Sample records for gps navigation system

  1. Navigation and Positioning System Based on GPS & CDMA

    Microsoft Academic Search

    Qu Congshan; Xu Hualong; Tan Ying

    2007-01-01

    Global Positioning System (GPS) is widely used in system positioning or navigation communication, and code division multiple access (CDMA) is applied in personal communication and data transmission etc. In this paper, the data format of short message data in CDMA and the data format about GPS data stream are introduced in brief, and then a GPS and CDMA application system

  2. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ...Navigation Equipment Using the Global Positioning System (GPS) AGENCY: Federal...Navigation Equipment Using the Global Positioning System (GPS), and request for...Navigation Equipment Using the Global Positioning System (GPS). The effect...

  3. A GPS/inertial navigation system design evaluator

    NASA Astrophysics Data System (ADS)

    Vogel, M. A.; MacDonald, T. J.; Covert, J. L.

    A GPS/inertial navigation system evaluator simulation tool (i.e., the ENSIM-RSIM program) is described, and results from its application to a recent GPS/inertial system concept evaluation effort are presented. The effort was directed at the development of data processing techniques for effective use of GPS measurements in the navigation system Kalman filter. The closed-loop evaluator simulation modeled the dynamic interactions of a four-channel, adaptive bandwidth GPS receiver and an inertial navigation system in a high noise environment. The study focused on the development of receiver loss-of-lock indicator algorithms which respond rapidly and accurately to changes in the status of the receiver tracking loops, and the development of effective Kalman filter designs for GPS-aided inertial navigation. The closed-loop ENSIM-RSIM evaluation of data processing options clearly demonstrated that stable accurate GPS/inertial performance is achievable.

  4. Marine positioning with a GPS-aided inertial navigation system

    NASA Astrophysics Data System (ADS)

    Schwarz, K. P.; Wong, R. V. C.; Hagglund, J.; Lachapelle, G.

    The accuracy requirements for precise horizontal positioning of a moving vessel in the offshore and open ocean are expected to approach the 3m to 5m level within this decade. Previous simulation studies and land-based tests have shown that such a level of accuracy can be achieved by a combination of inertial navigation and GPS satellite positioning techniques. A Kalman filter and an optimal smoother have been developed to integrate an inertial navigation system with a slow switching GPS satellite receiver for marine positioning purposes. The Kalman filter and optimal smoother were tested on the Canadian east coast in November 1982. The paper outlines first the operational principle of the GPS-aided inertial navigation system and the development of the Kalman filter and smoother. It then presents the results and a detailed error analysis of the offshore tests.

  5. The System of GPS Navigation Based on ARM Processor

    Microsoft Academic Search

    Wang Bo; Jia-Xu Dong

    2010-01-01

    Using the ARM processor and the embedded operating system uC\\/OS-II as a development platform for designing navigation systems. The system uses GPS systems to obtain the latitude and longitude of the vehicles, by conversion and map-matching to get the actual location on the map, and then the user enter the destination, calculated the shortest path by A* shortest path algorithm

  6. GPS space navigation and pointing system (SNAPS)

    NASA Astrophysics Data System (ADS)

    Talley, Philip E.

    The development of a generic spacecraft-qualified Navstar GPS receiver capable of providing accurate position and velocity data is discussed. From these data, it will be possible to derive orbit ephemerides, accurate time information for time tagging sensor observations, and a means for determining accurate attitude information. The SNAPS plan is discussed as well as attitude measurement, ambiguity resolution, and the atomic clock.

  7. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  8. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  9. A DME Based Area Navigation Systems for GPS/WAAS Interference Mitigation In General Aviation Applications

    E-print Network

    Stanford University

    A DME Based Area Navigation Systems for GPS/WAAS Interference Mitigation In General Aviation Measuring Equipment (DME), to provide a redundant navigation system alongside GPS/WAAS during this phase out period. Specif- ically, a system that fuses a low-end DME receiver with low cost dead-reckoning sensors

  10. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ...Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant...navigational aids, mapping systems and related software by reason of infringement of certain...navigational aids, mapping systems and related software by reason of infringement of one or...

  11. Autonomous reconfigurable GPS/INS navigation and pointing system for rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Upadhyay, T. N.; Cotterill, S.; Deaton, A. W.

    1992-01-01

    This paper describes the development of an autonomous integrated spacecraft navigation system which provides multiple modes of navigation, including relative and absolute navigation. The system provides attitude information from GPS or INS, or by tightly integrating the two systems. Interferometric GPS techniques are used when multiple antennas and integrated Doppler measurements are available. An important aspect of this research is the autonomously reconfigurable Kalman filter, controlled by an embedded knowledge base, designed to respond to component degradation and changes in mission goals.

  12. Development of a GPS/INS/MAG navigation system and waypoint navigator for a VTOL UAV

    NASA Astrophysics Data System (ADS)

    Meister, Oliver; Mönikes, Ralf; Wendel, Jan; Frietsch, Natalie; Schlaile, Christian; Trommer, Gert F.

    2007-04-01

    Unmanned aerial vehicles (UAV) can be used for versatile surveillance and reconnaissance missions. If a UAV is capable of flying automatically on a predefined path the range of possible applications is widened significantly. This paper addresses the development of the integrated GPS/INS/MAG navigation system and a waypoint navigator for a small vertical take-off and landing (VTOL) unmanned four-rotor helicopter with a take-off weight below 1 kg. The core of the navigation system consists of low cost inertial sensors which are continuously aided with GPS, magnetometer compass, and a barometric height information. Due to the fact, that the yaw angle becomes unobservable during hovering flight, the integration with a magnetic compass is mandatory. This integration must be robust with respect to errors caused by the terrestrial magnetic field deviation and interferences from surrounding electronic devices as well as ferrite metals. The described integration concept with a Kalman filter overcomes the problem that erroneous magnetic measurements yield to an attitude error in the roll and pitch axis. The algorithm provides long-term stable navigation information even during GPS outages which is mandatory for the flight control of the UAV. In the second part of the paper the guidance algorithms are discussed in detail. These algorithms allow the UAV to operate in a semi-autonomous mode position hold as well an complete autonomous waypoint mode. In the position hold mode the helicopter maintains its position regardless of wind disturbances which ease the pilot job during hold-and-stare missions. The autonomous waypoint navigator enable the flight outside the range of vision and beyond the range of the radio link. Flight test results of the implemented modes of operation are shown.

  13. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    PubMed Central

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai

    2013-01-01

    The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system. PMID:23955434

  14. Integrated GPS/INS navigation system design for autonomous spacecraft rendezvous

    NASA Astrophysics Data System (ADS)

    Gaylor, David Edward

    2003-10-01

    The goal of the NASA Space Launch Initiative (SLI) program is to advance the technologies for the next generation reusable launch vehicle (RLV). The SLI program has identified automated rendezvous and docking as an area requiring further research and development. Currently, the Space Shuttle uses a partially manual system for rendezvous, but a fully automated system could be safer and more reliable. Previous studies have shown that it is feasible to use the Global Positioning System (GPS) for spacecraft navigation during rendezvous with the International Space Station (ISS). However, these studies have not accounted for the effects of GPS signal blockage and multipath in the vicinity of the ISS, which make a GPS-only navigation system less accurate and reliable. One possible solution is to combine GPS with an inertial navigation system (INS). The integration of GPS and INS can be achieved using a Kalman filter. GPS/INS systems have been used in aircraft for many years and have also been used in launch vehicles. However, the performance of GPS/INS systems in orbit and during spacecraft rendezvous has not been characterized. The primary objective of this research is to evaluate the ability of an integrated GPS/INS to provide accurate navigation solutions during a rendezvous scenario where the effects of ISS signal blockage, multipath and delta-v maneuvers degrade GPS-only navigation. In order to accomplish this, GPS-only and GPS/INS Kalman filters have been developed for both absolute and relative navigation, as well as a new statistical multipath model for spacecraft operating near the ISS. Several factors that affect relative navigation performance were studied, including: filter tuning, GPS constellation geometry, rendezvous approach direction, and inertial sensor performance. The results showed that each of these factors has a large impact on relative navigation performance. Finally, it has been demonstrated that a GPS/INS system based on medium accuracy aircraft avionics-grade inertial sensors does not provide adequate relative navigation performance for rendezvous with the ISS unless accelerometer thresholding is used. However, the use of state-of-the-art inertial navigation sensors provides relative position accuracy which is adequate for rendezvous with ISS if an additional rendezvous sensor is included.

  15. FPGA-Based Real-Time Embedded System for RISS/GPS Integrated Navigation

    PubMed Central

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm. PMID:22368460

  16. A LOW-COST GPS AIDED INERTIAL NAVIGATION SYSTEM FOR VEHICLE APPLICATIONS

    Microsoft Academic Search

    Isaac Skog; Peter H

    In this paper an approach for integration between GPS and inertial navigation systems (INS) is described. The continuous-time nav- igation and error equations for an earth-centered earth-fixed INS system are presented. Using zero order hold sampling, the set of equations is discretized. An extended Kalman filter for closed loop integration between the GPS and INS is derived. The filter propa-

  17. Kalman filtering for GPS/magnetometer integrated navigation system

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Yu, Min; Zou, Chengwu; Huang, Wenwen

    2010-06-01

    This paper investigated the data processing method for a GPS/IMU/magnetometer integrated system with Kalman filtering (KF). As a result of GPS/IMU/magnetometer land vehicle system, dead-reckoning of magnetometer and accelerometer integrated subsystem bridged very well the GPS signal outage due to the trees on the two sides of the road. Both differential GPS data processing method and the carrier-phase method with magnetometers' outputs for predicting the car position, velocity, and acceleration (PVA) are presented. The results from DGPS with Kinematical Positioning (KINPOS) software shown that the averages of the north, east, and down direction standard deviation (short for "std") are 0.014, 0.010, and 0.018 m, respectively. The std of velocities and accelerations derived by the position and velocity differentiation are 10, 7, 13 mm/s, 7, 5, 9 mm/s 2, respectively. This method for getting velocities and accelerations requires higher accurate position coordinates. But the position accuracy has frequently been degraded in this case when the car drove under the trees or other similar kinematical environments. That caused the larger velocity and acceleration errors. While the results from the carrier-phase method are std of the velocities = 2.1 mm/s, 1.3 mm/s, 3.7 mm/s in north, east, down, and std of the accelerations = 1.5 mm/s 2, 0.9 mm/s 2, 2.3 mm/s 2 for the static test period; as compared with KINPOS software results, std of the velocity difference between the carrier-phase method and the DGPS method = 7 mm/s, 6.9 mm/s, 9.7 mm/s in north, east, down direction, and std of acceleration difference = 5.0 mm/s 2, 4.5 mm/s 2, 7.5 mm/s 2 in north, east, down direction for the kinematical test period. Obviously, errors come from both the carrier-phase method and DGPS velocity and acceleration results derived directly by the position differentiation. In addition, better accuracy of positions than that before KF has been got by means of velocities and accelerations derived by the carrier-phase method after KF.

  18. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  19. Neural adaptive Kalman filter's application in MIMU/GPS/MMC integrated navigation systems

    NASA Astrophysics Data System (ADS)

    Cao, Juanjuan; Fang, Jiancheng; Sheng, Wei

    2006-11-01

    This paper presents a novel method for sensors data fusion based on Neural Adaptive kalman filter. The method is applied in fusing data from MIMU, GPS and Micro magnetism compass integrated navigation system for Micro autonomous Uninhibited Aerial Vehicles (UAV).The noise covariance of kalman filter is modified "online" by the Neural Adaptive Controller in order to modulate kalman filter to be optimal and to improve the positioning, velocity and attitude angle accuracy of the integrated navigation system. To demonstrate the effectiveness and accuracy of this method, an example is outlined. By simulation in the MIMU/GPS/MMC integrated navigation system, it is proved that the Neural Adaptive Kalman Filter has better accuracy than the regular Extended Kalman Filter.

  20. Solar System Modeler: A Distributed, Virtual Environment for Space Visualization and GPS Navigation

    NASA Astrophysics Data System (ADS)

    Williams, Gary E.

    1996-12-01

    The Solar System Modeler (SM) extends the Space Modeler developed in 1994. It provides a virtual environment enabling an explorer to dynamically investigate near Earth satellites, deep space probes, planets, moons, and other celestial phenomena. The explorer navigates the virtual environment via mouse selected options from menu panels while wearing a tracked, head mounted display (HMD). Alternatively, a monitor may replace the HMD and keyboard controls replace head tracking. The SM's functionality is extended by the ability to broadcast simulated GPS satellite transmissions in compliance with Distributed Interactive Simulation (DIS) protocol standards. The transmissions include information found in true GPS broadcasts that is required for a receiver to determine its location. The Virtual GPS Receiver (VGPSR) receives the GPS transmissions from the SM and computes the receiver's position with a realistic error based on numerous variables simulating those encountered in the real GPS system. The VGPSR is designed as a plug-in module for simulations requiring virtual navigation. The receiver's client application provides the VGPSR with the simulation time and the true position of the receiver. In return, the application receives a GPS indicated position.

  1. GPS navigation experiment using high precision GPS timing receivers

    NASA Technical Reports Server (NTRS)

    Buisson, J. A.; Oaks, O. J.; Lister, M. J.; Wardrip, S. C.; Leschiutta, S.; Galliano, P. G.; Cordara, D.; Pettiti, V.; Detoma, E.; Dachel, P.

    1985-01-01

    Global Positioning System (GPS) Time Transfer receivers were developed by the Naval Research Laboratory (NRL) to provide synchronization for the NASA Global Laser Tracking Network (GLTN). The capabilities of the receiver are being expanded mainly through software modification to: Demonstrate the position location capabilities of a single channel receiver unsign the GPS C/A code; and Demonstrate the time/navigation capability of the receiver onboard a moving platform, by sequential tracking of GPS satellites.

  2. New integration scheme of GPS-INS hybrid navigation system for maneuvering spacecraft

    NASA Astrophysics Data System (ADS)

    Tanabe, T.; Harigae, M.; Koyama, H.

    Integration schemes of the GPS with INS are considered. In the conventional navigation scheme, information from INS is usually used in the form of velocity-aiding signal to the receiver-tracking loops. In this paper, a new integration scheme is proposed which performs more effective information exchange so that it is more tolerant to RF interferences and unmodeled INS errors than the conventional scheme. These results are obtained from theoretical analyses and confirmed by computer simulations including GPS receiver dynamics.

  3. Design and flight test of a differential GPS/inertial navigation system for approach/landing guidance

    NASA Technical Reports Server (NTRS)

    Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary

    1991-01-01

    NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.

  4. Sole means navigation through hybrid Loran-C and GPS

    NASA Technical Reports Server (NTRS)

    Van Graas, Frank

    1988-01-01

    A minimum of four GPS range measurements or two Loran-C time differences are normally required for a position solution for en route navigation, area navigation, and nonprecision approaches. This paper describes a new technique that hybridizes GPS and Loran-C used in the pseudorange mode to process efficiently all available navigation information. Emphasis is placed on combined GPS and Loran-C timing, both for the ground/space facilities and the user. The hybrid system has the potential to solve the GPS and Loran-C integrity problems; more range measurements are available than are required for the navigation solution.

  5. Definition study of land/sea civil user navigational location monitoring systems for NAVSTAR GPS: User requirements and systems concepts

    NASA Technical Reports Server (NTRS)

    Devito, D. M.

    1981-01-01

    A low-cost GPS civil-user mobile terminal whose purchase cost is substantially an order of magnitude less than estimates for the military counterpart is considered with focus on ground station requirements for position monitoring of civil users requiring this capability and the civil user navigation and location-monitoring requirements. Existing survey literature was examined to ascertain the potential users of a low-cost NAVSTAR receiver and to estimate their number, function, and accuracy requirements. System concepts are defined for low cost user equipments for in-situ navigation and the retransmission of low data rate positioning data via a geostationary satellite to a central computing facility.

  6. Low cost GPS\\/INS sensor fusion system for UAV navigation

    Microsoft Academic Search

    Chang-Sun Yoo; Iee-Ki Ahn

    2003-01-01

    The performance of UAV is dependant greatly upon onboard sensors due to its characteristics of unmanned operated vehicle. The navigation sensor, which informs where UAV is flying, also is one of those onboard sensors. Small UAV needs the navigation system with the compact, light, cheap and precise navigation solution. As the inertial sensor for precise air navigation is very expensive,

  7. Low cost GPS\\/INS sensor fusion system for UAV navigation

    Microsoft Academic Search

    Chang-Sun Yoo; Iee-Ki Ahn

    2003-01-01

    The performance of UAV is dependent greatly upon onboard sensors due to its characteristics of unmanned operated vehicle. The navigation sensor, which informs where UAV is flying, also is one of those onboard sensors. Small UAV needs the navigation system with the compact, light, cheap and precise navigation solution. As the inertial sensor for precise air navigation is very expensive,

  8. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  9. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  10. Multiple mobile robot navigation using the indoor global positioning system (iGPS)

    Microsoft Academic Search

    Yoshiro HADA; Kunikatsu TAKASE

    2001-01-01

    We propose a practical method of multiple mobile robot navigation aimed at the realization of service robots that deliver letters, parcels and documents in an office building. For robust execution of delivery tasks by mobile robots, navigation is important, and localization of robots is a key function for designing robust navigation. We developed a global positioning system for indoor mobile

  11. GPS Navigation for Outdoor and Indoor Environments

    E-print Network

    Abidi, Mongi A.

    of this would matter. #12;i ABSTRACT The Global Positioning System (GPS) is an accurate positioning system..................................................................................................... 1 2 GLOBAL POSITIONING SYSTEM OVERVIEW .............................................. 2 3 GPS

  12. Abstract--There is an increasing demand for use of the Global Positioning System (GPS) to navigate or track objects in the

    E-print Network

    Washington at Seattle, University of

    Abstract--There is an increasing demand for use of the Global Positioning System (GPS) to navigate--Forest, Global Positioning System, Image processing, Otsu' algorithm I. INTRODUCTION here is an increasing demand for use of the Global Positioning System (GPS) in the forest environment. For example, tree harvesters

  13. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.

  14. GPS computer navigators to shorten EMS response and transport times.

    PubMed

    Ota, F S; Muramatsu, R S; Yoshida, B H; Yamamoto, L G

    2001-05-01

    GPS (global positioning satellite system to determine one's position on earth) units have become inexpensive and compact. The purpose of this study is to assess the effectiveness of a GPS enhanced computer street map navigator to improve the ability of EMS drivers in an urban setting to locate their destination and shorten response times. For part I, residential addresses in the city were randomly selected from a telephone directory. Two driver/navigator teams were assigned to drive to the address adhering to speed limits. One team used a standard street map, whereas the other team used a GPS computer navigator. The travel time and distance of the runs were compared. For part II, the computer GPS navigator was placed on an ambulance to supplement their normal methods of navigation to find the address requesting EMS. After the run was completed, EMS providers were interviewed to determine their opinion of whether the GPS navigator was helpful. For part I the results showed that in the 29 initial test runs, comparing the GPS team versus the standard map team, the mean distances traveled were 8.7 versus 9.0 kilometers (not significant) and the mean travel times were 13.5 versus 14.6 minutes (P=.02), respectively. The GPS team arrived faster in 72% runs. For part II the results showed that most EMS providers surveyed noted that the GPS computer navigator enhanced their ability to find the destination and all EMS providers acknowledged that it would enhance their ability to find a destination in an area in which they were unfamiliar. These results suggest that a portable GPS computer navigator system is helpful and can enhance the ability of prehospital care providers to locate their destination. Because these units are accurate and inexpensive, GPS computer navigators may be a valuable tool in reducing pre-hospital transport times. PMID:11326345

  15. DARPA looks beyond GPS for positioning, navigating, and timing

    SciTech Connect

    Kramer, David

    2014-10-01

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.

  16. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-07-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  17. A differential carrier-phase navigation system combining GPS with low Earth orbit satellites for rapid resolution of integer cycle ambiguities

    Microsoft Academic Search

    Matthew Rabinowitz

    2001-01-01

    This thesis describes the theory and implementation of a high-performance navigation system which combines GPS with Low Earth Orbit Satellites (LEOS). Our objective is to rapidly acquire centimeter-level position, without placing constraints on the motion of the navigated platform. When tracking the carrier phase of satellite downlinks, the primary obstacle to accurate positioning is the resolution of cycle ambiguities, which

  18. Method and apparatus for relative navigation using reflected GPS signals

    NASA Technical Reports Server (NTRS)

    Cohen, Ian R. (Inventor); Boegner, Jr., Gregory J. (Inventor)

    2010-01-01

    A method and system to passively navigate an orbiting moving body towards an orbiting target using reflected GPS signals. A pair of antennas is employed to receive both direct signals from a plurality of GPS satellites and a second antenna to receive GPS signals reflected off an orbiting target. The direct and reflected signals are processed and compared to determine the relative distance and position of the orbiting moving body relative to the orbiting target.

  19. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  20. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  1. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  2. Evaluating the velocity accuracy of an integrated GPS/INS system: Flight test results. [Global positioning system/inertial navigation systems (GPS/INS)

    SciTech Connect

    Owen, T.E.; Wardlaw, R.

    1991-01-01

    Verifying the velocity accuracy of a GPS receiver or an integrated GPS/INS system in a dynamic environment is a difficult proposition when many of the commonly used reference systems have velocity uncertainities of the same order of magnitude or greater than the GPS system. The results of flight tests aboard an aircraft in which multiple reference systems simultaneously collected data to evaluate the accuracy of an integrated GPS/INS system are reported. Emphasis is placed on obtaining high accuracy estimates of the velocity error of the integrated system in order to verify that velocity accuracy is maintained during both linear and circular trajectories. Three different reference systems operating in parallel during flight tests are used to independently determine the position and velocity of an aircraft in flight. They are a transponder/interrogator ranging system, a laser tracker, and GPS carrier phase processing. Results obtained from these reference systems are compared against each other and against an integrated real time differential based GPS/INS system to arrive at a set of conclusions about the accuracy of the integrated system.

  3. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  4. Integrated INS/GPS Navigation from a Popular Perspective

    NASA Technical Reports Server (NTRS)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  5. Using goGPS software with a multi-antenna GPS system to improve navigation with low-cost receivers

    NASA Astrophysics Data System (ADS)

    Caldera, Stefano; Gatti, Andrea; Pertusini, Lisa; Realini, Eugenio; Reguzzoni, Mirko; Sampietro, Daniele

    2013-04-01

    goGPS is a free and open source software package designed to enhance the accuracy of single frequency low-cost GPS devices by employing an extended Kalman filter. This filter can be applied either in post-processing or in real-time and it is specifically tailored for addressing the issues related to low-cost GPS receivers. To further enhance the accuracy of kinematic positioning and to jointly estimate the rover velocity and attitude, in the present work a multi-antenna approach has been investigated and integrated into the goGPS Kalman filter. In this approach the known and fixed geometry of a cluster of low-cost antennas is used to constrain the solution. The improvements obtained by the proposed technique are evaluated with the use of three u-blox LEA-4T receivers in a test scenario.

  6. Operational Use of GPS Navigation for Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Propst, Carolyn A.

    2008-01-01

    The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

  7. Mobile robot GPS/DR integrated navigation positioning technique research

    NASA Astrophysics Data System (ADS)

    Wang, Jingkun; Zhang, Yuanliang; Li, Bifu; Chong, Kil To

    2010-01-01

    GPS is widely used for global positioning system. But GPS signal is easily interrupted when it is used alone. DR (dead reckoning) can calculate the position of mobile robots by using direction and speed sensors. However, DR system error can accumulate over time due to the error of electronic compass and odometer sensors. So DR system can't be used separately for a long time. The integrated navigation system combined GPS with DR will effectively integrated advantages of these two systems, higher positioning precision and reliability. In this paper Kalman filter model for GPS/DR integrated navigation system is set up to filter the GPS and DR data. And then the outputs of Kalman filter are inputted to a BP neural network for training. BP neural network is employed to predict next sampling time GPS output and a new Kalman filter based data fusion method is proposed to do the navigation information fusion with encoders and compass system. Simulation is done to validate the proposed fusion method. The simulation result shows the potential of this fusion method for outside used mobile robot navigation. Finally experiments are done to validate the proposed fusion method.

  8. Mobile robot GPS/DR integrated navigation positioning technique research

    NASA Astrophysics Data System (ADS)

    Wang, Jingkun; Zhang, Yuanliang; Li, Bifu; Chong, Kil To

    2009-12-01

    GPS is widely used for global positioning system. But GPS signal is easily interrupted when it is used alone. DR (dead reckoning) can calculate the position of mobile robots by using direction and speed sensors. However, DR system error can accumulate over time due to the error of electronic compass and odometer sensors. So DR system can't be used separately for a long time. The integrated navigation system combined GPS with DR will effectively integrated advantages of these two systems, higher positioning precision and reliability. In this paper Kalman filter model for GPS/DR integrated navigation system is set up to filter the GPS and DR data. And then the outputs of Kalman filter are inputted to a BP neural network for training. BP neural network is employed to predict next sampling time GPS output and a new Kalman filter based data fusion method is proposed to do the navigation information fusion with encoders and compass system. Simulation is done to validate the proposed fusion method. The simulation result shows the potential of this fusion method for outside used mobile robot navigation. Finally experiments are done to validate the proposed fusion method.

  9. Designing simple indoor navigation system for UAVs

    Microsoft Academic Search

    Mohamed Kara Mohamed; Sourav Patra; Alexander Lanzon

    2011-01-01

    The wide range of applications and configurations of UAVs raises the need for different types of navigation methodologies compared to the conventional INS\\/GPS system. For instance, the limitation in cost, size and weight of indoor UAVs makes conventional navigation system unsuitable for these vehicles. In addition, the INS\\/GPS navigation system is impractical for indoor applications because the GPS signal is

  10. Non-GPS navigation with the personal dead-reckoning system

    NASA Astrophysics Data System (ADS)

    Ojeda, Lauro; Borenstein, Johann

    2007-04-01

    This paper introduces a positioning system for walking persons, called "Personal Dead-reckoning" (PDR) system. The PDR system does not require GPS, beacons, or landmarks. The system is therefore useful in GPS-denied environments, such as inside buildings, tunnels, or dense forests. Potential users of the system are military and security personnel as well as emergency responders. The PDR system uses a small 6-DOF inertial measurement unit (IMU) attached to the user's boot. The IMU provides rate-of-rotation and acceleration measurements that are used in real-time to estimate the location of the user relative to a known starting point. In order to reduce the most significant errors of this IMU-based system-caused by the bias drift of the accelerometers-we implemented a technique known as "Zero Velocity Update" (ZUPT). With the ZUPT technique and related signal processing algorithms, typical errors of our system are about 2% of distance traveled. This typical PDR system error is largely independent of the gait or speed of the user. When walking continuously for several minutes, the error increases gradually beyond 2%. The PDR system works in both 2-dimensional (2-D) and 3-D environments, although errors in Z-direction are usually larger than 2% of distance traveled. Earlier versions of our system used an impractically large IMU. In the most recent version we implemented a much smaller IMU. This paper discussed specific problems of this small IMU, our measures for eliminating these problems, and our first experimental results with the small IMU under different conditions.

  11. Satellite Navigation Systems

    NSDL National Science Digital Library

    Leske, Cavin.

    2002-01-01

    The Global Positioning System (GPS) has been in operation for several years, and its use is continually rising. GPS is the main satellite navigation system developed by the United States. There are countless applications of this technology, and numerous international efforts are currently underway.The Topcon Positioning Systems company provides an excellent introduction to GPS technology in its online book (1). The first couple chapters describe the evolution of GPS and its fundamentals, and the remaining material focuses on some specific issues. A more advanced tutorial is given through the IBM Web site (2). A brief, free registration is required to view it, and some familiarity with Java is recommended. The European Space Agency provides this page about satellite navigation (3), which describes, among other things, Galileo. This is not the astronomer; Galileo is Europe's version of GPS, scheduled for completion in 2008. Another system, developed by Russia, is detailed on the Space and Technology Web site (4). The short summary describes the 20-year history of the Global Navigation Satellite System (GLONASS), as well as upgrades that are in progress. Differential GPS, a service that is more accurate than standard GPS in areas with poor coverage, is operated by the US Coast Guard Navigation Center (5). Some information about the status of nationwide DGPS expansion is given. Several research and development projects, technology highlights, and GPS implementations are covered on the UNAVCO home page (6). The facility primarily fosters work to expand the applications of satellite navigation. With the wave of kidnapping cases reported across the country, a novel use of GPS is being marketed to keep track of children (7). These portable devices can be worn on the wrist, like a watch, so parents can always know where their kids are. Another news story describes the use of GPS in mining operations (8). The technology allows operators of huge three-story dump trucks to detect obstacles and maneuver the vehicle with only limited visibility.

  12. Vibrotactile Feedback in Steering Wheel Reduces Navigation Errors during GPS-Guided Car Driving

    E-print Network

    Basdogan, Cagatay

    Vibrotactile Feedback in Steering Wheel Reduces Navigation Errors during GPS-Guided Car Driving feedback displayed through the steering wheel of a car can reduce the perceptual and cognitive load with the GPS-based voice commands. KEYWORDS: vibrotactile, haptics, car navigation systems, GPS, steering wheel

  13. Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Lanzi, Raymond J.

    2010-01-01

    The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.

  14. GPS - Global Positioning System. Theory and practice

    Microsoft Academic Search

    B. Hofmann-Wellenhof; H. Lichtenegger; J. Collins

    1997-01-01

    This book shows in comprehensive manner how the Global Positioning System (GPS) works. The use of GPS for precise measurements (i.e. surveying) is treated as well as navigation and attitude determination. The basic mathematical models for various modes of GPS operations and detailed explanation of the practical use of GPS are developed precisely in this book. Additionally, the text shows

  15. GPS compound eye attitude and navigation sensor and method

    NASA Technical Reports Server (NTRS)

    Quinn, David A. (Inventor)

    2003-01-01

    The present invention is a GPS system for navigation and attitude determination, comprising a sensor array including a convex hemispherical mounting structure having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces for receiving signals from space vehicles of a GPS constellation. The present invention also includes a receiver for collecting the signals and making navigation and attitude determinations. In an alternate embodiment the present invention may include two opposing convex hemispherical mounting structures, each of the mounting structures having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces.

  16. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  17. GPS Auto-Navigation Design for Unmanned Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona

    2003-01-01

    A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.

  18. GPS receiver architecture for autonomous navigation in high earth orbits

    NASA Astrophysics Data System (ADS)

    Moreau, Michael Christopher

    2001-07-01

    This dissertation develops the systems level design of a Global Positioning System (GPS) receiver for high Earth orbit (HEO) satellite missions. The prospect of using GPS for autonomous navigation of satellites in highly eccentric and geosynchronous orbits has long been considered, with the goal of increasing spacecraft autonomy and reducing operations costs for these missions. While GPS has been used extensively for navigation of satellites in low Earth orbits (LEO), existing GPS receivers are not capable of functioning well at higher altitudes, where GPS signal availability is extremely limited. The primary emphasis is the development of algorithms and methods to add HEO capabilities to existing GPS receiver hardware; in particular, optimization of the receiver algorithms for space, and for the weak signals present in HEO. Software simulation tools have been developed and used to model aspects of the GPS signal geometries, dynamics, and power levels. At low altitudes, geometries and signal levels are favorable; however, dynamics are extremely high. At high altitudes, power levels are weaker and geometries are poorer, but the dynamics are more manageable. Improved algorithms governing satellite selection, signal acquisition, and the overall design of the tracking loops are presented. Adaptability to highly variable operating conditions is a key design feature of the algorithms in a HEO receiver. Preliminary steps have been taken to implement these concepts in the PiVoT GPS receiver being developed by NASA Goddard Space Flight Center (GSFC). These steps to optimize the performance of the receiver for space are expected to improve overall navigation performance by increasing the sensitivity of the receiver to track weaker GPS signals between 28 to 35 dB-Hz. Preliminary test results conducted with a hardware GPS simulator and the PiVoT GPS receiver are presented. The limiting altitude for GPS tracking is highly dependant on the capabilities of the receiver, the antenna configurations, and the pointing constraints of the spacecraft. For a conventional GPS receiver with a tracking threshold of 33 to 35 dB-HZ, this limit is approximately 25 to 30 Earth radii. Some of the weak signal tracking techniques discussed in this dissertation could extend this limit to perhaps 40 to 50 Earth radii.

  19. GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system

    USGS Publications Warehouse

    Sanchez, Richard D.; Hudnut, Kenneth W.

    2004-01-01

    Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.

  20. GPS-based Mobile Information Board System

    Microsoft Academic Search

    Yohei HIBIYA; Kazumi CHIBA; Tomokazu FUJIKURA

    In recent years, the Global Positioning System (GPS), which makes it possible to specify the latitude and longitude of ground positions, has begun to find wider application in fields such as car navigation and geodetic surveying. GPS is used in a wide range of applications for the road traffic industry, and car navigation systems are quickly becoming popular as digital

  1. GPS/MEMS IMU/Microprocessor Board for Navigation

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  2. INS\\/GPS integrated navigation for wheeled agricultural robot based on sigma-point Kalman Filter

    Microsoft Academic Search

    Yuliang Zhang; Feng Gao; Lei Tian

    2008-01-01

    This paper describes a numerical robust and computational efficient square-root central difference Kalman filter (SRCDKF) and put it into the application of state estimation of Inertial Navigation System (INS)\\/GPS integrated navigation for wheeled agricultural robot to overcome the flaws exist in EKF (Extended Kalman Filter). A standard INS mechanization with quaternion form attitude expression is introduced and a GPS antenna

  3. U.S. Space Shuttle GPS navigation capability for all mission phases

    NASA Technical Reports Server (NTRS)

    Kachmar, Peter; Chu, William; Montez, Moises

    1993-01-01

    Incorporating a GPS capability on the Space Shuttle presented unique system integration design considerations and has led to an integration concept that has minimum impact on the existing Shuttle hardware and software systems. This paper presents the Space Shuttle GPS integrated design and the concepts used in implementing this GPS capability. The major focus of the paper is on the modifications that will be made to the navigation systems in the Space Shuttle General Purpose Computers (GPC) and on the Operational Requirements of the integrated GPS/GPC system. Shuttle navigation system architecture, functions and operations are discussed for the current system and with the GPS integrated navigation capability. The GPS system integration design presented in this paper has been formally submitted to the Shuttle Avionics Software Control Board for implementation in the on-board GPC software.

  4. Operational considerations of using GPS for spacecraft navigation

    NASA Astrophysics Data System (ADS)

    Hart, Roger C.; Hartman, Kathy R.

    1995-05-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) has provided operational spacecraft orbit support for many years, currently generating orbit products for about 20 satellites. To date, operational orbit determination in the FDF has been performed on the ground using data from ground-based or space-based tracking systems. Current development of spaceborne Global Positioning System (GPS) receivers is projected to have a significant effect on the support needed for operational satellite navigation. This paper identifies the functions performed in spacecraft navigation and examines and quantifies how the functions and support levels will be affected as onboard GPS receivers are implemented on spacecraft. Cases are considered spacecraft using or not using NASA ground and space networks resources.

  5. Navigation Overview Types of Navigation

    E-print Network

    Navigation ­ Inertial Navigation System (INS) · Satellite Navigation Systems ­ Global Positioning System (GPS latitude, longitude, groundpseed, ..." · Accelerometers exhibit drift over time ­ Global Positioning System

  6. Sigma-Point Kalman Filtering for Integrated GPS and Inertial Navigation

    E-print Network

    Crassidis, John L.

