolism, excretion and toxicity (ADME-toxicity). The molecular docking analysis revealed that the flavanols showed competitive inhibition with ATP molecule at the active site and enhanced pharmacological parameters.

  9. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  10. A Protein Domain and Family Based Approach to Rare Variant Association Analysis

    PubMed Central

    Richardson, Tom G.; Shihab, Hashem A.; Rivas, Manuel A.; McCarthy, Mark I.; Campbell, Colin; Timpson, Nicholas J.; Gaunt, Tom R.

    2016-01-01

    Background It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Methods Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). Results We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. Conclusion We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals. PMID:27128313

  11. Network analysis identifies protein clusters of functional importance in juvenile idiopathic arthritis

    PubMed Central

    2014-01-01

    Introduction Our objective was to utilise network analysis to identify protein clusters of greatest potential functional relevance in the pathogenesis of oligoarticular and rheumatoid factor negative (RF-ve) polyarticular juvenile idiopathic arthritis (JIA). Methods JIA genetic association data were used to build an interactome network model in BioGRID 3.2.99. The top 10% of this protein:protein JIA Interactome was used to generate a minimal essential network (MEN). Reactome FI Cytoscape 2.83 Plugin and the Disease Association Protein-Protein Link Evaluator (Dapple) algorithm were used to assess the functionality of the biological pathways within the MEN and to statistically rank the proteins. JIA gene expression data were integrated with the MEN and clusters of functionally important proteins derived using MCODE. Results A JIA interactome of 2,479 proteins was built from 348 JIA associated genes. The MEN, representing the most functionally related components of the network, comprised of seven clusters, with distinct functional characteristics. Four gene expression datasets from peripheral blood mononuclear cells (PBMC), neutrophils and synovial fluid monocytes, were mapped onto the MEN and a list of genes enriched for functional significance identified. This analysis revealed the genes of greatest potential functional importance to be PTPN2 and STAT1 for oligoarticular JIA and KSR1 for RF-ve polyarticular JIA. Clusters of 23 and 14 related proteins were derived for oligoarticular and RF-ve polyarticular JIA respectively. Conclusions This first report of the application of network biology to JIA, integrating genetic association findings and gene expression data, has prioritised protein clusters for functional validation and identified new pathways for targeted pharmacological intervention. PMID:24886659

  12. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae

    PubMed Central

    Xue, Wenxin; Fan, Jia; Zhang, Yong; Xu, Qingxuan; Han, Zongli; Sun, Jingrui; Chen, Julian

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. PMID:27561107

  13. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae.

    PubMed

    Xue, Wenxin; Fan, Jia; Zhang, Yong; Xu, Qingxuan; Han, Zongli; Sun, Jingrui; Chen, Julian

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. PMID:27561107

  14. NetworkAnalyst - integrative approaches for protein–protein interaction network analysis and visual exploration

    PubMed Central

    Xia, Jianguo; Benner, Maia J.; Hancock, Robert E. W.

    2014-01-01

    Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required - identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. In addition, interactive visualization of large networks has been primarily restricted to locally installed programs. To address these challenges, we have developed NetworkAnalyst, taking advantage of state-of-the-art web technologies, to enable high performance network analysis with rich user experience. NetworkAnalyst integrates all three steps and presents the results via a powerful online network visualization framework. Users can upload gene or protein lists, single or multiple gene expression datasets to perform comprehensive gene annotation and differential expression analysis. Significant genes are mapped to our manually curated protein-protein interaction database to construct relevant networks. The results are presented through standard web browsers for network analysis and interactive exploration. NetworkAnalyst supports common functions for network topology and module analyses. Users can easily search, zoom and highlight nodes or modules, as well as perform functional enrichment analysis on these selections. The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca. PMID:24861621

  15. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cell

    PubMed Central

    Agasti, Sarit S.; Liong, Monty; Peterson, Vanessa M.; Lee, Hakho; Weissleder, Ralph

    2012-01-01

    DNA barcoding is an attractive technology as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here, we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells. PMID:23092113

  16. Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes

    PubMed Central

    Burgess, Earle F.; Ham, Amy-Joan L.; Tabb, David L.; Billheimer, Dean; Roth, Bruce J.; Chang, Sam S.; Cookson, Michael S.; Hinton, Timothy J.; Cheek, Kristin L.; Hill, Salisha; Pietenpol, Jennifer A.