    Sigma-Point Kalman Filtering for Integrated GPS and Inertial Navigation John L. Crassidis in position/attitude estimation problems. The filter formulation is based on standard inertial navigation vehicle. An Inertial Navigation System (INS) is best described in the Preface section of the excellent

  7. Sensor data fusion for inertial navigation of trains in GPS-dark areas

    Microsoft Academic Search

    R. Mazl; L. Preucil

    2003-01-01

    The motivation of the presented work is to develop a robust navigation system for accurate localization of trains on railway tracks in the cases where the GPS-based navigation is not temporally available. As the final solution of the train locator naturally takes into consideration the satellite-based navigation, the satellite signal needs not to be available all along the railway. The

  8. Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment

    NASA Technical Reports Server (NTRS)

    Conrad, Patrick R.; Naasz, Bo J.

    2007-01-01

    The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.

  9. Passive GPS-Free Navigation for Small UAVs Jack Langelaan

    E-print Network

    Langelaan, Jack W.

    -free navigation of a small Unmanned Aerial Vehicle with a minimal sensor suite (limited to an inertial measurement objects on the ground we can obtain a navigation solution. Fusing inertial measurements with bearingsPassive GPS-Free Navigation for Small UAVs Jack Langelaan Steve Rock Department of Aeronautics

  10. Global Positioning System Tutorial: All About GPS

    NSDL National Science Digital Library

    The Global Positioning System (GPS) is a very popular and useful tool, whether you're navigating on a long hike or just driving through an unfamiliar town. A good tutorial that introduces the basics of the technology is found on the Web site of a leading GPS company, Trimble. It starts by describing the underlying concepts of GPS and how it compares to other positioning systems. Then, the principle of satellite triangulation is explained with as little technical jargon as possible. A large section of the tutorial covers differential GPS, a developing technology with profound implications. Lastly, some applications that use GPS are mentioned, and a glossary clarifies a few special terms.

  11. GPS-aided navigation and unaided navigation on the joint direct attack munition

    Microsoft Academic Search

    Harold A. Klotz; Charles B. Derbak

    1998-01-01

    The Joint Direct Attack Munition (JDAM) provides a low-cost accuracy enhancement to existing MK-83, MK-84, and BLU-109 weapons. Low-cost has been achieved through the use of commercial standards and high-volume production techniques. Accuracy improvements are achieved with a GPS-aided Inertial Navigation System (INS), an adaptive optimal guidance algorithm, an autopilot featuring a robust servo structure, and a tail actuator subsystem.

  12. The bird GPS - long-range navigation in migrants.

    PubMed

    Thorup, Kasper; Holland, Richard A

    2009-11-01

    Nowadays few people consider finding their way in unfamiliar areas a problem as a GPS (Global Positioning System) combined with some simple map software can easily tell you how to get from A to B. Although this opportunity has only become available during the last decade, recent experiments show that long-distance migrating animals had already solved this problem. Even after displacement over thousands of kilometres to previously unknown areas, experienced but not first time migrant birds quickly adjust their course toward their destination, proving the existence of an experience-based GPS in these birds. Determining latitude is a relatively simple task, even for humans, whereas longitude poses much larger problems. Birds and other animals however have found a way to achieve this, although we do not yet know how. Possible ways of determining longitude includes using celestial cues in combination with an internal clock, geomagnetic cues such as magnetic intensity or perhaps even olfactory cues. Presently, there is not enough evidence to rule out any of these, and years of studying birds in a laboratory setting have yielded partly contradictory results. We suggest that a concerted effort, where the study of animals in a natural setting goes hand-in-hand with lab-based study, may be necessary to fully understand the mechanism underlying the long-distance navigation system of birds. As such, researchers must remain receptive to alternative interpretations and bear in mind that animal navigation may not necessarily be similar to the human system, and that we know from many years of investigation of long-distance navigation in birds that at least some birds do have a GPS - but we are uncertain how it works. PMID:19880719

  13. A LEAPFROG NAVIGATION SYSTEM A DISSERTATION

    E-print Network

    Stanford University

    and places where conventional navigation systems, such as the Global Positioning System (GPS altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning servicesA LEAPFROG NAVIGATION SYSTEM A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS

  14. Perspective\\/navigation-The Global Positioning System

    Microsoft Academic Search

    1993-01-01

    A brief history of navigation is given, highlighting the needs that led ultimately to the development of 3-D satellite based navigation. The evolution of Navstar, commonly known as GPS (Global Positioning System), is traced from its initial conception in 1960. The use of bandwidth compression to overcome the SNR problem is discussed. An explanation of how the GPS works is

  15. Combining Gyroscopes, Magnetic Compass and GPS for Pedestrian Navigation

    Microsoft Academic Search

    Quentin Ladetto; Vincent Gabaglio; Bertrand Merminod

    The key components in 2D dead reckoning navigation are the azimuth and the distance travelled. The devices used to obtain such information vary significantly with the application. In pedestrian navigation, the limitations on weight, size and ergonomics of the devices play important roles that make the classical inertial or GPS-aided inertial approach unsuitable. To overcome these constraints, other concepts have

  16. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  17. Problem: GPS production. During the next three months, the Bellman Company must meet the following de-mands for their line of advanced GPS navigation systems

    E-print Network

    Phillips, David

    . Solution 1: Let G1, G2, G3 = GPS made during months 1, 2, 3 O1, O2, O3 = Overtime during months 1, 2, 3 I11 + G2 + G3) + 5(O1 + O2 + O3) + 2(I1 + I2 + I3) subject to 0 O1 500 overtime limit in month 1 0 = GPS made during regular hours in months 1, 2, 3 O1, O2, O3 = GPS made during overtime in months 1, 2

  18. A new method based on WMRA and ANN for GPS/SINS integration for aerocraft navigation

    NASA Astrophysics Data System (ADS)

    Zhu, Xuefen; Chen, Xiyuan; Li, Zigang

    2006-11-01

    Global Positioning System (GPS) can provide precise positioning information to an unlimited number of users anywhere on the earth. However, the defect cannot be neglected, because there exists one blind district when the aerocraft flying through some altitude space. During the short time in the blind district, all radio signals can't be attained including the GPS signals. An integrated GPS/SINS (Strapdown Inertial Navigation System) Navigation system is presented in this paper. The SINS based on numerical computing platform has many advantages such as high reliability, small bulk and low cost ect. The integration of GPS and SINS, therefore, provides a navigation system that has superior performance in comparison with either a GPS or a SINS stand-alone system. This paper presents a new model-less algorithm that can perform the self-following of the aerocraft under all conditions. For improving the precision of the hybrid GPS/SINS navigation system, fusing data from a SINS and GPS hardware utilizes wavelet multi-resolution analysis (WMRA) and Radial Basis Function (RBF) Artificial Neural Networks (ANN). The WMRA is used to compare the SINS and GPS position outputs at different resolution levels. These differences represent, in general, the SINS errors, which are used to correct for the SINS outputs during GPS outages. The RBF-ANN model is then trained to predict the SINS position errors in real time and provide accurate positioning of the moving aerocraft. The simulations show that good results in SINS/GPS positioning accuracy can be obtained by applying the WMRA and RBF-ANN methods.

  19. Inertial navigation aided with GPS information

    Microsoft Academic Search

    E. Nebot; S. Sukkarieh; H. Durrant-Whyte

    1997-01-01

    This paper presents a dynamic alignment algorithm for a six-degree of freedom inertial unit. A differential GPS is used as external sensor. It provides decorrelated range position and Doppler velocity information. A simplified error model valid for a local area is also presented. An indirect Kalman filter approach is used to fuse high frequency inertial information with low frequency GPS

  20. Indoor/Outdoor Seamless Positioning Using Lighting Tags and GPS Cellular Phones for Personal Navigation

    NASA Astrophysics Data System (ADS)

    Namie, Hiromune; Morishita, Hisashi

    The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.

  1. Abstract--There is an increasing demand for use of the Global Positioning System (GPS) to navigate or track objects in the

    E-print Network

    Wang, Yinhai

    1 Abstract--There is an increasing demand for use of the Global Positioning System (GPS--Forest, Global Positioning System, Image processing, Otsu' algorithm I. INTRODUCTION here is an increasing demand for use of the Global Positioning System (GPS) in the forest environment. For example, tree harvesters

  2. Onboard Pseudolite Augmentation System for Relative Navigation

    E-print Network

    How, Jonathan P.

    Onboard Pseudolite Augmentation System for Relative Navigation Tob e Corazzini and Jonathan P. How GPS satel- lites, the available signals can be augmented with pseu- dolites onboard the vehicles presents an alternative approach of mounting a GPS transceiver system onboard each of the vehicles

  3. SPACECRAFT NAVIGATION USING THE MODERNIZED GLOBAL POSITIONING SYSTEM SIGNAL

    E-print Network

    Lightsey, Glenn

    SPACECRAFT NAVIGATION USING THE MODERNIZED GLOBAL POSITIONING SYSTEM SIGNAL E. G. Lightsey and R. B The utility of the Global Positioning System (GPS) for spacecraft navigation and timing has been widely

  4. GPS-based relative navigation for the Proba-3 formation flying mission

    NASA Astrophysics Data System (ADS)

    Ardaens, Jean-Sébastien; D'Amico, Simone; Cropp, Alexander

    2013-10-01

    The primary objective of the Proba-3 mission is to build a solar coronagraph composed of two satellites flying in close formation on a high elliptical orbit and tightly controlled at apogee. Both spacecraft will embark a low-cost GPS receiver, originally designed for low-Earth orbits, to support the mission operations and planning during the perigee passage, when the GPS constellation is visible. The paper demonstrates the possibility of extending the utilization range of the GPS-based navigation system to serve as sensor for formation acquisition and coarse formation keeping. The results presented in the paper aim at achieving an unprecedented degree of realism using a high-fidelity simulation environment with hardware-in-the-loop capabilities. A modified version of the flight-proven PRISMA navigation system, composed of two single-frequency Phoenix GPS receivers and an advanced real-time onboard navigation filter, has been retained for this analysis. For several-day long simulations, the GPS receivers are replaced by software emulation to accelerate the simulation process. Special attention has been paid to the receiver link budget and to the selection of a proper attitude profile. Overall the paper demonstrates that, despite a limited GPS tracking time, the onboard navigation filter gets enough measurements to perform a relative orbit determination accurate at the centimeter level at perigee. Afterwards, the orbit prediction performance depends mainly on the quality of the onboard modeling of the differential solar radiation pressure acting on the satellites. When not taken into account, this perturbation is responsible for relative navigation errors at apogee up to 50 m. The errors can be reduced to only 10 m if the navigation filter is able to model this disturbance with 70% fidelity.

  5. GPS World, Innovation: Autonomous Navigation at High Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bamford, William; Winternitz, Luke; Hay, Curtis

    2005-01-01

    Calculating a spacecraft's precise location at high orbital altitudes-22,000 miles (35,800 km) and beyond-is an important and challenging problem. New and exciting opportunities become possible if satellites are able to autonomously determine their own orbits. First, the repetitive task of periodically collecting range measurements from terrestrial antennas to high altitude spacecraft becomes less important-this lessens competition for control facilities and saves money by reducing operational costs. Also, autonomous navigation at high orbital altitudes introduces the possibility of autonomous station keeping. For example, if a geostationary satellite begins to drift outside of its designated slot it can make orbit adjustments without requiring commands from the ground. Finally, precise onboard orbit determination opens the door to satellites flying in formation-an emerging concept for many scientific space applications. The realization of these benefits is not a trivial task. While the navigation signals broadcast by GPS satellites are well suited for orbit and attitude determination at lower altitudes, acquiring and using these signals at geostationary (GEO) and highly elliptical orbits is much more difficult. The light blue trace describes the GPS orbit at approximately 12,550 miles (20,200 km) altitude. GPS satellites were designed to provide navigation signals to terrestrial users-consequently the antenna array points directly toward the earth. GEO and HE0 orbits, however, are well above the operational GPS constellation, making signal reception at these altitudes more challenging. The nominal beamwidth of a Block II/IIA GPS satellite antenna array is approximately 42.6 degrees. At GEO and HE0 altitudes, most of these primary beam transmissions are blocked by the Earth, leaving only a narrow region of nominal signal visibility near opposing limbs of the earth. This region is highlighted in gray. If GPS receivers at GEO and HE0 orbits were designed to use these higher power signals only, precise orbit determination would not be practical. Fortunately, the GPS satellite antenna array also produces side lobe signals at much lower power levels. NASA has designed and tested the Navigator, a new GPS receiver that can acquire and track these weaker signals, thereby dramatically increasing the signal visibility at these altitudes. While using much weaker signals is a fundamental requirement for a high orbital altitude GPS receiver, it is certainly not the only challenge. There are other unique characteristics of this application that must also be considered. For example, Position Dilution of Precision (PDOP) figures are much higher at GEO and HE0 altitudes because visible GPS satellites are concentrated in a much smaller area with respect to the spacecraft antenna. These poor PDOP values contribute considerable error to the point solutions calculated by the spacecraft GPS receiver. Finally, spacecraft GPS receivers must be designed to withstand a variety of extreme environmental conditions. Variations in acceleration between launch and booster separation are extreme. Temperature gradients in the space environment are also severe. Furthermore, radiation effects are a major concern-spacecraft-borne GPS receivers must be designed with radiation-hardened electronics to guard against this phenomenon, otherwise they simply will not work. Perhaps most importantly, there are no opportunities to repair or modify any space-borne GPS receiver after it has been launched. Great care must be taken to ensure all performance characteristics have been analyzed prior to liftoff.

  6. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    NASA Technical Reports Server (NTRS)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  7. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  8. Global Navigation Satellite Systems (GNSSs) for Monitoring Long Suspension Bridges

    E-print Network

    Santerre, Rock

    , Nanjing, China 1 A Brief Introduction to the Global Positioning System 1 2 GPS for Structural Health 16 1 A BRIEF INTRODUCTION TO THE GLOBAL POSITIONING SYSTEM 1.1 GPS constellation The full term of the well-known acronym GPS is NAVSTAR global positioning system, where NAVSTAR stands for NAVigation System

  9. INTEGRATION OF GPS\\/INS\\/VISION SENSORS TO NAVIGATE UNMANNED AERIAL VEHICLES

    Microsoft Academic Search

    Jinling Wang; Matthew Garratt; Andrew Lambert; Jack Jianguo Wang; Songlai Hana; David Sinclair

    This paper presents an integrated GPS\\/INS\\/Vision navigation sy stem for Unmanned Aerial Vehicles (UAVs). A CCD (Charge- Coupled Device) video camera and laser rangefinder (LRF) based vision system, combined with inertial sensors, provides the information on the vertical and horizontal movements of the UAV (helicopter) relative to the ground, which is critical for the safety of UAV operations. Two Kalman

  10. Land Vehicle Navigation with the Integration of GPS and Reduced INS: Performance Improvement with Velocity Aiding

    NASA Astrophysics Data System (ADS)

    Han, Songlai; Wang, Jinling

    The movement of a land vehicle is constrained because the vehicle always remains on the Earth's surface and only experiences small pitch and roll angles. So the GPS/INS integrated system for land vehicle navigation could be reconfigured to be the integration of GPS and reduced INS to cut down the costs. In a reduced INS, the vertical accelerometer and two horizontal gyros could be omitted from the system. But both theoretical analysis and experimental results show that this configuration may result in the divergence of height solution and large velocity errors. To improve the system performances, precise velocity derived from GPS carrier phase measurements, together with the GPS single point positioning solution, is used to aid the reduced INS. Field test results have demonstrated that first, the aiding from GPS precise velocity overcomes the divergence problem of the integrated height solutions and improves the integrated velocity and secondly the proposed novel integration scheme could achieve comparable navigation accuracy with that from the GPS and full INS integrated system.

  11. GPS navigation on historical and modern geological maps

    NASA Astrophysics Data System (ADS)

    Galambos, C.; Timár, G.; Székely, B.

    2009-04-01

    The usage of the georeferenced map in GIS applications provides the possibility to apply the geological maps in real-time GPS-navigation. In these tasks, both historical and modern geological maps can be applied. A georeferenced raster file of the geological map can be rendered as a background image in a GPS software on a Personal Digital Assistant (PDA). The software shows the actual position provided by the GPS on this background. Thus, the information of the geological map can be interpreted directly on the field at our position. Using this procedure using modern maps, it provides interesting new application for the users. The usage of historical maps is a possible application for the mapping geologists, too. In the present work, we give an algorithm of such an application and tackle the problem of the characteristic errors of this application.

  12. Differential GPS/inertial navigation approach/landing flight test results

    NASA Technical Reports Server (NTRS)

    Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary

    1992-01-01

    In November of 1990 a joint Honeywell/NASA-Langley differential GPS/inertial flight test was conducted at Wallops Island, Virginia. The test objective was to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS (Global Positioning System/inertial navigation system) with barometric and radar altimeters. The flight test effort exceeded program objectives with over 120 landings, 36 of which were fully automatic differential GPS/inertial landings. Flight test results obtained from post-flight data analysis are discussed. These results include characteristics of differential GPS/inertial error, using the Wallops Island Laser Tracker as a reference. Data on the magnitude of the differential corrections and vertical channel performance with and without radar altimeter augmentation are provided.

  13. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

    PubMed

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time. PMID:22666079

  14. Benefits of Combined GPS/GLONASS with Low-Cost MEMS IMUs for Vehicular Urban Navigation

    PubMed Central

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time. PMID:22666079

  15. Robust Real-Time Wide-Area Differential GPS Navigation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)

    1998-01-01

    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

  16. Meta-image navigation augmenters for GPS denied mountain navigation of small UAS

    NASA Astrophysics Data System (ADS)

    Wang, Teng; ?elik, Koray; Somani, Arun K.

    2014-06-01

    We present a novel approach to use mountain drainage patterns for GPS-Denied navigation of small unmanned aerial systems (UAS) such as the ScanEagle, utilizing a down-looking fixed focus monocular imager. Our proposal allows extension of missions to GPS-denied mountain areas, with no assumption of human-made geographic objects. We leverage the analogy between mountain drainage patterns, human arteriograms, and human fingerprints, to match local drainage patterns to Graphics Processing Unit (GPU) rendered parallax occlusion maps of geo-registered radar returns (GRRR). Details of our actual GPU algorithm is beyond the subject of this paper, and is planned as a future paper. The matching occurs in real-time, while GRRR data is loaded on-board the aircraft pre-mission, so as not to require a scanning aperture radar during the mission. For recognition purposes, we represent a given mountain area with a set of spatially distributed mountain minutiae, i.e., details found in the drainage patterns, so that conventional minutiae-based fingerprint matching approaches can be used to match real-time camera image against template images in the training set. We use medical arteriography processing techniques to extract the patterns. The minutiae-based representation of mountains is achieved by first exposing mountain ridges and valleys with a series of filters and then extracting mountain minutiae from these ridges/valleys. Our results are experimentally validated on actual terrain data and show the effectiveness of minutiae-based mountain representation method. Furthermore, we study how to select landmarks for UAS navigation based on the proposed mountain representation and give a set of examples to show its feasibility. This research was in part funded by Rockwell Collins Inc.

  17. Applications of Clocks to Space Navigation & "Planetary GPS"

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    2004-01-01

    The ability to fly atomic clocks on GPS satellites has profoundly defined the capabilities and limitations of GPS in near-Earth applications. It is likely that future infrastructure for Lunar and Mars applications will be constrained by financial factors. The development of a low cost, small, high performance space clock -- or ultrahigh performance space clocks -- could revolutionize and drive the entire approach to GPS-like systems at the Moon (or Mars), and possibly even change the future of GPS at Earth. Many system trade studies are required. The performance of future GPS-like tracking systems at the Moon or Mars will depend critically on clock performance, availability of inertial sensors, and constellation coverage. Example: present-day GPS carry 10(exp -13) clocks and require several updates per day. With 10(exp -15) clocks, a constellation at Mars could operate autonomously with updates just once per month. Use of GPS tracking at the Moon should be evaluated in a technical study.

  18. Networked differential GPS system

    NASA Technical Reports Server (NTRS)

    Mueller, K. Tysen (Inventor); Loomis, Peter V. W. (Inventor); Kalafus, Rudolph M. (Inventor); Sheynblat, Leonid (Inventor)

    1994-01-01

    An embodiment of the present invention relates to a worldwide network of differential GPS reference stations (NDGPS) that continually track the entire GPS satellite constellation and provide interpolations of reference station corrections tailored for particular user locations between the reference stations Each reference station takes real-time ionospheric measurements with codeless cross-correlating dual-frequency carrier GPS receivers and computes real-time orbit ephemerides independently. An absolute pseudorange correction (PRC) is defined for each satellite as a function of a particular user's location. A map of the function is constructed, with iso-PRC contours. The network measures the PRCs at a few points, so-called reference stations and constructs an iso-PRC map for each satellite. Corrections are interpolated for each user's site on a subscription basis. The data bandwidths are kept to a minimum by transmitting information that cannot be obtained directly by the user and by updating information by classes and according to how quickly each class of data goes stale given the realities of the GPS system. Sub-decimeter-level kinematic accuracy over a given area is accomplished by establishing a mini-fiducial network.

  19. Development of a Frequency Dependent INS/GPS System Response Model for Bridging GPS Outages

    NASA Astrophysics Data System (ADS)

    El-Diasty, M.; Pagiatakis, S.

    2009-05-01

    The integration of Inertial Navigation System (INS) and Global Positioning System (GPS) architectures can be achieved through the use of many time domain filters such as, an extended Kalman filter, an unscented Kalman filter, divided difference filter, and particle filter. The main objective of all the above filters is to achieve precise fusion of the data from GPS and INS to provide INS only navigation solution during GPS outages. The prediction mode performance of all state of the art time domain filters is poor with significant drift in the INS only solution. In this paper, a new frequency domain dynamic response method with variable frequency bandwidth is proposed to model the INS/GPS system. The Least Squares Spectral Analysis (LSSA), Parzen window based smoothing, and the Inverse Least Squares Fourier Transform (ILSFT) are employed to develop the INS/GPS system frequency response (transfer function). The input to this dynamic system is the INS only solution and the output is the INS/GPS integration solution. The discrete inverse ILSFT of the transfer function is applied to estimate the impulse response of the INS/GPS system. The focus of this paper is the improvement in velocity solution, which leads to almost the same level of improvement in the position solution in an INS/GPS system. To examine the performance of the proposed approach, a kinematic dataset (Dual frequency GPS data from a Trimble BD950 receiver and inertial data from DQI100 IMU) is collected in Hamilton Harbour, Ontario, onboard a hydrographic surveying vessel owned by the Canadian Hydrographic Service. The loosely coupled INS/GPS with unscented Kalman filter is developed to obtain an INS/GPS integrated navigation solution and an INS only solution. Then, the INS/GPS and INS only navigation solutions are used to develop the impulse response of the INS/GPS system. It is shown that the developed impulse response can be used to detect and recover the long term motion dynamics of DQI100 IMU during 300s GPS outages with about 65% dynamic recovery of the north velocity and 45% dynamic recovery of east velocity solution when compared with the INS only solution. We will present and discuss many examples from a variety of GPS outages that exemplify the effectiveness of our method.

  20. Institute of Navigation National Technical Meeting/Anaheim, CA/January 26-28,2000 1 LOW COST INS/GPS INTEGRATION

    E-print Network

    Calgary, University of

    , and has worked extensively on the integration of GPS and inertial navigation systems for precise aircraft of inertial units is the main obstacle for their inclusion in precision navigation systems to support a variety of application areas. Standard inertial navigation systems (INS) use precise gyro

  1. An Inertial Navigation System for Small Autonomous Underwater Vehicles

    Microsoft Academic Search

    Xiaoping Yun; Eric R. Bachmann; Suat Arslan

    2000-01-01

    A small AUV navigation system (SANS) has been developed at the Naval Postgraduate School. The SANS is an integrated GPS\\/INS navigation system composed of low-cost, small-size components. It is designed to demonstrate the feasibility of using a low-cost inertial measurement unit to navigate between intermittent GPS fixes. This paper reports recent improvements to the SANS hardware, latest testing results after

  2. Testing the Preliminary X-33 Navigation System

    NASA Technical Reports Server (NTRS)

    Lomas, James J.; Mitchell, Daniel W.; Freestone, Todd M.; Lee, Charles; Lessman, Craig; Foster, Lee D. (Technical Monitor)

    2001-01-01

    The X-33 Reusable Launch Vehicle (RLV) must meet the demanding requirements of landing autonomously on a narrow landing strip following a flight that reaches an altitude of up to 200,000 feet and a speed in excess of Mach 9 with significant in-flight energy bleed-off maneuvers. To execute this flight regimen a highly reliable avionics system has been designed that includes three LN-100G Inertial Navigation System/Global Positioning System (INS/GPS) units as the primary navigation system for the X-33. NASA's Marshall Space Flight Center (MSFC) tested an INS/GPS system in real-time simulations to determine the ability of this navigation suite to meet the in flight and autonomous landing requirements of the X-33 RLV. A total of sixty-one open loop tests were performed to characterize the navigation accuracy of the LN-100G. Twenty-seven closed-loop tests were also performed to evaluate the performance of the X-33 Guidance, Navigation and Control (GN&C) algorithms with the real navigation hardware. These closed-loop tests were also designed to expose any integration or operational issues with the real-time X-33 vehicle simulation. Dynamic road tests of the INS/GPS were conducted by Litton to assess the performance of differential and nondifferential INS/GPS hybrid navigation solutions. The results of the simulations and road testing demonstrate that this novel solution is capable of meeting the demanding requirements of take-off, in-flight navigation, and autonomous landing of the X-33 RLV. This paper describes the test environment developed to stimulate the LN-100G and discusses the results of this test effort. This paper also presents recommendations for a navigation system suitable to an operational RLV system.

  3. Embedded Low Cost Inertial Navigation System 1

    Microsoft Academic Search

    Kevin J. Walchko; Michael C. Nechyba; Eric Schwartz; Antonio Arroyo

    This paper will discuss the design and implementation of an embedded low cost inertial navigation system (INS) using an inertial measurement unit (IMU), digital compass, GPS, and an embedded computer system. The INS is capable of providing continuous estimates of a vehicle's position and orientation. Typically IMU's are very expensive systems, however this INS will use \\

  4. Regional Navigation System Using Geosynchronous Satellites and Stratospheric Airships

    E-print Network

    Won, Chang-Hee

    he or she is at. Now the Global Positioning System (GPS) provides the ultimate solution is possible. Because there already exists a fully functional global positioning system (i.e., GPS), we propose navigation using just this augmented system without the aid of the existing global positioning system

  5. Inertial navigation systems analysis.

    NASA Technical Reports Server (NTRS)

    Britting, K. R.

    1971-01-01

    This volume offers the avionic systems engineer a fundamental exposition of the mechanization and error analysis of inertial navigation systems. While the material is applicable to spacecraft and undersea navigation, emphasis is placed upon terrestrial applications on or slightly above the earth's surface. As a result, practical considerations are geared toward those aircraft navigation systems of particular current interest. Extensive use is made of perturbation techniques to develop linearized system equations, whose solutions closely approximate those obtained by nonlinear differential equations. A unified error analysis technique is developed that is applicable to virtually all system configurations. The technique provides a greatly simplified method for comparing the performance of competing system configurations.

  6. A navigation algorithm for single channel low-cost GPS receiver

    NASA Technical Reports Server (NTRS)

    Parsiani, H.; Noe, P. S.; Rhyne, V. T.; Painter, J. H.

    1979-01-01

    A sequential navigation algorithm for a navigator using the Global Positioning System satellites is developed and tested for both noise-free and noisy system models. Data from a six-hour flight from California to Hawaii (C5A aircraft) simulates a true user to test the accuracy of the user's position for a sequential navigation system. For error reduction in the user's position in the sequential navigation system (considering 100 m as a maximum average error tolerated by any low-cost GPS user) an analysis of error sources in the sequential system has led to the use of range-ephemeris rate to translate ranges to a common point in time and to use velocity aiding at the time of a satellite disappearance. To reduce the user's position and velocity errors in a noisy navigation system an 'alpha-beta' two-pole filter is implemented whose optimum alpha is obtained experimentally. A user's position error of 73 m at noise range error of 30.48 (1sigma) is achieved.

  7. Institute of Navigation GPS-2000, Salt Lake City, UT, September 2000. 1 Field Test Results for a Self-Calibrating

    E-print Network

    Stanford University

    to robotic systems. Previously, he developed an integrated GPS/computer-vision navigation system for the Stanford HUMMINGBIRD autonomous helicopter. His current research focuses on applying pseudolite for vehicle and robot applications. Prior to joining the Stanford faculty, Dr. Rock led the advanced controls

  8. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    PubMed

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart. PMID:22163846

  9. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    PubMed Central

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart. PMID:22163846

  10. Design and implementation of small navigation system on land vehicle

    NASA Astrophysics Data System (ADS)

    Ma, Shuaiqi

    2013-03-01

    This paper is focused on the problem of frame loss and truncation on multi-channel universal asynchronous receiver transmitter (UART) embedded in Integrated Navigation Systems, and it contains attitude heading reference system (AHRS) and global positioning system (GPS). An advanced design based on FPGA and ARM processor is discussed in this paper, in which FPGA would be used to coordinate with each logic modules, expand UART for GPS and AHRS, resolve navigation information, and save specify data to SD card, which can reduce the delay in data receiving and resolving, while ARM is applied in the area of parameters estimation and navigation algorithms. The experiment results show that this navigation system can use UART to receive, resolve data frames and save data while ARM execute parameter estimation and navigation algorithms in real time. This integrated navigation can effectively avoid the phenomenon of data frame loss or truncation in UART receiving, and can improve the navigation precision.

  11. An effective approach to improving low-cost GPS positioning accuracy in real-time navigation.

    PubMed

    Islam, Md Rashedul; Kim, Jong-Myon

    2014-01-01

    Positioning accuracy is a challenging issue for location-based applications using a low-cost global positioning system (GPS). This paper presents an effective approach to improving the positioning accuracy of a low-cost GPS receiver for real-time navigation. The proposed method precisely estimates position by combining vehicle movement direction, velocity averaging, and distance between waypoints using coordinate data (latitude, longitude, time, and velocity) of the GPS receiver. The previously estimated precious reference point, coordinate translation, and invalid data check also improve accuracy. In order to evaluate the performance of the proposed method, we conducted an experiment using a GARMIN GPS 19xHVS receiver attached to a car and used Google Maps to plot the processed data. The proposed method achieved improvement of 4-10 meters in several experiments. In addition, we compared the proposed approach with two other state-of-the-art methods: recursive averaging and ARMA interpolation. The experimental results show that the proposed approach outperforms other state-of-the-art methods in terms of positioning accuracy. PMID:25136679

  12. An Effective Approach to Improving Low-Cost GPS Positioning Accuracy in Real-Time Navigation

    PubMed Central

    Islam, Md. Rashedul; Kim, Jong-Myon

    2014-01-01

    Positioning accuracy is a challenging issue for location-based applications using a low-cost global positioning system (GPS). This paper presents an effective approach to improving the positioning accuracy of a low-cost GPS receiver for real-time navigation. The proposed method precisely estimates position by combining vehicle movement direction, velocity averaging, and distance between waypoints using coordinate data (latitude, longitude, time, and velocity) of the GPS receiver. The previously estimated precious reference point, coordinate translation, and invalid data check also improve accuracy. In order to evaluate the performance of the proposed method, we conducted an experiment using a GARMIN GPS 19xHVS receiver attached to a car and used Google Maps to plot the processed data. The proposed method achieved improvement of 4–10 meters in several experiments. In addition, we compared the proposed approach with two other state-of-the-art methods: recursive averaging and ARMA interpolation. The experimental results show that the proposed approach outperforms other state-of-the-art methods in terms of positioning accuracy. PMID:25136679

  13. Adaptive calibration of an autonomous underwater vehicle navigation system

    Microsoft Academic Search

    C. M. De Angelis; J. E. Whitney

    2000-01-01

    There continues to exist the problem of long-term accurate position estimation for autonomous underwater vehicles (AUVs). In current operations, the AUVs positional fix is initially obtained on the surface from a global positioning system (GPS) receiver. The AUV then submerges to perform the desired mission. While submerged, location\\/navigation is performed using, at a minimum, an inertial navigation system (INS). Depending

  14. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  15. GPS inferred geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1989-01-01

    Accurate geocentric three-dimensional positioning is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using Very Long Baseline Interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be of the order of one meter. Satellite Laser Ranging (SLR) is capable of determining this offset to better than 10 cm, though, because of the limited number of satellites, this requires a long arc of data. The Global Positioning System (GPS) measurements provide a powerful alternative for an accurate determination of this origin offset in relatively short period of time. Two strategies are discussed, the first utilizes the precise relative positions predetermined by VLBI, whereas the second establishes a reference frame by holding only one of the tracking sites longitude fixed. Covariance analysis studies indicate that geocentric positioning to an accuracy of a few centimeters can be achieved with just one day of precise GPS pseudorange and carrier phase data.

  16. 76 FR 63714 - Technical Standard Order (TSO)-C129a, Airborne Supplemental Navigation Equipment Using the Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ...Navigation Equipment Using the Global Positioning System (GPS) AGENCY: Federal...Navigation Equipment Using the Global Positioning System (GPS...Navigation Equipment Using the Global Positioning System (GPS) effective...

  17. Use of a Reduced IMU to Aid a GPS Receiver with Adaptive Tracking Loops for Land Vehicle Navigation

    E-print Network

    Calgary, University of

    /IMU integration; Reduced IMU; Inertial-aided GPS receiver; Adaptive loop filter; Land vehicle navigation Introduction In land vehicle navigation (LVN) applications, reduced inertial measurement units (IMU) canUse of a Reduced IMU to Aid a GPS Receiver with Adaptive Tracking Loops for Land Vehicle Navigation

  18. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  19. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    SciTech Connect

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  20. gpsTunes controlling navigation via audio feedback Steven Strachan1

    E-print Network

    Murray-Smith, Roderick

    Global Positioning System (GPS) with that of an MP3 player, implemented on a PocketPC, to produce example of a pocket-sized location aware system, based on GPS (Global Positioning System) signals, which

  1. Application of DGPS technique to vehicle navigation system

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Jiao; Hu, Yong-Hui; Hua, Yu

    2005-12-01

    The principle of the differential GPS(DGPS) and the application of the pseudo-range differential technique to the vehicle navigation system(VNS) are introduced briefly, the VNS and the basic composition of the reference station and navigation vehicle are analyzed, and a type of data transfer and processing based on GPRS/GSM communication network for GDPS is presented.

  2. A simple visual navigation system for an UAV

    Microsoft Academic Search

    Tomas Krajnik; Matias Nitsche; Sol Pedre; Libor Preucil; Marta E. Mejail

    2012-01-01

    We present a simple and robust monocular camera-based navigation system for an autonomous quadcopter. The method does not require any additional infrastructure like radio beacons, artificial landmarks or GPS and can be easily combined with other navigation methods and algorithms. Its computational complexity is independent of the environment size and it works even when sensing only one landmark at a

  3. A Resource-Adaptive Mobile Navigation System Jrg Baus, Christian Kray, Antonio Krger, Wolfgang Wahlster

    E-print Network

    Wahlster, Wolfgang - Deutsche Forschungszentrum für Künstliche Intelligenz & FR 6.2

    - mounted display. A GPS system determines the user's actual position and an electronic compass tracks navigation systems. Mobile personal navigation systems will provide location sensitive information, which different positioning technologies such as GPS or GSM/UMTS radio-cell based technologies in an outdoor

  4. GPS error modeling and OTF ambiguity resolution for high-accuracy GPS\\/INS integrated system

    Microsoft Academic Search

    D. A. Grejner-Brzezinska; R. da; C. Toth

    1998-01-01

    .   The Center for Mapping at The Ohio State University is currently developing a fully digital Airborne Integrated Mapping System\\u000a (AIMS) for large-scale mapping and other precise positioning applications. AIMS, installed in an aerial platform, incorporates\\u000a state-of-the-art positioning [differential Global Positioning System (GPS) integrated with an Inertial Navigation System (INS)]\\u000a and imaging (Charge-Coupled Device) technologies. The project goal is to

  5. Laser Inertial Navigation System

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Xenakis, G.; Carestia, R. A.; Bjorkman, W. S.; Schmit, S. F.; Corliss, L. D.

    1986-01-01

    Acceptable accuracy obtained with short alignment time. Report describes successful helicopter tests of laser inertial navigational equipment. Tests conducted over 3-year period, both in laboratory and flight. Inertial system used as position/velocity/attitude indicator and later also served as part of automatic flight-control system.

  6. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode, the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight.

  7. A new multi-position calibration method for MEMS inertial navigation systems

    Microsoft Academic Search

    Z F Syed; P Aggarwal; C Goodall; X Niu; N El-Sheimy

    2007-01-01

    The Global Positioning System (GPS) is a worldwide navigation system that requires a clear line of sight to the orbiting satellites. For land vehicle navigation, a clear line of sight cannot be maintained all the time as the vehicle can travel through tunnels, under bridges, forest canopies or within urban canyons. In such situations, the augmentation of GPS with other

  8. Assessing the Security of a Navigation System: A Case Study using Enhanced Loran

    E-print Network

    Stanford University

    the Global Positioning System (GPS) in the event of an outage or disruption in service [2]." Europe has also Positioning System (GPS) Laboratory. He is the Associate Investigator for the Stanford University efforts Laboratory and the Center for Position, Navigation and Time. 1.0 INTRODUCTION Global Navigation Satellite

  9. GPS-Based Navigation And Orbit Determination for the AMSAT AO-40 Satellite

    NASA Technical Reports Server (NTRS)

    Davis, George; Moreau, Michael; Carpenter, Russell; Bauer, Frank

    2002-01-01

    The AMSAT OSCAR-40 (AO-40) spacecraft occupies a highly elliptical orbit (HEO) to support amateur radio experiments. An interesting aspect of the mission is the attempted use of GPS for navigation and attitude determination in HEO. Previous experiences with GPS tracking in such orbits have demonstrated the ability to acquire GPS signals, but very little data were produced for navigation and orbit determination studies. The AO-40 spacecraft, flying two Trimble Advanced Navigation Sensor (TANS) Vector GPS receivers for signal reception at apogee and at perigee, is the first to demonstrate autonomous tracking of GPS signals from within a HEO with no interaction from ground controllers. Moreover, over 11 weeks of total operations as of June 2002, the receiver has returned a continuous stream of code phase, Doppler, and carrier phase measurements useful for studying GPS signal characteristics and performing post-processed orbit determination studies in HEO. This paper presents the initial efforts to generate AO-40 navigation solutions from pseudorange data reconstructed from the TANS Vector code phase, as well as to generate a precise orbit solution for the AO-40 spacecraft using a batch filter.

  10. Extended Kalman filter synthesis for integrated global positioning\\/inertial navigation systems

    Microsoft Academic Search

    Farhan A. Faruqi; Kenneth J. Turner

    2000-01-01

    The integrated global position system (GPS)\\/inertial navigation system (INS) is a cost-effective way of providing an accurate and reliable navigation system for civil and military aviation. These systems also provide low cost solutions to mid-course navigation and guidance of medium- and long-range weapon systems. In this paper, an error model developed earlier is used for GPS\\/INS filter mechanization (F.A. Faruqi,

  11. NFC Internal: An Indoor Navigation System.

    PubMed

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  12. IMU/GPS System Provides Position and Attitude Data

    NASA Technical Reports Server (NTRS)

    Lin, Ching Fang

    2006-01-01

    A special navigation system is being developed to provide high-quality information on the position and attitude of a moving platform (an aircraft or spacecraft), for use in pointing and stabilization of a hyperspectral remote-sensing system carried aboard the platform. The system also serves to enable synchronization and interpretation of readouts of all onboard sensors. The heart of the system is a commercially available unit, small enough to be held in one hand, that contains an integral combination of an inertial measurement unit (IMU) of the microelectromechanical systems (MEMS) type, Global Positioning System (GPS) receivers, a differential GPS subsystem, and ancillary data-processing subsystems. The system utilizes GPS carrier-phase measurements to generate time data plus highly accurate and continuous data on the position, attitude, rotation, and acceleration of the platform. Relative to prior navigation systems based on IMU and GPS subsystems, this system is smaller, is less expensive, and performs better. Optionally, the system can easily be connected to a laptop computer for demonstration and evaluation. In addition to airborne and spaceborne remote-sensing applications, there are numerous potential terrestrial sensing, measurement, and navigation applications in diverse endeavors that include forestry, environmental monitoring, agriculture, mining, and robotics.

  13. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  14. Pulsar Navigation in the Solar System

    E-print Network

    Dong, Jiang

    2008-01-01

    The X-ray Pulsar-based Autonomous Navigation(XNAV) were recently tested which use the Crab pulsar (PSR B0531+21) in the USA Experiment on flown by the Navy on the Air Force Advanced Research and Global Observation Satellite (ARGOS) under the Space Test Program. It provide the way that the spacecraft could autonomously determine its position with respect to an inertial origin. Now I analysis the sensitivity of the exist instrument and the signal process to use radio pulsar navigation and discuss the integrated navigation use pulsar,then give the different navigation mission analysis and design process basically which include the space, the airborne, the ship and the land of the planet or the lunar.So the pulsar navigation can give the continuous position in deep spaces, that means we can freedom fly successfully in the solar system use celestial navigation that include pulsar and traditional star sensor.It also can less or abolish the depend of Global Navigation Satellite System which include GPS, GRONSS, Gali...

  15. Pulsar Navigation in the Solar System

    E-print Network

    Jiang Dong

    2011-02-04

    The X-ray Navigation and Autonomous position Verification (XNAV) is tested which use the Crab pulsar under the Space Test Program that use starlight refraction. It provide the way that the spacecraft could autonomously determine its position with respect to an inertial origin. Now we analysis the sensitivity of the exist instrument and the signal process that use radio pulsar navigation and discuss the integrated navigation which use radio pulsar, then give the different navigation mission analysis and design process basically which include the space, the airborne, the ship and the land of the planet or the lunar. Our analysis show that we will have the stability profile (signal-to-noise is 5) that use a 2 meters antenna observe some strong sources of radio pulsar in 36 minutes which based on the today's technology. So the pulsar navigation can give the continuous position in deep space, hat means we can freedom fly successfully in the solar system use celestial navigation that include pulsar and traditional star sensor. It also can less or abolish the dependence to Global Navigation Satellite System (GNSS) which include GPS, GRONSS, Galileo and BeiDou et al.

  16. Shuttle Global Positioning (GPS) System design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P.; Huth, G. K.

    1980-01-01

    Investigations of certain aspects and problems of the shuttle global positioning system GPS, are presented. Included are: test philosophy and test outline; development of a phase slope specification for the shuttle GPS antenna; an investigation of the shuttle jamming vulnerability; and an expression for the GPS signal to noise density ratio for the thermal protection system.

  17. Flight evaluation of GPS precise point positioning for helicopter navigation

    Microsoft Academic Search

    Yutaka Shimizu; Masaaki Murata

    2007-01-01

    We reported development and assessment of a precise point positioning (PPP) software for land vehicular navigation in 2006. This paper presents one phase of the continued study at NDA for further extension of the software to helicopter navigation. For 3D users, the height-dependent tropospheric delay is a critical factor, and so the sophisticated correction models and parameter estimation strategies have

  18. Lunar Navigation with Libration Point Orbiters and GPS

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2004-01-01

    NASA is currently studying a Vision for Space Exploration based on spiral development of robotic and piloted missions to the moon and Mars, but research into how to perform such missions has continued ever since the first era of lunar exploration. One area of study that a number of researchers have pursued is libration point navigation and communication relay concepts. These concepts would appear to support many of NASA's current requirements for navigation and communications coverage for human and robotic spacecraft operating in lunar space and beyond. In trading libration point concepts against other options, designers must consider issues such as the number of spacecraft, required to provide coverage, insertion and stationkeeping costs, power and data rate requirements, frequency allocations, and many others. The libration points, along with a typical cis-lunar trajectory, are equilibrium locations for an infinitesimal mass in the rotating coordinate system that follows the motion of two massive bodies in circular orbits with respect to their common barycenter. There are three co-linear points along the line connecting the massive bodies: between the bodies, beyond the secondary body, and beyond the primary body. The relative distances of these points along the line connecting the bodies depend on the mass ratios. There are also two points that form equilateral triangles with the massive bodies. Ideally, motion in the neighborhood of the co-linear points is unstable, while motion near the equilibrium points is stable. However, in the real world, the motions are highly perturbed so that a satellite will require stationkeeping maneuvers.

  19. ION GNSS 2006, Fort Worth TX, 26-29 September 2006 1/14 Integrated GPS/INS System for Pedestrian Navigation in a

    E-print Network

    Calgary, University of

    and Navigation Group (PLAN) Department of Geomatics Engineering, Schulich School of Engineering University and he holds an MSc from the Department of Geomatics Engineering, at the University of Calgary. He. Gérard Lachapelle is a Professor of Geomatics Engineering at the University of Calgary where he

  20. Design and Performance Analysis of GPS Based Precise Relative Navigation for Rendezvous and Formation Flying Missions in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toru

    Precise relative GPS navigation is essential technology for rendezvous and formation flying of spacecraft in Low Earth Orbit. Key design issues of precise relative GPS navigation software are studied and a novel formulation is proposed for the mission which requires high accuracy when the separation distance is up to several km. The navigation filter estimates float navigation solutions by extended Kalman filter with elaborate dynamics models, and resolves ambiguities of integer carrier phase biases to achieve high accuracy fix navigation solutions. A relative navigation software with the proposed formulation is implemented and evaluated in two different ways. One is a test using spacebourne GPS receivers and a GPS signal simulator to evaluate the performance and sensitivity of the software against variation of parameters. The other is a test using actual telemetry data from Gravity Recovery and Climate Experiment (GRACE) to demonstrate the software performance. The design, implementation, and results of the evaluation are presented and discussed on this paper.

  1. An integrated mobile satellite broadcast, paging, communications and navigation system

    NASA Astrophysics Data System (ADS)

    Noreen, Gary K.

    1990-12-01

    The present integrated mobile satellite broadcast, paging, communications and navigation system will use Ku-band and Radiosat ground stations to broadcast digital audio signals and data packets to mobile receivers via a satellite scheduled for launch in 1993. Each mobile radio simultaneously receives L-band digital audio and data broadcasts from GPS through a common omnidirectional mobile antenna and receiver front end. Radiosat mobile radios will employ the GPS broadcasts and differential corrections through the satellite with 2-m accuracy.

  2. Space-qualified GPS receiver and MIMU for an autonomous on-board guidance and navigation package

    NASA Astrophysics Data System (ADS)

    Garavelli, B.; Marradi, L.; Morgan, A.

    1995-12-01

    The interest for an integrated autonomous guidance and navigation control package, satisfying to different mission requirements with a common architecture, is becoming very attractive in the perspective to reduce cost mission and to provide significant benefits when measurements noise conditions may change during the mission and safety critical spacecraft operations are involved. In this paper Laben and Honeywell present an interesting approach to integrate an attitude GPS space receiver and a miniaturized inertial measurement unit (MIMU), to enhance the performances of both sensor systems. In traditional G&NC systems, based on Inertial Navigation Sensor (INS) Measurements, long term drift, affecting zero point stability of gyroscope and accelerometer, are integrated over time during the measurement process, resulting in an increasing attitude and navigation error. These errors can be reduced by periodic reset, shifting the problem to the need of on board accurate and precise absolute position and attitude references. A convenient way to overcome such limitation is here discussed making profit of Laben experience, matured as a company leader in on board data handling and space qualified GPS receiver systems, and by Honeywell as a world leader manufacturer of guidance and navigation packages. The approach would be a guideline for a novel scheme of G&NC architecture where a GPS receiver, performing both attitude and orbit determination, and a MIMU that includes three ring laser gyro and three accelerometers, are integrated in a common unit. In such a system, the measurements performed by the sensors are numerically filtered, removing high side frequency bandwidth noise components, to provide accurate and reliable input data for the attitude and navigation algorithms that will be executed by the embedded guidance computer. The results of such elaboration will be directly the actuation values to drive the space vehicle under both operative and non operative conditions, according to control laws established for the specific mission. With respect to other papers on the subject, the present introduces the characterization of the noise performances of the GPS tensor receiver, the first space qualified GPS receiver performing attitude and orbit determination -- designed and manufactured by Laben, and the analysis of the error model of the MIMU designed and manufactured by Honeywell. From the discussion of such error models a scheme for the sensors data fusion based on an extended Kalman filter is then proposed.

  3. Doppler Lidar Sensor for Precision Navigation in GPS-Deprived Environment

    NASA Technical Reports Server (NTRS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-01-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  4. Doppler lidar sensor for precision navigation in GPS-deprived environment

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  5. Vision enhanced navigation for unmanned systems

    NASA Astrophysics Data System (ADS)

    Wampler, Brandon Loy

    A vision based simultaneous localization and mapping (SLAM) algorithm is evaluated for use on unmanned systems. SLAM is a technique used by a vehicle to build a map of an environment while concurrently keeping track of its location within the map, without a priori knowledge. The work in this thesis is focused on using SLAM as a navigation solution when global positioning system (GPS) service is degraded or temporarily unavailable. Previous work on unmanned systems that lead up to the determination that a better navigation solution than GPS alone is first presented. This previous work includes control of unmanned systems, simulation, and unmanned vehicle hardware testing. The proposed SLAM algorithm follows the work originally developed by Davidson et al. in which they dub their algorithm MonoSLAM [1--4]. A new approach using the Pyramidal Lucas-Kanade feature tracking algorithm from Intel's OpenCV (open computer vision) library is presented as a means of keeping correct landmark correspondences as the vehicle moves through the scene. Though this landmark tracking method is unusable for long term SLAM due to its inability to recognize revisited landmarks, as opposed to the Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), its computational efficiency makes it a good candidate for short term navigation between GPS position updates. Additional sensor information is then considered by fusing INS and GPS information into the SLAM filter. The SLAM system, in its vision only and vision/IMU form, is tested on a table top, in an open room, and finally in an outdoor environment. For the outdoor environment, a form of the slam algorithm that fuses vision, IMU, and GPS information is tested. The proposed SLAM algorithm, and its several forms, are implemented in C++ using an Extended Kalman Filter (EKF). Experiments utilizing a live video feed from a webcam are performed. The different forms of the filter are compared and conclusions are made on the effectiveness of the SLAM algorithm for use on the current unmanned vehicles in Purdue's Hybrid Systems Lab. Recommendations for future improvements in applying computer vision to unmanned systems are also presented in the final chapter.

  6. Cosmic Navigation and Inertial Navigation System

    NASA Astrophysics Data System (ADS)

    Samardzija, B.; Segan, S.

    2012-12-01

    In this paper, we expose general performance of navigation, compared and opposed to astrodynamics and marine navigation, observing methods for determining the orbit and operating in the Space and on the Earth and, also, pre-satellite and post-satellite era of cosmic navigation.

  7. GPS Basics

    NSDL National Science Digital Library

    The Federal Aviation Administration maintains the graphically impressive Global Positioning System (GPS) Basics Web site. From the history of the global positioning system and how it works to governmental policy that controls its use, this site does a good job of explaining all facets of what GPS is about without being overly technical. Interested visitors can explore some of the other links that cover satellite navigation topics as well, such as GPS programs; a library of documents, fact sheets, press releases, and news; frequently asked questions; links; and more. Anyone interested in mapping, navigation, or similar subjects will enjoy exploring the interesting information provided on this well designed site.

  8. Optical Navigation System for Mobile Terrestrial LiDAR System

    NASA Astrophysics Data System (ADS)

    Hefford, S. W.; Samson, C.; Iles, P. J.; Harrison, J. W.; Ferrie, F. F.; Kusevic, K. P.; Mrstik, P.

    2009-05-01

    TITAN is a mobile terrestrial LiDAR system operated by Terrapoint Canada Inc. of Ottawa, Ontario. This system consists of four LiDAR scanners for complete 360 degree coverage: two forward-facing LiDARs that scan objects on either side of the vehicle; and two rear-facing LiDARs that scan objects above and below the vehicle. The LiDAR scanners operate continuously as the vehicle moves through target areas. Continuous scanning provides regions of overlap in which objects are scanned twice: first by the forward-facing LiDARs, then by the rear-facing LiDARs. The primary method to acquire positional information for TITAN is GPS. However, relying mainly on GPS limits the performance of the system in locations where GPS signal is unavailable or intermittent (i.e. underground and in urban canyons). In such areas, the use of a supplemental Inertial Navigation System (INS) reduces the error associated with GPS signal loss, however, the positional accuracy of the INS degrades exponentially when GPS is not available. This research project explores the possibility of complementing the current position sensors with an Optical Navigation System (ONS). In this approach, additional positional information is extracted directly from point cloud data acquired by the mobile terrestrial LiDAR system. The method uses both geometry and intensity features, and involves the following steps: (1) tessellating the overlapping LiDAR point clouds into smaller segments; (2) quantitatively assessing each pair of overlapping point clouds with respect to intensity and geometric variation to select good candidates for alignment; (3) aligning the overlapping point clouds; (4) using the offsets produced by the alignment to determine the positional correction to be applied to the vehicle's trajectory. A successful positional correction technique, that is independent from external signals such as GPS greatly increases the versatility of mobile terrestrial LiDAR systems and has applications for a variety of other survey systems.

  9. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...Components of the GNSS include GPS, the Global Orbiting Navigation Satellite System, and WAAS satellites. Global Positioning System (GPS). GPS is a satellite-based radio navigational, positioning, and time transfer system....

  10. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...Components of the GNSS include GPS, the Global Orbiting Navigation Satellite System, and WAAS satellites. Global Positioning System (GPS). GPS is a satellite-based radio navigational, positioning, and time transfer system....

  11. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Components of the GNSS include GPS, the Global Orbiting Navigation Satellite System, and WAAS satellites. Global Positioning System (GPS). GPS is a satellite-based radio navigational, positioning, and time transfer system....

  12. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...Components of the GNSS include GPS, the Global Orbiting Navigation Satellite System, and WAAS satellites. Global Positioning System (GPS). GPS is a satellite-based radio navigational, positioning, and time transfer system....

  13. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...Components of the GNSS include GPS, the Global Orbiting Navigation Satellite System, and WAAS satellites. Global Positioning System (GPS). GPS is a satellite-based radio navigational, positioning, and time transfer system....

  14. An alternative ionospheric correction model for global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  15. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  16. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  17. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION AND INITIALIZATION OF THE MAGELLAN GPS SATELLITE NAVIGATOR (UA-F-22.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the general procedures for the operation and initialization of the Magellan Global Positioning System (GPS) Satellite Navigator. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the "Bord...

  18. GPS-Based Navigation and Orbit Determination for the AMSAT Phase 3D Satellite

    NASA Technical Reports Server (NTRS)

    Davis, George; Carpenter, Russell; Moreau, Michael; Bauer, Frank H.; Long, Anne; Kelbel, David; Martin, Thomas

    2002-01-01

    This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more important, that the receiver clock can be synchronized to GPS time. This is extremely important for real-time and post-processed orbit determination, where removal of receiver clock bias from the data time tags is needed, for time-tagging of science observations. Current analysis suggests that the inability to generate point solutions has allowed the TANS Vector clock bias to drift freely, being perhaps as large as 5-7 seconds by October, 2001, thus causing up to 50 km of along-track orbit error. The data collected in May, 2002 while in three-axis stabilized mode should provide a significant improvement in the orbit determination results.

  19. Tightly Coupled Visual-Inertial Navigation System Using Optical Flow

    E-print Network

    Daraio, Chiara

    Tightly Coupled Visual-Inertial Navigation System Using Optical Flow Simon Lynen Sammy Omari vehicles (UAV), in GPS-denied environ- ments using vision sensors (? ),(2). Especially optical flow- based no assumption on the orientation of the plane and does not rely on any distance or bearing sensors. Instead

  20. Wellborne inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-01-01

    A phototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimbaled inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of +- 100 to +- 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about +- 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  1. Differential wheel speed sensor integration with GPS/INS for land vehicle navigation

    NASA Astrophysics Data System (ADS)

    Hazlett, Andrew C.

    This paper develops an approach for the integration of GPS, inertial measurements from accelerometers and gyros, and differential wheel speed sensors for land vehicle navigation. Incorporating differential wheel speed sensor information into land vehicle navigation provides a solution for eliminating large errors caused by vehicle roll and pitch while also reducing errors from sideslip. Extended Kalman and Unscented Filtering algorithms are designed with a six degree-of-freedom model. In order to incorporate differential wheel speed information properly, the effective wheel radius must also be estimated as part of the overall estimation approach. Simulation results show the performance of the filters for cases of GPS/INS with and without the differential wheel speed sensor.

  2. A Comparative Study of Kalman Filter Implementations for Relative GPS Navigation

    E-print Network

    Fritz, Matthew Peyton

    2011-02-22

    and implemented. A visibility analysis is performed to determine the number of visible satellites throughout the duration of the rendezvous. Multiple constant elds of view are analyzed and results compared to develop an understanding of how the GPS constellation... evolves during the proximity operations. The comparison is used to choose a eld of view with ade- quate satellite coverage. The advantages and disadvantages of the relative navigation architectures are evaluated based on a trade study involving several...

  3. Fusion of Redundant Autonomous Sensors for Navigation

    E-print Network

    ) : absolute position Inertial Navigation Systems (INS) : relative position, velocity and orientation Aiding for correcting inertial navigation system positions Accurate filtered trajectory Bad case: What happens if GPS SAMPLING RATE) INERTIAL NAVIGATION SYSTEM POSITIONS (HIGH SAMPLING RATE) TRUE TRAJECTORY FILTERED

  4. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  5. Shuttle Global Positioning System (GPS) system design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1979-01-01

    The various integration problems in the Shuttle GPS system were investigated. The analysis of the Shuttle GPS link was studied. A preamplifier was designed since the Shuttle GPS antennas must be located remotely from the receiver. Several GPS receiver architecture trade-offs were discussed. The Shuttle RF harmonics and intermode that fall within the GPS receiver bandwidth were analyzed. The GPS PN code acquisition was examined. Since the receiver clock strongly affects both GPS carrier and code acquisition performance, a clock model was developed.

  6. ASRS Database Report Set Global Positioning System (GPS) Reports

    E-print Network

    ASRS Database Report Set Global Positioning System (GPS) Reports Report Set Description.........................................A variety of reports referencing use of Global Positioning System (GPS) devices. Update Number

  7. Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)

    1997-01-01

    The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).

  8. An integrated GPS attitude determination system for small satellites

    NASA Astrophysics Data System (ADS)

    Chesley, Bruce Carl

    1995-07-01

    This dissertation develops attitude determination methods based on the Global Positioning System (GPS) for small satellites. A GPS attitude receiver is used in combination with other sensors planned for a small, three-axis stabilized satellite called JAWS AT. The other attitude sensors include fiber optic gyros and digital sun sensors. The development of integrated attitude determination systems contributes to critical national technological objectives identified for small spacecraft. A recent study by the National Research Council addresses key technologies for small satellite programs. One of their principal recommendations was that, 'GPS in various combinations with other guidance components can determine position and attitude very accurately, probably at significantly reduced weight and cost.' The report also identifies specific potential benefits of integrating OPS with other sensors on small spacecraft. 'Combining GPS and an inertial measurement unit (with gyroscopes, accelerometers, or trackers) offers major advantages by bounding errors of the inertial set, providing exceptionally good long-term references and thereby ensuring precise, on-board navigation and, with appropriate complimentary techniques, providing a higher level of redundancy and/or accuracy for position, velocity, and attitude.' This dissertation develops algorithms that result in improved accuracy and redundancy through the development of complimentary techniques for combining GPS measurements with gyroscopes and sun sensors.

  9. Non-linear mathematical model for integrated global positioning\\/inertial navigation systems

    Microsoft Academic Search

    Farhan A. Faruqi

    2000-01-01

    In recent years there has been a major upsurge of interest in the integrated global positioning system (GPS)\\/inertial navigation system (INS) as a cost-effective way of providing accurate and reliable navigation aid for civil and military vehicles (ships, aircrafts, land vehicles). In this paper an error model is developed which can be used for GPS\\/INS filter mechanization. It is shown

  10. Designing Navigation Support in Hypertext Systems Based on Navigation Patterns

    ERIC Educational Resources Information Center

    Puntambekar, Sadhana; Stylianou, Agni

    2005-01-01

    In this paper, we present two studies designed to help students navigate effectively and learn from a hypertext system, CoMPASS. Our first study ("N" = 74) involved an analysis of students' navigation patterns to group them into clusters, using a "k"-means clustering technique. Based on this analysis, navigation patterns were grouped into four…

  11. Integrated communications and optical navigation system

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Pajer, G.; Paluszek, M.

    2013-12-01

    The Integrated Communications and Optical Navigation System (ICONS) is a flexible navigation system for spacecraft that does not require global positioning system (GPS) measurements. The navigation solution is computed using an Unscented Kalman Filter (UKF) that can accept any combination of range, range-rate, planet chord width, landmark, and angle measurements using any celestial object. Both absolute and relative orbit determination is supported. The UKF employs a full nonlinear dynamical model of the orbit including gravity models and disturbance models. The ICONS package also includes attitude determination algorithms using the UKF algorithm with the Inertial Measurement Unit (IMU). The IMU is used as the dynamical base for the attitude determination algorithms. This makes the sensor a more capable plug-in replacement for a star tracker, thus reducing the integration and test cost of adding this sensor to a spacecraft. Recent additions include an integrated optical communications system which adds communications, and integrated range and range rate measurement and timing. The paper includes test results from trajectories based on the NASA New Horizons spacecraft.

  12. Analysis of Spaceborne GPS Systems

    NASA Technical Reports Server (NTRS)

    Cosmo, Mario L.; Davis, James L.; Elosegui, Pedro; Hill, Michael; ScireScapuzzo, Francesca

    1998-01-01

    A reasonable amount of literature can be found on the general topic of GPS receiving antennas, but very little has been published on spaceborne GPS receiving antennas. This very new topic seems to be so far more of interest for the industrial world than for the academic community. For satellite applications, microstrip antennas are usually preferred over other types of antennas mainly because of their non-electrical characteristics, such as small size, relatively lightweight, shape, possibility of integration with microwave integrated circuits, and relatively low costs. Careful design of patch antennas could meet all the requirements (electrical and non-electrical) of GPS receiving antenna to be mounted on a tethered satellite.

  13. Trends in inertial systems technology for high accuracy AUV navigation

    Microsoft Academic Search

    J. R. Huddle

    1998-01-01

    Medium accuracy inertial systems of the 1 nautical mile per hour class, enjoyed significant acceptance in the market for land survey systems in the early 1970's-prior to the introduction of GPS. This occurred because such systems could be implemented with software that capitalized on “zero velocity updates” (ZUPTS) which enabled the resultant system to achieve real-time navigation accuracies of a

  14. A low cost integrated navigation system applied on UAV and some simulations results

    Microsoft Academic Search

    Wei Liu; Jingjuan Zhang; Guoliang Yang

    2008-01-01

    The development of Un-manned Aerial Vehicles (UAV) is analyzed, and an integrated MEMS-SINS \\/GPS\\/ Pressure Altimeter \\/ Magnetic Compass is presented as an airborne equipment for UAV. In this low cost integrated navigation system, the position and velocity precision can be ensured due to GPS, and the pitch and roll precision can be ensured due to accelerometers. The heading's observability

  15. The Performance Analysis of a 3d Map Embedded Ins/gps Fusion Algorithm for Seamless Vehicular Navigation in Elevated Highway Environments

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Chiang, K. W.

    2012-07-01

    In this study, a 3D Map Matching (3D MM) algorithm is embedded to current INS/GPS fusion algorithm for enhancing the sustainability and accuracy of INS/GPS integration systems, especially the height component. In addition, this study propose an effective solutions to the limitation of current commercial vehicular navigation systems where they fail to distinguish whether the vehicle is moving on the elevated highway or the road under it because those systems don't have sufficient height resolution. To validate the performance of proposed 3D MM embedded INS/GPS integration algorithms, in the test area, two scenarios were considered, paths under the freeways and streets between tall buildings, where the GPS signal is obstacle or interfered easily. The test platform was mounted on the top of a land vehicle and also systems in the vehicle. The IMUs applied includes SPAN-LCI (0.1 deg/hr gyro bias) from NovAtel, which was used as the reference system, and two MEMS IMUs with different specifications for verifying the performance of proposed algorithm. The preliminary results indicate the proposed algorithms are able to improve the accuracy of positional components in GPS denied environments significantly with the use of INS/GPS integrated systems in SPP mode.

  16. DPMs for the Density Estimation in a Dynamic Nonlinear Modeling: Application to GPS

    E-print Network

    Paris-Sud XI, Université de

    In Global Positioning System (GPS), classical localization algorithms assume, when the signal is received/masking effects. Index Terms Global Positioning System (GPS), navigation, urban canyon, pseudorange errors layers, multipath, diffraction and mask phenomena). Today, Global Navigation Satellite Systems (GNSS

  17. Differential GPS\\/inertial navigation approach\\/landing flight test results

    Microsoft Academic Search

    S. Snyder; B. Schipper; L. Vallot; N. Parker; C. Spitzer

    1992-01-01

    In November 1990, a differential GPS\\/inertial flight test was conducted to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS\\/INS with barometric and radar altimeters. Flight test results obtained from postflight data analysis are presented. These results include characteristics of DGPS\\/inertial error, using a laser tracker as a reference. In addition, data are provided on

  18. Precise near-earth navigation with GPS: A survey of techniques

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S. C.; Wu, J.

    1987-01-01

    The tracking accuracy of the low earth orbiters (below about 3000 km altitude) can be brought below 10 cm with a variety of differential techniques that exploit the Global Positioning System (GPS). All of these techniques require a precisely known global network of GPS ground receivers and a receiver aboard the user satellite, and all simultaneously estimate the user and GPS satellite orbits. Three basic approaches are the geometric, dynamic, and nondynamic strategies. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the nondynamic strategy show considerable promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a novel gravity-adjustment method to exploit data from repeat ground tracks. These techniques will offer sub-decimeter accuracy for dynamically unpredictable satellites down to the lowesst possible altitudes.

  19. Software for a GPS-Reflection Remote-Sensing System

    NASA Technical Reports Server (NTRS)

    Lowe, Stephen

    2003-01-01

    A special-purpose software Global Positioning System (GPS) receiver designed for remote sensing with reflected GPS signals is described in Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System (NPO-30385), which appears elsewhere in this issue of NASA Tech Briefs. The input accepted by this program comprises raw (open-loop) digitized GPS signals sampled at a rate of about 20 MHz. The program processes the data samples to perform the following functions: detection of signals; tracking of phases and delays; mapping of delay, Doppler, and delay/Doppler waveforms; dual-frequency processing; coherent integrations as short as 125 s; decoding of navigation messages; and precise time tagging of observable quantities. The software can perform these functions on all detectable satellite signals without dead time. Open-loop data collected over water, land, or ice and processed by this software can be further processed to extract geophysical information. Possible examples include mean sea height, wind speed and direction, and significant wave height (for observations over the ocean); bistatic-radar terrain images and measures of soil moisture and biomass (for observations over land); and estimates of ice age, thickness, and surface density (for observations over ice).

  20. Integrated Inertial/gps

    NASA Technical Reports Server (NTRS)

    Kline, Paul; Vangraas, Frank

    1990-01-01

    The presence of failures in navigation sensors can cause the determination of an erroneous aircraft state estimate, which includes position, attitude, and their derivatives. Aircraft flight control systems rely on sensor inputs to determine the aircraft state. In the case of integrated Inertial/NAVSTAR Global Positioning System (GPS), sensor failures could occur in the on-board inertial sensors or in the GPS measurements. The synergistic use of both GPS and the Inertial Navigation System (INS) allows for highly reliable fault detection and isolation of sensor failures. Integrated Inertial/GPS is a promising technology for the High Speed Civil Transport (HSCT) and the return and landing of a manned space vehicle.

  1. On-line smoothing for an integrated navigation system with low-cost MEMS inertial sensors.

    PubMed

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai; Lai, Ying-Chih; Chang, Chin-Chia; Cai, Jia-Ming; Huang, Shih-Ching

    2012-01-01

    The integration of the Inertial Navigation System (INS) and the Global Positioning System (GPS) is widely applied to seamlessly determine the time-variable position and orientation parameters of a system for navigation and mobile mapping applications. For optimal data fusion, the Kalman filter (KF) is often used for real-time applications. Backward smoothing is considered an optimal post-processing procedure. However, in current INS/GPS integration schemes, the KF and smoothing techniques still have some limitations. This article reviews the principles and analyzes the limitations of these estimators. In addition, an on-line smoothing method that overcomes the limitations of previous algorithms is proposed. For verification, an INS/GPS integrated architecture is implemented using a low-cost micro-electro-mechanical systems inertial measurement unit and a single-frequency GPS receiver. GPS signal outages are included in the testing trajectories to evaluate the effectiveness of the proposed method in comparison to conventional schemes. PMID:23443403

  2. On-Line Smoothing for an Integrated Navigation System with Low-Cost MEMS Inertial Sensors

    PubMed Central

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai; Lai, Ying-Chih; Chang, Chin-Chia; Cai, Jia-Ming; Huang, Shih-Ching

    2012-01-01

    The integration of the Inertial Navigation System (INS) and the Global Positioning System (GPS) is widely applied to seamlessly determine the time-variable position and orientation parameters of a system for navigation and mobile mapping applications. For optimal data fusion, the Kalman filter (KF) is often used for real-time applications. Backward smoothing is considered an optimal post-processing procedure. However, in current INS/GPS integration schemes, the KF and smoothing techniques still have some limitations. This article reviews the principles and analyzes the limitations of these estimators. In addition, an on-line smoothing method that overcomes the limitations of previous algorithms is proposed. For verification, an INS/GPS integrated architecture is implemented using a low-cost micro-electro-mechanical systems inertial measurement unit and a single-frequency GPS receiver. GPS signal outages are included in the testing trajectories to evaluate the effectiveness of the proposed method in comparison to conventional schemes. PMID:23443403

  3. Tight coupling of GPS, laser scanner, and inertial measurements for navigation in urban environments

    Microsoft Academic Search

    Andrey Soloviev

    2008-01-01

    Many applications can be envisioned for accurate, robust, and reliable navigation solution in challenging urban environments. Examples of existing and prospective applications include, but are not limited to, navigation, guidance, and control of autonomous vehicles (including both ground and aerial vehicles) for urban surveillance and reconnaissance; collection of geographical information system (GIS) data in cities; monitoring of urban infrastructure for

  4. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one satellite is in view (the longest duration with no satellites in view is important in determining the maximum clock drift from GNSS time). Instantaneous position requires four satellites in view, but because orbital motion is predictable, it is possible to build up knowledge of the orbital position gradually through time without a need for constant four satellite coverage. However, it is desirable to have four satellite coverage when performing satellite maneuvers, since there can be significant changes in velocity, leading to large changes in orbit parameter, causing substantial divergence in position over time. The Space Service Volume has been defined as the volume between three thousand km altitude and geosynchronous altitude, and can be divided into medium orbit services between three thousand km altitude and eight thousand km altitude, and high orbit services above eight thousand km. The Terrestrial Service Volume includes the Earth s surface, the atmosphere, and space below the altitude of three thousand km. The Terrestrial Service Volume is the volume within which the GNSS systems will have very similar performance to the Earth surface, and satellites need only use the signals specified to provide terrestrial performance. Above three thousand km the use of signals passing by the Earth s limb becomes important, so it is desirable to have additional information on signal strength, phase delay, and group delay covering wider beam angles than are needed for terrestrial service (and which can be obtained by monitoring GNSS signals from the Earth s surface). This presentation will look at each of the new GNSS constellations in combination with GPS (GLONASS with GPS, Galileo with GPS, Beidou/COMPASS with GPS), and also at the combination of all four GNSS systems. The presentation will largely follow the format of GPS in the Space Service Volume , presenting data on the availability of one, two, three, or four of the various combinations of GNSS constellation satelles at approximately two thousand grid points evenly spaced and fixed in longitude and latitude, t

  5. The open service signal in space navigation data comparison of the Global Positioning System and the BeiDou Navigation Satellite System.