    2010-01-01

    Alpha-2 macroglobulin (A2M) functions as a universal protease inhibitor in serum and is capable of binding various cytokines and growth factors. In this study, we investigated if immunoaffinity enrichment and proteomic analysis of A2M protein complexes from human serum could improve detection of biologically relevant and novel candidate protein biomarkers in prostate cancer. Serum samples from six patients with androgen-independent, metastatic prostate cancer and six control patients without malignancy were analyzed by immunoaffinity enrichment of A2M protein complexes and MS identification of associated proteins. Known A2M substrates were reproducibly identified from patient serum in both cohorts, as well as proteins previously undetected in human serum. One example is heat shock protein 90 alpha (HSP90α), which was identified only in the serum of cancer patients in this study. Using an ELISA, the presence of HSP90α in human serum was validated on expanded test cohorts and found to exist in higher median serum concentrations in prostate cancer (n = 18) relative to control (n = 13) patients (median concentrations 50.7 versus 27.6 ng/mL, respectively, p = 0.001). Our results demonstrate the technical feasibility of this approach and support the analysis of A2M protein complexes for proteomic-based serum biomarker discovery. PMID:20107526

  17. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns.

    PubMed

    Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun

    2013-04-01

    To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species. PMID:23464874

  18. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    PubMed Central

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  19. ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis

    PubMed Central

    Veres, Daniel V.; Gyurkó, Dávid M.; Thaler, Benedek; Szalay, Kristóf Z.; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein–protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein–protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein–protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design. PMID:25348397

  20. Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models

    PubMed Central

    Aksel, Tural; Barrick, Doug

    2010-01-01

    The linear “Ising” model, which has been around for nearly a century, treats the behavior of linear arrays of repetitive, interacting subunits. Linear “repeat-proteins” have only been described in the last decade or so, and their folding energies have only been characterized very recently. Owing to their repetitive structures, linear repeat-proteins are particularly well suited for analysis by the nearest-neighbor Ising formalism. After briefly describing the historical origins and applications of the Ising model to biopolymers, and introducing repeat protein structure, this chapter will focus on the application of the linear Ising model to repeat proteins. When applied to homopolymers, the model can be represented and applied in a fairly simplified form. When applied to heteropolymers, where differences in energies among individual subunits (i.e. repeats) must be included, some (but not all) of this simplicity is lost. Derivations of the linear Ising model for both homopolymer and heteropolymer repeat-proteins will be presented. With the increased complexity required for analysis of heteropolymeric repeat proteins, the ability to resolve different energy terms from experimental data can be compromised. Thus, a simple matrix approach will be developed to help inform on the degree to which different thermodynamic parameters can be extracted from a particular set of unfolding curves. Finally, we will describe the application of these models to analyze repeat-protein folding equilibria, focusing on simplified repeat proteins based on “consensus” sequence information. PMID:19289204

  1. Global Analysis of Protein Damage by the Lipid Electrophile 4-Hydroxy-2-nonenal*S⃞

    PubMed Central

    Codreanu, Simona G.; Zhang, Bing; Sobecki, Scott M.; Billheimer, Dean D.; Liebler, Daniel C.

    2009-01-01

    Lipid peroxidation yields a variety of electrophiles, which are thought to contribute to the molecular pathogenesis of diseases involving oxidative stress, yet little is known of the scope of protein damage caused by lipid electrophiles. We identified protein targets of the prototypical lipid electrophile 4-hydroxy-2-nonenal (HNE) in RKO cells treated with 50 or 100 μm HNE. HNE Michael adducts were biotinylated by reaction with biotinamidohexanoic acid hydrazide, captured with streptavidin, and the captured proteins were resolved by one dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, digested with trypsin, and identified by liquid chromatography-tandem mass spectrometry. Of the 1500+ proteins identified, 417 displayed a statistically significant increase in adduction with increasing HNE exposure concentration. We further identified 18 biotin hydrazide-modified, HNE-adducted peptides by specific capture using anti-biotin antibody and analysis by high resolution liquid chromatography-tandem mass spectrometry. A subset of the identified HNE targets were validated with a streptavidin capture and immunoblotting approach, which enabled detection of adducts at HNE exposures as low as 1 μm. Protein interaction network analysis indicated several subsystems impacted by endogenous electrophiles in oxidative stress, including the 26 S proteasomal and chaperonin containing TCP-1 (CCT) systems involved in protein-folding and degradation, as well as the COP9 signalosome, translation initiation complex, and a large network of ribonucleoproteins. Global analyses of protein lipid electrophile adducts provide a systems-level perspective on the mechanisms of diseases involving oxidative stress. PMID:19054759

  2. Proteomic Analysis of Pure Human Airway Gland Mucus Reveals a Large Component of Protective Proteins

    PubMed Central

    Joo, Nam Soo; Evans, Idil Apak T.; Cho, Hyung-Ju; Park, Il-Ho; Engelhardt, John F.; Wine, Jeffrey J.