    PubMed

    Jan, Shau-Shiun; Tao, An-Lin

    2014-01-01

    More and more Global Navigation Satellite Systems (GNSSs) have been developed and are in operation. Before integrating information on various GNSSs, the differences between the various systems must be studied first. This research focuses on analyzing the navigation data differences between the Chinese BeiDou Navigation Satellite System (BDS) and the United States' Global Positioning System (GPS). In addition to explaining the impact caused by these two different coordinate and time systems, this research uses an actual open service signal in space (SIS) for both GPS and BDS to analyze their current system performance. Five data quality analysis (DQA) mechanisms are proposed in this research to validate both systems' SIS navigation data. These five DQAs evaluate the differences in ephemeris and almanac messages from both systems for stability and accuracy. After all of the DQAs, the different issues related to GPS and BDS satellite information are presented. Finally, based on these DQA results, this research provides suggested resolutions for the combined use of GPS and BDS for navigation and guidance. PMID:25195848

  6. The Open Service Signal in Space Navigation Data Comparison of the Global Positioning System and the BeiDou Navigation Satellite System

    PubMed Central

    Jan, Shau-Shiun; Tao, An-Lin

    2014-01-01

    More and more Global Navigation Satellite Systems (GNSSs) have been developed and are in operation. Before integrating information on various GNSSs, the differences between the various systems must be studied first. This research focuses on analyzing the navigation data differences between the Chinese BeiDou Navigation Satellite System (BDS) and the United States' Global Positioning System (GPS). In addition to explaining the impact caused by these two different coordinate and time systems, this research uses an actual open service signal in space (SIS) for both GPS and BDS to analyze their current system performance. Five data quality analysis (DQA) mechanisms are proposed in this research to validate both systems' SIS navigation data. These five DQAs evaluate the differences in ephemeris and almanac messages from both systems for stability and accuracy. After all of the DQAs, the different issues related to GPS and BDS satellite information are presented. Finally, based on these DQA results, this research provides suggested resolutions for the combined use of GPS and BDS for navigation and guidance. PMID:25195848

  7. Global Positioning System Time Transfer Receiver (GPS/TTR) prototype design and initial test evaluation

    NASA Technical Reports Server (NTRS)

    Oaks, J.; Frank, A.; Falvey, S.; Lister, M.; Buisson, J.; Wardrip, C.; Warren, H.

    1982-01-01

    Time transfer equipment and techniques used with the Navigation Technology Satellites were modified and extended for use with the Global Positioning System (GPS) satellites. A prototype receiver was built and field tested. The receiver uses the GPS L1 link at 1575 MHz with C/A code only to resolve a measured range to the satellite. A theoretical range is computed from the satellite ephemeris transmitted in the data message and the user's coordinates. Results of user offset from GPS time are obtained by differencing the measured and theoretical ranges and applying calibration corrections. Results of the first field test evaluation of the receiver are presented.

  8. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    NASA Astrophysics Data System (ADS)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a two-stage Kalman Filter approach. The performance comparison of the algorithm based on different field and simulated datasets, with varying levels of sensor errors, showed that 90 per cent success rate was achieved in detection of outliers for SL and 80 per cent for SD. The SL is predicted for both KBS-based ANN and FL approaches with an average accumulated error of 2 per cent, observed for the total distance traveled, which is generally an improvement over most of the existing pedometry systems. The target accuracy of the system is +/-(3-5)m CEP50 (circular error, probable 50%). This dissertation provides a performance analysis in the outdoor and indoor environments for different operators. Another objective of this dissertation is to test the system's navigation limitation in DR mode in terms of time and trajectory length in order to determine the upper limit of indoor operations. It was determined that for more than four indoor loops, where the user walked 261m in about 6.5 minutes, the DR performance met the required accuracy specifications. However, these results are only relevant to the existing data. Future studies should consider more comprehensive performance analysis for longer trajectories in challenging environments and possible extension to image-based navigation to expand the indoor capability of the system.

  9. 75 FR 61818 - Eighty-Third Meeting: RTCA Special Committee 159: Global Positioning System (GPS).

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ...Special Committee 159: Global Positioning System (GPS). AGENCY: Federal...Committee 159 meeting: Global Positioning System (GPS...Special Committee 159: Global Positioning System (GPS). DATES: The...

  10. 76 FR 67019 - Eighty-Seventh: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ...Special Committee 159: Global Positioning System (GPS) AGENCY: Federal...Committee 159 meeting: Global Positioning System (GPS...Special Committee 159: Global Positioning System (GPS) 87th meeting....

  11. 76 FR 27744 - Eighty-Fifth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ...Special Committee 159: Global Positioning System (GPS) AGENCY: Federal...Committee 159 meeting: Global Positioning System (GPS...Special Committee 159: Global Positioning System (GPS). DATES: The...

  12. 75 FR 28318 - Eighty-Second Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ...Special Committee 159: Global Positioning System (GPS) AGENCY: Federal...Committee 159 meeting: Global Positioning System (GPS...Special Committee 159: Global Positioning System (GPS). DATES: The...

  13. 76 FR 33022 - Eighty-Sixth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ...Special Committee 159: Global Positioning System (GPS) AGENCY: Federal...Committee 159 meeting: Global Positioning System (GPS...Special Committee 159: Global Positioning System (GPS). DATES: The...

  14. 75 FR 2581 - Eighty-First Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ...Special Committee 159: Global Positioning System (GPS) AGENCY: Federal...Committee 159 meeting: Global Positioning System (GPS...Special Committee 159: Global Positioning System (GPS). DATES: The...

  15. 77 FR 12106 - 88th Meeting: RTCA Special Committee 159, Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ...Special Committee 159, Global Positioning System (GPS) AGENCY: Federal...Special Committee 159, Global Positioning System (GPS...Special Committee 159, Global Positioning System (GPS). DATES: The...

  16. 77 FR 56254 - 89th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ...Special Committee 159, Global Positioning Systems (GPS) AGENCY: Federal...Special Committee 159, Global Positioning Systems (GPS...Special Committee 159, Global Positioning Systems (GPS). DATES: The...

  17. 78 FR 13396 - 90th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ...Special Committee 159, Global Positioning Systems (GPS) AGENCY: Federal...Special Committee 159, Global Positioning Systems (GPS...Special Committee 159, Global Positioning Systems (GPS). DATES: The...

  18. 78 FR 57672 - 91st Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ...Special Committee 159, Global Positioning Systems (GPS) AGENCY: Federal...Special Committee 159, Global Positioning Systems (GPS...Special Committee 159, Global Positioning Systems (GPS) DATES: The...

  19. Orion Absolute Navigation System Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2011-01-01

    The Orion spacecraft is being designed as NASA's next-generation exploration vehicle for crewed missions beyond Low-Earth Orbit. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudorange and deltarange, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, pad alignment, cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  20. Quantifying Improvements from the Integration of GPS and a Tactical Grade INS in High

    E-print Network

    Calgary, University of

    of satellite and inertial navigation since that time. Some of his past research includes integration of GPS on the integration of GPS and inertial navigation systems for precise aircraft positioning. Dr. Cannon is a Past. INTRODUCTION The integration of Global Positioning System (GPS) receivers with Inertial Navigation Systems (INS

  1. Pedestrian tracking and navigation using an adaptive knowledge system based on neural networks

    NASA Astrophysics Data System (ADS)

    Grejner-Brzezinska, Dorota A.; Toth, Charles; Moafipoor, Shahram

    2007-11-01

    The primary objective of the research presented here is to develop theoretical foundations and implementation algorithms, which integrate the Global Positioning System (GPS), micro-electromechanical inertial measurement unit (MEMS IMU), digital barometer, electronic compass, and human pedometry to provide navigation and tracking of military and rescue ground personnel. This paper discusses the design, implementation and the performance analyses of the personal navigator prototype, with a special emphasis on dead-reckoning (DR) navigation supported by the human locomotion model. The adaptive knowledge system, based on the Artificial Neural Networks (ANN), is implemented to support this functionality. The knowledge system is trained during the GPS signal reception and is used to support navigation under GPS-denied conditions. The human locomotion parameters, step frequency (SF) and step length (SL), are extracted from GPS-timed impact switches (step frequency) and GPS/IMU data (step length), respectively, during the system calibration period. SL is correlated with several data types, such as acceleration, acceleration variation, SF, terrain slope, etc. that constitute the input parameters to the ANN-based knowledge system. The ANN-predicted SL, together with the heading information from the compass and gyro, support DR navigation. The current target accuracy of the system is 3-5 m CEP (circular error probable) 50%.

  2. Differential GPS/inertial navigation approach/landing flight test results

    NASA Technical Reports Server (NTRS)

    Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary

    1992-01-01

    Results of a joint Honeywell/NASA-Langley differential GPS/inertial flight test conducted in November 1990 are discussed focusing on postflight data analysis. The test was aimed at acquiring a system performance database and demonstrating automatic landing based on an integrated differential GPS/INS with barometric and radar altimeters. Particular attention is given to characteristics of DGPS/inertial error and the magnitude of the differential corrections and vertical channel performance with and without altimeter augmentation. It is shown that DGPS/inertial integrated with a radar altimeter is capable of providing a precision approach and autoland guidance of manned return space vehicles within the Space Shuttle accuracy requirements.

  3. Precision navigation for aerospace applications

    E-print Network

    Stimac, Andrew K. (Andrew Kenneth), 1977-

    2004-01-01

    Navigation is important in a variety of aerospace applications, and commonly uses a blend of GPS and inertial sensors. In this thesis, a navigation system is designed, developed, and tested. Several alternatives are ...

  4. A neuro-wavelet method for multi-sensor system integration for vehicular navigation

    NASA Astrophysics Data System (ADS)

    Noureldin, Aboelmagd; Osman, Ahmed; El-Sheimy, Naser

    2004-02-01

    The last two decades have shown an increasing trend in the use of navigation technologies in several applications including land vehicles and automated car navigation. Navigation systems incorporate the global positioning system (GPS) and the inertial navigation system (INS). While GPS provides position information when there is direct line of sight to four or more satellites, INS utilizes the local measurements of angular velocity and linear acceleration to determine both the vehicle's position and attitude. Both systems are integrated together to provide reliable navigation solutions by overcoming each of their respective shortcomings. The present integration schemes, which are predominantly based on Kalman filtering, have several inadequacies related to sensor error models, immunity to noise and observability. This paper aims at introducing a multi-sensor system integration approach for fusing data from an INS and GPS hardware utilizing wavelet multi-resolution analysis (WMRA) and artificial neural networks (ANN). The WMRA is used to compare the INS and GPS position outputs at different resolution levels. The ANN module is then trained to predict the INS position errors in real time and provide accurate positioning of the moving vehicle. The field-test results have demonstrated that substantial improvements in INS/GPS positioning accuracy could be obtained by applying the proposed neuro-wavelet technique.

  5. Navigating the System

    MedlinePLUS

    ... Video Games Video Sharing Sites Webcasts/ Webinars Widgets Wikis Follow Us on New Media News & Events Awareness ... in mind when you are moving through the medical and service system. IT IS IMPORTANT TO REMEMBER: ...

  6. GPS 375 (10033807,

    E-print Network

    Cho, Sung-Bae

    .5) . GPS GPS . GSM (Global System for Mobile commu- nication) WPS (Wi-Fi Positioning System , . . , . 2.3 GPS, WPS, GSM-Positioning . GPS [3]. GPS GPS , 2 . Paek RAPS (Rate Adaptive Positioning System) . . , GSM , . GPS

  7. Flight simulation for an inertial navigation system

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. V.

    1983-08-01

    Kinematic schemes and control laws are developed for testing an inertial navigation system using a dynamic flight simulator. The inertial navigation system considered here consists of two accelerometers mounted on a gyrostabilized platform which is absolutely free in the azimuth. Control laws for simulating both the ideal and the perturbed operation of the inertial navigation system are obtained. The possibility of flight simulation for a three-accelerometer inertial navigation system is also discussed.

  8. A GPS TRACKING SYSTEM WITH ONBOARD IIP PREDICTION FOR SOUNDING ROCKETS

    Microsoft Academic Search

    Oliver Montenbruck; Markus Markgraf

    The development and verification of a dedicated GPS sensor for sounding rocket missions is described. It is based on the hardware design of a terrestrial low cost L1 C\\/A code receiver but operates an enhanced software that has been specifically adapted for high dynamics applications. Besides the navigation and timing function provided by traditional Global Positioning System receivers, the prediction

  9. Bayesian Surface and Underwater Navigation Rickard Karlsson and Fredrik Gustafsson, Member IEEE

    E-print Network

    Gustafsson, Fredrik

    , as a supplement to satellite navigation based on the global positioning system (GPS). The proposed Bayesian the global positioning system (GPS). For critical navigation applications, this sensor cannot be the only

  10. Environmental applications of GPS

    SciTech Connect

    Vigil, S.A.; Zueck, D.

    1999-07-01

    The use of the Global Positioning System (GPS) has revolutionized air travel, ocean navigation, land navigation, and the collection of environmental data. Although a basic civilian GPS receiver can be purchased for as little as $100, the receiver is only the tip of a 12 billion dollar iceberg. This paper will discuss the history and basic operation of the Global Positioning System, a satellite-based precision positioning and timing service developed and operated by the Department of Defense. It will also describe the accuracy limitations of the civil GPS service and how accuracy can be enhanced by the use of differential GPS (DGPS), using either the free National Differential GPS system, or commercial differential monitor stations. Finally, the paper will discuss the future accuracy upgrades of civil GPS as a result of recent federal policy decisions.

  11. 12.215 Modern Navigation, Fall 2002

    E-print Network

    Herring, T. (Thomas)

    Introduces the concepts and applications of navigation techniques using celestial bodies and satellite positioning systems such as the Global Positioning System (GPS). Topics include astronomical observations, radio ...

  12. Theory of inertial navigation systems

    Microsoft Academic Search

    P. V. Bromberg

    1979-01-01

    The book deals with the theory of semianalytical, analytical, and platformless inertial navigation systems. A one-parameter family of equivalent ellipsoids of revolution (h-ellipsoids, where h stands for height) is introduced, which in the first approximation constitute the equipotential surfaces of the gravity field. The center of mass moves along the surface of an h-ellipsoid (horizontal aircraft flight and ship motion).

  13. Global Positioning System (GPS) Bias Correction and Habitat Analysis of

    E-print Network

    Wallin, David O.

    Global Positioning System (GPS) Bias Correction and Habitat Analysis of Mountain Goats Oreamnos, shall not be allowed without my written permission. Signature Date #12;Global Positioning System (GPS to the difficulties of monitoring animal movement in all months of the year. The use of global positioning system (GPS

  14. Autonomous navigation system. [gyroscopic pendulum for air navigation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J. (inventor)

    1981-01-01

    An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.

  15. Lunar roving vehicle navigation system performance review

    NASA Technical Reports Server (NTRS)

    Smith, E. C.; Mastin, W. C.

    1973-01-01

    The design and operation of the lunar roving vehicle (LRV) navigation system are briefly described. The basis for the premission LRV navigation error analysis is explained and an example included. The real time mission support operations philosophy is presented. The LRV navigation system operation and accuracy during the lunar missions are evaluated.

  16. Horizon-Based Satellite Navigation Systems

    Microsoft Academic Search

    R. L. Lillestrand; J. E. Carroll

    1963-01-01

    The earth's horizon provides an important and conspicuous basis for the development of self-contained systems for earth-satellite navigation. The present paper investigates horizonbased navigational systems in which the requirement for vehicular yaw stabilization is not imposed. This permits the development of a variety of navigational techniques which generally fall within one of the following divisions: star matching, stellar almucantar transits,

  17. GPS: A New Constellation

    NSDL National Science Digital Library

    This Air and Space Museum website provides detailed information about how GPS (Global Positioning System) works. Beginning with technology that existed before GPS, such as the sextant and the TRANSIT satellite, it provides information about land, air, and sea navigation, Earth mapping, land management, and scientific applications.

  18. GPS Measurement Of Attitude

    NASA Technical Reports Server (NTRS)

    Dinardo, S. J.; Hushbeck, E. L.; Meehan, T. K.; Munson, T. N.; Purcell, G. H.; Srinivasan, J. M.; Young, L. E.; Yunck, T. P.

    1992-01-01

    Signals transmitted by satellites of Global Positioning System (GPS) measure orientation of baseline on ship, aircraft, or other vehicle with accuracy. Two GPS antennas and receivers placed at well separated points on platform. Receivers measure positions of ends of baseline as functions of time. Output processor computes vector difference between two positions and determines orientation of baseline. Combined with conventional GPS data, orientation data allows more precise navigation and mapping and enhances calculations related to performance and control of vehicle.

  19. GPS Signal-in-Space Integrity Performance Evolution in the

    E-print Network

    Stanford University

    , Fellow, IEEE Stanford University Knowledge of the Global Positioning System (GPS) signal-in-space (SIS Global Positioning System (GPS) is so far the most widely used space-based positioning, navigation

  20. In-flight detection of errors for enhanced aircraft flight safety and vertical accuracy improvement using digital terrain elevation data with an inertial navigation system, global positioning system and radar altimeter

    Microsoft Academic Search

    Robert Anthony Gray

    1999-01-01

    This dissertation discusses integration architectures using digital terrain elevation data (DTED) with an inertial navigation system (INS), a global positioning system (GPS) and a radar altimeter. Two integration architectures are considered: DTED with INS, GPS and radar altimeter for aircraft vertical accuracy improvement during the final approach; and DTED with kinematic GPS (KGPS) and a radar altimeter for enhanced aircraft

  1. Inertial/multisensor navigation

    NASA Technical Reports Server (NTRS)

    Alikiotis, Dimitri

    1987-01-01

    A Multisensor Navigation System as proposed by the Ohio University Avionics Engineering Center is illustrated. The proposed system incorporates radio (Lorac-C), satellite (Global Positioning System) and an inertial navigation system (INS). The inertial part of the system will be of a low grade since the INS will be used primarily for filtering the GPS data and for short term stability. Loran-C and GPS will be used for long term stability.

  2. On the WYSIWYAS Car Park Navigation System

    Microsoft Academic Search

    Ryo Masuda; Jeyeon Kim; Takaaki Hasegawa

    2007-01-01

    This paper describes the car park navigation system that provides WYSIWYAS navigation using M-CublTS, investigation of how to realize the system, construction of an experimental system, and on-line experiments. Positioning in this system is performed by detection of M-CublTS elements painted in car parks using an on-board camera. In addition, this system provides the WYSIWYAS, that is, intuitive navigation by

  3. A consistent and robust Kalman filter design for in-motion alignment of inertial navigation system

    Microsoft Academic Search

    Jamshaid Ali; Muhammad Ushaq

    2009-01-01

    The necessity recurrently comes up to align a strapdown inertial navigation system (SINS) in a moving vehicle to avoid a long run-up of the inertial system before a start or launch command is issued. This in-motion alignment is therefore achieved by integrating SINS data with some external aiding source such as the Global Positioning System (GPS) by using some form

  4. Comparison of robust H ? filter and Kalman filter for initial alignment of inertial navigation system

    Microsoft Academic Search

    Yan-Ling Hao; Ming-Hui Chen; Liang-Jun Li; Bo Xu

    2008-01-01

    There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This\\u000a paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial\\u000a navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on

  5. Institute of Navigation GPS-99, Nashville, TN, September 1999. 1 Self-Calibration of Pseudolite Arrays

    E-print Network

    Stanford University

    /computer-vision navigation system for the Stanford HUMMINGBIRD autonomous helicopter. Stephen M. Rock is an Associate research in developing and applying advanced control techniques for vehicle and robot applications. Prior the accuracy and effective convergence of this algorithm are also presented. INTRODUCTION The robotic

  6. Precise Point Positioning with the BeiDou Navigation Satellite System

    PubMed Central

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-01

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems. PMID:24406856

  7. Efficient authentication mechanisms for navigation systems a radio-navigation case

    E-print Network

    Stanford University

    Global Positioning System (GPS) Laboratory. He is the Associate Investigator for the Stanford University is a research associate at the Stanford University Global Positioning System (GPS) Laboratory. He received his M

  8. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION AND INITIALIZATION OF THE MAGELLAN GPS SATELLITE NAVIGATOR (UA-F-22.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the general procedures for the operation and initialization of the Magellan Global Positioning System (GPS) Satellite Navigator. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the Borde...

  9. BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity.

    PubMed

    Siragusa, Lydia; Cross, Simon; Baroni, Massimo; Goracci, Laura; Cruciani, Gabriele

    2015-03-01

    The structural comparison of protein binding sites is increasingly important in drug design; identifying structurally similar sites can be useful for techniques such as drug repurposing, and also in a polypharmacological approach to deliberately affect multiple targets in a disease pathway, or to explain unwanted off-target effects. Once similar sites are identified, identifying local differences can aid in the design of selectivity. Such an approach moves away from the classical "one target one drug" approach and toward a wider systems biology paradigm. Here, we report a semiautomated approach, called BioGPS, that is based on the software FLAP which combines GRID Molecular Interactions Fields (MIFs) and pharmacophoric fingerprints. BioGPS comprises the automatic preparation of protein structure data, identification of binding sites, and subsequent comparison by aligning the sites and directly comparing the MIFs. Chemometric approaches are included to reduce the complexity of the resulting data on large datasets, enabling focus on the most relevant information. Individual site similarities can be analyzed in terms of their Pharmacophoric Interaction Field (PIF) similarity, and importantly the differences in their PIFs can be extracted. Here we describe the BioGPS approach, and demonstrate its applicability to rationalize off-target effects (ER? and SERCA), to classify protein families and explain polypharmacology (ABL1 kinase and NQO2), and to rationalize selectivity between subfamilies (MAP kinases p38?/ERK2 and PPAR?/PPAR?). The examples shown demonstrate a significant validation of the method and illustrate the effectiveness of the approach. PMID:25556939

  10. Jose Angel AVILA RODRIGUEZ: Interference of Galileo with other systems in the L1 and L5 bands: Interoperability with GPS and Degradation due to the ARNS

    E-print Network

    Schuh, Harald

    Jose Angel AVILA RODRIGUEZ: Interference of Galileo with other systems in the L1 and L5 bands radio navigation, known as Galileo, to be developed in three proposed phases: · Development systems, i.e. GPS and Glonass. #12;Galileo, the first satellite positioning and navigation system

  11. Navigation system for flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Figl, Michael; Birkfellner, Wolfgang; Häfner, Michael; Kollmann, Christian; Bergmann, Helmar

    2003-05-01

    Endoscopic Ultrasound (EUS) features flexible endoscopes equipped with a radial or linear array scanhead allowing high resolution examination of organs adjacent to the upper gastrointestinal tract. An optical system based on fibre-glass or a CCD-chip allows additional orientation. However, 3-dimensional orientation and correct identification of the various anatomical structures may be difficult. It therefore seems desirable to merge real-time US images with high resolution CT or MR images acquired prior to EUS to simplify navigation during the intervention. The additional information provided by CT or MR images might facilitate diagnosis of tumors and, ultimately, guided puncture of suspicious lesions. We built a grid with 15 plastic spheres and measured their positions relatively to five fiducial markers placed on the top of the grid. For this measurement we used an optical tracking system (OTS) (Polaris, NDI, Can). Two sensors of an electromagnetic tracking system (EMTS) (Aurora, NDI, Can) were mounted on a flexible endoscope (Pentax GG 38 UX, USA) to enable a free hand ultrasound calibration. To determine the position of the plastic spheres in the emitter coordinate system of the EMTS we applied a point-to-point registration (Horn) using the coordinates of the fiducial markers in both coordinate systems (OTS and EMTS). For the transformation between EMTS to the CT space the Horn algorithm was adopted again using the fiducial markers. Visualization was enabled by the use of the AVW-4.0 library (Biomedical Imaging Resource, Mayo Clinic, Rochester/MN, USA). To evaluate the suitability of our new navigation system we measured the Fiducial Registration Error (FRE) of the diverse registrations and the Target Registration Error (TRE) for the complete transformation from the US space to the CT space. The FRE for the ultrasound calibration amounted to 4.3 mm +/- 4.2 mm, resulting from 10 calibration procedures. For the transformation from the OTS reference system to the EMTS emitter space we found an average FRE of 0.8 mm +/- 0.2 mm. The FRE for the CT registration was 1.0 mm +/- 0.3 mm. The TRE was found to be 3.8 mm +/- 1.3 mm if we target the same spheres which where used for the calibration procedure. A movement of the phantom results in higher TREs because of the orientation sensitivity of the sensor. In that case the TRE in the area where the biopsy is supposed to be taken place was found to be 7.9 mm +/- 3.2 mm. Our system provides the interventionist with additional information about position and orientation of the used flexible instrument. Additionally, it improves the marksmanship of biopsies. The use of the miniaturized EMTS enables for the first time the navigation of flexible instruments in this way. For the successful application of navigation systems in interventional radiology, an accuracy in the range of 5 mm is desirable. The accuracy of the localization of a point in CT space are just 3 mm too high as required. One of the possibilities to overcome this difference is to mount the two sensors in such a way that the interference of their electromagnetic fields is minimized. A considerable restraint constitutes the small characteristic volume (360mm x 600mm x 600mm), which requires for most application an additional optical system.

  12. The GPS Class: Global Positioning Systems, Map, and Compass

    NSDL National Science Digital Library

    This portal provides access to lessons and information about using Global Positioning Systems (GPS) in education. Materials include ideas for teaching and using GPS in educational curricula; websites, books, and other tools; and information on how to set up and use a GPS reciever. There is also information about setting up and using a compass with a topographic map and on converting GPS coordinates for use within a Geographic Information System (GIS). A section on Geocaching and Earthcaching provides tips on how to incorporate GPS treasure hunts into educational curricula and learning about Earth's environment and processes. Sample Geocaching courses are included.

  13. New Global Navigation Satellite System Developments and Their Impact on Survey Service Providers and Surveyors1

    Microsoft Academic Search

    Chris RIZOS; Matthew B. HIGGINS; S. HEWITSON

    2005-01-01

    SUMMARY The surveying and mapping industry has been revolutionised by the use of Global Navigation Satellite Systems (GNSS), involving satellites, ground reference station infrastructure and user equipment to determine positions around the world. The Global Positioning System (GPS) from the USA is the best known, and currently fully operational, GNSS. Russia also operates its own GNSS called GLONASS. Fuelling growth

  14. Development of a GPS-aided motion measurement, pointing, and stabilization system for a Synthetic Aperture Radar. [Global Positioning System (GPS)

    SciTech Connect

    Fellerhoff, J.R.; Kohler, S.M.

    1991-01-01

    An advanced Synthetic Aperture Radar Motion Compensation System has been developed by Sandia National Laboratories (SNL). The system includes a miniaturized high accuracy ring laser gyro inertial measurement unit, a three axis gimbal pointing and stabilization assembly, a differential Global Positioning System (GPS) navigation aiding system, and a pilot guidance system. The system provides several improvements over previous SNL motion compensation systems and is capable of antenna stabilization to less than 0.01 degrees RMS and absolute position measurement to less than 5.0 meters RMS. These accuracies have been demonstrated in recent flight testing aboard a DHC-6-300 Twin Otter'' aircraft.

  15. Specification of a NAVSTAR Global Positioning System (GPS) receiver for a differential GPS ground system

    NASA Technical Reports Server (NTRS)

    Mccall, D. L.; Turner, R. N.

    1984-01-01

    One step towards the successful completion of a functional ground unit for the Differential Global Positioning System (DGPS) will be in choosing a currently available GPS receiver that will accurately measure the propagation times of the satellite signals and have the capability to be electrically interfaced with and controlled by a Digital Equipment Corporation (DEC) PDP-11/34A computer. The minimum requirements and characteristics of a NAVSTAR Global Positioning System (GPS) receiver are described. The specific technical specifications addressed include data accuracies and resolutions, receiver interface/external control, enclosure dimensions and mounting requirements, receiver operation, and environmental specifications.

  16. Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0927475 Integration of Global Positioning System and Inertial Navigation for

    E-print Network

    Kamat, Vineet R.

    #0927475 Integration of Global Positioning System and Inertial Navigation for Ubiquitous Context on the integration of Real Time Kinematic Global Positioning System (RTK-GPS) and Personal Dead Reckoning (PDR

  17. A comparative analysis of area navigation systems for general aviation

    E-print Network

    Dodge, Steven Malcolm

    1973-01-01

    Within the next decade area navigation is to become the primary method of air navigation within the United States. There are numerous radio navigation systems that offer the capabilities of area navigation to general ...

  18. Autonomous navigation system and method

    SciTech Connect

    Bruemmer, David J. (Idaho Falls, ID) [Idaho Falls, ID; Few, Douglas A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  19. Study of the global positioning system for maritime concepts/applications: Study of the feasibility of replacing maritime shipborne navigation systems with NAVSTAR

    NASA Technical Reports Server (NTRS)

    Winn, C. B.; Huston, W.

    1981-01-01

    A geostationary reference satellite (REFSAT) that broadcasts every four seconds updated GPS satellite coordinates was developed. This procedure reduces the complexity of the GPS receiver. The economic and performance payoffs associated with replacing maritime stripborne navigation systems with NAVSTAR was quantified and the use of NAVSTAR for measurements of ocean currents in the broad ocean areas of the world was evaluated.

  20. Spatial Database Modeling for Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Gnat, Mi?osz

    2013-12-01

    For many years, cartographers are involved in designing GIS and navigation systems. Most GIS applications use the outdoor data. Increasingly, similar applications are used inside buildings. Therefore it is important to find the proper model of indoor spatial database. The development of indoor navigation systems should utilize advanced teleinformation, geoinformatics, geodetic and cartographical knowledge. The authors present the fundamental requirements for the indoor data model for navigation purposes. Presenting some of the solutions adopted in the world they emphasize that navigation applications require specific data to present the navigation routes in the right way. There is presented original solution for indoor data model created by authors on the basis of BISDM model. Its purpose is to expand the opportunities for use in indoor navigation.

  1. Optimum Reset of Ship's Inertial Navigation System

    Microsoft Academic Search

    B. E. Bona; Robert J. Smay

    1966-01-01

    Optimum linear filter and control theory is applied to the practical problem of supplementing an inertial navigation system with discrete reference information. The information takes the form of position obtained from Loran C or Decca, for example, and occasional azimuth fixes obtained from star sightings. In particular, optimum use of this information is discussed for the Ship's Inertial Navigation System

  2. Inertial navigation system aided by aircraft dynamics

    Microsoft Academic Search

    M. Koifman; I. Y. Bar-Itzhack

    1999-01-01

    In this work the possibility of using the model of aircraft dynamics as a means for aiding an inertial navigation system is studied. The method is of particular interest for low-grade inertial navigating system (INS). The aiding formulation is introduced, its corresponding mathematical model is derived and used in the design of an appropriate extended Kalman filter. Sensitivity analysis of

  3. Analysis of navigation performance for the Earth Observing System (EOS) using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Elrod, B.; Kapoor, A.; Folta, David C.; Liu, K.

    1991-01-01

    Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) was proposed as an alternative to the Global Positioning System (GPS) for supporting the Earth Observing System (EOS) mission. The results are presented of EOS navigation performance evaluation with respect to TONS based orbit, time, and frequency determination (OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service to derive one way Doppler tracking data for OD/FD support (TONS-I); the other uses an unscheduled navigation beacon service (proposed for Advanced TDRSS) to obtain pseudorange and Doppler data for OD/TD/FD support (TONS-II). Key objectives of the analysis were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance predictions are presented based on covariance and simulation analyses. EOS navigation scenarios and the contributions of principal error sources impacting performance are also described. The results indicate that a TONS mode can be configured to meet current and proposed EOS position accuracy requirements of 100 and 50 m, respectively.

  4. Autonomous Navigation System Using a Fuzzy Adaptive Nonlinear H? Filter

    PubMed Central

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-01-01

    Although nonlinear H? (NH?) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH? filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H? (FANH?) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH? filter continually adjusts the higher order of the Taylor development thorough adaptive bounds (?i) and adaptive disturbance attenuation (?), which significantly increases the UAV localization performance. The results obtained using the FANH? navigation filter are compared to the NH? navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH? filter. PMID:25244587

  5. LOW POWER GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) SIGNAL DETECTION AND PROCESSING

    Microsoft Academic Search

    Dennis M. Akos; Per-Ludvig Normark; Jeong-Taek Lee; Konstantin G. Gromov; James B. Y. Tsui; John Schamus; Wright-Patterson AFB

    2000-01-01

    The ability to detect and process weak Global Navigation Satellite System (GNSS) signals is extremely valuable as the specified received power levels of such signals are already quite low. For example, the GPS-SPS signal specification indicates the signal power at the antenna will be -130 dBm. Such weak detection techniques would be of importance for a number of applications. This

  6. A wellbore inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-02-01

    A prototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimballed inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of 100 to 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also, this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  7. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    The use of individual Global Navigation Satellite Services (GPS, GLONASS, Galileo, and Beidou/COMPASS) for the position, navigation, and timing in the Space Service Volume at altitudes of 300 km, 3000 km, 8000 km, 15000 km, 25000 km, 36500km and 70000 km is examined and the percent availability of at least one and at least four satellites is presented.

  8. The GPS Space Service Volume

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Moreau, M. C.; Dahle-Melsaether, M. E.; Petrofski, W. P.; Stanton, B. J.; Thomason, S.; Harris, G. A.; Sena, R. P.; Temple, L. Parker, III

    2006-01-01

    Prior to the advent of artificial satellites, the concept of navigating in space and the desire to understand and validate the laws of planetary and satellite motion dates back centuries. At the initiation of orbital flight in 1957, space navigation was dominated by inertial and groundbased tracking methods, underpinned by the laws of planetary motion. It was early in the 1980s that GPS was first explored as a system useful for refining the position, velocity, and timing (PVT) of other spacecraft equipped with GPS receivers. As a result, an entirely new GPS utility was developed beyond its original purpose of providing PVT services for land, maritime, and air applications. Spacecraft both above and below the GPS constellation now receive the GPS signals, including the signals that spill over the limb of the Earth. The use of radionavigation satellite services for space navigation in High Earth Orbits is in fact a capability unique to GPS. Support to GPS space applications is being studied and planned as an important improvement to GPS. This paper discusses the formalization of PVT services in space as part of an overall GPS improvement effort. It describes the GPS Space Service Volume (SSV) and compares it to the Terrestrial Service Volume (TSV). It also discusses SSV coverage with the current GPS constellation, coverage characteristics as a function of altitude, expected power levels, and coverage figures of merit.

  9. Novel closed-loop approaches for precise relative navigation of widely separated GPS receivers in LEO

    NASA Astrophysics Data System (ADS)

    Tancredi, U.; Renga, A.; Grassi, M.

    2014-01-01

    This paper deals with the relative navigation of a formation of two spacecrafts separated by hundreds of kilometers based on processing dual-frequency differential carrier-phase GPS measurements. Specific requirements of the considered application are high relative positioning accuracy and real-time on board implementation. These can be conflicting requirements. Indeed, if on one hand high accuracy can be achieved by exploiting the integer nature of double-difference carrier-phase ambiguities, on the other hand the presence of large ephemeris errors and differential ionospheric delays makes the integer ambiguities determination challenging. Closed-loop schemes, which update the relative position estimates of a dynamic filter with feedback from integer ambiguities fixing algorithms, are customarily employed in these cases. This paper further elaborates such approaches, proposing novel closed loop techniques aimed at overcoming some of the limitations of traditional algorithms. They extend techniques developed for spaceborne long baseline relative positioning by making use of an on-the-fly ambiguity resolution technique especially developed for the applications of interest. Such techniques blend together ionospheric delay compensation techniques, nonlinear models of relative spacecraft dynamics, and partial integer validation techniques. The approaches are validated using flight data from the Gravity Recovery and Climate Experiment (GRACE) mission. Performance is compared to that of the traditional closed-loop scheme analyzing the capability of each scheme to maximize the percentage of correctly fixed integer ambiguities as well as the relative positioning accuracy. Results show that the proposed approach substantially improves performance of the traditional approaches. More specifically, centimeter-level root-mean square relative positioning is feasible for spacecraft separations of more than 260 km, and an integer ambiguity fixing performance as high as 98% is achieved in a 1-day long dataset. Results also show that approaches exploiting ionospheric delay models are more robust and precise of approaches relying on ionospheric-delay removal techniques.

  10. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  11. GPS RISK ASSESSMENT STUDY FINAL REPORT

    E-print Network

    Ladkin, Peter B.

    -based system using signals provided by the Department of Defense's Global Positioning System (GPS). However-jam technologies. KEYWORDS: National Airspace System Global Positioning System Navigation #12;v TABLE OF CONTENTS

  12. Basic Mars Navigation System For Local Areas

    NASA Astrophysics Data System (ADS)

    Petitfils, E.-A.; Boche-Sauvan, L.; Foing, B. H.; Monaghan, E.; Crews, Eurogeomars

    2009-04-01

    Introduction: This project has been first set up as a basic solution in navigation during EVA (extra-vehicular activities) in the Mars Society Desert Research Station in the desert of Utah. The main idea is to keep the system as simple as possible so that it can be easily adaptable and portable. The purpose of such a device is to tell the astronauts in EVA where they roughly are and then letting them reaching different points in avoiding any risky way. Thus the precision needed has not to be really high: even if it is about 50m, every astronaut can then look on a map and be able to design a way to another point. This navigation system will improve the safety of the EVA as it is an added reliable orientating tool. Concept: To look at a simple way to localize oneself, one should have a look at what has been done by mankind on Earth. Today, everyone can think of the GPS because it's simple and very reliable. However the infrastructure for such a system is huge and will not be for sure available during the first missions. We can think of course of a basic GPS using the satellites being in orbit but this approach is not yet as simple as we would like. If we want to keep the sky in sight, we can use the stars and the moons of Mars. Yet this would be a good solution and we can even have a star tracker that would give a good position according to the time of the picture. This solution has to be kept in mind but a star tracker is quite big for an astronaut without any rover nearby and using the sky may not be as precise as one should expect. Another useful tool is the compass. It has been used for centuries by sailors but on Mars, without a good magnetic field for this purpose. But sailors also use lighthouses and some placemarks on the land to localize themselves. This is done with a compass, measuring the angle between a placemark and the magnetic North. With two angles, we can then have the position of the boat. The idea here is the same: measuring the angles between different placemarks so that we can compute the position. But which placemarks? We have to think about something that can be installed on Mars and is light enough to be brought there. Balloons are really light, and in order to place them, we need a gas as helium (or hydrogen) and also some rope. Hydrogen is likely to be produced in situ and rope will be useful for astronauts. So we started on a concept with some balloons around the base, with different colors or patterns. The crew in EVA can thus know where the base is every time they are in sight of a balloon and with at least three balloons; they can compute their position according to the base. Procedure of the test: During EVA, the astronauts will measure the angle between the different balloons. The balloons are high in the sky so they can be seen far from their location. This is particularly important on Mars where the horizon is nearer than on Earth. The balloons have different colors so they can be identified and we can even think of adding an autonomous colored light under so they can be observed during the night. With good quality balloons, we can keep them in the sky for a few days without maintenance. Angle measurement is done thanks to a camera. A numeric camera can have a precision of less than 0.01°/pixel, which is enough for our application. The distance between the different balloons can easily be seen in a free picture management software and a Matlab tool is under development for this. An algorithm is then run and it gives the positions that fit with the observations on a map. Simulation gave areas 20m width, which is enough for the astronaut who has a map. The exact precision will be investigated in situ, at the MDRS. For this first test bench, computations will be manually done on a computer in order to validate the concept without huge development. Afterwards, one can imagine an implementation on a PDA brought by the astronauts. This PDA would have its own camera so the process can be fully automatic. Such a system can also implement other navigation system as a Martian GPS or a radio locali

  13. MEMS based inertial navigation systems onboard balloons .

    NASA Astrophysics Data System (ADS)

    Palmerini, G. B.; Medaglia, E.; Montefusco, P.; Oliva, M. C.

    Performances of low-cost inertial navigation sensors, usually poor, can often match different mission requirements by means of a careful signal and data processing and/or an augmentation by means of different observables. The paper presents the LOWCOINS navigation experiment, intended to fly onboard BEXUS balloon mission in late 2008. LOWCOINS has as the main component a low-cost three-axes inertial unit, integrating three accelerometers and three gyros. The slow dynamic typical of a balloon flight is deemed as an ideal test to verify the performances of the unit and to improve the knowledge on the data processing needed to obtain an accurate final navigation solution. In order to enlarge the set of available data, a cluster of magnetometers and a pressure sensor, always belonging to low-cost instrumentation range, are hosted on board. Measurements are both stored on board and downlinked to a ground station. Position and velocity components (both the onboard computed first guess and the post-flight calibrated solution) will be compared with the data gathered by a GPS receiver, which is a standard component of BEXUS balloon avionics. Substantial attention to thermal aspects has been requested in order to cope with environmental conditions prior of and all along the flight. The requested navigation unit case design is shortly reported.

  14. Low-Cost INS/GPS Integration: Concepts and Testing

    E-print Network

    Calgary, University of

    of inertial units is the main obstacle for their inclusion in precision navigation systems to support a variety of application areas. Standard inertial navigation systems (INS) use precise gyro inclusion of these sensors to augment GPS in precision navigation systems. Standard inertial navigation

  15. A weighted combination filter with nonholonomic constrains for integrated navigation systems

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Guo, Junge; Yu, Min; Hong, Haibin; Xiong, Jian; Tian, Baolian

    2015-03-01

    To meet the requirements of higher accuracy and stability of integrated navigation system, this paper applied Sage-Husa adaptive Kalman filter with nonholonomic constraints and forward/backward filtering to IMU/GPS integrated system, and the results of the forward and backward filtering are weighted and combined. A weighted combination filter is proposed in this paper, and which has been used in post-processing to improve MEMS IMU/GPS accuracy. Through the car navigation experiment, data set has been processed by four filtering algorithms. By means of comparing the four results, the method proposed for the vehicle integrated navigation system achieved the best accuracy with standard deviations of latitude = 1.03 m, longitude = 1.31 m, and heading angle = 0.84 deg°, which demonstrated the advantages of the new method.

  16. GENESIS: GPS Environmental and Earth Science Information System

    NASA Technical Reports Server (NTRS)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  17. Time and Frequency Measurements Using the Global Positioning System (GPS)

    Microsoft Academic Search

    Michael A. Lombardi; Lisa M. Nelson; Andrew N. Novick; Victor S. Zhang

    This paper describes how Global Positioning System (GPS) satellite signals are used in time and frequency metrology. It discusses how a GPS receiver can provide a reference signal for frequency calibrations and time synchronization. It also explains the several types of time and frequency measurements that utilize GPS signals. These include one-way or direct reception measurements, single and multi-channel common-view

  18. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  19. Rip current monitoring using GPS buoy system

    NASA Astrophysics Data System (ADS)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0024670)

  20. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  1. Post-disposal orbital evolution of satellites and upper stages used by the GPS and GLONASS navigation constellations: The long-term impact on the Medium Earth Orbit environment

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2012-08-01

    The long-term evolution and environmental impact in MEO of all the abandoned spacecraft and upper stages associated with the GPS and GLONASS navigation constellations were analyzed. The orbits of the disposed objects, as of 1 May 2011, were propagated for 200 years and snapshots of their evolving distribution were obtained, together with an estimation of the changing collision probability with the spacecraft of the operational navigation systems existing or planned in MEO, i.e., GLONASS, GPS, Beidou and Galileo. The probability that the abandoned objects considered will collide with the operational spacecraft of the navigation constellations is very low, even taking into account the intrinsic eccentricity instability of the disposal orbits. Assuming the present or envisaged configuration of the constellations in MEO, the probability of collision, integrated over 200 years, would be <1/300 with a GLONASS spacecraft, <1/15,000 with a GPS or Beidou spacecraft, and <1/250,000 with a Galileo spacecraft. The worst disposal strategy consists in abandoning satellites and upper stages close to the altitude of the operational constellation (GLONASS), while a re-orbiting a few hundred km away (GPS) is able to guarantee an effective long-term dilution of the collision risk, irrespective of the eccentricity instability due to geopotential and luni-solar perturbations. The disposal strategies applied so far to the GPS satellites should be able to guarantee for at least a few centuries a sustainable MEO environment free of collisions among intact objects. Consequently, there would be no need to adopt disposal schemes targeting also the optimal value of the eccentricity vector. However, it should be pointed out that the GPS disposal strategy was devised well in advance of the Beidou constellation announcement, so most of the abandoned satellites were re-orbited fairly close to the altitude of the new Chinese system. A new re-orbiting approach will be therefore needed in the future.

  2. LIDAR and Ins Fusion in Periods of GPS Outages for Mobile Laser Scanning Mapping Systems

    NASA Astrophysics Data System (ADS)

    Klein, I.; Filin, S.

    2011-09-01

    Mobile laser scanning systems are becoming an increasingly popular means to obtain 3D coverage on a large scale. To perform the mapping, the exact position of the vehicle must be known throughout the trajectory. Exact position is achieved via integration of Global Positioning Systems (GPS) and Inertial Navigation Systems (INS). Yet, in urban environments, cases of complete or even partial GPS outages may occur leaving the navigation solution to rely only on the INS. The INS navigation solution degrades with time as the Inertial Measurement Unit (IMU) measurements contains noise, which permeates into the navigation equations. Degradation of the position determination leads to loss of data in such segments. To circumvent such drift and its effects, we propose fusing INS with lidar data by using building edges. This detection of edges is then translated into position data, which is used as an aiding to the INS. It thereby enables the determination of the vehicle position with a satisfactory level accuracy, sufficient to perform the laser-scanning based mapping in those outage periods.

  3. The Role of Trust and Interaction in GPS Related Accidents: A Human Factors Safety Assessment of the Global Positioning System (GPS)

    E-print Network

    Johnson, Chris

    of the Global Positioning System (GPS) Chris. W. Johnson, DPhil; Department of Computing Science, University; accident analysis; organisational safety. Abstract The Global Positioning System (GPS) uses a network

  4. Vision-Based Estimation for Guidance, Navigation, and Control of an Aerial Vehicle

    Microsoft Academic Search

    M. K. Kaiser; N. R. Gans; W. E. Dixon

    2010-01-01

    While a Global Positioning System (GPS) is the most widely used sensor modality for aircraft navigation, researchers have been motivated to investigate other navigational sensor modalities because of the desire to operate in GPS denied environments. Due to advances in computer vision and control theory, monocular camera systems have received growing interest as an alternative\\/collaborative sensor to GPS systems. Cameras

  5. Adaptive Kalman filtering algorithms for integrating GPS and low cost INS

    Microsoft Academic Search

    Christopher Hide; Terry Moore; Martin Smith

    2004-01-01

    GPS and Inertial Navigation Systems are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low cost inertial sensors have become available. Although they exhibit large errors, GPS measurements can be used correct the INS and sensor errors to provide high accuracy real-time navigation. The integration of GPS and

  6. Bluetooth Navigation System using Wi-Fi Access Points

    E-print Network

    Agrawal, Rohit

    2012-01-01

    There have been various navigation and tracking systems being developed with the help of technologies like GPS, GSM, Bluetooth, IR, Wi-Fi and Radar. Outdoor positioning systems have been deployed quite successfully using GPS but positioning systems for indoor environments still do not have widespread deployment due to various reasons. Most of these use only a single technology for positioning but using more than one in cooperation with each other is always advantageous for obtaining greater accuracy. Particularly, the ones which use Bluetooth are better since they would enhance the scalability of such a system because of the fact that this technology is in use by the common people so it would always be easy to track them. Moreover it would also reduce the hardware installation cost to some extent. The system that has been introduced here uses Bluetooth primarily for positioning and tracking in combination with Wi-Fi access points. The reason that makes the commercial application of such a system easier and ch...

  7. Free space optical alignment system using GPS

    NASA Astrophysics Data System (ADS)

    Saw, Wee-Leong; Refai, Hazem H.; Sluss, James J., Jr.

    2005-04-01

    This paper presents results from an ongoing effort at the University of Oklahoma to develop a real-time active alignment system for free-space optical communication system. An initial prototype of a FSO active alignment system using Global Positioning System (GPS) sensors, two gimbals, and point-to-point spread spectrum RF communication is described. The positions of both FSO transceivers are exchanged over the radio frequency (RF) communication link. A controller uses the exchanged information to calculate azimuth and elevation bearings to achieve initial alignment between the transceivers. The gimbals are used to steer the beams. The paper also presents a binary scan algorithm developed to expedite the initial alignment process. The algorithm incorporates power measurements as feed back to the original transceiver for comparison. In minimizing convergence time, simulation results confirm that the algorithm performs better than raster scan, spiral scan, and raster spiral scan algorithms, all of which are used in laser satellite communications. The results also show that the initial design is not able to achieve real-time alignment. For real-time alignment, different augmenting technologies (for example, steering mirrors) should be considered.

  8. The Development of M3S-Based GPS Navchair and Tele-Monitor System.

    PubMed

    Wu, Yi-Hui; Lu, Bing-Yuh; Chen, Heng-Yin; Ou-Yang, Yao; Lai, Jin-Shin; Kuo, Te-Son; Chong, Fok-Ching

    2005-01-01

    The purpose of this study is to develop a M3S- Based GPS navigation system for power wheelchair. The wheelchair steered with GPS and electronic compass can move automatically toward a specific destination through a GIS-Map in the computer. The topic of this study is to help people with disabilities regain independence of transportation in specific areas of their daily activities. This system is now designed to operate in special locations, for example, campuses or airports. Safety of the system is enhanced according to "M3S", which is an international standard for power wheelchair. In the proposed architecture, modules are easily and securely integrated to the wheelchair, which includes a tele-monitor system implemented with computer network, mobile-phone and physiological sensors. Bio-signals, wheelchair location and other information of the user are acquired by the nursing staff or any other medical personnel by using this system. PMID:17281122

  9. A Survey of Mobile Indoor Navigation Systems

    Microsoft Academic Search

    Haosheng Huang; Georg Gartner

    \\u000a With the gradual maturating of ubiquitous computing and the rapid advances in mobile devices and wireless communication, indoor\\u000a Location Based Services have gained increasing interests as an important application of indoor ubiquitous computing. In this\\u000a paper, an evaluation framework which combines the key aspects of indoor navigation for investigating mobile indoor navigation\\u000a systems is proposed. Based on this evaluation framework,

  10. SINS\\/GPS\\/CNS information fusion system based on improved Huber filter with classified adaptive factors for high-speed UAVs

    Microsoft Academic Search

    Rong Wang; Zhi Xiong; Jian-ye Liu; Rongbing Li; Hui Peng

    2012-01-01

    For High-speed UAV, the measurement noise of GPS and star sensor show non-Gaussian characteristics in high-dynamic and high speed flight. In order to improve the system performance in the above situation, this paper presents an INS\\/GPS\\/CNS integrated navigation system and builds the asynchronous measurement model. The system measurement noise feature has also been analyzed according to a perturbed Gaussian mode.

  11. Significance of Waterway Navigation Positioning Systems On Ship's Manoeuvring Safety

    NASA Astrophysics Data System (ADS)

    Galor, W.

    The main goal of navigation is to lead the ship to the point of destination safety and efficiently. Various factors may affect ship realisating this process. The ship movement on waterway are mainly limited by water area dimensions (surface and depth). These limitations cause the requirement to realise the proper of ship movement trajectory. In case when this re requirement cant't fulfil then marine accident may happend. This fact is unwanted event caused losses of human health and life, damage or loss of cargo and ship, pollution of natural environment, damage of port structures or blocking the port of its ports and lost of salvage operation. These losses in same cases can be catas- trophical especially while e.i. crude oil spilling could be place. To realise of safety navigation process is needed to embrace the ship's movement trajectory by waterways area. The ship's trajectory is described by manoeuvring lane as a surface of water area which is require to realise of safety ship movement. Many conditions affect to ship manoeuvring line. The main are following: positioning accuracy, ship's manoeuvring features and phenomena's of shore and ship's bulk common affecting. The accuracy of positioning system is most important. This system depends on coast navigation mark- ing which can range many kinds of technical realisation. Mainly used systems based on lights (line), radionavigation (local system or GPS, DGPS), or radars. If accuracy of positiong is higer, then safety of navigation is growing. This article presents these problems exemplifying with approaching channel to ports situated on West Pomera- nian water region.

  12. Simulating the GPS constellation for high fidelity operator training

    Microsoft Academic Search

    L. Corrie; D. Greenhut; R. Hazlehurst; R. Walker

    1996-01-01

    This paper describes the development of the high fidelity GPS simulator Loral. The simulator will build upon existing ground system simulator software, and will take advantage of actual GPS spacecraft software developed by the satellite and payload manufacturers. Using multiprocessor computers, the system will simulate the entire satellite constellation to provide training in managing GPS worldwide navigation performance. At the

  13. A low cost implementation of GPS guided driverless cars

    Microsoft Academic Search

    Ray-Shine Run; Jui-Cheng Yen; Cheng-Yu Tsai

    2010-01-01

    The application of GPS is growing fast recently. Not only in military and science purposes, but also in civil use, GPS plays an important role in many electronic systems. For example, the electronic navigation of automobile, the electronic map of PDA, etc. To deploy a research on this topic, we advise a low cost automobile GPS guidance system controlled by

  14. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  15. INS-Assisted High Sensitivity GPS Receivers for Degraded Signal Navigation

    E-print Network

    Calgary, University of

    the positioning in indoor and urban canyon environments. The proposed approach is distinct from the commonly used services (LBS) and navigation applications such as vehicular navigation and personal positioning require, indoors and dense forest areas (Lachapelle & Kuusniemi 2003). Such environments either completely block

  16. The Mathematics of Navigating the Solar System

    NASA Technical Reports Server (NTRS)

    Hintz, Gerald

    2000-01-01

    In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.

  17. Open radio map based indoor navigation system

    Microsoft Academic Search

    Dongsoo Han; Minkyu Lee; Laeyoung Chang; Hyunil Yang

    2010-01-01

    In this presentation, we introduce an open radio map based indoor navigation system. The system is implemented on a Google android phone and tested on 3rd floor, Main-building, KAIST Munji Campus, Korea. The open radio map for the system is constructed by partly participatory approach. That is, the radio map data for rooms and laboratories are collected by ordinary users

  18. A low cost integrated navigation system applied on UAV and some simulations results

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhang, Jingjuan; Yang, Guoliang

    2008-10-01

    The development of Un-manned Aerial Vehicles (UAV) is analyzed, and an integrated MEMS-SINS /GPS/ Pressure Altimeter / Magnetic Compass is presented as an airborne equipment for UAV. In this low cost integrated navigation system, the position and velocity precision can be ensured due to GPS, and the pitch and roll precision can be ensured due to accelerometers. The heading's observability is very weak, in order to eliminate this divergent trend, the method that dead reckoning revises the heading of SINS is put forward. The simulation shows that this method can effectively eliminate the divergent trend of heading.

  19. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J. [Atmospheric Turbulence and Diffusion Div., Oak Ridge, TN (United States)

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  20. Hybrid GPS-GSM Localization of Automobile Tracking System

    E-print Network

    Al-Khedher, Mohammad A

    2012-01-01

    An integrated GPS-GSM system is proposed to track vehicles using Google Earth application. The remote module has a GPS mounted on the moving vehicle to identify its current position, and to be transferred by GSM with other parameters acquired by the automobile's data port as an SMS to a recipient station. The received GPS coordinates are filtered using a Kalman filter to enhance the accuracy of measured position. After data processing, Google Earth application is used to view the current location and status of each vehicle. This goal of this system is to manage fleet, police automobiles distribution and car theft cautions.

  1. Dead reckoning navigation: supplementing pedestrian GPS with an accelerometer-based pedometer and an electronic compass

    NASA Astrophysics Data System (ADS)

    Bara?ski, P.; Bujacz, M.; Strumillo, P.

    2009-06-01

    The article presents a prototype wearable device that corrects inaccurate GPS readouts during pedestrian travel. The electronic circuit consists of a microcontroller, an accelerometer and a digital compass. The accelerometer readouts are filtered to detect the steps of the pedestrian and are also used to estimate the stride length. The digital compass provides the direction of motion. When the GPS parameters warn of a high dilution of precision, the location of the pedestrian is corrected by data provided by the accelerometer and the digital compass.

  2. Navigation of robotic system using cricket motes

    NASA Astrophysics Data System (ADS)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  3. Flight-control/navigation inertial reference system

    NASA Technical Reports Server (NTRS)

    Ebner, R. E.

    1977-01-01

    The preliminary design of a redundant strapdown navigation system for integrated flight-control/navigation use has been completed. Based on application of tuned-gimbal gyros, a compact configuration (13 in x 13 in x 14 in) has been achieved for fail-operational/fail-operational redundancy. Test data are presented for strapdown system test programs including flight testing of the LN-50 tuned-gimbal gyro system. Testing of a redundant sensor configuration is currently in process. Strapdown gyro development also includes ring laser and nuclear magnetic resonance techniques.

  4. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  5. Real-Time Navigation Using the Global Positioning System Real-Time Navigation Using the Global Positioning System

    E-print Network

    unknown authors

    For more than a decade, TRW has been involved in aerospace applications of the Global Positioning System (GPS). TRW Ballistic Missiles Division first began working with GPS on a Minuteman missile test flight program in 1980. Since then, TRW has applied GPS to programs such as the Peacekeeper

  6. Space shuttle navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

    1976-01-01

    A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

  7. Sigma-point Kalman filtering for integrated GPS and inertial navigation

    Microsoft Academic Search

    J. L. Crassidis

    2006-01-01

    A sigma-point Kalman filter is derived for integrating GPS measurements with inertial measurements from gyros and accelerometers to determine both the position and the attitude of a moving vehicle. Sigma-point filters use a carefully selected set of sample points to more accurately map the probability distribution than the linearization of the standard extended Kalman filter (KKF), leading to faster convergence

  8. Exploitation of Semantic Building Model in Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication. The available solutions for location tagging are mostly based on proximity sensors and the information are bound to sensor references. In the proposed solution of this paper, the sensors simply play a role similar to annotations in Semantic Web world. Hence the sensors data in ontology sense bridges the gap between sensed information and building model. Combining these two and applying the proper inference rules, the building visitors will be able to reach their destinations with instant support of their communication devices such as hand helds, wearable computers, mobiles, etc. In a typical scenario of this kind, user's profile will be delivered to the smart building (via building ad-hoc services) and the appropriate route for user will be calculated and delivered to user's end-device. The calculated route is calculated by considering all constraints and requirements of the end user. So for example if the user is using a wheelchair, the calculated route should not contain stairs or narrow corridors that the wheelchair does not pass through. Then user starts to navigate through building by following the instructions of the end-device which are in turn generated from the calculated route. During the navigation process, the end-device should also interact with the smart building to sense the locations by reading the surrounding tags. So for example when a visually impaired person arrives at an unknown space, the tags will be sensed and the relevant information will be delivered to user in the proper way of communication. For example the building model can be used to generate a voice message for a blind person about a space and tell him/her that "the space has 3 doors, and the door on the left should be chosen which needs to be pushed to open". In this paper we will mainly focus on automatic generation of semantic building information models (Semantic BIM) and delivery of results to the end user. Combining the building information model with the environment and user constraints using Semantic Web technologies will make many scenarios conceivable. The gen

  9. ICBM reentry vehicle navigation system development at Honeywell

    Microsoft Academic Search

    J. Boutelle; S. P. Kau

    1998-01-01

    Development of navigation systems for reentry vehicles launched by ICBMs was initiated at Honeywell in 1977. Maintaining an accurate navigation solution through the spinning coast phase, and high acceleration reentry phase, of a reentry vehicle (RV) flight was enabled by the development of the Ring Laser Gyro. The original product, the Dormant Inertial Navigation System (DINS), provided navigation for the

  10. Inertial navigation system for mobile land vehicles

    Microsoft Academic Search

    Jorge Lobo; Paulo Lucas; Jorge Dias; A. Traca de Almeida

    1995-01-01

    This paper describes a prototype of an inertial navigation system for use in mobile land vehicles, such as cars or mobile robots. The complete system is composed by sensors, their mechanical mount and cabling, these connect to a PC card with local processing and memory, based on a Intel 80C196KC microcontroller. The sensors used were a piezoelectric vibrating gyroscope, two

  11. A simple dead-reckoning navigational system

    NASA Technical Reports Server (NTRS)

    Walls, B. F.; Mastin, W. C.; Broussard, P., Jr.

    1972-01-01

    Simple navigation system is designed for vehicles operating in remote locations where it is not feasible to transport extensive equipment. System consists of four main components: directional gyrocompass to establish inertial direction; odometer to measure distance; signal processor to combine measured distance and direction; and sun compass to determine initial direction.

  12. Multisensor navigation system for an autonomous helicopter

    Microsoft Academic Search

    Joerg S. Dittrich; Eric N. Johnson

    2002-01-01

    Autonomous unmanned aerial vehicles (UAVs) require avionics systems that enable them to maintain a stable attitude and to follow a desired flight path. This paper considers the design and development of such an avionics system that provides navigational and terrain information to the flight computer of a rotorcraft UAV. The process includes the design and testing of flight hardware and

  13. Enhanced mobile robot outdoor localization using INS\\/GPS integration

    Microsoft Academic Search

    Eric North; Jacques Georgy; Mohammed Tarbouchi; Umar Iqbal; Aboelmagd Noureldin

    2009-01-01

    An unprecedented surge of developments in mobile robot outdoor navigation was witnessed after the US government removed selective availability of the global positioning system (GPS). However, in certain situations GPS becomes unreliable or unavailable due to obstructions such as buildings and trees. During GPS outages, a positioning solution with a minimum cost is preferred for small wheeled robots. A low-cost

  14. ION GPS '99, 14-17 September 1999, Nashville, TN Virtual Differential GPS & Road

    E-print Network

    Tingley, Joseph V.

    of these systems use the Global Positioning System (GPS) to initially determine the position of a ve- hicle. The Global Positioning System has become the most ex- tensively used positioning and navigation tool A novel method of map matching using the Global Posi- tioning System (GPS) has been developed for civilian

  15. New mechanization equations for aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Schmidt, S. F.; Bjorkman, W. S.; Conrad, B.

    1973-01-01

    Inertial navigation equations are developed which use area navigation (RNAV) waypoints and runway references as coodinate centers. The formulation is designed for aided inertial navigation systems and gives a high numerical accuracy through all phases of flight. A new formulation of the error equations for inertial navigation systems is also presented. This new formulation reduces numerical calculations in the use of Kalman filters for aided inertial navigation systems.

  16. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    PubMed

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-01-01

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084

  17. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    PubMed Central

    Quinchia, Alex G.; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-01-01

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084

  18. A MMC/MIMU/GPS integrated attitude and azimuth determination system

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Ma, Yanwu; Cao, Juanjuan

    2008-10-01

    Exact knowledge of attitude and azimuth is a fundamental factor in steering vehicle and robot (called carrier in this paper). Micro inertial measurement unit (MIMU), i.e. IMU made by silicon MEMS inertial sensors, GPS and MEMS magnetic compass (MMC), are often used in traditional low-cost attitude and azimuth determination solutions. The main discrepancy, in all of these low-cost approaches, is that the azimuth output is affected by acceleration and turns for long-playing carriers. This paper puts forward a MMC/MIMU/GPS integrated system and an iterative attitude & azimuth determination algorithm for long-playing accelerated carrier's motion. GPS output (.i.e. position and velocity), in ENU (East-North-Upward) navigation frame is transformed into body frame by transformation matrix Cbn. By integrating the MIMU and GPS measurements, through Kalman Filter (KF), the three orthogonal components of the gravity vector are precisely estimated in body frame despite the acceleration effects. Pitch and roll angles are calculated by gravity vector components in body frame, where as azimuth angle is calculated by combining pitch angle, roll angle and MMC output. The direction cosine matrix Cbn, updated by the latest azimuth, roll and pitch angles, is used in next round of this iterative attitude & azimuth determination algorithm. CFAR (Constant False Alarm Rate) filters have been utilized to suppress the noise in GPS data caused by differential operation. The proposed iterative algorithm has been practically implemented and simulated. The simulations results prove the ability of the MMC/MIMU/GPS integrated system to determine the attitude and azimuth for long-playing carrier in any motion situation.

  19. Design study of a low cost civil aviation GPS receiver system

    NASA Technical Reports Server (NTRS)

    Cnossen, R.; Gilbert, G. A.

    1979-01-01

    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified.

  20. GPS-Like Phasing Control of the Space Solar Power System Transmission Array

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    2003-01-01

    The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.

  1. Autonomous integrated navigation method based on the strapdown inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Lin, Zhili; Zhang, Chunxi

    2014-07-01

    An integrated navigation method based on the strapdown inertial navigation system (SINS) and Doppler Lidar was presented and its validity is demonstrated by practical experiments. A very effective and independent integrated navigation mode is realized that both an inertial navigation system (INS) and Lidar are not interfered with or screened by electromagnetic waves. In our work, the SINS error model was first introduced, and the velocity error model was transformed into body reference coordinates. Then the expression for measurement model of SINS/Lidar integrated navigation was deduced under Lidar reference coordinates. For application of land or vehicle navigation, the expression for the measurement model was simplified, and observation analysis was carried out. Finally, numerical simulation and vehicle test results were carried out to validate the availability and utility of the proposed SINS/Lidar integrated navigation method for land navigation.

  2. The role of adaptive antenna systems when used with GPS

    NASA Astrophysics Data System (ADS)

    Johannessen, Rolf

    The possible effects of jamming on the operation of the GPS is examined, and possible ways of dealing with this problem are discussed. In particular, it is shown that Controlled Reception Pattern Antennas are capable of greatly increasing the jamming levels for which GPS can be used. Nulls of the order of 40 dB can be generated in high dynamic applications. It is expected that such systems will find increased applications in the air, at sea, and on land.

  3. Observability studies of inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Goshen-Meskin, D.

    1989-01-01

    The present work deals with an undamped three-channel inertial-navigation-system error model. It is shown that it is possible to fully observe, and thus estimate, all the states of the system. This is in contrast to a previous two-channel system, in which it was impossible to fully observe and estimate all the states of the system. The conclusions of the analysis are verified through covariance simulation, which yields identical results.

  4. Autonomous system for cross-country navigation

    NASA Astrophysics Data System (ADS)

    Stentz, Anthony; Brumitt, Barry L.; Coulter, R. C.; Kelly, Alonzo

    1993-05-01

    Autonomous cross-country navigation is essential for outdoor robots moving about in unstructured environments. Most existing systems use range sensors to determine the shape of the terrain, plan a trajectory that avoids obstacles, and then drive the trajectory. Performance has been limited by the range and accuracy of sensors, insufficient vehicle-terrain interaction models, and the availability of high-speed computers. As these elements improve, higher- speed navigation on rougher terrain becomes possible. We have developed a software system for autonomous navigation that provides for greater capability. The perception system supports a large braking distance by fusing multiple range images to build a map of the terrain in front of the vehicle. The system identifies range shadows and interpolates undersamples regions to account for rough terrain effects. The motion planner reduces computational complexity by investigating a minimum number of trajectories. Speeds along the trajectory are set to provide for dynamic stability. The entire system was tested in simulation, and a subset of the capability was demonstrated on a real vehicle. Results to date include a continuous 5.1 kilometer run across moderate terrain with obstacles. This paper begins with the applications, prior work, limitations, and current paradigms for autonomous cross-country navigation, and then describes our contribution to the area.

  5. On Navigation Systems for Motorcycles: The Influence and Estimation of Roll Angle

    NASA Astrophysics Data System (ADS)

    Coaplen, Joshua P.; Kessler, Patrick; O'Reilly, Oliver M.; Stevens, Dan M.; Hedrick, J. Karl

    2005-09-01

    Vehicle navigation systems use various sensors and the global positioning system (GPS) to locate a vehicle. This location is then matched to a map database to provide navigation information. Between GPS updates, the vehicle's heading angle and forward speed are used to “dead reckon” its position. Heading angle is often measured by integrating the output of a rate gyroscope. For this measurement to be equal to the vehicle's heading angle, the vehicle should not experience any rotation about its roll or pitch axes. For an automobile, the roll and pitch angles are small and may be neglected for the purposes of navigation. This article demonstrates that this same assumption is not true for a motorcycle. Through simulation, it is shown that for a motorcycle, obtaining a meaningful heading angle from a single angular rate measurement requires accounting for the motorcycle's roll angle. Methods to estimate roll angle and heading angle from available navigation measurements are presented, and two possible sensor configurations are compared. A motorcycle navigation scheme based on these roll angle estimation methods is shown to produce exceptional results in a simulation environment.

  6. WiFi GPS based Combined positioning Algorithm Soumaya Zirari, Philippe Canalda

    E-print Network

    Paris-Sud XI, Université de

    POSITIONING SYSTEM The Global Positioning System [3] is a passive Global Navigation Satellite System territories where traditional (and basic) positioning system (GPS, gsm or WiFi) and hybrid ones (GPS- gsm, GPS direction of the signal depending on the applications and the positioning system. In the sequel we present

  7. Multiposition alignment of strapdown inertial navigation system

    Microsoft Academic Search

    J. G. Lee; C. G. Park; H. W. Park

    1993-01-01

    The authors demonstrate that the stationary alignment of strapdown inertial navigation system (SDINS) can be improved by employing the multiposition\\/technique. Using an observability analysis, it is shown that an optimal two-position alignment not only satisfies complete observability conditions but also minimizes alignment errors. This is done by analytic rank testing of the stripped observability matrix and numerical calculation of the

  8. Ionosphere scintillation effects on navigation systems

    NASA Astrophysics Data System (ADS)

    Béniguel, Yannick; Adam, Jean-Pierre; Bourdillon, Alain; Lassudrie-Duchesne, P.