    2015-01-01

    Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269–319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment. PMID:25706550

  3. Identification of domains in protein structures from the analysis of intramolecular interactions.

    PubMed

    Genoni, Alessandro; Morra, Giulia; Colombo, Giorgio

    2012-03-15

    The subdivision of protein structures into smaller and independent structural domains has a fundamental importance in understanding protein evolution and function and in the development of protein classification methods as well as in the interpretation of experimental data. Due to the rapid growth in the number of solved protein structures, the need for devising new accurate algorithmic methods has become more and more urgent. In this paper, we propose a new computational approach that is based on the concept of domain as a compact and independent folding unit and on the analysis of the residue-residue energy interactions obtainable through classical all-atom force field calculations. In particular, starting from the analysis of the nonbonded interaction energy matrix associated with a protein, our method filters out and selects only those specific subsets of interactions that define possible independent folding nuclei within a complex protein structure. This allows grouping different protein fragments into energy clusters that are found to correspond to structural domains. The strategy has been tested using proper benchmark data sets, and the results have shown that the new approach is fast and reliable in determining the number of domains in a totally ab initio manner and without making use of any training set or knowledge of the systems in exam. Moreover, our method, identifying the most relevant residues for the stabilization of each domain, may complement the results given by other classification techniques and may provide useful information to design and guide new experiments. PMID:22384792

  4. General Theory for Integrated Analysis of Growth, Gene, and Protein Expression in Biofilms

    PubMed Central

    Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S.

    2013-01-01

    A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques. PMID:24376726

  5. Proteomic Analysis of Nuclear Factors Binding to an Intronic Enhancer in the Myelin Proteolipid Protein Gene

    PubMed Central

    Dobretsova, Anna; Johnson, Jennifer W.; Jones, Richard C.; Edmondson, Ricky D.; Wight, Patricia A.

    2015-01-01

    The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated – peaking during the active myelination period of CNS development. Previously we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. EMSA analysis demonstrated that specific DNA binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over twenty sequence-specific DNA-binding proteins. Supplementary Western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Purα and Purβ rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE. PMID:18266931

  6. SELDI-TOF analysis of glioblastoma cyst fluid is an approach for assessing cellular protein expression

    PubMed Central

    Hoelscher, Martin; Richter, Nina; Melle, Christian; von Eggeling, Ferdinand; Schaenzer, Anne; Nestler, Ulf

    2013-01-01

    Objectives: In about 10% of glioblastoma patients, preoperative MRI discloses the presence of tumor cysts. Whereas the impact of cystic appearance on prognosis has been discussed extensively, only little is known about the tumor cyst fluid. In this study, we tested the feasibility of the surface enhanced laser desorption ionization time of flight (SELDI-TOF) technique to detect cyst fluid proteins. Methods: Cyst fluid was collected from 21 glioblastoma patients for SELDI-TOF analysis and compared to control cerebrospinal fluids from 15 patients with spinal stenosis. Resulting protein peaks with significant differences between groups were further described, using the molecular weight in an internet search of protein databases and publications. Two potential cyst fluid proteins, basigin and ferritin light chain, were selected for immunohistological detection in the histologic slides of the patients, metallothionein (MT) served as negative control. Results: As supposed from the results of the SELDI-TOF analysis, basigin and ferritin were detected immunohistochemically in the cyst wall, whereas MT was more equally distributed between the cyst wall and the surrounding tumor tissue. Median survival time of the patients was 20 months (range 2 to 102 months) and correlated with age, but not with expression of the three proteins. Discussion: The SELDI-TOF approach reveals a number of proteins, potentially present in glioblastoma cyst fluid. Identification of these proteins in tumor cells may help understand the pathogenetic pathways and the prognostic value of cystic changes. PMID:24225180

  7. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size

    SciTech Connect

    Zhang, Haizhen; Burnum, Kristin E.; Luna, Maria L.; Petritis, Brianne O.; Kim, Jong Seo; Qian, Weijun; Moore, Ronald J.; Heredia-Langner, Alejandro; Webb-Robertson, Bobbie-Jo M.; Thrall, Brian D.; Camp, David G.; Smith, Richard D.; Pounds, Joel G.; Liu, Tao

    2011-12-01

    In biofluids (e.g., blood plasma) nanoparticles are readily embedded in layers of proteins that can affect their biological activity and biocompatibility. Herein, we report a study on the interactions between human plasma proteins and nanoparticles with a controlled systematic variation of properties using stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS) based quantitative proteomics. Novel protocol has been developed to simplify the isolation of nanoparticle bound proteins and improve the reproducibility. Plasma proteins associated with polystyrene nanoparticles with three different surface chemistries and two sizes as well as for four different exposure times (for a total of 24 different samples) were identified and quantified by LC-MS analysis. Quantitative comparison of relative protein abundances were achieved by spiking an 18 O-labeled 'universal reference' into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantitation across the sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive pattern that classifies the nanoparticles based on their surface properties and size. In addition, data on the temporal study indicated that the stable protein 'corona' that was isolated for the quantitative analysis appeared to be formed in less than 5 minutes. The comprehensive results obtained herein using quantitative proteomics have potential implications towards predicting nanoparticle biocompatibility.

  8. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity

    PubMed Central

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for