    2011-03-01

    This article deals with the impact of ionospheric electron density inhomogeneities on the functionality of global navigation satellite systems emphasizing positioning errors. The scintillation characteristics of transmitted signals have been obtained using data gathered in measurement campaigns. The effects on a standard receiver are then presented. Positioning errors due to scintillations were shown to be greater than 10 meters in the worst case.

  9. Design of gyroscope-free navigation systems

    Microsoft Academic Search

    Chin-Woo Tan; K. Mostov; P. Varaiya

    2001-01-01

    We examine the feasibility of designing a gyroscope-free inertial navigation system (INS) that uses only accelerometers to compute the linear and angular motions of a rigid body. The accelerometer output equation is derived to relate the linear and angular motions of a rigid body relative to a fixed inertial frame. A sufficient condition is given to determine if a configuration

  10. System architecture study of an orbital GPS user terminal

    NASA Technical Reports Server (NTRS)

    Martin, D. P.; Neily, C. M., Jr.

    1980-01-01

    The generic RF and applications processing requirements for a GPS orbital navigator are considered. A line of demarcation between dedicated analog hardware, and software/processor implementation, maximizing the latter is discussed. A modular approach to R/PA design which permits several varieties of receiver to be constructed from basic components is described. It is a basic conclusion that software signal processing of the output of the baseband correlator is the best choice of transition from analog to digital signal processing. High performance sets requiring multiple channels are developed from a generic design by replicating the RF processing segment, and modifying the applications software to provide enhanced state propagation and estimation.

  11. Relative Navigation of Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl

    2002-01-01

    This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.

  12. A modified cadastral survey system based on GPS/PDA

    NASA Astrophysics Data System (ADS)

    Wang, Huiqing; Wang, Qing; Wu, Xiangyang

    2009-12-01

    Due to disadvantages of complex working procedure, long field survey and low efficiency of the traditional cadastral survey methods exist, a modified system based on GPS(Global Position System) /PDA(Personal Digital Assist) combined with TS(Total Station) is proposed. The system emphasizes the design of TS free setting station for detail survey without GPS, to realize simultaneously processing control survey and detail survey. The system also applies digital drafting method based on PDA instead of cartographical sketching, to realize fully-digitalized cadastral survey. The application in Beijing shows that the modified cadastral survey system based on GPS/PDA performs high efficiency, and the accuracy of this system can meet the requirement of 1:500 large scale cadastral survey.

  13. Hindawi Publishing Corporation International Journal of Navigation and Observation

    E-print Network

    Paris-Sud XI, Université de

    Tracking Loop for GPS-Guided Missiles and Vehicular Applications Ahmed M. Kamel,1,2 Valerie Renaudin,1 is properly cited. Autonomous Navigation Systems used in missiles and other high dynamic platforms are mostly dependent on the Global Positioning System (GPS). GPS users face limitations in terms of missile high

  14. INTRODUCTION The integration of GPS receivers with inertial

    E-print Network

    Calgary, University of

    INTRODUCTION The integration of GPS receivers with inertial navigation systems (INS) has been well only at using high-end, navigation-grade inertial systems for high-accuracy (centimeter with inertial sensors can provide many benefits for navigation, from improved accuracy to increased reliability

  15. GPS/INS Sensor Fusion Using GPS Wind up Model

    NASA Technical Reports Server (NTRS)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  16. Dual Airborne Laser Scanners Aided Inertial for Improved Autonomous Navigation

    Microsoft Academic Search

    ANANTH K. VADLAMANI; MAARTEN UIJT DE HAAG

    2009-01-01

    A dead-reckoning terrain referenced navigation (TRN) system is presented that uses two airborne laser scanners (ALS) to aid an inertial navigation system (INS). The system uses aircraft autonomous sensors and is capable of performing the dual functions of mapping and navigation simultaneously. The proposed system can potentially serve as a backup to the Global Positioning System (GPS), increase the robustness

  17. GOES image navigation and registration system

    NASA Astrophysics Data System (ADS)

    Kamel, Ahmed

    1996-10-01

    The GOES I-M image navigation and registration (INR) system was developed and patented by Space Systems/Loral in response to NASA/NOAA pointing requirements of Imager and Sounder payloads. This INR system is divided into space segment and ground segment. The space segment consist of image motion compensation (IMC) system that compensates for deterministic errors caused by orbit and attitude motions and mirror motion compensations system that compensates for spacecraft attitude motion caused by Imager and Sounder scanner mirror motion. The ground segment consists mainly of Orbit and Attitude Tracking System (OATS) that determines the IMC orbit and attitude coefficients from star, landmark, and range measurements.

  18. Satellite Navigation Systems: Policy, Commercial and Technical Interaction.

    NASA Astrophysics Data System (ADS)

    Rycroft, M.

    2003-12-01

    This book adopts a broad perspective on positioning and navigation systems which rely on Earth orbiting satellites for their successful operation. The first of such global systems was the US Global Positioning System (GPS), and the next the Russian GLONASS system. Now studies relating to Europe's future Galileo system are gaining momentum and other nations are planning regional augmentation systems. All such systems are discussed here, particularly relating to political, commercial, legal and technical issues. The opportunities - and also the problems - of having three similar systems in operation simultaneously are examined, and several novel applications are proposed. These range from improved vehicular transport by land, sea and air, to more accurate surveying, more efficient agricultural practices and safer operations in mountainous regions. Everyone who is challenged by these topics will find this volume invaluable. ISU WWW Server; http://www.isunet.edu. Further information on ISU Symposia may also be obtained by e-mail from symposium@isu.isunet.edu Link: http://www.wkap.nl/prod/b/1-4020-1678-6

  19. [Transsphenoidal surgery assisted by navigation system].

    PubMed

    Abe, M; Udono, H; Tabuchi, K; Uchino, A

    2001-01-01

    Microneurosurgical technique combined with precise localization of lesions, can minimize the invasiveness of neurosurgical procedures. This report describes the usefulness of the neuronavigation system in transsphenoidal surgery. Nineteen transsphenoidal operations for sellar lesions including pituitary adenoma, clival chordoma, Rathke's cleft cyst and suprasellar germinoma were assisted by the optical tracking system (OTS). Operations were performed either through the sublabial or the endonasal approach using an operative microscope and, to a certain extent, the endoscope. All five microadenomas were totally removed. The tumors could be precisely localized by the navigation system. Four out of seven macroadenomas were totally removed. The operations were assisted effectively by the excellent guidance to the lateral margin of the tumors and the internal carotid arteries provided by the navigation system. The endonasal approach, in which the surgeon looks through a nostril at the sellar floor obliquely, was especially facilitated by the three-dimensional view provided by the system. The navigation system, however, was not useful in estimating the amount of the suprasellar residual tumor because of the dislocation that occurred during the tumor removal. PMID:11218764

  20. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the various systems. We will present the results of our calibration studies that relate to the accuracy the GPS positioning. We will discuss the effects these positioning, errors have on the resultant DEM products and imagery.

  1. FAA navigation program

    NASA Technical Reports Server (NTRS)

    Blake, N. A.

    1978-01-01

    The FAA navigation program, which includes two major activity areas: those associated with certification of navigation systems to meet current requirements and those associated with building the data base needed to define future system improvements is examined. The near term activities, including the VORTAC upgrading program, the development of the technical data base needed for certification of LORAN C and OMEGA as a part of the current air navigation system, and the development of area navigation standards are examined in regard to cost factors and user requirements. Future system activities discussed include analysis of alternative system configurations made up of system elements including VORTAC VOR-DME, OMEGA and differential OMEGA, LORAN C, and GPS. The interrelationships between the near and far term programs are discussed. A helicopter IFR program which includes an assessment of the operational suitability of several navigation system alternatives for meeting helicopter navigation requirements for CONUS and offshore operations is reported.

  2. Navigation in Antarctica Today: The Global Positioning System

    NSDL National Science Digital Library

    After researching how the Global Positioning System is used in Antarctica and across the globe, students learn how GPS works. Throughout this weeklong activity, students collect their findings in a portfolio. The comprehensive curriculum materials contain teacher tools, which include individually downloadable readings, detailed daily breakdowns of tasks, teacher strategies for using the activities, a portfolio grading sheet, a project rubric sheet, and additional readings. Students investigate the use of the Global Positioning System (GPS)in Antarctica and across the globe. They conduct research on the Web to understand how and why GPS is used today. Students also complete a hands-on activity that is based on spatial principles similar to those used by GPS; they learn how GPS works by doing on paper the work of GPS satellites in space.

  3. Lunar Navigation Determination System - LaNDS

    NASA Technical Reports Server (NTRS)

    Quinn, David; Talabac, Stephen

    2012-01-01

    A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.

  4. Effects of Geodetic Uncertainties on a Damped Inertial Navigation System

    Microsoft Academic Search

    Stanley Jordan

    1973-01-01

    Gravity uncertainties are an inexorable source of error in all inertial navigation systems and are particularly important in high-quality inertial navigation systems. In this paper the steady-state rms errors that are excited in a damped inertial navigation system are analytically determined for four gravity uncertainty models and two vehicle maneuver models. The statistical approach used in this paper is compared

  5. Factor Graph Based Incremental Smoothing in Inertial Navigation Systems

    E-print Network

    Kaess, Michael

    Factor Graph Based Incremental Smoothing in Inertial Navigation Systems Vadim Indelman, Stephen Abstract--This paper describes a new approach for informa- tion fusion in inertial navigation systems. INTRODUCTION Information fusion in inertial navigation systems is essential for any practical application

  6. Navigation system for flexible endoscopes

    Microsoft Academic Search

    Johann Hummel; Michael Figl; Wolfgang Birkfellner; Michael Häfner; Christian Kollmann; Helmar Bergmann

    2003-01-01

    Endoscopic Ultrasound (EUS) features flexible endoscopes equipped with a radial or linear array scanhead allowing high resolution examination of organs adjacent to the upper gastrointestinal tract. An optical system based on fibre-glass or a CCD-chip allows additional orientation. However, 3-dimensional orientation and correct identification of the various anatomical structures may be difficult. It therefore seems desirable to merge real-time US

  7. GLONASS-R: GNSS reflectometry with a Frequency Division Multiple Access-based satellite navigation system

    NASA Astrophysics Data System (ADS)

    Hobiger, T.; Haas, R.; Löfgren, J. S.

    2014-04-01

    The information from reflected Global Navigation Satellite System (GNSS) signals can become a valuable data source, from which geophysical properties can be deduced. This approach, called GNSS Reflectometry (GNSS-R), can be used to develop instruments that act like an altimeter when arrival times of direct and reflected signals are compared. Current GNSS-R systems usually entirely rely on signals from the Global Positioning Service (GPS), and field experiments could demonstrate that information from such systems can measure sea level with an accuracy of a few centimeters. However, the usage of the Russian GLONASS system has the potential to simplify the processing scheme and to allow handling of direct and reflected signals like a bistatic radar. Thus, such a system has been developed and deployed for test purposes at the Onsala Space Observatory, Sweden, that has an operational GPS-based GNSS-R system. Over a period of 2 weeks in October 2013, GPS-based GNSS-R sea level monitoring and measurements with the newly developed GLONASS-R system were carried out in parallel. In addition, data from colocated tide gauge measurements were available for comparison. It can be shown that precision and accuracy of the GLONASS-based GNSS-R system is comparable to, or even better than, conventional GPS-based GNSS-R solutions. Moreover, the simplicity of the newly developed GLONASS-R system allows to make it a cheap and valuable tool for various remote sensing applications.

  8. GPS water level measurements for Indonesia's Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.

    2011-03-01

    On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  9. Investigation of GPS/IMU Positioning System for Mining Equipment

    SciTech Connect

    Ken L. Stratton

    2006-09-13

    The objective of this project is to investigate the applicability of a combined Global Positioning System and Inertial Measurement Unit (GPS/IMU) for information based displays on earthmoving machines and for automated earthmoving machines in the future. This technology has the potential of allowing an information-based product like Caterpillar's Computer Aided Earthmoving System (CAES) to operate in areas with satellite shading. Satellite shading is an issue in open pit mining because machines are routinely required to operate close to high walls, which reduces significantly the amount of the visible sky to the GPS antenna mounted on the machine. An inertial measurement unit is a product, which provides data for the calculation of position based on sensing accelerations and rotation rates of the machine's rigid body. When this information is coupled with GPS it results in a positioning system that can maintain positioning capability during time periods of shading.

  10. Inertial navigation systems for mobile robots

    Microsoft Academic Search

    Billur Barshan; Hugh F. Durrant-Whyte

    1995-01-01

    A low-cost solid-state inertial navigation system (INS) for mobile robotics applications is described. Error models for the inertial sensors are generated and included in an extended Kalman filter (EKF) for estimating the position and orientation of a moving robot vehicle. Two different solid-state gyroscopes have been evaluated for estimating the orientation of the robot. Performance of the gyroscopes with error

  11. Radio tomography imaging based on navigation systems

    Microsoft Academic Search

    V. E. Kunitsyn; V. E. Tereshchenko; E. S. Andreeva; I. A. Nesterov; M. O. Nazarenko

    2011-01-01

    Methods of radio tomography (RT) based on the low- and high-orbital navigational systems and radio occultation data are considered. Examples of RT imaging of the ionosphere in different regions of the world illustrate the use of low-orbital and high-orbital radio tomography (LORT and HORT, respectively) separately and in combination with each other. RT methods allow studying of various ionospheric structures:

  12. An Heuristic Method for GPS Surveying Stefka Fidanova

    E-print Network

    Fidanova, Stefka

    , to analyze and improve the efficiency of the design of Global Positioning System (GPS) surveying networks of computational effort. The Global Positioning System is a satellite-based radio-navigation system that permits. The most widely known space systems are: the American Global Positioning System (GPS), the Russian GLObal

  13. Libration Point Navigation Concepts Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.

    2004-01-01

    This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.

  14. Simulation of Guidance, Navigation, and Control Systems for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Burns, Rich; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    Concepts for missions of distributed spacecraft flying in formation abound. From high resolution interferometry to spatially distributed in-situ measurements, these mission concepts levy a myriad of guidance, navigation, and control (GNC) requirements on the spacecraft/formation as a single system. A critical step toward assessing and meeting these challenges lies in realistically simulating distributed spacecraft systems. The Formation Flying TestBed (FFTB) at NASA Goddard Space Flight Center's (GSFC) Guidance, Navigation, and Control Center is a hardware-in-the-loop simulation and development facility focused on GNC issues relevant to formation flying systems. The FFTB provides a realistic simulation of the vehicle dynamics and control for formation flying missions in order to: (1) conduct feasibility analyses of mission requirements, (2) conduct and answer mission and spacecraft design trades, and (3) serve as a host for GNC software and hardware development and testing. The initial capabilities of the FFTB are based upon an integration of high fidelity hardware and software simulation, emulation, and test platforms developed or employed at GSFC in recent years, including a high-fidelity Global Positioning System (GPS) simulator which has been a fundamental component of the GNC Center's GPS Test Facility. The FFTB will be continuously evolving over the next several years from a tool with capabilities in GPS navigation hardware/software-in-the-loop analysis and closed loop GPS-based orbit control algorithm assessment. Eventually, it will include full capability to support all aspects of multi-sensor, absolute and relative state determination and control, in all (attitude and orbit) degrees of freedom, as well as information management for satellite clusters and constellations. A detailed description of the FFTB architecture is presented in the paper.

  15. International GPS (Global Positioning System) Service for Geodynamics

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F. (Editor); Liu, R. (Editor); Neilan, R. E. (Editor)

    1995-01-01

    The International GPS (Global Positioning System) Service for Geodynamics (IGS) began formal operation on January 1, 1994. This first annual report is divided into sections, which mirror different aspects of the service. Section (1) contains general information, including the history of the IGS, its organization, and the global network of GPS tracking sites; (2) contains information on the Central Bureau Information System; (3) describes the International Earth Rotation Service (IERS); (4) details collecting and distributing IGS data in Data Center reports; (6) describes how the IGS Analysis Centers generate their products; (7) contains miscellaneous contributions from other organizations that share common interests with the IGS.

  16. The changing world of global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Dow, John M.; Neilan, Ruth E.; Higgins, Matt; Arias, Felicitas

    The world of global navigation satellite systems (GNSS) has been changing very rapidly during the last years. New constellations are being developed in Europe (Galileo), India (IRNSS), Japan (QZNSS) and China (Compass), while both the US GPS and the Russian GLONASS programmes are engaged in very significant mediumto long-term improvements, which will make them even more valuable in the coming years to an ever wider range of civilian users. In addition, powerful regional augmentation systems are becoming (or have already become) operational, providing users with important real time information concerning the integrity of the signals being broadcast by those two systems: these include the US WAAS, the European EGNOS, the Japanese MSAS, the Indian GAGAN and others. Following a number of United Nations sponsored regional workshops, a report by an ad hoc UN "GNSS Action Team" and several preparatory meetings, the International Committee on GNSS (ICG) was established in December 2005 in Vienna, Austria. The ICG is an informal body with the main objective of promoting cooperation on matters of mutual interest related to civil satellite-based positioning, navigation, timing, and value-added services, as well as compatibility and interoperability among the GNSS systems. A further important objective is to encourage the use of GNSS to support sustainable development, particularly in the developing countries. The United Nations Office for Outer Space Affairs (UNOOSA) plays a key role in facilitating the work of the ICG. The members of the Committee are GNSS system providers, while international organisations representing users of GNSS can qualify for participation in the work of the Committee as associate members or observers. The interests of the space geodetic, mapping and timing communities are represented in particular through ICG associate membership of the IGS, IAG, FIG, IERS, while BIPM is an ICG observer. This paper will highlight the background of these developments and focus on the concerns of the ICG, especially from the point of view of the user organisations.

  17. Obstacle-avoiding navigation system

    DOEpatents

    Borenstein, Johann (Ann Arbor, MI); Koren, Yoram (Ann Arbor, MI); Levine, Simon P. (Ann Arbor, MI)

    1991-01-01

    A system for guiding an autonomous or semi-autonomous vehicle through a field of operation having obstacles thereon to be avoided employs a memory for containing data which defines an array of grid cells which correspond to respective subfields in the field of operation of the vehicle. Each grid cell in the memory contains a value which is indicative of the likelihood, or probability, that an obstacle is present in the respectively associated subfield. The values in the grid cells are incremented individually in response to each scan of the subfields, and precomputation and use of a look-up table avoids complex trigonometric functions. A further array of grid cells is fixed with respect to the vehicle form a conceptual active window which overlies the incremented grid cells. Thus, when the cells in the active window overly grid cell having values which are indicative of the presence of obstacles, the value therein is used as a multiplier of the precomputed vectorial values. The resulting plurality of vectorial values are summed vectorially in one embodiment of the invention to produce a virtual composite repulsive vector which is then summed vectorially with a target-directed vector for producing a resultant vector for guiding the vehicle. In an alternative embodiment, a plurality of vectors surrounding the vehicle are computed, each having a value corresponding to obstacle density. In such an embodiment, target location information is used to select between alternative directions of travel having low associated obstacle densities.

  18. An Interdisciplinary Approach at Studying the Earth-Sun System with GPS/GNSS and GPS-like Signals

    NASA Technical Reports Server (NTRS)

    Zuffada, Cinzia; Hajj, George; Mannucci, Anthony J.; Chao, Yi; Ao, Chi; Zumberge, James

    2005-01-01

    The value of Global Positioning Satellites (GPS) measurements to atmospheric science, space physics, and ocean science, is now emerging or showing a potential to play a major role in the evolving programs of NASA, NSF and NOAA. The objective of this communication is to identify and articulate the key scientific questions that are optimally, or perhaps uniquely, addressed by GPS or GPS-like observations, and discuss their relevance to existing or planned national Earth-science research programs. The GPS-based ocean reflection experiments performed to date have demonstrated the precision and spatial resolution suitable to altimetric applications that require higher spatial resolution and more frequent repeat than the current radar altimeter satellites. GPS radio occultation is promising as a climate monitoring tool because of its benchmark properties: its raw observable is based on extremely accurate timing measurements. GPS-derived temperature profiles can provide meaningful climate trend information over decadal time scales without the need for overlapping missions or mission-to-mission calibrations. By acquiring data as GPS satellites occult behind the Earth's limb, GPS also provides high vertical resolution information on the vertical structure of electron density with global coverage. New experimental techniques will create more comprehensive TEC maps by using signals reflected from the oceans and received in orbit. This communication will discuss a potential future GNSS Earth Observing System project which would deploy a constellation of satellites using GPS and GPS-like measurements, to obtain a) topography measurements based on GPS reflections with an accuracy and horizontal resolution suitable for eddy monitoring, and h) climate-records quality atmospheric temperature profiles. The constellation would also provide for measurements of ionospheric elec tron density. This is a good example of an interdisciplinary mission concept, with broad science objectives of high societal relevance, al l resting on common cost-effective technology.

  19. Investigation of GPS\\/IMU Positioning System for Mining Equipment

    Microsoft Academic Search

    Ken L. Stratton

    2006-01-01

    The objective of this project is to investigate the applicability of a combined Global Positioning System and Inertial Measurement Unit (GPS\\/IMU) for information based displays on earthmoving machines and for automated earthmoving machines in the future. This technology has the potential of allowing an information-based product like Caterpillar's Computer Aided Earthmoving System (CAES) to operate in areas with satellite shading.

  20. MECHANIZED IRRIGATION SYSTEM POSITIONING USING TWO INEXPENSIVE GPS RECEIVERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision irrigation or chemigation using mechanized irrigation systems such as center pivots or lateral moves requires accurate and real-time knowledge of the irrigation system's field location. A GPS receiver mounted on a center pivot or lateral move has the potential to increase the accuracy of ...

  1. RoSES: Robust Self-configuring Embedded Systems

    E-print Network

    Koopman, Philip

    Institute for Complex Engineered Systems Inertial Navigation CAN Embedded Network GPS Navigation Data Collection Vehicle Stability Control Precision Navigation Synthesis Wireless Andrew CANalyzer Test Tool Experimental Testbed > > > > Application: Navigation, then Active Vehicle Stability Control Simulation testbed

  2. Plot Your Course - Navigation

    NSDL National Science Digital Library

    2014-09-18

    In this unit, students learn the very basics of navigation, including the different kinds of navigation and their purposes. The concepts of relative and absolute location, latitude, longitude and cardinal directions are explored, as well as the use and principles of maps and a compass. Students discover the history of navigation and learn the importance of math and how it ties into navigational techniques. Understanding how trilateration can determine one's location leads to a lesson on the global positioning system and how to use a GPS receiver. The unit concludes with an overview of orbits and spacecraft trajectories from Earth to other planets.

  3. Synthesis of a Very Accurate Inertial Navigation System

    Microsoft Academic Search

    Arthur Gelb

    1965-01-01

    A philosophy for the synthesis of a very accurate inertial navigation system is developed here. First, the requirements for a spherical earth navigator are determined, and the basis for a navigator error analysis is developed through the use of mathematical error models. Four types of redundant information are then considered in sequence: external speed information, redundant system gyro, external discrete

  4. Automatic alignment and calibration of an inertial navigation system

    Microsoft Academic Search

    Samer S. Saab; Kristjan T. Gunnarsson

    1994-01-01

    In this paper we derive a simple six degree of freedom navigator, Earth-surface navigator, for terranean vehicle application, using low grade gyros. The calibration and alignment of the navigator are investigated when the system is at rest. Based on the observability of the error model when the system is at rest, a state transformation is presented. This transformation decouples the

  5. Inertial navigation system for directional surveying

    SciTech Connect

    Kohler, S.M.

    1982-09-01

    A Wellbore Inertial Navigation System (WINS) was developed and tested. Developed for directional surveying of geothermal, oil, and gas wells, the system uses gyros and accelerometers to obtain survey errors of less than 10 ft (approx. 3 m) in a 10,000-ft (approx. 300-m) well. The tool, which communicates with a computer at the surface, is 4 in. (approx. 10 cm) in diameter and 20 ft (approx. 6.1 m) long. The concept and hardware is based on a system developed by Sandia for flight vehicles.

  6. Fiber optic gyroscopes for vehicle navigation systems

    NASA Astrophysics Data System (ADS)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  7. Tightly coupled integration of ionosphere-constrained precise point positioning and inertial navigation systems.

    PubMed

    Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald

    2015-01-01

    The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS. PMID:25763647

  8. Satellite emission radio interferometric earth surveying series - GPS geodetic system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    A concept called SERIES (satellite emissions radio interferometric earth surveying) which makes use of GPS (global positioning system) radio transmissions without any satellite modifications, is described. Through the use of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. Attention is given to such areas as: the radio flux equivalent of GPS transmissions, synthesized delay precision, transmission and frequency subsystem requirements, tropospheric and ionospheric errors. Applications covered include geodesy and seismic tectonics.

  9. First results from an airborne GPS radio occultation system for atmospheric profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Murphy, B. J.; Muradyan, P.; Nievinski, F. G.; Larson, K. M.; Garrison, J. L.; Wang, K.-N.

    2014-03-01

    Global Positioning System (GPS) radio occultation (RO) from low Earth-orbiting satellites has increased the quantity of high-vertical resolution atmospheric profiles, especially over oceans, and has significantly improved global weather forecasting. A new system, the Global Navigation Satellite Systems Instrument System for Multistatic and Occultation Sensing (GISMOS), has been developed for RO sounding from aircraft. GISMOS also provides high-vertical resolution profiles that are insensitive to clouds and precipitation, and in addition, provides greater control on the sampling location, useful for targeted regional studies. The feasibility of the system is demonstrated with a flight carried out during development of an Atlantic tropical storm. The data have been evaluated through a comparison with dropsonde data. The new airborne RO system will effectively increase by more than 50% the number of profiles available for studying the evolution of tropical storms during this campaign and could potentially be deployed on commercial aircraft in the future.

  10. An Inexpensive and Robust GPS/INS Attitude System for Automobiles

    E-print Network

    Stanford University

    An Inexpensive and Robust GPS/INS Attitude System for Automobiles Santiago Alban, Stanford-cost and robust GPS/INS attitude system for automobiles, and deep integration of INS systems with GPS tracking loops. ABSTRACT Many of the sophisticated control systems of modern automobiles require measurements

  11. Civil Application of Differential GPS Using a Single Channel Sequential Receiver

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Global Positioning System (GPS) and its potential for area navigation, landing, and takeoff under minimum ceilings and advanced air traffic control operation is discussed. The following topics are reported: status of the GPS system; GPS signal availability for the civil community; alternative differential GPS concepts; predicted performance enhancement achievable with differential GPS and the operational improvements which will result; and a development program to test and evaluate differential GPS concepts, performance and operational procedures applicable to helicopters. Potential benefits which will be derived from helicopter use of GPS in the differential mode are identified.

  12. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  13. Simulation Of Satellite Trajectories And Navigation

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Bertiger, William I.; Border, James S.; Lichten, Stephen M.; Sunseri, Richard F.; Williams, Bobby G.; Wolff, Peter J.; Wu, Jiun-Tsong

    1989-01-01

    Orbit Analysis and Simulation Software, OASIS, is software system developed for covariance and simulation analyses of problems involving Earth satellites, especially Global Positioning System (GPS). Provides flexible, versatile, and efficient software tool for analysis of accuracy in Earth-satellite navigation and GPS-based geodetic studies.

  14. Navigation Accuracy and Interference Rejection for an

    E-print Network

    Stanford University

    Reception Pattern Array (CRPA) antennas. In a high precision system such as JPALS, CRPA antennas may sufferNavigation Accuracy and Interference Rejection for an Adaptive GPS Antenna Array David S. De System (JPALS) both the differential GPS reference station and the airborne user will employ Controlled

  15. Integrated vision\\/inertial navigation system design using nonlinear filtering

    Microsoft Academic Search

    I. Kaminer; A. Pascoal; Wei Kang

    1999-01-01

    Addresses the problem of navigation system design for autonomous aircraft landing. New nonlinear filter structures are introduced to estimate the position of an aircraft with respect to a possibly moving landing site, such as a naval vessel, based on measurements provided by airborne vision and inertial sensors. By exploring the geometry of the navigation problem, the navigation filter dynamics are

  16. Robotics and Autonomous Systems 30 (2000) 133153 Biomimetic robot navigation

    E-print Network

    Robotics and Autonomous Systems 30 (2000) 133­153 Biomimetic robot navigation Matthias O. Franz Abstract In the past decade, a large number of robots has been built that explicitly implement biological applications, most notably in the field of indoor robot navigation. While simpler insect navigation behaviours

  17. Innovative astronaut navigation system based on smart integrated sensors

    Microsoft Academic Search

    Hamza Benzerrouk; Alexander Nebylov; Gennady Yatsevitch

    2012-01-01

    Original algorithms for navigation on the surface of Mars planet, especially applied to astronauts, are proposed in this paper. The autonomous navigation system for astronaut is based on inertial measurement unit (redundant) and Laser (redundant), which permits to localize and navigate in known environment and unknown environment constructing its map in real time, using adaptive algorithms and physical and natural

  18. Differential GPS and system integration of the Low Visibility Landing and Surface Operations (LVLASO) demonstration

    NASA Technical Reports Server (NTRS)

    Rankin, James M.

    1994-01-01

    The LVLASO Flight Demonstration of ASTA concepts (FDAC) integrates NASA-Langley's electronic moving map display and Transport Systems Research Vehicle (TSRV) (a modified Boeing 737 aircraft); ARINC's VHF data link, GPS ground station, and automated controller workstation; and Norden's surface radar/airport movement safety system. Aircraft location is shown on the electronic map display in the cockpit. An approved taxi route as well as other aircraft and surface traffic are also displayed. An Ashtech Z12 Global Positioning System (GPS) receiver on the TSRV estimates the aircraft's position. In Differential mode (DSPS), the Ashtech receiver accepts differential C/A code pseudorange corrections from a GPS ground station. The GPS ground station provides corrections up to ten satellites. The corrections are transmitted on a VHF data link at a 1 Hz. rate using the RTCM-104 format. DGPS position estimates will be within 5 meters of actual aircraft position. DGPS position estimates are blended with position, velocity, acceleration, and heading data from the TSRV Air Data/Inertial Reference System (ADIRS). The ADIRS data is accurate in the short-term, but drifts over time. The DGPS data is used to keep the ADIRS position accurate. Ownship position, velocity, heading, and turn rate are sent at a 20 Hz. rate to the electronic map display. Airport traffic is detected by the airport surface radar system. Aircraft and vehicles such as fuel trucks and baggage carts are detected. The traffic's location, velocity, and heading are sent to the TSRV. To prevent traffic symbology from jumping each second when a location update arrives, velocity and heading are used to predict a new traffic location for each display update. Possible runway incursions and collisions can be shown on the electronic map. Integrating the different systems used in the FDAC requires attention to the underlying coordinate systems. The airport diagram displayed on the electronic map is obtained from published navigational charts. The charts reference the North American Datum of 1927 (NAD27) or a local state-plane coordinate system. GPS uses the World Geodetic Standard of 1984 (WGS84). Both NAD27 and WGS84 model the Earth as an ellipsoid, however, they use a different origin and different size ellipsoids. Latitudes and longitudes given in these systems can be converted to a Cartesian system with the origin at the Earth's center. The surface radar detects traffic in a locally-level, rho-theta coordiante system. The electronic airport diagram is stored using a flat XY coordinate system. The map origin is at the tower and is referenced as True North up. All ownship and other traffic positions must be converted to the electronic map's frame of reference for display.

  19. MODELLING TURNING RESTRICTIONS IN TRAFFIC NETWORK FOR VEHICLE NAVIGATION SYSTEM

    Microsoft Academic Search

    J. JIANG; G. HAN; J. CHEN

    2002-01-01

    Vehicle navigation is currently the most widespread and successful consumer application of GIS-T. It is based on positional accurate data and comprehensive transportation-related content. A specially-made navigable database is essential for the key functions of the vehicle navigation systems, for example, route finding and driver guiding. There are lots of research challenges in generating a satisfied navigable database. Among them

  20. Observability of error States in GPS\\/INS integration

    Microsoft Academic Search

    Sinpyo Hong; Man Hyung Lee; Ho-Hwan Chun; Sun-Hong Kwon; Jason L. Speyer

    2005-01-01

    Observability properties of errors in an integrated navigation system are studied with a control-theoretic approach in this paper. A navigation system with a low-grade inertial measurement unit and an accurate single-antenna Global Positioning System (GPS) measurement system is considered for observability analysis. Uncertainties in attitude, gyro bias, and GPS antenna lever arm were shown to determine unobservable errors in the

  1. Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed

    E-print Network

    Chen, Yuh-Ing

    Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron maps of the TEC derived from worldwide groundbased receivers of the global positioning system (GPS in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9

  2. Effects of Multipath and Signal Blockage on GPS Navigation in the Vicinity of the International Space Station (ISS)

    Microsoft Academic Search

    David E. Gaylor; E. Glenn Lightsey; Kevin W. Key

    A number of studies have examined GPS relative navi- gation for spacecraft performing rendezvous and docking with the International Space Station (ISS). However, these studies have not accounted for degradation in GPS naviga- tion performance due to multipath signals being reflected off of the ISS or blockage of GPS signals by the ISS. The objective of this study is to

  3. 33 CFR 164.72 - Navigational-safety equipment, charts or maps, and publications required on towing vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...position-fixing device. An electronic position-fixing device, a satellite navigational system such as the Global Positioning System (GPS) as required by § 164.41, if the vessel engages in towing seaward of navigable waters of the...

  4. 33 CFR 164.72 - Navigational-safety equipment, charts or maps, and publications required on towing vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...position-fixing device. An electronic position-fixing device, a satellite navigational system such as the Global Positioning System (GPS) as required by § 164.41, if the vessel engages in towing seaward of navigable waters of the...

  5. 33 CFR 164.72 - Navigational-safety equipment, charts or maps, and publications required on towing vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...position-fixing device. An electronic position-fixing device, a satellite navigational system such as the Global Positioning System (GPS) as required by § 164.41, if the vessel engages in towing seaward of navigable waters of the...

  6. 33 CFR 164.72 - Navigational-safety equipment, charts or maps, and publications required on towing vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...position-fixing device. An electronic position-fixing device, a satellite navigational system such as the Global Positioning System (GPS) as required by § 164.41, if the vessel engages in towing seaward of navigable waters of the...

  7. Constrained navigation algorithms for strapdown inertial navigation systems with reduced set of sensors

    Microsoft Academic Search

    Aleksandr Brandt; John F. Gardner

    1998-01-01

    This paper develops a family of algorithms for low-cost strapdown inertial navigation system for land vehicles. Constraints on the motion of land vehicles are defined. They include constraints on vehicle's orientation relative to the Earth surface, and relationship between vehicle's attitude and its velocity direction. Navigation equations are derived that assume validity of these constraints on the vehicle's motion. Compared

  8. Autonomous underwater pipeline monitoring navigation system

    NASA Astrophysics Data System (ADS)

    Mitchell, Byrel; Mahmoudian, Nina; Meadows, Guy

    2014-06-01

    This paper details the development of an autonomous motion-control and navigation algorithm for an underwater autonomous vehicle, the Ocean Server IVER3, to track long linear features such as underwater pipelines. As part of this work, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) developed an algorithm that utilizes inputs from the vehicles state of the art sensor package, which includes digital imaging, digital 3-D Sidescan Sonar, and Acoustic Doppler Current Profilers. The resulting algorithms should tolerate real-world waterway with episodic strong currents, low visibility, high sediment content, and a variety of small and large vessel traffic.

  9. A LAGRANGIAN DRIFTER WITH INEXPENSIVE WIDE AREA DIFFERENTIAL GPS POSITIONING

    E-print Network

    Kurapov, Alexander

    drifting buoys that acquire position data using Global Positioning System (GPS) navigation have proven. INTRODIJCTION Autonomous drifting buoys that acquire position data using Global Positioning System (GPS software and correction dzitil provided by the Canadian Active Control System (CACS). CACS is a global

  10. An Autonomous Helicopter with Vision Based Navigation

    Microsoft Academic Search

    Pei Luo; Hailong Pei

    2007-01-01

    In this paper, we present an autonomous helicopter with vision based navigation called South China University of Technology unmanned aerial vehicle (SCUAV). A GPS\\/INS system has been designed and implemented for getting stable navigation information. A Kalman filtering has been used in this system for data fusion. A real-time computer vision system is presented in this paper as the complement

  11. Global Positioning System (GPS) Time Dissemination for Real-Time Applications

    Microsoft Academic Search

    Peter H. Dana

    1997-01-01

    This paper presents an overview of the Global Positioning System (GPS) for the potential precise time and time interval user with special reference to real -time systems. An overview of GPS operation is presented and GPS error sources are described as they relate to the timing user. A review of receiver types and receiver tasks provides the basis for understanding

  12. Global positioning system (GPS) time dissemination for real-time applications

    E-print Network

    Peter H. Dana

    1997-01-01

    Abstract. This paper presents an overview of the Global Positioning System (GPS) for the potential precise time and time interval user with special reference to real-time systems. An overview of GPS operation is presented and GPS error sources are described as they relate to the timing user. A

  13. DESIGN AND PERFORMANCE OF A ROBUST GPS/INS ATTITUDE SYSTEM FOR AUTOMOBILE

    E-print Network

    Stanford University

    DESIGN AND PERFORMANCE OF A ROBUST GPS/INS ATTITUDE SYSTEM FOR AUTOMOBILE APPLICATIONS cars has led to a growing number of GPS applications in the automobile industry. In addition of an inexpensive and ro- bust attitude system based on GPS and inertial sensors, suitable for use in automobiles

  14. Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors

    PubMed Central

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-01-01

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122

  15. Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.

    PubMed

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-01-01

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122

  16. Tuning and Robustness Analysis for the Orion Absolute Navigation System

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Zanetti, Renato; D'Souza, Christopher

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is currently under development as NASA's next-generation spacecraft for exploration missions beyond Low Earth Orbit. The MPCV is set to perform an orbital test flight, termed Exploration Flight Test 1 (EFT-1), some time in late 2014. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to show the efforts made to-date in tuning the filter for the EFT-1 mission and instilling appropriate robustness into the system to meet the requirements of manned space ight. Filter performance is affected by many factors: data rates, sensor measurement errors, tuning, and others. This paper focuses mainly on the error characterization and tuning portion. Traditional efforts at tuning a navigation filter have centered around the observation/measurement noise and Gaussian process noise of the Extended Kalman Filter. While the Orion MODE team must certainly address those factors, the team is also looking at residual edit thresholds and measurement underweighting as tuning tools. Tuning analysis is presented with open loop Monte-Carlo simulation results showing statistical errors bounded by the 3-sigma filter uncertainty covariance. The Orion filter design uses 24 Exponentially Correlated Random Variable (ECRV) parameters to estimate the accel/gyro misalignment and nonorthogonality. By design, the time constant and noise terms of these ECRV parameters were set to manufacturer specifications and not used as tuning parameters. They are included in the filter as a more analytically correct method of modeling uncertainties than ad-hoc tuning of the process noise. Tuning is explored for the powered-flight ascent phase, where measurements are scarce and unmodelled vehicle accelerations dominate. On orbit, there are important trade-off cases between process and measurement noise. On entry, there are considerations about trading performance accuracy for robustness. Process Noise is divided into powered flight and coasting ight and can be adjusted for each phase and mode of the Orion EFT-1 mission. Measurement noise is used for the integrated velocity measurements during pad alignment. It is also used for Global Positioning System (GPS) pseudorange and delta- range measurements during the rest of the flight. The robustness effort has been focused on maintaining filter convergence and performance in the presence of unmodeled error sources. These include unmodeled forces on the vehicle and uncorrected errors on the sensor measurements. Orion uses a single-frequency, non-keyed GPS receiver, so the effects due to signal distortion in Earth's ionosphere and troposphere are present in the raw measurements. Results are presented showing the efforts to compensate for these errors as well as characterize the residual effect for measurement noise tuning. Another robustness tool in use is tuning the residual edit thresholds. The trade-off between noise tuning and edit thresholds is explored in the context of robustness to errors in dynamics models and sensor measurements. Measurement underweighting is also presented as a method of additional robustness when processing highly accurate measurements in the presence of large filter uncertainties.

  17. Decentralised approach to UAV navigation: without the use of GPS and preloaded maps

    E-print Network

    Kim, Jonghyuk "Jon"

    as well as guiding the low-flying missile at a fixed height above the ground. The TERrain PROfile Matching (TERCOM) system has been successfully applied in cruise missile systems [5]. It combines onboard radar

  18. Architecture and Signal Design of the European Satellite Navigation System Galileo- Status Dec. 2002

    E-print Network

    Guenter W. Hein; Thomas Pany

    2002-01-01

    Abstract. This paper starts with a brief discussion of the Galileo project status and with a description of the present Galileo architecture (space segment, ground segment, user segment). It focuses on explaining special features compared to the American GPS system. The presentation of the user segment comprises a discussion of the actual Galileo signal structure. The Galileo carrier frequency, modulation scheme and data rate of all 10 navigation signals are described as well as parameters of the search and rescue service. The navigation signals are used to realize three types of open services, the safety of life service, two types of commercial services and the public regulated service. The signal performance in terms of the pseudorange code error due to thermal noise and multipath is discussed as well as interference to and from other radionavigation services broadcasting in the E5 and E6 frequency band. The interoperability and compatibility of Galileo and GPS is realized by a properly chosen signal structures in E5a/L5 and E2-L1-E1 and compatible geodetic and time reference frames. Some new results on reciprocal GPS/Galileo signal degradation due to signal overlay are presented as well as basic requirements on the Galileo code sequences.

  19. Estimating Zenith Tropospheric Delays from BeiDou Navigation Satellite System Observations

    PubMed Central

    Xu, Aigong; Xu, Zongqiu; Ge, Maorong; Xu, Xinchao; Zhu, Huizhong; Sui, Xin

    2013-01-01

    The GNSS derived Zenith Tropospheric Delay (ZTD) plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS) was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS). The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages. PMID:23552104

  20. Estimating zenith tropospheric delays from BeiDou navigation satellite system observations.

    PubMed

    Xu, Aigong; Xu, Zongqiu; Ge, Maorong; Xu, Xinchao; Zhu, Huizhong; Sui, Xin

    2013-01-01

    The GNSS derived Zenith Tropospheric Delay (ZTD) plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS) was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS). The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages. PMID:23552104

  1. A New Ionosphere Monitoring Technology Based on GPS

    Microsoft Academic Search

    Claudio Brunini; Amalia Meza; Francisco Azpilicueta; María Andrea Van Zele; Mauricio Gende; Alejandro Díaz

    2004-01-01

    Although global positioning system (GPS) was originally planned as a satellite-based radio-navigation system for military\\u000a purposes, civilian users have significantly increased their access to the system for both, commercial and scientific applications.\\u000a Almost 400 permanent GPS tracking stations have been stablished around the globe with the main purpose of supporting scientific\\u000a research. In addition, several GPS receivers on board of

  2. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 19, NO. 1, FEBRUARY 2003 15 Autonomous Vehicle Positioning With GPS in

    E-print Network

    Ge, Shuzhi Sam

    --The Global Positioning System (GPS) has been widely used in land vehicle navigation applications. However problems successfully. Index Terms--Extended Kalman filtering, Global Positioning System (GPS), interacting multiple model, joint parameter and state estimation. I. INTRODUCTION THE GLOBAL Positioning System (GPS

  3. A novel laser Doppler velocimeter and its integrated navigation system with strapdown inertial navigation

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Nie, Xiaoming; Lin, Jun

    2014-12-01

    In order to suppress the error accumulation effect of inertial navigation system (INS), an idea of building an integrated navigation system using a laser Doppler velocimeter (LDV) together with strapdown inertial navigation (SIN) is proposed. The basic principle of LDV is expounded while a novel LDV with advanced optical structure is designed based on the split and reuse technique, and the process of dead reckoning using an integrated system which consists of LDV and SIN is discussed detailedly. The results of theory and experiment show that: the split and reuse type LDV has great advantages of high accuracy and signal-to-noise ratio, which has greatly enhanced the position accuracy of the navigation system. The position error has been decreased from 1166 m in 2 h with pure SIN to 20 m in 2 h with the integrated system.

  4. Optimization of the effective GPS data rate

    NASA Technical Reports Server (NTRS)

    Mcintyre, David S.

    1990-01-01

    Ohio University's Avionics Engineering Center is performing research directed towards the integration of the NAVSTAR Global Positioning System (GPS) and the Inertial Navigation System (INS) for attitude and heading determination. The integration of GPS/INS offers synergistic benefits. INS gyro drift error can be compensated by the long-term stability of GPS by means of an in-flight data monitoring algorithm. Using GPS data as a reference is more advantageous than implementing an additional INS since GPS offers a dissimilar redundancy to the attitude and heading determination configuration. In converse, the short-term stability of the INS can be used to correct or substitute for faulty GPS data due to tracking loop phase lag or data gaps because of satellite shielding. The optimization of the effective GPS data rate is essential for the proper execution of an integrated GPS/INS in-flight algorithm. GPS attitude and heading information must be consistently available during INS outages. Present research efforts involve the development of an in-flight algorithm that maximizes the potential of integrated GPS/INS. This algorithm determines the acceptable limits of phase lag that the GPS tracking loop introduces to the flight control system (FCS) during the transmission of information. Once these calculated limits are exceeded, INS data are used to insure the continuous availability of attitude and heading information to the flight control system.

  5. VIGIL: a GPS-based target-tracking system

    NASA Astrophysics Data System (ADS)

    Liebe, Carl C.; Brown, Kenneth A.; Udomkesmalee, Suraphol; Padgett, Curtis W.; Brenner, Michael P.; Howard, Ayanna M.; Wysocky, Terry R.; Brown, David I.; Suddarth, Steven C.

    1998-07-01

    The VIGILANTE project is a planned vision system capable of tracking and recognizing targets in real time, on a small airborne platform. The project consists of two parts: (1) the viewing imager/gimballed instrumentation laboratory (VIGIL), which is an IR and visible sensor platform with appropriate optics and (2) the analog neural 3D processing experiment (ANTE), a massive parallel, neural based, high- speed processor. The VIGIL platform is mounted on a helicopter equipped with Global Position System (GPS), Inertia Measurement Unit (IMU), gimbal, radio-link and anti- vibration platform. Also, a jet powered, radio controlled VIGILANTE Target Vehicle (VTV) has been manufactured and equipped with GPS. In the first stages of the project, the VIGIL system is used to acquire image sequences of the VTV for training and testing of the ANTE image recognition processor. Based on GPS and IMU input, the gimbal is pointed toward the VTV and acquires images. This paper describes the VIGIL system in detail. It discusses position-based pointing, tracking algorithms and the alignment procedure. Test imagery and an evaluation of the system will be presented.

  6. Comparative study of high-performance GPS receiving antenna designs

    Microsoft Academic Search

    Neus Padros; Juan I. Ortigosa; James Baker; Magdy F. Iskander; Bryce Thornberg

    1997-01-01

    The FAA decision allowing the use of the global positioning system (GPS) as a radio navigation and landing help system in the United States commercial airports boosts the need for a high-performance GPS receiver which provides the demanded precision. The design of the receiving antenna is one of the most important parts in the design process, as it has to

  7. GPS Animations

    NSDL National Science Digital Library

    This site features Flash animations that illustrate how the Global Positioning System (GPS) works. The animations depict how GPS signals are derived, compare geostationary and polar orbits, and explain satellites, ground control, and user segments, which comprise the three main GPS components. These resources are suitable for use in lectures, labs, or other teaching activities.

  8. REAL-TIME BRIDGE DEFLECTION AND VIBRATION MONITORING USING AN INTEGRATED GPS\\/ACCELEROMETER\\/PSEUDOLITE SYSTEM

    Microsoft Academic Search

    Xiaolin Meng; Gethin Wyn Roberts; Emily Cosser; Alan Henry Dodson

    2003-01-01

    GPS is used for various structural deformation monitoring, both for long-term deformations as well as instantaneous deflections. Due to the inherent deficiency in the GPS satellite geometry, multipath, residual tropospheric delay and cycle slips, GPS alone cannot provide the required positioning precision all the time to meet the requirements for such a system to detect subtle deformations of structures. The

  9. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System

    Microsoft Academic Search

    Michael Bevis; Steven Businger; Thomas A. Herring; Christian Rocken; Richard A. Anthes; Randolph H. Ware

    1992-01-01

    We present a new approach to remote sensing of water vapor based on the global positioning system (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is

  10. Quaternion algorithms for three-dimensional inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Chelnokov, Iu. N.

    1983-12-01

    Various types of quaternion algorithms are presented for inertial navigation systems of the platform and strapdown types. The algorithms use quantities whose complex combinations are dual Rodrigues-Hamilton parameters and can be useful in solving various navigation problems. Also, quaternion equations of ideal work are obtained for three-dimensional inertial navigation systems mounted on azimuth-stabilized or gyrostabilized platforms whose orientation in the inertial space is constant.

  11. Indian Regional Navigation Satellites System (IRNSS) is the world's rst

    E-print Network

    Calgary, University of

    Indian Regional Navigation Satellites System (IRNSS) is the world's rst regional navigation system with its footprint primarily over the Indian subcontinent. The system is expected to have seven satellites in all, with three satellites in GEO stationary and four in GEO synchronous orbits (Kibe & Gowrishankar

  12. A visual navigation system for autonomous land vehicles

    Microsoft Academic Search

    ALLEN M. WAXMAN; JACQUELINE J. LEMOIGNE; LARRY S. DAVIS; BABU SRINIVASAN; TODD R. KUSHNER; Eli Liang; THARAKESH SIDDALINGAIAH

    1987-01-01

    A modular system architecture has been developed to support visual navigation by an autonomous land vehicle. The system consists of vision modules performing image processing, three-dimensional shape recovery, and geometric reasoning, as well as modules for planning, navigating, and piloting. The system runs in two distinct modes, bootstrap and feedforward. The bootstrap mode requires analysis of entire images to find

  13. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false McClellan-Kerr Arkansas River navigation system: use, administration...207.275 McClellan-Kerr Arkansas River navigation system: use, administration...in the following waterways: The White River between Mississippi River and...

  14. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false McClellan-Kerr Arkansas River navigation system: use, administration...207.275 McClellan-Kerr Arkansas River navigation system: use, administration...in the following waterways: The White River between Mississippi River and...

  15. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false McClellan-Kerr Arkansas River navigation system: use, administration...207.275 McClellan-Kerr Arkansas River navigation system: use, administration...in the following waterways: The White River between Mississippi River and...

  16. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false McClellan-Kerr Arkansas River navigation system: use, administration...207.275 McClellan-Kerr Arkansas River navigation system: use, administration...in the following waterways: The White River between Mississippi River and...

  17. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false McClellan-Kerr Arkansas River navigation system: use, administration...207.275 McClellan-Kerr Arkansas River navigation system: use, administration...in the following waterways: The White River between Mississippi River and...

  18. A navigation and control system for an autonomous rescue vehicle in the space station environment

    NASA Astrophysics Data System (ADS)

    Merkel, Lawrence

    A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.

  19. Estimating MEMS Gyroscope G-Sensitivity Errors in Foot Mounted Navigation

    E-print Network

    Calgary, University of

    Estimating MEMS Gyroscope G-Sensitivity Errors in Foot Mounted Navigation Jared B. Bancroft are often overlooked in foot mounted navigation systems. Accelerations of foot mounted IMUs can reach 5 g-g-sensitivity; linear acceleration effect on gyros; pedestrian navigation; foot mounted sensors; GPS denied navigation

  20. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    NASA Technical Reports Server (NTRS)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  1. Epipolar Constraints for Vision-Aided Inertial Navigation

    Microsoft Academic Search

    David D. Diel; Paul Debitetto; Seth J. Teller

    2005-01-01

    This paper describes a new method to improve inertial navigation using feature-based constraints from one or more video cameras. The proposed method lengthens the period of time during which a human or vehicle can navigate in GPS-deprived environments. Our approach integrates well with existing navigation systems, because we invoke general sensor models that represent a wide range of available hard-

  2. Application of GPS attitude determination to gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.

    1993-01-01

    Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.

  3. Differential GPS for air transport: Status

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    1993-01-01

    The presentation presents background on what the Global Navigation Satellite System (GNSS) is, desired target dates for initial GNSS capabilities for aircraft operations, and a description of differential GPS (Global Positioning System). The presentation also presents an overview of joint flight tests conducted by LaRC and Honeywell on an integrated differential GPS/inertial reference unit (IRU) navigation system. The overview describes the system tested and the results of the flight tests. The last item presented is an overview of a current grant with Ohio University from LaRC which has the goal of developing a precision DGPS navigation system based on interferometry techniques. The fundamentals of GPS interferometry are presented and its application to determine attitude and heading and precision positioning are shown. The presentation concludes with the current status of the grant.

  4. Scintillation modeling for GPS-Wide Area Augmentation System receivers

    NASA Astrophysics Data System (ADS)

    Hegarty, Christopher; El-Arini, M. Bakry; Kim, Taehwan; Ericson, Swen

    2001-09-01

    A scintillation signal model and a Global Positioning System (GPS)-Wide Area Augmentation System (WAAS) receiver model are developed. The scintillation signal model is based on a Nakagami-m distribution for intensity and a Gaussian distribution with zero mean for phase. The GPS-WAAS receiver model includes Link 1 (L1) GPS and WAAS carrier-and C/A-code-tracking loops, as well as semicodeless Link 2 (L2) carrier and Y-code tracking capabilities. The results show that noncoherent delay locked loops (DLLs) typically used for code tracking are very robust to both amplitude and phase scintillation. Carrier-phase-tracking loops are much more susceptible to scintillation, and the signal-to-noise threshold for reliable carrier tracking is very dependent on the scintillation strength. Fortunately, it appears that the worst case scintillation encountered at midlatitudes, including the United States, does not significantly impact L1 carrier-tracking performance. Semicodeless tracking of the L2 carrier is shown to be very fragile. Even weak scintillation can cause loss of L2 carrier lock for low-elevation satellites.

  5. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit differences are utilized to qualify the estimated orbits and clocks. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. For the current tracking network, deploying tracking stations on the eastern side, for example in New Zealand and/or in Hawaii, will significantly reduce along-track biases of GEOs on the same side. The involvement of MEOs and ambiguity-fixing also make the orbits better but rather moderate. Key words: BeiDou, precise orbit determination (POD), tracking network, ambiguity-fixing

  6. GPS as an orbit determination subsystems

    NASA Technical Reports Server (NTRS)

    Fennessey, Richard; Roberts, Pat; Knight, Robin; Vanvolkinburg, Bart

    1995-01-01

    This paper evaluates the use of Global Positioning System (GPS) receivers as a primary source of tracking data for low-Earth orbit satellites. GPS data is an alternative to using range, azimuth, elevation, and range-rate (RAER) data from the Air Force Satellite Control Network antennas, the Space Ground Link System (SGLS). This evaluation is applicable to missions such as Skipper, a joint U.S. and Russian atmosphere research mission, that will rely on a GPS receiver as a primary tracking data source. The Detachment 2, Space and Missile Systems Center's Test Support Complex (TSC) conducted the evaluation based on receiver data from the Space Test Experiment Platform Mission O (STEP-O) and Advanced Photovoltaic and Electronics Experiments (APEX) satellites. The TSC performed orbit reconstruction and prediction on the STEP-0 and APEX vehicles using GPS receiver navigation solution data, SGLS RAER data, and SGLS anglesonly (azimuth and elevation) data. For the STEP-O case, the navigation solution based orbits proved to be more accurate than SGLS RAER based orbits. For the APEX case, navigation solution based orbits proved to be less accurate than SGLS RAER based orbits for orbit prediction, and results for orbit reconstruction were inconclusive due to the lack of a precise truth orbit. After evaluating several different GPS data processing methods, the TSC concluded that using GPS navigation solution data is a viable alternative to using SGLS RAER data.

  7. Sensor systems testbed for telerobotic navigation

    NASA Technical Reports Server (NTRS)

    Thiele, A. W.; Gjellum, D. E.; Rattner, R. H.; Manouchehri, D.

    1987-01-01

    A testbed has been developed for the study of sensor systems to be used in telerobotic operations. The program, conducted in conjunction with Johnson Space Center of NASA, addresses the navigational problems associated with target acquisition and rendezvous for teleoperated robotic work stations. The program will utilize a mobile platform which will support various sensor systems during their development and testing in an earth-based environment. The testbed has been developed in support of a program to develop sensor systems that will aid in rendezvous and docking operations to be conducted as a part of the space station program. A mobile platform has been used to permit testing of these components in a conventional laboratory environment with consequent savings in cost and complexity. The sensor systems, while representative of devices currently in use for robotic applications, are not considered prototypical of the ones that will be used in the final applications. The test program provided information that will support the design of system augmentations and will lead to a comprehensive test program for sensor development.

  8. REAL-TIME GPS SATELLITE SIGNAL SIMULATOR - SOFTWARE DESIGN ON A MULTI-SHARC PARALLEL PROCESSING SYSTEM

    Microsoft Academic Search

    S. V. M. K. Prasad; T. Ananda; G. Boopalan; V. Vaidehi; P. V. Ramakrishna; C. N. Krishnan

    GPS (Global Positioning System) signal simulator is a versatile instrument used for testing and performance evaluation of GPS receiver during its design and manufacture. GPS Signal simulator outputs the L1 signal of GPS satellites as received by the GPS receiver at its antenna. The generation of GPS signal requires the transmission of L1 signal at a rate of 1.023 Mbits\\/sec

  9. Localizability analysis for GPS/Galileo Receiver Autonomous Integrity Monitoring

    E-print Network

    Steve Hewitson; Hung Kyu Lee; Jinling Wang

    2004-01-01

    With the European Commission (EC) and European Space Agency’s (ESA) plans to develop a new satellite navigation system, Galileo and the modernisation of GPS well underway the integrity of such systems is as much, if not more, of a concern as ever. Receiver Autonomous Integrity Monitoring (RAIM) refers to the integrity monitoring of the GPS/Galileo navigation signals autonomously performed by the receiver independent of any external reference systems, apart from the navigation signals themselves. Quality measures need to be used to evaluate the RAIM performance at different locations and under various navigation modes, such as GPS only and GPS/Galileo integration, etc. The quality measures should include both the reliability and localizability measures. Reliability is used to assess the capability of GPS/Galileo receivers to detect the outliers while localizability is used to determine the capability of GPS/Galileo receivers to correctly identify the detected outlier from the measurements processed. Within this paper, the fundamental equations required for effective outlier detection and identification algorithms are described together with the measures of reliability and localizability. Detailed simulations and analyses have been performed to assess the performances of GPS only and integrated GPS/Galileo navigation solutions with respect to reliability and localizability. Simulation results show that, in comparison with the GPS-only solution, the localizability of the integrated GPS/Galileo solution can be improved by up to 270%. The results also indicate an expectation of a considerable increase in the sensitivity to outliers and accuracy of their estimation with the augmentation of the Galileo system with the existing GPS system.

  10. Geospatial Information System for tracking and navigation of mobile objects

    Microsoft Academic Search

    A. U. Alahakone; Veera Ragavan

    2009-01-01

    Geospatial Information System (GIS) is a tool for manipulating, integrating and displaying geographically referenced information. It is a powerful system with high accuracy that is being used as the main backbone for a variety of path planning and navigation technologies widely used in the industry today. Tracking, security management, fleet management and industrial robot navigation are some regular applications. This

  11. P-TOUR: A PERSONAL NAVIGATION SYSTEM FOR TOURISM

    E-print Network

    Yasumoto, Keiichi

    P-TOUR: A PERSONAL NAVIGATION SYSTEM FOR TOURISM Atsushi Maruyama, Naoki Shibata , Yoshihiro Murata propose a personal navigation system for tourism called P-Tour. When a tourist specifies multiple the situation that the tourist cannot follow the schedule. We have developed a route search engine as a Java

  12. INTERACTION DESIGN ISSUES FOR CAR NAVIGATION SYSTEMS Paul Curzon

    E-print Network

    Curzon, Paul

    . If they distract the driver they can cause crashes. A common use is in hire cars where drivers are likelyINTERACTION DESIGN ISSUES FOR CAR NAVIGATION SYSTEMS Paul Curzon Middlesex University Interaction of in- car navigation systems. It focused on a commercial product. Critical incident analysis

  13. Time determination for spacecraft users of the Navstar Global Positioning System /GPS/

    NASA Technical Reports Server (NTRS)

    Grenchik, T. J.; Fang, B. T.

    1977-01-01

    Global Positioning System (GPS) navigation is performed by time measurements. A description is presented of a two body model of spacecraft motion. Orbit determination is the process of inferring the position, velocity, and clock offset of the user from measurements made of the user motion in the Newtonian coordinate system. To illustrate the effect of clock errors and the accuracy with which the user spacecraft time and orbit may be determined, a low-earth-orbit spacecraft (Seasat) as tracked by six Phase I GPS space vehicles is considered. The obtained results indicate that in the absence of unmodeled dynamic parameter errors clock biases may be determined to the nanosecond level. There is, however, a high correlation between the clock bias and the uncertainty in the gravitational parameter GM, i.e., the product of the universal gravitational constant and the total mass of the earth. It is, therefore, not possible to determine clock bias to better than 25 nanosecond accuracy in the presence of a gravitational error of one part per million.

  14. A microcomputer-based low-cost Omega navigation system

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.; Salter, R. J., Jr.

    1976-01-01

    The application of a low cost, commercially available microcomputer as the navigation processor for a simplified OMEGA navigation system is an area of current research. The interface of a low cost front end OMEGA sensor is described and an example of the phase processing software and navigation routines is given. Emphasis is placed on the description of results obtained with the software version of the OMEGA burst filter known as the memory aided phase locked loop.

  15. Seamless LBS Based on the Integration of WSN and GPS

    Microsoft Academic Search

    Dejun Zou; Zhongliang Deng; Lianming Xu; Weizheng Ren

    2008-01-01

    For the goal of seamless indoor and outdoor location based services(LBS), a integrated navigation algorithm with both satellite location and WSN is put forward in this paper. This paper also design semi- physical simulation platform based on software receiver structure, which integrate GPS receiver and WSN nodes. Pseudorange observation data of global positioning system (GPS) and distance observation data of

  16. Further Development of Galileo-GPS RAIM for Vertical Guidance

    E-print Network

    Stanford University

    Further Development of Galileo-GPS RAIM for Vertical Guidance Alexandru Ene, Stanford University of combined GPS/Galileo signals, positioning error threat space and integrity. He holds a Bachelors anticipated deployment of Galileo, a new partner will rise on the sky of Global Navigation Satellite Systems

  17. New applications for navigation receivers in space

    Microsoft Academic Search

    Peter A. Krauss; Christopher Kühl; Jens Heim; Eveline Gottzein

    2010-01-01

    The further development of navigation receivers has to go hand in hand with the advances in the constellations for Global Navigation Satellite Systems (GNSS). As more and more features will be provided by the services of modernized GPS, GLONASS and the upcoming Galileo and Compass, the functions and performance of spaceborne GNSS receivers have to be extended as well. Today,

  18. Non-Intrusive Somatosensory Navigation Support for Blind Pedestrians Niels Henze

    E-print Network

    Boll, Susanne

    . With the advent of positioning techniques such as GPS integrated with personal mobile devices, orientation on the input of a GPS receiver and a digital compass, the lightweight prototype delivers vibration signals and navigation became supported by location-based orientation and navigation sys- tems. These systems typically

  19. A Micromechanical INS/GPS System for Small Satellites

    NASA Technical Reports Server (NTRS)

    Barbour, N.; Brand, T.; Haley, R.; Socha, M.; Stoll, J.; Ward, P.; Weinberg, M.

    1995-01-01

    The cost and complexity of large satellite space missions continue to escalate. To reduce costs, more attention is being directed toward small lightweight satellites where future demand is expected to grow dramatically. Specifically, micromechanical inertial systems and microstrip global positioning system (GPS) antennas incorporating flip-chip bonding, application specific integrated circuits (ASIC) and MCM technologies will be required. Traditional microsatellite pointing systems do not employ active control. Many systems allow the satellite to point coarsely using gravity gradient, then attempt to maintain the image on the focal plane with fast-steering mirrors. Draper's approach is to actively control the line of sight pointing by utilizing on-board attitude determination with micromechanical inertial sensors and reaction wheel control actuators. Draper has developed commercial and tactical-grade micromechanical inertial sensors, The small size, low weight, and low cost of these gyroscopes and accelerometers enable systems previously impractical because of size and cost. Evolving micromechanical inertial sensors can be applied to closed-loop, active control of small satellites for micro-radian precision-pointing missions. An inertial reference feedback control loop can be used to determine attitude and line of sight jitter to provide error information to the controller for correction. At low frequencies, the error signal is provided by GPS. At higher frequencies, feedback is provided by the micromechanical gyros. This blending of sensors provides wide-band sensing from dc to operational frequencies. First order simulation has shown that the performance of existing micromechanical gyros, with integrated GPS, is feasible for a pointing mission of 10 micro-radians of jitter stability and approximately 1 milli-radian absolute error, for a satellite with 1 meter antenna separation. Improved performance micromechanical sensors currently under development will be suitable for a range of micro-nano-satellite applications.

  20. Navigating the Airways

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through a licensing agreement with JPL, Hughes Aircraft Company is using the Jet Propulsion Laboratory's (JPL) software GIPSY-OASIS for implementation of the Federal Aviation Administration's Wide Area Augmentation System (WAAS). WAAS will provide precision navigation for commercial airliners in U.S. airspace. JPL's GIPSY-OASIS (GIPSY - GPS-Inferred Positioning System; OASIS - Orbit Analysis and Simulation Software) has been used world-wide to produce the most accurate Global Positioning System (GPS) ephemeredes (satellite position) solutions ever achieved for ground and space users, both in scientific and commercial applications.

  1. An IR Navigation System for Pleural PDT

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith

    2015-03-01

    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  2. The QuakeSim System for GPS Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Granat, R. A.; Gao, X.; Pierce, M.; Wang, J.

    2010-12-01

    We present a system for analysis of GPS time series data available to geosciences users through a web services / web portal interface. The system provides two time series analysis methods, one based on hidden Markov model (HMM) segmentation, the other based on covariance descriptor analysis (CDA). In addition, it provides data pre-processing routines that perform spike noise removal, linear de-trending, sum-of-sines removal, and common mode removal using probabilistic principle components analysis (PPCA). These components can be composed by the user into the desired series of processing steps for analysis through an intuitive graphical interface. The system is accessed through a web portal that allows both micro-scale (individual station) and macro-scale (whole network) exploration of data sets and analysis results via Google Maps. Users can focus in on or scroll through particular spatial or temporal time windows, or observe dynamic behavior by created movies that display the system state. Analysis results can be exported to KML format for easy combination with other sources of data, such as fault databases and InSAR interferograms. GPS solutions for California member stations of the plate boundary observatory from both the SOPAC and JPL gipsy context groups are automatically imported into the system as that data becomes available. We show the results of the methods as applied to these data sets for an assortment of case studies, and show how the system can be used to analyze both seismic and aseismic signals.

  3. Low accuracy sensor-based navigation and fully autonomous guidance control of small electric helicopter

    Microsoft Academic Search

    Satoshi Suzuki

    2011-01-01

    In this research, we design the navigation and fully autonomous control system for small electric helicopter. Small and low-accuracy sensors (GPS which cannot output ver- tical velocity, low-accuracy accelerometers, and barometer) are used for navigation and control. Firstly, INS\\/GPS\\/Barometer navigation system is designed to obtain high-accuracy position and velocity of the helicopter. Secondly, 3-dimensional guidance control system is designed by

  4. Strapdown inertial navigation system algorithms based on dual quaternions

    Microsoft Academic Search

    Yuanxin Wu; Xiaoping Hu; Dewen Hu; Tao Li; Junxiang Lian

    2005-01-01

    The design of strapdown inertial navigation system (INS) algorithms based on dual quaternions is addressed. Dual quaternion is a most concise and efficient mathematical tool to represent rotation and translation simultaneously, i.e., the general displacement of a rigid body. The principle of strapdown inertial navigation is represented using the tool of dual quaternion. It is shown that the principle can

  5. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  6. New techniques for initial alignment of strapdown inertial navigation system

    Microsoft Academic Search

    Shaolin Lü; Ling Xie; Jiabin Chen

    2009-01-01

    Some new techniques for initial alignment of strapdown inertial navigation system are proposed in this paper. A new solution for the precise azimuth alignment is given in detail. A new prefilter, which consists of an IIR filter and a Kalman filter using hidden Markov model, is designed to attenuate the influence of sensor noise and outer disturbance. Navigation algorithm in

  7. Field calibration for platform inertial navigation system based on RHKF

    Microsoft Academic Search

    Fan Mo; Zhihong Deng; Bo Wang; Mengyin Fu

    2010-01-01

    In this paper, a calibration method for platform inertial navigation system is proposed. By using this method, the calibration process can be completed without any turntables. For the inertial navigation platform which has full degrees of freedom in Yaw axis and ±60° degrees of freedom in the Roll and Pitch axis, a four-position field calibration method using receding horizon Kalman

  8. Navigation of a Mobile System with Parametrically Uncertain State Vector

    Microsoft Academic Search

    S. A. Gusarin; V. A. Pogorelov

    2003-01-01

    Navigation of a mobile system with parametrically uncertain state vector is studied. The required navigation accuracy is attained through orientation control of the gyrostabilized platform and identification of the parameters of the model of the platform drift. A wide range of functionals that depend on the a posteriori distribution density can be used as the optimization criteria since the solution

  9. Learning Adaptive Navigation Strategies for Resource-constrained Systems

    E-print Network

    Stachniss, Cyrill

    objectives for an autonomous robot. As a precondition for finding the way to a target location, the robotLearning Adaptive Navigation Strategies for Resource-constrained Systems Armin Hornung1 and Maren. The majority of navigation algorithms for mobile robots assume that the robots possess enough computational

  10. Research on scheme and algorithm of high-precision fault-tolerant integrated navigation for HALE UAV

    Microsoft Academic Search

    Chen Hai-ming; Xiong Zhi; Wang Rong; Liu Jian-ye

    2010-01-01

    To meet the need of high-precision navigation for HALE (high-altitude long-endurance) UAV (unmanned aerial vehicle), multi-sensor fault-tolerant autonomous navigation system was researched. For the shortcoming that the GPS signal is easily interfered by electromagnetic techniques, combining sundry integrated navigation patterns such as the INS\\/CNS integrated navigation, the INS\\/SAR (Synthetic Aperture Radar) integrated navigation, and other autonomous navigation system, the fault-tolerant

  11. A precise GPS-based time and frequency system

    NASA Technical Reports Server (NTRS)

    Mcnabb, Jack; Fossler, Earl

    1993-01-01

    An approach to implementing a compact, highly reliable and precise Master Time and Frequency subsystem usable in a variety of applications is described. These applications include, among others, Satellite Ground Terminals, Range Timing Stations, Communications Terminals, and Power Station Timing subsystems. All time and frequency output signals are locked to Universal Time via the GPS Satellite system. The system provides for continued output of precise signals in the event of GPS signal interruption from antenna or lead-in breakage or other causes. Cost/performance tradeoffs affecting system accuracy over the short, medium, and long term are discussed. A unique approach to redundant system design provides an architecture with the reliability advantage of triple-redundant majority voting and the cost advantages of dual-redundant elements. The system can be configured to output a variety of precise time and frequency signals and the design can be tailored to output as few, or as many, types and quantities of signals as are required by the application.

  12. Initial alignment of a gimballess inertial navigation system

    Microsoft Academic Search

    V. Krishnan; K. Grobert

    1970-01-01

    Initial alignment of gyrostabilized platforms is accomplished by gyrocompassing techniques. These cannot be used in the case of strap-down systems (gimballess inertial navigation systems) where the inertial components are \\

  13. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  14. Space shuttle onboard navigation console expert/trainer system

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bochsler, Dan

    1987-01-01

    A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.

  15. A GPS Receiver for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bamford, William A.; Heckler, Gregory W.; Holt, Greg N.; Moreau, Michael C.

    2008-01-01

    Beginning with the launch of the Lunar Reconnaissance Orbiter (LRO) in October of 2008, NASA will once again begin its quest to land humans on the Moon. This effort will require the development of new spacecraft which will safely transport people from the Earth to the Moon and back again, as well as robotic probes tagged with science, re-supply, and communication duties. In addition to the next-generation spacecraft currently under construction, including the Orion capsule, NASA is also investigating and developing cutting edge navigation sensors which will allow for autonomous state estimation in low Earth orbit (LEO) and cislunar space. Such instruments could provide an extra layer of redundancy in avionics systems and reduce the reliance on support and on the Deep Space Network (DSN). One such sensor is the weak-signal Global Positioning System (GPS) receiver "Navigator" being developed at NASA's Goddard Space Flight Center (GSFC). At the heart of the Navigator is a Field Programmable Gate Array (FPGA) based acquisition engine. This engine allows for the rapid acquisition/reacquisition of strong GPS signals, enabling the receiver to quickly recover from outages due to blocked satellites or atmospheric entry. Additionally, the acquisition algorithm provides significantly lower sensitivities than a conventional space-based GPS receiver, permitting it to acquire satellites well above the GPS constellation. This paper assesses the performance of the Navigator receiver based upon three of the major flight regimes of a manned lunar mission: Earth ascent, cislunar navigation, and entry. Representative trajectories for each of these segments were provided by NASA. The Navigator receiver was connected to a Spirent GPS signal generator, to allow for the collection of real-time, hardware-in-the-loop results for each phase of the flight. For each of the flight segments, the Navigator was tested on its ability to acquire and track GPS satellites under the dynamical environment unique to that trajectory.

  16. The Cyclone Global Navigation Satellite System: An 8-Satellite Constellation Mission

    NASA Astrophysics Data System (ADS)

    Ridley, A. J.; Ruf, C. S.; Rose, R.; Scherrer, J.

    2012-12-01

    Recently, NASA selected the Cyclone Global Navigation Satellite System (CYGNSS) mission for the Earth Venture Space System. The scientific goal of CYGNSS is to better understand the development of strong winds within the core of tropical cyclones. It will allow scientists to achieve this goal by inferring the surface winds through the use of reflected Global Position Satellite (GPS) signals off the ocean surface. Each of the eight CYGNSS satellites measures both direct and indirect GPS signals. These electromagnetic waves specularly reflect off of the ocean surface, allowing the roughness to be determined. This roughness is proportional to the surface wind speed. One of the important features of using GPS signals is that they are not attenuated by heavy rain fall, allowing the wind to be inferred throughout a tropical cyclone. The eight microsats will be launched by a single launch vehicle and will spread out across their orbit over about two weeks. After this, they will provide coverage of the wind speeds within 35 degrees of the equator with relatively rapid repeat times. This talk will present the scientific goals of CYGNSS, the characteristics of the eight microsats their orbit, and the status of the mission.

  17. Enhancing positioning accuracy in urban terrain by fusing data from a GPS receiver, inertial sensors, stereo-camera and digital maps for pedestrian navigation.

    PubMed

    Przemyslaw, Baranski; Pawel, Strumillo

    2012-01-01

    The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321

  18. Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation

    PubMed Central

    Przemyslaw, Baranski; Pawel, Strumillo

    2012-01-01

    The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321

  19. Investigation on navigation patterns of inertial/celestial integrated systems

    NASA Astrophysics Data System (ADS)

    Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan

    2014-11-01

    It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.

  20. First results from an airborne GPS radio occultation system for atmospheric profiling

    E-print Network

    Larson, Kristine

    First results from an airborne GPS radio occultation system for atmospheric profiling J. S. Haase1, Indiana, USA Abstract Global Positioning System (GPS) radio occultation (RO) from low Earth Satellite Systems Instrument System for Multistatic and Occultation Sensing (GISMOS), has been developed

  1. New type computer system design for inertial navigation system

    Microsoft Academic Search

    Dexin Xu; Kunpeng He; Yanbin Gao; Jianhui Zeng

    2008-01-01

    Construct a new type man-machine graphical interface for inertial navigation system, this new type GUI is built by using Qt\\/embedded graphical library under the environment of embedded Linux OS. Transplant the Linux operating system to the PC104 computer. Realize the across platform development between Linux and Windows OS by using Qt\\/embedded graphical library. At last the hardware and software design

  2. Strapdown inertial navigation systems for high precision near-Earth navigation and satellite geodesy: Analysis of operation and errors

    Microsoft Academic Search

    L. A. Fokin; A. G. Shchipitsin

    2008-01-01

    Specific features of the solution of problems of near-Earth inertial navigation are described for applications in which geodetic-class\\u000a precision is required, the connection of problems of autonomous inertial navigation and satellite gravimetry, their complementary\\u000a and contradictory character are considered, navigation support of modern projects of satellite geodesy is analyzed. The architecture\\u000a of a precise strapdown inertial navigation system is considered,

  3. A robust data fusion scheme for integrated navigation systems employing fault detection methodology augmented with fuzzy adaptive filtering

    NASA Astrophysics Data System (ADS)

    Ushaq, Muhammad; Fang, Jiancheng

    2013-10-01

    Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be applied to the navigation system of aircraft or unmanned aerial vehicle (UAV).

  4. Navigating at the Speed of Satellites

    NSDL National Science Digital Library

    Integrated Teaching and Learning Program,

    For thousands of years, navigators have looked to the sky for direction. Today, celestial navigation has simply switched from using natural objects to human-created satellites. A constellation of satellites, called the Global Positioning System, and hand-held receivers allow for very accurate navigation. In this lesson, students investigate the fundamental concepts of GPS technology — trilateration and using the speed of light to calculate distances.

  5. Vision-based guidance and control of a hovering vehicle in unknown, gps-denied environments

    E-print Network

    Andrews, Gregory

    This paper describes the system architecture and core algorithms for a quadrotor helicopter that uses vision data to navigate an unknown, indoor, GPS-denied environment. Without external sensing, an estimation system that ...

  6. System considerations and RF front-end design for integration of satellite navigation and mobile standards

    NASA Astrophysics Data System (ADS)

    Miskiewicz, A.; Holm, A.; Weigel, R.

    2009-05-01

    The paper presents the challenges involved in a system design of a robust reconfigurable RF front-end for navigation and mobile standards. Receiver architecture is chosen from the point of view of inter-system interference and 130nm CMOS process characteristics. System concept covers the implementation of GPS, Galileo, UMTS, GSM and CDMA2000 using a Zero-IF architecture with reconfigurable analog and digital path. Feasibility studies of the system cover analysis of the wireless regulations and performance criteria, such as overall gain, noise figure (NF), and 1dB compression point (P1dB) of the RF chain, phase noise requirements and VCO tuning range [1]. The presented chip was fabricated in 130 nm CMOS technology. System considerations are confirmed with the chip measurements of gain, noise figure, and linearity. Prospects for the future work are presented including technology shrink.

  7. The time keeping system for GPS block IIR

    NASA Technical Reports Server (NTRS)

    Rawicz, H. C.; Epstein, M. A.; Rajan, J. A.

    1993-01-01

    The precision time keeping system (TKS) in the Global Positioning System (GPS), Block IIR satellites is designed to operate under severe natural and man made environmental conditions. The Block IIR TKS provides precise, autonomous time keeping for periods of up to seven months, without the intervention of the GPS Control Segment. The TKS is implemented using both linear and non-linear controls. The resulting TKS architecture uses a hybrid analog/digital phase locked loop (PLL). The paper provides details of the design and analysis of the TKS. The simulation techniques and the test bed activities used in performing the TKS design trade-offs are described. The effects of non-linear controls are analyzed using a TKS computer simulation of the PLL. The results from a hardware test bed are provided that verify desired TKS operation. The design criteria for the TKS computer simulation and the hardware test bed are indicated. The concepts for verification and testing of the TKS computer simulation and hardware test bed are presented.

  8. 76 FR 11271 - In the Matter of Certain Multimedia Display and Navigation Devices and Systems, Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ...337-TA-694] In the Matter of Certain Multimedia Display and Navigation Devices and Systems...States after importation of certain multimedia display and navigation devices and systems...limited exclusion order directed to multimedia display and navigation devices and...

  9. A simulation of GPS and differential GPS sensors

    NASA Technical Reports Server (NTRS)

    Rankin, James M.

    1993-01-01

    The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.

  10. Discrete-time observers for inertial navigation systems

    E-print Network

    Zhao, Yong, 1980-

    2004-01-01

    In this thesis, we derive an exact deterministic nonlinear observer to compute the continuous-time states of inertial navigation system based on partial discrete measurements, the so-called strapdown problem. Nonlinear ...

  11. Neural network correction of a vector gravitoinertial navigation system

    NASA Astrophysics Data System (ADS)

    Devyatisil'nyi, A. S.

    2013-12-01

    The concept and model of correction of a 3D inertial navigation system capable of estimating earth's gravitational field anomalies are suggested. The results of the computational experiment are presented.

  12. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  13. Navigation Systems -Enroute Nolan, Chap 2

    E-print Network

    .1 · Channel 98 · ICAO Identifier ­ BVT · Morse Code Identification · HWAS Page 44, Chap 2, Nolan #12;14 Airway Advisory Frequency (CTAF) · Frankfort ­ Navigation ­ Non-directional Beacon (NDB) ­ 278 ­ Frequency ­ Morse Code for checking ­ Rotating airport beacon in operation sunset to sunrise · Miscellaneous ­ Located

  14. Design of integrated electronic chart pocket navigator system (PNS) and application for passage ship auto-track

    NASA Astrophysics Data System (ADS)

    Sui, Haigang; Xiao, Jinghuan; Zhang, Anming; Luo, Jie

    2007-11-01

    With the development of hydrographical work and information techniques, digital charts are more and more popular in maritime applications, and an embedded product--PDA (personal digital assistant) is widely used in navigation for its smallness and portability. However, there is lack of PDA-based product which can provide integrated data management, real-time alternate display and ship auto-track application based on traditional paper chart and s-57 ENC. Aiming at this, some new techniques and algorithms including integrated spatial data management and display mode for ENC and paper chart, multi-scale data organization, embedded chart navigation method based on GPS are presented. And the integrated electronic chart pocket navigator system (PNS) based on PDA was developed.

  15. Proceedings of the Institute of Navigation Satellite Division Technical Meeting, 1/12 GPS 02 (September 2002, Portland, USA)

    E-print Network

    Calgary, University of

    at the Department of Geomatics Engineering of the University of Calgary. He received a B.Sc. in Geomatics Engineering in May 2000 and is continuing his studies towards a Ph.D. in Geomatics Engineering in the field in Wireless Location in the Department of Geomatics Engineering. He has been involved with GPS developments

  16. TOPEX orbit determination using GPS signals plus a sidetone ranging system

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Larden, D. R.

    1982-01-01

    The GPS orbit determination was studied to see how well the radial coordinate for altimeter satellites such as TOPEX could be found by on board measurements of GPS signals, including the reconstructed carrier phase. The inclusion on altimeter satellites of an additional high accuracy tracking system is recommended. It is suggested that a sidetone ranging system is used in conjunction with TRANET 2 beacons.

  17. Evaluation of the 1984 Alaska global positioning system campaign with the Bernese GPS software

    Microsoft Academic Search

    G. Beutler; I. Bauersima; W. Gurtner; M. Rothacher; T. Schildknecht; G. L. Mader; M. D. Abell

    1987-01-01

    During the summer of 1984 five TI-4100 global positioning system (GPS) receivers were used to measure an eight-station network in Alaska and Canada, previously measured with mobile very long baseline interferometry (VLBI) systems, with baselines ranging from 300 km to almost 2700 km. The observations have been processed in the network mode with the Bernese GPS software using orbit improvement

  18. Design of a twelve channel GPS receiver and a DGPS reference station - Data processing part

    E-print Network

    Ren, Juxiang

    1995-01-01

    The global positioning system (GPS) is a satellite based navigation system which can give twenty-four hour three-dimensional worldwide coverage. The system consists of space, control, and user segments. The GPS receiver is part of the user segment...

  19. ION NTM 2006, January 18-20, 2006, Monterey, CA GPS and Galileo Performance Evaluations for

    E-print Network

    Calgary, University of

    and the modernization of the current Global Positioning System (GPS) will substantially increase the available signals Global Positioning System (GPS) and Galileo will provide users with new positioning capabilities to Global Navigation Satellite Systems (GNSS) users. Past simulation studies have shown that Galileo

  20. PERFORMANCE ASSESSMENT OF A MULTU-SENSOR PERSONAL NAVIGATOR SUPPORTED BY AN ADAPTIVE KNOWLEDGE BASED SYSTEM

    Microsoft Academic Search

    D. A. Grejner-Brzezinska; C. K. Toth

    The prototype of a personal navigator to support navigation and tracking of military and rescue ground personnel has been developed at The Ohio State University Satellite Positioning and Inertial Navigation (SPIN) Laboratory. This paper provides a review of the navigation techniques suitable for personal navigation and follows with design, implementation and performance assessment of the system prototype, with a special

  1. Optimal on-airport monitoring of the integrity of GPS-based landing systems

    NASA Astrophysics Data System (ADS)

    Xie, Gang

    2004-11-01

    The Global Positioning System (GPS) is a satellite-based radio navigation system. The Local Area Augmentation System (LAAS) is a version of Differential GPS (DGPS) designed to reliably support aircraft precision approaches. The Integrity Monitor Testbed (IMT) is a prototype of the LAAS Ground Facility (LGF) that is used to evaluate whether the LGF can meet system integrity requirements. To insure high integrity, the IMT has a variety of monitors to detect all possible failures. It also contains a failure-handling logic, known as Executive Monitoring (EXM), to exclude faulty measurements and recover once the failure disappears. Spatial ionospheric gradients are major threats to the LAAS. One focus of this thesis is exploring methods to quickly detect ionospheric gradients given the required low probability of false alarms. The first part of the thesis introduces GPS, LAAS, and the IMT and explains the algorithms and functionalities of IMT integrity monitors in detail. It then analyzes the failure responses of the integrity monitors under the most general measurement failure model. This analysis not only qualitatively maps the integrity monitors into the entire failure space, but also provides a tool to quantitatively compare the performance of different integrity monitors. In addition, the analysis examines the limitations of the existing monitors in detecting small but hazardous ionospheric gradients. The divergence Cumulative Sum (CUSUM) method is then derived and assessed. It can reduce the time required to detect marginal ionospheric gradients by about 30%. With the divergence CUSUM method implemented in the IMT, system integrity and performance are greatly improved. Different monitors can respond to the same failures. The last part of this thesis shows that the combination of these different monitors can detect certain failures more quickly than any individual monitor. This idea leads to a new method, called failure-specific testing, which can significantly improve the detection speed of small failures, including ionospheric gradients. Used as aids to diagnosis and exclusion, failure-specific tests can soften the current EXM logic so that the LAAS can meet the tighter continuity requirements that apply to Category III precision landings.

  2. SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2008-01-01

    This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.

  3. A DSP embedded optical navigation system

    Microsoft Academic Search

    K Gunnumf; D. C. Hughes; J. L. Junkins; N. Kehtornavaz

    2002-01-01

    Six degrees of freedom (6DOF) data estimation has a wide range of applications in navigation, proximity operations, manufacturing and robotic control. This paper presents an optimal and computationally efficient 6DOF estimation algorithm using modified Rodrigues parameters. The analytical results of the estimation algorithm and also its computational results on a low power floating point DSP, the TMS320VC33, are presented. A

  4. Selected bibliography of OMEGA, VLF and LF techniques applied to aircraft navigation systems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A bibliography is presented which includes references to the OMEGA navigation system, very low frequencies, time-frequency measurements, air traffic control, radio navigation, and applications of OMEGA.

  5. TRENDS IN GEOPOSITIONING FOR LBS, NAVIGATION AND MAPPING

    Microsoft Academic Search

    Chris Rizos

    The Global Positioning System (GPS) is a satellite-based technology that has truly revolutionised many positioning and navigation activities, and today stands unchallenged as the 'first choice' position determination technology for all outdoor applications. GPS is global, works in all weather conditions, is available 24hrs a day and is free of user charges. Thanks to the revolution in microelectronics, over the

  6. Simulation of an Inertial Acoustic Navigation System With Range Aiding for an Autonomous Underwater Vehicle

    Microsoft Academic Search

    Pan-Mook Lee; Bong-Huan Jun; Kihun Kim; Jihong Lee; Taro Aoki; Tadahiro Hyakudome

    2007-01-01

    This paper presents an integrated navigation system for underwater vehicles to improve the performance of a conventional inertial acoustic navigation system by introducing range measurement. The integrated navigation system is based on a strapdown inertial navigation system (SDINS) accompanying range sensor, Doppler velocity log (DVL), magnetic compass, and depth sensor. Two measurement models of the range sensor are derived and

  7. Using Ontologies for Adaptive Navigation Support in Educational Hypermedia Systems

    Microsoft Academic Search

    Pythagoras Karampiperis; Demetrios Sampson

    2004-01-01

    Educational hypermedia systems seek to provide adaptive naviga- tion, whereas intelligent web-based learning systems seek to provide adaptive courseware generation. The design of powerful frameworks by merging the ap- proaches used in the above mentioned systems is recognized as one of the most interesting questions in adaptive web-based educational systems. In this paper we address adaptive navigation support in educational

  8. Causal Analysis Methodology of Multisensor Systems based on GNSS

    E-print Network

    Boyer, Edmond

    (Global Navigation Satellite Sys- tems) like the GPS (Global Positioning System) or the future Galileo Systems) - the GPS (Global Positioning System) - was designed by the DoD (Department of Defense) of United

  9. Loran Fault Trees for Required Navigation Performance 0.3

    E-print Network

    Stanford University

    to deliberate jamming. The LOng RAnge Navigation radionavigation system or Loran is a terrestrial, low frequency, high power, hyperbolic navigation system. Since the low frequencies signals propagate along the nap National Transportation Safety Center (VNTSC) Report on GPS Vulnerability have had tremendous ramifications

  10. The role of adaptive antenna systems when used with GPS

    Microsoft Academic Search

    Rolf Johannessen

    1989-01-01

    The possible effects of jamming on the operation of the GPS is examined, and possible ways of dealing with this problem are discussed. In particular, it is shown that Controlled Reception Pattern Antennas are capable of greatly increasing the jamming levels for which GPS can be used. Nulls of the order of 40 dB can be generated in high dynamic

  11. A traffic radar verification system based on GPS–Doppler technology

    Microsoft Academic Search

    Soledad Torres-Guijarro; Esteban Vázquez-Fernández; Miguel Seoane-Seoane; J. Alfonso Mondaray-Zafrilla

    2010-01-01

    In this article, a traffic radar verification system based on the GPS–Doppler technology is described. An speedometer boarded in the target vehicle estimates its speed from the Doppler variation of the GPS satellites signals, and transmits it via radio to the police vehicle, where the radar to verify is located. In order to automate the procedure and be more effective,

  12. Development of an Integrated Low-Cost GPS\\/Rate Gyro System for Attitude Determination

    Microsoft Academic Search

    Chaochao Wang; Gérard Lachapelle; M. Elizabeth Cannon

    2004-01-01

    The use of low-cost GPS receivers and antennas for attitude determination can significantly reduce the overall hardware system cost. Compared to the use of high performance GPS receivers, the carrier phase measurements from low-cost equipment are subject to additional carrier phase measurement errors, such as multipath, antenna phase centre variation and noise. These error sources, together with more frequent cycle

  13. Global Positioning System (GPS) location accuracy improvement due to Selective Availability removal

    Microsoft Academic Search

    Christophe Adrados; Irène Girard; Jean-Paul Gendner; Georges Janeau

    2002-01-01

    Global Positioning System (GPS) is an important new technology for spatio-temporal behaviour studies of animals. Differential correction improves location accuracy. Previously, it mostly removed partially the influence of Selective Availability (SA). SA was deactivated in May 2000. The aim of this study was to quantify the influence of SA cancellation on location accuracy of various GPS receivers. We tested the

  14. Analysis of a choke ring groundplane for multipath control in Global Positioning System (GPS) applications

    Microsoft Academic Search

    James M. Tranquilla; J. P. Carr; Hussain M. Al-Rizzo

    1994-01-01

    In this paper a computational scheme is presented for accurately predicting the farfield amplitude and phase characteristics of Global Positioning System (GPS) antennas flush-mounted to a corrugated groundplane. The algorithm developed is particularly well-suited in beamshaping of (GPS) antennas in order to provide a high level of multipath rejection. The usefulness of the analytical model has been verified by the

  15. Global Positioning System (GPS) estimates of crustal deformation in the Marmara Sea region, Northwestern Anatolia

    Microsoft Academic Search

    Christian Straub; Hans-Gert Kahle

    1994-01-01

    In the Marmara Sea region the relative motion between the Anatolian and Eurasian lithosphere has been measured by means of the modern techniques of space geodesy using the Global Positioning System (GPS). In order to resolve in detail the kinematic field within the active earthquake belts of Northwestern Anatolia, two GPS campaigns were carried out across a dense network consisting

  16. Integrating Inertial Sensors With Global Positioning System (GPS) for Vehicle Dynamics Control

    Microsoft Academic Search

    Jihan Ryu; J. Christian Gerdes

    2004-01-01

    This paper demonstrates a method of estimating several key vehicle states—sideslip angle, longitudinal velocity, roll and grade—by combining automotive grade inertial sen- sors with a Global Positioning System (GPS) receiver. Kinematic Kalman filters that are independent of uncertain vehicle parameters integrate the inertial sensors with GPS to provide high update estimates of the vehicle states and the sensor biases. Using

  17. Navigation, Journ. of the Inst. of Navigation, Vol. 49(1), 7-34, Spring 2002 The Global Positioning

    E-print Network

    Tingley, Joseph V.

    University, Columbus, Ohio ABSTRACT Fundamental to NAVSTAR Global Positioning System (GPS) operation Positioning System Geodesy Odyssey Alan G. Evans,(1) ed.; Robert W. Hill,(2) ed.; Geoffrey Blewitt;(3) EverettNavigation, Journ. of the Inst. of Navigation, Vol. 49(1), 7-34, Spring 2002 1 The Global

  18. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  19. Navigating a car in an unfamiliar country using an internet map: effects of street language formats, map orientation consistency, and gender on driver performance, workload and multitasking strategy

    Microsoft Academic Search

    Changxu Wu; Guozhen Zhao; Bin Lin; Jonghoon Lee

    2011-01-01

    Navigating a car in an unfamiliar country becomes one of the major concerns with driving safety. Existing studies mainly used survey, focus group and statistical analysis to study this problem. Although the navigation system (e.g. GPS) gains an advantage in providing navigation assistances, paper maps and particularly internet maps are one of major ways for navigating in an unfamiliar area.

  20. IMU/GPS Based Pedestrian Localization Ling Chen and Huosheng Hu

    E-print Network

    Hu, Huosheng

    of a pedestrian when it is combined with Global Positioning System(GPS). This paper investigates how the integration of IMU anf GPS can be effectively used in pedestrian localization. The position calculation. An Inertial Navigation System(INS) could be deployed to locate a pedestrian based on accelerometers

  1. Low-Cost Terrain Relative Navigation for Long-Range AUVs

    E-print Network

    . High performance TRN systems have been demonstrated using both high-accuracy inertial navigation navigation methods which include resurfacing for GPS, using high-accuracy inertial sensors, or deployingLow-Cost Terrain Relative Navigation for Long-Range AUVs Deborah K. Meduna, Stephen M. Rock

  2. A sonar-based mapping and navigation system

    Microsoft Academic Search

    A. Elfes

    1986-01-01

    This paper describes a sonar-based mapping and navigation system for autonomous mobile robots operating in unknown and unstructured surroundings. The system uses sonar range data to build a multileveled description of the robot's environment. Sonar maps are represented in the system along several dimensions: the Abstraction axis, the Geographical axis, and the Resolution axis. Various kinds of problem-solving activities can

  3. Autonomous Spacecraft Navigation With Pulsars

    NASA Astrophysics Data System (ADS)

    Becker, Werner

    2014-08-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. We will describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  4. Wakeshield WSF-02 GPS Experiment

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Abusali, P. A. M.; Schroeder, Christine; Tapley, Byron; Exner, Michael; Mccloskey, rick; Carpenter, Russell; Cooke, Michael; Mcdonald, samantha; Combs, Nick; Duncan, Courtney; Dunn, Charles; Meehan, Tom

    1995-01-01

    Shuttle mission STS-69 was launched on September 7, 1995, 10:09 CDT, carrying the Wake Shield Facility (WSF-02). The WSF-02 spacecraft included a set of payloads provided by the Texas Space Grant Consortium, known as TexasSat. One of the TexasSat payloads was a GPS TurboRogue receiver loaned by the University Corporation for Atmospheric Research. On September 11, the WSF-02 was unberthed from the Endeavour payload bay using the remote manipulator system. The GPS receiver was powered on prior to release and the WSF-02 remained in free-flight for three days before being retrieved on September 14. All WSF-02 GPS data, which includes dual frequency pseudorange and carrier phase, were stored in an on-board recorder for post-flight analysis, but "snap- shots" of data were transmitted for 2-3 minutes at intervals of several hours, when permitted by the telemetry band- widdl The GPS experiment goals were: (1) an evaluation of precision orbit determination in a low altitude environment (400 km) where perturbations due to atmospheric drag and the Earth's gravity field are more pronounced than for higher altitude satellites with high precision orbit requirements, such as TOPEX/POSEIDON; (2) an assessment of relative positioning using the WSF GPS receiver and the Endeavour Collins receiver; and (3) determination of atmospheric temperature profiles using GPS signals passing through the atmosphere. Analysis of snap-shot telemetry data indicate that 24 hours of continuous data were stored on board, which includes high rate (50 Hz) data for atmosphere temperature profiles. Examination of the limited number of real-time navigation solutions show that at least 7 GPS satellites were tracked simultaneously and the on-board clock corrections were at the microsec level, as expected. Furthermore, a dynamical consistency test provided a further validation of the on-board navigation solutions. Complete analysis will be conducted in post-flight using the data recorded on-board.

  5. Global positioning system pseudolite-based relative navigation.

    SciTech Connect

    Monda, Eric W. (University of Texas, Austin, TX)

    2004-03-01

    Though the Global Positioning System has revolutionized navigation in the modern age, it is limited in its capability for some applications because an unobstructed line of sight to a minimum of four satellites is required. One way of augmenting the system in small areas is by employing pseudolites to broadcast additional signals that can be used to improve the user's position solution. At the Navigation Systems Testing Laboratory (NSTL) at NASA's Johnson Space Center in Houston, TX, research has been underway on the use of pseudolites to perform precision relative navigation. Based on the findings of previous research done at the NSTL, the method used to process the pseudolite measurements is an extended Kalman filter of the double differenced carrier phase measurements. By employing simulations of the system, as well as processing previously collected data in a real time manner, sub-meter tracking of a moving receiver with carrier phase measurements in the extended Kalman filter appears to be possible.

  6. 76 FR 12643 - Proposed Establishment of Helicopter Area Navigation (RNAV) Routes; Northeast United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ...Air Traffic Service (ATS) route structure to be used by suitably equipped helicopters having IFR- approved Global Positioning System (GPS)/Global Navigation Satellite System (GNSS) equipment. Additionally, the FAA is proposing to...

  7. 75 FR 68701 - Establishment and Amendment of Area Navigation (RNAV) Routes; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ...based on RNAV, for use by aircraft having instrument flight rules (IFR)-approved Global Positioning System (GPS)/Global Navigation Satellite System (GNSS) equipment, or Distance Measuring Equipment (DME)/DME Inertial...

  8. Garmin: What Is GPS?

    NSDL National Science Digital Library

    This resource, published by a commercial producer of GPS equipment, introduces students to the concept of Global Positioning Systems (GPS). Topics include how GPS works and how accurate it is. There is also a brief description of the satellite network that makes the system work, and some sources of error in the GPS signal.

  9. Desktop-VR system for preflight 3D navigation training

    NASA Astrophysics Data System (ADS)

    Aoki, Hirofumi; Oman, Charles M.; Buckland, Daniel A.; Natapoff, Alan

    Crews who inhabit spacecraft with complex 3D architecture frequently report inflight disorientation and navigation problems. Preflight virtual reality (VR) training may reduce those risks. Although immersive VR techniques may better support spatial orientation training in a local environment, a non-immersive desktop (DT) system may be more convenient for navigation training in "building scale" spaces, especially if the two methods achieve comparable results. In this study trainees' orientation and navigation performance during simulated space station emergency egress tasks was compared while using immersive head-mounted display (HMD) and DT-VR systems. Analyses showed no differences in pointing angular-error or egress time among the groups. The HMD group was significantly faster than DT group when pointing from destination to start location and from start toward different destination. However, this may be attributed to differences in the input device used (a head-tracker for HMD group vs. a keyboard touchpad or a gamepad in the DT group). All other 3D navigation performance measures were similar using the immersive and non-immersive VR systems, suggesting that the simpler desktop VR system may be useful for astronaut 3D navigation training.

  10. Low-frequency radio navigation system

    NASA Technical Reports Server (NTRS)

    Wallis, D. E. (inventor)

    1983-01-01

    A method of continuous wave navigation using four transmitters operating at sufficiently low frequencies to assure essentially pure groundwave operation is described. The transmitters are keyed to transmit constant bursts (1/4 sec) in a time-multiplexed pattern with phase modulation of at least one transmitter for identification of the transmitters and with the ability to identify the absolute phase of the modulated transmitter and the ability to modulate low rate data for transmission. The transmitters are optimally positioned to provide groundwave coverage over a service region of about 50 by 50 km for the frequencies selected in the range of 200 to 500 kHz, but their locations are not critical because of the beneficial effect of overdetermination of position of a receiver made possible by the fourth transmitter. Four frequencies are used, at least two of which are selected to provide optimal resolution. All transmitters are synchronized to an average phase as received by a monitor receiver.

  11. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  12. Developing a Fundamental Model for an Integrated GPS/INS State Estimation System with Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    1999-01-01

    This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.

  13. Oral and maxillofacial surgery with computer-assisted navigation system.

    PubMed

    Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko

    2010-01-01

    Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring. PMID:20574133

  14. An Indoor Navigation System for the Visually Impaired

    PubMed Central

    Guerrero, Luis A.; Vasquez, Francisco; Ochoa, Sergio F.

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment. PMID:22969398

  15. AIAA-99-4079 THE ACCURACY OF THE GPS-DERIVED ACCELERATION VECTOR, A NOVEL ATTITUDE

    E-print Network

    Psiaki, Mark L.

    System (GPS) is a space- based radio navigation system. It provides the ability to determine position. Accelerations are used in inertial navigation systems only because they can be directly measured. They allow position and velocity to be deduced by integration. Position and velocity are already available from

  16. The integration of strap-down INS and GPS based on adaptive error damping

    Microsoft Academic Search

    Rade Stancic; Stevica Graovac

    2010-01-01

    The concept and results of integration of a strap-down inertial navigation system (INS) based on low-accuracy inertial sensors and the global positioning system (GPS) have been presented in this paper. This system is aimed for the purposes of navigation, automatic control, and remote tracking of land vehicles. The integration is made by the implementation of an extended Kalman filter (EKF)

  17. INS\\/GPS Aided by Frequency Contents of Vector Observations With Application to Autonomous Surface Crafts

    Microsoft Academic Search

    J. F. Vasconcelos; C. Silvestre; P. Oliveira

    2011-01-01

    This paper presents a high-accuracy, multirate inertial navigation system (INS) integrating global positioning system (GPS) measurements and advanced vector aiding tech- niques for precise position and attitude estimation of autonomous surface crafts (ASCs). Designed to be implemented and tested in the DELFIMx catamaran developed at ISR\\/IST, the navigation system comprises an advanced inertial integration algorithm to account for coning and

  18. GPS Real Time Vehicle Alarm Monitoring System Base on GPRS\\/CSD using the Embedded System

    Microsoft Academic Search

    Xing Jianping; Zhang Jun; Cheng Hebin; Li Changqing; Shi Xiaohui

    2006-01-01

    It proposed a method of combining the two types of data service CSD and GPRS based on GSM applied to GPS vehicle real-time monitoring and alarming system. Based on this method, basic constitution and network structure of the system is given out, and then it implements the CSD and GPRS hardware interface and software flow based on the GR47 wireless

  19. GPS error and its effects on movement analysis

    E-print Network

    Ranacher, Peter; Van der Spek, Stefan Christiaan; Reich, Siegfried

    2015-01-01

    Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), are among the most important sensors in movement analysis. GPS data loggers are widely used to record the movement trajectories of vehicles, animals or human beings. However, these trajectories are inevitably affected by GPS measurement error, which influences conclusion drawn about the behavior of the moving objects. In this paper we investigate GPS measurement error and discuss its influence on movement parameters such as speed, direction or distance. We identify three characteristic properties of GPS measurement error: it follows temporal (1) and spatial (2) autocorrelation and causes a systematic overestimation of distances (3). Based on our findings we give recommendations on how to collect movement data in order to minimize the influence of error. We claim that these recommendations are essential for designing an appropriate sampling strategy for collecting movement data by means of a GPS.

  20. A T-DMB navigation system for seamless positioning in both indoor and outdoor environments

    NASA Astrophysics Data System (ADS)

    Moon, Gong Bo; Chun, Se Bum; Hur, Moon Beom; Jee, Gyu-In

    2014-12-01

    The conventional global positioning system (GPS) can often fail to provide position determination for a mobile user in indoor and urban environments. To cope with GPS failure in such environments, a new navigation system which utilizes a terrestrial digital multimedia broadcasting (T-DMB) signal to obtain the mobile user's position is presented. Since the T-DMB transmitters in Korea construct a single frequency network (SFN), which forces the transmitters to be synchronized, the mobile user can measure a time difference of arrival (TDOA) for all audible T-DMB transmitter pairs. The time difference between T-DMB transmitters is converted to a distance difference by multiplying the time difference by the speed of light. Using these measurements and a TDOA positioning method, the mobile user position can be estimated. An experiment with a T-DMB receiver and a data acquisition (DAQ) board is performed in Seoul to analyze the error characteristic of TDOA measurements. It is certified that the measurement error is bounded under 300 m and can be used to determine the mobile user's position with a small standard deviation.